Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... Pachard Company, Business Critical Systems, Mission Critical Business Software Division, Openvms Operating... Business Software Division, Openvms Operating System Development Group, Including an Employee Operating Out... Company, Business Critical Systems, Mission Critical Business Software Division, OpenVMS Operating System...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... Packard Company Business Critical Systems, Mission Critical Business Software Division, OpenVMS Operating... Software Division, OpenVMS Operating System Development Group, Including an Employee Operating Out of the..., Mission Critical Business Software Division, OpenVMS Operating System Development Group, including...
Software Safety Risk in Legacy Safety-Critical Computer Systems
NASA Technical Reports Server (NTRS)
Hill, Janice; Baggs, Rhoda
2007-01-01
Safety-critical computer systems must be engineered to meet system and software safety requirements. For legacy safety-critical computer systems, software safety requirements may not have been formally specified during development. When process-oriented software safety requirements are levied on a legacy system after the fact, where software development artifacts don't exist or are incomplete, the question becomes 'how can this be done?' The risks associated with only meeting certain software safety requirements in a legacy safety-critical computer system must be addressed should such systems be selected as candidates for reuse. This paper proposes a method for ascertaining formally, a software safety risk assessment, that provides measurements for software safety for legacy systems which may or may not have a suite of software engineering documentation that is now normally required. It relies upon the NASA Software Safety Standard, risk assessment methods based upon the Taxonomy-Based Questionnaire, and the application of reverse engineering CASE tools to produce original design documents for legacy systems.
V&V Within Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1996-01-01
Verification and Validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission-critical software. V&V is a systems engineering discipline that evaluates the software in a systems context, and is currently applied during the development of a specific application system. In order to bring the effectiveness of V&V to bear within reuse-based software engineering, V&V must be incorporated within the domain engineering process.
RT-Syn: A real-time software system generator
NASA Technical Reports Server (NTRS)
Setliff, Dorothy E.
1992-01-01
This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs.
Software Design Improvements. Part 2; Software Quality and the Design and Inspection Process
NASA Technical Reports Server (NTRS)
Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom
1997-01-01
The application of assurance engineering techniques improves the duration of failure-free performance of software. The totality of features and characteristics of a software product are what determine its ability to satisfy customer needs. Software in safety-critical systems is very important to NASA. We follow the System Safety Working Groups definition for system safety software as: 'The optimization of system safety in the design, development, use and maintenance of software and its integration with safety-critical systems in an operational environment. 'If it is not safe, say so' has become our motto. This paper goes over methods that have been used by NASA to make software design improvements by focusing on software quality and the design and inspection process.
Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems
NASA Technical Reports Server (NTRS)
Lutz, Robyn R.
1993-01-01
This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.
Certification of COTS Software in NASA Human Rated Flight Systems
NASA Technical Reports Server (NTRS)
Goforth, Andre
2012-01-01
Adoption of commercial off-the-shelf (COTS) products in safety critical systems has been seen as a promising acquisition strategy to improve mission affordability and, yet, has come with significant barriers and challenges. Attempts to integrate COTS software components into NASA human rated flight systems have been, for the most part, complicated by verification and validation (V&V) requirements necessary for flight certification per NASA s own standards. For software that is from COTS sources, and, in general from 3rd party sources, either commercial, government, modified or open source, the expectation is that it meets the same certification criteria as those used for in-house and that it does so as if it were built in-house. The latter is a critical and hidden issue. This paper examines the longstanding barriers and challenges in the use of 3rd party software in safety critical systems and cover recent efforts to use COTS software in NASA s Multi-Purpose Crew Vehicle (MPCV) project. It identifies some core artifacts that without them, the use of COTS and 3rd party software is, for all practical purposes, a nonstarter for affordable and timely insertion into flight critical systems. The paper covers the first use in a flight critical system by NASA of COTS software that has prior FAA certification heritage, which was shown to meet the RTCA-DO-178B standard, and how this certification may, in some cases, be leveraged to allow the use of analysis in lieu of testing. Finally, the paper proposes the establishment of an open source forum for development of safety critical 3rd party software.
A measurement system for large, complex software programs
NASA Technical Reports Server (NTRS)
Rone, Kyle Y.; Olson, Kitty M.; Davis, Nathan E.
1994-01-01
This paper describes measurement systems required to forecast, measure, and control activities for large, complex software development and support programs. Initial software cost and quality analysis provides the foundation for meaningful management decisions as a project evolves. In modeling the cost and quality of software systems, the relationship between the functionality, quality, cost, and schedule of the product must be considered. This explicit relationship is dictated by the criticality of the software being developed. This balance between cost and quality is a viable software engineering trade-off throughout the life cycle. Therefore, the ability to accurately estimate the cost and quality of software systems is essential to providing reliable software on time and within budget. Software cost models relate the product error rate to the percent of the project labor that is required for independent verification and validation. The criticality of the software determines which cost model is used to estimate the labor required to develop the software. Software quality models yield an expected error discovery rate based on the software size, criticality, software development environment, and the level of competence of the project and developers with respect to the processes being employed.
Traceability of Software Safety Requirements in Legacy Safety Critical Systems
NASA Technical Reports Server (NTRS)
Hill, Janice L.
2007-01-01
How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?
Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems
NASA Technical Reports Server (NTRS)
Hill, Janice; Victor, Daniel
2008-01-01
When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard
Using Combined SFTA and SFMECA Techniques for Space Critical Software
NASA Astrophysics Data System (ADS)
Nicodemos, F. G.; Lahoz, C. H. N.; Abdala, M. A. D.; Saotome, O.
2012-01-01
This work addresses the combined Software Fault Tree Analysis (SFTA) and Software Failure Modes, Effects and Criticality Analysis (SFMECA) techniques applied to space critical software of satellite launch vehicles. The combined approach is under research as part of the Verification and Validation (V&V) efforts to increase software dependability and as future application in other projects under development at Instituto de Aeronáutica e Espaço (IAE). The applicability of such approach was conducted on system software specification and applied to a case study based on the Brazilian Satellite Launcher (VLS). The main goal is to identify possible failure causes and obtain compensating provisions that lead to inclusion of new functional and non-functional system software requirements.
Software Innovation in a Mission Critical Environment
NASA Technical Reports Server (NTRS)
Fredrickson, Steven
2015-01-01
Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.
A Software Safety Risk Taxonomy for Use in Retrospective Safety Cases
NASA Technical Reports Server (NTRS)
Hill, Janice L.
2007-01-01
Safety standards contain technical and process-oriented safely requirements. The best time to include these requirements is early in the development lifecycle of the system. When software safety requirements are levied on a legacy system after the fact, a retrospective safety case will need to be constructed for the software in the system. This can be a difficult task because there may be few to no art facts available to show compliance to the software safely requirements. The risks associated with not meeting safely requirements in a legacy safely-critical computer system must be addressed to give confidence for reuse. This paper introduces a proposal for a software safely risk taxonomy for legacy safely-critical computer systems, by specializing the Software Engineering Institute's 'Software Development Risk Taxonomy' with safely elements and attributes.
Fault Tree Analysis Application for Safety and Reliability
NASA Technical Reports Server (NTRS)
Wallace, Dolores R.
2003-01-01
Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.
14 CFR 417.123 - Computing systems and software.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Computing systems and software. 417.123... systems and software. (a) A launch operator must document a system safety process that identifies the... systems and software. (b) A launch operator must identify all safety-critical functions associated with...
14 CFR 417.123 - Computing systems and software.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Computing systems and software. 417.123... systems and software. (a) A launch operator must document a system safety process that identifies the... systems and software. (b) A launch operator must identify all safety-critical functions associated with...
14 CFR 417.123 - Computing systems and software.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Computing systems and software. 417.123... systems and software. (a) A launch operator must document a system safety process that identifies the... systems and software. (b) A launch operator must identify all safety-critical functions associated with...
14 CFR 417.123 - Computing systems and software.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Computing systems and software. 417.123... systems and software. (a) A launch operator must document a system safety process that identifies the... systems and software. (b) A launch operator must identify all safety-critical functions associated with...
