Science.gov

Sample records for critical point symmetry

  1. Partial dynamical symmetry at critical points of quantum phase transitions.

    PubMed

    Leviatan, A

    2007-06-15

    We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.

  2. Critical-point symmetry in a finite system.

    PubMed

    Leviatan, A; Ginocchio, J N

    2003-05-30

    At a critical point of a second-order phase transition the intrinsic energy surface is flat and there is no stable minimum value of the deformation. However, for a finite system, we show that there is an effective deformation which can describe the dynamics at the critical point. This effective deformation is determined by minimizing the energy surface after projection onto the appropriate symmetries. We derive analytic expressions for energies and quadrupole rates which provide good estimates for these observables at the critical point.

  3. Symmetry relations for multifractal spectra at random critical points

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile; Berche, Bertrand; Chatelain, Christophe

    2009-12-01

    Random critical points are generically characterized by multifractal properties. In the field of Anderson localization, Mirlin et al (2006 Phys. Rev. Lett. 97 046803) have proposed that the singularity spectrum f(α) of eigenfunctions satisfies the exact symmetry f(2d-α) = f(α)+d-α. In the present paper, we analyze the physical origin of this symmetry in relation to the Gallavotti-Cohen fluctuation relations of large deviation functions that are well known in the field of non-equilibrium dynamics: the multifractal spectrum of the disordered model corresponds to the large deviation function of the rescaling exponent γ = (α-d) along a renormalization trajectory in the effective time t = lnL. We conclude that the symmetry discovered for the specific example of Anderson transitions should actually be satisfied at many other random critical points after an appropriate translation. For many-body random phase transitions, where the critical properties are usually analyzed in terms of the multifractal spectrum H(a) and of the moment exponents X(N) of the two-point correlation function (Ludwig 1990 Nucl. Phys. B 330 639), the symmetry becomes H(2X(1)-a) = H(a)+a-X(1), or equivalently Δ(N) = Δ(1-N) for the anomalous parts \\Delta (N) \\equiv X(N)-NX(1) . We present numerical tests favoring this symmetry for the 2D random Q-state Potts model with varying Q.

  4. 124Te and the E(5) Critical Point Symmetry

    NASA Astrophysics Data System (ADS)

    Ghiţă, D. G.; Căta-Danil, G.; Bucurescu, D.; Căta-Danil, I.; Ivascu, M.; Mihai, C.; Suliman, G.; Stroe, L.; Sava, T.; Zamfir, N. V.

    We present a new study of the low-lying states in 124Te nucleus by γ-ray spectroscopy following 124I β+/ɛ decay. The β radioactive sources were produced in the 124Te(p, n)124I reaction induced by 11 MeV protons, delivered by the Bucharest FN Tandem Accelerator. The γ-rays were measured in a low background area with three large volume HPGe detectors. A total number of 276 milion double coincidence events were recorded in a six-day run. Most of the gamma line intensities previously measured were confirmed with improved accuracy and several gamma lines were obtained for the first time. Our results, combined with those from a recent (n, γ) study are compared with the predictions of the E(5) critical point symmetry model and numerical IBA-1 model calculations at the critical point of the U(5)-O(6) phase transition.

  5. Critical points and symmetries of a free energy function for biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Chillingworth, D. R. J.

    2015-05-01

    We describe a general mean field model for the free energy function for a homogeneous medium of mutually interacting molecules, based on the formalism for a biaxial nematic liquid crystal set out by Katriel et al (1986) in an influential paper in Liquid Crystals 1 and subsequently called the KKLS formalism. The free energy is expressed as the sum of an entropy term and an interaction (Hamiltonian) term. Using the language of group representation theory we identify the order parameters as averaged components of a linear transformation, and characterize the full symmetry group of the entropy term in the liquid crystal context as a wreath product SO(3) ≀ Z2. The symmetry-breaking role of the Hamiltonian, pointed out by Katriel et al, is here made explicit in terms of centre manifold reduction at bifurcation from isotropy. We use tools and methods of equivariant singularity theory to reduce the bifurcation study to that of a D3-invariant function on R2, ubiquitous in liquid crystal theory, and to describe the ‘universal’ bifurcation geometry in terms of the superposition of a familiar swallowtail surface controlling uniaxial equilibria and another less familiar surface controlling biaxial equilibria. In principle this provides a template for all nematic liquid crystal phase transitions close to isotropy, although further work is needed to identify the absolute minima that are the critical points representing stable phases.

  6. Evolution of the X(5) critical-point symmetry in rotating {\\mathbf {^{176}Os}}

    NASA Astrophysics Data System (ADS)

    Hao, X.; Zhu, L. H.; Wu, X. G.; He, C. Y.; Pan, B.; Zheng, Y.; Wang, L. L.; Wang, L.; Li, X. Q.; Liu, Y.; Ding, H. B.; Li, Z. Y.; Zhang, J. F.; Sun, H. B.; Li, G. S.

    2011-02-01

    Lifetimes of excited states above 10+ in the yrast band in 176Os have been measured using the Doppler shift attenuation method, via the fusion evaporation reaction {^{152}Sm(^{28}Si, 4{{\\it n}})^{176}Os}. Lifetimes of states over 12+ were measured for the first time. The deduced transitional quadruple moments (Qt), together with the previous data using a recoil distance method, are compared with theoretical calculations based on the X(5) model and the interaction boson model. For the states below spin 10+, the data of previous work support an X(5)-like structure, but for the states above 10+, the value of Qt remains almost constant, being the characteristic of a symmetric rotor. The present result suggests that the shape of the nucleus 176Os changes from X(5) critical-point symmetry to an axially deformed rotor with increasing spin.

  7. Quantum critical point of Dirac fermion mass generation without spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    He, Yuan-Yao; Wu, Han-Qing; You, Yi-Zhuang; Xu, Cenke; Meng, Zi Yang; Lu, Zhong-Yi

    2016-12-01

    We study a lattice model of interacting Dirac fermions in (2 +1 ) dimensions space-time with an SU(4) symmetry. While increasing the interaction strength, this model undergoes a continuous quantum phase transition from a weakly interacting Dirac semimetal to a fully gapped and nondegenerate phase without condensing any Dirac fermion bilinear mass operator. This unusual mechanism for mass generation is consistent with recent studies of interacting topological insulators/superconductors, and also consistent with recent progress in the lattice QCD community.

  8. Shape evolution and test of the critical-point symmetry X(5) in 176Os

    NASA Astrophysics Data System (ADS)

    Hao, Xin; Zhu, Li-Hua; Wu, Xiao-Guang; Li, Guang-Sheng; Pan, Bo; Wang, Lie-Lin; Zheng, Yun; Wang, Lei; Li, Xue-Qin; Liu, Ying; Ding, Huai-Bo; Li, Zhong-Yu

    2009-03-01

    The lifetimes of excited states in the yrast band of 176Os have been measured up to I = 20ħ level using the Doppler shift attenuation method. The high-spin states of 176Os were populated via fusion evaporation reaction 152Sm(28Si,4n)176Os at a beam energy of 140 MeV. The results support an X(5) structure for 176Os at low spin. This structure disappears at high spin and shows a symmetry rotor character. The shape change of 176Os is similar to that of 178Os.

  9. Relative Critical Points

    NASA Astrophysics Data System (ADS)

    Lewis, Debra

    2013-05-01

    Relative equilibria of Lagrangian and Hamiltonian systems with symmetry are critical points of appropriate scalar functions parametrized by the Lie algebra (or its dual) of the symmetry group. Setting aside the structures - symplectic, Poisson, or variational - generating dynamical systems from such functions highlights the common features of their construction and analysis, and supports the construction of analogous functions in non-Hamiltonian settings. If the symmetry group is nonabelian, the functions are invariant only with respect to the isotropy subgroup of the given parameter value. Replacing the parametrized family of functions with a single function on the product manifold and extending the action using the (co)adjoint action on the algebra or its dual yields a fully invariant function. An invariant map can be used to reverse the usual perspective: rather than selecting a parametrized family of functions and finding their critical points, conditions under which functions will be critical on specific orbits, typically distinguished by isotropy class, can be derived. This strategy is illustrated using several well-known mechanical systems - the Lagrange top, the double spherical pendulum, the free rigid body, and the Riemann ellipsoids - and generalizations of these systems.

  10. Continuous point symmetries in group field theories

    NASA Astrophysics Data System (ADS)

    Kegeles, Alexander; Oriti, Daniele

    2017-03-01

    We discuss the notion of symmetries in non-local field theories characterized by integro-differential equations of motion, from a geometric perspective. We then focus on group field theory (GFT) models of quantum gravity and provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them.

  11. Robust Critical Point Detection

    SciTech Connect

    Bhatia, Harsh

    2016-07-28

    Robust Critical Point Detection is a software to compute critical points in a 2D or 3D vector field robustly. The software was developed as a part of the author's work at the lab as a Phd student under Livermore Scholar Program (now called Livermore Graduate Scholar Program).

  12. A holographic critical point

    SciTech Connect

    DeWolfe, Oliver; Rosen, Christopher; Gubser, Steven S.

    2011-04-15

    We numerically construct a family of five-dimensional black holes exhibiting a line of first-order phase transitions terminating at a critical point at finite chemical potential and temperature. These black holes are constructed so that the equation of state and baryon susceptibilities approximately match QCD lattice data at vanishing chemical potential. The critical end point in the particular model we consider has temperature 143 MeV and chemical potential 783 MeV. Critical exponents are calculated, with results that are consistent with mean-field scaling relations.

  13. Symmetry in critical random Boolean network dynamics.

    PubMed

    Hossein, Shabnam; Reichl, Matthew D; Bassler, Kevin E

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  14. Symmetry in Critical Random Boolean Networks Dynamics

    NASA Astrophysics Data System (ADS)

    Bassler, Kevin E.; Hossein, Shabnam

    2014-03-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used to both greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. Classes of functions occur at the same frequency. These classes are orbits of the controlling symmetry group. We find the nature of the symmetry that controls the dynamics of critical random Boolean networks by determining the frequency of output functions utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using symmetry to characterize complex network dynamics, and introduce a novel approach to the analysis of heterogeneous complex systems. This work was supported by the NSF through grants DMR-0908286 and DMR-1206839, and by the AFSOR and DARPA through grant FA9550-12-1-0405.

  15. Symmetry in critical random Boolean network dynamics

    NASA Astrophysics Data System (ADS)

    Hossein, Shabnam; Reichl, Matthew D.; Bassler, Kevin E.

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  16. Teaching Point-Group Symmetry with Three-Dimensional Models

    ERIC Educational Resources Information Center

    Flint, Edward B.

    2011-01-01

    Three tools for teaching symmetry in the context of an upper-level undergraduate or introductory graduate course on the chemical applications of group theory are presented. The first is a collection of objects that have the symmetries of all the low-symmetry and high-symmetry point groups and the point groups with rotational symmetries from 2-fold…

  17. Shape phase transitions and critical points

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Fortunato, L.; Vitturi, A.

    2009-05-04

    We investigate different aspects connected with shape phase transitions in nuclei and the possible occurrence of dynamical symmetries at the critical points. We discuss in particular the behaviour of the neighbour odd nuclei at the vicinity of the critical points in the even nuclei. We consider both the case of the transition from the vibrational behaviour to the gamma-unstable deformation (characterized within the collective Bohr hamiltonian by the E(5) critical point symmetry) and the case of the transition from the vibrational behaviour to the stable axial deformation (characterized by the X(5) symmetry). The odd particle is assumed to be moving in the three single particle orbitals j = 1/2,3/2,5/2, a set of orbitals that is known to lead to possible supersymmetric cases. The coupling of the odd particle to the Bohr hamiltonian does lead in fact in the former case at the critical point to the E(5/12) boson-fermion dynamical symmetry. An alternative approach to the two shape transitions is based on the Interacting Boson Fermion Model. In this case suitably parametrized boson-fermion hamiltonians can describe the evolution of the odd system along the shape transitions. At the critical points both energy spectra and electromagnetic transitions were found to display characteristic patterns similar to those displayed by the even nuclei at the corresponding critical point. The behaviour of the odd nuclei can therefore be seen as necessary complementary signatures of the occurrence of the phase transitions.

  18. Deconfined Quantum Critical Points

    NASA Astrophysics Data System (ADS)

    Senthi, T.; Vishwanath, Ashvin; Balents, Leon; Sachdev, Subir; Fisher, Matthew P. A.

    The theory of second-order phase transitions is one of the foundations of modern statistical mechanics and condensed-matter theory. A central concept is the observable order parameter, whose nonzero average value characterizes one or more phases. At large distances and long times, fluctuations of the order parameter(s) are described by a continuum field theory, and these dominate the physics near such phase transitions. We show that near second-order quantum phase transitions, subtle quantum interference effects can invalidate this paradigm, and we present a theory of quantum critical points in a variety of experimentally relevant two-dimensional antiferromagnets. The critical points separate phases characterized by conventional "confining" order parameters. Nevertheless, the critical theory contains an emergent gauge field and "deconfined" degrees of freedom associated with fractionalization of the order parameters. We propose that this paradigm for quantum criticality may be the key to resolving a number of experimental puzzles in correlated electron systems and offer a new perspective on the properties of complex materials.

  19. Critical-Point Symmetries in Boson-Fermion Systems: The Case of Shape Transitions in Odd Nuclei in a Multiorbit Model

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Vitturi, A.

    2007-02-02

    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model [E(5/12)] to describe odd nuclei at the critical point in the transition from the spherical to {gamma}-unstable behavior. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single-particle orbitals j=1/2, 3/2, 5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the interacting boson-fermion model, with a boson-fermion Hamiltonian that describes the same physical situation.

  20. From Molecular Point Group Symmetry to Space Group Symmetry.

    ERIC Educational Resources Information Center

    Hathaway, Brian

    1979-01-01

    Describes undergraduate chemistry curricula in which the student is asked to either build a model of one asymmetric unit in the unit cell and to indicate the positions of the symmetry-related units by putting in key atoms, or to identify on a prebuild model the asymetric and symmetry-related units. (BB)

  1. Discovering Symmetry in Everyday Environments: A Creative Approach to Teaching Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Fuchigami, Kei; Schrandt, Matthew; Miessler, Gary L.

    2016-01-01

    A hands-on symmetry project is proposed as an innovative way of teaching point groups to undergraduate chemistry students. Traditionally, courses teaching symmetry require students to identify the point group of a given object. This project asks the reverse: students are instructed to identify an object that matches each point group. Doing so…

  2. The critical end point through observables

    SciTech Connect

    Kozlov, G.

    2016-01-22

    We develop the model of the critical phenomena of strongly interacting matter at high temperatures and baryon densities. The dual Yang-Mills theory with scalar degrees of freedom (the dilatons) is used. The dilatons are the consequence of a spontaneous breaking of a scale symmetry. The phase transitions are considered in systems where the field conjugate to the order parameter has the critical end mode. The critical end point (CEP) is a distinct singular feature existence of which is dictated by the chiral dynamics. The physical realization of CEP is via the influence quantum fluctuations of two-body Bose-Einstein correlations for observed particles to which the critical end mode couples.

  3. Davies Critical Point and Tunneling

    NASA Astrophysics Data System (ADS)

    La, Hoseong

    2012-04-01

    From the point of view of tunneling, the physical meaning of the Davies critical point of a second-order phase transition in the black hole thermodynamics is clarified. At the critical point, the nonthermal contribution vanishes so that the black hole radiation is entirely thermal. It separates two phases: one with radiation enhanced by the nonthermal contribution, the other suppressed by the nonthermal contribution. We show this in both charged and rotating black holes. The phase transition is also analyzed in the cases in which emissions of charges and angular momenta are incorporated.

  4. Critical points of metal vapors

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  5. The Critical Point Facility (CPF)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Critical Point Facility (CPF) is an ESA multiuser facility designed for microgravity research onboard Spacelab. It has been conceived and built to offer investigators opportunities to conduct research on critical point phenomena in microgravity. This facility provides the high precision and stability temperature standards required in this field of research. It has been primarily designed for the purpose of optical investigations of transparent fluids. During a Spacelab mission, the CPF automatically processes several thermostats sequentially, each thermostat corresponding to an experiment. The CPF is now integrated in Spacelab at Kennedy Space Center, in preparation for the International Microgravity Lab. mission. The CPF was designed to submit transparent fluids to an adequate, user defined thermal scenario, and to monitor their behavior by using thermal and optical means. Because they are strongly affected by gravity, a good understanding of critical phenomena in fluids can only be gained in low gravity conditions. Fluids at the critical point become compressed under their own weight. The role played by gravity in the formation of interfaces between distinct phases is not clearly understood.

  6. Conformal symmetry of the critical 3D Ising model inside a sphere

    NASA Astrophysics Data System (ADS)

    Cosme, Catarina; Lopes, J. M. Viana Parente; Penedones, João

    2015-08-01

    We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and two point functions in this geometry are consistent with the predictions from the conjectured conformal symmetry of the critical Ising model.

  7. From physics to biology by extending criticality and symmetry breakings.

    PubMed

    Longo, G; Montévil, M

    2011-08-01

    Symmetries play a major role in physics, in particular since the work by E. Noether and H. Weyl in the first half of last century. Herein, we briefly review their role by recalling how symmetry changes allow to conceptually move from classical to relativistic and quantum physics. We then introduce our ongoing theoretical analysis in biology and show that symmetries play a radically different role in this discipline, when compared to those in current physics. By this comparison, we stress that symmetries must be understood in relation to conservation and stability properties, as represented in the theories. We posit that the dynamics of biological organisms, in their various levels of organization, are not "just" processes, but permanent (extended, in our terminology) critical transitions and, thus, symmetry changes. Within the limits of a relative structural stability (or interval of viability), variability is at the core of these transitions.

  8. Unconventional quantum critical points in systems of strongly interacting bosons

    NASA Astrophysics Data System (ADS)

    Zaleski, T. A.; Kopeć, T. K.

    2014-09-01

    Using the combined Bogoliubov method and the quantum rotor approach, we map the Bose-Hubbard Hamiltonian of strongly interacting bosons onto U(1) phase action. By unraveling consequences of the nontrivial topology of the U(1) gauge group and the associated ground state degeneracy we found a close kinship of the zero-temperature divergence of the compressibility and the topological susceptibility at degeneracy points, which marks a novel quantum criticality governed by topological features rather than the Landau principle of the symmetry breaking. We argue that the existence of this new type of the criticality may be instrumental in explaining unconventional quantum critical points observed in superconducting cuprates.

  9. Confinement of monopoles and scaling theory near unconventional critical points

    NASA Astrophysics Data System (ADS)

    Powell, Stephen

    2013-02-01

    Conventional ordering transitions, described by the Landau paradigm, are characterized by the symmetries broken at the critical point. Within the constrained manifold occurring at low temperatures in certain frustrated systems, unconventional transitions are possible that defy this type of description. While the critical point exists only in the limit where defects in the constraint are vanishingly rare, unconventional criticality can be observed throughout a broad region of the phase diagram. This work presents a formalism for incorporating the effects of such defects within the framework of scaling theory and the renormalization group, leading to universal results for the critical behavior. The theory is applied to two transitions occurring within a model of spin ice, and the results are confirmed using Monte Carlo simulations. Relevance to experiments, particularly in the spin-ice compounds, is discussed, along with implications for simulations of related transitions, such as the cubic dimer model and the O(3) sigma model with “hedgehog” suppression.

  10. Symmetry, Point Groups, and Character Tables, Part 3, Character Tables and Their Significance

    ERIC Educational Resources Information Center

    Orchin, Milton; Jaffe, H. H.

    1970-01-01

    Presents the third of a series of articles on symmetry. Describes the symmetry properties of molecules in translatiional and rotational motion. Presents these dynamic symmetry properties in character tables for five point groups. Supplements the article with more rigorous material involving spectroscopic states, degenerate point groups and…

  11. Critical-entanglement spectrum of one-dimensional symmetry-protected topological phases

    NASA Astrophysics Data System (ADS)

    Rao, Wen-Jia; Wan, Xin; Zhang, Guang-Ming

    2014-08-01

    Under an appropriate symmetric extensive bipartition in a one-dimensional symmetry-protected topological (SPT) phase, a bulk critical-entanglement spectrum can be obtained, resembling the excitation spectrum of the critical point separating the SPT phase from the trivial (vacuum) state. Such a critical point is beyond the standard Landau-Ginzburg-Wilson paradigm for symmetry-breaking phase transitions. For the S =1 SPT (Haldane) phase with the Affleck-Kennedy-Lieb-Tasaki exact wave function, the resulting critical-entanglement spectrum has a residual entropy per lattice site sr=0.67602, showing a delocalized version of the edge excitations in the SPT phase. From the wave function corresponding to the lowest entanglement energy level, the central charge of the critical point can be extracted c ≈1.01±0.01. The critical theory can be identified as the same effective field theory as the spin-1/2 antiferromagnetic Heisenberg chain or the spin-1/2 Haldane-Shastry model with inverse-square long-range interaction.

  12. Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry.

    PubMed

    Coldea, R; Tennant, D A; Wheeler, E M; Wawrzynska, E; Prabhakaran, D; Telling, M; Habicht, K; Smeibidl, P; Kiefer, K

    2010-01-08

    Quantum phase transitions take place between distinct phases of matter at zero temperature. Near the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of the system. A symmetry described by the E8 Lie group with a spectrum of eight particles was long predicted to appear near the critical point of an Ising chain. We realize this system experimentally by using strong transverse magnetic fields to tune the quasi-one-dimensional Ising ferromagnet CoNb2O6 (cobalt niobate) through its critical point. Spin excitations are observed to change character from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a ratio that approaches the golden mean predicted for the first two meson particles of the E8 spectrum. Our results demonstrate the power of symmetry to describe complex quantum behaviors.

  13. Discrete-Symmetry Breaking and Novel Critical Phenomena in an Antiferromagnetic Planar (XY) Model in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Joannopoulos, J. D.; Negele, J. W.; Landau, D. P.

    1984-02-01

    Landau-Ginzburg-Wilson symmetry analyses and Monte Carlo calculations for the classical antiferromagnetic planar (XY) model on a triangular lattice reveal a wealth of interesting critical phenomena. From this simple model arise a zero-field transition to a state of long-range order, a new mechanism for spin disordering, and a critical point associated with a possible new universality class.

  14. Critical point analysis of phase envelope diagram

    NASA Astrophysics Data System (ADS)

    Soetikno, Darmadi; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Siagian, Ucok W. R.; Soewono, Edy; Gunawan, Agus Y.

    2014-03-01

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  15. Critical point analysis of phase envelope diagram

    SciTech Connect

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy Puspita, Dila Sidarto, Kuntjoro A. Soewono, Edy; Gunawan, Agus Y.

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  16. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  17. Entanglement entropy near Kondo-destruction quantum critical points

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Chowdhury, Tathagata; Miecnikowski, M. T.; Stephens, Jaimie; Wagner, Christopher; Ingersent, Kevin

    2015-06-01

    We study the impurity entanglement entropy Se in quantum impurity models that feature a Kondo-destruction quantum critical point (QCP) arising from a pseudogap in the conduction-band density of states or from coupling to a bosonic bath. On the local-moment (Kondo-destroyed) side of the QCP, the entanglement entropy contains a critical component that can be related to the order parameter characterizing the quantum phase transition. In Kondo models describing a spin-Simp,Se assumes its maximal value of ln(2 Simp+1 ) at the QCP and throughout the Kondo phase, independent of features such as particle-hole symmetry and under- or overscreening. In Anderson models, Se is nonuniversal at the QCP and, at particle-hole symmetry, rises monotonically on passage from the local-moment phase to the Kondo phase; breaking this symmetry can lead to a cusp peak in Se due to a divergent charge susceptibility at the QCP. Implications of these results for quantum critical systems and quantum dots are discussed.

  18. Controlling superconductivity by tunable quantum critical points.

    PubMed

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  19. Pions near the chiral critical point

    NASA Astrophysics Data System (ADS)

    Hippert, M.; Fraga, E. S.; Santos, E. M.

    2016-04-01

    It is an exciting possibility that the QCD critical point can be found in ultrarelativistic heavy-ion collision experiments (HICs). While quantities such as some event-by-event moments of specific observables should display strong non-monotonic behavior near the critical point and could, hence, be used as signatures of criticality, it is not clear that this behavior could effectively be observed in the highly non-ideal scenario of HICs. We here employ Monte Carlo simulations to test second-order moments of pion observables as possible signatures of the critical point while taking into account some realistic ingredients, similar to the ones found in HICs. We make use of simplified models to introduce spurious contributions and dynamical effects.

  20. Critical behaviors near the (tri-)critical end point of QCD within the NJL model

    NASA Astrophysics Data System (ADS)

    Lu, Ya; Du, Yi-Lun; Cui, Zhu-Fang; Zong, Hong-Shi

    2015-10-01

    We investigate the dynamical chiral symmetry breaking and its restoration at finite density and temperature within the two-flavor Nambu-Jona-Lasinio model, and mainly focus on the critical behaviors near the critical end point (CEP) and tricritical point (TCP) of quantum chromodynamics. The multi-solution region of the Nambu and Wigner ones is determined in the phase diagram for the massive and massless current quark, respectively. We use the various susceptibilities to locate the CEP/TCP and then extract the critical exponents near them. Our calculations reveal that the various susceptibilities share the same critical behaviors for the physical current quark mass, while they show different features in the chiral limit.

  1. Effects of dissipation on a quantum critical point with disorder.

    PubMed

    Hoyos, José A; Kotabage, Chetan; Vojta, Thomas

    2007-12-07

    We study the effects of dissipation on a disordered quantum phase transition with O(N) order-parameter symmetry by applying a strong-disorder renormalization group to the Landau-Ginzburg-Wilson field theory of the problem. We find that Ohmic dissipation results in a nonperturbative infinite-randomness critical point with unconventional activated dynamical scaling while super-Ohmic damping leads to conventional behavior. We discuss applications to the superconductor-metal transition in nanowires and to the Hertz theory of the itinerant antiferromagnetic transition.

  2. Nonionic reverse micelles near the critical point.

    PubMed

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami

    2013-01-01

    We report shape, size, and internal cross-sectional structure of diglycerol monomyristate (C₁₄G₂) reverse micelles in n-hexadecane near the critical point using small-angle X-ray scattering (SAXS). Pair-distance distribution function, p(r), which gives structural information in real-space, was obtained by indirect Fourier transformation (IFT) method. The p(r) showed a clear picture of rodlike micelles at higher temperatures well above the critical point (micellar solution phase separates into two immiscible liquids at ~ 48°C). At a fixed surfactant concentration (5% C₁₄G₂), decrease in temperature increases the micellar size monotonously and surprisingly shape of the p(r) curve at 50°C; close to the critical point, mimics the shape of the two dimensional disk-like micelles indicating the onset of critical fluctuations (attractive interactions among rodlike micelles forming a weak network). A similar behavior has been observed with normal micelles in aqueous system near the critical point. When the system is heated to 60°C, shape of the p(r) curve regains rodlike structure. At fixed temperature of 60°C, increase in C₁₄G₂ concentration induced one dimensional micellar growth. Maximum length of micelles increases from ca. 23.5 to 46.0 nm upon increasing concentration from 1 to 12% keeping cross section diameter apparently unchanged at ca. 4.0 nm.

  3. Flow Field Classification Using Critical Point Matching

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Williams, Sheila; Hahsler, Michael; Olinick, Eli V.

    2016-11-01

    Classification of flow fields according to topological similarities can help reveal features of the flow generation and evolution for bluff body flows, and characterize different swimming maneuvers in aquatic locomotion, to name a few. Rigorous classification can be challenging, however, especially when complex flows are distorted by measurement uncertainties or variable flow generating conditions. The present work uses critical points of the velocity field to characterize the global flow topology. Flow fields are compared by finding a best match of critical points in two flow fields based on topological and location characteristics of the critical points together with general point set distance measures. The similarity between the flow fields is quantified based on the matched critical points. Applying clustering algorithms to a set of flow fields with quantified similarity can then be used to group flows with similar characteristics. This approach has been applied to generic 2D flow fields constructed using potential flow results and is able to correctly identify similar flow fields even after large distortions (up to 20% of the vortex separation) have been applied to the flows. Support of NSF Grant Nos. 1115139 and 1557698, and the Lyle School of Engineering is gratefully acknowledged.

  4. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  5. Thermodynamic curvature from the critical point to the triple point.

    PubMed

    Ruppeiner, George

    2012-08-01

    I evaluate the thermodynamic curvature R for fourteen pure fluids along their liquid-vapor coexistence curves, from the critical point to the triple point, using thermodynamic input from the NIST Chemistry WebBook. In this broad overview, R is evaluated in both the coexisting liquid and vapor phases. R is an invariant whose magnitude |R| is a measure of the size of mesoscopic organized structures in a fluid, and whose sign specifies whether intermolecular interactions are effectively attractive (R<0) or repulsive (R>0). I discuss five principles for R in pure fluids: (1) Near the critical point, the attractive part of the interactions forms loose structures of size |R| proportional to the correlation volume ξ(3), and the sign of R is negative. (2) In the vapor phase, there are instances of compact clusters of size |R| formed by the attractive part of the interactions and prevented from collapse by the repulsive part of the interactions, and the sign of R is positive. (3) In the asymptotic critical point regime, the R's in the coexisting liquid and vapor phases are equal to each other, i.e., commensurate. (4) Outside the asymptotic critical-point regime incommensurate R's may be associated with metastability. (5) The compact liquid phase has |R| on the order of the volume of a molecule, with the sign of R being negative for a liquidlike state held together by attractive interactions and the sign of R being positive for a solidlike state held up by repulsive interactions. These considerations amplify and extend the application of thermodynamic curvature in pure fluids.

  6. Pedagogical systematic derivation of Noether point symmetries in special relativistic field theories and extended gravity cosmology

    NASA Astrophysics Data System (ADS)

    Haas, Fernando

    2016-11-01

    A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced.

  7. Rigidity of critical points for a nonlocal Ohta–Kawasaki energy

    NASA Astrophysics Data System (ADS)

    Dipierro, Serena; Novaga, Matteo; Valdinoci, Enrico

    2017-04-01

    We investigate the shape of critical points for a free energy consisting of a nonlocal perimeter plus a nonlocal repulsive term. In particular, we prove that a volume-constrained critical point is necessarily a ball if its volume is sufficiently small with respect to its isodiametric ratio, thus extending a result previously known only for global minimizers. We also show that, at least in one-dimension, there exist critical points with arbitrarily small volume and large isodiametric ratio. This example shows that a constraint on the diameter is, in general, necessary to establish the radial symmetry of the critical points.

  8. Asymmetric effects at 3D Ising-like critical points

    NASA Astrophysics Data System (ADS)

    Tsypin, M.

    2003-05-01

    The Standard Model of electroweak interactions has a line of first order phase transition in the plane (higgs mass, temperature) that ends in a critical point belonging to the 3D Ising model universality class [K. Rummukainen et al, hep-lat/9805013. Similar critical points are found in finite-temperature QCD [M. Stephanov et al, hep-ph/9806219; F. Karsch et al, hep-lat/0107020. When these critical points are studied by Monte Carlo simulations on the lattice, one observes certain residual deviations from Z2 symmetry (which is exact for the Ising model). Here we study whether such deviations can be attributed to asymmetric corrections to scaling, which are relatively poorly studied. We compute the critical exponents in the local potential approximation (LPA), that is, in the framework of the Wegner-Houghton equation. We find that the exponent for the leading antisymmetric correction to scaling is approximately 1.691 in the LPA. This high value implies that such corrections cannot explain observed asymmetries.

  9. Critical point fluctuations in supported lipid membranes.

    PubMed

    Connell, Simon D; Heath, George; Olmsted, Peter D; Kisil, Anastasia

    2013-01-01

    In this paper, we demonstrate that it is possible to observe many aspects of critical phenomena in supported lipid bilayers using atomic force microscopy (AFM) with the aid of stable and precise temperature control. The regions of criticality were determined by accurately measuring and calculating phase diagrams for the 2 phase L(d)-L(o) region, and tracking how it moves with temperature, then increasing the sampling density around the estimated critical regions. Compositional fluctuations were observed above the critical temperature (T(c)) and characterised using a spatial correlation function. From this analysis, the phase transition was found to be most closely described by the 2D Ising model, showing it is a critical transition. Below T(c) roughening of the domain boundaries occurred due to the reduction in line tension close to the critical point. Smaller scale density fluctuations were also detected just below T(c). At T(c), we believe we have observed fluctuations on length scales greater than 10 microm. The region of critically fluctuating 10-100 nm nanodomains has been found to extend a considerable distance above T(c) to temperatures within the biological range, and seem to be an ideal candidate for the actual structure of lipid rafts in cell membranes. Although evidence for this idea has recently emerged, this is the first direct evidence for nanoscale domains in the critical region.

  10. Hidden symmetry and protection of Dirac points on the honeycomb lattice.

    PubMed

    Hou, Jing-Min; Chen, Wei

    2015-12-07

    The honeycomb lattice possesses a novel energy band structure, which is characterized by two distinct Dirac points in the Brillouin zone, dominating most of the physical properties of the honeycomb structure materials. However, up till now, the origin of the Dirac points is unclear yet. Here, we discover a hidden symmetry on the honeycomb lattice and prove that the existence of Dirac points is exactly protected by such hidden symmetry. Furthermore, the moving and merging of the Dirac points and a quantum phase transition, which have been theoretically predicted and experimentally observed on the honeycomb lattice, can also be perfectly explained by the parameter dependent evolution of the hidden symmetry.

  11. Nonequilibrium conductivity at quantum critical points

    NASA Astrophysics Data System (ADS)

    Berridge, A. M.; Green, A. G.

    2013-12-01

    Quantum criticality provides an important route to revealing universal nonequilibrium behavior. A canonical example of a critical point is the Bose-Hubbard model, which we study under the application of an electric field. A Boltzmann transport formalism and ɛ expansion are used to obtain the nonequilibrium conductivity and current noise. This approach allows us to explicitly identify how a universal nonequilibrium steady state is maintained, by identifying the rate-limiting step in balancing Joule heating and dissipation to a heat bath. It also reveals that the nonequilibrium distribution function is very far from a thermal distribution.

  12. Correlated fluctuations near the QCD critical point

    NASA Astrophysics Data System (ADS)

    Jiang, Lijia; Li, Pengfei; Song, Huichao

    2016-08-01

    In this article, we introduce a freeze-out scheme for the dynamical models near the QCD critical point through coupling the decoupled classical particles with the order parameter field. With a modified distribution function that satisfies specific static fluctuations, we calculate the correlated fluctuations of net protons on the hydrodynamic freeze-out surface. A comparison with recent STAR data shows that our model calculations could roughly reproduce energy-dependent cumulant C4 and κ σ2 of net protons through tuning the related parameters. However, the calculated C2 and C3 with both Poisson and binomial baselines are always above the experimental data due to the positive contributions from the static critical fluctuations. To qualitatively and quantitatively describe all the related experimental data, the dynamical critical fluctuations and more realistic noncritical fluctuation baselines should be investigated in the near future.

  13. The effective QCD phase diagram and the critical end point

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Bashir, Adnan; Cobos-Martínez, J. J.; Hernández-Ortiz, Saúl; Raya, Alfredo

    2015-08-01

    We study the QCD phase diagram on the temperature T and quark chemical potential μ plane, modeling the strong interactions with the linear sigma model coupled to quarks. The phase transition line is found from the effective potential at finite T and μ taking into account the plasma screening effects. We find the location of the critical end point (CEP) to be (μCEP /Tc, TCEP /Tc) ∼ (1.2, 0.8), where Tc is the (pseudo)critical temperature for the crossover phase transition at vanishing μ. This location lies within the region found by lattice inspired calculations. The results show that in the linear sigma model, the CEP's location in the phase diagram is expectedly determined solely through chiral symmetry breaking. The same is likely to be true for all other models which do not exhibit confinement, provided the proper treatment of the plasma infrared properties for the description of chiral symmetry restoration is implemented. Similarly, we also expect these corrections to be substantially relevant in the QCD phase diagram.

  14. On the Number of Generator Sets of the Non-Cubic Symmetry Point Groups.

    ERIC Educational Resources Information Center

    Kouyoumdjian, E. R.

    1983-01-01

    The generator set of a group is the subset of the set of elements of the group. The nature and use of generator sets is discussed, focusing on generator sets for the noncubic symmetry point groups containing one, two, and three symmetry elements. (JN)

  15. The Effect of Instructional Modality and Prior Knowledge on Learning Point Group Symmetry

    ERIC Educational Resources Information Center

    Nottis, Katharyn E. K.; Kastner, Margaret E.

    2005-01-01

    Many topics in chemistry are difficult for learners to understand, including symmetry. Reasons for this difficulty include its multi-level content, instructional methodologies utilized, and learner variables. This study examined the effect of initial instructional modality and prior knowledge on learning of point group symmetry. Forty-four…

  16. Influence of super-ohmic dissipation on a disordered quantum critical point.

    PubMed

    Vojta, Thomas; Hoyos, José A; Mohan, Priyanka; Narayanan, Rajesh

    2011-03-09

    We investigate the combined influence of quenched randomness and dissipation on a quantum critical point with O(N) order-parameter symmetry. Utilizing a strong-disorder renormalization group, we determine the critical behavior in one space dimension exactly. For super-ohmic dissipation, we find a Kosterlitz-Thouless type transition with conventional (power-law) dynamical scaling. The dynamical critical exponent depends on the spectral density of the dissipative baths. We also discuss the Griffiths singularities, and we determine observables.

  17. Dynamical Response near Quantum Critical Points

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Gazit, Snir; Podolsky, Daniel; Witczak-Krempa, William

    2017-02-01

    We study high-frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from quantum field theory allow us to fix the high-frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O (N ) model and using the gauge-gravity duality and numerically via quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high-frequency optical conductivity and the corresponding sum rule.

  18. Detecting quantum critical points using bipartite fluctuations.

    PubMed

    Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn

    2012-03-16

    We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.

  19. Sensitivity analysis, optimization, and global critical points

    SciTech Connect

    Cacuci, D.G. )

    1989-11-01

    The title of this paper suggests that sensitivity analysis, optimization, and the search for critical points in phase-space are somehow related; the existence of such a kinship has been undoubtedly felt by many of the nuclear engineering practitioners of optimization and/or sensitivity analysis. However, a unified framework for displaying this relationship has so far been lacking, especially in a global setting. The objective of this paper is to present such a global and unified framework and to suggest, within this framework, a new direction for future developments for both sensitivity analysis and optimization of the large nonlinear systems encountered in practical problems.

  20. RHIC CRITICAL POINT SEARCH: ASSESSING STARs CAPABILITIES.

    SciTech Connect

    SORENSEN,P.

    2006-07-03

    In this report we discuss the capabilities and limitations of the STAR detector to search for signatures of the QCD critical point in a low energy scan at RHIC. We find that a RHIC low energy scan will cover a broad region of interest in the nuclear matter phase diagram and that the STAR detector--a detector designed to measure the quantities that will be of interest in this search--will provide new observables and improve on previous measurements in this energy range.

  1. Pseudogap state near a quantum critical point

    NASA Astrophysics Data System (ADS)

    Efetov, K. B.; Meier, H.; Pépin, C.

    2013-07-01

    In the standard picture of a quantum phase transition, a single quantum critical point separates the phases at zero temperature. Here we show that the two-dimensional case is considerably more complex. Instead of the single point separating the antiferromagnet from the normal metal, we have discovered a broad region between these two phases where the magnetic order is destroyed but certain areas of the Fermi surface are closed by a large gap. This gap reflects the formation of a quantum state characterized by a superposition of d-wave superconductivity and a quadrupole density wave, which builds a chequerboard pattern with a period incommensurate with that of the original spin-density wave. At moderate temperatures both orders coexist over comparatively large distances but thermal fluctuations destroy the long-range order. Below a critical temperature the fluctuations are less essential and superconductivity becomes stable. This phenomenon may help to explain the origin of the mysterious pseudogap state and of the high-temperature transition into the superconducting state in the cuprates. In particular, we show that spectroscopic probes on the oxygen and copper sites reveal chequerboard order.

  2. Magnetic Rotation and Chirality and X(5) Critical Symmetry in Nucleus

    SciTech Connect

    Zhu, L. H.; Wu, X. G.; He, C. Y.; Hao, X.; Wang, L. L.; Zheng, Y.; Li, G. S.

    2010-05-12

    The magnetic and chiral rotation, the critical symmetry are fundamental problems in the study of nuclear structure. Here we report the recent results from the experiments on the magnetic and electric rotations in {sup 106}Ag, the chiral rotation in {sup 130}Cs and the evolution of X(5) symmetry in {sup 176}Os.

  3. Determining critical points in organizational learning modes

    NASA Astrophysics Data System (ADS)

    Hamner, Marvine P.

    2002-07-01

    It has been postulated that organizations can be categorized into one of three perspectives that represent the mind-set of managers within organizations with respect to their organization and organizational learning. These are the normative, the developmental and the capability perspectives. Each of these reflects variations among organizational features such as the source of organizational learning, the timeframe for organizational learning and the relationship between organizational learning and organizational culture. However, much like the dynamics experienced by teams, i.e. various stages such as forming, norming, storming and performing, organizations can move through various learning stages, i.e. the three 'perspectives,' often stopping and restarting at different points in their cycles. This means that the three perspectives can be simply viewed as different modes of organizational learning. All organizations operate within one of the three perspectives all the time. And, the perspective through which the organization is best viewed at any point in time changes over time. Because organizations are complex, adaptive systems these modes can be mathematically represented using the output from a neural network model of complex, adaptive systems. This paper briefly describes the organizational science, the neural network model, and the mathematics required to determine critical points in these modes.

  4. Gene microarray data analysis using parallel point-symmetry-based clustering.

    PubMed

    Sarkar, Anasua; Maulik, Ujjwal

    2015-01-01

    Identification of co-expressed genes is the central goal in microarray gene expression analysis. Point-symmetry-based clustering is an important unsupervised learning technique for recognising symmetrical convex- or non-convex-shaped clusters. To enable fast clustering of large microarray data, we propose a distributed time-efficient scalable approach for point-symmetry-based K-Means algorithm. A natural basis for analysing gene expression data using symmetry-based algorithm is to group together genes with similar symmetrical expression patterns. This new parallel implementation also satisfies linear speedup in timing without sacrificing the quality of clustering solution on large microarray data sets. The parallel point-symmetry-based K-Means algorithm is compared with another new parallel symmetry-based K-Means and existing parallel K-Means over eight artificial and benchmark microarray data sets, to demonstrate its superiority, in both timing and validity. The statistical analysis is also performed to establish the significance of this message-passing-interface based point-symmetry K-Means implementation. We also analysed the biological relevance of clustering solutions.

  5. Dynamics and Thermodynamics beyond the critical point

    PubMed Central

    Gorelli, F. A.; Bryk, T.; Krisch, M.; Ruocco, G.; Santoro, M.; Scopigno, T.

    2013-01-01

    Sudden changes in the dynamical properties of a supercritical fluid model have been found as a function of pressure and temperature (T/Tc = 2–5 and P/Pc = 10–103), striving with the notion of a single phase beyond the critical point established by thermodynamics. The sound propagation in the Terahertz frequency region reveals a sharp dynamic crossover between the gas like and the liquid like regimes along several isotherms, which involves, at sufficiently low densities, the interplay between purely acoustic waves and heat waves. Such a crossover allows one to determine a dynamic line in the phase diagram which exhibits a very tight correlation with a number of thermodynamic observables, showing that the supercritical state is remarkably more complex than thought so far. PMID:23383373

  6. Viscoelasticity of Xenon near the Critical Point

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    Using a novel, overdamped, oscillator flown aboard the Space Shuttle, we measured the viscosity of xenon near the liquid-vapor critical point in the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz. The measured viscosity divergence is characterized by the exponent z(sub eta) = 0.0690 +/- 0.0006, in agreement with the value z(sub eta) = 0.067 +/- 0.002 calculated from a two-loop perturbation expansion. Viscoelastic behavior was evident when t = (T - T(sub c))/T(sub c) less than 10(exp -5) and dominant when t less than 10(exp -6), further from T(sub c) than predicted. Viscoelastic behavior scales as Af(tau) where tau is the fluctuation decay time. The measured value of A is 2.0 +/- 0.3 times the result of a one-loop calculation. (Uncertainties stated are one standard uncertainty.)

  7. Two critical tests for the Critical Point earthquake

    NASA Astrophysics Data System (ADS)

    Tzanis, A.; Vallianatos, F.

    2003-04-01

    It has been credibly argued that the earthquake generation process is a critical phenomenon culminating with a large event that corresponds to some critical point. In this view, a great earthquake represents the end of a cycle on its associated fault network and the beginning of a new one. The dynamic organization of the fault network evolves as the cycle progresses and a great earthquake becomes more probable, thereby rendering possible the prediction of the cycle’s end by monitoring the approach of the fault network toward a critical state. This process may be described by a power-law time-to-failure scaling of the cumulative seismic release rate. Observational evidence has confirmed the power-law scaling in many cases and has empirically determined that the critical exponent in the power law is typically of the order n=0.3. There are also two theoretical predictions for the value of the critical exponent. Ben-Zion and Lyakhovsky (Pure appl. geophys., 159, 2385-2412, 2002) give n=1/3. Rundle et al. (Pure appl. geophys., 157, 2165-2182, 2000) show that the power-law activation associated with a spinodal instability is essentially identical to the power-law acceleration of Benioff strain observed prior to earthquakes; in this case n=0.25. More recently, the CP model has gained support from the development of more dependable models of regional seismicity with realistic fault geometry that show accelerating seismicity before large events. Essentially, these models involve stress transfer to the fault network during the cycle such, that the region of accelerating seismicity will scale with the size of the culminating event, as for instance in Bowman and King (Geophys. Res. Let., 38, 4039-4042, 2001). It is thus possible to understand the observed characteristics of distributed accelerating seismicity in terms of a simple process of increasing tectonic stress in a region already subjected to stress inhomogeneities at all scale lengths. Then, the region of

  8. Turbulent scaling laws as solutions of the multi-point correlation equation using statistical symmetries

    NASA Astrophysics Data System (ADS)

    Oberlack, Martin; Rosteck, Andreas; Avsarkisov, Victor

    2013-11-01

    Text-book knowledge proclaims that Lie symmetries such as Galilean transformation lie at the heart of fluid dynamics. These important properties also carry over to the statistical description of turbulence, i.e. to the Reynolds stress transport equations and its generalization, the multi-point correlation equations (MPCE). Interesting enough, the MPCE admit a much larger set of symmetries, in fact infinite dimensional, subsequently named statistical symmetries. Most important, theses new symmetries have important consequences for our understanding of turbulent scaling laws. The symmetries form the essential foundation to construct exact solutions to the infinite set of MPCE, which in turn are identified as classical and new turbulent scaling laws. Examples on various classical and new shear flow scaling laws including higher order moments will be presented. Even new scaling have been forecasted from these symmetries and in turn validated by DNS. Turbulence modellers have implicitly recognized at least one of the statistical symmetries as this is the basis for the usual log-law which has been employed for calibrating essentially all engineering turbulence models. An obvious conclusion is to generally make turbulence models consistent with the new statistical symmetries.

  9. Symmetry Protection of Critical Phases and a Global Anomaly in 1 +1 Dimensions

    NASA Astrophysics Data System (ADS)

    Furuya, Shunsuke C.; Oshikawa, Masaki

    2017-01-01

    We derive a selection rule among the (1 +1 )-dimensional SU(2) Wess-Zumino-Witten theories, based on the global anomaly of the discrete Z2 symmetry found by Gepner and Witten. In the presence of both the SU(2) and Z2 symmetries, a renormalization-group flow is possible between level-k and level-k' Wess-Zumino-Witten theories only if k ≡k' mod 2 . This classifies the Lorentz-invariant, SU(2)-symmetric critical behavior into two "symmetry-protected" categories corresponding to even and odd levels, restricting possible gapless critical behavior of translation-invariant quantum spin chains.

  10. QCD diffraction: a critical phenomenon reflecting both confinement and chiral-symmetry breaking

    SciTech Connect

    White, A.R.

    1982-07-01

    Arguments are presented for studying soft diffractive physics at anti p-p colliders in terms of Critical Pomeron Reggeon Field Theory. It is emphasized that both confinement and chiral-symmetry breaking play a vital role in the occurrence of the Critical Pomeron in QCD. SU(3) is the unique strong-interaction gauge group giving the Critical Pomeron and the maximum number of quarks allowed by asymptotic freedom is required for criticality.

  11. Validation of acid washes as critical control points in hazard analysis and critical control point systems.

    PubMed

    Dormedy, E S; Brashears, M M; Cutter, C N; Burson, D E

    2000-12-01

    A 2% lactic acid wash used in a large meat-processing facility was validated as an effective critical control point (CCP) in a hazard analysis and critical control point (HACCP) plan. We examined the microbial profiles of beef carcasses before the acid wash, beef carcasses immediately after the acid wash, beef carcasses 24 h after the acid wash, beef subprimal cuts from the acid-washed carcasses, and on ground beef made from acid-washed carcasses. Total mesophilic, psychrotrophic, coliforms, generic Escherichia coli, lactic acid bacteria, pseudomonads, and acid-tolerant microorganisms were enumerated on all samples. The presence of Salmonella spp. was also determined. Acid washing significantly reduced all counts except for pseudomonads that were present at very low numbers before acid washing. All other counts continued to stay significantly lower (P < 0.05) than those on pre-acid-washed carcasses throughout all processing steps. Total bacteria, coliforms, and generic E. coli enumerated on ground beef samples were more than 1 log cycle lower than those reported in the U.S. Department of Agriculture Baseline data. This study suggests that acid washes may be effective CCPs in HACCP plans and can significantly reduce the total number of microorganisms present on the carcass and during further processing.

  12. Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model.

    PubMed

    del Campo, Adolfo; Rams, Marek M; Zurek, Wojciech H

    2012-09-14

    The dynamics of a quantum phase transition is inextricably woven with the formation of excitations, as a result of critical slowing down in the neighborhood of the critical point. We design a transitionless quantum driving through a quantum critical point, allowing one to access the ground state of the broken-symmetry phase by a finite-rate quench of the control parameter. The method is illustrated in the one-dimensional quantum Ising model in a transverse field. Driving through the critical point is assisted by an auxiliary Hamiltonian, for which the interplay between the range of the interaction and the modes where excitations are suppressed is elucidated.

  13. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1990-01-01

    The 100 m Drop Tower at NASA-Marshall was used to provide the step change in acceleration from 1.0 to 0.0005 g. An inter-fluid meniscus oscillates vertically within a cylindrical container when suddenly released from earth's gravity and taken into a microgravity environment. Oscillations damp out from energy dissipative mechanisms such as viscosity and interfacial friction. Damping of the oscillations by the later mechanism is affected by the nature of the interfacial junction between the fluid-fluid interface and the container wall. In earlier stages of the project, the meniscus shape which developed during microgravity conditions was applied to evaluations of wetting phenomena near the critical temperature. Variations in equilibrium contact angle against the container wall were expected to occur under critical wetting conditions. However, it became apparent that the meaningful phenomenon was the damping of interfacial oscillations. This latter concept makes up the bulk of this report. Perfluoromethyl cyclohexane and isopropanol in glass were the materials used for the experiment. The wetting condition of the fluids against the wall changes at the critical wetting transition temperature. This change in wetting causes a change in the damping characteristics of the interfacial excursions during oscillation and no measurable change in contact angle. The effect of contact line friction measured above and below the wetting transition temperature was to increase the period of vertical oscillation for the vapor-liquid interface when below the wetting transition temperature.

  14. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaulker, William F.

    1988-01-01

    Experiments with the wetting behavior of immiscible fluids against the container below the critical temperature are being performed in the MSFC Drop Tower Facility. Microgravity conditions extending up to three seconds (of the 4.5 second drop) are generated for the experiment. Specimens consist of glass cylindrical ampoules partially filled with fluid phases. How the fluids develop the meniscus geometry as well as hot the fluid interfaces respond to the microgravity induced oscillations is recorded during the experiment with on-board cameras. Drops are made at various temperatures to determine the interfacial energy variation as a function of temperature.