14 CFR 417.123 - Computing systems and software.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Computing systems and software. 417.123... systems and software. (a) A launch operator must document a system safety process that identifies the... systems and software. (b) A launch operator must identify all safety-critical functions associated with...
Four Pillars for Improving the Quality of Safety-Critical Software-Reliant Systems
2013-04-01
Studies of safety-critical software-reliant systems developed using the current practices of build-then-test show that requirements and architecture ... design defects make up approximately 70% of all defects, many system level related to operational quality attributes, and 80% of these defects are
Applying formal methods and object-oriented analysis to existing flight software
NASA Technical Reports Server (NTRS)
Cheng, Betty H. C.; Auernheimer, Brent
1993-01-01
Correctness is paramount for safety-critical software control systems. Critical software failures in medical radiation treatment, communications, and defense are familiar to the public. The significant quantity of software malfunctions regularly reported to the software engineering community, the laws concerning liability, and a recent NRC Aeronautics and Space Engineering Board report additionally motivate the use of error-reducing and defect detection software development techniques. The benefits of formal methods in requirements driven software development ('forward engineering') is well documented. One advantage of rigorously engineering software is that formal notations are precise, verifiable, and facilitate automated processing. This paper describes the application of formal methods to reverse engineering, where formal specifications are developed for a portion of the shuttle on-orbit digital autopilot (DAP). Three objectives of the project were to: demonstrate the use of formal methods on a shuttle application, facilitate the incorporation and validation of new requirements for the system, and verify the safety-critical properties to be exhibited by the software.
Testing of Safety-Critical Software Embedded in an Artificial Heart
NASA Astrophysics Data System (ADS)
Cha, Sungdeok; Jeong, Sehun; Yoo, Junbeom; Kim, Young-Gab
Software is being used more frequently to control medical devices such as artificial heart or robotic surgery system. While much of software safety issues in such systems are similar to other safety-critical systems (e.g., nuclear power plants), domain-specific properties may warrant development of customized techniques to demonstrate fitness of the system on patients. In this paper, we report results of a preliminary analysis done on software controlling a Hybrid Ventricular Assist Device (H-VAD) developed by Korea Artificial Organ Centre (KAOC). It is a state-of-the-art artificial heart which completed animal testing phase. We performed software testing in in-vitro experiments and animal experiments. An abnormal behaviour, never detected during extensive in-vitro analysis and animal testing, was found.
Generalized implementation of software safety policies
NASA Technical Reports Server (NTRS)
Knight, John C.; Wika, Kevin G.
1994-01-01
As part of a research program in the engineering of software for safety-critical systems, we are performing two case studies. The first case study, which is well underway, is a safety-critical medical application. The second, which is just starting, is a digital control system for a nuclear research reactor. Our goal is to use these case studies to permit us to obtain a better understanding of the issues facing developers of safety-critical systems, and to provide a vehicle for the assessment of research ideas. The case studies are not based on the analysis of existing software development by others. Instead, we are attempting to create software for new and novel systems in a process that ultimately will involve all phases of the software lifecycle. In this abstract, we summarize our results to date in a small part of this project, namely the determination and classification of policies related to software safety that must be enforced to ensure safe operation. We hypothesize that this classification will permit a general approach to the implementation of a policy enforcement mechanism.
Space Flight Software Development Software for Intelligent System Health Management
NASA Technical Reports Server (NTRS)
Trevino, Luis C.; Crumbley, Tim
2004-01-01
The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.
Planning the Unplanned Experiment: Assessing the Efficacy of Standards for Safety Critical Software
NASA Technical Reports Server (NTRS)
Graydon, Patrick J.; Holloway, C. Michael
2015-01-01
We need well-founded means of determining whether software is t for use in safety-critical applications. While software in industries such as aviation has an excellent safety record, the fact that software aws have contributed to deaths illustrates the need for justi ably high con dence in software. It is often argued that software is t for safety-critical use because it conforms to a standard for software in safety-critical systems. But little is known about whether such standards `work.' Reliance upon a standard without knowing whether it works is an experiment; without collecting data to assess the standard, this experiment is unplanned. This paper reports on a workshop intended to explore how standards could practicably be assessed. Planning the Unplanned Experiment: Assessing the Ecacy of Standards for Safety Critical Software (AESSCS) was held on 13 May 2014 in conjunction with the European Dependable Computing Conference (EDCC). We summarize and elaborate on the workshop's discussion of the topic, including both the presented positions and the dialogue that ensued.
Effective Software Engineering Leadership for Development Programs
ERIC Educational Resources Information Center
Cagle West, Marsha
2010-01-01
Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…
Analysis of a hardware and software fault tolerant processor for critical applications
NASA Technical Reports Server (NTRS)
Dugan, Joanne B.
1993-01-01
Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.
Analyzing Software Errors in Safety-Critical Embedded Systems
NASA Technical Reports Server (NTRS)
Lutz, Robyn R.
1994-01-01
This paper analyzes the root causes of safty-related software faults identified as potentially hazardous to the system are distributed somewhat differently over the set of possible error causes than non-safety-related software faults.
NASA Technical Reports Server (NTRS)
Rosenberg, Linda
1997-01-01
If software is a critical element in a safety critical system, it is imperative to implement a systematic approach to software safety as an integral part of the overall system safety programs. The NASA-STD-8719.13A, "NASA Software Safety Standard", describes the activities necessary to ensure that safety is designed into software that is acquired or developed by NASA, and that safety is maintained throughout the software life cycle. A PDF version, is available on the WWW from Lewis. A Guidebook that will assist in the implementation of the requirements in the Safety Standard is under development at the Lewis Research Center (LeRC). After completion, it will also be available on the WWW from Lewis.
Software Safety Risk in Legacy Safety-Critical Computer Systems
NASA Technical Reports Server (NTRS)
Hill, Janice L.; Baggs, Rhoda
2007-01-01
Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.
NASA Astrophysics Data System (ADS)
Silva, N.; Esper, A.
2012-01-01
The work presented in this article represents the results of applying RAMS analysis to a critical space control system, both at system and software levels. The system level RAMS analysis allowed the assignment of criticalities to the high level components, which was further refined by a tailored software level RAMS analysis. The importance of the software level RAMS analysis in the identification of new failure modes and its impact on the system level RAMS analysis is discussed. Recommendations of changes in the software architecture have also been proposed in order to reduce the criticality of the SW components to an acceptable minimum. The dependability analysis was performed in accordance to ECSS-Q-ST-80, which had to be tailored and complemented in some aspects. This tailoring will also be detailed in the article and lessons learned from the application of this tailoring will be shared, stating the importance to space systems safety evaluations. The paper presents the applied techniques, the relevant results obtained, the effort required for performing the tasks and the planned strategy for ROI estimation, as well as the soft skills required and acquired during these activities.
NASA Astrophysics Data System (ADS)
Dulo, D. A.
Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.
Data systems and computer science: Software Engineering Program
NASA Technical Reports Server (NTRS)
Zygielbaum, Arthur I.
1991-01-01
An external review of the Integrated Technology Plan for the Civil Space Program is presented. This review is specifically concerned with the Software Engineering Program. The goals of the Software Engineering Program are as follows: (1) improve NASA's ability to manage development, operation, and maintenance of complex software systems; (2) decrease NASA's cost and risk in engineering complex software systems; and (3) provide technology to assure safety and reliability of software in mission critical applications.
Copilot: Monitoring Embedded Systems
NASA Technical Reports Server (NTRS)
Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn
2012-01-01
Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems, even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in avionics systems.
Software Dependability and Safety Evaluations ESA's Initiative
NASA Astrophysics Data System (ADS)
Hernek, M.
ESA has allocated funds for an initiative to evaluate Dependability and Safety methods of Software. The objectives of this initiative are; · More extensive validation of Safety and Dependability techniques for Software · Provide valuable results to improve the quality of the Software thus promoting the application of Dependability and Safety methods and techniques. ESA space systems are being developed according to defined PA requirement specifications. These requirements may be implemented through various design concepts, e.g. redundancy, diversity etc. varying from project to project. Analysis methods (FMECA. FTA, HA, etc) are frequently used during requirements analysis and design activities to assure the correct implementation of system PA requirements. The criticality level of failures, functions and systems is determined and by doing that the critical sub-systems are identified, on which dependability and safety techniques are to be applied during development. Proper performance of the software development requires the development of a technical specification for the products at the beginning of the life cycle. Such technical specification comprises both functional and non-functional requirements. These non-functional requirements address characteristics of the product such as quality, dependability, safety and maintainability. Software in space systems is more and more used in critical functions. Also the trend towards more frequent use of COTS and reusable components pose new difficulties in terms of assuring reliable and safe systems. Because of this, its dependability and safety must be carefully analysed. ESA identified and documented techniques, methods and procedures to ensure that software dependability and safety requirements are specified and taken into account during the design and development of a software system and to verify/validate that the implemented software systems comply with these requirements [R1].
An Incremental Life-cycle Assurance Strategy for Critical System Certification
2014-11-04
for Safe Aircraft Operation Embedded software systems introduce a new class of problems not addressed by traditional system modeling & analysis...Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency jitter affects control behavior...do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software system as major source of
The Need for V&V in Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1997-01-01
V&V is currently performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to entire' domain or product line rather than a critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. engineering. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for activities.
A Framework for Performing Verification and Validation in Reuse Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1997-01-01
Verification and Validation (V&V) is currently performed during application development for many systems, especially safety-critical and mission- critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.
NASA's Software Safety Standard
NASA Technical Reports Server (NTRS)
Ramsay, Christopher M.
2005-01-01
NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.
Verification and Validation in a Rapid Software Development Process
NASA Technical Reports Server (NTRS)
Callahan, John R.; Easterbrook, Steve M.
1997-01-01
The high cost of software production is driving development organizations to adopt more automated design and analysis methods such as rapid prototyping, computer-aided software engineering (CASE) tools, and high-level code generators. Even developers of safety-critical software system have adopted many of these new methods while striving to achieve high levels Of quality and reliability. While these new methods may enhance productivity and quality in many cases, we examine some of the risks involved in the use of new methods in safety-critical contexts. We examine a case study involving the use of a CASE tool that automatically generates code from high-level system designs. We show that while high-level testing on the system structure is highly desirable, significant risks exist in the automatically generated code and in re-validating releases of the generated code after subsequent design changes. We identify these risks and suggest process improvements that retain the advantages of rapid, automated development methods within the quality and reliability contexts of safety-critical projects.
Issues in Software System Safety: Polly Ann Smith Co. versus Ned I. Ludd
NASA Technical Reports Server (NTRS)
Holloway, C. Michael
2002-01-01
This paper is a work of fiction, but it is fiction with a very real purpose: to stimulate careful thought and friendly discussion about some questions for which thought is often careless and discussion is often unfriendly. To accomplish this purpose, the paper creates a fictional legal case. The most important issue in this fictional case is whether certain proffered expert testimony about software engineering for safety critical systems should be admitted. Resolving this issue requires deciding the extent to which current practices and research in software engineering, especially for safety-critical systems, can rightly be considered based on knowledge, rather than opinion.
The Application of V&V within Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward
1996-01-01
Verification and Validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In reuse-based software engineering, decisions on the requirements, design and even implementation of domain assets can can be made prior to beginning development of a specific system. in order to bring the effectiveness of V&V to bear within reuse-based software engineering. V&V must be incorporated within the domain engineering process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-08-01
An estimated 85% of the installed base of software is a custom application with a production quantity of one. In practice, almost 100% of military software systems are custom software. Paradoxically, the marginal costs of producing additional units are near zero. So why hasn`t the software market, a market with high design costs and low productions costs evolved like other similar custom widget industries, such as automobiles and hardware chips? The military software industry seems immune to market pressures that have motivated a multilevel supply chain structure in other widget industries: design cost recovery, improve quality through specialization, and enablemore » rapid assembly from purchased components. The primary goal of the ComponentWare Consortium (CWC) technology plan was to overcome barriers to building and deploying mission-critical information systems by using verified, reusable software components (Component Ware). The adoption of the ComponentWare infrastructure is predicated upon a critical mass of the leading platform vendors` inevitable adoption of adopting emerging, object-based, distributed computing frameworks--initially CORBA and COM/OLE. The long-range goal of this work is to build and deploy military systems from verified reusable architectures. The promise of component-based applications is to enable developers to snap together new applications by mixing and matching prefabricated software components. A key result of this effort is the concept of reusable software architectures. A second important contribution is the notion that a software architecture is something that can be captured in a formal language and reused across multiple applications. The formalization and reuse of software architectures provide major cost and schedule improvements. The Unified Modeling Language (UML) is fast becoming the industry standard for object-oriented analysis and design notation for object-based systems. However, the lack of a standard real-time distributed object operating system, lack of a standard Computer-Aided Software Environment (CASE) tool notation and lack of a standard CASE tool repository has limited the realization of component software. The approach to fulfilling this need is the software component factory innovation. The factory approach takes advantage of emerging standards such as UML, CORBA, Java and the Internet. The key technical innovation of the software component factory is the ability to assemble and test new system configurations as well as assemble new tools on demand from existing tools and architecture design repositories.« less
Results of a Formal Methods Demonstration Project
NASA Technical Reports Server (NTRS)
Kelly, J.; Covington, R.; Hamilton, D.
1994-01-01
This paper describes the results of a cooperative study conducted by a team of researchers in formal methods at three NASA Centers to demonstrate FM techniques and to tailor them to critical NASA software systems. This pilot project applied FM to an existing critical software subsystem, the Shuttle's Jet Select subsystem (Phase I of an ongoing study). The present study shows that FM can be used successfully to uncover hidden issues in a highly critical and mature Functional Subsystem Software Requirements (FSSR) specification which are very difficult to discover by traditional means.
Software Reliability Issues Concerning Large and Safety Critical Software Systems
NASA Technical Reports Server (NTRS)
Kamel, Khaled; Brown, Barbara
1996-01-01
This research was undertaken to provide NASA with a survey of state-of-the-art techniques using in industrial and academia to provide safe, reliable, and maintainable software to drive large systems. Such systems must match the complexity and strict safety requirements of NASA's shuttle system. In particular, the Launch Processing System (LPS) is being considered for replacement. The LPS is responsible for monitoring and commanding the shuttle during test, repair, and launch phases. NASA built this system in the 1970's using mostly hardware techniques to provide for increased reliability, but it did so often using custom-built equipment, which has not been able to keep up with current technologies. This report surveys the major techniques used in industry and academia to ensure reliability in large and critical computer systems.
Cyber Warfare: Protecting Military Systems
2000-01-01
Software is a key component in nearly every critical system used by the Department of Defense. Attacking the software in a system- cyber warfare - is a...revolutionary method of pursuing war. This article describes various cyber warfare approaches and suggests methods to counter them.
Software Risk Identification for Interplanetary Probes
NASA Technical Reports Server (NTRS)
Dougherty, Robert J.; Papadopoulos, Periklis E.
2005-01-01
The need for a systematic and effective software risk identification methodology is critical for interplanetary probes that are using increasingly complex and critical software. Several probe failures are examined that suggest more attention and resources need to be dedicated to identifying software risks. The direct causes of these failures can often be traced to systemic problems in all phases of the software engineering process. These failures have lead to the development of a practical methodology to identify risks for interplanetary probes. The proposed methodology is based upon the tailoring of the Software Engineering Institute's (SEI) method of taxonomy-based risk identification. The use of this methodology will ensure a more consistent and complete identification of software risks in these probes.
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.
1998-01-01
Software is becoming increasingly significant in today's critical avionics systems. To achieve safe, reliable software, government regulatory agencies such as the Federal Aviation Administration (FAA) and the Department of Defense mandate the use of certain software development methods. However, little scientific evidence exists to show a correlation between software development methods and product quality. Given this lack of evidence, a series of experiments has been conducted to understand why and how software fails. The Guidance and Control Software (GCS) project is the latest in this series. The GCS project is a case study of the Requirements and Technical Concepts for Aviation RTCA/DO-178B guidelines, Software Considerations in Airborne Systems and Equipment Certification. All civil transport airframe and equipment vendors are expected to comply with these guidelines in building systems to be certified by the FAA for use in commercial aircraft. For the case study, two implementations of a guidance and control application were developed to comply with the DO-178B guidelines for Level A (critical) software. The development included the requirements, design, coding, verification, configuration management, and quality assurance processes. This paper discusses the details of the GCS project and presents the results of the case study.