  15. Teaching Molecular Symmetry of Dihedral Point Groups by Drawing Useful 2D Projections

    ERIC Educational Resources Information Center

    Chen, Lan; Sun, Hongwei; Lai, Chengming

    2015-01-01

    There are two main difficulties in studying molecular symmetry of dihedral point groups. One is locating the C[subscript 2] axes perpendicular to the C[subscript n] axis, while the other is finding the s[subscript]d planes which pass through the C[subscript n] axis and bisect the angles formed by adjacent C[subscript 2] axes. In this paper, a…

  16. Variance-reduced estimator of the connected two-point function in the presence of a broken Z(2)-symmetry.

    PubMed

    Hasenbusch, Martin

    2016-03-01

    The exchange or geometric cluster algorithm allows us to define a variance-reduced estimator of the connected two-point function in the presence of a broken Z(2)-symmetry. We present numerical tests for the improved Blume-Capel model on the simple-cubic lattice. We perform simulations for the critical isotherm, the low-temperature phase at vanishing external field, and, for comparison, also the high-temperature phase. For the connected two-point function, a substantial reduction of the variance can be obtained, allowing us to compute the correlation length ξ with high precision. Based on these results, estimates for various universal amplitude ratios that characterize the universality class of the three-dimensional Ising model are computed.

  17. Singularity of the London penetration depth at quantum critical points in superconductors.

    PubMed

    Chowdhury, Debanjan; Swingle, Brian; Berg, Erez; Sachdev, Subir

    2013-10-11

    We present a general theory of the singularity in the London penetration depth at symmetry-breaking and topological quantum critical points within a superconducting phase. While the critical exponents and ratios of amplitudes on the two sides of the transition are universal, an overall sign depends upon the interplay between the critical theory and the underlying Fermi surface. We determine these features for critical points to spin density wave and nematic ordering, and for a topological transition between a superconductor with Z2 fractionalization and a conventional superconductor. We note implications for recent measurements of the London penetration depth in BaFe2(As(1-x)P(x))2 [K. Hashimoto et al., Science 336, 1554 (2012)].

  18. Singularity of the London Penetration Depth at Quantum Critical Points in Superconductors

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debanjan; Swingle, Brian; Berg, Erez; Sachdev, Subir

    2013-10-01

    We present a general theory of the singularity in the London penetration depth at symmetry-breaking and topological quantum critical points within a superconducting phase. While the critical exponents and ratios of amplitudes on the two sides of the transition are universal, an overall sign depends upon the interplay between the critical theory and the underlying Fermi surface. We determine these features for critical points to spin density wave and nematic ordering, and for a topological transition between a superconductor with Z2 fractionalization and a conventional superconductor. We note implications for recent measurements of the London penetration depth in BaFe2(As1-xPx)2 [K. Hashimoto , Science 336, 1554 (2012)SCIEAS0036-807510.1126/science.1219821].

  19. Pole distribution of PVI transcendents close to a critical point

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide

    2012-12-01

    The distribution of the poles of Painlevé VI transcendents associated to semi-simple Frobenius manifolds is determined close to a critical point. It is shown that the poles accumulate at the critical point, asymptotically along two rays. As an example, the Frobenius manifold given by the quantum cohomology of CP2 is considered. The general PVI is also considered.

  20. Universal Postquench Prethermalization at a Quantum Critical Point.

    PubMed

    Gagel, Pia; Orth, Peter P; Schmalian, Jörg

    2014-11-28

    We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive nonequilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are: (i) a power law rise of order and correlations after an initial collapse of the equilibrium state and (ii) a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches.

  1. Direct Observation of Critical Point Wetting in Microgravity

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.

    1985-01-01

    The objective of this program is to observe the interface shape in single and multicomponent systems at the onset of critical wetting in microgravity using the MSFC drop tower and KC-135 aircraft. Test cells for the drop facility were built and tested up to critical point of CCl. Low temperature drops were conducted for two-component systems near the critical consolute point. Contact angle seems to approach 90 deg near the critical consolute temperature contrary to expectations. It is suspected that since the interfacial energy becomes vanishingly small at the critical consolute temperature, the interface shape has not reached equilibrium in the available low-gravity time.

  2. Multiple energy scales at a quantum critical point.

    PubMed

    Gegenwart, P; Westerkamp, T; Krellner, C; Tokiwa, Y; Paschen, S; Geibel, C; Steglich, F; Abrahams, E; Si, Q

    2007-02-16

    We report thermodynamic measurements in a magnetic-field-driven quantum critical point of a heavy fermion metal, YbRh2Si2. The data provide evidence for an energy scale in the equilibrium excitation spectrum that is in addition to the one expected from the slow fluctuations of the order parameter. Both energy scales approach zero as the quantum critical point is reached, thereby providing evidence for a new class of quantum criticality.

  3. Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice.

    PubMed

    Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Mou, Chung-Yu; Lee, Ting-Kuo

    2016-04-29

    The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature T_{D}. At T_{D}, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near T_{D}.

  4. Non-Gaussian fluctuations near the QCD critical point.

    PubMed

    Stephanov, M A

    2009-01-23

    We study the effect of the QCD critical point on non-Gaussian moments (cumulants) of fluctuations of experimental observables in heavy-ion collisions. We find that these moments are very sensitive to the proximity of the critical point, as measured by the magnitude of the correlation length xi. For example, the cubic central moment of multiplicity (deltaN)3 approximately xi4.5 and the quartic cumulant (deltaN)4c approximately xi7. We estimate the magnitude of critical point contributions to non-Gaussian fluctuations of pion and proton multiplicities.

  5. Order parameter fluctuations at a buried quantum critical point

    PubMed Central

    Feng, Yejun; Wang, Jiyang; Jaramillo, R.; van Wezel, Jasper; Haravifard, S.; Srajer, G.; Liu, Y.; Xu, Z.-A.; Littlewood, P. B.; Rosenbaum, T. F.

    2012-01-01

    Quantum criticality is a central concept in condensed matter physics, but the direct observation of quantum critical fluctuations has remained elusive. Here we present an X-ray diffraction study of the charge density wave (CDW) in 2H-NbSe2 at high pressure and low temperature, where we observe a broad regime of order parameter fluctuations that are controlled by proximity to a quantum critical point. X-rays can track the CDW despite the fact that the quantum critical regime is shrouded inside a superconducting phase; and in contrast to transport probes, allow direct measurement of the critical fluctuations of the charge order. Concurrent measurements of the crystal lattice point to a critical transition that is continuous in nature. Our results confirm the long-standing expectations of enhanced quantum fluctuations in low-dimensional systems, and may help to constrain theories of the quantum critical Fermi surface. PMID:22529348

  6. Order parameter fluctuations at a buried quantum critical point.

    PubMed

    Feng, Yejun; Wang, Jiyang; Jaramillo, R; van Wezel, Jasper; Haravifard, S; Srajer, G; Liu, Y; Xu, Z-A; Littlewood, P B; Rosenbaum, T F

    2012-05-08

    Quantum criticality is a central concept in condensed matter physics, but the direct observation of quantum critical fluctuations has remained elusive. Here we present an X-ray diffraction study of the charge density wave (CDW) in 2H-NbSe(2) at high pressure and low temperature, where we observe a broad regime of order parameter fluctuations that are controlled by proximity to a quantum critical point. X-rays can track the CDW despite the fact that the quantum critical regime is shrouded inside a superconducting phase; and in contrast to transport probes, allow direct measurement of the critical fluctuations of the charge order. Concurrent measurements of the crystal lattice point to a critical transition that is continuous in nature. Our results confirm the long-standing expectations of enhanced quantum fluctuations in low-dimensional systems, and may help to constrain theories of the quantum critical Fermi surface.

  7. Cubic Polynomials with Rational Roots and Critical Points

    ERIC Educational Resources Information Center

    Gupta, Shiv K.; Szymanski, Waclaw

    2010-01-01

    If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.

  8. Exceptional points of degeneracy and P T symmetry in photonic coupled chains of scatterers

    NASA Astrophysics Data System (ADS)

    Othman, Mohamed A. K.; Galdi, Vincenzo; Capolino, Filippo

    2017-03-01

    We demonstrate the existence of exceptional points of degeneracy (EPDs) of periodic eigenstates in non-Hermitian coupled chains of dipolar scatterers. Guided modes supported by these structures can exhibit an EPD in their dispersion diagram at which two or more Bloch eigenstates coalesce, in both their eigenvectors and eigenvalues. We show the emergence of a second-order modal EPD associated with the parity-time (P T ) symmetry condition, at which each particle pair in the double chain exhibits balanced gain and loss. Furthermore, we also demonstrate a fourth-order EPD occurring at the band edge. Such a degeneracy condition was previously referred to as a degenerate band edge in lossless anisotropic photonic crystals. Here, we rigorously show it under the occurrence of gain and loss balance for a discrete guiding system. We identify a more general regime of gain and loss balance showing that P T symmetry is not necessary to attain EPDs. Moreover, we investigate the degree of detuning of the EPD when the geometrical symmetry or balanced condition is broken. Furthermore, we demonstrate a realistic implementation of the EPD in a coupled chain made of pairs of plasmonic nanospheres and active core-shell nanospheres at optical frequencies. These findings open avenues toward superior light localization and transport with application to high-Q resonators utilized in sensors, filters, low-threshold switching and lasing.

  9. Binary Colloidal Alloy Test-3 and 4: Critical Point

    NASA Technical Reports Server (NTRS)

    Weitz, David A.; Lu, Peter J.

    2007-01-01

    Binary Colloidal Alloy Test - 3 and 4: Critical Point (BCAT-3-4-CP) will determine phase separation rates and add needed points to the phase diagram of a model critical fluid system. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  10. Inherently unstable networks collapse to a critical point.

    PubMed

    Sheinman, M; Sharma, A; Alvarado, J; Koenderink, G H; MacKintosh, F C

    2015-07-01

    Nonequilibrium systems that are driven or drive themselves towards a critical point have been studied for almost three decades. Here we present a minimalist example of such a system, motivated by experiments on collapsing active elastic networks. Our model of an unstable elastic network exhibits a collapse towards a critical point from any macroscopically connected initial configuration. Taking into account steric interactions within the network, the model qualitatively and quantitatively reproduces results of the experiments on collapsing active gels.

  11. Implementation of hazard analysis critical control point in jameed production.

    PubMed

    Al-Saed, A K; Al-Groum, R M; Al-Dabbas, M M

    2012-06-01

    The average of standard plate count and coliforms, Staphylococcus aureus and Salmonella counts for three home-made jameed samples, a traditional fermented dairy product, before applying hazard analysis critical control point system were 2.1 × 10(3), 8.9 × 10(1), 4 × 10(1) and less than 10 cfu/g, respectively. The developed hazard analysis critical control point plan resulted in identifying ten critical control points in the flow chart of jameed production. The critical control points included fresh milk receiving, pasteurization, addition of starter, water and salt, straining, personnel hygiene, drying and packaging. After applying hazard analysis critical control point system, there was significant improvement in the microbiological quality of the home-made jameed. The standard plate count was reduced to 3.1 × 10(2) cfu/g whereas coliform and Staphylococcus aureus counts were less than 10 cfu/g and Salmonella was not detected. Sensory evaluation results of color and flavor of sauce prepared from jameed showed a significant increase in the average scores given after hazard analysis critical control point application.

  12. Critical temperature of chiral symmetry restoration for quark matter with a chiral chemical potential

    NASA Astrophysics Data System (ADS)

    Ruggieri, M.; Peng, G. X.

    2016-12-01

    In this article we study the restoration of chiral symmetry at a finite temperature for quark matter with a chiral chemical potential, {μ }5, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows the introduction of, in the simplest way possible, a Euclidean momentum, p E , dependent quark mass function which decays (neglecting logarithms) as 1/{p}{E}2 for large p E , in agreement with the asymptotic behaviour expected in quantum chromodynamics in the presence of a nonperturbative quark condensate. We focus on the critical temperature for chiral symmetry restoration in the chiral limit, T c, versus {μ }5, as well as on the order of the phase transition. We find that T c increases with {μ }5, and that the transition remains of the second order for the whole range of {μ }5 considered.

  13. Lie and Noether point symmetries of a class of quasilinear systems of second-order differential equations

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2016-09-01

    We study the Lie and Noether point symmetries of a class of systems of second-order differential equations with n independent and m dependent variables (n × m systems). We solve the symmetry conditions in a geometric way and determine the general form of the symmetry vector and of the Noetherian conservation laws. We prove that the point symmetries are generated by the collineations of two (pseudo)metrics, which are defined in the spaces of independent and dependent variables. We demonstrate the general results in two special cases (a) a system of m coupled Laplace equations and (b) the Klein-Gordon equation of a particle in the context of Generalized Uncertainty Principle. In the second case we determine the complete invariant group of point transformations, and we apply the Lie invariants in order to find invariant solutions of the wave function for a spin-0 particle in the two dimensional hyperbolic space.

  14. Critical bifurcation point of the openZ(5)-symmetric spin model

    NASA Astrophysics Data System (ADS)

    Bonnier, B.

    1991-07-01

    The critical behavior of the general isotropic, ferromagnetic two-dimensional spin system with openZ(5) symmetry is studied with use of high-temperature expansions of its mass gap. On the basis of these expansions we propose a simple analytic representation of the mass gap which naturally reproduces all the different phase transitions exhibited by this model (first order and second order of the Ising and of the Kosterlitz-Thouless types). In addition, the bifurcation point where the soft phases originate is clearly identified with the Fateev-Zamolodchikov value.

  15. Existence of a line of critical points in a two-dimensional Lebwohl Lasher model

    NASA Astrophysics Data System (ADS)

    Shabnam, Sabana; DasGupta, Sudeshna; Roy, Soumen Kumar

    2016-02-01

    Controversy regarding transitions in systems with global symmetry group O(3) has attracted the attention of researchers and the detailed nature of this transition is still not well understood. As an example of such a system in this paper we have studied a two-dimensional Lebwohl Lasher model, using the Wolff cluster algorithm. Though we have not been able to reach any definitive conclusions regarding the order present in the system, from finite size scaling analysis, hyperscaling relations and the behavior of the correlation function we have obtained strong indications regarding the presence of quasi-long range order and the existence of a line of critical points in our system.

  16. Critical Care Glucose Point-of-Care Testing.

    PubMed

    Narla, S N; Jones, M; Hermayer, K L; Zhu, Y

    Maintaining blood glucose concentration within an acceptable range is a goal for patients with diabetes mellitus. Point-of-care glucose meters initially designed for home self-monitoring in patients with diabetes have been widely used in the hospital settings because of ease of use and quick reporting of blood glucose information. They are not only utilized for the general inpatient population but also for critically ill patients. Many factors affect the accuracy of point-of-care glucose testing, particularly in critical care settings. Inaccurate blood glucose information can result in unsafe insulin delivery which causes poor glucose control and can be fatal. Healthcare professionals should be aware of the limitations of point-of-care glucose testing. This chapter will first introduce glucose regulation in diabetes mellitus, hyperglycemia/hypoglycemia in the intensive care unit, importance of glucose control in critical care patients, and pathophysiological variables of critically ill patients that affect the accuracy of point-of-care glucose testing. Then, we will discuss currently available point-of-care glucose meters and preanalytical, analytical, and postanalytical sources of variation and error in point-of-care glucose testing.

  17. QCD critical point sweep during black hole formation

    SciTech Connect

    Ohnishi, A.; Ueda, H.; Nakano, T. Z.; Ruggieri, M.; Sumiyoshi, K.

    2012-11-12

    We discuss the possibility to probe the QCD critical point during the prompt black hole formation. In black hole formation processes, temperature and baryon chemical potential become as high as T{approx} 90MeV and {mu}{sub B}{approx} 1300MeV. This high baryon chemical potential would allow nuclear matter to experience the QCD phase transition, and the temperature may be higher than the QCD critical point temperature. We compare the phase boundary in chiral effective models and the thermal environment obtained in the {nu} radiation hydrodynamical calculation of the gravitational collapse of a 40M{sub Circled-Dot-Operator} star leading to the black hole formation. This comparison suggests that quark matter is likely to be formed, and the QCD critical point may be swept.

  18. Liquid-liquid critical point: an analytical approach

    NASA Astrophysics Data System (ADS)

    Daanoun, A.

    2006-09-01

    Theoretical simulations and experimental studies have showed that many systems (like liquid metals) can exhibit two phase transitions: gas-liquid and liquid-liquid. Consequently the fluid phase of these systems presents two critical points, namely the usual gas-liquid (G-L) critical point and the liquid-liquid critical point that results from a phase transition between two liquids of different densities: a low density liquid (LDL) and a high density liquid (HDL). The van der Waals theory for simple fluids [Phys. Rev. E 50, 2913 (1994)] is based on taking a system with purely repulsive forces as a reference, is able to describe two stable first-order phase transitions between fluids of different densities. The particles in our system interact via a total pair potential, which splits into a repulsive VR and a density-dependent attractive VA part.

  19. Finite-Temperature Spin Dynamics in a Perturbed Quantum Critical Ising Chain with an E8 Symmetry

    NASA Astrophysics Data System (ADS)

    Wu, Jianda; Kormos, Márton; Si, Qimiao

    2014-12-01

    A spectrum exhibiting E8 symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E8 description for CoNb2O6 .

  20. A critical evaluation of Quintner et al: missing the point.

    PubMed

    Dommerholt, Jan; Gerwin, Robert D

    2015-04-01

    The objective of this article is to critically analyze a recent publication by Quinter, Bove and Cohen, published in Rheumatology, about myofascial pain syndrome and trigger points (Quintner et al., 2014). The authors concluded that the leading trigger point hypothesis is flawed in reasoning and in science. They claimed to have refuted the trigger point hypothesis. The current paper demonstrates that the Quintner et al. paper is a biased review of the literature replete with unsupported opinions and accusations. In summary, Quintner et al. have not presented any convincing evidence to believe that the Integrated TrP Hypothesis should be laid to rest.

  1. Natural orbitals renormalization group approach to the two-impurity Kondo critical point

    NASA Astrophysics Data System (ADS)

    He, Rong-Qiang; Dai, Jianhui; Lu, Zhong-Yi

    2015-04-01

    The problem of two magnetic impurities in a normal metal exposes the two opposite tendencies in the formation of a singlet ground state, driven respectively by the single-ion Kondo effect with conduction electrons to screen impurity spins or the Ruderman-Kittel-Kasuya-Yosida interaction between the two impurities to directly form impurity spin singlet. However, whether the competition between these two tendencies can lead to a quantum critical point has been debated over more than two decades. Here, we study this problem by applying the newly proposed natural orbitals renormalization group method to a lattice version of the two-impurity Kondo model with a direct exchange K between the two impurity spins. The method allows for unbiased access to the ground state wave functions and low-lying excitations for sufficiently large system sizes. We demonstrate the existence of a quantum critical point, characterized by the power-law divergence of impurity staggered susceptibility with critical exponent γ =0.60 (1 ) , on the antiferromagnetic side of K when the interimpurity distance R is even lattice spacing, while a crossover behavior is recovered when R is odd lattice spacing. These results have ultimately resolved the long-standing discrepancy between the numerical renormalization group and quantum Monte Carlo studies, confirming a link of this two-impurity Kondo critical point to a hidden particle-hole symmetry predicted by the local Fermi liquid theory.

  2. Peculiar thermodynamics of the second critical point in supercooled water.

    PubMed

    Bertrand, C E; Anisimov, M A

    2011-12-08

    On the basis of the principle of critical-point universality, we examine the peculiar thermodynamics of the liquid-liquid critical point in supercooled water. We show that the liquid-liquid criticality in water represents a special kind of critical behavior in fluids, intermediate between two limiting cases: the lattice gas, commonly used to model liquid-vapor transitions, and the lattice liquid, a weakly compressible liquid with an entropy-driven phase separation. While the ordering field in the lattice gas is associated with the chemical potential and the order parameter with the density, in the lattice liquid the ordering field is the temperature and the order parameter is the entropy. The behavior of supercooled water is much closer to lattice-liquid behavior than to lattice-gas behavior. Using new experimental data recently obtained by Mishima [J. Chem. Phys. 2010, 133, 144503], we have revised the parametric scaled equation of state, previously suggested by Fuentevilla and Anisimov [Phys. Rev. Lett. 2006, 97, 195702], and obtain a consistent description of the thermodynamic anomalies of supercooled water by adjusting linear backgrounds, one critical amplitude, and the critical pressure. We also show how the lattice-liquid description affects the finite-size scaling description of supercooled water in confined media.

  3. Quantum-to-classical crossover near quantum critical point

    DOE PAGES

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less

  4. Quantum-to-classical crossover near quantum critical point

    PubMed Central

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-01-01

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover. PMID:26688102

  5. Quantum-to-classical crossover near quantum critical point

    SciTech Connect

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  6. Quantum-to-classical crossover near quantum critical point.

    PubMed

    Vasin, M; Ryzhov, V; Vinokur, V M

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  7. Towards a controlled study of the QCD critical point

    NASA Astrophysics Data System (ADS)

    de Forcrand, Ph; Philipsen, O.

    2008-10-01

    The phase diagram of QCD, as a function of temperature T and quark chemical potential μ, may contain a critical point (μE, TE) whose non-perturbative nature makes it a natural object of lattice studies. However, the sign problem prevents the application of standard Monte Carlo techniques at nonzero baryon density. We have been pursuing an approach free of the sign problem, where the chemical potential is taken as imaginary and the results are Taylor expanded in μ/T about μ = 0, then analytically continued to real μ. Within this approach we have determined the sensitivity of the critical chemical potential μE to the quark mass, d(\\mu_E)^2/dm_q|_{\\mu_E=0} . Our study indicates that the critical point moves to a larger chemical potential as the quark mass decreases. This finding, contrary to common wisdom, implies that the deconfinement crossover, which takes place in QCD at μ = 0 when the temperature is raised, will remain a crossover in the μ-region where our Taylor expansion can be trusted. If this result, obtained on a coarse lattice, is confirmed by simulations on finer lattices now in progress, then we predict that no chiral critical point will be found for μB lsim 500 MeV, unless the phase diagram contains additional transitions.

  8. Hydrodynamical Evolution near the QCD Critical End Point

    NASA Astrophysics Data System (ADS)

    Nonaka, Chiho; Asakawa, Masayuki

    2003-10-01

    Recently, the possibility of the existence of a critical end point (CEP) in the QCD phase diagram has attracted a lot of attention and several experimental signatures have been proposed for it^1. Berdnikov and Rajagopal discussed the growth of the correlation length near the critical end point in heavy-ion collision from the schematic argument^2. However, there has seen, so far, no quantitative study on the hydrodynamic evolution near CEP. Here we quantitatively evaluate the effect of the critical end point on the observables using the hydrodynamical model. First, we construct an equation of state (EOS) that includes critical behavior of CEP. Here we assume that the singular part of EOS near CEP belongs to the same universality class as the 3-d Ising model. Then we match the singular part of EOS with known QGP and hadronic EOS. We found the strong focusing effect near the critical end point in n_B/s trajectories in T-μ plane. This behavior is very different from an EOS of Bag model which is used in usual hydrodynamical models. This suggests that the effect of CEP appears strongly in the time evolution of system and the experimental observables. Next we investigate the time evolution and the behavior of correlation length near CEP along n_B/s trajectories. In addition, we also discuss the consequences of CEP in experimental results such as fluctuations and the kinetic freeze-out temperature. ^1M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev. Lett. 81 (1998) 4816. ^2B. Berdnikov and K. Rajagopal, Phys. Rev. D61 (2000) 105017.

  9. Critical exponents and scaling invariance in the absence of a critical point

    NASA Astrophysics Data System (ADS)

    Saratz, N.; Zanin, D. A.; Ramsperger, U.; Cannas, S.; Pescia, D.; Vindigni, A.

    2016-12-01

    The paramagnetic-to-ferromagnetic phase transition is classified as a critical phenomenon due to the power-law behaviour shown by thermodynamic observables when the Curie point is approached. Here we report the observation of such a behaviour over extraordinarily many decades of suitable scaling variables in ultrathin Fe films, for certain ranges of temperature T and applied field B. This despite the fact that the underlying critical point is practically unreachable because protected by a phase with a modulated domain structure, induced by the dipole-dipole interaction. The modulated structure has a well-defined spatial period and is realized in a portion of the (T, B) plane that extends above the putative critical temperature, where thermodynamic quantities do not display any singularity. Our results imply that scaling behaviour of macroscopic observables is compatible with an avoided critical point.

  10. Critical exponents and scaling invariance in the absence of a critical point.

    PubMed

    Saratz, N; Zanin, D A; Ramsperger, U; Cannas, S; Pescia, D; Vindigni, A

    2016-12-05

    The paramagnetic-to-ferromagnetic phase transition is classified as a critical phenomenon due to the power-law behaviour shown by thermodynamic observables when the Curie point is approached. Here we report the observation of such a behaviour over extraordinarily many decades of suitable scaling variables in ultrathin Fe films, for certain ranges of temperature T and applied field B. This despite the fact that the underlying critical point is practically unreachable because protected by a phase with a modulated domain structure, induced by the dipole-dipole interaction. The modulated structure has a well-defined spatial period and is realized in a portion of the (T, B) plane that extends above the putative critical temperature, where thermodynamic quantities do not display any singularity. Our results imply that scaling behaviour of macroscopic observables is compatible with an avoided critical point.

  11. Critical exponents and scaling invariance in the absence of a critical point

    PubMed Central

    Saratz, N.; Zanin, D. A.; Ramsperger, U.; Cannas, S. A.; Pescia, D.; Vindigni, A.

    2016-01-01

    The paramagnetic-to-ferromagnetic phase transition is classified as a critical phenomenon due to the power-law behaviour shown by thermodynamic observables when the Curie point is approached. Here we report the observation of such a behaviour over extraordinarily many decades of suitable scaling variables in ultrathin Fe films, for certain ranges of temperature T and applied field B. This despite the fact that the underlying critical point is practically unreachable because protected by a phase with a modulated domain structure, induced by the dipole–dipole interaction. The modulated structure has a well-defined spatial period and is realized in a portion of the (T, B) plane that extends above the putative critical temperature, where thermodynamic quantities do not display any singularity. Our results imply that scaling behaviour of macroscopic observables is compatible with an avoided critical point. PMID:27917865

  12. Protecting clean critical points by local disorder correlations

    NASA Astrophysics Data System (ADS)

    Hoyos, J. A.; Laflorencie, Nicolas; Vieira, André.; Vojta, Thomas

    2011-03-01

    We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order-parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics. Financial support: Fapesp, CNPq, NSF, and Research Corporation.

  13. Critical points of the anyon-Hubbard model

    NASA Astrophysics Data System (ADS)

    Arcila-Forero, J.; Franco, R.; Silva-Valencia, J.

    2016-07-01

    Anyons are particles with fractional statistics that exhibit a nontrivial change in the wave function under an exchange of particles. Anyons can be considered to be a general category of particles that interpolate between fermions and bosons. We determined the position of the critical points of the one-dimensional anyon-Hubbard model, which was mapped to a modified Bose-Hubbard model where the tunneling depends on the local density and the interchange angle. We studied the latter model by using the density-matrix renormalization-group method and observed that gapped (Mott insulator) and gapless (superfluid) phases characterized the phase diagram, regardless of the value of the statistical angle. The phase diagram for higher densities was calculated and showed that the Mott lobes increase (decrease) as a function of the statistical angle (global density). The position of the critical point separating the gapped and gapless phases was found using quantum information tools, namely the block von Neumann entropy. We also studied the evolution of the critical point with the global density and the statistical angle and showed that the anyon-Hubbard model with a statistical angle θ =π /4 is in the same universality class as the Bose-Hubbard model with two-body interactions.

  14. Turbulence close to the critical point of a fluid

    NASA Astrophysics Data System (ADS)

    Verhille, Gautier; Lachize, Cecile; Le Gal, Patrice

    2012-11-01

    Most of experiments in turbulence deal with liquid or gas. With classical fluids it is quite difficult to have both a high Reynolds number and a Mach number high enough to have compressible effects (Ma >~ 0 . 3). In water the sound speed is too large to permit compressible effects (c ~ 1500 m/s at room temperature and atmospheric pressure) and in air the viscosity is not so small (ν ~10-5 m2/s) so it is difficult to have high Reynolds number in a laboratory experiments. On the contrary, a fluid close to its critical point has a small kinematic viscosity, typically 20 times smaller than the water viscosity for SF6, and a small sound speed as the compressibility diverges, c ~ 70 m/s for SF6. Other properties of the fluid are diverging close to the critical point, as the correlation length of the density fluctuation and other goes to zero, as the thermal conductivity. We present here the first study of the modification of a turbulent flow close to the critical point. This flow is created in a rotor stator cavity, a one disk version of the ``french washing machine,'' in a pressurized and thermalized vessel filled up with SF6. Pressure and velocity measurements show an increase of the large scale dynamic whereas the inertial range does not seem to be affected.

  15. Supergravity instabilities of non-supersymmetric quantum critical points

    NASA Astrophysics Data System (ADS)

    Bobev, Nikolay; Halmagyi, Nick; Pilch, Krzysztof; Warner, Nicholas P.

    2010-12-01

    Motivated by the recent use of certain consistent truncations of M-theory to study condensed matter physics using holographic techniques, we study the SU(3)-invariant sector of four-dimensional, {\\cal N}=8 gauged supergravity and compute the complete scalar spectrum at each of the five non-trivial critical points. We demonstrate that the smaller SU(4)- sector is equivalent to a consistent truncation studied recently by various authors and find that the critical point in this sector, which has been proposed as the ground state of a holographic superconductor, is unstable due to a family of scalars that violate the Breitenlohner-Freedman bound. We also derive the origin of this instability in 11 dimensions and comment on the generalization to other embeddings of this critical point which involve arbitrary Sasaki-Einstein seven manifolds. In the spirit of a resurging interest in consistent truncations, we present a formal treatment of the SU(3)-invariant sector as a U(1) × U(1) gauged {\\cal N}=2 supergravity theory coupled to one hypermultiplet.

  16. Ion exchange at the critical point of solution.

    PubMed

    Savoy, J D; Baird, J K; Lang, J R

    2016-03-11

    A mixture of isobutyric acid (IBA)+water has an upper critical point of solution at 26.7°C and an IBA concentration of 4.40M. We have determined the Langmuir isotherms for the hydroxide form of Amberlite IRN-78 resin in contact with mixtures of IBA+water at temperatures, 27.0, 29.0, 31.0 and 38.0°C, respectively. The Langmuir plot at 38.0°C forms a straight line. At the three lower temperatures, however, a peak in the Langmuir plot is observed for IBA concentrations in the vicinity of 4.40M. We regard this peak to be a critical effect not only because it is located close to 4.40M, but also because its height becomes more pronounced as the temperature of the isotherm approaches the critical temperature. For concentrations in the vicinity of the peak, the data indicate that the larger isobutyrate ion is rejected by the resin in favor of the smaller hydroxide ion. This reversal of the expected ion exchange reaction might be used to separate ions according to size. Using the Donnan theory of ion exchange equilibrium, we link the swelling pressure to the osmotic pressure. We show that the peak in the Langmuir plot is associated with a maximum in the "osmotic" energy. This maximum has its origin in the concentration derivative of the osmotic pressure, which goes to zero as the critical point is approached.

  17. Possible Signal for Critical Point in Hadronization Process

    NASA Astrophysics Data System (ADS)

    Rybczynski, M.; Wlodarczyk, Z.; Wilk, G.

    2004-02-01

    We argue that recent data on fluctuations observed in heavy ion collisions show non-monotonic behaviour as function of number of participants (or ''wounded nucleons'') NW. When interpreted in thermodynamical approach this result can be associated with a possible structure occurring in the corresponding equation of state (EoS). This in turn could be further interpreted as due to the occurrence of some characteristic points (like softest point or critical point) of EoS discussed in the literature and therefore be regarded as a possible signal of the QGP formation in such collisions. We show, however, that the actual situation is still far from being clear and calls for more investigations of fluctuation phenomena in multiparticle production processes to be performed.

  18. Universal thermodynamics at the liquid-vapor critical point.

    PubMed

    Sanchez, Isaac C; Boening, Kevin L

    2014-11-26

    For 68 fluids that include hydrogen bonding and quantum fluids, the fugacity coefficient that defines the residual chemical potential adopts a near universal value of 2/3 at the critical point. More precisely, the reciprocal of the fugacity coefficient equals 1.52 ± 0.02 and includes fluids as diverse as helium (1.50), dodecafluoropentane (1.50), and water (1.53). For 65 classical fluids, a dimensionless thermal pressure coefficient and internal pressure attain critical values of 1.88 ± 0.11 and 1.61 ± 0.11, respectively. From equations of state, values of these new critical constants have been calculated and agree favorably with experimental values. Specifically, for the critical fugacity coefficient, the following results were obtained for its reciprocal: van der Waals (1.44), lattice gas (1.43), scaled particle theory (1.46), and the Redlich-Kwong eq (1.50). The semiempirical Redlich-Kwong equation is also the most accurate for the thermal pressure coefficient (1.86) and internal pressure (1.53). Physical interpretations of these results are discussed as well as their implications for other critical phenomena.

  19. Critical Lines in Binary Mixtures of Components with Multiple Critical Points

    NASA Astrophysics Data System (ADS)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor

    The principal aim of this work is a comprehensive analysis of the fluid phase behavior of binary fluid mixtures via the van der Waals like equation of state (EoS) which has a multiplicity of critical points in metastable region. We test the modified van der Waals equation of state (MVDW) proposed by Skibinski et al. (2004) which displays a complex phase behavior including three critical points and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). An improvement of repulsive part doesn't change a topological picture of phase behavior in the wide range of thermodynamic variables. The van der Waals attractive interaction and excluded volume for mixture are calculated from classical mixing rules. Critical lines in binary mixtures of type III of phase behavior in which the components exhibit polyamorphism are calculated and a continuity of fluid-fluid critical line at high pressure is observed.

  20. [Critical control points in the pasteurized milk processing fluxogram].

    PubMed

    Lopes, A C; Stamford, T L

    1997-12-01

    With the aim of evaluating the microbiological quality of raw and pasteurized milk and confirm the critical control points in a dairy processing industry (Recife-PE, Brazil), 84 samples of milk were collected from four points of the flow-chart considered critical (raw milk storage tank, outlet of the pasteurizer unit, pasteurized milk storage tank and packing filling machine). All samples were evaluated for the presence of mesophilic and psychotrophics microorganisms. The most probable number (MPN) of total and faecal coliforms were determined. Samples of raw and pasteurized milk (collected from the packing filling machine) were also assessed for the presence of Staphylococcus aureus. The preservation temperature of raw and pasteurized milk in the storage tanks and the MPN of total and faecal coliforms present in the water used by the industry were simultaneously evaluated. High counts of mesophilic and psychotrophics microorganisms, total and faecal coliforms and S. aureus were detect in raw milk production and processing. The pasteurization process reduced the microorganisms to acceptable numbers in the Brazilian standards, however, the statistics analysis showed that the number of microorganisms increased significantly (p < 0.01) in the pasteurized milk storage tank, representing an important point of contamination. The probable reason for this findings was the presence of coliforms in 60% samples of water which was used to clean the milk equipment and the inadequate temperatures in the storage tank. Therefore, the results of the microbiological analysis confirm that the milk maintenance temperature in the storage tanks, the pasteurization and the packaging are critical control points in the pasteurized milk processing fluxogram.

  1. Critical versus spurious fluctuations in the search for the QCD critical point

    NASA Astrophysics Data System (ADS)

    Hippert, M.; Fraga, E. S.; Santos, E. M.

    2016-01-01

    The neighborhood of the QCD chiral critical point is characterized by intense fluctuations of the chiral field which could, in principle, generate pronounced experimental signatures. However, experimental uncertainties which are inherent to heavy-ion collisions, as well as the modest size and duration of the formed plasma, will severely attenuate these signatures. Using Monte Carlo techniques, we study second-order event-by-event moments of pions as a prototype for signatures of the chiral critical point based on the enhancement of the correlation length and event-by-event analysis. We test their viability against some realistic ingredients, similar to the ones found in the RHIC beam energy scan program.

  2. New classes of exact solutions to the Grad-Shafranov equation with arbitrary flow using Lie-point symmetries

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, Ap.; Throumoulopoulos, G. N.

    2016-11-01

    Extending previous work [R. L. White and R. D. Hazeltine, Phys. Plasmas 16, 123101 (2009)] to the case of a generalized Grad-Shafranov equation (GGSE) with incompressible flow of arbitrary direction, we obtain new classes of exact solutions on the basis of Lie-point symmetries. This is done by using a previously found exact generalized Solovév solution to the GGSE. The new solutions containing five free parameters describe D-shaped toroidal configurations with plasma flow non-parallel to the magnetic field. In addition, the full symmetry group is obtained and new group-invariant solutions to the GGSE are presented.

  3. Resummation of fluctuations near ferromagnetic quantum critical points

    NASA Astrophysics Data System (ADS)

    Pedder, C. J.; Krüger, F.; Green, A. G.

    2013-10-01

    We present a detailed analysis of the nonanalytic structure of the free energy for the itinerant ferromagnet near the quantum critical point in two and three dimensions. We analyze a model of electrons with an isotropic dispersion interacting through a contact repulsion. A fermionic version of the quantum order-by-disorder mechanism allows us to calculate the free energy as a functional of the dispersion in the presence of homogeneous and spiraling magnetic order. We resum the leading divergent contributions to derive an algebraic expression for the nonanalytic contribution to free energy from quantum fluctuations. Using a recursion which relates subleading divergences to the leading term, we calculate the full T=0 contribution in d=3. We propose an interpolating functional form, which allows us to track phase transition lines at temperatures far below the tricritical point and down to T=0. In d=2, quantum fluctuations are stronger, and nonanalyticities are more severe. Using a similar resummation approach, we find that despite the different nonanalytic structures, the phase diagrams in two and three dimensions are remarkably similar, exhibiting an incommensurate spiral phase near the avoided quantum critical point.

  4. Critical points for point source pollution in the Yser catchment area (Flanders-France).

    PubMed

    Mestdagh, Inge; Maillet-Mezeray, Julie; Calus, André; Franssens, Vanessa; Röttele, Manfred

    2008-01-01

    In the frame of the European TOPPS project (Train the Operator to prevent Pollution from Point Sources), 200 on farm audits and 300 tele interviews were performed in the Yser catchment area. The objective was to determine the critical points for point source pollution within the spraying process and to inform advisors, intermediaries and farmers on practical measures and achievable solutions to reduce the contamination of the surface water by Plant Protection Products (PPP) due to point source pollution. For the on farm auditing, the Aquasite tool (Arvalis-France) was used. This audit was performed on 100 farms in the Flemish Yser catchment and on 100 farms at the French side. This audit reveals the weak points in infrastructure and technology on the farm in relation to the spraying process. Next, 150 tele interviews were held in the respective catchment areas. These interviews assess the awareness and behaviour of the farmers on point source pollution. The strength of these studies is in giving a view on the real situation on the farms with respect to spraying. The critical points and risks for point source pollution were similar for both regions. Especially the filling and mixing of the sprayer, internal and external cleaning of the sprayer and the management of the waste fraction need specific training, demonstration and advice. However, there is a large difference in the risk perception of point source pollution between farmers on both sides of the border. The transgressing approach of the Yser catchment allows to make a comparison between both regions and allows to assess in which way the legislation had part in explaining the differences between the regions as the agriculture in both regions is similar. Also, the results stress the importance of trainings and sensibilisation at a regional scale.

  5. Field Structure of a Quasisoliton Approaching the Critical Point

    NASA Astrophysics Data System (ADS)

    Gorshkov, K. A.; Soustova, I. A.; Ermoshkin, A. V.

    2016-03-01

    Within the framework of an approximate approach based on the representation of the Gardnerequation solitons as compound structures (different-polarity kinks), the non-quasistationary evolution of such solitary waves, which is stipulated by the variable quadratic-nonlinearity parameter α. The structure of the composite soliton is studied in cases that are critical for the quasistationary description where the predicted increase in the solitary-wave scales becomes unbounded on finite spatio-temporal intervals. The dependence of the spatial scales of the quasisoliton-field distribution on the quadratic-nonlinearity coefficient near the critical point for the power-law time dependence α(t) is studied in detail. The obtained solution is compared with the results of direct numerical simulation of the Gardner equation with variable coefficients.

  6. Pairing correlations near a Kondo-destruction quantum critical point

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Deng, Lili; Ingersent, Kevin; Si, Qimiao

    2015-05-01

    Motivated by the unconventional superconductivity observed in heavy-fermion metals, we investigate pairing susceptibilities near a continuous quantum phase transition of the Kondo-destruction type. We solve two-impurity Bose-Fermi Anderson models with Ising and Heisenberg forms of the interimpurity exchange interaction using continuous-time quantum Monte Carlo and numerical renormalization-group methods. Each model exhibits a Kondo-destruction quantum critical point separating Kondo-screened and local-moment phases. For antiferromagnetic interimpurity exchange interactions, singlet pairing is found to be enhanced in the vicinity of the transition. Implications of this result for heavy-fermion superconductivity are discussed.

  7. Black holes as critical point of quantum phase transition.

    PubMed

    Dvali, Gia; Gomez, Cesar

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  8. Itinerant density wave instabilities at classical and quantum critical points

    NASA Astrophysics Data System (ADS)

    Feng, Yejun; van Wezel, Jasper; Wang, Jiyang; Flicker, Felix; Silevitch, D. M.; Littlewood, P. B.; Rosenbaum, T. F.

    2015-10-01

    Charge ordering in metals is a fundamental instability of the electron sea, occurring in a host of materials and often linked to other collective ground states such as superconductivity. What is difficult to parse, however, is whether the charge order originates among the itinerant electrons or whether it arises from the ionic lattice. Here we employ high-resolution X-ray diffraction, combined with high-pressure and low-temperature techniques and theoretical modelling, to trace the evolution of the ordering wavevector Q in charge and spin density wave systems at the approach to both thermal and quantum phase transitions. The non-monotonic behaviour of Q with pressure and the limiting sinusoidal form of the density wave point to the dominant role of the itinerant instability in the vicinity of the critical points, with little influence from the lattice. Fluctuations rather than disorder seem to disrupt coherence.

  9. Black holes as critical point of quantum phase transition

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gomez, Cesar

    2014-02-01

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  10. Critical point drying: contamination in transitional fluid supply cylinders.

    PubMed

    Hoagland, K D; Rosowski, J R; Cohen, A L

    1980-01-01

    We call attention to the occurrence of an oily residue in the CPD bomb after critical point drying, as well as the presence of rust, dirt, and an oily residue in CO2 and Freon supply cylinders. Bottled gas is often tested for purity once after manufacturing and then is pumped and stored, perhaps several times, before the consumer's cylinders are filled. The cylinders may be in use for over 40 years, and may never be chemically cleaned, although they are hydrostatically pressure tested every five years, with the date of each test stamped on the cylinder. To the bottled gas industry we recommend regular inspection of tanks for bottom contamination, and vacuum and chemical cleaning when contamination is found. To users of bottled gas for critical point drying, we recommend becoming aware of the procedures of cylinder inspection, cleaning, and circulation among users. We suggest reporting to the gas supplier any contamination produced by inadvertently backfilling the supply cylinder. Although a common awareness of the problem of supply cylinder residues should lead to failures, the best assurance of clean, oil-free, dry liquid CO2 and other transitional fluids may be in the development of in-line filters which would remove particles, oil and moisture between the supply cylinder and the CPD bomb. We also suggest the use of gas grades higher than commercial, such as welding anhydrous (CO2) or specialty gases.

  11. Measurement of Critical Adsorption of Nitrogen near Its Liquid-vapor Critical Point

    NASA Technical Reports Server (NTRS)

    Chan, Moses

    2003-01-01

    The density profile of a critical fluid near a solid surface is expected to show an universal shape. This is known as critical adsorption. The measurement of this effect, especially close to the critical point, is often obscured by gravity. We were able to separate the gravitational effect from critical adsorption by using two capacitors, one with a large gap and one with a small gap of approximately 2 m. Within the uncertainty in the measurement, our data, which ranges between 10(exp -3) to 2 x 10(exp -6) in reduced temperatures, is consistent with the predicted power law dependence. This work is carried out in collaboration with Rafael Garcia, Sarah Scheidemantel and Klaus Knorr. It is funded by NASA's office of Biological and Physical Researchunder.

  12. Thermal fluctuation exponents for two near-critical point systems

    NASA Astrophysics Data System (ADS)

    Oprisan, Ana; Bayley, Brittany; Oprisan, Sorinel A.; Hegseth, John J.; Garrabos, Yves; Lecoutre, Carole; Beysens, Daniel

    2010-04-01

    In the supercritical phase, pure fluids have great potential for industrial applications and are increasingly used by industry as nonpolluting solvents of organic materials and media for high yield chemical reactions. The experimental data were recorded in microgravity for sulfur hexafluoride (SF6) and on Earth for density-matching binary mixture of methanol and partially deuterated cyclohexane (CC*-Me). We used small angle light scattering experiments to investigate fluctuations in SF6 near critical point and in density-matched binary mixture CC*-Me in the absence of convective flows. For binary mixture, we used three different filtering methods: bright filed (BF - no filter), phase contrast (PC - quarter wave plate at focal point) and dark field (DF - small opaque object at focal point). The power spectrum of scattered light contains information about local inhomogeneities encountered by light traveling through the sample cell unit (SCU). We found that the spatial correlations revealed by Fourier transforms follow power laws both for SF6 in microgravity and binary mixture on Earth. This is an indication of the universality of fluctuation mechanisms. Temporal correlations of fluctuations were investigated using the correlation time.

  13. Universal critical-like scaling of dynamic properties in symmetry-selected glass formers

    NASA Astrophysics Data System (ADS)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.; Paluch, Marian

    2008-11-01

    Evidence for a possible general validity of the critical-like behavior of dielectric relaxation time or viscosity τ,η∝(T-TC)-ϕ with ϕ →9 and TCsymmetry. The supporting evidence was obtained on the basis of the distortion-sensitive, derivative-based analysis of τ(T ) data for a rodlike liquid crystalline compound (E7), orientationally disordered crystals (plastic crystals), a colloidal nanofluid system, polymer melt (polystyrene), oligomeric liquid (EPON 828), and low molecular weight glass formers (glycerol, threitol, sorbitol, and 1-propanol). Results presented explain the puzzling experimental artifacts supporting the dynamical scaling model [R. H. Colby, Phys. Rev. E 61, 1783 (2000); B. M. Erwin, R. H. Colby, J. Non-Cryst. Solids 307-310, 225 (2002)]. It is suggested that spin-glass-like systems may be linked to the discussed pattern.

  14. On the motion of two point vortex pairs with glide-reflective symmetry in a periodic strip

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Stremler, Mark A.

    2015-10-01

    The motion of four point vortices with zero net circulation in a potential flow contained within a two-dimensional, singly periodic domain (i.e., a periodic strip) is determined under the assumption of a spatial symmetry that is preserved by the dynamics. This symmetry is inspired by the patterns observed in two-pair (2P) vortex wakes, in which four neighboring vortices appear as two pairs with a glide-reflective symmetry: the arrangement of each pair is related to the other by a reflection about the wake centerline and a half-period translation along the wake centerline. Under the assumed constraints, the problem can be reduced to an integrable Hamiltonian system. Vortex motions are classified using a bifurcation analysis of the phase space topology as determined by level curves of the Hamiltonian. Unlike the well-known von Kármán point vortex model, in which a singly periodic system of two point vortices with glide-reflective symmetry is always in relative equilibrium, this four-point-vortex system exhibits a rich variety of relative motions for almost all possible initial conditions. Five distinct classes of relative vortex motion are identified, encompassing a total of 12 different types of motion, suggesting that experimental wakes with four vortices formed per shedding cycle may exhibit behaviors not yet explored in the literature. A finite number of initial conditions do correspond to relative equilibria, in which case the vortex configuration propagates downstream with invariant size and shape. Some of these relative equilibria are neutrally stable to perturbations that preserve the system constraints, while others are unstable, leading to large deviations from the equilibrium configuration.

  15. Impurities near an antiferromagnetic-singlet quantum critical point

    DOE PAGES

    Mendes-Santos, T.; Costa, N. C.; Batrouni, G.; ...

    2017-02-15

    Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. We examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined “impurity susceptibility” χimp, using exact quantum Monte Carlo simulations. Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T1. Furthermore, we show that local NMR measurements provide a diagnostic for the location of the QCP, whichmore » agrees remarkably well with the vanishing of the AF order parameter and large values of χimp.« less

  16. G proteins: critical control points for transmembrane signals.

    PubMed Central

    Neer, E. J.

    1994-01-01

    Heterotrimeric GTP-binding proteins (G proteins) that are made up of alpha and beta gamma subunits couple many kinds of cell-surface receptors to intracellular effector enzymes or ion channels. Every cell contains several types of receptors, G proteins, and effectors. The specificity with which G protein subunits interact with receptors and effectors defines the range of responses a cell is able to make to an external signal. Thus, the G proteins act as a critical control point that determines whether a signal spreads through several pathways or is focused to a single pathway. In this review, I will summarize some features of the structure and function of mammalian G protein subunits, discuss the role of both alpha and beta gamma subunits in regulation of effectors, the role of the beta gamma subunit in macromolecular assembly, and the mechanisms that might make some responses extremely specific and others rather diffuse. PMID:8142895

  17. Impurities near an antiferromagnetic-singlet quantum critical point

    NASA Astrophysics Data System (ADS)

    Mendes-Santos, T.; Costa, N. C.; Batrouni, G.; Curro, N.; dos Santos, R. R.; Paiva, T.; Scalettar, R. T.

    2017-02-01

    Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. Using exact quantum Monte Carlo simulations, we examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined "impurity susceptibility" χimp. Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1 /T1 . We show that local NMR measurements provide a diagnostic for the location of the QCP, which agrees remarkably well with the vanishing of the AF order parameter and large values of χimp.

  18. Shear Thinning Near the Critical Point of Xenon

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.; Yao, Minwu

    2008-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(exp -3) < gamma-dot tau < 700, where gamma-dot tau is the shear rate scaled by the relaxation time tau of critical fluctuations. The measurements had a temperature resolution of 0.01 mK and were conducted in microgravity aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity. The viscometer measured the drag on a delicate nickel screen as it oscillated in the xenon at amplitudes 3 mu,m < chi (sub 0) >430 mu, and frequencies 1 Hz < omega/2 pi < 5 Hz. To separate shear thinning from other nonlinearities, we computed the ratio of the viscous force on the screen at gamma-dot tau to the force at gamma-dot tau approximates 0: C(sub gamma) is identical with F(chi(sub 0), omega tau, gamma-dot tau )/F)(chi(sub 0, omega tau, 0). At low frequencies, (omega tau)(exp 2) < gamma-dot tau, C(sub gamma) depends only on gamma-dot tau, as predicted by dynamic critical scaling. At high frequencies, (omega tau)(exp 2) > gamma-dot tau, C(sub gamma) depends also on both x(sub 0) and omega. The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma-dot)/eta(0)=[1+A(sub gamma)|gamma-dot tau|](exp - chi(sub eta)/3+chi(sub eta)), where chi(sub eta) =0.069 is the critical exponent for viscosity and mode-coupling theory predicts A(sub gamma) =0.121. For xenon we find A(sub gamma) =0.137 +/- 0.029, in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature T(sub c) were independent of the cooling rate (both above and below T(sub c) and these data were symmetric about T(sub c) to within a temperature scale factor. The scale factors for the magnitude of the oscillator s response differed from those for the oscillator's phase; this suggests that the surface tension of the two

  19. Influence of intermolecular forces at critical-point wedge filling

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr; Parry, Andrew O.