NASA Technical Reports Server (NTRS)
1990-01-01
Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: flight critical software; management of real-time Ada; software reuse; megaprogramming software; Ada net; POSIX and Ada integration in the Space Station Freedom Program; and assessment of formal methods for trustworthy computer systems.
Software System Safety and the NASA Aeronautics Blueprint
NASA Technical Reports Server (NTRS)
Holloway, C. Michael; Hayhurst, Kelly J.
2002-01-01
NASA's Aeronautics Blueprint lays out a research agenda for the Agency s aeronautics program. The word software appears only four times in this Blueprint, but the critical importance of safe and correct software to the fulfillment of the proposed research is evident on almost every page. Most of the technology solutions proposed to address challenges in aviation are software dependent technologies. Of the fifty-two specific technology solutions described in the Blueprint, forty-one depend, at least in part, on software for success. For thirty-five of these forty-one, software is not only critical to success, but also to human safety. That is, implementing the technology solutions will require using software in such a way that it may, if not specified, designed, and implemented properly, lead to fatal accidents. These results have at least two implications for the research based on the Blueprint: (1) knowledge about the current state-of-the-art and state-of-the-practice in software engineering and software system safety is essential, and (2) research into current unsolved problems in these software disciplines is also essential.
Maintaining the Health of Software Monitors
NASA Technical Reports Server (NTRS)
Person, Suzette; Rungta, Neha
2013-01-01
Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.
Validation of highly reliable, real-time knowledge-based systems
NASA Technical Reports Server (NTRS)
Johnson, Sally C.
1988-01-01
Knowledge-based systems have the potential to greatly increase the capabilities of future aircraft and spacecraft and to significantly reduce support manpower needed for the space station and other space missions. However, a credible validation methodology must be developed before knowledge-based systems can be used for life- or mission-critical applications. Experience with conventional software has shown that the use of good software engineering techniques and static analysis tools can greatly reduce the time needed for testing and simulation of a system. Since exhaustive testing is infeasible, reliability must be built into the software during the design and implementation phases. Unfortunately, many of the software engineering techniques and tools used for conventional software are of little use in the development of knowledge-based systems. Therefore, research at Langley is focused on developing a set of guidelines, methods, and prototype validation tools for building highly reliable, knowledge-based systems. The use of a comprehensive methodology for building highly reliable, knowledge-based systems should significantly decrease the time needed for testing and simulation. A proven record of delivering reliable systems at the beginning of the highly visible testing and simulation phases is crucial to the acceptance of knowledge-based systems in critical applications.
Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control
NASA Technical Reports Server (NTRS)
Schumann, Johann; Mbaya, Timmy; Menghoel, Ole
2011-01-01
Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.
Model Transformation for a System of Systems Dependability Safety Case
NASA Technical Reports Server (NTRS)
Murphy, Judy; Driskell, Stephen B.
2010-01-01
Software plays an increasingly larger role in all aspects of NASA's science missions. This has been extended to the identification, management and control of faults which affect safety-critical functions and by default, the overall success of the mission. Traditionally, the analysis of fault identification, management and control are hardware based. Due to the increasing complexity of system, there has been a corresponding increase in the complexity in fault management software. The NASA Independent Validation & Verification (IV&V) program is creating processes and procedures to identify, and incorporate safety-critical software requirements along with corresponding software faults so that potential hazards may be mitigated. This Specific to Generic ... A Case for Reuse paper describes the phases of a dependability and safety study which identifies a new, process to create a foundation for reusable assets. These assets support the identification and management of specific software faults and, their transformation from specific to generic software faults. This approach also has applications to other systems outside of the NASA environment. This paper addresses how a mission specific dependability and safety case is being transformed to a generic dependability and safety case which can be reused for any type of space mission with an emphasis on software fault conditions.
Healthcare software assurance.
Cooper, Jason G; Pauley, Keith A
2006-01-01
Software assurance is a rigorous, lifecycle phase-independent set of activities which ensure completeness, safety, and reliability of software processes and products. This is accomplished by guaranteeing conformance to all requirements, standards, procedures, and regulations. These assurance processes are even more important when coupled with healthcare software systems, embedded software in medical instrumentation, and other healthcare-oriented life-critical systems. The current Food and Drug Administration (FDA) regulatory requirements and guidance documentation do not address certain aspects of complete software assurance activities. In addition, the FDA's software oversight processes require enhancement to include increasingly complex healthcare systems such as Hospital Information Systems (HIS). The importance of complete software assurance is introduced, current regulatory requirements and guidance discussed, and the necessity for enhancements to the current processes shall be highlighted.
Cooper, Jason G.; Pauley, Keith A.
2006-01-01
Software assurance is a rigorous, lifecycle phase-independent set of activities which ensure completeness, safety, and reliability of software processes and products. This is accomplished by guaranteeing conformance to all requirements, standards, procedures, and regulations. These assurance processes are even more important when coupled with healthcare software systems, embedded software in medical instrumentation, and other healthcare-oriented life-critical systems. The current Food and Drug Administration (FDA) regulatory requirements and guidance documentation do not address certain aspects of complete software assurance activities. In addition, the FDA’s software oversight processes require enhancement to include increasingly complex healthcare systems such as Hospital Information Systems (HIS). The importance of complete software assurance is introduced, current regulatory requirements and guidance discussed, and the necessity for enhancements to the current processes shall be highlighted. PMID:17238324
NASA's Software Safety Standard
NASA Technical Reports Server (NTRS)
Ramsay, Christopher M.
2007-01-01
NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those requirements. This allows the projects leeway to meet these requirements in many forms that best suit a particular project's needs and safety risk. In other words, it tells the project what to do, not how to do it. This update also incorporated advances in the state of the practice of software safety from academia and private industry. It addresses some of the more common issues now facing software developers in the NASA environment such as the use of Commercial-Off-the-Shelf Software (COTS), Modified OTS (MOTS), Government OTS (GOTS), and reused software. A team from across NASA developed the update and it has had both NASA-wide internal reviews by software engineering, quality, safety, and project management. It has also had expert external review. This presentation and paper will discuss the new NASA Software Safety Standard, its organization, and key features. It will start with a brief discussion of some NASA mission failures and incidents that had software as one of their root causes. It will then give a brief overview of the NASA Software Safety Process. This will include an overview of the key personnel responsibilities and functions that must be performed for safety-critical software.
Software Build and Delivery Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robey, Robert W.
2016-07-10
This presentation deals with the hierarchy of software build and delivery systems. One of the goals is to maximize the success rate of new users and developers when first trying your software. First impressions are important. Early successes are important. This also reduces critical documentation costs. This is a presentation focused on computer science and goes into detail about code documentation.
Model based verification of the Secure Socket Layer (SSL) Protocol for NASA systems
NASA Technical Reports Server (NTRS)
Powell, John D.; Gilliam, David
2004-01-01
The National Aeronautics and Space Administration (NASA) has tens of thousands of networked computer systems and applications. Software Security vulnerabilities present risks such as lost or corrupted data, information theft, and unavailability of critical systems. These risks represent potentially enormous costs to NASA. The NASA Code Q research initiative 'Reducing Software Security Risk (RSSR) Trough an Integrated Approach' offers formal verification of information technology (IT), through the creation of a Software Security Assessment Instrument (SSAI), to address software security risks.
NASA Technical Reports Server (NTRS)
Orr, James K.; Peltier, Daryl
2010-01-01
Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.