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  20. Entanglement entropy near Kondo-destruction quantum critical points

    NASA Astrophysics Data System (ADS)

    Chowdhury, Tathagata; Wagner, Christopher; Ingersent, Kevin; Pixley, Jedediah

    Entanglement entropy is a measure of quantum-mechanical entanglement across the boundary created by partitioning a system into two subsystems. We study this quantity in Kondo impurity models that feature Kondo-destruction quantum critical points (QCPs). Recent work has shown that the entanglement entropy between a Kondo impurity of spin Simp and its environment is pinned at its maximum possible value Se = ln (2Simp + 1) throughout the Kondo phase. In the Kondo-destroyed phase, where the impurity spin acquires a nonzero expectation value Mloc, Se = ln (2Simp + 1) - a (Simp) Mloc2 irrespective of the properties of the host. Here, we report numerical renormalization-group results for Kondo models with a pseudogapped density of states under a different partition that separates the impurity and on-site conduction electrons from the rest of the system. Now, the entanglement entropy is affected by the nature of the environment beyond the information contained in Mloc, but Se still contains a critical part that exhibits power-law behavior in the vicinity of the Kondo-destruction QCP

  1. Influence of intermolecular forces at critical-point wedge filling.

    PubMed

    Malijevský, Alexandr; Parry, Andrew O

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  2. On the use of Abelian point group symmetry in density-fitted local MP2 using various types of virtual orbitals

    SciTech Connect

    Köppl, Christoph; Werner, Hans-Joachim

    2015-04-28

    Electron correlation methods based on symmetry-adapted canonical Hartree-Fock orbitals can be speeded up significantly in the well known group theoretical manner, using the fact that integrals vanish unless the integrand is totally symmetric. In contrast to this, local electron correlation methods cannot benefit from such simplifications, since the localized molecular orbitals (LMOs) generally do not transform according to irreducible representations of the underlying point group symmetry. Instead, groups of LMOs become symmetry-equivalent and this can be exploited to accelerate local calculations. We describe an implementation of such a symmetry treatment for density-fitted local Møller-Plesset perturbation theory, using various types of virtual orbitals: Projected atomic orbitals, orbital specific virtuals, and pair natural orbitals. The savings by the symmetry treatment are demonstrated by calculations for several large molecules having different point group symmetries. Benchmarks for the parallel execution efficiency of our method are also presented.

  3. Ubiquitous symmetries

    NASA Astrophysics Data System (ADS)

    Nucci, M. C.

    2016-09-01

    We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.

  4. A critical appraisal of point-of-care coagulation testing in critically ill patients.

    PubMed

    Levi, M; Hunt, B J

    2015-11-01

    Derangement of the coagulation system is a common phenomenon in critically ill patients, who may present with severe bleeding and/or conditions associated with a prothrombotic state. Monitoring of this coagulopathy can be performed with conventional coagulation assays; however, point-of-care tests have become increasingly attractive, because not only do they yield a more rapid result than clinical laboratory testing, but they may also provide a more complete picture of the condition of the hemostatic system. There are many potential areas of study and applications of point-of-care hemostatic testing in critical care, including patients who present with massive blood loss, patients with a hypercoagulable state (such as in disseminated intravascular coagulation), and monitoring of antiplatelet treatment for acute arterial thrombosis, mostly acute coronary syndromes. However, the limitations of near-patient hemostatic testing has not been fully appreciated, and are discussed here. The currently available evidence indicates that point-of-care tests may be applied to guide appropriate blood product transfusion and the use of hemostatic agents to correct the hemostatic defect or to ameliorate antithrombotic treatment. Disappointingly, however, only in cardiac surgery is there adequate evidence to show that application of near-patient thromboelastography leads to an improvement in clinically relevant outcomes, such as reductions in bleeding-related morbidity and mortality, and cost-effectiveness. More research is required to validate the utility and cost-effectiveness of near-patient hemostatic testing in other areas, especially in traumatic bleeding and postpartum hemorrhage.

  5. Theory of the nematic quantum critical point in a nodal superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Ah

    2008-03-01

    In the last several years, experimental evidence has accumulated in a variety of highly correlated electronic systems of new quantum phases which (for purely electronic reasons) spontaneously break the rotational (point group) symmetry of the underlying crystal. Such electron ``nematic'' phases have been seen in quantum Hall systems[1], in the metamagnetic metal Sr3Ru2O7[2], and more recently in magnetic neutron scattering studies of the high temperature superconductor, YBCO[3]. In the case of a high Tc superconductor, the quantum dynamics of nematic order parameter naturally couples strongly to quasiparticle (qp) excitations. In this talk, I will discuss our recent results on the effects of the coupling between quantum critical nematic fluctuations and the nodal qp's of a d-wave superconductor in the vicinity of a putative quantum critical point inside the superconducting phase. We solve a model system with N flavors of quasiparticles in the large N limit[4]. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle peaks in the spectral function, except in the vicinity of ``the tips of the banana,'' where the qp's remain sharp. We will discuss the possible implications of our results to ARPES and STM experiments. [1] M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, PRL 83, 824 (1999). [2] R. A. Borzi and S. A. Grigera and J. Farrell and R. S. Perry and S. J. S. Lister and S. L. Lee and D. A. Tennant and Y. Maeno and A. P. Mackenzie, Science 315, 214 (2007). [3] V. Hinkov, D. Haug, B. Fauqu'e, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, B. Keimer, unpublished. [4] E.-A. Kim, M. Lawler, P. Oreto, E. Fradkin, S. Kivelson, cond-mat/0705.4099.

  6. Critical limits for the control points for halal poultry slaughter.

    PubMed

    Shahdan, Intan Azura; Regenstein, Joe Mac; Rahman, Mohammad Tariqur

    2016-12-13

    This study proposes critical limits (CL) for control points for halal slaughter (CPHS). Previously, 6 control points (CP) were determined, and CL for these 6 CPHS are suggested based on: 1) a literature survey for the CL for CP 1 (poultry breeding, rearing, and poultry feed) and CP 2 (welfare of poultry during transportation and lairage); 2) a field survey of slaughter plants in Kuantan (Malaysia) for CP 3 (immobilization), CP 4 (slaughter), CP 5 (time for full bleed-out), and CP 6 (washing and packaging); and 3) controlled experiments to refine the CL for CP 3, 4, and 5. The CL for CP 1 focused on stress reduction during rearing and use of substances that could compromise poultry meat wholesomeness. The CL for CP 2 emphasizes humane best-practices for handling poultry during lairage. The CL for CP 3 suggests a gap of 5 s between 2 shackles if only one shackler is employed and shackling times of <1 min for live chickens. In countries permitting water-bath electrical stunning of halal poultry, the stunning current needed to induce unconsciousness must be defined for the breed and bird size but not cause any chicken deaths. The CL for CP 4 mandates the recitation of the tasmiyah (the invocation), which if done for every chicken, will require ≥5 s between stunning and neck cutting. The CL for CP 4 also includes information about the slaughter knife. In CP 5 the recommended minimum time between neck cutting and scalding is 9.5 min. Finally, the CL for CP 6 emphasizes good supply chain hygiene and zero adulteration from haram species and substances.

  7. Remembrance of things past: non-equilibrium effects and the evolution of critical fluctuations near the QCD critical point

    NASA Astrophysics Data System (ADS)

    Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi

    2016-12-01

    We report on recent progress in the study of the evolution of non-Gaussian cumulants of critical fluctuations. We explore the implications of non-equilibrium effects on the search for the QCD critical point.

  8. CARS spectroscopy of carbon dioxide in the critical point vicinity

    SciTech Connect

    Arakcheev, V G; Valeev, A A; Gordienko, Vyacheslav M; Kireev, Vyacheslav V; Morozov, V B; Olenin, A N; Tunkin, V G; Yakovlev, D V; Bagratashvili, Viktor N; Popov, Vladimir K

    2004-01-31

    The transformation of the Q-band of the low-frequency 1285-cm{sup -1} component of the 2v{sub 2}/v{sub 1} Fermi doublet of a CO{sub 2} molecule is studied in the critical point vicinity (T{sub c}=31.03 {sup 0}C, P{sub c}=72.8 atm) by the CARS method. CARS spectra were recorded by changing pressure isothermically from 48 to 120 atm at several temperatures in the range between 25 and 36{sup 0}C. At the temperature above 29{sup 0}C, the pressure dependences of the Q-band width pass through the maximum, which exceeds by 40% -50% the typical Q-band width in the liquid phase. The position of the maximum shifts to higher pressures with increasing temperature. The inhomogeneous broadening of the Q-band is interpreted based on the cluster microstructure of a supercritical fluid. (laser applications and other topics in quantum electronics)

  9. Stochastic approximation of dynamical exponent at quantum critical point

    NASA Astrophysics Data System (ADS)

    Yasuda, Shinya; Suwa, Hidemaro; Todo, Synge

    2015-09-01

    We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z . During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional to the lowest gap of the finite-size system. The dynamical exponent is estimated in a straightforward way from the system-size dependence of the temperature. As a demonstration of our novel method, the two-dimensional S =1 /2 quantum X Y model in uniform and staggered magnetic fields is investigated in the combination of the world-line quantum Monte Carlo worm algorithm. In the absence of a uniform magnetic field, we obtain the fully consistent result with the Lorentz invariance at the quantum critical point, z =1 , i.e., the three-dimensional classical X Y universality class. Under a finite uniform magnetic field, on the other hand, the dynamical exponent becomes two, and the mean-field universality with effective dimension (2 +2 ) governs the quantum phase transition.

  10. Stochastic Approximation of Dynamical Exponent at Quantum Critical Point

    NASA Astrophysics Data System (ADS)

    Suwa, Hidemaro; Yasuda, Shinya; Todo, Synge

    We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z. During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional to the lowest gap of the finite-size system. The dynamical exponent is estimated in a straightforward way from the system-size dependence of the temperature. As a demonstration of our novel method, the two-dimensional S = 1 / 2 quantum XY model, or equivalently the hard-core boson system, in uniform and staggered magnetic fields is investigated in the combination of the world-line quantum Monte Carlo worm algorithm. In the absence of a uniform magnetic field, we obtain the fully consistent result with the Lorentz invariance at the quantum critical point, z = 1 . Under a finite uniform magnetic field, on the other hand, the dynamical exponent becomes two, and the mean-field universality with effective dimension (2+2) governs the quantum phase transition. We will discuss also the system with random magnetic fields, or the dirty boson system, bearing a non-trivial dynamical exponent.Reference: S. Yasuda, H. Suwa, and S. Todo Phys. Rev. B 92, 104411 (2015); arXiv:1506.04837

  11. Critical point of the solar wind by radio sounding data

    NASA Technical Reports Server (NTRS)

    Lotova, N. A.; Oraevsky, V. N.; Pisarenko, Ya. V.; Vladimirskii, K. V.

    1995-01-01

    Results of the close-to-Sun plasmas sounding at the transonic region of the solar wind, where the sub-to supersonic flow transition proceeds (at 10 to 40 solar radii from the Sun), are presented. Natural sources of two types were used, water vapour maser sources at 1.35 cm and guasars at 2.9 m wavelength. scattering observations cover the period of 1986 to 1993, Russian Academy of Sciences telescopes RT-22 and DCR-1000 were used, IPS index and scattering angle being the immediate results of observations. Extensive studies of the scintillation index and scattering angle radial profiles reveal a remarkable structural detail, 'transonic region forrunner'-narrow region of diminished scattering close to the internal border of the extended transonic region with its characteristic enhanced scattering. Comparisons of the scattering and plasma velocity profiles let it possible to determine the critical point positions by the comparatively simple scattering observations. This new possibility widely improves the process of the basic data accumulation in the fundamental problem of the solar wind acceleration mechanism.

  12. Critical integer quantum Hall topology and the integrable Maryland model as a topological quantum critical point

    NASA Astrophysics Data System (ADS)

    Ganeshan, Sriram; Kechedzhi, K.; Das Sarma, S.

    2014-07-01

    One-dimensional tight binding models such as the Aubry-André-Harper (AAH) model (with an on-site cosine potential) and the integrable Maryland model (with an on-site tangent potential) have been the subject of extensive theoretical research in localization studies. AAH can be directly mapped onto the two-dimensional (2D) Hofstadter model which manifests the integer quantum Hall topology on a lattice. However, such a connection needs to be made for the Maryland model (MM). Here we describe a generalized model that contains AAH and MM as the limiting cases with the MM lying precisely at a topological quantum phase transition (TQPT) point. A remarkable feature of this critical point is that the one-dimensional MM retains well defined energy gaps whereas the equivalent 2D model becomes gapless, signifying the 2D nature of the TQPT.

  13. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard Analysis and Critical Control Point (HACCP... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS General Provisions § 120.8 Hazard Analysis and Critical Control Point (HACCP) plan. (a) HACCP plan....

  14. Lie symmetry analysis of the Lundgren–Monin–Novikov equations for multi-point probability density functions of turbulent flow

    NASA Astrophysics Data System (ADS)

    Wacławczyk, M.; Grebenev, V. N.; Oberlack, M.

    2017-04-01

    The problem of turbulence statistics described by the Lundgren–Monin–Novikov (LMN) hierarchy of integro-differential equations is studied in terms of its group properties. For this we perform a Lie group analysis of a truncated LMN chain which presents the first two equations in an infinite set of integro-differential equations for the multi-point probability density functions (pdf’s) of velocity. A complete set of point transformations is derived for the one-point pdf’s and the independent variables: sample space of velocity, space and time. For this purpose we use a direct method based on the canonical Lie–Bäcklund operator. Due to the one-way coupling of correlation equations, the present results are complete in the sense that no additional symmetries exist for the first leading equation, even if the full infinite hierarchy is considered.

  15. The effect of disorder on the critical points in the vortex phase diagram of YBCO

    SciTech Connect

    Crabtree, G. W.; Kwok, W. K.; Paulius, L. M.; Petrean, A. M.; Olsson, R. J.; Karapetrov, G.; Tobos, V.; Moulton, W. G.

    2000-01-19

    The effect of line disorder induced by heavy ion irradiation and of point disorder induced by proton and electron irradiation on the upper and lower critical points in the vortex phase diagram of YBCO is presented. The authors find that dilute line disorder induces a Bose glass transition at low fields which is replaced at the lower critical point by first order melting at higher fields. Strong pinning point defects raise the lower critical point, while weak pinning point defects have little or no effect on the lower critical point. The upper critical point is lowered by point disorder, but raised by line disorder. First order melting is suppressed by point disorder in two ways, by lowering of the upper critical point only for weak point pins, or by merging of the upper and lower critical points for strong point pins. The differing responses of the upper and lower critical points to line and point disorder can be understood in a picture of transverse and longitudinal spatial fluctuations.

  16. Anomalous parity-time-symmetry transition away from an exceptional point

    NASA Astrophysics Data System (ADS)

    Ge, Li

    2016-07-01

    Parity-time (PT ) symmetric systems have two distinguished phases, e.g., one with real-energy eigenvalues and the other with complex-conjugate eigenvalues. To enter one phase from the other, it is believed that the system must pass through an exceptional point, which is a non-Hermitian degenerate point with coalesced eigenvalues and eigenvectors. Here we reveal an anomalous PT transition that takes place away from an exceptional point in a nonlinear system: as the nonlinearity increases, the original linear system evolves along two distinct PT -symmetric trajectories, each of which can have an exceptional point. However, the two trajectories collide and vanish away from these exceptional points, after which the system is left with a PT -broken phase. We first illustrate this phenomenon using a coupled-mode theory and then exemplify it using paraxial wave propagation in a transverse periodic potential.

  17. Self-organized criticality as Witten-type topological field theory with spontaneously broken Becchi-Rouet-Stora-Tyutin symmetry

    SciTech Connect

    Ovchinnikov, Igor V.

    2011-05-15

    Here, a scenario is proposed, according to which a generic self-organized critical (SOC) system can be looked upon as a Witten-type topological field theory (W-TFT) with spontaneously broken Becchi-Rouet-Stora-Tyutin (BRST) symmetry. One of the conditions for the SOC is the slow driving noise, which unambiguously suggests Stratonovich interpretation of the corresponding stochastic differential equation (SDE). This, in turn, necessitates the use of Parisi-Sourlas-Wu stochastic quantization procedure, which straightforwardly leads to a model with BRST-exact action, i.e., to a W-TFT. In the parameter space of the SDE, there must exist full-dimensional regions where the BRST symmetry is spontaneously broken by instantons, which in the context of SOC are essentially avalanches. In these regions, the avalanche-type SOC dynamics is liberated from overwise a rightful dynamics-less W-TFT, and a Goldstone mode of Fadeev-Popov ghosts exists. Goldstinos represent moduli of instantons (avalanches) and being gapless are responsible for the critical avalanche distribution in the low-energy, long-wavelength limit. The above arguments are robust against moderate variations of the SDE's parameters and the criticality is 'self-tuned'. The proposition of this paper suggests that the machinery of W-TFTs may find its applications in many different areas of modern science studying various physical realizations of SOC. It also suggests that there may in principle exist a connection between some SOC's and the concept of topological quantum computing.

  18. Anomalous discontinuity at the percolation critical point of active gels.

    PubMed

    Sheinman, M; Sharma, A; Alvarado, J; Koenderink, G H; MacKintosh, F C

    2015-03-06

    We develop a percolation model motivated by recent experimental studies of gels with active network remodeling by molecular motors. This remodeling was found to lead to a critical state reminiscent of random percolation (RP), but with a cluster distribution inconsistent with RP. Our model not only can account for these experiments, but also exhibits an unusual type of mixed phase transition: We find that the transition is characterized by signatures of criticality, but with a discontinuity in the order parameter.

  19. Estimate of beryllium critical point on the basis of correspondence between the critical and the Zeno-line parameters.

    PubMed

    Apfelbaum, E M

    2012-12-20

    The critical-point coordinates of Beryllium have been calculated by means of recently found similarity relations between the Zeno-line and the critical-point parameters. We have used the NVT MC simulations and pseudopotential theory to calculate the Zeno-line parameters together with the data of isobaric measurements to construct the liquid branch of Beryllium binodal. The critical-point coordinates, determined this way, are lower than earlier estimates. We have shown that these previous estimates are in evident contradiction with available measurements data. Present investigation can resolve this contradiction if the measurements data are supposed to be reliable.

  20. Gravity Dual to a Quantum Critical Point with Spontaneous Symmetry Breaking

    SciTech Connect

    Gubser, Steven S.; Rocha, Fabio D.

    2009-02-13

    We consider zero-temperature solutions to the Abelian Higgs model coupled to gravity with a negative cosmological constant. With appropriate choices of parameters, the geometry contains two copies of anti-de Sitter space, one describing conformal invariance in the ultraviolet, and one in the infrared. The effective speed of signal propagation is smaller in the infrared. Green's functions and associated transport coefficients can have unusual power-law scaling in the infrared. We provide an example in which the real part of the conductivity scales approximately as {omega}{sup 3.5} for small {omega}.

  1. Gravity dual to a quantum critical point with spontaneous symmetry breaking.

    PubMed

    Gubser, Steven S; Rocha, Fábio D

    2009-02-13

    We consider zero-temperature solutions to the Abelian Higgs model coupled to gravity with a negative cosmological constant. With appropriate choices of parameters, the geometry contains two copies of anti-de Sitter space, one describing conformal invariance in the ultraviolet, and one in the infrared. The effective speed of signal propagation is smaller in the infrared. Green's functions and associated transport coefficients can have unusual power-law scaling in the infrared. We provide an example in which the real part of the conductivity scales approximately as omega;{3.5} for small omega.

  2. Critical-point analysis of the liquid-vapor interfacial surface tension

    NASA Technical Reports Server (NTRS)

    Salvino, R. E.

    1990-01-01

    The interfacial surface tension of the liquid-vapor system is analyzed near the critical point in a manner similar to bulk thermodynamic critical-point analyses. This is accomplished by a critical-point analysis of the single-phase hard-wall surface tension. Both a Landau expansion and a scaling theory equation of state are investigated. Some general exponent relations are derived and, in addition, some thermodynamically defined correlation lengths are discussed.

  3. Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experiments

    PubMed Central

    Pan, Y.; Nikitin, A. M.; Araizi, G. K.; Huang, Y. K.; Matsushita, Y.; Naka, T.; de Visser, A.

    2016-01-01

    Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms. PMID:27350295

  4. Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experiments.

    PubMed

    Pan, Y; Nikitin, A M; Araizi, G K; Huang, Y K; Matsushita, Y; Naka, T; de Visser, A

    2016-06-28

    Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.

  5. 75 FR 8239 - School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Critical Control Point Principles (HACCP); Approval of Information Collection Request AGENCY: Food and... rule entitled School Food Safety Program Based on Hazard Analysis and Critical Control Point...

  6. Universal Entanglement Entropy in 2D Conformal Quantum Critical Points

    SciTech Connect

    Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah

    2008-12-05

    We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.

  7. Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

    NASA Astrophysics Data System (ADS)

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    2017-03-01

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. This work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 +1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening the equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. The observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.

  8. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables

    PubMed Central

    Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub

    2016-01-01

    We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems. PMID:27910915

  9. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables

    NASA Astrophysics Data System (ADS)

    Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub

    2016-12-01

    We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems.

  10. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables.

    PubMed

    Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub

    2016-12-02

    We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems.

  11. Bulk viscosity of stirred xenon near the critical point

    NASA Astrophysics Data System (ADS)

    Gillis, K. A.; Shinder, I. I.; Moldover, M. R.

    2005-11-01

    We deduce the thermophysical properties of near-critical xenon from measurements of the frequencies and half-widths of the acoustic resonances of xenon maintained at its critical density in centimeter-sized cavities. In the reduced temperature range 1×10-3<(T-Tc)/Tc<7×10-6 , we measured the resonance frequency and quality factor (Q) for each of six modes spanning a factor of 27 in frequency. As Tc was approached, the frequencies decreased by a factor of 2.2 and the Q ’s decreased by as much as a factor of 140. Remarkably, these results are predicted (within ±2% of the frequency and within a factor of 1.4 of Q ) by a model for the resonator and a model for the frequency-dependent bulk viscosity ζ(ω) that uses no empirically determined parameters. The resonator model is based on a theory of acoustics in near-critical fluids developed by Gillis, Shinder, and Moldover [Phys. Rev. E 70, 021201 (2004)]. In addition to describing the present low-frequency data (from 120Hzto7.5kHz ), the model for ζ(ω) is consistent with ultrasonic (0.4-7MHz) velocity and attenuation data from the literature. However, the model predicts a peak in the temperature dependence of the dissipation in the boundary layer that we did not detect. This suggests that the model overestimates the effect of the bulk viscosity on the thermal boundary layer. In this work, the acoustic cavities were heated from below to stir the xenon, thereby reducing the density stratification resulting from Earth’s gravity. The stirring reduced the apparent equilibration time from several hours to a few minutes, and it reduced the effective temperature resolution from 60mK to approximately 2mK , which corresponds to (T-Tc)/Tc≈7×10-6 .

  12. Continuous symmetry measures for complex symmetry group.

    PubMed

    Dryzun, Chaim

    2014-04-05

    Symmetry is a fundamental property of nature, used extensively in physics, chemistry, and biology. The Continuous symmetry measures (CSM) is a method for estimating the deviation of a given system from having a certain perfect symmetry, which enables us to formulate quantitative relation between symmetry and other physical properties. Analytical procedures for calculating the CSM of all simple cyclic point groups are available for several years. Here, we present a methodology for calculating the CSM of any complex point group, including the dihedral, tetrahedral, octahedral, and icosahedral symmetry groups. We present the method and analyze its performances and errors. We also introduce an analytical method for calculating the CSM of the linear symmetry groups. As an example, we apply these methods for examining the symmetry of water, the symmetry maps of AB4 complexes, and the symmetry of several Lennard-Jones clusters.

  13. Non-Equilibrium Conductivity at Quantum Critical Points

    NASA Astrophysics Data System (ADS)

    Berridge, Andrew; Bhaseen, M. J.; Green, A. G.

    2013-03-01

    The behaviour of quantum systems driven out of equilibrium is a field in which we are still searching for general principles and universal results. Quantum critical systems are useful in this search as their out of equilibrium steady states may inherit universal features from equilibrium. While this has been shown in some cases, the calculational techniques used often involve simplified models or calculational tricks, which can obscure some of the underlying physical processes. Here we use a Boltzmann transport approach to study the steady-state non-equilibrium properties - conductivity and current noise, of the Bose-Hubbard model head-on. We must explicitly consider heat-flow and rate limiting processes in the establishment of the steady-state to show that it can indeed be universal. Our analysis reveals the importance of the hydrodynamic limit and the limitations of current approaches.

  14. Hydrogen bond breaking in aqueous solutions near the critical point

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2001-01-01

    The nature of water-anion bonding is examined using X-ray absorption fine structure spectroscopy on a 1mZnBr2/6m NaBr aqueous solution, to near critical conditions. Analyses show that upon heating the solution from 25??C to 500??C, a 63% reduction of waters occurs in the solvation shell of ZnBr42-, which is the predominant complex at all pressure-temperature conditions investigated. A similar reduction in the hydration shell of waters in the Br- aqua ion was found. Our results indicate that the water-anion and water-water bond breaking mechanisms occurring at high temperatures are essentially the same. This is consistent with the hydration waters being weakly hydrogen bonded to halide anions in electrolyte solutions. ?? 2001 Elsevier Science B.V.

  15. Near-critical point phenomena in fluids (19-IML-1)

    NASA Technical Reports Server (NTRS)

    Beysens, D.

    1992-01-01

    Understanding the effects of gravity is essential if the behavior of fluids is to be predicted in spacecraft and orbital stations, and, more generally, to give a better understanding of the hydrodynamics in these systems. An understanding is sought of the behavior of fluids in space. What should emerge from the International Microgravity Lab (IML-1) mission is a better understanding of the kinetics of growth in off-critical conditions, in both liquid mixtures and pure fluids. This complex phenomenon is the object of intensive study in physics and materials sciences area. It is also expected that the IML-1 flight will procure key results to provide a better understanding of how a pure fluid can be homogenized without gravity induced convections, and to what extent the 'Piston Effect' is effective in thermalizing the compressible fluids.

  16. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... General Provisions § 120.8 Hazard Analysis and Critical Control Point (HACCP) plan. (a) HACCP plan. Each.... Sanitation controls may be included in the HACCP plan. However, to the extent that they are monitored in... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hazard Analysis and Critical Control Point...

  17. Smectic-C* alpha-smectic-C* Phase Transition and Critical Point in Binary Mixtures

    SciTech Connect

    Liu,Z.; Wang, S.; McCoy, B.; Cady, A.; Pindak, R.; Caliebe, W.; Takekoshi, K.; Ema, K.; Nguyen, H.; Huang, C.

    2006-01-01

    We have investigated the smectic-C*{sub {alpha}}-smectic-C* (SmC*{sub {alpha}}-SmC*) transition in a series of binary mixtures with resonant x-ray diffraction, differential optical reflectivity, and heat capacity measurements. Results show that the phases are separated by a first-order transition that ends at a critical point. We report the observation of such a critical point. We have proposed the appropriate order parameter and obtained values of two critical exponents associated with this transition. The values of the critical exponents suggest that long-range intersections are present in the SmC*{sub {alpha}}-SmC* critical regions.

  18. Rheumatoid arthritis: scientific development from a critical point of view.

    PubMed

    Schöffel, Norman; Mache, Stefanie; Quarcoo, David; Scutaru, Cristian; Vitzthum, Karin; Groneberg, David A; Spallek, Michael

    2010-02-01

    Rheumatoid arthritis (RA) is classified as a chronic, progressive, systemic autoimmune disorder leading to inflammation, stiffness, defective position and destruction of joints. Finally a complete loss of mobility and functioning can be the result. The fraction of disability varies strongly, for example, a systematic review shows a 50% disability in a period from first occurrence to disability from 4.5 to 22 years. Scientific efforts focused strongly on therapeutic and diagnostic methods during recent years. So far, there is no scientometric approach of the topic rheumatoid arthritis available although there is an increased need to evaluate quality and quantity of scientific research. Density-equalizing algorithms, scientometric methods and large scale data analysis were applied to evaluate the quality and quantity of scientific efforts in the field of rheumatoid arthritis. Data were gained from Pubmed and ISI-Web. During the period 1901-2007, 78,128 items were published by 129 countries including the USA, UK and Germany being the most productive suppliers, representing 45.7% of all publications. Another 23 countries published more than 100 items. In terms of international cooperation the USA proved to be the most successful partner. "Arthritis and Rheumatism", "Annals of the Rheumatic Diseases" and the "Journal of Rheumatology" are the most prolific journals. The current study is the first analysis of "rheumatoid arthritis" research activities and output. Our analysis revealed single areas of interest, the most prolific journals, authors and institutions dealing with the topic. Nevertheless, statements concerning the scientific quality should be considered critical due to a bias according to self-citation and co-authorship.

  19. Whole wafer critical point drying of MEMS devices

    NASA Astrophysics Data System (ADS)

    Resnick, Paul J.; Clews, Peggy J.

    2001-10-01

    Stiction induced by capillary forces during the post-release drying step of MEMS fabrication can substantially limit the functional yield of complex devices. Supercritical CO2 drying provides a method to remove liquid from the device surface without creating a liquid/vapor interface, thereby mitigating stiction. We show that a continuous stirred-tank reactor (CSTR) model can be applied as a method to estimate the volume of liquid CO2 required to effectively displace the post release solvent. The CSTR model predicts that about 8 volume exchanges is sufficient to effectively displace the methanol to a concentration below the saturation point. Experimental data indicate that about 10 exchanges are adequate for repeatable drying of complex devices, which is in reasonable agreement to the model prediction. In addition to drying devices without inducing stiction, the process must be inherently non-contaminating. Data indicate that the majority of contaminants deposited during the drying process can be attributed to contaminants originating in the post-release solvent, rather than the supercritical CO2 process.

  20. Frequency-Dependent Viscosity of Xenon Near the Critical Point

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    We used a novel, overdamped oscillator aboard the Space Shuttle to measure the viscosity eta of xenon near its critical density rho(sub c), and temperature T(sub c). In microgravity, useful data were obtained within 0.1 mK of T(sub c), corresponding to a reduced temperature t = (T -T(sub c))/T(sub c) = 3 x 10(exp -7). The data extend two decades closer to T(sub c) than the best ground measurements, and they directly reveal the expected power-law behavior eta proportional to t(sup -(nu)z(sub eta)). Here nu is the correlation length exponent, and our result for the small viscosity exponent is z(sub eta) = 0.0690 +/- 0.0006. (All uncertainties are one standard uncertainty.) Our value for z(sub eta) depends only weakly on the form of the viscosity crossover function, and it agrees with the value 0.067 +/- 0.002 obtained from a recent two-loop perturbation expansion. The measurements spanned the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz and revealed viscoelasticity when t less than or equal to 10(exp -1), further from T(sub c) than predicted. The viscoelasticity scales as Af(tau), where tau is the fluctuation-decay time. The fitted value of the viscoelastic time-scale parameter A is 2.0 +/- 0.3 times the result of a one-loop perturbation calculation. Near T(sub c), the xenon's calculated time constant for thermal diffusion exceeded days. Nevertheless, the viscosity results were independent of the xenon's temperature history, indicating that the density was kept near rho(sub c), by judicious choices of the temperature vs. time program. Deliberately bad choices led to large density inhomogeneities. At t greater than 10(exp -5), the xenon approached equilibrium much faster than expected, suggesting that convection driven by microgravity and by electric fields slowly stirred the sample.

  1. Transport properties of gases and binary liquids near the critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.

    1972-01-01

    A status report is presented on the anomalies observed in the behavior of transport properties near the critical point of gases and binary liquids. The shear viscosity exhibits a weak singularity near the critical point. An analysis is made of the experimental data for those transport properties, thermal conductivity and thermal diffusivity near the gas-liquid critical point and binary diffusion coefficient near the critical mixing point, that determine the critical slowing down of the thermodynamic fluctuations in the order parameter. The asymptotic behavior of the thermal conductivity appears to be closely related to the asymptotic behavior of the correlation length. The experimental data for the thermal conductivity and diffusivity are shown to be in substantial agreement with current theoretical predictions.

  2. Universality class of replica symmetry breaking, scaling behavior, and the low-temperature fixed-point order function of the Sherrington-Kirkpatrick model.

    PubMed

    Oppermann, R; Schmidt, M J

    2008-12-01

    A scaling theory of replica symmetry breaking (RSB) in the Sherrington-Kirkpatrick (SK) model is presented in the framework of critical phenomena for the scaling regime of large RSB orders kappa , small temperatures T , and small (homogeneous) magnetic fields H . We employ the pseudodynamical picture [R. Oppermann, M. J. Schmidt, and D. Sherrington, Phys. Rev. Lett. 98, 127201 (2007)], where two critical points CP1 and CP2 are associated with the order function's pseudodynamical limits lim_{a-->infinity}q(a)=1 and lim_{a-->0}q(a)=0 at (T=0 , H=0 , 1kappa=0) . CP1 - and CP2 -dominated contributions to the free energy functional F[q(a)] require an unconventional scaling hypothesis. We determine the scaling contributions in accordance with detailed numerical self-consistent solutions for up to 200 orders of RSB. Power laws, scaling functions, and crossover lines are obtained. CP1 -dominated behavior is found for the nonequilibrium susceptibility, which decays like chi_{1}=kappa;{-53}f_{1}(Tkappa;{-53}) , for the entropy, which obeys S(T=0) approximately chi_{1};{2} , and for the subclass of diverging parameters a_{i}=kappa;{53}f_{a_{i}}(Tkappa;{-53}) [describing Parisi box sizes m_{i}(T) identical witha_{i}(T)T ], with f_{1}(zeta) approximately zeta and f_{a_{i}}(zeta) approximately 1zeta for zeta-->infinity , while f(0) is finite. CP2 -dominated behavior, controlled by the magnetic field H while temperature is irrelevant, is retrieved in the plateau height (or width) of the order function q(a) according to q_{pl}(H)=kappa;{-1}f_{pl}(H;{23}kappa;{-1}) with f_{pl}mid R:(zeta)mid R:_{zeta-->infinity} approximately zeta and f_{pl}(0) finite. Divergent characteristic RSB orders kappa_{CP1}(T) approximately T;{-35} and kappa_{CP2}(H) approximately H;{-23} , respectively, describe the crossover from mean field SK- to RSB-critical behavior with rational-valued exponents extracted with high precision from our RSB data. The order function q(a) is obtained as a fixed-point

  3. Theory of finite-entanglement scaling at one-dimensional quantum critical points.

    PubMed

    Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E

    2009-06-26

    Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.

  4. A chemical test of critical point isomorphism: reactive dissolution of ionic solids in isobutyric acid + water near the consolute point.

    PubMed

    Baird, James K; Baker, Jonathan D; Hu, Baichuan; Lang, Joshua R; Joyce, Karen E; Sides, Alison K; Richey, Randi D

    2015-03-12

    Binary liquid mixtures having a consolute point can be used as solvents for chemical reactions. When excess cerium(IV) oxide is brought into equilibrium with a mixture of isobutyric acid + water, and the concentration of cerium in the liquid phase is plotted in van't Hoff form, a straight line results for temperatures sufficiently in excess of the critical solution temperature. Within 1 K of the critical temperature, however, the concentration becomes substantially suppressed, and the van't Hoff slope diverges toward negative infinity. According to the phase rule, one mole fraction can be fixed. Given this restriction, the temperature behavior of the data is in exact agreement with the predictions of both the principle of critical point isomorphism and the Gibbs-Helmholtz equation. In addition, we have determined the concentration of lead in the liquid phase when crystalline lead(II) sulfate reacts with potassium iodide in isobutyric acid + water. When plotted in van't Hoff form, the data lie on a straight line for all temperatures including the critical region. The phase rule indicates that two mole fractions can be fixed. With this restriction, the data are in exact agreement with the principle of critical point isomorphism.

  5. Evidence for a Disordered Critical Point in a Glass-Forming Liquid.

    PubMed

    Berthier, Ludovic; Jack, Robert L

    2015-05-22

    Using computer simulations of an atomistic glass-forming liquid, we investigate the fluctuations of the overlap between a fluid configuration and a quenched reference system. We find that large fluctuations of the overlap develop as temperature decreases, consistent with the existence of the random critical point that is predicted by effective field theories. We discuss the scaling of fluctuations near the presumed critical point, comparing the observed behavior with that of the random-field Ising model. We argue that this critical point directly reveals the existence of an interfacial tension between amorphous metastable states, a quantity relevant both for equilibrium relaxation and for nonequilibrium melting of stable glass configurations.

  6. Enhancement of superconductivity near the ferromagnetic quantum critical point in UCoGe.

    PubMed

    Slooten, E; Naka, T; Gasparini, A; Huang, Y K; de Visser, A

    2009-08-28

    We report a high-pressure single crystal study of the superconducting ferromagnet UCoGe. Measurements of the ac susceptibility and resistivity under pressures up to 2.2 GPa show ferromagnetism is smoothly depressed and vanishes at a critical pressure p(c) = 1.4 GPa. Near the ferromagnetic critical point superconductivity is enhanced. Upper-critical field measurements under pressure show B(c2)(0) attains remarkably large values, which provides solid evidence for spin-triplet superconductivity over the whole pressure range. The obtained p-T phase diagram reveals superconductivity is closely connected to a ferromagnetic quantum-critical point hidden under the superconducting "dome."

  7. Polynomial Graphs and Symmetry

    ERIC Educational Resources Information Center

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  8. Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene.

    PubMed

    Ortmann, Frank; Roche, Stephan

    2013-02-22

    We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.

  9. Variation of critical point of aging transition in a networked oscillators system.

    PubMed

    Huang, Wenwen; Zhang, Xiyun; Hu, Xin; Zou, Yong; Liu, Zonghua; Guan, Shuguang

    2014-06-01

    In this work, we study the variation of critical point in aging transition in a networked system consisting of both active and inactive oscillators. By theoretical analysis and numerical simulations, we show that the critical point of aging transition actually is determined by the (normalized) cross links between active and inactive subpopulations of oscillators. This reveals how specific configuration of active and inactive oscillators in the network can lead to the variation of transition point. In particular, we investigate how different strategies of targeted inactivation influence the transition point based on the theory. Our results theoretically explain why the low-degree nodes are crucial regarding dynamical robustness in such systems.

  10. Self-organization of plants in a dryland ecosystem: Symmetry breaking and critical cluster size.

    PubMed

    Meyra, Ariel G; Zarragoicoechea, Guillermo J; Kuz, Victor A

    2015-05-01

    Periodical patterns of vegetation in an arid or semiarid ecosystem are described using statistical mechanics and Monte Carlo numerical simulation technique. Plants are characterized by the area that each individual occupies and a facilitation-competition pairwise interaction. Assuming that external resources (precipitation, solar radiation, nutrients, etc.) are available to the ecosystem, it is possible to obtain the persistent configurations of plants compatible with an equitable distribution of resources maximizing the Shannon entropy. Variation of vegetation patterns with density, critical cluster size, and facilitation distance are predicted. Morphological changes of clusters are shown to be a function of the external resources. As a final remark, it is proposed that an early warning of desertification could be detected from the coefficient of variation of the mean cluster size together with the distribution of cluster sizes.

  11. Is the critical point for aperture crossing adapted to the person-plus-object system?

    PubMed

    Hackney, Amy L; Cinelli, Michael E; Frank, Jim S

    2014-01-01

    When passing through apertures, individuals scale their actions to their shoulder width and rotate their shoulders or avoid apertures that are deemed too small for straight passage. Carrying objects wider than the body produces a person-plus-object system that individuals must account for in order to pass through apertures safely. The present study aimed to determine whether individuals scale their critical point to the widest horizontal dimension (shoulder or object width). Two responses emerged: Fast adapters adapted to the person-plus-object system by maintaining a consistent critical point regardless of whether the object was carried while slow adapters initially increased their critical point (overestimated) before adapting back to their original critical point. The results suggest that individuals can account for increases in body width by scaling actions to the size of the object width but people adapt at different rates.

  12. Critical point drying for scanning electron microscopy: a semi-automatic method of preparing biological specimens.

    PubMed

    Hall, D J; Skerrett, E J; Thomas, W D

    1978-08-01

    Slow, controlled, rates of critical point bomb heating and of gas venting have been shown to improve the preservation of biological specimens in critical point drying. A procedure that represents a balance between avoidance of specimen damage and speed of operation has been developed for use with CO2 as the transitional fluid. Bomb heating is automated and controlled electronically, and manual venting of the gaseous CO2 is monitored using a gas flow meter.

  13. Searching critical-point nuclei in Te- and Xe-isotopic chains using sextic oscillator potential

    SciTech Connect

    Kharb, S.; Chand, F.

    2012-02-15

    We have identified the nuclei in the Te- and Xe-isotopic chains lying close to the critical point, through which the shape phase transition occurs, by using the sextic oscillator potential formalism. It has been found that {sup 110}Te, {sup 124}Te, and {sup 124}Xe isotopes are the most promising candidates for the critical-point nuclei slightly above the Z = 50 proton shell closure.

  14. Hazard analysis and critical control point systems applied to public health risks: the example of seafood.

    PubMed

    Williams, R A; Zorn, D J

    1997-08-01

    The authors describe the way in which the two components of risk analysis--risk assessment and risk management--can be used in conjunction with the hazard analysis and critical control points concept to determine the allocation of resources at potential critical control points. This approach is examined in the context of risks to human health associated with seafood, and in particular with regard to ciguatera poisoning.

  15. Phase diagram and critical end point in nonlocal PNJL models with wavefunction renormalization

    SciTech Connect

    Contrera, Gustavo A.; Orsaria, Milva G.; Scoccola, Norberto N.

    2010-11-12

    We study the chiral phase transition at finite temperature and chemical potential considering a non-local chiral quark model which includes wave-function renormalization and coupling to the Polyakov loop. In particular, we determine the position of the Critical End Point as well as the value of the associated critical exponents for different model parameterizations.

  16. 8x8 and 10x10 Hyperspace Representations of SU(3) and 10-fold Point-Symmetry Group of Quasicrystals

    NASA Astrophysics Data System (ADS)

    Animalu, Alexander

    2012-02-01

    In order to further elucidate the unexpected 10-fold point-symmetry group structure of quasi-crystals for which the 2011 Nobel Prize in chemistry was awarded to Daniel Shechtman, we explore a correspondence principle between the number of (projective) geometric elements (points[vertices] + lines[edges] + planes[faces]) of primitive cells of periodic or quasi-periodic arrangement of hard or deformable spheres in 3-dimensional space of crystallography and elements of quantum field theory of particle physics [points ( particles, lines ( particles, planes ( currents] and hence construct 8x8 =64 = 28+36 = 26 + 38, and 10x10 =100= 64 + 36 = 74 + 26 hyperspace representations of the SU(3) symmetry of elementary particle physics and quasicrystals of condensed matter (solid state) physics respectively, As a result, we predict the Cabibbo-like angles in leptonic decay of hadrons in elementary-particle physics and the observed 10-fold symmetric diffraction pattern of quasi-crystals.

  17. Performance enhancement of the branch length similarity entropy descriptor for shape recognition by introducing critical points

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee; Kang, Seung-Ho

    2016-10-01

    In previous studies, we showed that the branch length similarity (BLS) entropy profile could be used successfully for the recognition of shapes such as battle tanks, facial expressions, and butterflies. In the present study, we introduce critical points defined as a set of distinguishing points with high curvature to the BLS entropy profile in order to improve the shape recognition. In order to generate a given number of critical points from the shape, we propose a critical point detection method. Furthermore, we show the invariant properties of the BLS entropy descriptor. To evaluate the effects of critical points on the shape recognition of the BLS entropy descriptor, we performed a butterfly classification experiment against a real image data set, and we conducted performance comparisons with other point detection methods. In addition, the performance of the BLS entropy descriptor computed using the critical points was compared with those of other well-known descriptors such as the Fourier descriptor using three machine learning techniques, the Bayesian classifier, the multi-layer perceptron and the support vector machine. The results show that the BLS entropy descriptor outperforms other well-known descriptors.

  18. Symmetry adaptation of spherical tensor quantities in cubic point groups: comments on a paper by M. Rey et al.

    NASA Astrophysics Data System (ADS)

    Michelot, F.

    2004-04-01

    We underline some inconsistencies in the work [J. Mol. Spectrosc. 219 (2003) 313] concerning symmetry adaptation in cubic groups. Also we show that some rather complicated methods presented can be easily avoided.

  19. Fermi-surface collapse and dynamical scaling near a quantum-critical point

    PubMed Central

    Friedemann, Sven; Oeschler, Niels; Wirth, Steffen; Krellner, Cornelius; Geibel, Christoph; Steglich, Frank; Paschen, Silke; Kirchner, Stefan; Si, Qimiao

    2010-01-01

    Quantum criticality arises when a macroscopic phase of matter undergoes a continuous transformation at zero temperature. While the collective fluctuations at quantum-critical points are being increasingly recognized as playing an important role in a wide range of quantum materials, the nature of the underlying quantum-critical excitations remains poorly understood. Here we report in-depth measurements of the Hall effect in the heavy-fermion metal YbRh2Si2, a prototypical system for quantum criticality. We isolate a rapid crossover of the isothermal Hall coefficient clearly connected to the quantum-critical point from a smooth background contribution; the latter exists away from the quantum-critical point and is detectable through our studies only over a wide range of magnetic field. Importantly, the width of the critical crossover is proportional to temperature, which violates the predictions of conventional theory and is instead consistent with an energy over temperature, E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our results provide evidence that the quantum-dynamical scaling and a critical Kondo breakdown simultaneously operate in the same material. Correspondingly, we infer that macroscopic scale-invariant fluctuations emerge from the microscopic many-body excitations associated with a collapsing Fermi-surface. This insight is expected to be relevant to the unconventional finite-temperature behavior in a broad range of strongly correlated quantum systems. PMID:20668246

  20. Fermi-surface collapse and dynamical scaling near a quantum-critical point.

    PubMed

    Friedemann, Sven; Oeschler, Niels; Wirth, Steffen; Krellner, Cornelius; Geibel, Christoph; Steglich, Frank; Paschen, Silke; Kirchner, Stefan; Si, Qimiao

    2010-08-17

    Quantum criticality arises when a macroscopic phase of matter undergoes a continuous transformation at zero temperature. While the collective fluctuations at quantum-critical points are being increasingly recognized as playing an important role in a wide range of quantum materials, the nature of the underlying quantum-critical excitations remains poorly understood. Here we report in-depth measurements of the Hall effect in the heavy-fermion metal YbRh(2)Si(2), a prototypical system for quantum criticality. We isolate a rapid crossover of the isothermal Hall coefficient clearly connected to the quantum-critical point from a smooth background contribution; the latter exists away from the quantum-critical point and is detectable through our studies only over a wide range of magnetic field. Importantly, the width of the critical crossover is proportional to temperature, which violates the predictions of conventional theory and is instead consistent with an energy over temperature, E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our results provide evidence that the quantum-dynamical scaling and a critical Kondo breakdown simultaneously operate in the same material. Correspondingly, we infer that macroscopic scale-invariant fluctuations emerge from the microscopic many-body excitations associated with a collapsing Fermi-surface. This insight is expected to be relevant to the unconventional finite-temperature behavior in a broad range of strongly correlated quantum systems.

  1. Long-term mortality after critical care: what is the starting point?

    PubMed

    Ranzani, Otavio T; Zampieri, Fernando G; Park, Marcelo; Salluh, Jorge If

    2013-09-27

    Mortality is still the most assessed outcome in the critically ill patient and is routinely used as the primary end-point in intervention trials, cohort studies, and benchmarking analysis. Despite this, interest in patient-centered prognosis after ICU discharge is increasing, and several studies report quality of life and long-term outcomes after critical illness. In a recent issue of Critical Care, Cuthbertson and colleagues reported interesting results from a cohort of 439 patients with sepsis, who showed high ongoing long-term mortality rates after severe sepsis, reaching 61% at 5 years (from a starting point of ICU admission). Follow-up may start at ICU admission, after ICU discharge, or after hospital discharge. Using ICU admission as a starting point will include patients with a wide range of illness severities and reasons for ICU admission. As a result, important consequences of the ICU, such as rehabilitation and reduced quality of life, may be diluted in an unselected population. ICU discharge is another frequently used starting point. ICU discharge is a marker of better outcome and reduced risk for acute deterioration, making this an interesting starting point for studying long-term mortality, need for ICU readmission, and critical illness rehabilitation. Finally, using hospital discharge as the starting point will include patients with the minimal requirements to sustain an adequate condition in a non-monitored environment but will add a ?survivors bias?; that is, patients who survive critical illness are a special group among the critically ill. In this commentary, we discuss the heterogeneity in long-term mortality from recent studies in critical care medicine ? heterogeneity that may be a consequence simply of changing the follow-up starting point ? and propose a standardized follow-up starting point for future studies according to the outcome of interest.

  2. Molecular dynamics simulation of a binary mixture near the lower critical point.

    PubMed

    Pousaneh, Faezeh; Edholm, Olle; Maciołek, Anna

    2016-07-07

    2,6-lutidine molecules mix with water at high and low temperatures but in a wide intermediate temperature range a 2,6-lutidine/water mixture exhibits a miscibility gap. We constructed and validated an atomistic model for 2,6-lutidine and performed molecular dynamics simulations of 2,6-lutidine/water mixture at different temperatures. We determined the part of demixing curve with the lower critical point. The lower critical point extracted from our data is located close to the experimental one. The estimates for critical exponents obtained from our simulations are in a good agreement with the values corresponding to the 3D Ising universality class.

  3. Can we approach the gas-liquid critical point using slab simulations of two coexisting phases?

    PubMed

    Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-09-28

    In this paper, we demonstrate that it is possible to approach the gas-liquid critical point of the Lennard-Jones fluid by performing simulations in a slab geometry using a cut-off potential. In the slab simulation geometry, it is essential to apply an accurate tail correction to the potential energy, applied during the course of the simulation, to study the properties of states close to the critical point. Using the Janeček slab-based method developed for two-phase Monte Carlo simulations [J. Janec̆ek, J. Chem. Phys. 131, 6264 (2006)], the coexisting densities and surface tension in the critical region are reported as a function of the cutoff distance in the intermolecular potential. The results obtained using slab simulations are compared with those obtained using grand canonical Monte Carlo simulations of isotropic systems and the finite-size scaling techniques. There is a good agreement between these two approaches. The two-phase simulations can be used in approaching the critical point for temperatures up to 0.97 TC(∗) (T(∗) = 1.26). The critical-point exponents describing the dependence of the density, surface tension, and interfacial thickness on the temperature are calculated near the critical point.

  4. Behavior of the dielectric constant of Ar near the critical point.

    PubMed

    Hidalgo, Marcelo; Coutinho, Kaline; Canuto, Sylvio

    2015-03-01

    The fundamental question of the behavior of the dielectric constant near the critical point is addressed using Ar as the probe system. The neighborhood of the liquid-vapor critical point of Ar is accessed by classical Monte Carlo simulation and then explicit quantum mechanics calculations are performed to study the behavior of the dielectric constant. The theoretical critical temperature is determined by calculating the position of the discontinuity of the specific heat and is found to be at T(c)Theor=148.7K, only 2 K below the experimental value. The large fluctuations and the inhomogeneity of the density that characterize the critical point rapidly disappear and are not seen at T=T(c)Theor+2K. The structure of Ar obtained by the radial distribution function is found to be in very good agreement with experiment both in the liquid phase and 2 K above the critical temperature. The behavior of the dielectric constant is then analyzed after calculating the static dipole polarizability and using a many-body Clausius-Mossotti equation. The dielectric constant shows a density-independent behavior around the critical density, 2 K above the critical temperature. At this point, the calculated value of the dielectric constant is 1.173±0.005 in excellent agreement with the experimental value of 1.179.

  5. Energy of the quasi-free electron in supercritical krypton near the critical point.

    PubMed

    Li, Luxi; Evans, C M; Findley, G L

    2005-12-01

    Field ionization measurements of high-n CH(3)I and C(2)H(5)I Rydberg states doped into krypton are presented as a function of krypton number density along the critical isotherm. These data exhibit a decrease in the krypton-induced shift of the dopant ionization energy near the critical point. This change in shift is modeled to within +/-0.2% of experiment using a theory that accounts for the polarization of krypton by the dopant ion, the polarization of krypton by the quasi-free electron that arises from field ionization of the dopant, and the zero point kinetic energy of the free electron. The overall decrease in the shift of the dopant ionization energy near the critical point of krypton, which is a factor of 2 larger than that observed in argon, is dominated by the increase in the zero point kinetic energy of the quasi-free electron.

  6. Strong enhancement of s -wave superconductivity near a quantum critical point of Ca3Ir4Sn13

    DOE PAGES

    Biswas, P. K.; Guguchia, Z.; Khasanov, R.; ...

    2015-11-11

    We repormore » t microscopic studies by muon spin rotation/relaxation as a function of pressure of the Ca3Ir4Sn13 and Sr3Ir4Sn13 system displaying superconductivity and a structural phase transition associated with the formation of a charge density wave (CDW). Our findings show a strong enhancement of the superfluid density and a dramatic increase of the pairing strength above a pressure of ≈ 1.6 GPa giving direct evidence of the presence of a quantum critical point separating a superconducting phase coexisting with CDW from a pure superconducting phase. The superconducting order parameter in both phases has the same s-wave symmetry. In spite of the conventional phonon-mediated BCS character of the weakly correlated (Ca1-xSrx)3Ir4Sn13 system the dependence of the effective superfluid density on the critical temperature puts this compound in the “Uemura” plot close to unconventional superconductors. This system exemplifies that conventional BCS superconductors in the presence of competing orders or multi-band structure can also display characteristics of unconventional superconductors.« less

  7. Critical points in the 16-moment approximation. [plasma flow in laboratory and space plasmas study

    NASA Technical Reports Server (NTRS)

    Yasseen, F.; Retterer, J. M.

    1991-01-01

    The singular points in steady state, field-aligned plasma transport models based on velocity moment theory are examined. In particular, two separate singular points in the equations obtained from the 16-moment approximation are identified. These equations are presented in a form that makes the singularities apparent, and they are solved in a simple illustrative case. The singular points, one occurring at the sonic point and the other at a critical value of the parallel heat flux, give rise to different outflow regimes, characterized generically by different asymptotic behavior. The existence of the different outflow regimes separated by the heat flux critical point has been only hinted at in previous discussions of numerical simulation of the polar wind.

  8. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization.

    PubMed

    Dobson, Ian; Carreras, Benjamin A; Lynch, Vickie E; Newman, David E

    2007-06-01

    We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.

  9. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization

    SciTech Connect

    Dobson, Ian; Carreras, Benjamin A; Lynch, Vickie E; Newman, David E

    2007-01-01

    We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.

  10. Theoretical Analysis of Thermodynamic Measurements near a Liquid-Gas Critical Point

    NASA Technical Reports Server (NTRS)

    Barmatz, M.; Zhong, Fang; Hahn, Inseob

    2003-01-01

    Over the years, many ground-based studies have been performed near liquid-gas critical points to elucidate the expected divergences in thermodynamic quantities. The unambiguous interpretation of these studies very near the critical point is hindered by a gravity-induced density stratification. However, these ground-based measurements can give insight into the crossover behavior between the asymptotic critical region near the transition and the mean field region farther away. We have completed a detailed analysis of heat capacity, susceptibility and coexistence curve measurements near the He-3 liquid-gas critical point using the minimal-subtraction renormalization (MSR) scheme within the phi(exp 4) model. This MSR scheme, using only two adjustable parameters, provides a reasonable global fit to all of these experimental measurements in the gravity-free region out to a reduced temperature of |t| approx. 2x10(exp -2). Recently this approach has also been applied to the earlier microgravity measurements of Haupt and Straub in SF(sub 6) with surprising results. The conclusions drawn from the MSR analyses will be presented. Measurements in the gravity-affected region closer to the He-3 critical point have also been analyzed using the recent crossover parametric model (CPM) of the equation-of-state. The results of fitting heat capacity measurements to the CPM model along the He-3 critical isochore in the gravity-affected region will also be presented.

  11. Pseudo-critical point in anomalous phase diagrams of simple plasma models

    NASA Astrophysics Data System (ADS)

    Chigvintsev, A. Yu; Iosilevskiy, I. L.; Noginova, L. Yu

    2016-11-01

    Anomalous phase diagrams in subclass of simplified (“non-associative”) Coulomb models is under discussion. The common feature of this subclass is absence on definition of individual correlations for charges of opposite sign. It is e.g. modified OCP of ions on uniformly compressible background of ideal Fermi-gas of electrons OCP(∼), or a superposition of two non-ideal OCP(∼) models of ions and electrons etc. In contrast to the ordinary OCP model on non-compressible (“rigid”) background OCP(#) two new phase transitions with upper critical point, boiling and sublimation, appear in OCP(∼) phase diagram in addition to the well-known Wigner crystallization. The point is that the topology of phase diagram in OCP(∼) becomes anomalous at high enough value of ionic charge number Z. Namely, the only one unified crystal- fluid phase transition without critical point exists as continuous superposition of melting and sublimation in OCP(∼) at the interval (Z 1 < Z < Z 2). The most remarkable is appearance of pseudo-critical points at both boundary values Z = Z 1 ≈ 35.5 and Z = Z 2 ≈ 40.0. It should be stressed that critical isotherm is exactly cubic in both these pseudo-critical points. In this study we have improved our previous calculations and utilized more complicated model components equation of state provided by Chabrier and Potekhin (1998 Phys. Rev. E 58 4941).

  12. Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion.

    PubMed

    Skraba, Primoz; Rosen, Paul; Wang, Bei; Chen, Guoning; Bhatia, Harsh; Pascucci, Valerio

    2016-02-29

    Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.

  13. CETF Space Station payload pointing system design and analysis feasibility study. [Critical Evaluation Task Force

    NASA Technical Reports Server (NTRS)

    Smagala, Tom; Mcglew, Dave

    1988-01-01

    The expected pointing performance of an attached payload coupled to the Critical Evaluation Task Force Space Station via a payload pointing system (PPS) is determined. The PPS is a 3-axis gimbal which provides the capability for maintaining inertial pointing of a payload in the presence of disturbances associated with the Space Station environment. A system where the axes of rotation were offset from the payload center of mass (CM) by 10 in. in the Z axis was studied as well as a system having the payload CM offset by only 1 inch. There is a significant improvement in pointing performance when going from the 10 in. to the 1 in. gimbal offset.

  14. Fate of the one-dimensional Ising quantum critical point coupled to a gapless boson

    NASA Astrophysics Data System (ADS)

    Alberton, Ori; Ruhman, Jonathan; Berg, Erez; Altman, Ehud

    2017-02-01

    The problem of a quantum Ising degree of freedom coupled to a gapless bosonic mode appears naturally in many one-dimensional systems, yet surprisingly little is known how such a coupling affects the Ising quantum critical point. We investigate the fate of the critical point in a regime, where the weak coupling renormalization group (RG) indicates a flow toward strong coupling. Using a renormalization group analysis and numerical density matrix renormalization group (DMRG) calculations we show that, depending on the ratio of velocities of the gapless bosonic mode and the Ising critical fluctuations, the transition may remain continuous or become fluctuation-driven first order. The two regimes are separated by a tricritical point of a novel type.

  15. QCD Critical End Point: How it started, How it grew, and Where it goes

    SciTech Connect

    Asakawa, Masayuki

    2011-05-06

    The presence of a critical end point in the QCD phase diagram can deform the trajectories describing the evolution of the expanding fireball in the {mu}{sub B}-T phase diagram. If the average emission time of hadrons is a function of transverse velocity, as microscopic simulations of the hadronic freezeout dynamics suggest, the deformation of the hydrodynamic trajectories will change the transverse velocity ({beta}{sub T}) dependence of the antiproton-to-proton ratio when the fireball passes in the vicinity of the critical end point. An unusual {beta}{sub T}-dependence of the p-bar/p ratio in a narrow beam energy window would thus signal the presence of the critical end point.

  16. Critical points and transitions in an electric power transmission model for cascading failure blackouts.

    PubMed

    Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E.

    2002-12-01

    Cascading failures in large-scale electric power transmission systems are an important cause of blackouts. Analysis of North American blackout data has revealed power law (algebraic) tails in the blackout size probability distribution which suggests a dynamical origin. With this observation as motivation, we examine cascading failure in a simplified transmission system model as load power demand is increased. The model represents generators, loads, the transmission line network, and the operating limits on these components. Two types of critical points are identified and are characterized by transmission line flow limits and generator capability limits, respectively. Results are obtained for tree networks of a regular form and a more realistic 118-node network. It is found that operation near critical points can produce power law tails in the blackout size probability distribution similar to those observed. The complex nature of the solution space due to the interaction of the two critical points is examined.(c) 2002 American Institute of Physics.

  17. Hazard analysis and critical control point (HACCP) history and conceptual overview.

    PubMed

    Hulebak, Karen L; Schlosser, Wayne

    2002-06-01

    The concept of Hazard Analysis and Critical Control Point (HACCP) is a system that enables the production of safe meat and poultry products through the thorough analysis of production processes, identification of all hazards that are likely to occur in the production establishment, the identification of critical points in the process at which these hazards may be introduced into product and therefore should be controlled, the establishment of critical limits for control at those points, the verification of these prescribed steps, and the methods by which the processing establishment and the regulatory authority can monitor how well process control through the HACCP plan is working. The history of the development of HACCP is reviewed, and examples of practical applications of HACCP are described.

  18. The QCD critical point: an exciting Odyssey in the Femto-world

    NASA Astrophysics Data System (ADS)

    Gavai, Rajiv V.

    2016-07-01

    Strongly interacting matter, which makes up the nuclei of atoms, is described by a theory called quantum chromodynamics (QCD). A critical point in the phase diagram of QCD, if established either theoretically or experimentally, would be as profound a discovery as the familiar gas-liquid critical point discovered in the nineteenth century. Due to the extremely short-lived nature of the concerned phases, novel experimental techniques are needed to search for it. The Relativistic Heavy Ion Collider (RHIC) in USA has an experimental programme which can fit the bill to do so. Theoretical techniques of Lattice QCD, which is QCD defined on a discrete space-time lattice, have provided glimpses into where the QCD critical point may be, and how to search for it in the experimental data. A brief overview of the theoretical and experimental attempts is provided.

  19. Determination of liquid-liquid critical point composition using 90∘ laser light scattering

    NASA Astrophysics Data System (ADS)

    Williamson, J. Charles; Brown, Allison M.; Helvie, Elise N.; Dean, Kevin M.

    2016-04-01

    Despite over a century of characterization efforts, liquid-liquid critical point compositions are difficult to identify with good accuracy. Reported values vary up to 10% for even well-studied systems. Here, a technique is presented for high-precision determination of the critical composition of a partially miscible binary liquid system. Ninety-degree laser light-scattering intensities from single-phase samples are analyzed using an equation derived from nonclassical power laws and the pseudospinodal approximation. Results are reported for four liquid-liquid systems (aniline + hexane, isobutyric acid + water, methanol + cyclohexane, and methanol + carbon disulfide). Compared to other methods, the 90∘ light-scattering approach has a strong dependence on composition near the critical point, is less affected by temperature fluctuations, and is insensitive to the presence of trace impurities in the samples. Critical compositions found with 90∘ light scattering are precise to the parts-per-thousand level and show long-term reproducibility.

  20. Determination of liquid-liquid critical point composition using 90^{∘} laser light scattering.

    PubMed

    Williamson, J Charles; Brown, Allison M; Helvie, Elise N; Dean, Kevin M

    2016-04-01

    Despite over a century of characterization efforts, liquid-liquid critical point compositions are difficult to identify with good accuracy. Reported values vary up to 10% for even well-studied systems. Here, a technique is presented for high-precision determination of the critical composition of a partially miscible binary liquid system. Ninety-degree laser light-scattering intensities from single-phase samples are analyzed using an equation derived from nonclassical power laws and the pseudospinodal approximation. Results are reported for four liquid-liquid systems (aniline + hexane, isobutyric acid + water, methanol + cyclohexane, and methanol + carbon disulfide). Compared to other methods, the 90^{∘} light-scattering approach has a strong dependence on composition near the critical point, is less affected by temperature fluctuations, and is insensitive to the presence of trace impurities in the samples. Critical compositions found with 90^{∘} light scattering are precise to the parts-per-thousand level and show long-term reproducibility.

  1. Communication: Analytic continuation of the virial series through the critical point using parametric approximants.

    PubMed

    Barlow, Nathaniel S; Schultz, Andrew J; Weinstein, Steven J; Kofke, David A

    2015-08-21

    The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.

  2. Communication: Analytic continuation of the virial series through the critical point using parametric approximants

    SciTech Connect

    Barlow, Nathaniel S.; Schultz, Andrew J. Kofke, David A.; Weinstein, Steven J.

    2015-08-21

    The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.

  3. Scaling in driven dynamics starting in the vicinity of a quantum critical point

    NASA Astrophysics Data System (ADS)

    Yin, Shuai; Lo, Chung-Yu; Chen, Pochung

    2016-08-01

    Driven dynamics across a quantum critical point is usually described by the Kibble-Zurek scaling. Although the original Kibble-Zurek scaling requires an adiabatic initial state, it has been shown that scaling behaviors exist even when the driven dynamics is triggered from a thermal equilibrium state exactly at the critical point, in spite of the breakdown of the initial adiabaticity. In this paper, we show that the existence of the scaling behavior can be generalized to the case of the initial state being a thermal equilibrium state near the critical point. We propose a scaling theory in which the initial parameters are included as additional scaling variables due to the breakdown of the initial adiabaticity. In particular, we demonstrate that for the driven critical dynamics in a closed system, the nontrivial thermal effects are closely related to the initial distance to the critical point. We numerically confirm the scaling theory by simulating the real-time dynamics of the one-dimensional quantum Ising model at both zero and finite temperatures.

  4. Evolution of the critical points with the density of bosons under local three-body interactions

    NASA Astrophysics Data System (ADS)

    Avila, C. A.; Franco, R.; Silva-Valencia, J.

    2014-12-01

    We study the quantum phase transition in the one-dimensional Bose-Hubbard model with three-body local interactions for densities ρ = 2, 3, 4 and 5 by implementing the Density Matrix Renormalization Group method. This system shows two types of phases. One phase is incompressible (corresponding to the Mott insulator state) and the other compressible (the superfluid state). The critical points found correspond to a value of the hopping parameter for which the gap energy is equal to zero. We found that the critical point increases slowly as the density of the system increases.

  5. Anomalous waves in gas-liquid mixtures near gas critical point in Gardner equation approximation

    NASA Astrophysics Data System (ADS)

    Gasenko, V. G.

    2016-10-01

    The waves in a bubbled incompressible liquid with Van der Waals gas in a bubbles being near critical points is considered in a frame of Gardner equation. It is shown that both coefficients on quadratic and cubic nonlinear terms in Gardner equation change the sign near gas critical point and it results the anomalous waves: negative and limited solitons, kinks, antikinks and breathers. The dynamics and interactions of these waves was studied numerically by high accuracy Fourier methods with periodically boundary conditions. In particular it is revealed that limited solitons always arise from initial distribution with a few identical soliton's pair and stand stable in their form after numerous interactions.

  6. Universal free-energy distribution in the critical point of a random Ising ferromagnet.

    PubMed

    Dotsenko, Victor; Holovatch, Yurij

    2014-11-01

    We discuss the non-self-averaging phenomena in the critical point of weakly disordered Ising ferromagnet. In terms of the renormalized replica Ginzburg-Landau Hamiltonian in dimensions D<4, we derive an explicit expression for the probability distribution function (PDF) of the critical free-energy fluctuations. In particular, using known fixed-point values for the renormalized coupling parameters, we obtain the universal curve for such PDF in the dimension D=3. It is demonstrated that this function is strongly asymmetric: its left tail is much slower than the right one.

  7. The critical points of alloys of iron and cobalt during rapid heating

    NASA Technical Reports Server (NTRS)

    Gridnev, V. N.; Oshkaderov, S. P.

    1980-01-01

    The influence of the rate of heating on the position of the critical points of iron-cobalt alloys was studied. It is shown that when an alloy with 8% Co by weight is heated at the rate of 7000 deg/sec, a shift in the temperature of phase conversion of almost 30 deg occurs. When an alloy with 15% Co by weight is heated at the same rate, the conversion temperature is shifted by approximately 20 deg. For an alloy with 15% Co by weight, for which under ordinary conditions of heating the points of phase conversion and magnetic randomization (the Curie point) coincide, it was possible to show that for high rates of heating, a separation with respect to temperature occurs which clearly confirms the fact of the shift in the critical points of phase conversion.

  8. Determining the Critical Point of a Sigmoidal Curve via its Fourier Transform

    NASA Astrophysics Data System (ADS)

    Humeyra Bilge, Ayse; Ozdemir, Yunus

    2016-08-01

    A sigmoidal curve y(t) is a monotone increasing curve such that all derivatives vanish at infinity. Let tn be the point where the nth derivative of y(t) reaches its global extremum. In the previous work on sol-gel transition modelled by the Susceptible-Infected- Recovered (SIR) system, we observed that the sequence {tn } seemed to converge to a point that agrees qualitatively with the location of the gel point [2]. In the present work we outline a proof that for sigmoidal curves satisfying fairly general assumptions on their Fourier transform, the sequence {tn } is convergent and we call it “the critical point of the sigmoidal curve”. In the context of phase transitions, the limit point is interpreted as a junction point of two different regimes where all derivatives undergo their highest rate of change.

  9. Two-scale-factor universality near the critical point of fluids

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Moldover, M. R.

    1978-01-01

    Thermodynamic data from interferometric density profile studies and light-scattering experiments near the critical isochore of Xe, CO2 and SF6 provide a basis for examining the hypothesized two-scale-factor universality for the correlation function of fluids near the gas-liquid critical point. For the investigation, three-scale-factor universality is assumed, with Ising-like critical exponent values obtained through the renormalization group technique. The two thermodynamic scale factors are found from the density profiles, while the scale factor for the correlation length is obtained from the light-scattering data.

  10. Influence of the ferroelectric quantum critical point on SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Atkinson, W. A.; Lafleur, P.; Raslan, A.

    2017-02-01

    We study a model SrTiO3 interface in which conduction t2 g electrons couple to the ferroelectric (FE) phonon mode. We treat the FE mode within a self-consistent phonon theory that captures its quantum critical behavior and show that proximity to the quantum critical point leads to universal tails in the electron density of the form n (z ) ˜(λ+z ) -2 , where λ ˜T2 -d /z , with d =3 the dimensionality and z =1 the dynamical critical exponent. Implications for the metal-insulator transition at low electron density are discussed.

  11. Behavior of the finite-sized, three-dimensional, Ising model near the critical point

    SciTech Connect

    Baker, G.A. Jr.; Gupta, R.

    1996-05-01

    Recent work showing the validity of hyperscaling involved results for finite size systems very near the critical point. The authors study this problem in more detail, and give estimators related to the Binder cumulant ratio which seem to approach the critical temperature from above and below. Based on these results, they estimate that the renormalized coupling constant, computed for the temperature fixed at the critical temperature and then taking the large system-size limit, is about 4.9 {+-} 0.1, and give a likely lower bound for it of 4.5. These estimates are argued to suffice to show the validity of hyperscaling.

  12. Zero-field quantum critical point in CeCoIn5.

    PubMed

    Tokiwa, Y; Bauer, E D; Gegenwart, P

    2013-09-06

    Quantum criticality in the normal and superconducting states of the heavy-fermion metal CeCoIn5 is studied by measurements of the magnetic Grüneisen ratio ΓH and specific heat in different field orientations and temperatures down to 50 mK. A universal temperature over magnetic field scaling of ΓH in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting state, the quasiparticle entropy at constant temperature increases upon reducing the field towards zero, providing additional evidence for zero-field quantum criticality.

  13. Study of the ST2 model of water close to the liquid-liquid critical point.

    PubMed

    Sciortino, Francesco; Saika-Voivod, Ivan; Poole, Peter H

    2011-11-28

    We perform successive umbrella sampling grand canonical Monte Carlo computer simulations of the original ST2 model of water in the vicinity of the proposed liquid-liquid critical point, at temperatures above and below the critical temperature. Our results support the previous work of Y. Liu, A. Z. Panagiotopoulos and P. G. Debenedetti [J. Chem. Phys., 2009, 131, 104508], who provided evidence for the existence and location of the critical point for ST2 using the Ewald method to evaluate the long-range forces. Our results therefore demonstrate the robustness of the evidence for critical behavior with respect to the treatment of the electrostatic interactions. In addition, we verify that the liquid is equilibrated at all densities on the Monte Carlo time scale of our simulations, and also that there is no indication of crystal formation during our runs. These findings demonstrate that the processes of liquid-state relaxation and crystal nucleation are well separated in time. Therefore, the bimodal shape of the density of states, and hence the critical point itself, is a purely liquid-state phenomenon that is distinct from the crystal-liquid transition.

  14. Towards sustaining women through critical transition points in scientific careers: a workshop summary.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This invited editorial summarizes and comments on discussions from a workshop entitled “From Doctorate to Dean or Director: Sustaining Women through Critical Transition Points in Science, Engineering, and Medicine” held by the Committee on Women in Science, Engineering, and Medicine of the National ...

  15. Improved Criteria for Acceptable Yield Point Elongation in Surface Critical Steels

    SciTech Connect

    Dr. David Matlock; Dr. John Speer

    2007-05-30

    Yield point elongation (YPE) is considered undesirable in surface critical applications where steel is formed since "strain lines" or Luders bands are created during forming. This project will examine in detail the formation of luders bands in industrially relevant strain states including the influence of substrate properties and coatings on Luders appearance. Mechanical testing and surface profilometry were the primary methods of investigation.

  16. Using bioluminescent biosensors for hazard analysis and critical control point (HACCP) in wastewater control.

    PubMed

    Valat, C; Champiat, D; Degorce-Dumas, J R; Thomas, O

    2004-01-01

    Starting from a new approach for water pollution control and wastewater treatment plant management, the hazard analysis and critical control point (HACCP) quality concept, the interest for the development of new rapid and sensitive methods such as bioluminescence-based methods is evident. After an introduction of the HACCP procedure, a bibliographic study of the bioluminescence potentiality is presented and discussed.

  17. Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point

    ERIC Educational Resources Information Center

    Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf

    2011-01-01

    An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…

  18. Critical-Point Description of the Transition from Vibrational to Rotational Regimes in the Pairing Phase

    SciTech Connect

    Clark, R.M.; Macchiavelli, A.O.; Fortunato, L.; Kruecken, R.

    2006-01-27

    An approximate solution at the critical point of the pairing transition from harmonic vibration to deformed rotation in gauge space is found by analytic solution of the collective pairing Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes.

  19. The application of the nonsmooth critical point theory to the stationary electrorheological fluids

    NASA Astrophysics Data System (ADS)

    Qian, Chenyin

    2016-06-01

    In this paper, we prove the existence of variational solutions to systems modeling electrorheological fluids in the stationary case. Our method of proof is based on the nonsmooth critical point theory for locally Lipschitz functional and the properties of the generalized Lebesgue-Sobolev space.

  20. Necessary Condition for Emergent Symmetry from the Conformal Bootstrap.

    PubMed

    Nakayama, Yu; Ohtsuki, Tomoki

    2016-09-23

    We use the conformal bootstrap program to derive the necessary conditions for emergent symmetry enhancement from discrete symmetry (e.g., Z_{n}) to continuous symmetry [e.g., U(1)] under the renormalization group flow. In three dimensions, in order for Z_{2} symmetry to be enhanced to U(1) symmetry, the conformal bootstrap program predicts that the scaling dimension of the order parameter field at the infrared conformal fixed point must satisfy Δ_{1}>1.08. We also obtain the similar necessary conditions for Z_{3} symmetry with Δ_{1}>0.580 and Z_{4} symmetry with Δ_{1}>0.504 from the simultaneous conformal bootstrap analysis of multiple four-point functions. As applications, we show that our necessary conditions impose severe constraints on the nature of the chiral phase transition in QCD, the deconfinement criticality in Néel valence bond solid transitions, and anisotropic deformations in critical O(n) models. We prove that some fixed points proposed in the literature are unstable under the perturbation that cannot be forbidden by the discrete symmetry. In these situations, the second-order phase transition with enhanced symmetry cannot happen.

  1. Using change-point models to estimate empirical critical loads for nitrogen in mountain ecosystems.

    PubMed

    Roth, Tobias; Kohli, Lukas; Rihm, Beat; Meier, Reto; Achermann, Beat

    2017-01-01

    To protect ecosystems and their services, the critical load concept has been implemented under the framework of the Convention on Long-range Transboundary Air Pollution (UNECE) to develop effects-oriented air pollution abatement strategies. Critical loads are thresholds below which damaging effects on sensitive habitats do not occur according to current knowledge. Here we use change-point models applied in a Bayesian context to overcome some of the difficulties when estimating empirical critical loads for nitrogen (N) from empirical data. We tested the method using simulated data with varying sample sizes, varying effects of confounding variables, and with varying negative effects of N deposition on species richness. The method was applied to the national-scale plant species richness data from mountain hay meadows and (sub)alpine scrubs sites in Switzerland. Seven confounding factors (elevation, inclination, precipitation, calcareous content, aspect as well as indicator values for humidity and light) were selected based on earlier studies examining numerous environmental factors to explain Swiss vascular plant diversity. The estimated critical load confirmed the existing empirical critical load of 5-15 kg N ha(-1) yr(-1) for (sub)alpine scrubs, while for mountain hay meadows the estimated critical load was at the lower end of the current empirical critical load range. Based on these results, we suggest to narrow down the critical load range for mountain hay meadows to 10-15 kg N ha(-1) yr(-1).

  2. Second-order magnetic critical points at finite magnetic fields: Revisiting Arrott plots

    NASA Astrophysics Data System (ADS)

    Bustingorry, S.; Pomiro, F.; Aurelio, G.; Curiale, J.

    2016-06-01

    The so-called Arrott plot, which consists in plotting H /M against M2, with H the applied magnetic field and M the magnetization, is used to extract valuable information in second-order magnetic phase transitions. Besides, it is widely accepted that a negative slope in the Arrott plot is indicative of a first-order magnetic transition. This is known as the Banerjee criterion. In consequence, the zero-field transition temperature T* is reported as the characteristic first-order transition temperature. By carefully analyzing the mean-field Landau model used for studying first-order magnetic transitions, we show in this work that T* corresponds in fact to a triple point where three first-order lines meet. More importantly, this analysis reveals the existence of two symmetrical second-order critical points at finite magnetic field (Tc,±Hc) . We then show that a modified Arrott plot can be used to obtain information about these second-order critical points. To support this idea we analyze experimental data on La2 /3Ca1 /3MnO3 and discuss an estimate for the location of the triple point and the second-order critical points.

  3. IMAGE-PLANE ANALYSIS OF n-POINT-MASS LENS CRITICAL CURVES AND CAUSTICS

    SciTech Connect

    Danek, Kamil; Heyrovský, David E-mail: heyrovsky@utf.mff.cuni.cz

    2015-06-10

    The interpretation of gravitational microlensing events caused by planetary systems or multiple stars is based on the n-point-mass lens model. The first planets detected by microlensing were well described by the two-point-mass model of a star with one planet. By the end of 2014, four events involving three-point-mass lenses had been announced. Two of the lenses were stars with two planetary companions each; two were binary stars with a planet orbiting one component. While the two-point-mass model is well understood, the same cannot be said for lenses with three or more components. Even the range of possible critical-curve topologies and caustic geometries of the three-point-mass lens remains unknown. In this paper we provide new tools for mapping the critical-curve topology and caustic cusp number in the parameter space of n-point-mass lenses. We perform our analysis in the image plane of the lens. We show that all contours of the Jacobian are critical curves of re-scaled versions of the lens configuration. Utilizing this property further, we introduce the cusp curve to identify cusp-image positions on all contours simultaneously. In order to track cusp-number changes in caustic metamorphoses, we define the morph curve, which pinpoints the positions of metamorphosis-point images along the cusp curve. We demonstrate the usage of both curves on simple two- and three-point-mass lens examples. For the three simplest caustic metamorphoses we illustrate the local structure of the image and source planes.

  4. Equation of state and critical point behavior of hard-core double-Yukawa fluids.

    PubMed

    Montes, J; Robles, M; López de Haro, M

    2016-02-28

    A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out.

  5. A Model for Hydrogen Thermal Conductivity and Viscosity Including the Critical Point

    NASA Technical Reports Server (NTRS)

    Wagner, Howard A.; Tunc, Gokturk; Bayazitoglu, Yildiz

    2001-01-01

    In order to conduct a thermal analysis of heat transfer to liquid hydrogen near the critical point, an accurate understanding of the thermal transport properties is required. A review of the available literature on hydrogen transport properties identified a lack of useful equations to predict the thermal conductivity and viscosity of liquid hydrogen. The tables published by the National Bureau of Standards were used to perform a series of curve fits to generate the needed correlation equations. These equations give the thermal conductivity and viscosity of hydrogen below 100 K. They agree with the published NBS tables, with less than a 1.5 percent error for temperatures below 100 K and pressures from the triple point to 1000 KPa. These equations also capture the divergence in the thermal conductivity at the critical point

  6. Polymer Conformation near the Critical Demixing Point of a Binary Solution

    NASA Astrophysics Data System (ADS)

    He, Lilin; Cheng, Gang; Melnichenko, Yuri

    2012-02-01

    We have used Contrast Matching Small Angle Neutron Scattering (CMSANS) to probe directly the conformation change of polyethylene glycerol (PEO) chains in the critical demixing region of Acetonitrile-d3 in (D2O + H2O) at concentration of the components corresponding to zero-average contrast condition. The d-PEO and h-PEO were mixed to match the scattering length density (SLD) of the critical liquid solution, which allowed us to extract single-chain dimension of polymer molecules in the aggregates near the critical point of the solvent. A non-monotonic variation of Rg was detected as temperature approached the critical temperature of phase demixing of acetonitrile- water solution, which was attributed to the interaction asymmetry of the solvent molecules with polymers predicted by Brochard and de Gennes two decades ago. To our best knowledge, this is the first direct experimental evidence supporting this prediction.

  7. Metal-insulator quantum critical point beneath the high Tc superconducting dome

    PubMed Central

    Sebastian, Suchitra E.; Harrison, N.; Altarawneh, M. M.; Mielke, C. H.; Liang, Ruixing; Bonn, D. A.; Lonzarich, G. G.; Hardy, W. N.

    2010-01-01

    An enduring question in correlated systems concerns whether superconductivity is favored at a quantum critical point (QCP) characterized by a divergent quasiparticle effective mass. Despite such a scenario being widely postulated in high Tc cuprates and invoked to explain non-Fermi liquid transport signatures, experimental evidence is lacking for a critical divergence under the superconducting dome. We use ultrastrong magnetic fields to measure quantum oscillations in underdoped YBa2Cu3O6+x, revealing a dramatic doping-dependent upturn in quasiparticle effective mass at a critical metal-insulator transition beneath the superconducting dome. Given the location of this QCP under a plateau in Tc in addition to a postulated QCP at optimal doping, we discuss the intriguing possibility of two intersecting superconducting subdomes, each centered at a critical Fermi surface instability. PMID:20304800

  8. Reaction kinetics and critical phenomena: iodination of acetone in isobutyric acid + water near the consolute point.

    PubMed

    Hu, Baichuan; Baird, James K

    2010-01-14

    The rate of iodination of acetone has been measured as a function of temperature in the binary solvent isobutyric acid (IBA) + water near the upper consolute point. The reaction mixture was prepared by the addition of acetone, iodine, and potassium iodide to IBA + water at its critical composition of 38.8 mass % IBA. The value of the critical temperature determined immediately after mixing was 25.43 degrees C. Aliquots were extracted from the mixture at regular intervals in order to follow the time course of the reaction. After dilution of the aliquot with water to quench the reaction, the concentration of triiodide ion was determined by the measurement of the optical density at a wavelength of 565 nm. These measurements showed that the kinetics were zeroth order. When at the end of 24 h the reaction had come to equilibrium, the critical temperature was determined again and found to be 24.83 degrees C. An Arrhenius plot of the temperature dependence of the observed rate constant, k(obs), was linear over the temperature range 27.00-38.00 degrees C, but between 25.43 and 27.00 degrees C, the values of k(obs) fell below the extrapolation of the Arrhenius line. This behavior is evidence in support of critical slowing down. Our experimental method and results are significant in three ways: (1) In contrast to in situ measurements of optical density, the determination of the optical density of diluted aliquots avoided any interference from critical opalescence. (2) The measured reaction rate exhibited critical slowing down. (3) The rate law was pseudo zeroth order both inside and outside the critical region, indicating that the reaction mechanism was unaffected by the presence of the critical point.

  9. Stationary and transient Soret separation in a binary mixture with a consolute critical point.

    PubMed

    Ryzhkov, Ilya I; Kozlova, Sofia V

    2016-12-01

    The stationary and transient Soret separation in a binary mixture with a consolute critical point is studied theoretically. The mixture is placed between two parallel plates kept at different temperatures. A polymer blend is used as a model system. Analytical solutions are constructed to describe the stationary separation in a binary mixture with variable Soret coefficient. The latter strongly depends on temperature and concentration and enhances near a consolute critical point due to reduced diffusion. As a result, a large concentration gradient is observed locally, while much smaller concentration variations are found in the rest of the layer. It is shown that complete separation can be obtained by applying a small temperature difference first, waiting for the establishment of stationary state, and then increasing this difference again. In this case, the critical temperature lies between hot and cold wall temperatures, while the mixture still remains in the one-phase region. When the initial (mean) temperature or concentration are shifted away from the near-critical values, the separation decreases. The analysis of transient behavior shows that the Soret separation occurs much faster than diffusion to the homogeneous state when the initial concentration is close to the critical one. It happens due to the decrease (increase) of the local relaxation time during the Soret (Diffusion) steps. The transient times of these steps become comparable for small temperature differences or off-critical initial concentrations. An unusual (non-exponential) separation dynamics is observed when the separation starts in the off-critical domain, and then enhances greatly when the system enters into the near-critical region. It is also found that the transient time decreases with increasing the applied temperature difference.

  10. Exploring Symmetry Breaking at the Dicke Quantum Phase Transition

    SciTech Connect

    Baumann, K.; Mottl, R.; Brennecke, F.; Esslinger, T.

    2011-09-30

    We study symmetry breaking at the Dicke quantum phase transition by coupling a motional degree of freedom of a Bose-Einstein condensate to the field of an optical cavity. Using an optical heterodyne detection scheme, we observe symmetry breaking in real time and distinguish the two superradiant phases. We explore the process of symmetry breaking in the presence of a small symmetry-breaking field and study its dependence on the rate at which the critical point is crossed. Coherent switching between the two ordered phases is demonstrated.

  11. Applications of chiral symmetry

    SciTech Connect

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  12. Critical Casimir interactions around the consolute point of a binary solvent.

    PubMed

    Mohry, T F; Kondrat, S; Maciołek, A; Dietrich, S

    2014-08-14

    Spatial confinement of a near-critical medium changes its fluctuation spectrum and modifies the corresponding order parameter distribution, resulting in effective, so-called critical Casimir forces (CCFs) acting on the confining surfaces. These forces are attractive for like boundary conditions of the order parameter at the opposing surfaces of the confinement. For colloidal particles dissolved in a binary liquid mixture acting as a solvent close to its critical point of demixing, one thus expects the emergence of phase segregation into equilibrium colloidal liquid and gas phases. We analyze how such phenomena occur asymmetrically in the whole thermodynamic neighborhood of the consolute point of the binary solvent. By applying field-theoretical methods within mean-field approximation and the semi-empirical de Gennes-Fisher functional, we study the CCFs acting between planar parallel walls as well as between two spherical colloids and their dependence on temperature and on the composition of the near-critical binary mixture. We find that for compositions slightly poor in the molecules preferentially adsorbed at the surfaces, the CCFs are significantly stronger than at the critical composition, thus leading to pronounced colloidal segregation. The segregation phase diagram of the colloid solution following from the calculated effective pair potential between the colloids agrees surprisingly well with experiments and simulations.

  13. Probing Wnt Receptor Turnover: A Critical Regulatory Point of Wnt Pathway.

    PubMed

    Jiang, Xiaomo; Cong, Feng

    2016-01-01

    Wnt pathways are critical for embryonic development and adult tissue homeostasis in all multicellular animals. Many regulatory mechanisms exist to control proper signaling output. Recent studies suggest that cell surface Wnt receptor level is controlled by ubiquitination, and serve as a critical regulatory point of Wnt pathway activity as it determines the responsiveness of cells to Wnt signal. Here, we describe flow cytometry, cell surface protein biotinylation, and immunofluorescence pulse-chase methods to probe the surface expression, ubiquitination, and internalization of the Wnt receptors FZD and LRP6.

  14. Intrinsic low pass filtering improves signal-to-noise ratio in critical-point flexure biosensors

    SciTech Connect

    Jain, Ankit; Alam, Muhammad Ashraful

    2014-08-25

    A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find that a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.

  15. Universal organization of resting brain activity at the thermodynamic critical point.

    PubMed

    Yu, Shan; Yang, Hongdian; Shriki, Oren; Plenz, Dietmar

    2013-01-01

    Thermodynamic criticality describes emergent phenomena in a wide variety of complex systems. In the mammalian cortex, one type of complex dynamics that spontaneously emerges from neuronal interactions has been characterized as neuronal avalanches. Several aspects of neuronal avalanches such as their size and life time distributions are described by power laws with unique exponents, indicating an underlying critical branching process that governs avalanche formation. Here, we show that neuronal avalanches also reflect an organization of brain dynamics close to a thermodynamic critical point. We recorded spontaneous cortical activity in monkeys and humans at rest using high-density intracranial microelectrode arrays and magnetoencephalography, respectively. By numerically changing a control parameter equivalent to thermodynamic temperature, we observed typical critical behavior in cortical activities near the actual physiological condition, including the phase transition of an order parameter, as well as the divergence of susceptibility and specific heat. Finite-size scaling of these quantities allowed us to derive robust critical exponents highly consistent across monkey and humans that uncover a distinct, yet universal organization of brain dynamics. Our results demonstrate that normal brain dynamics at rest resides near or at criticality, which maximizes several aspects of information processing such as input sensitivity and dynamic range.

  16. Athermal domain-wall creep near a ferroelectric quantum critical point

    NASA Astrophysics Data System (ADS)

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-02-01

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point.

  17. Nanoporous Materials Can Tune the Critical Point of a Pure Substance

    SciTech Connect

    Braun, Efrem; Chen, Joseph J.; Schnell, Sondre K.; Lin, Li-Chiang; Reimer, Jeffrey A.; Smit, Berend

    2015-09-30

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. Lastly, as applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the ability to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.

  18. Nanoporous Materials Can Tune the Critical Point of a Pure Substance

    DOE PAGES

    Braun, Efrem; Chen, Joseph J.; Schnell, Sondre K.; ...

    2015-09-30

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. Lastly, as applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the abilitymore » to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.« less

  19. Athermal domain-wall creep near a ferroelectric quantum critical point

    PubMed Central

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-01-01

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point. PMID:26880041

  20. Nanoporous Materials Can Tune the Critical Point of a Pure Substance

    PubMed Central

    Braun, Efrem; Chen, Joseph J; Schnell, Sondre K; Lin, Li-Chiang; Reimer, Jeffrey A; Smit, Berend

    2015-01-01

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. As applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the ability to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications. PMID:26419318

  1. Akara Ogbomoso: microbiological examination and identification of hazards and critical control points.

    PubMed

    Lateef, A; Davies, T E; Adelekan, A; Adelere, I A; Adedeji, A A; Fadahunsi, A H

    2010-10-01

    Akara Ogbomoso was examined toward the establishment of hazard analysis and critical control point (HACCP). The akara was produced in residential buildings with the attendant consequence of contamination. There was ample growth of aerobes, coliforms, staphylococci, Shigella and yeast/mold from the samples, water and cowpea pastes. Microbial contaminations occur through the processing, which can be corrected through education by adopting good hygienic and manufacturing practices. The critical control points were identified as frying, storage and refrying. It may be heated in the microwave for 10 s before consumption. Akara, prepared in the laboratory through the implementation of HACCP was not contaminated. Several bacterial isolates, namely; Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Citrobacter freundii, Serratia marcescens, Proteus vulgaris, Bacillus cereus, Streptococcus pyogenes, Bacillus sp. and Shigella sp., showed multiple resistance to antibiotics ranging from two to nine. Seven strains were not resistant to the antibiotics, while five were resistant to one type of antibiotic.

  2. Nanoporous Materials Can Tune the Critical Point of a Pure Substance.

    PubMed

    Braun, Efrem; Chen, Joseph J; Schnell, Sondre K; Lin, Li-Chiang; Reimer, Jeffrey A; Smit, Berend

    2015-11-23

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal-organic frameworks (IRMOFs) exhibit true vapor-liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. As applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the ability to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.

  3. Second virial coefficient at the critical point in a fluid of colloidal spheres plus depletants.

    PubMed

    Tuinier, Remco; Feenstra, Maartje S

    2014-11-11

    Vliegenthart-Lekkerkerker (VL) criterion B2 = -6vc for second virial coefficient B2 at the critical (colloidal) gas-liquid point is considered for a mixture of spheres with volume vc plus depletants. For the onset of fluid-phase instability, the VL criterion holds for a wide range of shapes of direct attractive forces between hard-core spheres (Vliegenthart, G. A.; Lekkerkerker, H. N. W. J. Chem. Phys. 2000, 112, 5364). In the case of long-ranged attractions imposed indirectly via depletants, it is found that the VL relation fails. Instead, B2/vc at the critical point depends strongly on the sphere/depletant size ratio. By making the hard spheres sticky, we find that B2 moves gradually toward the VL criterion upon increasing the stickiness.

  4. Athermal domain-wall creep near a ferroelectric quantum critical point.

    PubMed

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-02-16

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point.

  5. Weak phase stiffness and nature of the quantum critical point in underdoped cuprates

    SciTech Connect

    Yildirim, Yucel; Ku, Wei

    2015-11-02

    We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal” pseudogap phase without any free parameter. In the prototypical (La1–xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δc ~ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Lastly, a striking mass divergence is predicted at δc that dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.

  6. Weak phase stiffness and nature of the quantum critical point in underdoped cuprates

    DOE PAGES

    Yildirim, Yucel; Ku, Wei

    2015-11-02

    We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal” pseudogap phase without any free parameter. In the prototypical (La1–xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δc ~ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Lastly, a striking mass divergence is predicted at δc thatmore » dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.« less

  7. Pre-Yield Non-Affine Fluctuations and A Hidden Critical Point in Strained Crystals

    PubMed Central

    Das, Tamoghna; Ganguly, Saswati; Sengupta, Surajit; Rao, Madan

    2015-01-01

    A crystalline solid exhibits thermally induced localised non-affine droplets in the absence of external stress. Here we show that upon an imposed shear, the size of these droplets grow until they percolate at a critical strain, well below the value at which the solid begins to yield. This critical point does not manifest in most thermodynamic or mechanical properties, but is hidden and reveals itself in the onset of inhomogeneities in elastic moduli, marked changes in the appearance and local properties of non-affine droplets and a sudden enhancement in defect pair concentration. Slow relaxation of stress and an-elasticity appear as observable dynamical consequences of this hidden criticality. Our results may be directly verified in colloidal crystals with video microscopy techniques but are expected to have more general validity. PMID:26039380

  8. Superconductivity near a Quantum-Critical Point: The Special Role of the First Matsubara Frequency

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan; Abanov, Artem; Altshuler, Boris L.; Yuzbashyan, Emil A.; Chubukov, Andrey V.

    2016-10-01

    Near a quantum-critical point in a metal strong fermion-fermion interaction mediated by a soft collective boson gives rise to incoherent, non-Fermi liquid behavior. It also often gives rise to superconductivity which masks the non-Fermi liquid behavior. We analyze the interplay between the tendency to pairing and fermionic incoherence for a set of quantum-critical models with effective dynamical interaction between low-energy fermions. We argue that superconducting Tc is nonzero even for strong incoherence and/or weak interaction due to the fact that the self-energy from dynamic critical fluctuations vanishes for the two lowest fermionic Matsubara frequencies ωm=±π T . We obtain the analytic formula for Tc, which reproduces well earlier numerical results for the electron-phonon model at vanishing Debye frequency.

  9. Superconductivity near a Quantum-Critical Point: The Special Role of the First Matsubara Frequency.

    PubMed

    Wang, Yuxuan; Abanov, Artem; Altshuler, Boris L; Yuzbashyan, Emil A; Chubukov, Andrey V

    2016-10-07

    Near a quantum-critical point in a metal strong fermion-fermion interaction mediated by a soft collective boson gives rise to incoherent, non-Fermi liquid behavior. It also often gives rise to superconductivity which masks the non-Fermi liquid behavior. We analyze the interplay between the tendency to pairing and fermionic incoherence for a set of quantum-critical models with effective dynamical interaction between low-energy fermions. We argue that superconducting T_{c} is nonzero even for strong incoherence and/or weak interaction due to the fact that the self-energy from dynamic critical fluctuations vanishes for the two lowest fermionic Matsubara frequencies ω_{m}=±πT. We obtain the analytic formula for T_{c}, which reproduces well earlier numerical results for the electron-phonon model at vanishing Debye frequency.

  10. Overview of point-of-care abdominal ultrasound in emergency and critical care.

    PubMed

    Kameda, Toru; Taniguchi, Nobuyuki

    2016-01-01

    Point-of-care abdominal ultrasound (US), which is performed by clinicians at bedside, is increasingly being used to evaluate clinical manifestations, to facilitate accurate diagnoses, and to assist procedures in emergency and critical care. Methods for the assessment of acute abdominal pain with point-of-care US must be developed according to accumulated evidence in each abdominal region. To detect hemoperitoneum, the methodology of a focused assessment with sonography for a trauma examination may also be an option in non-trauma patients. For the assessment of systemic hypoperfusion and renal dysfunction, point-of-care renal Doppler US may be an option. Utilization of point-of-care US is also considered in order to detect abdominal and pelvic lesions. It is particularly useful for the detection of gallstones and the diagnosis of acute cholecystitis. Point-of-case US is justified as the initial imaging modality for the diagnosis of ureterolithiasis and the assessment of pyelonephritis. It can be used with great accuracy to detect the presence of abdominal aortic aneurysm in symptomatic patients. It may also be useful for the diagnoses of digestive tract diseases such as appendicitis, small bowel obstruction, and gastrointestinal perforation. Additionally, point-of-care US can be a modality for assisting procedures. Paracentesis under US guidance has been shown to improve patient care. US appears to be a potential modality to verify the placement of the gastric tube. The estimation of the amount of urine with bladder US can lead to an increased success rate in small children. US-guided catheterization with transrectal pressure appears to be useful in some male patients in whom standard urethral catheterization is difficult. Although a greater accumulation of evidences is needed in some fields, point-of-care abdominal US is a promising modality to improve patient care in emergency and critical care settings.

  11. Mechanical parts range-image segmentation by locating critical points of one-dimensional curves

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Chun; Fan, Kuang-Chao

    1996-02-01

    A modified edge-based segmentation algorithm specially designed for mechanical parts is proposed. The technique used is based on a concept of 3-views of engineering drawings and is a partial parallel algorithm. Mechanical parts considered here are composed of planes, cylindrical and spherical surfaces. At first, a set of critical points is extracted from each row and column of range image by one dimensional curves' segmentation technique. Edge linking process is performed on the map of critical points by morphological dilation, thinning and edge tracking. After that, a connected component labeling procedure is done and all pixels belonging to the same 4-connected region are assigned a unique label. An efficient run-length implementation of local table method is used to do the connected components' analysis. Finally, a robust least squares surface fitting is employed for each label to accommodate the error of previous steps, and outliers are discarded according to errors. Experiments are presented for numerous scenes of both real and synthetic range images of mechanical parts including concave and convex surfaces, noiseless and noisy. The results show that the proposed one dimensional critical point locating method segments the range image of mechanical parts fast and accurately.

  12. Overlapping Modularity at the Critical Point of k-Clique Percolation

    NASA Astrophysics Data System (ADS)

    Tóth, Bálint; Vicsek, Tamás; Palla, Gergely

    2013-05-01

    One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.

  13. Searching for the QCD critical point using particle ratio fluctuations and higher moments of multiplicity distributions

    NASA Astrophysics Data System (ADS)

    Tarnowsky, Terence J.; STAR Collaboration

    2011-12-01

    Dynamical fluctuations in global conserved quantities such as baryon number, strangeness or charge may be observed near a QCD critical point. Results from new measurements of dynamical K/π, p/π and K/p ratio fluctuations are presented. The commencing of a QCD critical point search at the RHIC has extended the reach of possible measurements of dynamical K/π, p/π and K/p ratio fluctuations from Au+Au collisions to lower energies. The STAR experiment has performed a comprehensive study of the energy dependence of these dynamical fluctuations in Au+Au collisions at the energies \\sqrt{s_{NN}} = 7.7, 11.5, 39, 62.4 and 200 GeV. New results are compared to previous measurements and to theoretical predictions from several models. The measured dynamical K/π fluctuations are found to be independent of collision energy, while dynamical p/π and K/p fluctuations have a negative value that increases toward zero at top RHIC energy. Fluctuations of the higher moments of conserved quantities (net-proton and net-charge) distributions, which are predicted to be sensitive to the presence of a critical point, are also presented.

  14. Measurements of the Coexistence Curve near the Liquid-Gas Critical Point

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob

    2003-01-01

    The shape of the liquid-gas coexistence curve of He-3 very near the critical point (-2x10(exp -6) < t < -5x10(exp -3) was measured using the quasi-static thermogram method. The study was performed in Earth s gravitational field using two different height calorimetry cells, both originally designed for simultaneous measurements of the isochoric heat capacity, isothermal compressibility, and PVT. The heights of two cells were 0.5 mm and 4.8 cm. The uncertainty in measuring the phase transition temperature was typically +/-2 micro-K. The measured coexistence curve near the critical point was strongly affected by the gravitational field. Away from the critical point, the coexistence curve obtained using this technique was also consistent with the earlier work using the local density measurements of Pittman et al. The recent crossover parametric model of the equation-of-state are used to analyze the height-dependent measured coexistence curves. Data analyses have indicated that microgravity will permit measurements within two additional decades in reduced temperatures beyond the best gravity-free data obtained in Earth-bound experiments.

  15. Indications for a critical point in the phase diagram for hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lacey, Roy A.

    2016-12-01

    Two-pion interferometry measurements are studied for a broad range of collision centralities in Au+Au (√{sNN} = 7.7- 200 GeV) and Pb+Pb (√{sNN} = 2.76 TeV) collisions. They indicate non-monotonic excitation functions for the Gaussian emission source radii difference (Rout -Rside), suggestive of reaction trajectories which spend a fair amount of time near a soft point in the equation of state (EOS) that coincides with the critical end point (CEP). A Finite-Size Scaling (FSS) analysis of these excitation functions, provides further validation tests for the CEP. It also indicates a second order phase transition at the CEP, and the values Tcep ∼ 165 MeV and μBcep ∼ 95 MeV for its location in the (T ,μB)-plane of the phase diagram. The static critical exponents (ν ≈ 0.66 and γ ≈ 1.2) extracted via the same FSS analysis, place this CEP in the 3D Ising model (static) universality class. A Dynamic Finite-Size Scaling analysis of the excitation functions, gives the estimate z ∼ 0.87 for the dynamic critical exponent, suggesting that the associated critical expansion dynamics is dominated by the hydrodynamic sound mode.

  16. Field theory of bicritical and tetracritical points. IV. Critical dynamics including reversible terms

    NASA Astrophysics Data System (ADS)

    Folk, R.; Holovatch, Yu.; Moser, G.

    2012-02-01

    This article concludes a series of papers [Folk, Holovatch, and Moser, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.78.04112478, 041124 (2008); Folk, Holovatch, and Moser, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.78.04112578, 041125 (2008); Folk, Holovatch, and Moser, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.79.03110979, 031109 (2009)] where the tools of the field theoretical renormalization group were employed to explain and quantitatively describe different types of static and dynamic behavior in the vicinity of multicritical points. Here we give the complete two-loop calculation and analysis of the dynamic renormalization-group flow equations at the multicritical point in anisotropic antiferromagnets in an external magnetic field. We find that the time scales of the order parameters characterizing the parallel and perpendicular ordering with respect to the external field scale in the same way. This holds independent whether the Heisenberg fixed point or the biconical fixed point in statics is the stable one. The nonasymptotic analysis of the dynamic flow equations shows that due to cancellation effects the critical behavior is described, in distances from the critical point accessible to experiments, by the critical behavior qualitatively found in one-loop order. Although one may conclude from the effective dynamic exponents (taking almost their one-loop values) that weak scaling for the order parameter components is valid, the flow of the time-scale ratios is quite different, and they do not reach their asymptotic values.