Fault Tolerant Hardware/Software Architecture for Flight Critical Function
1985-09-01
Applications Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of...systems, and is being advocated as a defense against design deficiencies which can plague software. - -- -- z--mm-L ___ K A critical application area for...day of the lecture series concludes with part I of a paper on the ;use of the Ada programming language In flight critical applications . Ada has been
From Bridges and Rockets, Lessons for Software Systems
NASA Technical Reports Server (NTRS)
Holloway, C. Michael
2004-01-01
Although differences exist between building software systems and building physical structures such as bridges and rockets, enough similarities exist that software engineers can learn lessons from failures in traditional engineering disciplines. This paper draws lessons from two well-known failures the collapse of the Tacoma Narrows Bridge in 1940 and the destruction of the space shuttle Challenger in 1986 and applies these lessons to software system development. The following specific applications are made: (1) the verification and validation of a software system should not be based on a single method, or a single style of methods; (2) the tendency to embrace the latest fad should be overcome; and (3) the introduction of software control into safety-critical systems should be done cautiously.
Rosenthal, L E
1986-10-01
Software is the component in a computer system that permits the hardware to perform the various functions that a computer system is capable of doing. The history of software and its development can be traced to the early nineteenth century. All computer systems are designed to utilize the "stored program concept" as first developed by Charles Babbage in the 1850s. The concept was lost until the mid-1940s, when modern computers made their appearance. Today, because of the complex and myriad tasks that a computer system can perform, there has been a differentiation of types of software. There is software designed to perform specific business applications. There is software that controls the overall operation of a computer system. And there is software that is designed to carry out specialized tasks. Regardless of types, software is the most critical component of any computer system. Without it, all one has is a collection of circuits, transistors, and silicone chips.
Proceedings of the Twenty-Third Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1999-01-01
The Twenty-third Annual Software Engineering Workshop (SEW) provided 20 presentations designed to further the goals of the Software Engineering Laboratory (SEL) of the NASA-GSFC. The presentations were selected on their creativity. The sessions which were held on 2-3 of December 1998, centered on the SEL, Experimentation, Inspections, Fault Prediction, Verification and Validation, and Embedded Systems and Safety-Critical Systems.
Automated Translation of Safety Critical Application Software Specifications into PLC Ladder Logic
NASA Technical Reports Server (NTRS)
Leucht, Kurt W.; Semmel, Glenn S.
2008-01-01
The numerous benefits of automatic application code generation are widely accepted within the software engineering community. A few of these benefits include raising the abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at the NASA Kennedy Space Center (KSC) recognized the need for PLC code generation while developing their new ground checkout and launch processing system. They developed a process and a prototype software tool that automatically translates a high-level representation or specification of safety critical application software into ladder logic that executes on a PLC. This process and tool are expected to increase the reliability of the PLC code over that which is written manually, and may even lower life-cycle costs and shorten the development schedule of the new control system at KSC. This paper examines the problem domain and discusses the process and software tool that were prototyped by the KSC software engineers.
Transforming Aggregate Object-Oriented Formal Specifications to Code
1999-03-01
integration issues associated with a formal-based software transformation system, such as the source specification, the problem space architecture , design architecture ... design transforms, and target software transforms. Software is critical in today’s Air Force, yet its specification, design, and development
Certification Processes for Safety-Critical and Mission-Critical Aerospace Software
NASA Technical Reports Server (NTRS)
Nelson, Stacy
2003-01-01
This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).
Software-Based Safety Systems in Space - Learning from other Domains
NASA Astrophysics Data System (ADS)
Klicker, M.; Putzer, H.
2012-01-01
Increasing complexity and new emerging capabilities for manned and unmanned missions have been the hallmark of the past decades of space exploration. One of the drivers in this process was the ever increasing use of software and software-intensive systems to implement system functions necessary to the capabilities needed. The course of technological evolution suggests that this development will continue well into the future with a number of challenges for the safety community some of which shall be discussed in this paper. The current state of the art reveals a number of problems with developing and assessing safety critical software which explains the reluctance of the space community to rely on software-based safety measures to mitigate hazards. Among others, usually lack of trustworthy evidence of software integrity in all foreseeable situations and the difficulties to integrate software in the traditional safety analysis framework are cited. Experience from other domains and recent developments in modern software development methodologies and verification techniques are analysed for the suitability for space systems and an avionics architectural framework (see STANAG 4626) for the implementation of safety critical software is proposed. This is shown to create among other features the possibility of numerous degradation modes enhancing overall system safety and interoperability of computerized space systems. It also potentially simplifies international cooperation on a technical level by introducing a higher degree of compatibility. As software safety cannot be tested or argued into a system in hindsight, the development process and especially the architecture chosen are essential to establish safety properties for the software used to implement safety functions. The core of the safety argument revolves around the separation of different functions and software modules from each other by minimal coupling of functions and credible separation mechanisms in the architecture combined with rigorous development methodologies for the software itself.
Formal Validation of Aerospace Software
NASA Astrophysics Data System (ADS)
Lesens, David; Moy, Yannick; Kanig, Johannes
2013-08-01
Any single error in critical software can have catastrophic consequences. Even though failures are usually not advertised, some software bugs have become famous, such as the error in the MIM-104 Patriot. For space systems, experience shows that software errors are a serious concern: more than half of all satellite failures from 2000 to 2003 involved software. To address this concern, this paper addresses the use of formal verification of software developed in Ada.
NASA Astrophysics Data System (ADS)
Mbaya, Timmy
Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.
A Framework for Software Reuse in Safety-Critical System of Systems
2008-03-01
environment.8 Pressman , on the other hand, defines a software component as a unit of composition with contractually specified and explicit context...2005, p654. 9 R.S. Pressman ., Software Engineering A Practitioner’s Approach, Sixth Edition, New York, NY.: McGraw-Hill, 2005, p817. 10 W.C. Lim...index.php. 79 Pressman , R.S., Software Engineering A Practitioner’s Approach, Sixth Edition, New York, NY.: McGraw-Hill, 2005. Radio Technical
Evolution of safety-critical requirements post-launch
NASA Technical Reports Server (NTRS)
Lutz, R. R.; Mikulski, I. C.
2001-01-01
This paper reports the results of a small study of requirements changes to the onboard software of three spacecraft subsequent to launch. Only those requirement changes that resulted from post-launch anoma-lies (i.e., during operations) were of interest here, since the goal was to better understand the relation-ship between critical anomalies during operations and how safety-critical requirements evolve. The results of the study were surprising in that anomaly-driven, post-launch requirements changes were rarely due to previous requirements having been incorrect. Instead, changes involved new requirements (1) for the software to handle rare events or (2) for the software to compensate for hardware failures or limitations. The prevalence of new requirements as a result of post-launch anomalies suggests a need for increased requirements-engineering support of maintenance activities in these systems. The results also confirm both the difficulty and the benefits of pursuing requirements completeness, especially in terms of fault tolerance, during development of critical systems.
Fault tolerant software modules for SIFT
NASA Technical Reports Server (NTRS)
Hecht, M.; Hecht, H.
1982-01-01
The implementation of software fault tolerance is investigated for critical modules of the Software Implemented Fault Tolerance (SIFT) operating system to support the computational and reliability requirements of advanced fly by wire transport aircraft. Fault tolerant designs generated for the error reported and global executive are examined. A description of the alternate routines, implementation requirements, and software validation are included.
ERIC Educational Resources Information Center
Drachova-Strang, Svetlana V.