  17. Assessment of hygiene standards and Hazard Analysis Critical Control Points implementation on passenger ships.

    PubMed

    Mouchtouri, Varavara; Malissiova, Eleni; Zisis, Panagiotis; Paparizou, Evina; Hadjichristodoulou, Christos

    2013-01-01

    The level of hygiene on ferries can have impact on travellers' health. The aim of this study was to assess the hygiene standards of ferries in Greece and to investigate whether Hazard Analysis Critical Control Points (HACCP) implementation contributes to the hygiene status and particularly food safety aboard passenger ships. Hygiene inspections on 17 ferries in Greece were performed using a standardized inspection form, with a 135-point scale. Thirty-four water and 17 food samples were collected and analysed. About 65% (11/17) of ferries were scored with >100 points. Ferries with HACCP received higher scores during inspection compared to those without HACCP (p value <0.001). All 34 microbiological water test results were found negative and, from the 17 food samples, only one was found positive for Salmonella spp. Implementation of management systems including HACCP principles can help to raise the level of hygiene aboard passenger ships.

  18. Symmetry operation measures.

    PubMed

    Pinsky, Mark; Casanova, David; Alemany, Pere; Alvarez, Santiago; Avnir, David; Dryzun, Chaim; Kizner, Ziv; Sterkin, Alexander

    2008-01-30

    We introduce a new mathematical tool for quantifying the symmetry contents of molecular structures: the Symmetry Operation Measures. In this approach, we measure the minimal distance between a given structure and the structure which is obtained after applying a selected symmetry operation on it. If the given operation is a true symmetry operation for the structure, this distance is zero; otherwise it gives an indication of how different the transformed structure is from the original one. Specifically, we provide analytical solutions for measures of all the improper rotations, S n p, including mirror symmetry and inversion, as well as for all pure rotations, C n p. These measures provide information complementary to the Continuous Symmetry Measures (CSM) that evaluate the distance between a given structure and the nearest structure which belongs to a selected symmetry point-group.

  19. Thermal properties of ionic systems near the liquid-liquid critical point

    NASA Astrophysics Data System (ADS)

    Méndez-Castro, Pablo; Troncoso, Jacobo; Pérez-Sánchez, Germán; Peleteiro, José; Romaní, Luis

    2011-12-01

    Isobaric heat capacity per unit volume, Cp, and excess molar enthalpy, hE, were determined in the vicinity of the critical point for a set of binary systems formed by an ionic liquid and a molecular solvent. Moreover, and, since critical composition had to be accurately determined, liquid-liquid equilibrium curves were also obtained using a calorimetric method. The systems were selected with a view on representing, near room temperature, examples from clearly solvophobic to clearly coulombic behavior, which traditionally was related with the electric permittivity of the solvent. The chosen molecular compounds are: ethanol, 1-butanol, 1-hexanol, 1,3-dichloropropane, and diethylcarbonate, whereas ionic liquids are formed by imidazolium-based cations and tetrafluoroborate or bis-(trifluromethylsulfonyl)amide anions. The results reveal that solvophobic critical behavior—systems with molecular solvents of high dielectric permittivity—is very similar to that found for molecular binary systems. However, coulombic systems—those with low permittivity molecular solvents—show strong deviations from the results usually found for these magnitudes near the liquid-liquid phase transition. They present an extremely small critical anomaly in Cp—several orders of magnitude lower than those typically obtained for binary mixtures—and extremely low hE—for one system even negative, fact not observed, up to date, for any liquid-liquid transition in the nearness of an upper critical solution temperature.

  20. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.

    PubMed

    Scarpetta, Silvia; de Candia, Antonio

    2013-01-01

    We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain). Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.

  1. [Theses on critical gerontology from a social science point of view].

    PubMed

    Köster, D

    2012-10-01

    This contribution formulates several key statements concerning a critical gerontology and is intended as a starting point for further thought and discussion from the perspective of critical social sciences. In terms of scientific theory, it follows a concept of normative universalism, distinguishing itself from a mere "science of order", which would be restricted to social self-observation. The assumptions focus on dealing with the social construct of age(ing) under the conditions of modern capitalist societies and on putting age(ing) into context with neo-liberal economic and social politics. This contribution explains some aspects of restructuring the German welfare state into an "activating state", a process accompanied by the casualisation of many older people's life circumstances. Moreover, some cultural perspectives of self-determined life in old age are demonstrated, which invariably should also be seen as a learning task. In this way, the complex interactions between gerontology and social and political practice in terms of praxeological and critical research are covered in their totality. At the same time, critical gerontology is oriented towards what is humanly possible and attempts to identify restrictions to a fulfilling life in old age and to suggest perspectives of how such restrictions can be overcome. The aim is to reflect on our own professional behaviour, to make it more compatible theoretically with critical scientific discourses on ageing and thus contribute to the emancipation of older people from discourses of dominance.

  2. Asymptotic Behavior of the Magnetization Near Critical and Tricritical Points via Ginzburg Landau Polynomials

    NASA Astrophysics Data System (ADS)

    Ellis, Richard S.; Machta, Jonathan; Otto, Peter Tak-Hun

    2008-10-01

    The purpose of this paper is to prove connections among the asymptotic behavior of the magnetization, the structure of the phase transitions, and a class of polynomials that we call the Ginzburg-Landau polynomials. The model under study is a mean-field version of a lattice spin model due to Blume and Capel. It is defined by a probability distribution that depends on the parameters β and K, which represent, respectively, the inverse temperature and the interaction strength. Our main focus is on the asymptotic behavior of the magnetization m( β n , K n ) for appropriate sequences ( β n , K n ) that converge to a second-order point or to the tricritical point of the model and that lie inside various subsets of the phase-coexistence region. The main result states that as ( β n , K n ) converges to one of these points ( β, K), m(βn,Kn)˜ bar{x}|β -βn|^{γ}→ 0 . In this formula γ is a positive constant, and bar{x} is the unique positive, global minimum point of a certain polynomial g. We call g the Ginzburg-Landau polynomial because of its close connection with the Ginzburg-Landau phenomenology of critical phenomena. For each sequence the structure of the set of global minimum points of the associated Ginzburg-Landau polynomial mirrors the structure of the set of global minimum points of the free-energy functional in the region through which ( β n , K n ) passes and thus reflects the phase-transition structure of the model in that region. This paper makes rigorous the predictions of the Ginzburg-Landau phenomenology of critical phenomena and the tricritical scaling theory for the mean-field Blume-Capel model.

  3. Nonsymmorphic symmetry-required band crossings in topological semimetals

    NASA Astrophysics Data System (ADS)

    Zhao, Y. X.; Schnyder, Andreas P.

    2016-11-01

    We show that for two-band systems nonsymmorphic symmetries may enforce the existence of band crossings in the bulk, which realize Fermi surfaces of reduced dimensionality. We find that these unavoidable crossings originate from the momentum dependence of the nonsymmorphic symmetry, which puts strong restrictions on the global structure of the band configurations. Three different types of nonsymmorphic symmetries are considered: (i) a unitary nonsymmorphic symmetry, (ii) a nonsymmorphic magnetic symmetry, and (iii) a nonsymmorphic symmetry combined with inversion. For nonsymmorphic symmetries of the latter two types, the band crossings are located at high-symmetry points of the Brillouin zone, with their exact positions being determined by the algebra of the symmetry operators. To characterize these band degeneracies we introduce a global topological charge and show that it is of Z2 type, which is in contrast to the local topological charge of Fermi points in, say, Weyl semimetals. To illustrate these concepts, we discuss the π -flux state as well as the Su-Schrieffer-Heeger model at its critical point and show that these two models fit nicely into our general framework of nonsymmorphic two-band systems.

  4. Replica symmetry breaking for anisotropic magnets with quenched disorder

    NASA Astrophysics Data System (ADS)

    Kogan, E.; Kaveh, M.

    2017-01-01

    We study critical behaviour of a magnet with cubic anisotropy and quenched scalar disorder which is taken into account by replica method. We derive to first order in ε approximation the renormalization group equations taking into account possible replica symmetry breaking. We study the stability of the replica symmetric fixed points with respect to perturbations without (in general case) replica symmetry. However, we find that if a fixed point is stable with respect to replica symmetric deviations, it is also stable with respect to deviations without replica symmetry.

  5. Event-by-event fluctuations in heavy ion collisions and the QCD critical point

    NASA Astrophysics Data System (ADS)

    Stephanov, M.; Rajagopal, K.; Shuryak, E.

    1999-12-01

    The event-by-event fluctuations of suitably chosen observables in heavy ion collisions at CERN SPS, BNL RHIC, and CERN LHC can tell us about the thermodynamic properties of the hadronic system at freeze-out. By studying these fluctuations as a function of varying control parameters, it is possible to learn much about the phase diagram of QCD. As a timely example, we stress the methods by which present experiments at the CERN SPS can locate the second-order critical end point of the first-order transition between quark-gluon plasma and hadron matter. Those event-by-event signatures which are characteristic of freeze-out in the vicinity of the critical point will exhibit nonmonotonic dependence on control parameters. We focus on observables constructed from the multiplicity and transverse momenta of charged pions. We first consider how the event-by-event fluctuations of such observables are affected by Bose-Einstein correlations, by resonances which decay after freeze-out, and by fluctuations in the transverse flow velocity. We compare our thermodynamic predictions for such noncritical event-by-event fluctuations with NA49 data, finding broad agreement. We then focus on effects due to thermal contact between the observed pions and a heat bath with a given (possibly singular) specific heat, due to the direct coupling between the critical fluctuations of the sigma field and the observed pions. We also discuss the effect of the pions produced in the decay of sigma particles just above threshold after freeze-out on the inclusive pion spectrum and on multiplicity fluctuations. We estimate the size of these nonmonotonic effects, which appear near the critical point, including restrictions imposed by finite size and finite time, and conclude that they should be easily observable.

  6. Scaling dimensions of higher-charge monopoles at deconfined critical points

    NASA Astrophysics Data System (ADS)

    Sreejith, G. J.; Powell, Stephen

    2015-11-01

    The classical cubic dimer model has a columnar ordering transition that is continuous and described by a critical Anderson-Higgs theory containing an SU (2 ) -symmetric complex field minimally coupled to a noncompact U (1 ) gauge theory. Defects in the dimer constraints correspond to monopoles of the gauge theory, with charge determined by the deviation from unity of the dimer occupancy. By introducing such defects into Monte Carlo simulations of the dimer model at its critical point, we determine the scaling dimensions y2=1.48 ±0.07 and y3=0.20 ±0.03 for the operators corresponding to defects of charge q =2 and 3, respectively. These results, which constitute the first direct determination of the scaling dimensions, shed light on the deconfined critical point of spin-1/2 quantum antiferromagnets, thought to belong to the same universality class. In particular, the positive value of y3 implies that the transition in the J Q model on the honeycomb lattice is of first order.

  7. Quantum critical point and spin fluctuations in lower-mantle ferropericlase

    PubMed Central

    Lyubutin, Igor S.; Struzhkin, Viktor V.; Mironovich, A. A.; Gavriliuk, Alexander G.; Naumov, Pavel G.; Lin, Jung-Fu; Ovchinnikov, Sergey G.; Sinogeikin, Stanislav; Chow, Paul; Xiao, Yuming; Hemley, Russell J.

    2013-01-01

    Ferropericlase [(Mg,Fe)O] is one of the most abundant minerals of the earth’s lower mantle. The high-spin (HS) to low-spin (LS) transition in the Fe2+ ions may dramatically alter the physical and chemical properties of (Mg,Fe)O in the deep mantle. To understand the effects of compression on the ground electronic state of iron, electronic and magnetic states of Fe2+ in (Mg0.75Fe0.25)O have been investigated using transmission and synchrotron Mössbauer spectroscopy at high pressures and low temperatures (down to 5 K). Our results show that the ground electronic state of Fe2+ at the critical pressure Pc of the spin transition close to T = 0 is governed by a quantum critical point (T = 0, P = Pc) at which the energy required for the fluctuation between HS and LS states is zero. Analysis of the data gives Pc = 55 GPa. Thermal excitation within the HS or LS states (T > 0 K) is expected to strongly influence the magnetic as well as physical properties of ferropericlase. Multielectron theoretical calculations show that the existence of the quantum critical point at temperatures approaching zero affects not only physical properties of ferropericlase at low temperatures but also its properties at P-T of the earth’s lower mantle. PMID:23589892

  8. Infinite-randomness critical point in the two-dimensional disordered contact process.

    PubMed

    Vojta, Thomas; Farquhar, Adam; Mast, Jason

    2009-01-01

    We study the nonequilibrium phase transition in the two-dimensional contact process on a randomly diluted lattice by means of large-scale Monte Carlo simulations for times up to 10;{10} and system sizes up to 8000x8000 sites. Our data provide strong evidence for the transition being controlled by an exotic infinite-randomness critical point with activated (exponential) dynamical scaling. We calculate the critical exponents of the transition and find them to be universal, i.e., independent of disorder strength. The Griffiths region between the clean and the dirty critical points exhibits power-law dynamical scaling with continuously varying exponents. We discuss the generality of our findings and relate them to a broader theory of rare region effects at phase transitions with quenched disorder. Our results are of importance beyond absorbing state transitions because, according to a strong-disorder renormalization group analysis, our transition belongs to the universality class of the two-dimensional random transverse-field Ising model.

  9. Vegetation community change points suggest that critical loads of nutrient nitrogen may be too high

    NASA Astrophysics Data System (ADS)

    Wilkins, Kayla; Aherne, Julian; Bleasdale, Andy

    2016-12-01

    It is widely accepted that elevated nitrogen deposition can have detrimental effects on semi-natural ecosystems, including changes to plant diversity. Empirical critical loads of nutrient nitrogen have been recommended to protect many sensitive European habitats from significant harmful effects. In this study, we used Threshold Indicator Taxa Analysis (TITAN) to investigate shifts in vegetation communities along an atmospheric nitrogen deposition gradient for twenty-two semi-natural habitat types (as described under Annex I of the European Union Habitats Directive) in Ireland. Significant changes in vegetation community, i.e., change points, were determined for twelve habitats, with seven habitats showing a decrease in the number of positive indicator species. Community-level change points indicated a decrease in species abundance along a nitrogen deposition gradient ranging from 3.9 to 15.3 kg N ha-1 yr-1, which were significantly lower than recommended critical loads (Wilcoxon signed-rank test; V = 6, p < 0.05). These results suggest that lower critical loads of empirical nutrient nitrogen deposition may be required to protect many European habitats. Changes to vegetation communities may mean a loss of sensitive indicator species and potentially rare species in these habitats, highlighting how emission reductions policies set under the National Emissions Ceilings Directive may be directly linked to meeting the goal set out under the European Union's Biodiversity Strategy of "halting the loss of biodiversity" across Europe by 2020.

  10. Influences of depletion potential on vapor-liquid critical point metastability

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Liu, G.

    2016-04-01

    Phase behavior of a neutral colloid dispersion is investigated based on an improved Asakura-Oosawa (AO) model. Several observations are made: (i) an increase of solvent fugacity can enlarge the fluid-solid (FS) coexistence region, and this makes fugacity become a powerful factor in tuning a vapor-liquid transition (VLT) critical point metastability. (ii) A reducing of size ratio of the solvent versus colloid particle can enlarge the FS coexistence region as well as lower the VLT critical temperature, and a combination of the two effects makes the size ratio an extremely powerful factor adjusting the VLT critical point metastability. (iii) Existence of a long-range attraction term in the effective colloid potential is not a necessary condition for occurrence of a vapor-solid transition (VST), and short-ranged oscillatory depletion potential also can induce the VST over an even broader temperature range. (iv) Sensitivity of the freezing line on the size ratio is disclosed, and one can make use of the sensitivity to prepare mono-disperse colloid of well-controlled diameter by following a fractionated crystallization scheme; moreover, broadening of the FST coexistence region by raising the solvent fugacity and/or lowering the size ratio has important implication for crystallization process.

  11. Heat capacity singularity of binary liquid mixtures at the liquid-liquid critical point.

    PubMed

    Méndez-Castro, Pablo; Troncoso, Jacobo; Peleteiro, José; Romaní, Luis

    2013-10-01

    The critical anomaly of the isobaric molar heat capacity for the liquid-liquid phase transition in binary nonionic mixtures is explained through a theory based on the general assumption that their partition function can be exactly mapped into that of the Ising three-dimensional model. Under this approximation, it is found that the heat capacity singularity is directly linked to molar excess enthalpy. In order to check this prediction and complete the available data for such systems, isobaric molar heat capacity and molar excess enthalpy near the liquid-liquid critical point were experimentally determined for a large set of binary liquid mixtures. Agreement between theory and experimental results-both from literature and from present work-is good for most cases. This fact opens a way for explaining and predicting the heat capacity divergence at the liquid-liquid critical point through basically the same microscopic arguments as for molar excess enthalpy, widely used in the frame of solution thermodynamics.

  12. Change of carrier density at the pseudogap critical point of a cuprate superconductor.

    PubMed

    Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril

    2016-03-10

    The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.

  13. Indications for a critical end point in the phase diagram for hot and dense nuclear matter.

    PubMed

    Lacey, Roy A

    2015-04-10

    Excitation functions for the Gaussian emission source radii difference (R_{out}^{2}-R_{side}^{2}) obtained from two-pion interferometry measurements in Au+Au (sqrt[s_{NN}]=7.7-200  GeV) and Pb+Pb (sqrt[s_{NN}]=2.76  TeV) collisions are studied for a broad range of collision centralities. The observed nonmonotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature versus baryon chemical potential (T,μ_{B}) plane of the nuclear matter phase diagram. A finite-size scaling (FSS) analysis of these data suggests a second order phase transition with the estimates T^{cep}∼165  MeV and μ_{B}^{cep}∼95  MeV for the location of the critical end point. The critical exponents (ν≈0.66 and γ≈1.2) extracted via the same FSS analysis place this CEP in the 3D Ising model universality class.

  14. Quantum critical point and spin fluctuations in lower-mantle ferropericlase.

    PubMed

    Lyubutin, Igor S; Struzhkin, Viktor V; Mironovich, A A; Gavriliuk, Alexander G; Naumov, Pavel G; Lin, Jung-Fu; Ovchinnikov, Sergey G; Sinogeikin, Stanislav; Chow, Paul; Xiao, Yuming; Hemley, Russell J

    2013-04-30

    Ferropericlase [(Mg,Fe)O] is one of the most abundant minerals of the earth's lower mantle. The high-spin (HS) to low-spin (LS) transition in the Fe(2+) ions may dramatically alter the physical and chemical properties of (Mg,Fe)O in the deep mantle. To understand the effects of compression on the ground electronic state of iron, electronic and magnetic states of Fe(2+) in (Mg0.75Fe0.25)O have been investigated using transmission and synchrotron Mössbauer spectroscopy at high pressures and low temperatures (down to 5 K). Our results show that the ground electronic state of Fe(2+) at the critical pressure Pc of the spin transition close to T = 0 is governed by a quantum critical point (T = 0, P = P(c)) at which the energy required for the fluctuation between HS and LS states is zero. Analysis of the data gives P(c) = 55 GPa. Thermal excitation within the HS or LS states (T > 0 K) is expected to strongly influence the magnetic as well as physical properties of ferropericlase. Multielectron theoretical calculations show that the existence of the quantum critical point at temperatures approaching zero affects not only physical properties of ferropericlase at low temperatures but also its properties at P-T of the earth's lower mantle.

  15. Phenomenological Equations Relating Various Critical Anomalies above a Cubic-to-Tetragonal Phase Transition Point

    NASA Astrophysics Data System (ADS)

    Hamano, Katsumi; Hirotsu, Shunsuke

    1980-01-01

    Phenomenological equations are derived which interrelate the anomalies in various thermodynamic quantities above the transition point of a cubic-to-tetragonal phase transition caused by an instability of a triply degenerate soft mode. The anomalous part of the Gibbs free energy is assumed to be a simple sum of the three parts which represent the contributions from the three fluctuation components. A cylindrical approximation is adopted to each of the three contributions by taking into account the symmetry of the fluctuations. The theory predicts that the adiabatic elastic compliances, s11s, s12s, and also s11s-s12s should exhibit anomalies proportional to the anomaly in the specific heat at constant pressure. This is in marked contrast with the result of the generalized Pippard equations derived by Garland, and by Janovec. The new equations are successfully tested for KMnF3, CsPbCl3, and CsPbBr3. The β-γ transition of NH4Br is also discussed.

  16. Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis.

    PubMed

    Tagliazucchi, Enzo; Balenzuela, Pablo; Fraiman, Daniel; Chialvo, Dante R

    2012-01-01

    Functional magnetic resonance imaging (fMRI) techniques have contributed significantly to our understanding of brain function. Current methods are based on the analysis of gradual and continuous changes in the brain blood oxygenated level dependent (BOLD) signal. Departing from that approach, recent work has shown that equivalent results can be obtained by inspecting only the relatively large amplitude BOLD signal peaks, suggesting that relevant information can be condensed in discrete events. This idea is further explored here to demonstrate how brain dynamics at resting state can be captured just by the timing and location of such events, i.e., in terms of a spatiotemporal point process. The method allows, for the first time, to define a theoretical framework in terms of an order and control parameter derived from fMRI data, where the dynamical regime can be interpreted as one corresponding to a system close to the critical point of a second order phase transition. The analysis demonstrates that the resting brain spends most of the time near the critical point of such transition and exhibits avalanches of activity ruled by the same dynamical and statistical properties described previously for neuronal events at smaller scales. Given the demonstrated functional relevance of the resting state brain dynamics, its representation as a discrete process might facilitate large-scale analysis of brain function both in health and disease.

  17. Critical control points of complementary food preparation and handling in eastern Nigeria.

    PubMed Central

    Ehiri, J. E.; Azubuike, M. C.; Ubbaonu, C. N.; Anyanwu, E. C.; Ibe, K. M.; Ogbonna, M. O.

    2001-01-01

    OBJECTIVE: To investigate microbial contamination and critical control points (CCPs) in the preparation and handling of complementary foods in 120 households in Imo state, Nigeria. METHODS: The Hazard Analysis Critical Control Point (HACCP) approach was used to investigate processes and procedures that contributed to microbial contamination, growth and survival, and to identify points where controls could be applied to prevent or eliminate these microbiological hazards or reduce them to acceptable levels. Food samples were collected and tested microbiologically at different stages of preparation and handling. FINDINGS: During cooking, all foods attained temperatures capable of destroying vegetative forms of food-borne pathogens. However, the risk of contamination increased by storage of food at ambient temperature, by using insufficiently high temperatures to reheat the food, and by adding contaminated ingredients such as dried ground crayfish and soybean powder at stages where no further heat treatment was applied. The purchasing of contaminated raw foodstuffs and ingredients, particularly raw akamu, from vendors in open markets is also a CCP. CONCLUSION: Although an unsafe environment poses many hazards for children's food, the hygienic quality of prepared food can be assured if basic food safety principles are observed. When many factors contribute to food contamination, identification of CCPs becomes particularly important and can facilitate appropriate targeting of resources and prevention efforts. PMID:11417038

  18. Anesthetics lower Tc of a 2D miscibility critical point in the plasma membrane

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin; Gray, Elly; Veatch, Sarah

    2014-03-01

    Many small hydrophobic molecules induce general anesthesia. Their efficacy as anesthetics has been shown to correlate both with their hydrophobicity and with their potency in inhibiting certain ligand gated ion channels. I will first report on our experiments on the effects that these molecules have on the two-dimensional miscibility critical point observed in cell derived vesicles (GPMVs). We show that anesthetics depress the critical temperature (Tc) of these GPMVs but do not strongly affect the ratio of phases found below Tc. The magnitude of this affect is consistent across the n-alcohols only when their concentration is rescaled by the median anesthetic concentration (AC50) for tadpole anesthesia and at AC50 we see a 4K downward shift in Tc. I will next present a model in which anesthetics interfere with native allosteric regulation of ligand gated channels by the critical membrane, showing that our observed change in critical properties could lead to the previously observed changes in channel conductance without a direct interaction between anesthetic molecules and their target proteins. Finally, I will discuss ongoing experiments that will clarify the role of this membrane effect in mediating the organism level anesthetic response.

  19. Susceptibility Measurements Near the He-3 Liquid-Gas Critical Point

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin; Zhong, Fang; Hahn, Inseob

    2000-01-01

    An experiment is now being developed to measure both the linear susceptibility and specific heat at constant volume near the liquid-gas critical point of He-3 in a microgravity environment. An electrostriction technique for measuring susceptibility will be described. Initial electrostriction measurements were performed on the ground along the critical isochore in a 0.5 mm high measurement cell filled to within 0.1 % of the critical density. These measurements agreed with the susceptibility determined from pressure-density measurements along isotherms. The critical temperature, T(sub c), determined separately from specific heat and susceptibility measurements was self-consistent. Susceptibility measurements in the range t = T/T(sub c) - 1 > 10(exp -4)were fit to Chi(sup *)(sub T) = Gamma(sup +)t(exp -lambda)(1 + Gamma(sup +)(sub 1)t(sup delta). Best fit parameters for the asymptotic amplitude Gamma(sup +) and the first Wegner amplitude Gamma(sup +)(sub 1) will be presented and compared to previous measurements.

  20. Mapping the current–current correlation function near a quantum critical point

    SciTech Connect

    Prodan, Emil; Bellissard, Jean

    2016-05-15

    The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near a critical point and confirm the theoretical predictions.

  1. The Cambrian explosion triggered by critical turning point in genome size evolution.

    PubMed

    Li, Dirson Jian; Zhang, Shengli

    2010-02-05

    The Cambrian explosion is a grand challenge to science today and involves multidisciplinary study. This event is generally believed as a result of genetic innovations, environmental factors and ecological interactions, even though there are many conflicts on nature and timing of metazoan origins. The crux of the matter is that an entire roadmap of the evolution is missing to discern the biological complexity transition and to evaluate the critical role of the Cambrian explosion in the overall evolutionary context. Here, we calculate the time of the Cambrian explosion by a "C-value clock"; our result quite fits the fossil records. We clarify that the intrinsic reason of genome evolution determined the Cambrian explosion. A general formula for evaluating genome size of different species has been found, by which the genome size evolution can be illustrated. The Cambrian explosion, as a major transition of biological complexity, essentially corresponds to a critical turning point in genome size evolution.

  2. Universality in eight-arm star polystyrene and methylcyclohexane mixtures near the critical point.

    PubMed

    Jacobs, D T; Braganza, Clinton I; Brinck, Andy P; Cohen, Adam B; Lightfoot, Mark A; Locke, Christopher J; Suddendorf, Sarah J; Timmers, Henry R; Triplett, Angela L; Venkataraman, Nithya L; Wellons, Mark T

    2007-09-28

    Measurements of the coexistence curve and turbidity were made on different molecular mass samples of the branched polymer-solvent system eight-arm star polystyrene in methylcyclohexane near its critical point. We confirmed that these systems belong in the Ising universality class. The location of the critical temperature and composition as well as the correlation length, susceptibility, and coexistence curve amplitudes were found to depend on molecular mass and the degree of branching. The coexistence curve diameter had an asymmetry that followed a "complete scaling" approach. All the coexistence curve data could be scaled onto a common curve with one adjustable parameter. We found the coexistence curve amplitude to be about 12% larger for branched than linear polystyrenes of the same molecular mass in either solvent cyclohexane or methylcyclohexane. The two-scale-factor universality ratio R was found to be independent of molecular mass or degree of branching.

  3. Candidate Elastic Quantum Critical Point in LaCu6-xAux

    DOE PAGES

    Poudel, Lekh; May, Andrew F.; Koehler, Michael R.; ...

    2016-11-30

    In this paper, the structural properties of LaCu6-xAux are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu6 is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition xc=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at xc. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. Finally, the data and calculations presented here are consistent with the zero temperature termination of a continuous structural phasemore » transition suggesting that the LaCu6-xAux series hosts an elastic quantum critical point.« less

  4. Shear viscosity at the Ising-nematic quantum critical point in two-dimensional metals

    NASA Astrophysics Data System (ADS)

    Eberlein, Andreas; Patel, Aavishkar A.; Sachdev, Subir

    2017-02-01

    In an isotropic strongly interacting quantum liquid without quasiparticles, general scaling arguments imply that the dimensionless ratio (kB/ℏ )η /s , where η is the shear viscosity and s is the entropy density, is a universal number. We compute the shear viscosity of the Ising-nematic critical point of metals in spatial dimension d =2 by an expansion below d =5 /2 . The anisotropy associated with directions parallel and normal to the Fermi surface leads to a violation of the scaling expectations: η scales in the same manner as a chiral conductivity, and the ratio η /s diverges at low temperature (T ) as T-2 /z, where z is the dynamic critical exponent for fermionic excitations dispersing normal to the Fermi surface.

  5. Candidate Elastic Quantum Critical Point in LaCu_{6-x}Au_{x}.

    PubMed

    Poudel, L; May, A F; Koehler, M R; McGuire, M A; Mukhopadhyay, S; Calder, S; Baumbach, R E; Mukherjee, R; Sapkota, D; de la Cruz, C; Singh, D J; Mandrus, D; Christianson, A D

    2016-12-02

    The structural properties of LaCu_{6-x}Au_{x} are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu_{6} is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x_{c}=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x_{c}. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. The data and calculations presented here are consistent with the zero temperature termination of a continuous structural phase transition suggesting that the LaCu_{6-x}Au_{x} series hosts an elastic quantum critical point.

  6. Critical points of the Bose-Hubbard model with three-body local interaction

    NASA Astrophysics Data System (ADS)

    Avila, C. A.; Franco, R.; Souza, A. M. C.; Figueira, M. S.; Silva-Valencia, J.

    2014-09-01

    Using the density matrix renormalization group method, we study a one-dimensional system of bosons that interact with a local three-body term. We calculate the phase diagram for higher densities, where the Mott insulator lobes are surrounded by the superfluid phase. We also show that the Mott insulator lobes always grow as a function of the density. The critical points of the Kosterlitz-Thouless transitions were determined through the von Neumann block entropy, and its dependence on the density is given by a power law with a negative exponent.

  7. Examination of two methods of describing the thermodynamic properties of oxygen near the critical point

    NASA Technical Reports Server (NTRS)

    Rees, T. H.; Suttles, J. T.

    1972-01-01

    A computer study was conducted to compare the numerical behavior of two approaches to describing the thermodynamic properties of oxygen near the critical point. Data on the relative differences between values of specific heats at constant pressure (sub p) density, and isotherm and isochor derivatives of the equation of state are presented for selected supercritical pressures at temperatures in the range 100 to 300 K. The results of a more detailed study of the sub p representations afforded by the two methods are also presented.

  8. Higher-order moments at the critical point of the Ziff-Gulari-Barshad model.

    PubMed

    Leite, V S; Hoenicke, G L; Figueiredo, W

    2001-09-01

    We studied the continuous phase transition between the active and the absorbing state of the Ziff-Gulari-Barshad (ZGB) model. Through Monte Carlo simulations we determined all the moments of the order parameter up to fourth order and their ratios at the critical point. We show that the ratios we found are in agreement with those of the contact and pair contact processes in two dimensions, which give support to the idea that the ZGB model is in the directed percolation universality class in (2+1) dimensions.

  9. Higher-order moments at the critical point of the Ziff-Gulari-Barshad model

    NASA Astrophysics Data System (ADS)

    Leite, Vanessa S.; Hoenicke, Gilberto L.; Figueiredo, Wagner

    2001-09-01

    We studied the continuous phase transition between the active and the absorbing state of the Ziff-Gulari-Barshad (ZGB) model. Through Monte Carlo simulations we determined all the moments of the order parameter up to fourth order and their ratios at the critical point. We show that the ratios we found are in agreement with those of the contact and pair contact processes in two dimensions, which give support to the idea that the ZGB model is in the directed percolation universality class in (2+1) dimensions.

  10. Spontaneous formation of large clusters in a lattice gas above the critical point.

    PubMed

    Khain, Evgeniy; Khasin, Michael; Sander, Leonard M

    2014-12-01

    We consider clustering of particles in the lattice gas model above the critical point. We find the probability for large density fluctuations over scales much larger than the correlation length. This fundamental problem is of interest in various biological contexts such as quorum sensing and clustering of motile, adhesive, cancer cells. In the latter case, it may give a clue to the problem of growth of recurrent tumors. We develop a formalism for the analysis of this rare event employing a phenomenological master equation and measuring the transition rates in numerical simulations. The spontaneous clustering is treated in the framework of the eikonal approximation to the master equation.

  11. Spontaneous formation of large clusters in a lattice gas above the critical point

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy; Khasin, Michael; Sander, Leonard M.

    2014-12-01

    We consider clustering of particles in the lattice gas model above the critical point. We find the probability for large density fluctuations over scales much larger than the correlation length. This fundamental problem is of interest in various biological contexts such as quorum sensing and clustering of motile, adhesive, cancer cells. In the latter case, it may give a clue to the problem of growth of recurrent tumors. We develop a formalism for the analysis of this rare event employing a phenomenological master equation and measuring the transition rates in numerical simulations. The spontaneous clustering is treated in the framework of the eikonal approximation to the master equation.

  12. Microscopic study on magnetocaloric and electrocaloric effects near the critical point

    NASA Astrophysics Data System (ADS)

    Honmi, Hitoshi; Hashizume, Yoichiro; Nakajima, Takashi; Okamura, Soichiro

    2015-09-01

    Adiabatic temperature changes of magnetocaloric/electrocaloric effects are analytically investigated. The analytical studies are based on the microscopic statistical models such as Husimi-Temperley model and Slater model. As a result, we show the characteristic scales of the adiabatic processes correspond to microscopic parameters, namely exchange couplings and Slater energy. The scaled parameter dependence become stronger near the critical point. Furthermore, using a general Hamiltonian method, we clarify the adiabatic temperature changes depend on the relative ratio of characteristic scales. The present study may propose a useful aspect for applications.

  13. Scaled Correlations of Critical Points of Random Sections on Riemann Surfaces

    NASA Astrophysics Data System (ADS)

    Baber, John

    2012-08-01

    In this paper we prove that as N goes to infinity, the scaling limit of the correlation between critical points z 1 and z 2 of random holomorphic sections of the N-th power of a positive line bundle over a compact Riemann surface tends to 2/(3 π 2) for small sqrt{N}|z1-nobreak z2|. The scaling limit is directly calculated using a general form of the Kac-Rice formula and formulas and theorems of Pavel Bleher, Bernard Shiffman, and Steve Zelditch.

  14. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    PubMed

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  15. Pathogen Reduction and Hazard Analysis and Critical Control Point (HACCP) systems for meat and poultry. USDA.

    PubMed

    Hogue, A T; White, P L; Heminover, J A

    1998-03-01

    The United States Department of Agriculture (USDA) Food Safety Inspection Service (FSIS) adopted Hazard Analysis and Critical Control Point Systems and established finished product standards for Salmonella in slaughter plants to improve food safety for meat and poultry. In order to make significant improvements in food safety, measures must be taken at all points in the farm-to-table chain including production, transportation, slaughter, processing, storage, retail, and food preparation. Since pathogens can be introduced or multiplied anywhere along the continuum, success depends on consideration and comparison of intervention measures throughout the continuum. Food animal and public health veterinarians can create the necessary preventative environment that mitigates risks for food borne pathogen contamination.

  16. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2.

    PubMed

    Zhang, Chendong; Chen, Yuxuan; Johnson, Amber; Li, Ming-Yang; Li, Lain-Jong; Mende, Patrick C; Feenstra, Randall M; Shih, Chih-Kang

    2015-10-14

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe2 surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  17. Octupole degree of freedom for the critical-point candidate nucleus Sm152 in a reflection-asymmetric relativistic mean-field approach

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, Z. P.; Zhang, S. Q.; Meng, J.

    2010-03-01

    The potential energy surfaces of even-even Sm146-156 are investigated in the constrained reflection-asymmetric relativistic mean-field approach with parameter set PK1. It is shown that the critical-point candidate nucleus Sm152 marks the shape/phase transition not only from U(5) to SU(3) symmetry, but also from the octupole-deformed ground state in Sm150 to the quadrupole-deformed ground state in Sm154. By including the octupole degree of freedom, an energy gap near the Fermi surface for single-particle levels in Sm152 with β2=0.14~0.26 is found and the important role of the octupole deformation driving pair ν2f7/2 and ν1i13/2 is demonstrated.

  18. Symmetry impedes symmetry discrimination.

    PubMed

    Tjan, Bosco S; Liu, Zili

    2005-12-16

    Objects in the world, natural and artificial alike, are often bilaterally symmetric. The visual system is likely to take advantage of this regularity to encode shapes for efficient object recognition. The nature of encoding a symmetric shape, and of encoding any departure from it, is therefore an important matter in visual perception. We addressed this issue of shape encoding empirically, noting that a particular encoding scheme necessarily leads to a specific profile of sensitivity in perceptual discriminations. We studied symmetry discrimination using human faces and random dots. Each face stimulus was a frontal view of a three-dimensional (3-D) face model. The 3-D face model was a linearly weighted average (a morph) between the model of an original face and that of the corresponding mirror face. Using this morphing technique to vary the degree of asymmetry, we found that, for faces and analogously generated random-dot patterns alike, symmetry discrimination was worst when the stimuli were nearly symmetric, in apparent opposition to almost all studies in the literature. We analyzed the previous work and reconciled the old and new results using a generic model with a simple nonlinearity. By defining asymmetry as the minimal difference between the left and right halves of an object, we found that the visual system was disproportionately more sensitive to larger departures from symmetry than to smaller ones. We further demonstrated that our empirical and modeling results were consistent with Weber-Fechner's and Stevens's laws.

  19. Multiple critical points and liquid liquid equilibria from the van der Waals like equations of state

    NASA Astrophysics Data System (ADS)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor

    2008-06-01

    The principal aim of this work is a comprehensive analysis of the phase diagram of water via the van der Waals like equations of state (EoSs) which are considered as superpositions of repulsive and attractive forces. We test more extensively the modified van der Waals EoS (MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392). It was detected that the simplest form of MVDW EoS displays a complex phase behavior, including three critical points, and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of the density of water in the deeply supercooled region (a density minimum) is reproduced by the MWDW EoS. An improvement of the repulsive part does not change the topological picture of the phase behavior of water in the wide range of thermodynamic variables. The new parameters set for second and third critical points are recognized by thorough analysis of experimental data for the loci of thermodynamic response function extrema.

  20. Critical end point in the presence of a chiral chemical potential

    NASA Astrophysics Data System (ADS)

    Cui, Z.-F.; Cloët, I. C.; Lu, Y.; Roberts, C. D.; Schmidt, S. M.; Xu, S.-S.; Zong, H.-S.

    2016-10-01

    A class of Polyakov-loop-modified Nambu-Jona-Lasinio models has been used to support a conjecture that numerical simulations of lattice-regularized QCD defined with a chiral chemical potential can provide information about the existence and location of a critical end point in the QCD phase diagram drawn in the plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts between the model results and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of the lQCD and DSE predictions when both a physically motivated regularization is employed to suppress the contribution of high-momentum quark modes in the definition of the effective potential connected with the Polyakov-loop-modified Nambu-Jona-Lasinio models and the four-fermion coupling in those models does not react strongly to changes in the mean field that is assumed to mock-up Polyakov-loop dynamics. With the lQCD and DSE predictions thus confirmed, it seems unlikely that simulations of lQCD with μ5>0 can shed any light on a critical end point in the regular QCD phase diagram.

  1. Fluid adsorption up to the critical point. Experimental study of a wetting fluid/solid interface

    NASA Astrophysics Data System (ADS)

    Findenegg, G. H.; Löring, R.

    1984-10-01

    We have measured multilayer adsorption isotherms of propane on graphitized carbon black over a wide temperature range, corresponding to reduced temperatures T/Tc of the fluid from 0.7 to 1.004 and reduced densities ρ/ρc up to 1.4. Experimental isotherms of the surface excess concentration Γgs are analyzed in terms of the Frenkel-Halsey-Hill (FHH) model. The exponent n is somewhat less than 3 (2.55±0.30) and the amplitude parameter Δɛ/kT becomes nearly independent of temperature, up to T/Tc=0.98, when the simple one-step density profile of the original FHH model is replaced by a two-step profile, to account for the compression of the layer next to the solid substrate. Evidence for a compression of the liquid boundary layer comes from measurements of the surface excess concentration Γls at the liquid/substrate interface. Along the liquid-vapor coexistence curve, Γls0 diverges as T approaches Tc, in qualitative agreement with scaling law theory. The analogy of the present one-component fluid/solid-substrate interface near the critical point of the fluid, with a two-component liquid/vapor interface near the critical solution point of the liquid mixture is discussed.

  2. Search for a liquid-liquid critical point in models of silica

    NASA Astrophysics Data System (ADS)

    Lascaris, Erik; Hemmati, Mahin; Buldyrev, Sergey V.; Stanley, H. Eugene; Angell, C. Austen

    2014-06-01

    Previous research has indicated the possible existence of a liquid-liquid critical point (LLCP) in models of silica at high pressure. To clarify this interesting question we run extended molecular dynamics simulations of two different silica models (WAC and BKS) and perform a detailed analysis of the liquid at temperatures much lower than those previously simulated. We find no LLCP in either model within the accessible temperature range, although it is closely approached in the case of the WAC potential near 4000 K and 5 GPa. Comparing our results with those obtained for other tetrahedral liquids, and relating the average Si-O-Si bond angle and liquid density at the model glass temperature to those of the ice-like β-cristobalite structure, we conclude that the absence of a critical point can be attributed to insufficient "stiffness" in the bond angle. We hypothesize that a modification of the potential to mildly favor larger average bond angles will generate a LLCP in a temperature range that is accessible to simulation. The tendency to crystallize in these models is extremely weak in the pressure range studied, although this tendency will undoubtedly increase with increasing stiffness.

  3. Motor hysteresis in a sequential grasping and pointing task is absent in task-critical joints.

    PubMed

    Schütz, Christoph; Weigelt, Matthias; Schack, Thomas

    2017-03-01

    In a prior study (Schütz et al. in Exp Brain Res 2016. doi: 10.1007/s00221-016-4608-6 ), we demonstrated that the cognitive cost of motor planning did not differ in a vertical pointing and grasping task. It was unclear whether the similar cost implied that both tasks required the same number of independent degrees of freedom (IDOFs) or that the number of IDOFs did not affect motor planning. To differentiate between both cases, a reanalysis of the prior data was conducted. The number of IDOFs in the pointing and grasping tasks was computed by factor analysis. In both tasks, two IDOFs were used, which was the minimum number required for position control. This indicates that hand alignment in the grasping task did not require an additional IDOF. No conclusions regarding the link between the cognitive cost of motor planning and the number of IDOFs could be drawn. A subset of task-critical joint angles was not affected by motor hysteresis. This indicates that a joint's susceptibility to motor hysteresis depends on its relevance to the task goal. In task-critical joints, planning cost minimization by motor plan reuse is suppressed in favor of the task goal.

  4. Critical point scaling of Ising spin glasses in a magnetic field

    NASA Astrophysics Data System (ADS)

    Yeo, Joonhyun; Moore, M. A.

    2015-03-01

    Critical point scaling in a field H applies for the limits t →0 (where t =T /Tc-1 ) and H →0 but with the ratio R =t /H2 /Δ finite. Δ is a critical exponent of the zero-field transition. We study the replicon correlation length ξ and from it the crossover scaling function f (R ) defined via 1 /(ξ H4 /(d +2 -η )) ˜f (R ) . We have calculated analytically f (R ) for the mean-field limit of the Sherrington-Kirkpatrick model. In dimension d =3 , we have determined the exponents and the critical scaling function f (R ) within two versions of the Migdal-Kadanoff (MK) renormalization group procedure. One of the MK versions gives results for f (R ) in d =3 in reasonable agreement with those of the Monte Carlo simulations at the values of R for which they can be compared. If there were a de Almeida-Thouless (AT) line for d ≤6 , it would appear as a zero of the function f (R ) at some negative value of R , but there is no evidence for such behavior. This is consistent with the arguments that there should be no AT line for d ≤6 , which we review.

  5. Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware

    PubMed Central

    Srinivasa, Narayan; Stepp, Nigel D.; Cruz-Albrecht, Jose

    2015-01-01

    Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoiding it. PMID:26648839

  6. Weak phase stiffness and nature of the quantum critical point in underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Ku, Wei; Yildirim, Yucel

    We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the ``normal'' pseudo-gap phase without any free parameter. In the prototypical (La1-xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δc ~ 5 . 2 % , below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, a enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Finally, a striking mass divergence is predicted at δc that dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region. * Phys. Rev. B 92, 180501(R) (2015); Phys. Rev. X 1, 011011 (2011). Work supported by U.S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886.

  7. Weak phase stiffess and nature of the quantum critical point in underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Ku, Wei; Yildirim, Yucel

    2014-03-01

    We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the ``normal'' pseudo-gap phase without any free parameter. In the prototypical (La1-xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δc ~ 5 . 2 % , below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, a enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Finally, a striking mass divergence is predicted at δc that dictates the occurrence of the observed quantum critical point and the sudden suppression of the Nernst effects in the nearby region. Work supported by U.S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886.

  8. Universal Scaling in the Fan of an Unconventional Quantum Critical Point

    SciTech Connect

    Melko, Roger G; Kaul, Ribhu

    2008-01-01

    We present the results of extensive finite-temperature Quantum Monte Carlo simulati ons on a SU(2) symmetric, $S=1/2$ quantum antiferromagnet with a frustrating four-s pin interaction -- the so-called 'JQ' model~[Sandvik, Phys. Rev. Lett. {\\bf 98}, 22 7202 (2007)]. Our simulations, which are unbiased, free of the sign-problem and car ried out on lattice sizes containing in excess of $1.6\\times 10^4$ spins, indicate that N\\'eel order is destroyed through a continuous quantum transition at a critica l value of the frustrating interaction. At larger values of this coupling the param agnetic state obtained has valence-bond solid order. The scaling behavior in the 'q uantum critical fan' above the putative critical point confirms a $z=1$ quantum pha se transition that is not in the conventional $O(3)$ universality class. Our result s are consistent with the predictions of the 'deconfined quantum criticality' scena rio.

  9. Quasiparticle interaction function in a two-dimensional Fermi liquid near an antiferromagnetic critical point

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Wölfle, Peter

    2014-01-01

    We present the expression for the quasiparticle vertex function Γω(KF,PF) (proportional to the Landau interaction function) in a 2D Fermi liquid (FL) near an instability towards antiferromagnetism. This function is relevant in many ways in the context of metallic quantum criticality. Previous studies have found that near a quantum critical point, the system enters into a regime in which the fermionic self-energy is large near hot spots on the Fermi surface [points on the Fermi surface connected by the antiferromagnetic ordering vector qπ=(π,π)] and has much stronger dependence on frequency than on momentum. We show that in this regime, which we termed a critical FL, the conventional random-phase-approximation- (RPA) type approach breaks down, and to properly calculate the vertex function one has to sum up an infinite series of terms which were explicitly excluded in the conventional treatment. Besides, we show that, to properly describe the spin component of Γω(KF,PF) even in an ordinary FL, one has to add Aslamazov-Larkin (AL) terms to the RPA vertex. We show that the total Γω(KF,PF) is larger in a critical FL than in an ordinary FL, roughly by an extra power of magnetic correlation length ξ, which diverges at the quantum critical point. However, the enhancement of Γω(KF,PF) is highly nonuniform: It holds only when, for one of the two momentum variables, the distance from a hot spot along the Fermi surface is much larger than for the other one. This fact renders our case different from quantum criticality at small momentum, where the enhancement of Γω(KF,PF) was found to be homogeneous. We show that the charge and spin components of the total vertex function satisfy the universal relations following from the Ward identities related to the conservation of the particle number and the total spin. We show that in a critical FL, the Ward identity involves Γω(KF,PF) taken between particles on the FS. We find that the charge and spin components of

  10. Comparison of preparation techniques of mixed samples (fungi-helminth eggs) for scanning electron microscopy by critical point drying.

    PubMed

    Sarmiento, P L; Ciarmela, María L; Sánchez Thevenet, P; Minvielle, M C; Basualdo, J A

    2006-09-01

    We compared three preparation techniques for critical point drying of fungus Paecilomyces lilacinus (Thom) Samson with Toxocara canis (Werner) Johnston and Taenia hydatigena Linneo eggs by scanning electron microscopy. We evaluated filtration (first), centrifugation (second), and phytoplankton network (third) in critical point drying methods. The first and third methods were advantageous for T. canis eggs because they preserved the quantity and quality of samples to obtain better images definition. The best technique for T. hydatigena eggs was the addition of phytoplankton network in critical point drying which preserved these helminth eggs.

  11. Critical current scaling and the pivot-point in Nb3Sn strands

    NASA Astrophysics Data System (ADS)

    Tsui, Y.; Hampshire, D. P.

    2012-05-01

    Detailed measurements are provided of the engineering critical current density (Jc) and the index of transition (n-value) of two different types of advanced ITER Nb3Sn superconducting strand for fusion applications. The samples consist of one internal-tin strand (OST) and two bronze-route strands (BEAS I and BEAS II—reacted using different heat treatments). Tests on different sections of these wires show that prior to applying strain, Jc is homogeneous to better than 2% along the length of each strand. Jc data have been characterized as a function of magnetic field (B ≤ 14.5 T), temperature (4.2 K ≤ T ≤ 12 K) and applied axial strain ( - 1% ≤ ɛA ≤ 0.8%). Strain-cycling tests demonstrate that the variable strain Jc data are reversible to better than 2% when the applied axial strain is in the range of - 1% ≤ ɛA ≤ 0.5%. The wires are damaged when the intrinsic strain (ɛI) is ɛI ≥ 0.55% and ɛI ≥ 0.23% for the OST and BEAS strands, respectively. The strain dependences of the normalized Jc for each type of strand are similar to those of prototype strands of similar design measured in 2005 and 2008 to about 2% which makes them candidate strands for a round-robin interlaboratory comparison. The Jc data are described by Durham, ITER and Josephson-junction parameterizations to an accuracy of about 4%. For all of these scaling laws, the percentage difference between the data and the parameterization is larger when Jc is small, caused by high B, T or |ɛI|. The n-values can be described by a modified power law of the form n=1+r{I}_{{c}}^{s}, where r and s are approximately constant and Ic is the critical current. It has long been known that pivot-points (or cross-overs) in Jc occur at high magnetic field and temperature. Changing the magnetic field or temperature from one side of the pivot-point to the other changes the highest Jc sample to the lowest Jc sample and vice versa. The pivot-point follows the B-T phase boundary associated with the upper

  12. [Economic aspects of the Italian food industry: critical points and perspectives].

    PubMed

    Casati, D

    2012-01-01

    The Italian food industry represents 2% of GDP and employment. Its role grows considering the whole food supply chain to 3.7% of GDP and 5.7% of employment, reaching 12.5% of the European one. In terms of value added, it reaches 25% of private sector expenditure, at the second places after the house one, but 8 times more than health. The european food industry is the leading sector. Italian industry is at the 3rd place for its value added, at 5th for employment, but the first for productivity together with the French food industry. Critical points of Italian food industry are mainly connected with its structure, production composition, dependence on consumer evolution, crisis impact, internationalization of firms and leading groups, innovation.

  13. Energy scan in heavy-ion collisions and search for a critical point

    SciTech Connect

    Tokarev, M. V.; Zborovsky, I.

    2012-06-15

    Experimental data on inclusive spectra measured in heavy-ion collisions at RHIC and SPS over a wide range of the energy {radical}s{sub NN} = 9 - 200 GeV are analyzed in the framework of z scaling. A microscopic scenario of constituent interactions in the framework of this approach is discussed. Dependence of the energy loss on the momentum of the produced hadron, energy, and centrality of the collision, is studied. Self-similarity of the constituent interactions in terms of momentum fractions is used to characterize the nuclear medium by 'specific heat' and colliding nuclei by fractal dimensions. Preferable kinematical regions for search for signatures of the phase transition of the nuclear matter produced inHIC are discussed. Discontinuity of 'specific heat' is assumed to be a signature of the phase transition and the Critical Point.

  14. Condensation of Methane in the Metal-Organic Framework IRMOF-1: Evidence for Two Critical Points.

    PubMed

    Höft, Nicolas; Horbach, Jürgen

    2015-08-19

    Extensive grand canonical Monte Carlo simulations in combination with successive umbrella sampling are used to investigate the condensation of methane in the nanoporous crystalline material IRMOF-1. Two different types of novel condensation transitions are found, each of them ending in a critical point: (i) a fluid-fluid transition at higher densities (the analog of the liquid-gas transition in the bulk) and (ii) a phase transition at low densities on the surface of the IRMOF-1 structure. The nature of these transitions is different from the usual capillary condensation in thin films and cylindrical pores where the coexisting phases are confined in one or two of the three spatial dimensions. In contrast to that, in IRMOF-1 the different phases can be described as bulk phases that are inhomogeneous due to the presence of the metal-organic framework. As a consequence, the condensation transitions in IRMOF-1 belong to the three-dimensional (3D) Ising universality class.

  15. Critical Point Facility (CPE) Group in the Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Critical Point Facility (CPE) group in the SL POCC during STS-42, IML-1 mission.

  16. Direct observation of the quantum critical point in heavy fermion CeRhSi3.

    PubMed

    Egetenmeyer, N; Gavilano, J L; Maisuradze, A; Gerber, S; MacLaughlin, D E; Seyfarth, G; Andreica, D; Desilets-Benoit, A; Bianchi, A D; Baines, Ch; Khasanov, R; Fisk, Z; Kenzelmann, M

    2012-04-27

    We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi3. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the Néel temperature. At 23.6 kbar, the ordered magnetic moments are fully suppressed via a second-order phase transition, and T(N) is zero. Thus, we directly observed the quantum critical point at 23.6 kbar hidden inside the superconducting phase of CeRhSi3.

  17. Seismic precursory patterns before a cliff collapse and critical point phenomena

    NASA Astrophysics Data System (ADS)

    Amitrano, D.; Grasso, J. R.; Senfaute, G.

    2005-04-01

    We analyse the statistical pattern of seismicity before a 1-2 103 m3 chalk cliff collapse on the Normandie ocean shore, Western France. We show that a power law acceleration of seismicity rate and energy in both 40 Hz-1.5 kHz and 2 Hz-10kHz frequency range, is defined on 3 orders of magnitude, within 2 hours from the collapse time. Simultaneously, the average size of the seismic events increases toward the time to failure. These in situ results are derived from the only station located within one rupture length distance from the rock fall rupture plane. They mimic the ``critical point'' like behavior recovered from physical and numerical experiments before brittle failures and tertiary creep failures. Our analysis of this first seismic monitoring data of a cliff collapse suggests that the thermodynamic phase transition models for failure may apply for cliff collapse.

  18. Phase reconstruction near to the two-dimensional ferromagnetic quantum critical point

    NASA Astrophysics Data System (ADS)

    Pedder, Chris; Karahasanovic, Una; Kruger, Frank; Green, Andrew

    2012-02-01

    We study the formation of new phases in two dimensions near to the putative quantum critical point of the itinerant ferromagnet to paramagnet phase transition. In addition to the first order and helimagnetic behaviour found in non-analytic extensions to Hertz-Millis theory [1] and in the quantum order-by-disorder approach [2], we find a small region of spin nematic order. Our approach also admits a concurrent formation of superconducting order. We further study the effect of small deformations from quadratic electron dispersion -- as previously found in three dimensions, these enlarge the region of spin nematic order at the expense of spiral order.[4pt] [1] D. Belitz, T.R. Kirkpatrick and T. Vojta, Rev. Mod. Phys. 77, 579 (2005),. V. Efremov, J.J. Betouras, A.V. Chubukov Phys. Rev. B 77, 220401(R), (2008)[0pt] [2] G. J. Conduit Phys. Rev. A 82, 043604 (2010)

  19. Structural Stability of Planar Homogeneous Polynomial Vector Fields: Applications to Critical Points and to Infinity

    NASA Astrophysics Data System (ADS)

    Llibre, Jaume; Pérez del Río, Jesús S.; Rodríguez, José Angel

    1996-03-01

    LetHmbe the space of planar homogeneous polynomial vector fields of degreemendowed with the coefficient topology. We characterize the setΩmof the vector fields ofHmthat are structurally stable with respect to perturbations inHmand we determine the exact number of the topological equivalence classes inΩm. The study of structurally stable homogeneous polynomial vector fields is very useful for understanding some interesting features of inhomogeneous vector fields. Thus, by using this characterization we can do first an extension of the Hartman-Grobman Theorem which allows us to study the critical points of planar analytical vector fields whosek-jets are zero for allk

  20. Critical Point Facility (CPF) Team in the Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Critical Point Facility (CPF) team in the SL POCC during the IML-1 mission.

  1. Time delay of critical images in the vicinity of cusp point of gravitational-lens systems

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Zhdanov, V.

    2016-12-01

    We consider approximate analytical formulas for time-delays of critical images of a point source in the neighborhood of a cusp-caustic. We discuss zero, first and second approximations in powers of a parameter that defines the proximity of the source to the cusp. These formulas link the time delay with characteristics of the lens potential. The formula of zero approximation was obtained by Congdon, Keeton & Nordgren (MNRAS, 2008). In case of a general lens potential we derived first order correction thereto. If the potential is symmetric with respect to the cusp axis, then this correction is identically equal to zero. For this case, we obtained second order correction. The relations found are illustrated by a simple model example.

  2. Critical analysis of soft point contact Andreev reflection spectra between superconducting films and pressed In.

    PubMed

    Parab, Pradnya; Chauhan, Prashant; Muthurajan, H; Bose, Sangita

    2017-04-05

    We present a critical analysis of an alternative technique of point contact Andreev reflection (PCAR) spectroscopy used to extract energy resolved information of superconductors which is based on making 'soft-contacts' between superconductors and indium. This technique is not sensitive to mechanical vibrations and hence can be used in a cryogen free platform increasing its accessibility to users having no access to cryogenic liquids. Through our experiments on large number of superconducting films we show that the PCAR spectra below the T c of In show sub-harmonic gap structures consistent with the theory of multiple Andreev reflection (MAR) and a zero bias conductance (ZBC) anomaly associated with the Josephson supercurrent. Furthermore, we demonstrate that large contact resistance with low transparency ballistic contacts in the PCAR regime are required to obtain reliable spectroscopic data. One limitation of the technique arises for low contact resistance junctions where the superconducting proximity effect (SPE) reduces the value of the superconducting energy gap.

  3. Critical analysis of soft point contact Andreev reflection spectra between superconducting films and pressed In

    NASA Astrophysics Data System (ADS)

    Parab, Pradnya; Chauhan, Prashant; Muthurajan, H.; Bose, Sangita

    2017-04-01

    We present a critical analysis of an alternative technique of point contact Andreev reflection (PCAR) spectroscopy used to extract energy resolved information of superconductors which is based on making ‘soft-contacts’ between superconductors and indium. This technique is not sensitive to mechanical vibrations and hence can be used in a cryogen free platform increasing its accessibility to users having no access to cryogenic liquids. Through our experiments on large number of superconducting films we show that the PCAR spectra below the T c of In show sub-harmonic gap structures consistent with the theory of multiple Andreev reflection (MAR) and a zero bias conductance (ZBC) anomaly associated with the Josephson supercurrent. Furthermore, we demonstrate that large contact resistance with low transparency ballistic contacts in the PCAR regime are required to obtain reliable spectroscopic data. One limitation of the technique arises for low contact resistance junctions where the superconducting proximity effect (SPE) reduces the value of the superconducting energy gap.

  4. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis

    PubMed Central

    Saponaro, Chiara; Gaggini, Melania; Carli, Fabrizia; Gastaldelli, Amalia

    2015-01-01

    Excessive accumulation of lipids can lead to lipotoxicity, cell dysfunction and alteration in metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas and muscle. This is now a recognized risk factor for the development of metabolic disorders, such as obesity, diabetes, fatty liver disease (NAFLD), cardiovascular diseases (CVD) and hepatocellular carcinoma (HCC). The causes for lipotoxicity are not only a high fat diet but also excessive lipolysis, adipogenesis and adipose tissue insulin resistance. The aims of this review are to investigate the subtle balances that underlie lipolytic, lipogenic and oxidative pathways, to evaluate critical points and the complexities of these processes and to better understand which are the metabolic derangements resulting from their imbalance, such as type 2 diabetes and non alcoholic fatty liver disease. PMID:26580649

  5. [The Hazard Analysis Critical Control Point approach (HACCP) in meat production].

    PubMed

    Berends, B R; Snijders, J M

    1994-06-15

    The Hazard Analysis Critical Control Point (HACCP) approach is a method that could transform the current system of safety and quality assurance of meat into a really effective and flexible integrated control system. This article discusses the origin and the basic principles of the HACCP approach. It also discusses why the implementation of the approach is not as widespread as might be expected. It is concluded that a future implementation of the approach in the entire chain of meat production, i.e. from conception to consumption, is possible. Prerequisites are, however, that scientifically validated risk analyses become available, that future legislation forms a framework that actively supports the approach, and that all parties involved in meat production not only become convinced of the advantages, but also are trained to implement the HACCP approach with insight.

  6. [Monitoring of a HACCP (Hazard Analysis Critical Control Point) plan for Listeria monocytogenes control].

    PubMed

    Mengoni, G B; Apraiz, P M

    2003-01-01

    The monitoring of a HACCP (Hazard Analysis Critical Control Point) plan for the Listeria monocytogenes control in the cooked and frozen meat section of a thermo-processing meat plant was evaluated. Seventy "non-product-contact" surface samples and fourteen finished product samples were examined. Thirty eight positive sites for the presence of Listeria sp. were obtained. Twenty-two isolates were identified as L. monocytogenes, two as L. seeligeri and fourteen as L. innocua. Non isolates were obtained from finished product samples. The detection of L. monocytogenes in cooked and frozen meat section environment showed the need for the HACCP plan to eliminate or prevent product contamination in the post-thermal step.

  7. Seismic precursory patterns before a cliff collapse and critical point phenomena

    USGS Publications Warehouse

    Amitrano, D.; Grasso, J.-R.; Senfaute, G.

    2005-01-01

    We analyse the statistical pattern of seismicity before a 1-2 103 m3 chalk cliff collapse on the Normandie ocean shore, Western France. We show that a power law acceleration of seismicity rate and energy in both 40 Hz-1.5 kHz and 2 Hz-10kHz frequency range, is defined on 3 orders of magnitude, within 2 hours from the collapse time. Simultaneously, the average size of the seismic events increases toward the time to failure. These in situ results are derived from the only station located within one rupture length distance from the rock fall rupture plane. They mimic the "critical point" like behavior recovered from physical and numerical experiments before brittle failures and tertiary creep failures. Our analysis of this first seismic monitoring data of a cliff collapse suggests that the thermodynamic phase transition models for failure may apply for cliff collapse. Copyright 2005 by the American Geophysical Union.

  8. Broken Symmetry

    ScienceCinema

    None

    2016-07-12

    - Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of

  9. Broken Symmetry

    SciTech Connect

    2011-02-24

    - Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of

  10. The hazard analysis and critical control point system in food safety.

    PubMed

    Herrera, Anavella Gaitan

    2004-01-01

    The Hazard Analysis and Critical Control Point (HACCP) system is a preventive method of ensuring food safety. Its objectives are the identification of consumer safety hazards that can occur in the production line and the establishment of a control process to guarantee a safer product for the consumer; it is based on the identification of potential hazards to food safety and on measures aimed at preventing these hazards. HACCP is the system of choice in the management of food safety. The principles of HACCP are applicable to all phases of food production, including basic husbandry practices, food preparation and handling, food processing, food service, distribution systems, and consumer handling and use. The HACCP system is involved in every aspect of food safety production (according to the UN Food and Agriculture Organization [FAO] and the International Commission on Microbiological Specifications for Foods [ICMSF]). The most basic concept underlying the HACCP system is that of prevention rather than inspection. The control of processes and conditions comprises the critical control point (CCP) element. HACCP is simply a methodical, flexible, and systematic application of the appropriate science and technology for planning, controlling, and documenting the safe production of foods. The successful application of HACCP requires the full commitment and involvement of management and the workforce, using a multidisciplinary approach that should include, as appropriate, expertise in agronomy, veterinary health, microbiology, public health, food technology, environmental health, chemistry, engineering, and so on according to the particular situation. Application of the HACCP system is compatible with the implementation of total quality management (TQM) systems such as the ISO 9000 series.

  11. A water quality monitoring network design methodology for the selection of critical sampling points: Part I.

    PubMed

    Strobl, R O; Robillard, P D; Shannon, R D; Day, R L; McDonnell, A J

    2006-01-01

    The principal instrument to temporally and spatially manage water resources is a water quality monitoring network. However, to date in most cases, there is a clear absence of a concise strategy or methodology for designing monitoring networks, especially when deciding upon the placement of sampling stations. Since water quality monitoring networks can be quite costly, it is very important to properly design the monitoring network so that maximum information extraction can be accomplished, which in turn is vital when informing decision-makers. This paper presents the development of a methodology for identifying the critical sampling locations within a watershed. Hence, it embodies the spatial component in the design of a water quality monitoring network by designating the critical stream locations that should ideally be sampled. For illustration purposes, the methodology focuses on a single contaminant, namely total phosphorus, and is applicable to small, upland, predominantly agricultural-forested watersheds. It takes a number of hydrologic, topographic, soils, vegetative, and land use factors into account. In addition, it includes an economic as well as logistical component in order to approximate the number of sampling points required for a given budget and to only consider the logistically accessible stream reaches in the analysis, respectively. The methodology utilizes a geographic information system (GIS), hydrologic simulation model, and fuzzy logic.

  12. Heat-transport measurement in a turbulent fluid above the critical point

    NASA Astrophysics Data System (ADS)

    Ahlers, Guenter; Zhong, Jin-Qiang

    2007-11-01

    Below the critical point (CP) at Pc,Tc liquid and vapor co-exist along a line Tφ(P) in the temperature-pressure plane. When a fluid at P < Pc and in the presence of gravity is heated from below and the resulting temperature difference δT = Tb- Tt (Tb and Tt are the temperaturs at the bottom and top of the sample respectively) straddles Tφ, then liquid can condense at the top and drop to the bottom. By virtue of the latent heat of vaporization this process will contribute strongly to the effective conductivity λeff of the sample. Since the latent heat vanishes at the CP, one would expect this enhancement to vanish as P ->Pc from below. We measured λeff using ethane close to but above the CP along various isobars using a constant δT and varying Tm= (Tt+ Tb)/2. Contrary to our expectations, even for P > Pc we found that λeff had a maximum for Tm close to the temperature corresponding to the critical isochore and reached values well above those expected for a single-phase Boussinesq fluid at the same Rayleigh numbers.

  13. Crossover between T and T^2 electrical resistivity near an antiferromagnetic quantum critical point

    NASA Astrophysics Data System (ADS)

    Bergeron, Dominic; Kyung, Bumsoo; Hankevych, Vasyl; Tremblay, A.-M. S.

    2010-03-01

    To understand the ubiquitous linear term in the resistivity observed for the cuprates and other unconventional superconductors, we generalize the Two-Particle-Self-Consistent approach for the Hubbard model to include vertex corrections in the calculation of conductivity. Spin and charge fluctuations are included at all wavelengths. The vertex corrections allow the f-sum rule to be satisfied very accurately and are crucial contributions to the resistivity. Fitting the temperature dependence to a quadratic form, we obtain a linear term that decreases with increasing doping close to the antiferromagnetic quantum critical point. The quadratic term has a much weaker doping dependence. The linear term is also correlated with the Tc predicted by the same approach [1], in which both superconductivity and linear resistivity are caused by antiferromagnetic correlations. Our results agree qualitatively with recent experiments showing that the linear term vanishes concomitantly with the critical temperature Tc in the overdoped regime [2]. [1] Kyung et al. PRB 68, 174502 (2003) [2] Doiron-Leyraud et al. arXiv:0905.0964

  14. Response functions near the liquid-liquid critical point of ST2 water

    NASA Astrophysics Data System (ADS)

    Lascaris, Erik; Kesselring, T. A.; Franzese, G.; Buldyrev, S. V.; Herrmann, H. J.; Stanley, H. E.

    2013-02-01

    We simulate the ST2 water model for time periods up to 1000 ns, and for four different system sizes, N = 63, 73, 83, and 93. We locate the liquid-liquid phase transition line and its critical point in the supercooled region. Near the liquidliquid phase transition line, we observe that the system continuously flips between the low-density and high-density liquid phases. We analyze the transition line further by calculating two thermodynamic response functions, the isobaric specific heat capacity CP and the isothermal compressibility KT. We use two different methods: (i) from fluctuations and (ii) with the relevant thermodynamic derivative. We find that, within the accuracy of our simulations, the maxima of two different response functions occur at the same temperatures. The lines of CP and KT maxima below the critical pressure approximate the Widom line which is continuous with the line of first-order transitions in the two-phase region where we observe the phase flipping.

  15. Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness.

    PubMed

    Lenton, T M; Livina, V N; Dakos, V; van Nes, E H; Scheffer, M

    2012-03-13

    We address whether robust early warning signals can, in principle, be provided before a climate tipping point is reached, focusing on methods that seek to detect critical slowing down as a precursor of bifurcation. As a test bed, six previously analysed datasets are reconsidered, three palaeoclimate records approaching abrupt transitions at the end of the last ice age and three models of varying complexity forced through a collapse of the Atlantic thermohaline circulation. Approaches based on examining the lag-1 autocorrelation function or on detrended fluctuation analysis are applied together and compared. The effects of aggregating the data, detrending method, sliding window length and filtering bandwidth are examined. Robust indicators of critical slowing down are found prior to the abrupt warming event at the end of the Younger Dryas, but the indicators are less clear prior to the Bølling-Allerød warming, or glacial termination in Antarctica. Early warnings of thermohaline circulation collapse can be masked by inter-annual variability driven by atmospheric dynamics. However, rapidly decaying modes can be successfully filtered out by using a long bandwidth or by aggregating data. The two methods have complementary strengths and weaknesses and we recommend applying them together to improve the robustness of early warnings.

  16. Nonlinear I-V Curve at a Quantum Impurity Quantum Critical Point

    NASA Astrophysics Data System (ADS)

    Baranger, Harold; Chung, Chung-Hou; Lin, Chao-Yun; Zhang, Gu; Ke, Chung-Ting; Finkelstein, Gleb

    The nonlinear I-V curve at an interacting quantum critical point (QCP) is typically out of reach theoretically. Here, however, we provide a striking example of an analytical calculation of the full nonlinear I-V curve at the QCP. The system that we consider is a quantum dot coupled to resistive leads - a spinless resonant level interacting with an ohmic EM environment in which a QCP similar to the two-channel Kondo QCP occurs. Recent experiments studied this criticality via transport measurements: the transmission approaches unity at low temperature and applied bias when tuned exactly to the QCP (on resonance and symmetric tunnel barriers) and approaches zero in all other cases. To obtain the current at finite temperature and arbitrary bias, we write the problem as a one-dimensional field theory and transform from electrons in the left/right leads to right-going and left-going channels between which there is weak two-body backscattering. Drawing on dynamical Coulomb blockade theory, we thus obtain an analytical expression for the full I-V curve. The agreement with the experimental result is remarkable.

  17. Heat Capacity Anomaly Near the Lower Critical Consolute Point of Triethylamine-Water

    NASA Technical Reports Server (NTRS)

    Flewelling, Anne C.; DeFonseka, Rohan J.; Khaleeli, Nikfar; Partee, J.; Jacobs, D. T.

    1996-01-01

    The heat capacity of the binary liquid mixture triethylamine-water has been measured near its lower critical consolute point using a scanning, adiabatic calorimeter. Two data runs are analyzed to provide heat capacity and enthalpy data that are fitted by equations with background terms and a critical term that includes correction to scaling. The critical exponent a was determined to be 0.107 +/- 0.006, consistent with theoretical predictions. When alpha was fixed at 0.11 to determine various amplitudes consistently, our values of A(+) and A(-) agreed with a previous heat capacity measurement, but the value of A(-) was inconsistent with values determined by density or refractive index measurements. While our value for the amplitude ratio A(+)/ A(-) = 0.56 +/- 0.02 was consistent with other recent experimental determinations in binary liquid mixtures, it was slightly larger than either theoretical predictions or recent experimental values in liquid-vapor systems. The correction to scaling amplitude ratio D(+)/D(-) = 0.5 +/- 0.1 was half of that predicted. As a result of several more precise theoretical calculations and experimental determinations, the two-scale-factor universality ratio X, which we found to be 0.019 +/- 0.003, now is consistent among experiments and theories. A new 'universal' amplitude ratio R(sup +/-)(sub Bcr) involving the amplitudes for the specific heat was tested. Our determination of R(sup +/-)(sub Bcr) = -0.5 +/- 0.1 and R(sup -)(sub Bcr) = 1.1 +/- 0.1 is smaller in magnitude than predicted and is the first such determination in a binary fluid mixture.

  18. The G1 restriction point as critical regulator of neocortical neuronogenesis

    NASA Technical Reports Server (NTRS)

    Caviness, V. S. Jr; Takahashi, T.; Nowakowski, R. S.

    1999-01-01

    Neuronogenesis in the pseudostratified ventricular epithelium is the initial process in a succession of histogenetic events which give rise to the laminate neocortex. Here we review experimental findings in mouse which support the thesis that the restriction point of the G1 phase of the cell cycle is the critical point of regulation of the overall neuronogenetic process. The neuronogenetic interval in mouse spans 6 days. In the course of these 6 days the founder population and its progeny execute 11 cell cycles. With each successive cycle there is an increase in the fraction of postmitotic cells which leaves the cycle (the Q fraction) and also an increase in the length of the cell cycle due to an increase in the length of the G1 phase of the cycle. Q corresponds to the probability that postmitotic cells will exit the cycle at the restriction point of the G1 phase of the cell cycle. Q increases non-linearly, but the rate of change of Q with cycle (i.e., the first derivative) over the course of the neuronogenetic interval is a constant, k, which appears to be set principally by cell internal mechanisms which are species specific. Q also seems to be modulated, but at low amplitude, by a balance of mitogenic and antimitogenic influences acting from without the cell. We suggest that intracellular signal transduction systems control a general advance of Q during development and thereby determine the general developmental plan (i.e., cell number and laminar composition) of the neocortex and that external mitogens and anti-mitogens modulate this advance regionally and temporally and thereby produce regional modifications of the general plan.

  19. Critical behaviour in DOPC/DPPC/cholesterol mixtures: static (2)H NMR line shapes near the critical point.

    PubMed

    Davis, James H; Schmidt, Miranda L

    2014-05-06

    Static (2)H NMR spectroscopy is used to study the critical behavior of mixtures of 1,2-dioleoyl-phosphatidylcholine/1,2-dipalmitoyl-phosphatidylcholine (DPPC)/cholesterol in molar proportion 37.5:37.5:25 using either chain perdeuterated DPPC-d62 or chain methyl deuterated DPPC-d6. The temperature dependence of the first moment of the (2)H spectrum of the sample made with DPPC-d62 and of the quadrupolar splittings of the chain-methyl-labeled DPPC-d6 sample are directly related to the temperature dependence of the critical order parameter η, which scales as [Formula: see text] near the critical temperature. Analysis of the data reveals that for the chain perdeuterated sample, the value of Tc is 301.51 ± 0.1 K, and that of the critical exponent, βc = 0.391 ± 0.02. The line shape analysis of the methyl labeled (d6) sample gives Tc = 303.74 ± 0.07 K and βc = 0.338 ± 0.009. These values obtained for βc are in good agreement with the predictions of a three-dimensional Ising model. The difference in critical temperature between the two samples having nominally the same molar composition arises because of the lowering of the phase transition temperature that occurs due to the perdeuteration of the DPPC.

  20. Critical endline of the finite temperature phase transition for 2 +1 flavor QCD around the SU(3)-flavor symmetric point

    NASA Astrophysics Data System (ADS)

    Kuramashi, Yoshinobu; Nakamura, Yoshifumi; Takeda, Shinji; Ukawa, Akira

    2016-12-01

    We investigate the critical endline of the finite temperature phase transition of QCD around the SU(3)-flavor symmetric point at zero chemical potential. We employ the renormalization-group improved Iwasaki gauge action and nonperturbatively O (a )-improved Wilson-clover fermion action. The critical endline is determined by using the intersection point of kurtosis, employing the multiparameter, multiensemble reweighting method to calculate observables off the SU(3)-symmetric point, at the temporal size NT=6 and lattice spacing as low as a ≈0.19 fm . We confirm that the slope of the critical endline takes the value of -2 , and find that the second derivative is positive, at the SU(3)-flavor symmetric point on the Columbia plot parametrized with the strange quark mass ms and degenerated up-down quark mass ml.

  1. We did well but we definitely have to do better: four critical points about fluxnet

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.

    2014-12-01

    Fluxnet is a real success story of data integration. The scientific outcome is overwhelming. Nevertheless: in a time of methodological consolidation and transfer of the networks to technically more integrated infrastructures, a critical view on its weak points may strengthen the future success and our position within biogeochemical science. Four points should be discussed: We have to select our sites more thoroughly. We need better data curation. We should think about 'forgetting' some of the older datasets. We have responsibility for the results of integration studies. ad 1: We had to learn during the past years that the EC is not applicable in all terrains. Slope and footprint problems are widespread and sites have to be critically scrutinized before being sure that we submit valuable ecological information. This is time consuming and may be frustrating since we have to accept that we had sometimes invested lots of work and money for building a flux tower at a site that is not suitable for the method. Nevertheless, a clear site quality policy should be developed among infrastructures and integrating activities. ad 2: In some cases it has turned out that the information about different steps leading from the raw data to a number in integrated scientific papers has been lost. This is a big challenge to research infrastructures that should develop common rules for data curation to increase trust in integration activities. ad 3: In the first approach Fluxnet left the responsibility for site and data quality to the site PI and accepted more or less all data submitted. Further approaches and in particular long-term infrastructures have to develop strategies to reject (or at least flag) data from sites that are prone by terrain problems. This includes that in future integration studies we should stop using some of the datasets from the 'wild old times' when we did not know better. ad4: We need a strategy to communicate with data users that are far away from practical

  2. Adiabatic approximation for the Rabi model with broken inversion symmetry

    NASA Astrophysics Data System (ADS)

    Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi

    2017-01-01

    We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.

  3. The relationship between critical speed and the respiratory compensation point: Coincidence or equivalence.

    PubMed

    Broxterman, R M; Ade, C J; Craig, J C; Wilcox, S L; Schlup, S J; Barstow, T J

    2015-01-01

    It has previously been suggested that the respiratory compensation point (RCP) and critical speed (CS) parameters are equivalent and, therefore, like CS, RCP demarcates the boundary between the heavy- and severe-intensity domains. However, these findings are equivocal and therefore must be interpreted cautiously. Thus, we examined the relationship between CS and RCP across a wide range of subject fitness levels, in an attempt to determine if CS and RCP are equivalent. Forty men and 30 women (age: 23.2 ± 2.5 year, height: 174 ± 10 cm, body mass: 74.1 ± 15.7 kg) completed an incremental and four constant-speed protocols on a treadmill. RCP was determined as the point at which the minute ventilation increased disproportionately to CO2 production and the end-tidal CO2 partial pressure began to decrease. CS was determined from the constant-speed protocols using the linearized 1·time(-1) model. CS and RCP, expressed as speed or metabolic rate, were not significantly different (11.7 ± 2.3 km·h(-1) vs. 11.5 ± 2.3 km·h(-1), p = 0.208; 2.88 ± 0.80 l·min(-1) vs. 2.83 ± 0.72 l·min(-1), p = 0.293) and were significantly correlated (r(2) = 0.52, p < 0.0001; r(2) = 0.74, p < 0.0001, respectively). However, there was a high degree of variability between the parameters. The findings of the current study indicate that, while on average CS and RCP were not different, the high degree of variability between these parameters does not permit accurate estimation of one from the other variable and suggests that these parameters may not be physiologically equivalent.

  4. Is U3Ni3Sn4 best described as near a quantum critical point?

    SciTech Connect

    Booth, C.H.; Shlyk, L.; Nenkov, K.; Huber, J.G.; De Long, L.E.

    2003-04-08

    Although most known non-Fermi liquid (NFL) materials are structurally or chemically disordered, the role of this disorder remains unclear. In particular, very few systems have been discovered that may be stoichiometric and well ordered. To test whether U{sub 3}Ni{sub 3}Sn{sub 4} belongs in this latter class, we present measurements of the x-ray absorption fine structure (XAFS) of polycrystalline and single-crystal U{sub 3}Ni{sub 3}Sn{sub 4} samples that are consistent with no measurable local atomic disorder. We also present temperature-dependent specific heat data in applied magnetic fields as high as 8 T that show features that are inconsistent with the antiferromagnetic Griffiths' phase model, but do support the conclusion that a Fermi liquid/NFL crossover temperature increases with applied field. These results are inconsistent with theoretical explanations that require strong disorder effects, but do support the view that U{sub 3}Ni{sub 3}Sn{sub 4} is a stoichoiometric, ordered material that exhibits NFL behavior, and is best described as being near an antiferromagnetic quantum critical point.

  5. Nematic quantum critical point without magnetism in FeSe1−xSx superconductors

    PubMed Central

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-01-01

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1−xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near x≈0.17, the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1−xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity. PMID:27382157

  6. Critical tipping point distinguishing two types of transitions in modular network structures

    NASA Astrophysics Data System (ADS)

    Shai, Saray; Kenett, Dror Y.; Kenett, Yoed N.; Faust, Miriam; Dobson, Simon; Havlin, Shlomo

    2015-12-01

    Modularity is a key organizing principle in real-world large-scale complex networks. The relatively sparse interactions between modules are critical to the functionality of the system and are often the first to fail. We model such failures as site percolation targeting interconnected nodes, those connecting between modules. We find, using percolation theory and simulations, that they lead to a "tipping point" between two distinct regimes. In one regime, removal of interconnected nodes fragments the modules internally and causes the system to collapse. In contrast, in the other regime, while only attacking a small fraction of nodes, the modules remain but become disconnected, breaking the entire system. We show that networks with broader degree distribution might be highly vulnerable to such attacks since only few nodes are needed to interconnect the modules, consequently putting the entire system at high risk. Our model has the potential to shed light on many real-world phenomena, and we briefly consider its implications on recent advances in the understanding of several neurocognitive processes and diseases.

  7. Liquid-liquid critical point in a simple analytical model of water

    NASA Astrophysics Data System (ADS)

    Urbic, Tomaz

    2016-10-01

    A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.

  8. Cadmium and lead residue control in a hazard analysis and critical control point (HACCP) environment.

    PubMed

    Pagan-Rodríguez, Doritza; O'Keefe, Margaret; Deyrup, Cindy; Zervos, Penny; Walker, Harry; Thaler, Alice

    2007-02-21

    In 2003-2004, the U.S. Department of Agriculture Food Safety and Inspection Service (FSIS) conducted an exploratory assessment to determine the occurrence and levels of cadmium and lead in randomly collected samples of kidney, liver, and muscle tissues of mature chickens, boars/stags, dairy cows, and heifers. The data generated in the study were qualitatively compared to data that FSIS gathered in a 1985-1986 study in order to identify trends in the levels of cadmium and lead in meat and poultry products. The exploratory assessment was necessary to verify that Hazard Analysis and Critical Control Point plans and efforts to control exposure to these heavy metals are effective and result in products that meet U.S. export requirements. A comparison of data from the two FSIS studies suggests that the incidence and levels of cadmium and lead in different slaughter classes have remained stable since the first study was conducted in 1985-1986. This study was conducted to fulfill FSIS mandate to ensure that meat, poultry, and egg products entering commerce in the United States are free of adulterants, including elevated levels of environmental contaminants such as cadmium and lead.

  9. Quantum anomalous Hall effect with field-tunable Chern number near Z2 topological critical point

    NASA Astrophysics Data System (ADS)

    Duong, Le Quy; Lin, Hsin; Tsai, Wei-Feng; Feng, Yuan Ping

    We study the practicability of achieving quantum anomalous Hall (QAH) effect with field-tunable Chern number in a magnetically doped, topologically trivial insulating thin film. Specifically in a candidate material, TlBi(S1-δSeδ)2, we demonstrate that the QAH phases with different Chern numbers can be achieved by means of tuning the exchange field strength or the sample thickness near the Z2 topological critical point. Our physics scenario successfully reduces the necessary exchange coupling strength for a targeted Chern number. This QAH mechanism differs from the traditional QAH picture with a magnetic topological insulating thin film, where the ``surface'' states must involve and sometimes complicate the realization issue. Furthermore, we find that a given Chern number can also be tuned by a perpendicular electric field, which naturally occurs when a substrate is present. High-Chern number QAH phase obtained from magnetically doped topological crystalline insulator thin films will also be discussed. Support by the Singapore National Research Foundation under NRF Award No. NRF-NRFF2013-03 is acknowledged.

  10. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors

    NASA Astrophysics Data System (ADS)

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-01

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near ≈0.17, the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  11. Influence of pedal cadence on the respiratory compensation point and its relation to critical power.

    PubMed

    Broxterman, R M; Ade, C J; Barker, T; Barstow, T J

    2015-03-01

    It is not known if the respiratory compensation point (RCP) is a distinct work rate (Watts (W)) or metabolic rate V̇(O2) and if the RCP is mechanistically related to critical power (CP). To examine these relationships, 10 collegiate men athletes performed cycling incremental and constant-power tests at 60 and 100 rpm to determine RCP and CP. RCP work rate was significantly (p≤0.05) lower for 100 than 60 rpm (197±24 W vs. 222±24 W), while RCP V̇(O2) was not significantly different (3.00±0.33 l min(-1) vs. 3.12±0.41 l min(-1)). CP at 60 rpm (214±51 W; V̇(O2): 3.01±0.69 l min(-1)) and 100 rpm (196±46 W; V̇(O2): 2.95±0.54 l min(-1)) were not significantly different from RCP. However, RCP and CP were not significantly correlated. These findings demonstrate that RCP represents a distinct metabolic rate, which can be achieved at different power outputs, but that RCP and CP are not equivalent parameters and should not, therefore, be used synonymously.

  12. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.

    PubMed

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-19

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  13. U{sup BF}(5) to SU{sup BF}(3) shape phase transition in odd nuclei for j=1/2, 3/2, and 5/2 orbits: The role of the odd particle at the critical point

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Fortunato, L.; Vitturi, A.

    2009-01-15

    We investigate the phase transition in odd nuclei within the Interacting Boson Fermion Model in correspondence with the transition from spherical to stable axially deformed shape. The odd particle is assumed to be moving in the single-particle orbitals with angular momenta j=1/2,3/2,5/2 with a boson-fermion Hamiltonian that leads to the occurrence of the SU{sup BF}(3) boson-fermion symmetry when the boson part approaches the SU(3) condition. Both energy spectra and electromagnetic transitions show characteristic patterns similar to those displayed by the even nuclei at the corresponding critical point. The role of the additional particle in characterizing the properties of the critical points in finite quantal systems is investigated by resorting to the formalism based on the intrinsic frame.

  14. Critical-point universality in adsorption: The effect of charcoal on a mixture of isobutyric acid and water near the consolute point

    NASA Astrophysics Data System (ADS)

    Giesy, Timothy J.; Chou, Alan S.; McFeeters, Robert L.; Baird, James K.; Barlow, Douglas A.

    2011-06-01

    The mixture of isobutyric acid and water has a consolute point at a temperature of 25.75 °C and mole fraction 0.1148 isobutyric acid. When charcoal is added to this mixture, the concentration of isobutyric acid is reduced by adsorption. We have measured the action of charcoal on solutions of isobutyric acid and water as a function of isobutyric acid mole fraction at temperatures of 25.85 and 32.50 °C. At the higher temperature, the specific adsorption density (y2α/m) satisfies the Freundlich equation (y2α/m)=KX21/n, where y2α is the mass of isobutyric acid adsorbed, m is the mass of charcoal, X2 is the equilibrium mole fraction of isobutyric acid, n is the Freundlich index, and K=K(T) is an amplitude that depends upon the temperature T. At 25.85 °C, a critical endpoint is located at an isobutyric acid mole fraction X2ce=0.09. When compared with the Freundlich equation at this temperature, a plot of the specific adsorption density as a function of X2 in the vicinity of the critical-endpoint composition assumes a shape which is reminiscent of the derivative of a Dirac delta function. Using critical-point scaling theory, we show that this divergent pattern is consistent with the principle of critical point universality.

  15. Critical-point universality in adsorption: the effect of charcoal on a mixture of isobutyric acid and water near the consolute point.

    PubMed

    Giesy, Timothy J; Chou, Alan S; McFeeters, Robert L; Baird, James K; Barlow, Douglas A

    2011-06-01

    The mixture of isobutyric acid and water has a consolute point at a temperature of 25.75 °C and mole fraction 0.1148 isobutyric acid. When charcoal is added to this mixture, the concentration of isobutyric acid is reduced by adsorption. We have measured the action of charcoal on solutions of isobutyric acid and water as a function of isobutyric acid mole fraction at temperatures of 25.85 and 32.50 °C. At the higher temperature, the specific adsorption density (y(2)(α)/m) satisfies the Freundlich equation (y(2)(α)/m)=KX(2)(1/n), where y(2)(α) is the mass of isobutyric acid adsorbed, m is the mass of charcoal, X(2) is the equilibrium mole fraction of isobutyric acid, n is the Freundlich index, and K=K(T) is an amplitude that depends upon the temperature T. At 25.85 °C, a critical endpoint is located at an isobutyric acid mole fraction X(2)(ce)=0.09. When compared with the Freundlich equation at this temperature, a plot of the specific adsorption density as a function of X(2) in the vicinity of the critical-endpoint composition assumes a shape which is reminiscent of the derivative of a Dirac delta function. Using critical-point scaling theory, we show that this divergent pattern is consistent with the principle of critical point universality.

  16. Determination of gas-phase nucleophilicities and electrophilicities using B⋯HX bond critical point properties of AIM analysis

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Roohi, Hosein; Habibi, Mostafa; Hasannejad, Mehdi

    2006-09-01

    The values of nucleophilicity and electrophilicity have been established in gas phase for some nucleophiles (B = CH 3CN, CO, H 2O, H 2S, HCN, N 2, NH 3, PH 3) and electrophiles (HX = HF, HCl, HBr, HCN HCF 3) from properties of bond critical points of atoms in molecules (AIM) analysis. On the basis of the meaningful relationship, the recent method has been applied to electron density ( ρ), Laplacian of electron density (∇ρ2), and electronic kinetic energy density ( G), of B⋯HX bond critical point. AIM analysis has been performed on the obtained wave functions at MP2/6-311++G(d,p) level of theory. The correlation between averaged calculated values of nucleophilicity (or electrophilicity), using different properties of B⋯HX bond critical points, and complexation energies (Δ Ecomp) is satisfactory. The best correlation coefficient between nucleophilicity and Δ Ecomp is related to ρ values of bond critical points. But, the best correlation coefficient between electrophilicity and Δ Ecomp is allied to ∇ρ2 and G values of bond critical points.

  17. Recognizing Point of View: A Critical Reading Skill in the Social Studies.

    ERIC Educational Resources Information Center

    Fleming, Dan B.; Weber, Larry J.

    1980-01-01

    Stresses the importance of critical reading skills for high school students in social studies courses. Suggests that educators develop social studies materials dealing with critical reading and that they undertake research to develop better methods of instruction in critical reading. (DB)

  18. Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Binder, Kurt; Wang, Jian-Sheng

    1989-04-01

    Various thermal equilibrium and nonequilibrium phase transitions exist where the correlation lengths in different lattice directions diverge with different exponents v ‖, v ⊥: uniaxial Lifshitz points, the Kawasaki spin exchange model driven by an electric field, etc. An extension of finite-size scaling concepts to such anisotropic situations is proposed, including a discussion of (generalized) rectangular geometries, with linear dimension L ‖ in the special direction and linear dimensions L ⊥ in all other directions. The related shape effects for L ‖≠ L ⊥ but isotropic critical points are also discussed. Particular attention is paid to the case where the generalized hyperscaling relation v ‖+( d-1) v ⊥=γ+2 β does not hold. As a test of these ideas, a Monte Carlo simulation study for shape effects at isotropic critical point in the two-dimensional Ising model is presented, considering subsystems of a 1024x1024 square lattice at criticality.

  19. Magnetic Signatures of Quantum Critical Points of the Ferrimagnetic Mixed Spin-(1/2, S) Heisenberg Chains at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Strečka, Jozef; Verkholyak, Taras

    2016-10-01

    Magnetic properties of the ferrimagnetic mixed spin-(1/2,S) Heisenberg chains are examined using quantum Monte Carlo simulations for two different quantum spin numbers S=1 and 3/2. The calculated magnetization curves at finite temperatures are confronted with zero-temperature magnetization data obtained within the density matrix renormalization group method, which imply an existence of two quantum critical points determining a breakdown of the gapped Lieb-Mattis ferrimagnetic phase and Tomonaga-Luttinger spin-liquid phase, respectively. While a square root behavior of the magnetization accompanying each quantum critical point is gradually smoothed upon rising temperature, the susceptibility and isothermal entropy change data at low temperatures provide a stronger evidence of the zero-temperature quantum critical points through marked local maxima and minima, respectively.

  20. Monte Carlo investigation of critical properties of the Landau point of a biaxial liquid-crystal system.

    PubMed

    Ghoshal, Nababrata; Shabnam, Sabana; DasGupta, Sudeshna; Roy, Soumen Kumar

    2016-05-01

    Extensive Monte Carlo simulations are performed to investigate the critical properties of a special singular point usually known as the Landau point. The singular behavior is studied in the case when the order parameter is a tensor of rank 2. Such an order parameter is associated with a nematic-liquid-crystal phase. A three-dimensional lattice dispersion model that exhibits a direct biaxial nematic-to-isotropic phase transition at the Landau point is thus chosen for the present study. Finite-size scaling and cumulant methods are used to obtain precise values of the critical exponent ν=0.713(4), the ratio γ/ν=1.85(1), and the fourth-order critical Binder cumulant U^{*}=0.6360(1). Estimated values of the exponents are in good agreement with renormalization-group predictions.

  1. Accuracy of point-of-care blood glucose measurements in critically ill patients in shock.

    PubMed

    Garingarao, Carlo Jan Pati-An; Buenaluz-Sedurante, Myrna; Jimeno, Cecilia Alegado

    2014-09-01

    A widely used method in monitoring glycemic status of ICU patients is point-of-care (POC) monitoring devices. A possible limitation to this method is altered peripheral blood flow in patients in shock, which may result in over/underestimations of their true glycemic status. This study aims to determine the accuracy of blood glucose measurements with a POC meter compared to laboratory methods in critically ill patients in shock. POC blood glucose was measured with a glucose-1-dehydrogenase-based reflectometric meter. The reference method was venous plasma glucose measured by a clinical chemistry analyzer (glucose oxidase-based). Outcomes assessed were concordance to ISO 15197:2003 minimum accuracy criteria for glucose meters, bias in glucose measurements obtained by the 2 methods using Bland-Altman analysis, and clinical accuracy through modified error grid analysis. A total of 186 paired glucose measurements were obtained. ISO 2003 accuracy criteria were met in 95.7% and 79.8% of POC glucose values in the normotensive and hypotensive group, respectively. Mean bias for the normotensive group was -12.4 mg/dL, while mean bias in the hypotensive group was -34.9 mg/dL. POC glucose measurements within the target zone for clinical accuracy were 90.2% and 79.8% for the normotensive and hypotensive group, respectively. POC blood glucose measurements were significantly less accurate in the hypotensive subgroup of ICU patients compared to the normotensive group. We recommend a lower threshold in confirming POC blood glucose with a central laboratory method if clinically incompatible. In light of recently updated accuracy standards, we also recommend alternative methods of glucose monitoring for the ICU population as a whole regardless of blood pressure status.

  2. Aqueous Chemistry in the Diamond Anvil Cell up to and Beyond the Critical Point of Water

    SciTech Connect

    Bassett, William A.; Chou, I-Ming; Anderson, Alan J.; Mayanovic, Robert

    2008-08-28

    The hydrothermal diamond anvil cell (HDAC) has been developed for the study of fluids and their interactions with other phases. It is capable of pressures up to 10 GPa and temperatures from -190 C to 1200 C. It has found application in studies of equations of state of fluids, reactions between fluids and solids as well as fluids and melts, hydration and dehydration of hydrous solids under P{sub H2O}, fractionation of species between fluids and solids as well as fluids and melts, the effect of P{sub H2O} on melting of silicates, structures of ions and clathrates in solution, preservation of hosts of fluid inclusions at high temperatures, and reactions in clathrates and other organic materials. Visual, spectroscopic, and X-ray methods are used to analyze samples by taking advantage of the exceptional transparency of the diamond anvils. Examples of successful apphcations of the HDAC include the equation of state (EOS) of water, stability of the various stages of hydration of montmorillonite and calcium carbonate, leaching of elements from zircon, the effect of P{sub H2O} on the melting of albite, speciation and structures of Sc, Fe, Cu, Zn, Y, La, Yb, and Br in solution, stability of methane hydrates and Ca(OH){sub 2}, identifying a new H{sub 2}O ice form and sll of methane hydrate. The description of diamond cell configuration, analytical methods, and examples of applications provide evidence of the utility of the technique for many studies of fluids at temperatures and pressures up to and beyond the critical point of water.

  3. Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium.

    PubMed

    Frazier, D W; Wolf, P D; Wharton, J M; Tang, A S; Smith, W M; Ideker, R E

    1989-03-01

    The hypothesis was tested that the field of a premature (S2) stimulus, interacting with relatively refractory tissue, can create unidirectional block and reentry in the absence of nonuniform dispersion of recovery. Simultaneous recordings from a small region of normal right ventricular (RV) myocardium were made from 117 to 120 transmural or epicardial electrodes in 14 dogs. S1 pacing from a row of electrodes on one side of the mapped area generated parallel activation isochrones followed by uniform parallel isorecovery lines. Cathodal S2 shocks of 25 to 250 V lasting 3 ms were delivered from a mesh electrode along one side of the mapped area to scan the recovery period, creating isogradient electric field lines perpendicular to the isorecovery lines. Circus reentry was created following S2 stimulation; initial conduction was distant from the S2 site and spread towards more refractory tissue. Reentry was clockwise for right S1 (near the septum) with top S2 (near the pulmonary valve) and for left S1 with bottom S2; and counterclockwise for right S1 with bottom S2 and left S1 with top S2. The center of the reentrant circuit for all S2 voltages and coupling intervals occurred at potential gradients of 5.1 +/- 0.6 V/cm (mean +/- standard deviation) and at preshock intervals 1 +/- 3 ms longer than refractory periods determined locally for a 2 mA stimulus. Thus, when S2 field strengths and tissue refractoriness are uniformally dispersed at an angle to each other, circus reentry occurs around a "critical point" where an S2 field of approximately 5 V/cm intersects tissue approximately at the end of its refractory period.

  4. Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery.

    PubMed

    Miranda, Antonia; Millán, Mónica; Caraballo, Isidoro

    2006-03-27

    The knowledge of the percolation thresholds of a system results in a clear improvement of the design of controlled release dosage forms such as inert matrices. Despite hydrophilic matrices are one of the most used controlled delivery systems in the world, but actuality, the mechanisms of drug release from these systems continue to be a matter of debate nowadays. The objective of the present paper is to apply the percolation theory to study the release and hydration rate of hydrophilic matrices. Matrix tablets have been prepared using KCl as a drug model and HPMC K4M as matrix-forming material, employing five different excipient/drug particle size ratios (ranging from 0.42 to 2.33). The formulations studied containing a drug loading in the range of 20-90% (w/w). Dissolution studies were carried out using the paddle method and the water uptake measurements were performed using a modified Enslin apparatus. In order to estimate the percolation threshold, the behaviour of the kinetic parameters with respect to the volumetric fraction of each component at time zero, was studied. The percolation theory has been applied for the first time to the study of matrix type controlled delivery systems. The application of this theory allowed to explain changes in the release and hydration kinetics of these matrices. The critical points observed in dissolution and water uptake studies can be attributed to the excipient percolation threshold, being this threshold one of the main factors governing the gel layer formation and consequently, the drug release control from hydrophilic matrices.

  5. Preliminary study on hazards and critical control points of kokoro, a Nigerian indigenous fermented maize snack.

    PubMed

    Oranusi, S; Dahunsi, S O

    2015-01-01

    The microbial and proximate composition of an indigenous snack from fermented maize was investigated. Critical control points of milling the raw materials, fermentation pH, processing temperature and time intervals during holdings in processing and storage were evaluated with a view to optimizing the product. The mean total aerobic plate count (TAPC) log10 values for samples of the finished products range from 2.07 ± 0.50 to 4.36 ± 0.10 cfu/g. Mean fungi count log10 was 2.00 ± 0.00 to 3.50 ± 0.50 while mean coliform count 1.04 ± 0.10 log10 cfu/g was detected in one of the sales outlets investigated. Bacterial and fungal species were isolated belonging to the genera Aspergillus, Rhizopus, Penicillium, Fusarium, Cephalosporium, Alternaria, Bacillus, Klebsiella, Staphylococcus, Lactobacillus, Pseudomonas, Proteus and Enterobacter. The moisture content of the samples ranged from 3.41 to 6.75%; fat content was 19.68 to 32.59%; fiber content was 1.84 to 2.78% while protein ranged from 6.76 to 9.23%. The ash and carbohydrate contents ranged from 1.97 to 2.31% and 49.21 to 61.96%, respectively. Based on the specifications by International Commission for Microbiological Specification for Foods (ICMSF), the TAPC counts of the finished products remained at low levels. However, presence of coliforms could prejudice the hygienic quality of these types of products hence, the need for quality control.

  6. Critical Watersheds: Climate Change, Tipping Points, and Energy-Water Impacts

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Brown, M.; Coon, E.; Linn, R.; McDowell, N. G.; Painter, S. L.; Xu, C.

    2014-12-01

    Climate change, extreme climate events, and climate-induced disturbances will have a substantial and detrimental impact on terrestrial ecosystems. How ecosystems respond to these impacts will, in turn, have a significant effect on the quantity, quality, and timing of water supply for energy security, agriculture, industry, and municipal use. As a community, we lack sufficient quantitative and mechanistic understanding of the complex interplay between climate extremes (e.g., drought, floods), ecosystem dynamics (e.g., vegetation succession), and disruptive events (e.g., wildfire) to assess ecosystem vulnerabilities and to design mitigation strategies that minimize or prevent catastrophic ecosystem impacts. Through a combination of experimental and observational science and modeling, we are developing a unique multi-physics ecohydrologic framework for understanding and quantifying feedbacks between novel climate and extremes, surface and subsurface hydrology, ecosystem dynamics, and disruptive events in critical watersheds. The simulation capability integrates and advances coupled surface-subsurface hydrology from the Advanced Terrestrial Simulator (ATS), dynamic vegetation succession from the Ecosystem Demography (ED) model, and QUICFIRE, a novel wildfire behavior model developed from the FIRETEC platform. These advances are expected to make extensive contributions to the literature and to earth system modeling. The framework is designed to predict, quantify, and mitigate the impacts of climate change on vulnerable watersheds, with a focus on the US Mountain West and the energy-water nexus. This emerging capability is used to identify tipping points in watershed ecosystems, quantify impacts on downstream users, and formally evaluate mitigation efforts including forest (e.g., thinning, prescribed burns) and watershed (e.g., slope stabilization). The framework is being trained, validated, and demonstrated using field observations and remote data collections in the

  7. Nonequilibrium phase transitions and a nonequilibrium critical point from anti-de Sitter space and conformal field theory correspondence.