2013-01-01
As computing becomes ubiquitous, software correctness has a fundamental role in ensuring the safety and security of the systems we build. To design and develop software correctly according to their formal contracts, CS students, the future software practitioners, need to learn a critical set of skills that are necessary and sufficient for…
The effect of requirements prioritization on avionics system conceptual design
NASA Astrophysics Data System (ADS)
Lorentz, John
This dissertation will provide a detailed approach and analysis of a new collaborative requirements prioritization methodology that has been used successfully on four Coast Guard avionics acquisition and development programs valued at $400M+. A statistical representation of participant study results will be discussed and analyzed in detail. Many technically compliant projects fail to deliver levels of performance and capability that the customer desires. Some of these systems completely meet "threshold" levels of performance; however, the distribution of resources in the process devoted to the development and management of the requirements does not always represent the voice of the customer. This is especially true for technically complex projects such as modern avionics systems. A simplified facilitated process for prioritization of system requirements will be described. The collaborative prioritization process, and resulting artifacts, aids the systems engineer during early conceptual design. All requirements are not the same in terms of customer priority. While there is a tendency to have many thresholds inside of a system design, there is usually a subset of requirements and system performance that is of the utmost importance to the design. These critical capabilities and critical levels of performance typically represent the reason the system is being built. The systems engineer needs processes to identify these critical capabilities, the associated desired levels of performance, and the risks associated with the specific requirements that define the critical capability. The facilitated prioritization exercise is designed to collaboratively draw out these critical capabilities and levels of performance so they can be emphasized in system design. Developing the purpose, scheduling and process for prioritization events are key elements of systems engineering and modern project management. The benefits of early collaborative prioritization flow throughout the project schedule, resulting in greater success during system deployment and operational testing. This dissertation will discuss the data and findings from participant studies, present a literature review of systems engineering and design processes, and test the hypothesis that the prioritization process had no effect on stakeholder sentiment related to the conceptual design. In addition, the "Requirements Rationalization" process will be discussed in detail. Avionics, like many other systems, has transitioned from a discrete electronics engineering, hard engineering discipline to incorporate software engineering as a core process of the technology development cycle. As with other software-based systems, avionics now has significant soft system attributes that must be considered in the design process. The boundless opportunities that exist in software design demand prioritization to focus effort onto the critical functions that the software must provide. This has been a well documented and understood phenomenon in the software development community for many years. This dissertation will attempt to link the effect of software integrated avionics to the benefits of prioritization of requirements in the problem space and demonstrate the sociological and technical benefits of early prioritization practices.
Agile Methods for Open Source Safety-Critical Software
Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John
2011-01-01
The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the right amount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion. PMID:21799545
Agile Methods for Open Source Safety-Critical Software.
Gary, Kevin; Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John
2011-08-01
The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the rightamount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion.
A Course in Real-Time Embedded Software
ERIC Educational Resources Information Center
Archibald, J. K.; Fife, W. S.
2007-01-01
Embedded systems are increasingly pervasive, and the creation of reliable controlling software offers unique challenges. Embedded software must interact directly with hardware, it must respond to events in a time-critical fashion, and it typically employs concurrency to meet response time requirements. This paper describes an innovative course…
RICIS Symposium 1992: Mission and Safety Critical Systems Research and Applications
NASA Technical Reports Server (NTRS)
1992-01-01
This conference deals with computer systems which control systems whose failure to operate correctly could produce the loss of life and or property, mission and safety critical systems. Topics covered are: the work of standards groups, computer systems design and architecture, software reliability, process control systems, knowledge based expert systems, and computer and telecommunication protocols.
FAILSAFE Health Management for Embedded Systems
NASA Technical Reports Server (NTRS)
Horvath, Gregory A.; Wagner, David A.; Wen, Hui Ying; Barry, Matthew
2010-01-01
The FAILSAFE project is developing concepts and prototype implementations for software health management in mission- critical, real-time embedded systems. The project unites features of the industry-standard ARINC 653 Avionics Application Software Standard Interface and JPL s Mission Data System (MDS) technology (see figure). The ARINC 653 standard establishes requirements for the services provided by partitioned, real-time operating systems. The MDS technology provides a state analysis method, canonical architecture, and software framework that facilitates the design and implementation of software-intensive complex systems. The MDS technology has been used to provide the health management function for an ARINC 653 application implementation. In particular, the focus is on showing how this combination enables reasoning about, and recovering from, application software problems.
Assuring NASA's Safety and Mission Critical Software
NASA Technical Reports Server (NTRS)
Deadrick, Wesley
2015-01-01
What is IV&V? Independent Verification and Validation (IV&V) is an objective examination of safety and mission critical software processes and products. Independence: 3 Key parameters: Technical Independence; Managerial Independence; Financial Independence. NASA IV&V perspectives: Will the system's software: Do what it is supposed to do?; Not do what it is not supposed to do?; Respond as expected under adverse conditions?. Systems Engineering: Determines if the right system has been built and that it has been built correctly. IV&V Technical Approaches: Aligned with IEEE 1012; Captured in a Catalog of Methods; Spans the full project lifecycle. IV&V Assurance Strategy: The IV&V Project's strategy for providing mission assurance; Assurance Strategy is driven by the specific needs of an individual project; Implemented via an Assurance Design; Communicated via Assurance Statements.
Towards A Comprehensive Consideration of Epistemic Questions in Software System Safety
NASA Technical Reports Server (NTRS)
Holloway, C. M.; Johnson, Chris W.
2009-01-01
For any software system upon which lives depend, the most important question one can ask about it is, 'How do we know the system is safe?' Despite the critical importance of this question, no widely accepted, generally applicable answer exists. Instead, debate continues to rage over the question, with theorists and practitioners quarrelling with each other and amongst themselves. This paper suggests a possible way forward towards quelling the quarrels, based on refining the critical safety question into additional questions, which may be more likely to have answers on which a consensus can be reached.
Defect measurement and analysis of JPL ground software: a case study
NASA Technical Reports Server (NTRS)
Powell, John D.; Spagnuolo, John N., Jr.
2004-01-01
Ground software systems at JPL must meet high assurance standards while remaining on schedule due to relatively immovable launch dates for spacecraft that will be controlled by such systems. Toward this end, the Software Quality Improvement (SQI) project's Measurement and Benchmarking (M&B) team is collecting and analyzing defect data of JPL ground system software projects to build software defect prediction models. The aim of these models is to improve predictability with regard to software quality activities. Predictive models will quantitatively define typical trends for JPL ground systems as well as Critical Discriminators (CDs) to provide explanations for atypical deviations from the norm at JPL. CDs are software characteristics that can be estimated or foreseen early in a software project's planning. Thus, these CDs will assist in planning for the predicted degree to which software quality activities for a project are likely to deviation from the normal JPL ground system based on pasted experience across the lab.
An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency
NASA Astrophysics Data System (ADS)
Phillips, Dewanne Marie
Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.
Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2017-01-01
As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification & Validation (IV&V) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASAs Office of Safety and Mission Assurance (OSMA) defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domain/component, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IV&V enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.
Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2017-01-01
As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification Validation (IVV) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASA's Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domaincomponent, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IVV enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.
A Human Reliability Based Usability Evaluation Method for Safety-Critical Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillippe Palanque; Regina Bernhaupt; Ronald Boring
2006-04-01
Recent years have seen an increasing use of sophisticated interaction techniques including in the field of safety critical interactive software [8]. The use of such techniques has been required in order to increase the bandwidth between the users and systems and thus to help them deal efficiently with increasingly complex systems. These techniques come from research and innovation done in the field of humancomputer interaction (HCI). A significant effort is currently being undertaken by the HCI community in order to apply and extend current usability evaluation techniques to these new kinds of interaction techniques. However, very little has been donemore » to improve the reliability of software offering these kinds of interaction techniques. Even testing basic graphical user interfaces remains a challenge that has rarely been addressed in the field of software engineering [9]. However, the non reliability of interactive software can jeopardize usability evaluation by showing unexpected or undesired behaviors. The aim of this SIG is to provide a forum for both researchers and practitioners interested in testing interactive software. Our goal is to define a roadmap of activities to cross fertilize usability and reliability testing of these kinds of systems to minimize duplicate efforts in both communities.« less
2011-05-01
IEC 42010 Technology Viewpoint • Case Study – Multimedia Conferencing System – Technology Specification • Risks of Software TRL Determination...fully support the required threshold functionality . • Relevant Environment for Space* – A satellite from launch to standard operation in space is...Analytical and experimental critical function and/or characteristic f f t TRL 4 TRL 3 proo o concep Technology concept and/or application
NASA Astrophysics Data System (ADS)
Spitznagel, J. A.; Wood, Susan
1988-08-01
The Software Engineering institute is a federally funded research and development center sponsored by the Department of Defense (DOD). It was chartered by the Undersecretary of Defense for Research and Engineering on June 15, 1984. The SEI was established and is operated by Carnegie Mellon University (CUM) under contract F19628-C-0003, which was competitively awarded on December 28, 1984, by the Air Force Electronic Systems Division. The mission of the SEI is to provide the means to bring the ablest minds and the most effective technology to bear on the rapid improvement of the quality of operational software in mission-critical computer systems; to accelerate the reduction to practice of modern software engineering techniques and methods; to promulgate the use of modern techniques and methods throughout the mission-critical systems community; and to establish standards of excellence for the practice of software engineering. This report provides a summary of the programs and projects, staff, facilities, and service accomplishments of the Software Engineering Institute during 1987.