    PubMed

    Nakamura, Shin

    2012-09-21

    We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly interacting (3+1)-dimensional N = 4 large-N(c) SU(N(c)) supersymmetric Yang-Mills theory with a single flavor of fundamental N = 2 hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.

  8. Critical points of quadratic renormalizations of random variables and phase transitions of disordered polymer models on diamond lattices.

    PubMed

    Monthus, Cécile; Garel, Thomas

    2008-02-01

    We study the wetting transition and the directed polymer delocalization transition on diamond hierarchical lattices. These two phase transitions with frozen disorder correspond to the critical points of quadratic renormalizations of the partition function. (These exact renormalizations on diamond lattices can also be considered as approximate Migdal-Kadanoff renormalizations for hypercubic lattices.) In terms of the rescaled partition function z=Z/Z(typ) , we find that the critical point corresponds to a fixed point distribution with a power-law tail P(c)(z) ~ Phi(ln z)/z(1+mu) as z-->+infinity [up to some subleading logarithmic correction Phi(ln z)], so that all moments z(n) with n>mu diverge. For the wetting transition, the first moment diverges z=+infinity (case 0critical temperature is strictly below the annealed temperature T(c)critical temperature is strictly below the exactly known transition temperature T2 of the second moment. We then consider the correlation length exponent nu : the linearized renormalization around the fixed point distribution coincides with the transfer matrix describing a directed polymer on the Cayley tree, but the random weights determined by the fixed point distribution P(c)(z) are broadly distributed. This induces some changes in the traveling wave solutions with respect to the usual case of more narrow distributions.

  9. Dynamical symmetries for fermions

    SciTech Connect

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E{sub 2}) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs.

  10. Widom line and the liquid-liquid critical point for the TIP4P/2005 water model.

    PubMed

    Abascal, José L F; Vega, Carlos

    2010-12-21

    The Widom line and the liquid-liquid critical point of water in the deeply supercooled region are investigated via computer simulation of the TIP4P/2005 model. The Widom line has been calculated as the locus of compressibility maxima. It is quite close to the experimental homogeneous nucleation line and, in the region studied, it is almost parallel to the curve of temperatures of maximum density at fixed pressure. The critical temperature is determined by examining which isotherm has a region with flat slope. An interpolation in the Widom line gives the rest of the critical parameters. The computed critical parameters are T(c)=193 K, p(c)=1350 bar, and ρ(c)=1.012 g/cm(3). Given the performance of the model for the anomalous properties of water and for the properties of ice phases, the calculated critical parameters are probably close to those of real water.

  11. Critical fluctuations and noncritical relaxations of the nitrobenzene isooctane system near its consolute point

    NASA Astrophysics Data System (ADS)

    Khabibullaev, P. K.; Mirzaev, S. Z.; Kaatze, U.

    2008-06-01

    Ultrasonic attenuation spectra between 20 kHz and 3 GHz of the nitrobenzene-isooctane mixture of critical composition have been analyzed to show that they contain noncritical relaxation terms in addition to the critical term. The parameter values of the noncritical contributions obtained thereby are used in a re-evaluation of smallband attenuation data from the literature. These data, measured at a large number of temperatures near the critical, are most suitable for the determination of the scaling function in the critical dynamics. The procedure allows to verify the empirical scaling function of the Bhattacharjee-Ferrell dynamic scaling theory without an adjustable parameter.

  12. Symmetry matters.

    PubMed

    Moubayidin, Laila; Østergaard, Lars

    2015-09-01

    985 I. 985 II. 986 III. 987 IV. 988 V. 989 989 References 989 SUMMARY: The development of multicellular organisms depends on correct establishment of symmetry both at the whole-body scale and within individual tissues and organs. Setting up planes of symmetry must rely on communication between cells that are located at a distance from each other within the organism, presumably via mobile morphogenic signals. Although symmetry in nature has fascinated scientists for centuries, it is only now that molecular data to unravel mechanisms of symmetry establishment are beginning to emerge. As an example we describe the genetic and hormonal interactions leading to an unusual bilateral-to-radial symmetry transition of an organ in order to promote reproduction.

  13. Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model.

    PubMed

    da Silva, Roberto; Alves, Nelson; Drugowich de Felício, Jose Roberto

    2013-01-01

    In this work, we study the critical behavior of second-order points, specifically the Lifshitz point (LP) of a three-dimensional Ising model with axial competing interactions [the axial-next-nearest-neighbor Ising (ANNNI) model], using time-dependent Monte Carlo simulations. We use a recently developed technique that helps us localize the critical temperature corresponding to the best power law for magnetization decay over time: (m(0)=1)~t(-β/νz), which is expected of simulations starting from initially ordered states. We obtain original results for the dynamic critical exponent z, evaluated from the behavior of the ratio F(2)(t)=(m(0)=0)/(2)(m(0)=1)~t(3/z), along the critical line up to the LP. We explore all the critical exponents of the LP in detail, including the dynamic critical exponent θ that characterizes the initial slip of magnetization and the global persistence exponent θ(g) associated with the probability P(t) that magnetization keeps its signal up to time t. Our estimates for the dynamic critical exponents at the Lifshitz point are z=2.34(2) and θ(g)=0.336(4), values that are very different from those of the three-dimensional Ising model (the ANNNI model without the next-nearest-neighbor interactions at the z axis, i.e., J(2)=0), i.e., z≈2.07 and θ(g)≈0.38. We also present estimates for the static critical exponents β and ν, obtained from extended time-dependent scaling relations. Our results for static exponents are in good agreement with previous works.

  14. Finite size scaling for the many-body-localization transition: finite-size-pseudo-critical points of individual eigenstates

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2016-12-01

    To understand the finite-size-scaling properties of phases transitions in classical and quantum models in the presence of quenched disorder, it has proven to be fruitful to introduce the notion of a finite-size-pseudo-critical point in each disordered sample and to analyze its sample-to-sample fluctuations as a function of the size. For the many-body-localization transition, where very strong eigenstate-to-eigenstate fluctuations have been numerically reported even within a given disordered sample at a given energy density (Yu, Luitz and Clark 2016 arXiv:1606.01260 and Khemani, Lim, Sheng and Huse 2016 arXiv:1607.05756), it seems thus useful to introduce the notion of a finite-size-pseudo-critical point for each individual eigenstate and to study its eigenstate-to-eigenstate fluctuations governed by the correlation length exponent ν. The scaling properties of critical eigenstates are also expected to appear much more clearly if one considers each eigenstate at its finite-size-pseudo-critical point, where it is ‘truly critical’, while standard averages over eigenstates and samples in the critical region actually see a mixture of states that are effectively either localized or delocalized.

  15. Hazard analysis and critical control point systems in the United States Department of Agriculture regulatory policy.

    PubMed

    Billy, T J; Wachsmuth, I K

    1997-08-01

    Recent outbreaks of foodborne illness and studies by expert groups have established the need for fundamental change in the United States meat and poultry inspection programme to reduce the risk of foodborne illness. The Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA) has embarked on a broad effort to bring about such change, with particular emphasis on the reduction of pathogenic micro-organisms in raw meat and poultry products. The publication on 25 July 1996 of the Final Rule on pathogen reduction and hazard analysis and critical control point (HACCP) systems was a major milestone in the FSIS strategy for change. The Final Rule provides a framework for change and clarifies the respective roles of industry and government in ensuring the safety of meat and poultry products. With the implementation of this Final Rule underway, the FSIS has been exploring ways in which slaughter inspection carried out under an HACCP-based system can be changed so that food safety risks are addressed more adequately and the allocation of inspection resources is improved further. In addition, the FSIS is broadening the focus of food safety activities to extend beyond slaughter and processing plants by working with industry, academia and other government agencies. Such co-operation should lead to the development of measures to improve food safety before animals reach the slaughter plant and after products leave the inspected establishment for distribution to the retail level. For the future, the FSIS believes that quantitative risk assessments will be at the core of food safety activities. Risk assessments provide the most effective means of identifying how specific pathogens and other hazards may be encountered throughout the farm-to-table chain and of measuring the potential impact of various interventions. In addition, these assessments will be used in the development and evaluation of HACCP systems. The FSIS is currently conducting a

  16. Test of phi(sup 2) model predictions near the (sup 3)He liquid-gas critical point

    NASA Technical Reports Server (NTRS)

    Barmatz, M.; Zhong, F.; Hahn, I.

    2000-01-01

    NASA is supporting the development of an experiment called MISTE (Microgravity Scaling Theory Experiment) for future International Space Station mission. The main objective of this flight experiment is to perform in-situ PVT, heat capacity at constant volume, C(sub v) and chi(sub tau), measurements in the asymptotic region near the (sup 3)He liquid-gas critical point.

  17. Scaling of the decoherence factor of a qubit coupled to a spin chain driven across quantum critical points

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Divakaran, Uma; Dutta, Amit

    2012-07-01

    We study the scaling of the decoherence factor of a qubit (spin-1/2) using the central spin model in which the central spin (qubit) is globally coupled to a transverse XY spin chain. The aim here is to study the nonequilibrium generation of decoherence when the spin chain is driven across (along) quantum critical points (lines) and derive the scaling of the decoherence factor in terms of the driving rate and some of the exponents associated with the quantum critical points. Our studies show that the scaling of the logarithm of the decoherence factor is identical to that of the defect density in the final state of the spin chain following a quench across isolated quantum critical points for both linear and nonlinear variations of a parameter, even if the defect density may not satisfy the standard Kibble-Zurek scaling. However, one finds an interesting deviation when the spin chain is driven along a critical line. Our analytical predictions are in complete agreement with numerical results. Our study, though limited to integrable two-level systems, points to the existence of a universality in the scaling of the decoherence factor which is not necessarily identical to the scaling of the defect density.

  18. Dynamical symmetries in Brans-Dicke cosmology

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, G.; Barrow, John D.; Basilakos, S.; Giacomini, A.; Paliathanasis, A.

    2017-01-01

    In the context of generalized Brans-Dicke cosmology we use the Killing tensors of the minisuperspace in order to determine the unspecified potential of a scalar-tensor gravity theory. Specifically, based on the existence of contact symmetries of the field equations, we find four types of potentials which provide exactly integrable dynamical systems. We investigate the dynamical properties of these potentials by using a critical point analysis and we find solutions which lead to cosmic acceleration and under specific conditions we can have de-Sitter points as stable late-time attractors.

  19. Critical points of the O(n) loop model on the martini and the 3-12 lattices

    NASA Astrophysics Data System (ADS)

    Ding, Chengxiang; Fu, Zhe; Guo, Wenan

    2012-06-01

    We derive the critical line of the O(n) loop model on the martini lattice as a function of the loop weight n basing on the critical points on the honeycomb lattice conjectured by Nienhuis [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.49.1062 49, 1062 (1982)]. In the limit n→0 we prove the connective constant μ=1.7505645579⋯ of self-avoiding walks on the martini lattice. A finite-size scaling analysis based on transfer matrix calculations is also performed. The numerical results coincide with the theoretical predictions with a very high accuracy. Using similar numerical methods, we also study the O(n) loop model on the 3-12 lattice. We obtain similarly precise agreement with the critical points given by Batchelor [J. Stat. Phys.JSTPBS0022-471510.1023/A:1023065215233 92, 1203 (1998)].

  20. Reaction kinetics and critical phenomena: rates of some first order gas evolution reactions in binary solvents with a consolute point.

    PubMed

    Kim, Yeong Woo; Baird, James K

    2005-06-02

    We have measured the rate of carbon dioxide evolution in the aniline catalyzed decomposition of acetone dicarboxylic acid in a mixture of isobutyric acid + water near its consolute point. Within a temperature interval of 1 degrees C, which included the critical solution temperature, the first-order rate constant oscillated in magnitude by about 10% as it passed through three complete cycles of slowing down followed by speeding up. Whereas we can find no ready explanation for the speeding up, we suggest that, because the mixture contained no inert components, the slowing down should belong to the Griffiths-Wheeler class of strong critical effects [Phys. Rev. A 1970, 2, 1047]. As a check on this conclusion, we have measured the rate of the SN1 decomposition of benzene diazonium tetrafluoroborate in 2-butoxyethanol + water near the lower critical solution temperature and also the rate of the acid-catalyzed decomposition of ethyl diazoacetate in isobutyric acid + water near the upper critical solution temperature. Both of these reactions evolve nitrogen. In the first reaction, 2-butoxyethanol is inert, whereas in the second, isobutyric acid is inert. In both cases, because there was one inert component, we regarded the response of the rate constant to temperature in the critical region to be representative of the Griffiths-Wheeler class of weak critical effects. Within our accuracy of measurement of about 2% in the rate constant and about 1 mK in the temperature, we could detect no effect of the critical point on the rates of either of these reactions, suggesting that a weak effect may be too small to be seen with our experimental apparatus. The successful observation of a critical effect in the rate of decomposition of acetone dicarboxylic acid proves, however, that kinetic critical phenomena are observable in heterogeneous reactions.

  1. Ferromagnetic quantum critical point in heavy-fermion iron oxypnictide Ce(Ru(1-x)Fe(x))PO.

    PubMed

    Kitagawa, S; Ishida, K; Nakamura, T; Matoba, M; Kamihara, Y

    2012-11-30

    We have performed (31)P-NMR measurements on Ce(Ru(1-x)Fe(x))PO in order to investigate ferromagnetic (FM) quantum criticality, since a heavy-fermion (HF) ferromagnet CeRuPO with a two-dimensional structure turns into a HF paramagnet by an isovalent Fe substitution for Ru. We found that Ce(Ru(0.15)Fe(0.85))PO shows critical fluctuations down to ~0.3 K, as well as the continuous suppression of Curie temperature and the ordered moments by the Fe substitution. These experimental results suggest the presence of a FM quantum critical point (QCP) at x~0.86, which is a rare example among itinerant ferromagnets. In addition, we point out that the critical behaviors in Ce(Ru(0.15)Fe(0.85))PO share a similarity with those in YbRh(2)Si(2), where the local criticality of f electrons has been discussed. We reveal that Ce(Ru(1-x)Fe(x))PO is a new system to study FM quantum criticality in HF compounds.

  2. Critical points of the cosmic velocity field and the uncertainties in the value of the Hubble constant

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Mohayaee, Roya; Naselsky, Pavel

    2016-06-01

    The existence of critical points for the peculiar velocity field is a natural feature of the correlated vector field. These points appear at the junctions of velocity domains with different orientations of their averaged velocity vectors. Since peculiar velocities are the important cause of the scatter in the Hubble expansion rate, we propose that a more precise determination of the Hubble constant can be made by restricting analysis to a subsample of observational data containing only the zones around the critical points of the peculiar velocity field, associated with voids and saddle points. On large-scales the critical points, where the first derivative of the gravitational potential vanishes, can easily be identified using the density field and classified by the behavior of the Hessian of the gravitational potential. We use high-resolution N-body simulations to show that these regions are stable in time and hence are excellent tracers of the initial conditions. Furthermore, we show that the variance of the Hubble flow can be substantially minimized by restricting observations to the subsample of such regions of vanishing velocity instead of aiming at increasing the statistics by averaging indiscriminately using the full data sets, as is the common approach.

  3. Critical care medicine for emerging Middle East respiratory syndrome: Which point to be considered?

    PubMed

    Wiwanitkit, Viroj

    2015-09-01

    The Middle East respiratory syndrome (MERS) is a new emerging respiratory tract infection. This coronavirus infection is firstly reported from the Middle East, and it becomes threat for the global public health at present due to its existence in a remote area such as USA and Korea. The concern on the management of the patients is very important. Since most of the patients can develop severe respiratory illness and critical care management is needed, the issue on critical care for MERS is the topic to be discussed in critical medicine.

  4. Symmetries as by-products of conserved quantities

    NASA Astrophysics Data System (ADS)

    Romero-Maltrana, Diego

    2015-11-01

    There is general consensus among physicists in considering symmetries as a source of conserved quantities, a conclusion allegedly supported by Emmy Noether's theorems. Recently it has been pointed out that no arrow of explanation can be extracted from Noether's work, and there are also criticisms against the priority of particular symmetries over specific conserved quantities under Noether's ideas, but there are no general arguments against the aforementioned consensus, nor proposals promoting an explanation that leads from conserved quantities to symmetries. In this paper a general argument is built which favours conserved quantities over symmetries inasmuch as the presence of the former seems to allow (i.e. it seems to be a sufficient condition leading to) symmetrical descriptions.

  5. Contamination of absorbent paper points in clinical practice: a critical approach.

    PubMed

    Pessoa de Andrade, Larissa; Chacon de Oliveira Conde, Nikeila; Sponchiado Junior, Emilio Carlos; Franco Marques, Andre Augusto; Pereira, Juliana Vianna; Garcia, Lucas Fonseca Roberti

    2014-01-01

    This study sought to evaluate the contamination level of absorbent paper points used routinely in dental clinical practice. For this study, 60 absorbent paper points were collected and separated into 3 groups: 20 paper points from sealed commercial packages (Group 1), 20 paper points from open commercial packages in use for 30 days (Group 2), and 20 paper points from a sealed commercial package that were manipulated by the operator (Group 3). Evaluation criteria was the presence or absence of turbidity in the brain heart infusion (BHI) broth used as the culture medium. The results (Kruskal-Wallis test; significance level = 5%) demonstrated bacterial growth in most of the samples for all groups, with a statistically significant difference in Group 3 compared to Groups 1 and 2. It was concluded that inadequate manipulation of paper points by the operator caused these materials to become contaminated; in addition, the bacterial growth in absorbent paper points that are still in their commercial packages indicates the importance of sterilization before the paper points are used in clinical practice.

  6. Lorentz-Lorenz coefficient, critical point constants, and coexistence curve of 1,1-difluoroethylene.

    PubMed

    Fameli, Nicola; Balzarini, David A

    2005-11-01

    We report measurements of the Lorentz-Lorenz coefficient density dependence L(rho), the critical temperature Tc, and the critical density rho c of the fluid 1,1-difluoroethylene H2C2F2. Lorentz-Lorenz coefficient data were obtained by measuring refractive index n, and density rho of the same fluid sample independently of one another. Accurate determination of the Lorentz-Lorenz coefficient is necessary for the transformation of refractive index data into density data from optics-based experiments on critical phenomena of fluid systems done with different apparatuses, with which independent measurement of n and rho is not possible. Measurements were made along the coexistence curve of the fluid and span the density range 0.01 to 0.80 g cm(-3). The Lorentz-Lorenz coefficient results show a stronger density dependence along the coexistence curve than previously observed in other fluids, with a monotonic decrease from a density of about onward, and an overall variation of about 2.5% in the density range studied. No anomaly in the Lorentz-Lorenz function was observed near the critical density. The critical temperature is measured at Tc=(302.964+/-0.002) K (29.814 degrees C) and the measured critical density is rho c=(0.4195+/-0.0018) g cm(-3).

  7. An Elementary Course in Mathematical Symmetry.

    ERIC Educational Resources Information Center

    Rose, Bruce I.; Stafford, Robert D.

    1981-01-01

    A college course designed to teach students about the mathematics of symmetry using pieces of wallpaper and cloth designs is presented. Mathematical structures and the symmetry of graphic designs provide the starting point for instruction. (MP)

  8. Optimal Management of the Critically Ill: Anaesthesia, Monitoring, Data Capture, and Point-of-Care Technological Practices in Ovine Models of Critical Care

    PubMed Central

    Shekar, Kiran; Tung, John-Paul; Dunster, Kimble R.; Platts, David; Watts, Ryan P.; Gregory, Shaun D.; Simonova, Gabriela; McDonald, Charles; Hayes, Rylan; Bellpart, Judith; Timms, Daniel; Fung, Yoke L.; Toon, Michael; Maybauer, Marc O.; Fraser, John F.

    2014-01-01

    Animal models of critical illness are vital in biomedical research. They provide possibilities for the investigation of pathophysiological processes that may not otherwise be possible in humans. In order to be clinically applicable, the model should simulate the critical care situation realistically, including anaesthesia, monitoring, sampling, utilising appropriate personnel skill mix, and therapeutic interventions. There are limited data documenting the constitution of ideal technologically advanced large animal critical care practices and all the processes of the animal model. In this paper, we describe the procedure of animal preparation, anaesthesia induction and maintenance, physiologic monitoring, data capture, point-of-care technology, and animal aftercare that has been successfully used to study several novel ovine models of critical illness. The relevant investigations are on respiratory failure due to smoke inhalation, transfusion related acute lung injury, endotoxin-induced proteogenomic alterations, haemorrhagic shock, septic shock, brain death, cerebral microcirculation, and artificial heart studies. We have demonstrated the functionality of monitoring practices during anaesthesia required to provide a platform for undertaking systematic investigations in complex ovine models of critical illness. PMID:24783206

  9. Optimal management of the critically ill: anaesthesia, monitoring, data capture, and point-of-care technological practices in ovine models of critical care.

    PubMed

    Chemonges, Saul; Shekar, Kiran; Tung, John-Paul; Dunster, Kimble R; Diab, Sara; Platts, David; Watts, Ryan P; Gregory, Shaun D; Foley, Samuel; Simonova, Gabriela; McDonald, Charles; Hayes, Rylan; Bellpart, Judith; Timms, Daniel; Chew, Michelle; Fung, Yoke L; Toon, Michael; Maybauer, Marc O; Fraser, John F

    2014-01-01

    Animal models of critical illness are vital in biomedical research. They provide possibilities for the investigation of pathophysiological processes that may not otherwise be possible in humans. In order to be clinically applicable, the model should simulate the critical care situation realistically, including anaesthesia, monitoring, sampling, utilising appropriate personnel skill mix, and therapeutic interventions. There are limited data documenting the constitution of ideal technologically advanced large animal critical care practices and all the processes of the animal model. In this paper, we describe the procedure of animal preparation, anaesthesia induction and maintenance, physiologic monitoring, data capture, point-of-care technology, and animal aftercare that has been successfully used to study several novel ovine models of critical illness. The relevant investigations are on respiratory failure due to smoke inhalation, transfusion related acute lung injury, endotoxin-induced proteogenomic alterations, haemorrhagic shock, septic shock, brain death, cerebral microcirculation, and artificial heart studies. We have demonstrated the functionality of monitoring practices during anaesthesia required to provide a platform for undertaking systematic investigations in complex ovine models of critical illness.

  10. A chemical test of the principle of critical point universality: The solubility of nickel (II) oxide in isobutyric acid + water near the consolute point

    NASA Astrophysics Data System (ADS)

    Hu, Baichuan; Baird, James K.; Richey, Randi D.; Reddy, Ramana G.

    2011-04-01

    A mixture of isobutyric acid + water has an upper consolute point at 38.8 mass % isobutyric acid and temperature near 26 °C. Nickel (II) oxide dissolves in this mixture by reacting with the acid to produce water and nickel isobutyrate. The solubility of nickel (II) oxide in isobutyric acid + water has been measured as a function of temperature at compositions, 25, 38.8, and 60 mass % isobutyric acid. For values of the temperature, T, which were at least 2 K in excess of the liquid-liquid phase transition temperature, the measured values of the solubility, s, lie on a straight line when plotted in van't Hoff form with ln s versus 1/T. The slope, (∂ln s/∂(1/T)), of the line is negative indicating that the dissolution reaction is endothermic. When the temperature was within 2 K of the phase transition temperature, however, (∂ln s/∂(1/T)) diverged toward negative infinity. The principle of critical point universality predicts that when excess solid nickel (II) oxide is in dissolution equilibrium with liquid isobutyric acid + water, (∂ln s/∂(1/T)) should diverge upon approaching the consolute point along the critical isopleth at 38.8 mass % isobutyric acid. As determined by the sign of the enthalpy of solution, the sign of this divergence is expected to be negative. Not only do our experiments confirm these predictions, but they also show that identical behavior can be observed at both 25 and 60 mass % isobustyric acid, compositions which lie substantially to either side of the critical composition.

  11. A Demonstration of the Continuous Phase (Second-Order) Transition of a Binary Liquid System in the Region around Its Critical Point

    ERIC Educational Resources Information Center

    Johnson, Michael R.

    2006-01-01

    In most general chemistry and introductory physical chemistry classes, critical point is defined as that temperature-pressure point on a phase diagram where the liquid-gas interface disappears, a phenomenon that generally occurs at relatively high temperatures or high pressures. Two examples are: water, with a critical point at 647 K (critical…

  12. Recommendations for dealing with waste contaminated with Ebola virus: a Hazard Analysis of Critical Control Points approach

    PubMed Central

    Edmunds, Kelly L; Elrahman, Samira Abd; Bell, Diana J; Brainard, Julii; Dervisevic, Samir; Fedha, Tsimbiri P; Few, Roger; Howard, Guy; Lake, Iain; Maes, Peter; Matofari, Joseph; Minnigh, Harvey; Mohamedani, Ahmed A; Montgomery, Maggie; Morter, Sarah; Muchiri, Edward; Mudau, Lutendo S; Mutua, Benedict M; Ndambuki, Julius M; Pond, Katherine; Sobsey, Mark D; van der Es, Mike; Zeitoun, Mark

    2016-01-01

    Abstract Objective To assess, within communities experiencing Ebola virus outbreaks, the risks associated with the disposal of human waste and to generate recommendations for mitigating such risks. Methods A team with expertise in the Hazard Analysis of Critical Control Points framework identified waste products from the care of individuals with Ebola virus disease and constructed, tested and confirmed flow diagrams showing the creation of such products. After listing potential hazards associated with each step in each flow diagram, the team conducted a hazard analysis, determined critical control points and made recommendations to mitigate the transmission risks at each control point. Findings The collection, transportation, cleaning and shared use of blood-soiled fomites and the shared use of latrines contaminated with blood or bloodied faeces appeared to be associated with particularly high levels of risk of Ebola virus transmission. More moderate levels of risk were associated with the collection and transportation of material contaminated with bodily fluids other than blood, shared use of latrines soiled with such fluids, the cleaning and shared use of fomites soiled with such fluids, and the contamination of the environment during the collection and transportation of blood-contaminated waste. Conclusion The risk of the waste-related transmission of Ebola virus could be reduced by the use of full personal protective equipment, appropriate hand hygiene and an appropriate disinfectant after careful cleaning. Use of the Hazard Analysis of Critical Control Points framework could facilitate rapid responses to outbreaks of emerging infectious disease. PMID:27274594

  13. Master singular behavior from correlation length measurements for seven one-component fluids near their gas-liquid critical point.

    PubMed

    Garrabos, Yves; Palencia, Fabien; Lecoutre, Carole; Erkey, Can; Le Neindre, Bernard

    2006-02-01

    We present the master (i.e., unique) behavior of the correlation length, as a function of the thermal field along the critical isochore, asymptotically close to the gas-liquid critical point of xenon, krypton, argon, helium-3, sulfur hexafluoride, carbon dioxide, and heavy water. It is remarkable that this unicity extends to the correction-to-scaling terms. The critical parameter set, which contains all the needed information to reveal the master behavior, is composed of four thermodynamic coordinates of the critical point and one adjustable parameter which accounts for quantum effects in the helium-3 case. We use a scale dilatation method applied to the relevant physical variables of the one-component fluid subclass, in analogy with the basic hypothesis of the renormalization theory. This master behavior for the correlation length satisfies hyperscaling. We finally estimate the thermal field extent where the critical crossover of the singular thermodynamic and correlation functions deviates from the theoretical crossover function obtained from field theory.

  14. Spinodals and critical point using short-time dynamics for a simple model of liquid.

    PubMed

    Loscar, Ernesto S; Ferrara, C Gastón; Grigera, Tomás S

    2016-04-07

    We have applied the short-time dynamics method to the gas-liquid transition to detect the supercooled gas instability (gas spinodal) and the superheated liquid instability (liquid spinodal). Using Monte Carlo simulation, we have obtained the two spinodals for a wide range of pressure in sub-critical and critical conditions and estimated the critical temperature and pressure. Our method is faster than previous approaches and allows studying spinodals without needing equilibration of the system in the metastable region. It is thus free of the extrapolation problems present in other methods, and in principle could be applied to systems such as glass-forming liquids, where equilibration is very difficult even far from the spinodal. We have also done molecular dynamics simulations, where we find the method again able to detect the both spinodals. Our results are compared with different previous results in the literature and show a good agreement.

  15. Heterogeneity-corrected vs -uncorrected critical structure maximum point doses in breast balloon brachytherapy

    SciTech Connect

    Kim, Leonard; Narra, Venkat; Yue, Ning

    2013-07-01

    Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) ⁎ 0.930 (R{sup 2} = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) ⁎ 0.955 (R{sup 2} = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor.

  16. Heterogeneity-corrected vs -uncorrected critical structure maximum point doses in breast balloon brachytherapy.

    PubMed

    Kim, Leonard; Narra, Venkat; Yue, Ning

    2013-01-01

    Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) * 0.930 (R(2) = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) * 0.955 (R(2) = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor.

  17. The susceptibility critical exponent for a nonaqueous ionic binary mixture near a consolute point

    NASA Technical Reports Server (NTRS)

    Zhang, Kai C.; Briggs, Matthew E.; Gammon, Robert W.; Levelt Sengers, J. M. H.

    1992-01-01

    We report turbidity measurements of a nonaqueous ionic solution of triethyl n-hexylammonium triethyl n-hexylboride in diphenyl ether. A classical susceptibility critical exponent gamma = 1.01 +/- 0.01 is obtained over the reduced temperature range t between values of 0.1 and 0.0001. The best fits of the sample transmission had a standard deviation of 0.39 percent over this range. Ising and spherical model critical exponents are firmly excluded. The correlation length amplitude xi sub 0 from fitting is 1.0 +/- 0.2 nm which is much larger than values found in neutral fluids and some aqueous binary mixtures.

  18. Stability of a spin-triplet nematic state near to a quantum critical point

    NASA Astrophysics Data System (ADS)

    Hannappel, G.; Pedder, C. J.; Krüger, F.; Green, A. G.

    2016-06-01

    We analyze a model of itinerant electrons interacting through a quadrupole density-density repulsion in three dimensions. At the mean-field level, the interaction drives a continuous Pomeranchuk instability towards d -wave, spin-triplet nematic order, which simultaneously breaks the SU(2) spin-rotation and spatial-rotation symmetries. This order is characterized by spin-antisymmetric, elliptical deformations of the Fermi surfaces of up and down spins. We show that the effects of quantum fluctuations are similar to those in metallic ferromagnets, rendering the nematic transition first order at low temperatures. Using the fermionic quantum order-by-disorder approach to self-consistently calculate fluctuations around possible modulated states, we show that the first-order transition is preempted by the formation of a helical spin-triplet d -density wave. Such a state is closely related to d -wave bond density wave order in square-lattice systems. Moreover, we show that it may coexist with a modulated, p -wave superconducting state.

  19. Anomalous ultrasonic absorption in alkoxyethanols aqueous solutions near their critical and melting points

    NASA Astrophysics Data System (ADS)

    D'Arrigo, G.; Paparelli, A.

    1989-08-01

    Ultrasonic absorption and velocity measurements have been performed in aqueous solutions of ethoxyethanol and n-butoxyethanol in the frequency range of 5-250 MHz and from about 50 °C to the respective melting temperatures (TM). The latter system exhibits a closed loop of miscibility with a LCST at TC=49 °C. The overall behavior of the absorption looks, in general, similar to previously investigated alcohol-water systems and critical binary mixtures. However, it shows two main characteristic features: (a) a noticeable increase of amplitude and dispersion of the peak values as the temperature decreases toward TM; (b) a weak critical anomaly which is seen only at the lowest frequencies and in a narrow temperature interval around TC. A comparison with the frequency and temperature predictions by the Romanov-Solov'ev fluctuation model and by the Ferrell-Bhattacharjee dynamic scaling theory for critical mixtures shows that the observed spectra near TM cannot be explained by critical-like phenomena. The occurrence of pseudocritical fluctuations, which extends their influence from TM to higher temperatures up TC, is suggested.

  20. Zero-point term and quantum effects in the Johnson noise of resistors: a critical appraisal

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes G.

    2016-05-01

    There is a longstanding debate about the zero-point term in the Johnson noise voltage of a resistor. This term originates from a quantum-theoretical treatment of the fluctuation-dissipation theorem (FDT). Is the zero-point term really there, or is it only an experimental artifact, due to the uncertainty principle, for phase-sensitive amplifiers? Could it be removed by renormalization of theories? We discuss some historical measurement schemes that do not lead to the effect predicted by the FDT, and we analyse new features that emerge when the consequences of the zero-point term are measured via the mean energy and force in a capacitor shunting the resistor. If these measurements verify the existence of a zero-point term in the noise, then two types of perpetual motion machines can be constructed. Further investigation with the same approach shows that, in the quantum limit, the Johnson-Nyquist formula is also invalid under general conditions even though it is valid for a resistor-antenna system. Therefore we conclude that in a satisfactory quantum theory of the Johnson noise, the FDT must, as a minimum, include also the measurement system used to evaluate the observed quantities. Issues concerning the zero-point term may also have implications for phenomena in advanced nanotechnology.

  1. Method for locating the vapor-liquid critical point of multicomponent fluid mixtures using a shear mode piezoelectric sensor.

    PubMed

    Ke, Jie; King, P J; George, Michael W; Poliakoff, Martyn

    2005-01-01

    A new approach to locating the critical point of fluid mixtures is reported, utilizing a shear mode piezoelectric sensor. This technique employs a single piece of quartz crystal that is installed at the bottom of a strongly stirred high-pressure vessel. The sensor response indicates whether liquid or gas is in contact with its surfaces. Thus, the sensor is able to identify vapor-liquid phase separation by registering a discontinuity in the impedance minimum of the sensor as a function of pressure. Two systems (methanol + CO2 and H2 + CO2) have been investigated using this method. The critical point data of the methanol + CO2 system were chosen to validate the approach against a wealth of literature data, and good agreement was obtained. The sensor behavior in the two-phase region, as well as the effect of stirring, is discussed. The method is general and can be used with other sensors.

  2. IR spectra of water droplets in no man's land and the location of the liquid-liquid critical point.

    PubMed

    Ni, Yicun; Skinner, J L

    2016-09-28

    No man's land is the region in the metastable phase diagram of water where it is very difficult to do experiments on liquid water because of homogeneous nucleation to the crystal. There are a number of estimates of the location in no man's land of the liquid-liquid critical point, if it exists. We suggest that published IR absorption experiments on water droplets in no man's land can provide information about the correct location. To this end, we calculate theoretical IR spectra for liquid water over a wide range of temperatures and pressures, using our E3B3 model, and use the results to argue that the temperature dependence of the experimental spectra is inconsistent with several of the estimated critical point locations, but consistent with others.

  3. Local Rotational Symmetries.

    DTIC Science & Technology

    1985-08-01

    spanner wrench and the teaspoon, the pointed jaws of the wrench, and the main axes of the gourd , the pear, the squash, and the bowl of the teaspoon...regions such as the handle of the spanner wrench and the main axes of the gourd , squash, and teaspoon, and also pointed regions such as the end of the...Local Symmetry representation does not provide in- tuitively acceptable analyses for round regions, such as the lemon and the round ends of the gourd

  4. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order

    NASA Astrophysics Data System (ADS)

    Gu, Zheng-Cheng; Wen, Xiao-Gang

    2009-10-01

    We study the renormalization group flow of the Lagrangian for statistical and quantum systems by representing their path integral in terms of a tensor network. Using a tensor-entanglement-filtering renormalization approach that removes local entanglement and produces a coarse-grained lattice, we show that the resulting renormalization flow of the tensors in the tensor network has a nice fixed-point structure. The isolated fixed-point tensors Tinv plus the symmetry group Gsym of the tensors (i.e., the symmetry group of the Lagrangian) characterize various phases of the system. Such a characterization can describe both the symmetry breaking phases and topological phases, as illustrated by two-dimensional (2D) statistical Ising model, 2D statistical loop-gas model, and 1+1D quantum spin-1/2 and spin-1 models. In particular, using such a (Gsym,Tinv) characterization, we show that the Haldane phase for a spin-1 chain is a phase protected by the time-reversal, parity, and translation symmetries. Thus the Haldane phase is a symmetry-protected topological phase. The (Gsym,Tinv) characterization is more general than the characterizations based on the boundary spins and string order parameters. The tensor renormalization approach also allows us to study continuous phase transitions between symmetry breaking phases and/or topological phases. The scaling dimensions and the central charges for the critical points that describe those continuous phase transitions can be calculated from the fixed-point tensors at those critical points.

  5. Thermodynamics and renormalized quasiparticles in the vicinity of the dilute Bose gas quantum critical point in two dimensions

    NASA Astrophysics Data System (ADS)

    Krieg, Jan; Strassel, Dominik; Streib, Simon; Eggert, Sebastian; Kopietz, Peter

    2017-01-01

    We use the functional renormalization group (FRG) to derive analytical expressions for thermodynamic observables (density, pressure, entropy, and compressibility) as well as for single-particle properties (wave-function renormalization and effective mass) of interacting bosons in two dimensions as a function of temperature T and chemical potential μ . We focus on the quantum disordered and the quantum critical regime close to the dilute Bose gas quantum critical point. Our approach is based on a truncated vertex expansion of the hierarchy of FRG flow equations and the decoupling of the two-body contact interaction in the particle-particle channel using a suitable Hubbard-Stratonovich transformation. Our analytic FRG results extend previous analytical renormalization-group calculations for thermodynamic observables at μ =0 to finite values of μ . To confirm the validity of our FRG approach, we have also performed quantum Monte Carlo simulations to obtain the magnetization, susceptibility, and correlation length of the two-dimensional spin-1 /2 quantum X Y model with coupling J in a regime where its quantum critical behavior is controlled by the dilute Bose gas quantum critical point. We find that our analytical results describe the Monte Carlo data for μ ≤0 rather accurately up to relatively high temperatures T ≲0.1 J .

  6. Hazard Analysis and Critical Control Points among Chinese Food Business Operators

    PubMed Central

    Amadei, Paolo; Masotti, Gianfranco; Condoleo, Roberto; Guidi, Alessandra

    2014-01-01

    The purpose of the present paper is to highlight some critical situations emerged during the implementation of long-term projects locally managed by Prevention Services, to control some manufacturing companies in Rome and Prato, Central Italy. In particular, some critical issues on the application of self-control in marketing and catering held by Chinese operators are underlined. The study showed serious flaws in preparing and controlling of manuals for good hygiene practice, participating of the consultants among food business operators (FBOs) to the control of the procedures. Only after regular actions by the Prevention Services, there have been satisfying results. This confirms the need to have qualified and expert partners able to promptly act among FBOs and to give adequate support to authorities in charge in order to guarantee food safety. PMID:27800356

  7. Comment on "Critical point scaling of Ising spin glasses in a magnetic field"

    NASA Astrophysics Data System (ADS)

    Temesvári, T.

    2016-11-01

    In a section of a recent paper [Phys. Rev. B 91, 104432 (2015), 10.1103/PhysRevB.91.104432], the authors discuss some of the arguments in the paper by Parisi and Temesvári [Nucl. Phys. B 858, 293 (2012), 10.1016/j.nuclphysb.2012.01.014]. In this Comment, it is shown how these arguments are misinterpreted and the existence of the Almeida-Thouless transition in the upper critical dimension six reasserted.

  8. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    SciTech Connect

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-17

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  9. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    NASA Astrophysics Data System (ADS)

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-01

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  10. On the Critical Behaviour, Crossover Point and Complexity of the Exact Cover Problem

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Shumow, Daniel; Koga, Dennis (Technical Monitor)

    2003-01-01

    Research into quantum algorithms for NP-complete problems has rekindled interest in the detailed study a broad class of combinatorial problems. A recent paper applied the quantum adiabatic evolution algorithm to the Exact Cover problem for 3-sets (EC3), and provided an empirical evidence that the algorithm was polynomial. In this paper we provide a detailed study of the characteristics of the exact cover problem. We present the annealing approximation applied to EC3, which gives an over-estimate of the phase transition point. We also identify empirically the phase transition point. We also study the complexity of two classical algorithms on this problem: Davis-Putnam and Simulated Annealing. For these algorithms, EC3 is significantly easier than 3-SAT.

  11. Selenium and thyroid hormone axis in critical ill states: an overview of conflicting view points.

    PubMed

    Gärtner, Roland

    2009-01-01

    In critical ill states the plasma selenium levels are low and inversely correlated with the severity and outcome of the disease. The plasma selenium levels indicate the amount of circulating selenoproteins and selenoenzymes. These are important for the maintenance of the redox system, modulating the immune system and also for thyroid hormone metabolism. Not only all three deiodinases (D1-3) are selenoenzymes, but within the thyroid gland there are several other selenoenzymes, which are important for the maintenance of normal thyroid function. In critical ill states also triodothyronine (T3) is low and reverse T3 elevated, and also TSH and thyroxin (T4) are low, correlating like low plasma selenium with the severity of the disease. Subsequently, several intervention trials had been performed to evaluate whether an adjuvant selenium supplementation might attenuate the course of the disease and improve outcome. The selenium supplementation improved outcome and even reduced mortality in some but not all prospective randomized trials. A few prospective randomized intervention trials with selenium supplementation had also been performed to evaluate the hypothesis, whether low selenium is the cause of low-T3-syndrome, however, with conflicting results and no clear evidence that low D1 activity is due to the selenium deficiency in critical illness. Because D1 catalyses the conversion of T4 to T3 and also the clearance of reverse T3, low D1 activity would sufficiently explain low plasma T3 and elevated reverse T3. It had been, however, clearly shown that cytokines are responsible for the inhibition of D1 activity, but D2 and D3 are even higher during acute inflammation in critically ill patients. One of the most important effects of selenium on the immune system seems to be the reduction of cytokine release and therefore an indirect connection between low selenium and low D1 activity has to be postulated and not a lower D1 activity due to lower availability of selenium for

  12. Time delay of critical images of a point source near the gravitational lens fold-caustic

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Zhdanov, V.

    2016-06-01

    Within the framework of the analytical theory of the gravitational lensing we derive asymptotic formula for the time delay of critical images of apoint source, which is situated near a fold-caustic. We found corrections of the first and second order in powers of a parameter, which describescloseness of the source to the caustic. Our formula modifies earlier result by Congdon, Keeton &Nordgren (MNRAS, 2008) obtained in zero-orderapproximation. We have proved the hypothesis put forward by these authors that the first-order correction to the relative time delay of two criticalmages is identically zero. The contribution of the corrections is illustrated in model example by comparison with exact expression.

  13. Accelerated technology development by the use of critical point imaging SEM

    NASA Astrophysics Data System (ADS)

    Sanchez, Dominique; Hinschberger, Benôit; Bouckou, Loemba; Moreau, Olivier; Parisi, Paolo

    2015-03-01

    In order to optimize the time to market of the newest technology nodes and maximize their profitability, advanced semiconductor manufacturers need to adapt their yield enhancement strategies to their current development stage. During very early development, gross Defectivity at some critical process steps often makes it impractical to use broadband plasma or laser scanning micro-defect patterned wafer inspection techniques: such sensitive defect inspections capture a large number of defects, producing wafer defect maps so heavily populated that even wafer level signature are difficult to visualize.

  14. Anomalous behaviour of critical fields near a superconducting quantum critical point in BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Putzke, C.; Carrington, A.; Walmsley, P.; Malone, L.; Fletcher, J. D.; See, P.; Vignolles, D.; Proust, C.; Badoux, S.; Kasahara, S.; Mazukami, Y.; Shibauchi, T.; Matsuda, Y.

    2014-03-01

    BaFe2(As1-xPx)2 presents one of the cleanest and clearest systems in which to study the influence of quantum critical fluctuations on high temperature superconductivity. In this material a sharp maximum in the magnetic penetration depth has been found at the quantum critical point (QCP x = 0 . 3) where Tc is maximal1. Specific heat and de Haas-van Alphen effect measurements2 show that this peak is driven by a corresponding increase in the quasiparticle effective mass. Based on these previous results a simple one-band theory would suggest that at the QCP we should expect a large increase in Hc 2 and a corresponding dip in Hc 1 . Actual measurements of these critical fields, which we present here, shows quite different behavior which we suggest is caused by an anomalous enhancement in the vortex core energy close to the QCP. 1 K.Hashimoto et.al., Science 336, 1554 (2012) 2 P.Walmsley, C.Putzke et.al., Phys. Rev. Lett. 110, 257002 (2013) This work was supported by the Engineering and Physical Sciences Research Council, EuroMagNET II, and KAKENHI from JSPS.

  15. Inherited Symmetry

    ERIC Educational Resources Information Center

    Attanucci, Frank J.; Losse, John

    2008-01-01

    In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…

  16. Symmetry Breaking for Black-Scholes Equations

    NASA Astrophysics Data System (ADS)

    Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng

    2007-06-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  17. Socrates, problem-based learning and critical thinking --- a philosophic point of view.

    PubMed

    Wang, Shin-Yun; Tsai, Jer-Chia; Chiang, Horn-Che; Lai, Chung-Sheng; Lin, Hui-Ju

    2008-03-01

    Problem-based learning (PBL) is a learner-centered educational method based on the principles of heuristics and collaboration. It has been considered an effective learning method in general and in professional education, especially in medical education. This article analyzes the thinking structure and philosophical background of PBL through the educational ideas of Socrates and the truth conception of Karl Popper. In the different phases of the PBL process, various truth conceptions will help to formulate the thinking framework of PBL --- from Socrates' truth of openness toward the truth of scientific accuracy of our modern age. Meanwhile, Popper's scientific theory of falsifiability further leads us to discuss the relationship between PBL and critical thinking.

  18. Scientific and social significance of assessing individual differences: "sinking shafts at a few critical points".

    PubMed

    Lubinski, D

    2000-01-01

    This chapter reviews empirical findings on the importance of assessing individual differences in human behavior. Traditional dimensions of human abilities, personality, and vocational interests play critical roles in structuring a variety of important behaviors and outcomes (e.g. achieved socioeconomic status, educational choices, work performance, delinquency, health risk behaviors, and income). In the review of their importance, the construct of general intelligence is featured, but attributes that routinely add incremental validity to cognitive assessments are also discussed. Recent experimental and methodological advances for better understanding how these dimensions may contribute to other psychological frameworks are reviewed, as are ways for determining their scientific significance within domains where they are not routinely assessed. Finally, some noteworthy models are outlined that highlight the importance of assessing relatively distinct classes of individual-differences attributes simultaneously. For understanding fully complex human phenomena such as crime, eminence, and educational-vocational development, such a multifaceted approach is likely to be the most productive.

  19. The second virial coefficient and critical point behavior of the Mie Potential

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.; Rickayzen, G.; Pieprzyk, S.; Brańka, A. C.

    2016-08-01

    Aspects of the second virial coefficient, b2, of the Mie m : n potential are investigated. The Boyle temperature, T0, is shown to decay monotonically with increasing m and n, while the maximum temperature, Tmax, exhibits a minimum at a value of m which increases as n increases. For the 2n : n special case T0 tends to zero and Tmax approaches the value of 7.81 in the n → ∞ limit which is in quantitative agreement with the expressions derived in Rickayzen and Heyes [J. Chem. Phys. 126, 114504 (2007)] in which it was shown that the 2n : n potential in the n → ∞ limit approaches Baxter's sticky-sphere model. The same approach is used to estimate the n - dependent critical temperature of the 2n : n potential in the large n limit. The ratio of T0 to the critical temperature tends to unity in the infinite n limit for the 2n : n potential. The rate of convergence of expansions of b2 about the high temperature limit is investigated, and they are shown to converge rapidly even at quite low temperatures (e.g., 0.05). In contrast, a low temperature expansion of the Lennard-Jones 12 : 6 potential is shown to be an asymptotic series. Two formulas that resolve b2 into its repulsive and attractive terms are derived. The convergence at high temperature of the Lennard-Jones b2 to the m = 12 inverse power value is slow (e.g., requiring T ≃ 104 just to attain two significant figure accuracy). The behavior of b2 of the ∞ : n and the Sutherland potential special case, n = 6, is explored. By fitting to the exact b2 values, a semiempirical formula is derived for the temperature dependence of b2 of the Lennard-Jones potential which has the correct high and low temperature limits.

  20. The second virial coefficient and critical point behavior of the Mie Potential.

    PubMed

    Heyes, D M; Rickayzen, G; Pieprzyk, S; Brańka, A C

    2016-08-28

    Aspects of the second virial coefficient, b2, of the Mie m : n potential are investigated. The Boyle temperature, T0, is shown to decay monotonically with increasing m and n, while the maximum temperature, Tmax, exhibits a minimum at a value of m which increases as n increases. For the 2n : n special case T0 tends to zero and Tmax approaches the value of 7.81 in the n → ∞ limit which is in quantitative agreement with the expressions derived in Rickayzen and Heyes [J. Chem. Phys. 126, 114504 (2007)] in which it was shown that the 2n : n potential in the n → ∞ limit approaches Baxter's sticky-sphere model. The same approach is used to estimate the n - dependent critical temperature of the 2n : n potential in the large n limit. The ratio of T0 to the critical temperature tends to unity in the infinite n limit for the 2n : n potential. The rate of convergence of expansions of b2 about the high temperature limit is investigated, and they are shown to converge rapidly even at quite low temperatures (e.g., 0.05). In contrast, a low temperature expansion of the Lennard-Jones 12 : 6 potential is shown to be an asymptotic series. Two formulas that resolve b2 into its repulsive and attractive terms are derived. The convergence at high temperature of the Lennard-Jones b2 to the m = 12 inverse power value is slow (e.g., requiring T ≃ 10(4) just to attain two significant figure accuracy). The behavior of b2 of the ∞ : n and the Sutherland potential special case, n = 6, is explored. By fitting to the exact b2 values, a semiempirical formula is derived for the temperature dependence of b2 of the Lennard-Jones potential which has the correct high and low temperature limits.

  1. Reply to "Comment on `Critical point scaling of Ising spin glasses in a magnetic field' "

    NASA Astrophysics Data System (ADS)

    Yeo, Joonhyun; Moore, M. A.

    2016-11-01

    In his Comment, Temesvári objects to a remark in our paper [Phys. Rev. B 91, 104432 (2015), 10.1103/PhysRevB.91.104432] that his result for the form of the Almeida-Thouless (AT) line obtained in an earlier paper by Parisi and Temevári [Nucl. Phys. B 858, 293 (2012), 10.1016/j.nuclphysb.2012.01.014] in six dimensions can be obtained by taking the limit of d →6 in the equations valid for d >6 but that this violated one of the inequalities needed for their validity. He is just pointing out that they gave a derivation of the form of the AT line in six dimensions in Parisi and Temevári [Nucl. Phys. B 858, 293 (2012), 10.1016/j.nuclphysb.2012.01.014] which avoided this difficulty. However, it is still a perturbative approach and does not deal with the lack of a perturbative fixed point found by Bray and Roberts [J. Phys. C 13, 5405 (1980), 10.1088/0022-3719/13/29/019] long ago.

  2. Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis

    PubMed Central

    Tagliazucchi, Enzo; Balenzuela, Pablo; Fraiman, Daniel; Chialvo, Dante R.

    2012-01-01

    Functional magnetic resonance imaging (fMRI) techniques have contributed significantly to our understanding of brain function. Current methods are based on the analysis of gradual and continuous changes in the brain blood oxygenated level dependent (BOLD) signal. Departing from that approach, recent work has shown that equivalent results can be obtained by inspecting only the relatively large amplitude BOLD signal peaks, suggesting that relevant information can be condensed in discrete events. This idea is further explored here to demonstrate how brain dynamics at resting state can be captured just by the timing and location of such events, i.e., in terms of a spatiotemporal point process. The method allows, for the first time, to define a theoretical framework in terms of an order and control parameter derived from fMRI data, where the dynamical regime can be interpreted as one corresponding to a system close to the critical point of a second order phase transition. The analysis demonstrates that the resting brain spends most of the time near the critical point of such transition and exhibits avalanches of activity ruled by the same dynamical and statistical properties described previously for neuronal events at smaller scales. Given the demonstrated functional relevance of the resting state brain dynamics, its representation as a discrete process might facilitate large-scale analysis of brain function both in health and disease. PMID:22347863

  3. A national critical loads framework for atmospheric deposition effects assessment: II. Defining assessment end points, indicators, and functional subregions

    NASA Astrophysics Data System (ADS)

    Hunsaker, Carolyn; Graham, Robin; Turner, Robert S.; Ringold, Paul L.; Holdren, George R.; Strickland, Timothy C.

    1993-05-01

    The United States Environmental Protection Agency, with support from the US Department of Energy and the National Oceanographic and Atmospheric Administration, has been evaluating the feasibility of an effects-based (critical loads) approach to atmospheric pollutant regulation and abatement. The rationale used to develop three of the six steps in a flexible assessment framework (Strickland and others, 1992) is presented along with a discussion of a variety of implementation approaches and their ramifications. The rationale proposes that it is necessary to provide an explicit statement of the condition of the resource that is considered valuable (assessment end point) because: (1) individual ecosystem components may be more or less sensitive to deposition, (2) it is necessary to select indicators of ecosystem condition that can be objectively measured and that reflect changes in the quality of the assessment end point, and (3) acceptable status (i.e., value of indicator and quality of assessment end point at critical load) must be defined. The rationale also stresses the importance of defining the assessment regions and subregions to improve the analysis and understanding of the indicator response to deposition. Subregional definition can be based on a variety of criteria, including informed judgment or quantitative procedures. It also depends on the geographic scale at which exposure and effects models are accurate and on data availability, resolution, and quality.

  4. Non-Gaussian particle number fluctuations in vicinity of the critical point for van der Waals equation of state

    NASA Astrophysics Data System (ADS)

    Vovchenko, V.; Poberezhnyuk, R. V.; Anchishkin, D. V.; Gorenstein, M. I.

    2016-01-01

    The non-Gaussian measures of the particle number fluctuations—skewness Sσ and kurtosis κ {σ }2—are calculated in a vicinity of the critical point (CP). This point corresponds to the end point of the first-order liquid-gas phase transition. The gaseous phase is characterized by the positive values of skewness while the liquid phase has negative skew. The kurtosis appears to be significantly negative at the critical density and supercritical temperatures. The skewness and kurtosis diverge at the CP. The classical van der Waals (VDW) equation of state in the grand canonical ensemble formulation is used in our studies. Neglecting effects of the quantum statistics we succeed to obtain the analytical expressions for the rich structures of the skewness and kurtosis in a wide region around the CP. These results have universal form, i.e., they do not depend on particular values of the VDW parameters a and b. The strongly intensive measures of particle number and energy fluctuations are also considered and show singular behavior in the vicinity of the CP.

  5. Density functional models of the interfacial tensions near the critical endpoints and tricritical point of three-phase equilibria.

    PubMed

    Koga, K; Widom, B

    2016-06-22

    We treat two different density-functional models of the structures and tensions of the interfaces between phases on approach to the tricritical point of three-phase equilibrium. The major objective is to account for some of the results of earlier experimental measurements of these tensions. The thermodynamic background is first reviewed, including representations of the properties near the critical endpoints and tricritical point and of the wetting transitions that may occur on approach to those critical points. The first of the models treated is analytically soluble. Its properties are illuminating but at the price of some artificiality paid for its analytical solubility. The second model, called model T, is in a class of those treated in the past and analyzed numerically. Some of its properties are obtained with sufficient precision to allow one to conclude with near certainty what the analytically exact results would be. This model, too, illuminates the experimental measurements. It is noted where its properties are in accord with those of the analytically soluble model and where the two differ.

  6. Transition probability, dynamic regimes, and the critical point of financial crisis

    NASA Astrophysics Data System (ADS)

    Tang, Yinan; Chen, Ping

    2015-07-01

    An empirical and theoretical analysis of financial crises is conducted based on statistical mechanics in non-equilibrium physics. The transition probability provides a new tool for diagnosing a changing market. Both calm and turbulent markets can be described by the birth-death process for price movements driven by identical agents. The transition probability in a time window can be estimated from stock market indexes. Positive and negative feedback trading behaviors can be revealed by the upper and lower curves in transition probability. Three dynamic regimes are discovered from two time periods including linear, quasi-linear, and nonlinear patterns. There is a clear link between liberalization policy and market nonlinearity. Numerical estimation of a market turning point is close to the historical event of the US 2008 financial crisis.

  7. [Symmetries and homologies of Geomerida].

    PubMed

    Zarenkov, N A

    2005-01-01

    The symmetry of Earths life cover (Geomerida) was described generally by L.A. Zenkevich (1948). It coincides with the symmetry of geographic cover. Its symmetry elements are equatorial plane and three meridonal planes corresponded to oceans and continents. The hypsographic curve with point of inflection (symmetry element) on 3 km depth line should be added to these elements. The plankton and benthos communities as well as fauna of taxons are distributed symmetrically according these symmetry elements. Zenkevich model was successfully extrapolated to plankton by K.V. Beklemishev (1967, 1969) and to abyssal benthos by Sokolova M.N. (1986). The plankton communities inhabiting symmetrically located macrocirculations are considered as homologous. The character of circulation determines the trophic structure of plankton and benthos. In the case of high productivity of plankton, benthic grazing animals feed on sedimented particles have bilateral symmetric mouthpart. Otherwise they have to acquire food from water column and use cyclomeric mouthpart. Thus, the symmetry of macrocirculations determines the symmetry distribution of benthic animals with two major symmetries of mouthparts. The peculiarities of organisms' symmetry are discussed in the context of Pierre Curie principle and the ideas of K.V. Beklemishev concerning evolution of morphological axes.

  8. Finite-temperature scaling at the quantum critical point of the Ising chain in a transverse field

    NASA Astrophysics Data System (ADS)

    Haelg, Manuel; Huvonen, Dan; Guidi, Tatiana; Quintero-Castro, Diana Lucia; Boehm, Martin; Regnault, Louis-Pierre; Zheludev, Andrey

    2015-03-01

    Inelastic neutron scattering is used to study the finite-temperature scaling behavior of spin correlations at the quantum critical point in an experimental realization of the one-dimensional Ising model in a transverse field. The target compound is the well-characterized, anisotropic and bond-alternating Heisenberg spin-1 chain material NTENP. The validity and the limitations of the dynamic structure factor scaling are tested, discussed and compared to theoretical predictions. For this purpose neutron data have been collected on the three-axes spectrometers IN14 at ILL and FLEXX at HZB as well as on the time of flight multi-chopper spectrometer LET at ISIS. In addition to the general statement about quantum criticality and universality, present study also reveals new insight into the properties of the spin chain compound NTENP in particular.

  9. Heterogeneous nucleation and heat flux avalanches in La(Fe, Si)13 magnetocaloric compounds near the critical point

    NASA Astrophysics Data System (ADS)

    Bennati, C.; Gozzelino, L.; Olivetti, E. S.; Basso, V.

    2016-12-01

    The phase transformation kinetics of LaFe11.41Mn0.30Si1.29-H1.65 magnetocaloric compound is addressed by low rate calorimetry experiments. Scans at 1 mK/s show that its first order phase transitions are made by multiple heat flux avalanches. Getting very close to the critical point, when the transition becomes of the second order type, the step-like discontinuous behaviour associated with avalanches is smoothed out and the thermal hysteresis disappears. This result is confirmed by magneto-resistivity measurements and allows to obtain accurate values of the temperature hysteresis (ΔThyst = 0.37 K) at zero external magnetic field and of the critical field (Hc = 1.19 T). The number and magnitude of heat flux avalanches change as the magnetic field strength is increased, showing the interplay between the intrinsic energy barrier between phases and the microstructural disorder of the sample.

  10. Finite-temperature scaling close to Ising-nematic quantum critical points in two-dimensional metals

    NASA Astrophysics Data System (ADS)

    Punk, Matthias

    2016-11-01

    We study finite-temperature properties of metals close to an Ising-nematic quantum critical point in two spatial dimensions. In particular we show that at any finite temperature there is a regime where order parameter fluctuations are characterized by a dynamical critical exponent z =2 , in contrast to z =3 found at zero temperature. Our results are based on a simple Eliashberg-type approach, which gives rise to a boson self-energy proportional to Ω /γ (T ) at small momenta, where γ (T ) is the temperature dependent fermion scattering rate. These findings might shed some light on recent Monte Carlo simulations at finite temperature, where results consistent with z =2 were found.

  11. Constructivisms from a genetic point of view: a critical classification of current tendencies.

    PubMed

    Sánchez, José Carlos; Loredo, José Carlos

    2009-12-01

    In this paper, we propose a critical classification of contemporary constructivist orientations. Our fundamental theoretical reference is the notion of genesis, understood as the construction of reality in a way that is neither relativist nor positivist-realist. We identify a nucleus of classic, genetic constructivism that revolves around the ideas of Baldwin, Piaget and Vygotsky and discuss two tendencies that distort the spirit of that nucleus: objectivism and subjectivism. Objectivism rules out the psychological, constructive activity of the subject, subordinating (or just reducing) it to objective structures either from nature (like genetic endowment or neural functioning), or from culture (like language or social practices). Subjectivism completely detaches the objectivity of knowledge from its construction on the part of the subject, reducing it to the mere product of individual interest, view, or irrationality. Thus, subjectivism is the non-constructive way to conceive the subject. Then, we attempt to show the dialectics that exists between these two tendencies and the scope of our criteria by analysing a representative (non exhaustive) group of authors who are defined as constructivists or who bring important elements to the debate about constructivism.

  12. Critical decision points in crisis support: using checklists and flow charts in psychological crises.

    PubMed

    Mitchell, Jeffrey T

    2011-01-01

    The field of crisis intervention has grown dramatically during the last hundred years. Many new procedures and techniques have been added to the crisis intervention repertoire. Periodically, providers of crisis intervention, psychological first aid, critical incident stress management, or Peer Support overlook important elements of crisis intervention or make inadvertent mistakes as they attempt to intervene. The use of checklists and flow charts, similar to those used in aviation and medicine, may assist crisis intervention personnel in properly assessing a traumatic event and its impact on the people involved. Simple checklists and flow charts may significantly decrease the potential for mistakes in crisis intervention. This article provides background on the development of flip charts in aviation and medicine and suggests how these tools may be utilized within the field of crisis intervention. Examples of checklists and flow charts that are relevant to crisis intervention are provided. The article also provides guidelines for developing additional checklists and flow charts for use in crisis intervention services.

  13. Multifractal statistics of the local order parameter at random critical points: application to wetting transitions with disorder.

    PubMed

    Monthus, Cécile; Garel, Thomas

    2007-08-01

    Disordered systems present multifractal properties at criticality. In particular, as discovered by Ludwig [A.W.W. Ludwig, Nucl. Phys. B 330, 639 (1990)] in the case of a diluted two-dimensional Potts model, the moments rho(q) (r) of the local order parameter rho(r) scale with a set x(q) of nontrivial exponents x(q) not = qx(1). We reexamine these ideas to incorporate more recent findings: (i) whenever a multifractal measure w(r) normalized over space sum(r) w(r) = 1 occurs in a random system, it is crucial to distinguish between the typical values and the disorder-averaged values of the generalized moments Y(q) = sum(r) w(q) (r), since they may scale with different generalized dimensions D(q) and D(q), and (ii), as discovered by Wiseman and Domany [S. Wiseman and E. Domany, Phys. Rev. E 52, 3469 (1995)], the presence of an infinite correlation length induces a lack of self-averaging at critical points for thermodynamic observables, in particular for the order parameter. After this general discussion, valid for any random critical point, we apply these ideas to random polymer models that can be studied numerically for large sizes and good statistics over the samples. We study the bidimensional wetting or the Poland-Scheraga DNA model with loop exponents c = 1.5 (marginal disorder) and c = 1.75 (relevant disorder). Finally, we argue that the presence of finite Griffiths-ordered clusters at criticality determines the asymptotic value x(q-->infinity) = d and the minimal value alpha(min) = D(q-->infinity) = d - x(1) of the typical multifractal spectrum f(alpha).

  14. The Hazard Analysis and Critical Control Points (HACCP) generic model for the production of Thai fermented pork sausage (Nham).

    PubMed

    Paukatong, K V; Kunawasen, S

    2001-01-01

    Nham is a traditional Thai fermented pork sausage. The major ingredients of Nham are ground pork meat and shredded pork rind. Nham has been reported to be contaminated with Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes. Therefore, it is a potential cause of foodborne diseases for consumers. A Hazard Analysis and Critical Control Points (HACCP) generic model has been developed for the Nham process. Nham processing plants were observed and a generic flow diagram of Nham processes was constructed. Hazard analysis was then conducted. Other than microbial hazards, the pathogens previously found in Nham, sodium nitrite and metal were identified as chemical and physical hazards in this product, respectively. Four steps in the Nham process have been identified as critical control points. These steps are the weighing of the nitrite compound, stuffing, fermentation, and labeling. The chemical hazard of nitrite must be controlled during the weighing step. The critical limit of nitrite levels in the Nham mixture has been set at 100-200 ppm. This level is high enough to control Clostridium botulinum but does not cause chemical hazards to the consumer. The physical hazard from metal clips could be prevented by visual inspection of every Nham product during stuffing. The microbiological hazard in Nham could be reduced in the fermentation process. The critical limit of the pH of Nham was set at lower than 4.6. Since this product is not cooked during processing, finally, educating the consumer, by providing information on the label such as "safe if cooked before consumption", could be an alternative way to prevent the microbiological hazards of this product.

  15. Disordered two-dimensional electron systems with chiral symmetry

    NASA Astrophysics Data System (ADS)

    Markoš, P.; Schweitzer, L.

    2012-10-01

    We review the results of our recent numerical investigations on the electronic properties of disordered two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of particular interest is the behavior of the density of states and the logarithmic scaling of the smallest Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E=0. The observed peaks or depressions in the density of states, the distribution of the critical conductances, and the possible non-universality of the critical exponents for certain chiral unitary models are discussed.

  16. The solubility of the noble gases He, Ne, Ar, Kr, and Xe in water up to the critical point

    USGS Publications Warehouse

    Potter, R.W.; Clynne, M.A.

    1978-01-01

    The solubility of the noble gases Ar, He, Ne, Kr, and Xe in pure water was measured from 298 to 561??K. These data in turn were extrapolated to the critical point of water, thus providing a complete set of Henry's law constants from 274 to 647??K when combined with the existing literature data. Equations describing the behavior of the Henry's law constants over this temperature range are also given. The data do not confirm extrapolations of empirical correlations based on low-temperature solubility data. ?? 1978 Plenum Publishing Corporation.

  17. Pairing interaction near a nematic quantum critical point of a three-band CuO2 model

    DOE PAGES

    Maier, Thomas A.; Scalapino, Douglas J.

    2014-11-21

    In this paper, we calculate the pairing interaction and the k dependence of the gap function associated with the nematic charge fluctuations of a CuO2 model.We find that the nematic pairing interaction is attractive for small momentum transfer and that it gives rise to d-wave pairing. Finally, as the doping p approaches a quantum critical point, the strength of this pairing increases and higher d-wave harmonics contribute to the k dependence of the superconducting gap function, reflecting the longer range nature of the nematic fluctuations.

  18. Pairing interaction near a nematic quantum critical point of a three-band CuO2 model

    SciTech Connect

    Maier, Thomas A.; Scalapino, Douglas J.

    2014-11-21

    In this paper, we calculate the pairing interaction and the k dependence of the gap function associated with the nematic charge fluctuations of a CuO2 model.We find that the nematic pairing interaction is attractive for small momentum transfer and that it gives rise to d-wave pairing. Finally, as the doping p approaches a quantum critical point, the strength of this pairing increases and higher d-wave harmonics contribute to the k dependence of the superconducting gap function, reflecting the longer range nature of the nematic fluctuations.

  19. Thermomagnetic instabilities in a vertical layer of ferrofluid: nonlinear analysis away from a critical point

    NASA Astrophysics Data System (ADS)

    Dey, Pinkee; Suslov, Sergey A.

    2016-12-01

    A finite amplitude instability has been analysed to discover the exact mechanism leading to the appearance of stationary magnetoconvection patterns in a vertical layer of a non-conducting ferrofluid heated from the side and placed in an external magnetic field perpendicular to the walls. The physical results have been obtained using a version of a weakly nonlinear analysis that is based on the disturbance amplitude expansion. It enables a low-dimensional reduction of a full nonlinear problem in supercritical regimes away from a bifurcation point. The details of the reduction are given in comparison with traditional small-parameter expansions. It is also demonstrated that Squire’s transformation can be introduced for higher-order nonlinear terms thus reducing the full three-dimensional problem to its equivalent two-dimensional counterpart and enabling significant computational savings. The full three-dimensional instability patterns are subsequently recovered using the inverse transforms The analysed stationary thermomagnetic instability is shown to occur as a result of a supercritical pitchfork bifurcation.

  20. Symmetry reduction related with nonlocal symmetry for Gardner equation

    NASA Astrophysics Data System (ADS)

    Ren, Bo

    2017-01-01

    Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.

  1. Local Activity Principle:. the Cause of Complexity and Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Mainzer, Klaus

    2013-01-01

    The principle of local activity is precisely the missing concept to explain the emergence of complex patterns in a homogeneous medium. Leon O. Chua discovered and defined this principle in the theory of nonlinear electronic circuits in a mathematically rigorous way. The local principle can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in physics, chemistry, biology and brain research. Recently, it was realized by memristors for nanoelectronic device applications in technical brains. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media. The principle of local activity is the cause of symmetry breaking in homogeneous media. We argue that the principle of local activity is really fundamental in science and can even be identified in quantum cosmology as symmetry breaking of local gauge symmetries generating the complexity of matter and forces in our universe. Finally, we consider applications in economic, financial, and social systems with the emergence of equilibrium states, symmetry breaking at critical points of phase transitions and risky acting at the edge of chaos. In any case, the driving causes of symmetry breaking and the emergence of complexity are locally active elements, cells, units, or agents.

  2. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  3. Collaboration between HPMC and NaCMC in order to Reach the Polymer Critical Point in Theophylline Hydrophilic Matrices

    PubMed Central

    Contreras, L.; Melgoza, L. M.; Aguilar-de-Leyva, A.; Caraballo, I.

    2012-01-01

    Percolation theory has been applied in order to study the existence of critical points as well as the possibility to find a “combined percolation threshold” for ternary hydrophilic matrices prepared with HPMC, NaCMC, and theophylline. For this purpose, different batches of ternary as well as binary hydrophilic matrices have been prepared. Critical points have been found for binary hydrophilic matrices between 21.5 and 31.3% (v/v) of HPMC and between 39 and 54% (v/v) of NaCMC, respectively. In a previous work carried out with the same polymers but a much more soluble drug (KCl), it was demonstrated the existence of a partial collaboration between the polymers in order to establish the gel layer. In this work, it has been observed for the first time the need of a minimum concentration of one of the matrix-forming polymer (between 10 and 20% v/v, approximately) for establishing an effective collaboration. PMID:22919292

  4. Identifying opportunities for sexually transmitted infection prevention: analysis of critical points in the care pathways of patients with gonorrhoea.

    PubMed

    Abu-Rajab, K; Scoular, A; Church, S; Connell, J; Winter, A; Hart, G

    2009-03-01

    We applied the principles of Hazard Analysis and Critical Control Points (HACCP) to systematically analyse the care pathway of patients diagnosed with gonorrhoea to identify potential intervention opportunities for preventive action. Data were collected on individuals with culture-positive gonococcal infection during 27 February 2003 to 08 January 2004. Qualitative data were gathered within individual semi-structured interviews. Two hundred and twenty-three gonorrhoea patient episodes were evaluated. The median interval between presentation and treatment was significantly longer in females and men having sex with men (MSM), compared with heterosexual men (P = 0.002). Females were significantly more likely to be in regular relationships at the timepoint of perceived infection acquisition than heterosexuals or MSM (P < 0.0001). Four major themes emerged from the interviews: life-stage and infection risk, determinants of risk perception around sexual encounters, attitudes to preventing re-infection and condom use. These informed three potential 'critical control points': health-related attitudes/behaviours preceding infection; access to appropriate care and optimizing health promotion to prevent further infection.

  5. Identification of critical source areas for non-point source pollution in Miyun reservoir watershed near Beijing, China.

    PubMed

    Ou, Yang; Wang, Xiaoyan

    2008-01-01

    Miyun Reservoir is the major water source for Bijing, China. Currently, the water quality of Miyun reservoir is meso-trophic, mainly due to the non-point source pollution (NPS) in the watershed. Phosphorus (P) is the limited factor. In this paper, Chaohe River basin, upstream of the Miyun Reservoir, is chosen as the study area, A modified P Index was developed to identify critical source areas (CSAs) of non-point source pollution by analyzing local hydrological and meteorological data, land use, soil, soil conservation, farmland management, population density, and livestock. The factors of livestock and population density are new factors added to the P Index system based on the actual local characteristics. It was found that the loss P from high-risk area accounts for only 7.95%. These areas are located mainly along streams. Livestock factor and the population density factor are most closely related to the CSAs downstream of Chaohe River basin. The management strategies are outlined according to the distribution characteristics of the critical source areas.

  6. Hazard analysis of critical control points assessment as a tool to respond to emerging infectious disease outbreaks.

    PubMed

    Edmunds, Kelly L; Hunter, Paul R; Few, Roger; Bell, Diana J

    2013-01-01

    Highly pathogenic avian influenza virus (HPAI) strain H5N1 has had direct and indirect economic impacts arising from direct mortality and control programmes in over 50 countries reporting poultry outbreaks. HPAI H5N1 is now reported as the most widespread and expensive zoonotic disease recorded and continues to pose a global health threat. The aim of this research was to assess the potential of utilising Hazard Analysis of Critical Control Points (HACCP) assessments in providing a framework for a rapid response to emerging infectious disease outbreaks. This novel approach applies a scientific process, widely used in food production systems, to assess risks related to a specific emerging health threat within a known zoonotic disease hotspot. We conducted a HACCP assessment for HPAI viruses within Vietnam's domestic poultry trade and relate our findings to the existing literature. Our HACCP assessment identified poultry flock isolation, transportation, slaughter, preparation and consumption as critical control points for Vietnam's domestic poultry trade. Introduction of the preventative measures highlighted through this HACCP evaluation would reduce the risks posed by HPAI viruses and pressure on the national economy. We conclude that this HACCP assessment provides compelling evidence for the future potential that HACCP analyses could play in initiating a rapid response to emerging infectious diseases.

  7. Critical point in the strong-field magnetotransport of a three-dimensional binary disordered composite medium

    NASA Astrophysics Data System (ADS)

    Magier, Ronen; Bergman, David J.

    2008-04-01

    The electrical response of a three-dimensional composite medium composed of two isotropic conductors with charge carriers of the same sign is investigated. We consider such mixtures when subject to a strong magnetic field. First, an asymptotic analysis of a self-consistent effective medium approximation (SEMA) is applied for this purpose. A critical point in the behavior of the effective transverse Ohmic resistivity is predicted. At this critical point, occurring when the Hall resistivities of the two constituents are equal, the dependence of the induced magnetoresistance on the externally applied magnetic field changes from nonsaturating to saturating. The crossover between these distinct strong-field behaviors is characterized by a closed-form function of an appropriate scaling variable. An analogy is found between the investigated composite and a parallel-slabs composite. This provides physical insight into some of the results found using SEMA and indicates that their validity transcends that of SEMA. It also leads to some surprising predictions regarding the distributions of the local electric field and current density in the system.

  8. The use of two-phase molecular dynamics simulations to determine the phase behavior and critical point of propane molecular models.

    PubMed

    Patel, Sonal; Wilding, W Vincent; Rowley, Richard L

    2011-01-14

    Molecular dynamics simulations were performed to determine two-phase configurations of model propane molecules below the critical point and in the near-critical, two-phase region. A postprocessor that uses a Monte Carlo method for determination of volumes attributable to each molecule was used to obtain density histograms of the particles from which the bulk coexisting equilibrium vapor and liquid densities were determined. This method of analyzing coexisting densities in a two-phase simulation is straightforward and can be easily implemented for complex, multisite models. Various degrees of internal flexibility in the propane models have little effect on the coexisting densities at temperatures 40 K or more below the critical point, but internal flexibility (angle bending and bond vibrations) does affect the saturated liquid densities in the near-critical region, changing the critical temperature by approximately 20 K. Shorter cutoffs were also found to affect the phase dome and the location of the critical point.

  9. Ising universality class for the liquid-liquid critical point of a one component fluid: a finite-size scaling test.

    PubMed

    Gallo, Paola; Sciortino, Francesco

    2012-10-26

    We present a finite-size scaling study of the liquid-liquid critical point in the Jagla model, a prototype model for liquids that present the same thermodynamic anomalies which characterize liquid water. Performing successive umbrella sampling grand canonical Monte Carlo simulations, we evaluate an accurate density of states for different system sizes and determine the size-dependent critical parameters. Extrapolation to infinite size provides estimates of the bulk critical values for this model. The finite-size study allows us to establish that critical fluctuations are consistent with the Ising universality class and to provide definitive evidence for the existence of a liquid-liquid critical point in the Jagla potential. This finding supports the possibility of the existence of a genuine liquid-liquid critical point in anomalous one-component liquids like water.

  10. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point.

    PubMed

    Weiss, Volker C

    2015-10-14

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  11. PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard

    NASA Astrophysics Data System (ADS)

    Bittner, S.; Dietz, B.; Günther, U.; Harney, H. L.; Miski-Oglu, M.; Richter, A.; Schäfer, F.

    2012-01-01

    We demonstrate the presence of parity-time (PT) symmetry for the non-Hermitian two-state Hamiltonian of a dissipative microwave billiard in the vicinity of an exceptional point (EP). The shape of the billiard depends on two parameters. The Hamiltonian is determined from the measured resonance spectrum on a fine grid in the parameter plane. After applying a purely imaginary diagonal shift to the Hamiltonian, its eigenvalues are either real or complex conjugate on a curve, which passes through the EP. An appropriate basis choice reveals its PT symmetry. Spontaneous symmetry breaking occurs at the EP.

  12. Noether symmetries and duality transformations in cosmology

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Capozziello, Salvatore

    2016-09-01

    We discuss the relation between Noether (point) symmetries and discrete symmetries for a class of minisuperspace cosmological models. We show that when a Noether symmetry exists for the gravitational Lagrangian, then there exists a coordinate system in which a reversal symmetry exists. Moreover, as far as concerns, the scale-factor duality symmetry of the dilaton field, we show that it is related to the existence of a Noether symmetry for the field equations, and the reversal symmetry in the normal coordinates of the symmetry vector becomes scale-factor duality symmetry in the original coordinates. In particular, the same point symmetry as also the same reversal symmetry exists for the Brans-Dicke scalar field with linear potential while now the discrete symmetry in the original coordinates of the system depends on the Brans-Dicke parameter and it is a scale-factor duality when ωBD = 1. Furthermore, in the context of the O’Hanlon theory for f(R)-gravity, it is possible to show how a duality transformation in the minisuperspace can be used to relate different gravitational models.

  13. Monte Carlo Markov chains analysis of WMAP3 and SDSS data points to broken symmetry inflaton potentials and provides a lower bound on the tensor to scalar ratio

    SciTech Connect

    Destri, C.; Vega, H. J. de; Sanchez, N. G.

    2008-02-15

    We perform a Monte Carlo Markov chains (MCMC) analysis of the available cosmic microwave background (CMB) and large scale structure (LSS) data (including the three years WMAP data) with single field slow-roll new inflation and chaotic inflation models. We do this within our approach to inflation as an effective field theory in the Ginsburg-Landau spirit with fourth degree trinomial potentials in the inflaton field {phi}. We derive explicit formulae and study in detail the spectral index n{sub s} of the adiabatic fluctuations, the ratio r of tensor to scalar fluctuations, and the running index dn{sub s}/dlnk. We use these analytic formulas as hard constraints on n{sub s} and r in the MCMC analysis. Our analysis differs in this crucial aspect from previous MCMC studies in the literature involving the WMAP3 data. Our results are as follows: (i) The data strongly indicate the breaking (whether spontaneous or explicit) of the {phi}{yields}-{phi} symmetry of the inflaton potentials both for new and for chaotic inflation. (ii) Trinomial new inflation naturally satisfies this requirement and provides an excellent fit to the data. (iii) Trinomial chaotic inflation produces the best fit in a very narrow corner of the parameter space. (iv) The chaotic symmetric trinomial potential is almost certainly ruled out (at 95% C.L.). In trinomial chaotic inflation the MCMC runs go towards a potential in the boundary of the parameter space and which resembles a spontaneously symmetry broken potential of new inflation. (v) The above results and further physical analysis here lead us to conclude that new inflation gives the best description of the data. (vi) We find a lower bound for r within trinomial new inflation potentials: r>0.016(95%CL) and r>0.049(68%CL). (vii) The preferred new inflation trinomial potential is a double well, even function of the field with a moderate quartic coupling yielding as most probable values: n{sub s}{approx_equal}0.958, r{approx_equal}0.055. This value

  14. Structure of fluctuations near mean-field critical points and spinodals and its implication for physical processes.

    PubMed

    Klein, W; Gould, Harvey; Gulbahce, Natali; Rundle, J B; Tiampo, K

    2007-03-01

    We analyze the structure of fluctuations near critical points and spinodals in mean-field and near-mean-field systems. Unlike systems that are non-mean-field, for which a fluctuation can be represented by a single cluster in a properly chosen percolation model, a fluctuation in mean-field and near-mean-field systems consists of a large number of clusters, which we term fundamental clusters. The structure of the latter and the way that they form fluctuations has important physical consequences for phenomena as diverse as nucleation in supercooled liquids, spinodal decomposition and continuous ordering, and the statistical distribution of earthquakes. The effects due to the fundamental clusters implies that they are physical objects and not only mathematical constructs.

  15. BOOK REVIEW: Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Ryder, L. H.

    2005-11-01

    have to be rather clever to recognize that the particle interactions were rotationally invariant. Nambu and Goldstone showed that the spontaneous breakdown of a (continuous) symmetry implied the existence of massless scalar particles, referred to as Nambu Goldstone bosons, or simply Goldstone bosons. Meanwhile Anderson, in his study of (non-relativistic) superconductivity, showed that the exclusion of magnetic flux (Meissner effect) corresponds to a finite range for the electromagnetic field and hence to a `massive photon'. In a relativistic context Englert, Brout, Guralnik and more particularly Higgs showed that a spontaneous breaking of a gauge symmetry resulted in a massive, instead of a massless, gauge particle and no Goldstone particle; in the jargon of the day, the massless gauge particle had `eaten' the massless Goldstone boson and become massive; exactly Anderson's observation. It is this phenomenon which has been invoked so successfully to explain the masses of the W and Z bosons of weak interactions. Spontaneous symmetry breaking, therefore, has played a major role in the development of the Standard Model of particle physics, and it has also proved an important tool in condensed matter physics, for example in the understanding of phase transitions. At the same time, however, in the understanding of most (or all) particle physicists, and perhaps also condensed matter physicists, the notion of spontaneous symmetry breaking has been inexorably linked to that of a degenerate vacuum. This is the background and the starting point for Strocchi's book. Recognizing the power and importance of the concept of spontaneous symmetry breaking in theoretical physics, he defines it in a more refined and general way than usual. `Despite the many popular accounts', he writes, `the phenomenon of spontaneous symmetry breaking is deep and subtle and it is not without [reason] that it has been fully understood only in recent times.' Strocchi's main emphasis is on the fact that the

  16. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    SciTech Connect

    Butlitsky, M. A.; Zelener, B. V.

    2014-07-14

    A two-component plasma model, which we called a “shelf Coulomb” model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The “shelf Coulomb” model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ε parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ε and γ = βe{sup 2}n{sup 1/3} (where β = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ε and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ε{sub crit}≈13(T{sub crit}{sup *}≈0.076),γ{sub crit}≈1.8(v{sub crit}{sup *}≈0.17),P{sub crit}{sup *}≈0.39, where specific volume v* = 1/γ{sup 3} and reduced temperature T{sup *} = ε{sup −1}.

  17. Field-induced quantum critical point in the pressure-induced superconductor CeRhIn5

    SciTech Connect

    Bauer, Eric D; Park, Tuson; Tokiwa, Yoshifumi; Ronning, Filip; Lee, Han O; Movshovich, Roman; Thompson, Joe D

    2009-01-01

    When subjected to pressure, the prototypical heavy-fermion antiferromagnet CeRhIn{sub 5} becomes superconducting, forming a broad dome of superconductivity centered around 2.35 GPa (=P2) with maximal T{sub c} of 2.3 K. Above the superconducting dome, the normal state shows strange metallic behaviors, including a divergence in the specific heat and a sub-T-linear electrical resistivity. The discovery of a field-induced magnetic phase that coexists with superconductivity for a range of pressures P {le} P2 has been interpreted as evidence for a quantum phase transition, which could explain the non-Fenni liquid behavior observed in the normal state. Here we report electrical resistivity measurements of CeRhIn{sub 5} under magnetic field at P2, where the resistivity is sub-T-linear for fields less than H{sub c2}(0) and a T{sup 2}-coefficient A found above H{sub c2}(0) diverges as H{sub c2} is approached. These results are similar to the field-induced quantum critical compound Ce-CoIn{sub 5} and confirm the presence of a quantum critical point in the pressure-induced superconductor CeRhIn{sub 5}.

  18. Magneto-acoustic study near the quantum critical point of the frustrated quantum antiferromagnet Cs2CuCl4

    NASA Astrophysics Data System (ADS)

    Cong, P. T.; Postulka, L.; Wolf, B.; van Well, N.; Ritter, F.; Assmus, W.; Krellner, C.; Lang, M.

    2016-10-01

    Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs2CuCl4 were performed for the longitudinal modes c11 and c33 in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at TN. Isothermal measurements at T < TN of the sound attenuation α reveal two closely spaced features of different characters on approaching the material's quantum-critical point (QCP) at Bs ≈ 8.5 T for B || a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature TN(B). The second anomaly, which is rounded and which becomes reduced in size upon cooling, is assigned to the material's spin-liquid properties preceding the long-range antiferromagnetic ordering with decreasing temperature. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/kB ≈ 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.

  19. The role of multiple-point statistics and model selection in quantitative hydrogeophysical studies of the critical zone

    NASA Astrophysics Data System (ADS)

    Linde, N.

    2015-12-01

    Geophysical data are routinely used to provide qualitative insights about the main lithologies and the distribution of soil moisture in the critical zone. Quantitative hydrogeophysical inferences of critical zone properties and processes are much more challenging because of the multitude of interacting physical, biological and chemical gradients that may affect the geophysical measurement response. In this context, it is essential to incorporate the geophysical data within a wider modeling framework that centers on a conceptual model that describes the properties and processes under study together with appropriate boundary conditions. Based on recent groundwater applications, I describe how it is now possible to build geologically meaningful realizations of subsurface structure using multiple-point statistics (MPS) and to make uncertainty estimates. I will demonstrate conditioning of MPS simulations to geophysical tomograms, inclusion of summary statistics derived from MPS simulations within a Markov chain Monte Carlo (MCMC) inversion, and full MPS MCMC inversion based on fast (speed-up of 40 times) model proposal algorithms that we have adapted from computer vision. For future applications in the critical zone, I suggest that MPS simulations should be used to derive and perturb primary lithological properties and that biological, chemical, and hydrological state variables (given appropriate boundary conditions) are subsequently simulated using domain-specific algorithms. The geophysical data (an individual snap shot or time-series) are then used to guide the model update of the primary properties (and nuisance parameters such as petrophysical parameters) that in turn influence the predicted state variables and their associated fluxes. Instead of classical parameter estimation, I argue that it is often more appropriate to focus on model selection, in which alternative conceptual models of the subsurface are compared and ranked given the available data.

  20. Low-dimensional behavior and symmetry breaking of stochastic systems near criticality - Can these effects be observed in space and in the laboratory?

    NASA Technical Reports Server (NTRS)

    Chang, Tom

    1992-01-01

    We demonstrate that nonlinear stochastic systems near criticality (including forced and self-organized criticality) will generally exhibit low-dimensional behavior. We give a connection between the fractal dimensions of finite-dimensional chaotic systems and the anomalous dimensions in stochastic systems near criticality. The effect of additional random noise on stochastic systems will be delineated in terms of the crossover phenomenon between competing criticalities. The possibility of observing such effects in space (such as the onset of substorms) and in the laboratory (such as stochastic particle heating in 'noisy' magnetic fields) will be discussed.

  1. Classification of spacetimes with symmetry

    NASA Astrophysics Data System (ADS)

    Hicks, Jesse W.

    Spacetimes with symmetry play a critical role in Einstein's Theory of General Relativity. Missing from the literature is a correct, usable, and computer accessible classification of such spacetimes. This dissertation fills this gap; specifically, we. i) give a new and different approach to the classification of spacetimes with symmetry using modern methods and tools such as the Schmidt method and computer algebra systems, resulting in ninety-two spacetimes; ii) create digital databases of the classification for easy access and use for researchers; iii) create software to classify any spacetime metric with symmetry against the new database; iv) compare results of our classification with those of Petrov and find that Petrov missed six cases and incorrectly normalized a significant number of metrics; v) classify spacetimes with symmetry in the book Exact Solutions to Einstein's Field Equations Second Edition by Stephani, Kramer, Macallum, Hoenselaers, and Herlt and in Komrakov's paper Einstein-Maxwell equation on four-dimensional homogeneous spaces using the new software.

  2. Symmetries from the solution manifold

    NASA Astrophysics Data System (ADS)

    Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco

    2015-07-01

    We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.

  3. Partial Dynamical Symmetry in Molecules

    NASA Astrophysics Data System (ADS)

    Ping, Jia-Lun; Chen, Jin-Quan

    1997-03-01

    It is shown that any Hamiltonian involving only one- and two-bond interactions for a molecule withnbonds and having a point groupPas its symmetry group may have theSn⊃Ppartial dynamical symmetry, i.e., the Hamiltonian can be solved analytically for a part of the states, called the unique states. For example, theXY6molecule has theS6⊃Ohpartial dynamical symmetry. The model of Iachello and Oss forncoupled anharmonic oscillators is revisited in terms of the partial dynamical symmetry. The energies are obtained analytically for the nine unique levels of theXY6molecule and the structures of the eigenstates are disclosed for the first time, while for non-unique states they are obtained by diagonalizing the Hamiltonian in theS6⊃Ohsymmetry adapted basis with greatly reduced dimension.

  4. Quantum Symmetries and Exceptional Collections

    NASA Astrophysics Data System (ADS)

    Karp, Robert L.

    2011-01-01

    We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the {{mathbb Z}_5} symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity.

  5. Entanglement entropy in quantum spin chains with broken reflection symmetry

    SciTech Connect

    Kadar, Zoltan; Zimboras, Zoltan

    2010-09-15

    We investigate the entanglement entropy of a block of L sites in quasifree translation-invariant spin chains concentrating on the effect of reflection-symmetry breaking. The Majorana two-point functions corresponding to the Jordan-Wigner transformed fermionic modes are determined in the most general case; from these, it follows that reflection symmetry in the ground state can only be broken if the model is quantum critical. The large L asymptotics of the entropy are calculated analytically for general gauge-invariant models, which have, until now, been done only for the reflection-symmetric sector. Analytical results are also derived for certain nongauge-invariant models (e.g., for the Ising model with Dzyaloshinskii-Moriya interaction). We also study numerically finite chains of length N with a nonreflection-symmetric Hamiltonian and report that the reflection symmetry of the entropy of the first L spins is violated but the reflection-symmetric Calabrese-Cardy formula is recovered asymptotically. Furthermore, for noncritical reflection-symmetry-breaking Hamiltonians, we find an anomaly in the behavior of the saturation entropy as we approach the critical line. The paper also provides a concise but extensive review of the block-entropy asymptotics in translation-invariant quasifree spin chains with an analysis of the nearest-neighbor case and the enumeration of the yet unsolved parts of the quasifree landscape.

  6. Grid-based algorithm to search critical points, in the electron density, accelerated by graphics processing units.

    PubMed

    Hernández-Esparza, Raymundo; Mejía-Chica, Sol-Milena; Zapata-Escobar, Andy D; Guevara-García, Alfredo; Martínez-Melchor, Apolinar; Hernández-Pérez, Julio-M; Vargas, Rubicelia; Garza, Jorge

    2014-12-05

    Using a grid-based method to search the critical points in electron density, we show how to accelerate such a method with graphics processing units (GPUs). When the GPU implementation is contrasted with that used on central processing units (CPUs), we found a large difference between the time elapsed by both implementations: the smallest time is observed when GPUs are used. We tested two GPUs, one related with video games and other used for high-performance computing (HPC). By the side of the CPUs, two processors were tested, one used in common personal computers and other used for HPC, both of last generation. Although our parallel algorithm scales quite well on CPUs, the same implementation on GPUs runs around 10× faster than 16 CPUs, with any of the tested GPUs and CPUs. We have found what one GPU dedicated for video games can be used without any problem for our application, delivering a remarkable performance, in fact; this GPU competes against one HPC GPU, in particular when single-precision is used.

  7. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-x Se x

    NASA Astrophysics Data System (ADS)

    Shan, Cui; Lan-Po, He; Xiao-Chen, Hong; Xiang-De, Zhu; Cedomir, Petrovic; Shi-Yan, Li

    2016-07-01

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3-x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3-x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ 0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3-x Se x , which indicates conventional superconductivity despite of the existence of a CDW QCP. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 91421101, 11422429, and 11204312), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and STCSM of China (Grant No. 15XD1500200). Work at Brookhaven National Laboratory was supported by the US DOE under Contract No. DESC00112704.

  8. Experimental study of the critical point region of aluminum under the action of the powerful nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Cherepetskaya, E. B.; Karabutov, A. A.; Kaptilniy, A. G.; Ksenofontov, D. M.; Makarov, V. A.; Podymova, N. B.

    2015-12-01

    This paper is a report on the novel experimental method of the study of the thermodynamic parameters of thin aluminum films in the critical point region. The controlled supercritical state of aluminum is achieved for the first time as a result of the heating of these films by the absorption of the powerful nanosecond pulse of Q-switched Nd:YAG laser at the fundamental wavelength. The possibility is demonstrated to find simultaneously the temporal dependencies of the temperature, of the pressure and of the density of aluminum during the experiment with the thin aluminum films confined at both sides by the quartz glass substrates. These dependencies are obtained taking into account the nonlinear dependence on the incident laser intensity of the light reflection coefficient from the irradiated surface of aluminum. For the first time the thermodynamic cooling cycle of aluminum after its heating by the powerful nanosecond laser pulse is plotted in the space of variables’ temperature—pressure and temperature—density that get into the supercritical region.

  9. Photon emissivity in the vicinity of a critical point - A case study within the quark meson model

    NASA Astrophysics Data System (ADS)

    Wunderlich, F.; Kämpfer, B.

    2017-03-01

    The quark meson (linear sigma) model with linearized fluctuations displays at a critical end point the onset of a curve of first-order phase transitions (FOPTs) located at non-zero chemical potentials and temperatures below a certain cross-over temperature. The model qualifies well for an illustrative example to study the impact of the emerging FOPT, e.g. on photon emissivities. Such a case study unravels the tight interlocking of the phase structure with the emission rates, here calculated according to lowest-order tree level processes by kinetic theory expressions. It is the strong dependence of the rates on the effective masses of the involved degrees of freedom which distinctively vary over the phase diagram thus shaping the emissivity accordingly. At the same time, thermodynamic properties of the medium are linked decisively to these effective masses, i.e. a consistent evaluation of thermodynamics, governing for instance adiabatic expansion paths, and emission rates is maintained within such an approach.

  10. Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2.

    PubMed

    Hartmann, Stefanie; Oeschler, Niels; Krellner, Cornelius; Geibel, Christoph; Paschen, Silke; Steglich, Frank

    2010-03-05

    We present low-temperature thermopower results, S(T), on the heavy-fermion compound YbRh2Si2 in the vicinity of its field-induced quantum critical point (QCP). At B=0, a logarithmic increase of -S(T)/T between 1 and 0.1 K reveals strong non-Fermi-liquid behavior. A pronounced downturn of -S(T)/T below T{max}=0.1 K and a sign change from negative to positive S(T) values at T{0} approximately 30 mK are observed on the low-field side of the Kondo breakdown crossover line T{*}(B). In the field-induced, heavy Landau-Fermi-liquid regime, S(T)/T assumes constant, negative values below T{LFL}. A pronounced crossover in the -S(B)/T isotherms at T{*}(B) sharpens with decreasing T and seems to evolve toward a steplike function for T-->0. This is attributed to an abrupt change of the Fermi volume upon crossing the unconventional QCP of YbRh2Si2.

  11. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT

    NASA Astrophysics Data System (ADS)

    Liu, Ruimin; Xu, Fei; Zhang, Peipei; Yu, Wenwen; Men, Cong

    2016-02-01

    The identification of critical source areas (CSAs) is a precondition for non-point source (NPS) pollution control at a basin scale, especially in areas with limited resources. Based on the Soil and Water Assessment Tool (SWAT), nutrient loads coupled with population density and water quality requirements are regarded as multi-factors for CSAs identification in Xiangxi river watershed, the first tributary of the Yangtze River. The results based on the calibrated model found that the subbasins heavily and seriously polluted by nutrient loads were different from the subbasins identified as CSAs, demonstrating integrating socio-economic factors like population density and water quality requirements to identify CSAs is of much necessity. The CSAs occupied 19.7% of the total subbasins, and accounted for 53% total nitrogen loads, 54% total phosphorus loads and 36% of the total population. Considering the model calibration and validation will take a long time as well as data deficiency in some subbasins, the influence of uncalibrated SWAT on CSAs identifications was discussed. The comparative results between CSAs identification with calibrated and uncalibrated SWAT model revealed that model calibration had little effect on nutrients distribution and CSAs locations in the study area. Uncalibrated SWAT model may be applied when the research objective is less related to model calibration. The results will be greatly effective for CSAs identification and NPS pollution control at a basin scale.

  12. Isolation of novel cDNA encompassing the ADU balanced translocation break point in the DiGeorge critical region.

    PubMed

    Kim, M H; Hur, H; Park, J; Kim, Y J

    2001-03-01

    DiGeorge syndrome (DGS) is a developmental field defect of the third and fourth pharyngeal pouches that are associated with congenital heart defects, hypoparathyroidism, cell-mediated immunodeficiency, velopharyngeal insufficiency, and craniofacial anomalities. Approximately 90% of patients exhibit monosomy in the 22q11 region. In order to isolate the critical gene responsible for DGS, the cDNA libraries were screened with a probe containing the ADU balanced translocation break point, that is a locus reported in one patient (ADU) caused by a balanced translocation between chromosomes 22 and 2. Out of 10(6) clones, three independent overlapping clones were isolated, which were assumed to have originated from a single transcript, DGCR7. This transcript contained a 175-aa long open reading frame (ORF), encoding an acidic (pI = 5.81) and a proline-rich peptide, which are often found in the activation domain of several transcription factors. Also, it was predicted to be a nuclear protein. Northern hybridization detected an approx 1.9 kb transcript in all fetal and adult tissues tested, with strong expression in the fetal liver and kidney. In the case of adult tissues, strong expression was also detected in areas such as the heart, skeletal muscle, liver, and kidney.

  13. Cluster Luttinger liquids and emergent supersymmetric conformal critical points in the one-dimensional soft-shoulder Hubbard model

    NASA Astrophysics Data System (ADS)

    Dalmonte, M.; Lechner, W.; Cai, Zi; Mattioli, M.; Läuchli, A. M.; Pupillo, G.

    2015-07-01

    We investigate the quantum phases of hard-core bosonic atoms in an extended Hubbard model where particles interact via soft-shoulder potentials in one dimension. Using a combination of field-theoretical methods and strong-coupling perturbation theory, we demonstrate that the low-energy phase can be a conformal cluster Luttinger liquid (CLL) phase with central charge c =1 , where the microscopic degrees of freedom correspond to mesoscopic ensembles of particles. Using numerical density-matrix renormalization-group methods, we demonstrate that the CLL phase [first predicted in M. Mattioli et al., Phys. Rev. Lett. 111, 165302 (2013), 10.1103/PhysRevLett.111.165302] is separated from a conventional Tomonaga-Luttinger liquid by an exotic critical point with central charge c =3/2 . The latter is expression of an emergent conformal supersymmetry, which is not present in the original Hamiltonian. We discuss the observability of the CLL phase in realistic experimental settings with weakly dressed Rydberg atoms confined to optical lattices. Using quantum Monte Carlo simulations, we show that the typical features of CLLs are stable up to comparatively high temperatures. Using exact diagonalizations and quantum trajectory methods, we provide a protocol for adiabatic state preparation as well as quantitative estimates on the effects of particle losses.

  14. Lie symmetry analysis of the Heisenberg equation

    NASA Astrophysics Data System (ADS)

    Zhao, Zhonglong; Han, Bo

    2017-04-01

    The Lie symmetry analysis is performed on the Heisenberg equation from the statistical physics. Its Lie point symmetries and optimal system of one-dimensional subalgebras are determined. The similarity reductions and invariant solutions are obtained. Using the multipliers, some conservation laws are obtained. We prove that this equation is nonlinearly self-adjoint. The conservation laws associated with symmetries of this equation are constructed by means of Ibragimov's method.

  15. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    SciTech Connect

    Zurek, Wojciech H.; Del Campo, Adolfo

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  16. Representative equations for the thermodynamic and transport properties of fluids near the gas-liquid critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.

    1981-01-01

    A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.

  17. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.

    PubMed

    Vega, C; Abascal, J L F; Nezbeda, I

    2006-07-21

    The vapor-liquid equilibria of three recently proposed water models have been computed using Gibbs-Duhem simulations. These models are TIP4P/Ew, TIP4P/2005, and TIP4P/ice and can be considered as modified versions of the TIP4P model. By design TIP4P reproduces the vaporization enthalpy of water at room temperature, whereas TIP4P/Ew and TIP4P/2005 match the temperature of maximum density and TIP4P/ice the melting temperature of water. Recently, the melting point for each of these models has been computed, making it possible for the first time to compute the complete vapor-liquid equilibria curve from the triple point to the critical point. From the coexistence results at high temperature, it is possible to estimate the critical properties of these models. None of them is capable of reproducing accurately the critical pressure or the vapor pressures and densities. Additionally, in the cases of TIP4P and TIP4P/ice the critical temperatures are too low and too high, respectively, compared to the experimental value. However, models accounting for the density maximum of water, such as TIP4P/Ew and TIP4P/2005 provide a better estimate of the critical temperature. In particular, TIP4P/2005 provides a critical temperature just 7 K below the experimental result as well as an extraordinarily good description of the liquid densities from the triple point to the critical point. All TIP4P-like models present a ratio of the triple point temperature to the critical point temperature of about 0.39, compared with the experimental value of 0.42. As is the case for any effective potential neglecting many body forces, TIP4P/2005 fails in describing simultaneously the vapor and the liquid phases of water. However, it can be considered as one of the best effective potentials of water for describing condensed phases, both liquid and solid. In fact, it provides a completely coherent view of the phase diagram of water including fluid-solid, solid-solid, and vapor-liquid equilibria.

  18. Nonsupersymmetric Dualities from Mirror Symmetry

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia

    2017-01-01

    We study supersymmetry breaking perturbations of the simplest dual pair of (2 +1 )-dimensional N =2 supersymmetric field theories—the free chiral multiplet and N =2 super QED with a single flavor. We find dual descriptions of a phase diagram containing four distinct massive phases. The equivalence of the intervening critical theories gives rise to several nonsupersymmetric avatars of mirror symmetry: we find dualities relating scalar QED to a free fermion and Wilson-Fisher theories to both scalar and fermionic QED. Thus, mirror symmetry can be viewed as the multicritical parent duality from which these nonsupersymmetric dualities directly descend.

  19. Chiral symmetry on the lattice

    SciTech Connect

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.

  20. Resonantly amplified vibronic symmetry breaking

    NASA Astrophysics Data System (ADS)

    Rathbone, G. J.; Poliakoff, E. D.; Bozek, John D.; Lucchese, R. R.

    2001-05-01

    The energy dependence of the vibrational branching ratio for exciting one quantum of bending is determined for CO2 4σg-1 photoionization. This nominally forbidden transition becomes allowed for a photoionization transition as a result of instantaneous symmetry breaking due to zero point motion, and is strongly enhanced by a continuum shape resonance.