Putting Safety in the Software
NASA Technical Reports Server (NTRS)
Wetherholt, Martha S.; Berens, Kalynnda M.; Hardy, Sandra (Technical Monitor)
2001-01-01
Software is a vital component of nearly every piece of modern technology. It is not a 'sub-system', able to be separated out from the system as a whole, but a 'co-system' that controls, manipulates, or interacts with the hardware and with the end user. Software has its fingers into all the pieces of the pie. If that 'pie', the system, can lead to injury, death, loss of major equipment, or impact your business bottom line, then software safety becomes vitally important. Learning to think about software from a safety perspective is the focus of this paper. We want you to think of software as part of the safety critical system, a major part. This requires 'system thinking' - being able to grasp the whole picture. Software's contribution to modern technology is both good and potentially bad. Software allows more complex and useful devices to be built. It can also contribute to plane crashes and power outages. We want you to see software in a whole new light, see it as a contributor to system hazards, and also as a possible fix or mitigation to some of those hazards.
CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 4, July/August 2010
2010-08-01
Anita Carleton, Del Kellogg, and Jeff Schwalb Building Critical Systems as a Cyborg As outrageous as it may seem, adapting cybernetics to defense...software is a real possibility in building complex software systems. Ball discusses the history of cybernetics, what a “ cyborg ” really is, and how...What Is a Cyborg ? We want both kinds of the behavior that I’ve talked about, with predictable systems that follow established rules and proce- dures
Technology Infusion of CodeSonar into the Space Network Ground Segment
NASA Technical Reports Server (NTRS)
Benson, Markland J.
2009-01-01
This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.
NASA Astrophysics Data System (ADS)
Aufdenkampe, A. K.; Mayorga, E.; Horsburgh, J. S.; Lehnert, K. A.; Zaslavsky, I.; Valentine, D. W., Jr.; Richard, S. M.; Cheetham, R.; Meyer, F.; Henry, C.; Berg-Cross, G.; Packman, A. I.; Aronson, E. L.
2014-12-01
Here we present the prototypes of a new scientific software system designed around the new Observations Data Model version 2.0 (ODM2, https://github.com/UCHIC/ODM2) to substantially enhance integration of biological and Geological (BiG) data for Critical Zone (CZ) science. The CZ science community takes as its charge the effort to integrate theory, models and data from the multitude of disciplines collectively studying processes on the Earth's surface. The central scientific challenge of the CZ science community is to develop a "grand unifying theory" of the critical zone through a theory-model-data fusion approach, for which the key missing need is a cyberinfrastructure for seamless 4D visual exploration of the integrated knowledge (data, model outputs and interpolations) from all the bio and geoscience disciplines relevant to critical zone structure and function, similar to today's ability to easily explore historical satellite imagery and photographs of the earth's surface using Google Earth. This project takes the first "BiG" steps toward answering that need. The overall goal of this project is to co-develop with the CZ science and broader community, including natural resource managers and stakeholders, a web-based integration and visualization environment for joint analysis of cross-scale bio and geoscience processes in the critical zone (BiG CZ), spanning experimental and observational designs. We will: (1) Engage the CZ and broader community to co-develop and deploy the BiG CZ software stack; (2) Develop the BiG CZ Portal web application for intuitive, high-performance map-based discovery, visualization, access and publication of data by scientists, resource managers, educators and the general public; (3) Develop the BiG CZ Toolbox to enable cyber-savvy CZ scientists to access BiG CZ Application Programming Interfaces (APIs); and (4) Develop the BiG CZ Central software stack to bridge data systems developed for multiple critical zone domains into a single metadata catalog. The entire BiG CZ Software system is being developed on public repositories as a modular suite of open source software projects. It will be built around a new Observations Data Model Version 2.0 (ODM2) that has been developed by members of the BiG CZ project team, with community input, under separate funding.
The FoReVer Methodology: A MBSE Framework for Formal Verification
NASA Astrophysics Data System (ADS)
Baracchi, Laura; Mazzini, Silvia; Cimatti, Alessandro; Tonetta, Stefano; Garcia, Gerald
2013-08-01
The need for high level of confidence and operational integrity in critical space (software) systems is well recognized in the Space industry and has been addressed so far through rigorous System and Software Development Processes and stringent Verification and Validation regimes. The Model Based Space System Engineering process (MBSSE) derived in the System and Software Functional Requirement Techniques study (SSFRT) focused on the application of model based engineering technologies to support the space system and software development processes, from mission level requirements to software implementation through model refinements and translations. In this paper we report on our work in the ESA-funded FoReVer project where we aim at developing methodological, theoretical and technological support for a systematic approach to the space avionics system development, in phases 0/A/B/C. FoReVer enriches the MBSSE process with contract-based formal verification of properties, at different stages from system to software, through a step-wise refinement approach, with the support for a Software Reference Architecture.
Ada and software management in NASA: Assessment and recommendations
NASA Technical Reports Server (NTRS)
1989-01-01
Recent NASA missions have required software systems that are larger, more complex, and more critical than NASA software systems of the past. The Ada programming language and the software methods and support environments associated with it are seen as potential breakthroughs in meeting NASA's software requirements. The findings of a study by the Ada and Software Management Assessment Working Group (ASMAWG) are presented. The study was chartered to perform three tasks: (1) assess the agency's ongoing and planned Ada activities; (2) assess the infrastructure (standards, policies, and internal organizations) supporting software management and the Ada activities; and (3) present an Ada implementation and use strategy appropriate for NASA over the next 5 years.
NASA Technical Reports Server (NTRS)
Weber, Doug; Jamsek, Damir
1994-01-01
The goal of this task was to investigate how formal methods could be incorporated into a software engineering process for flight-control systems under DO-178B and to demonstrate that process by developing a formal specification for NASA's Guidance and Controls Software (GCS) Experiment. GCS is software to control the descent of a spacecraft onto a planet's surface. The GCS example is simplified from a real example spacecraft, but exhibits the characteristics of realistic spacecraft control software. The formal specification is written in Larch.
SHINE Virtual Machine Model for In-flight Updates of Critical Mission Software
NASA Technical Reports Server (NTRS)
Plesea, Lucian
2008-01-01
This software is a new target for the Spacecraft Health Inference Engine (SHINE) knowledge base that compiles a knowledge base to a language called Tiny C - an interpreted version of C that can be embedded on flight processors. This new target allows portions of a running SHINE knowledge base to be updated on a "live" system without needing to halt and restart the containing SHINE application. This enhancement will directly provide this capability without the risk of software validation problems and can also enable complete integration of BEAM and SHINE into a single application. This innovation enables SHINE deployment in domains where autonomy is used during flight-critical applications that require updates. This capability eliminates the need for halting the application and performing potentially serious total system uploads before resuming the application with the loss of system integrity. This software enables additional applications at JPL (microsensors, embedded mission hardware) and increases the marketability of these applications outside of JPL.
NASA Technical Reports Server (NTRS)
Mckay, Charles W.; Feagin, Terry; Bishop, Peter C.; Hallum, Cecil R.; Freedman, Glenn B.
1987-01-01
The principle focus of one of the RICIS (Research Institute for Computing and Information Systems) components is computer systems and software engineering in-the-large of the lifecycle of large, complex, distributed systems which: (1) evolve incrementally over a long time; (2) contain non-stop components; and (3) must simultaneously satisfy a prioritized balance of mission and safety critical requirements at run time. This focus is extremely important because of the contribution of the scaling direction problem to the current software crisis. The Computer Systems and Software Engineering (CSSE) component addresses the lifestyle issues of three environments: host, integration, and target.
A Framework for Performing V&V within Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1996-01-01
Verification and validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In order to provide early detection of errors, V&V is conducted in parallel with system development, often beginning with the concept phase. In reuse-based software engineering, however, decisions on the requirements, design and even implementation of domain assets can be made prior to beginning development of a specific system. In this case, V&V must be performed during domain engineering in order to have an impact on system development. This paper describes a framework for performing V&V within architecture-centric, reuse-based software engineering. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.
Software Development Standard for Mission Critical Systems
2014-03-17
new development, modification, reuse, reengineering, maintenance , or any other activity or combination of activities resulting in products . Within...develops” includes new development, modification, integration, reuse, reengineering, maintenance , or any other activity that results in products ... Maintenance organization. The organization that is responsible for modifying and otherwise sustaining the software and other software products and
Knowledge-based assistance in costing the space station DMS
NASA Technical Reports Server (NTRS)
Henson, Troy; Rone, Kyle
1988-01-01
The Software Cost Engineering (SCE) methodology developed over the last two decades at IBM Systems Integration Division (SID) in Houston is utilized to cost the NASA Space Station Data Management System (DMS). An ongoing project to capture this methodology, which is built on a foundation of experiences and lessons learned, has resulted in the development of an internal-use-only, PC-based prototype that integrates algorithmic tools with knowledge-based decision support assistants. This prototype Software Cost Engineering Automation Tool (SCEAT) is being employed to assist in the DMS costing exercises. At the same time, DMS costing serves as a forcing function and provides a platform for the continuing, iterative development, calibration, and validation and verification of SCEAT. The data that forms the cost engineering database is derived from more than 15 years of development of NASA Space Shuttle software, ranging from low criticality, low complexity support tools to highly complex and highly critical onboard software.
Software Design Improvements. Part 1; Software Benefits and Limitations
NASA Technical Reports Server (NTRS)
Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom
1997-01-01
Computer hardware and associated software have been used for many years to process accounting information, to analyze test data and to perform engineering analysis. Now computers and software also control everything from automobiles to washing machines and the number and type of applications are growing at an exponential rate. The size of individual program has shown similar growth. Furthermore, software and hardware are used to monitor and/or control potentially dangerous products and safety-critical systems. These uses include everything from airplanes and braking systems to medical devices and nuclear plants. The question is: how can this hardware and software be made more reliable? Also, how can software quality be improved? What methodology needs to be provided on large and small software products to improve the design and how can software be verified?
The relationships between software publications and software systems
NASA Astrophysics Data System (ADS)
Hogg, David W.
2017-01-01
When we build software systems or software tools for astronomy, we sometimes do and sometimes don't also write and publish standard scientific papers about those software systems. I will discuss the pros and cons of writing such publications. There are impacts of writing such papers immediately (they can affect the design and structure of the software project itself), in the short term (they can promote adoption and legitimize the software), in the medium term (they can provide a platform for all the literature's mechanisms for citation, criticism, and reuse), and in the long term (they can preserve ideas that are embodied in the software, possibly on timescales much longer than the lifetime of any software context). I will argue that as important as pure software contributions are to astronomy—and I am both a preacher and a practitioner—software contributions are even more valuable when they are associated with traditional scientific publications. There are exceptions and complexities of course, which I will discuss.
XPRESS: eXascale PRogramming Environment and System Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brightwell, Ron; Sterling, Thomas; Koniges, Alice
The XPRESS Project is one of four major projects of the DOE Office of Science Advanced Scientific Computing Research X-stack Program initiated in September, 2012. The purpose of XPRESS is to devise an innovative system software stack to enable practical and useful exascale computing around the end of the decade with near-term contributions to efficient and scalable operation of trans-Petaflops performance systems in the next two to three years; both for DOE mission-critical applications. To this end, XPRESS directly addresses critical challenges in computing of efficiency, scalability, and programmability through introspective methods of dynamic adaptive resource management and task scheduling.
Space Shuttle Software Development and Certification
NASA Technical Reports Server (NTRS)
Orr, James K.; Henderson, Johnnie A
2000-01-01
Man-rated software, "software which is in control of systems and environments upon which human life is critically dependent," must be highly reliable. The Space Shuttle Primary Avionics Software System is an excellent example of such a software system. Lessons learn from more than 20 years of effort have identified basic elements that must be present to achieve this high degree of reliability. The elements include rigorous application of appropriate software development processes, use of trusted tools to support those processes, quantitative process management, and defect elimination and prevention. This presentation highlights methods used within the Space Shuttle project and raises questions that must be addressed to provide similar success in a cost effective manner on future long-term projects where key application development tools are COTS rather than internally developed custom application development tools
NASA Technical Reports Server (NTRS)
Wilber, George F.
2017-01-01
This Software Description Document (SDD) captures the design for developing the Flight Interval Management (FIM) system Configurable Graphics Display (CGD) software. Specifically this SDD describes aspects of the Boeing CGD software and the surrounding context and interfaces. It does not describe the Honeywell components of the CGD system. The SDD provides the system overview, architectural design, and detailed design with all the necessary information to implement the Boeing components of the CGD software and integrate them into the CGD subsystem within the larger FIM system. Overall system and CGD system-level requirements are derived from the CGD SRS (in turn derived from the Boeing System Requirements Design Document (SRDD)). Display and look-and-feel requirements are derived from Human Machine Interface (HMI) design documents and working group recommendations. This Boeing CGD SDD is required to support the upcoming Critical Design Review (CDR).
Intrusion-Tolerant Replication under Attack
ERIC Educational Resources Information Center
Kirsch, Jonathan
2010-01-01
Much of our critical infrastructure is controlled by large software systems whose participants are distributed across the Internet. As our dependence on these critical systems continues to grow, it becomes increasingly important that they meet strict availability and performance requirements, even in the face of malicious attacks, including those…
ASSIP Study of Real-Time Safety-Critical Embedded Software-Intensive System Engineering Practices
2008-02-01
and assessment 2. product engineering processes 3. tooling processes 6 | CMU/SEI-2008-SR-001 Slide 1 Process Standards IEC/ ISO 12207 Software...and technical effort to align with 12207 IEC/ ISO 15026 System & Software Integrity Levels Generic Safety SAE ARP 4754 Certification Considerations...Process Frameworks in revision – ISO 9001, ISO 9004 – ISO 15288/ ISO 12207 harmonization – RTCA DO-178B, MOD Standard UK 00-56/3, … • Methods & Tools
Development of a methodology for assessing the safety of embedded software systems
NASA Technical Reports Server (NTRS)
Garrett, C. J.; Guarro, S. B.; Apostolakis, G. E.
1993-01-01
A Dynamic Flowgraph Methodology (DFM) based on an integrated approach to modeling and analyzing the behavior of software-driven embedded systems for assessing and verifying reliability and safety is discussed. DFM is based on an extension of the Logic Flowgraph Methodology to incorporate state transition models. System models which express the logic of the system in terms of causal relationships between physical variables and temporal characteristics of software modules are analyzed to determine how a certain state can be reached. This is done by developing timed fault trees which take the form of logical combinations of static trees relating the system parameters at different point in time. The resulting information concerning the hardware and software states can be used to eliminate unsafe execution paths and identify testing criteria for safety critical software functions.
Reliability of Beam Loss Monitors System for the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Guaglio, G.; Dehning, B.; Santoni, C.
2004-11-01
The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.
NASA Technical Reports Server (NTRS)
Richardson, Keith; Wong, Carla
1988-01-01
The role of verification and validation (V and V) in software has been to support and strengthen the software lifecycle and to ensure that the resultant code meets the standards of the requirements documents. Knowledge Based System (KBS) V and V should serve the same role, but the KBS lifecycle is ill-defined. The rationale of a simple form of the KBS lifecycle is presented, including accommodation to certain critical KBS differences from software development.
Static and Dynamic Verification of Critical Software for Space Applications
NASA Astrophysics Data System (ADS)
Moreira, F.; Maia, R.; Costa, D.; Duro, N.; Rodríguez-Dapena, P.; Hjortnaes, K.
Space technology is no longer used only for much specialised research activities or for sophisticated manned space missions. Modern society relies more and more on space technology and applications for every day activities. Worldwide telecommunications, Earth observation, navigation and remote sensing are only a few examples of space applications on which we rely daily. The European driven global navigation system Galileo and its associated applications, e.g. air traffic management, vessel and car navigation, will significantly expand the already stringent safety requirements for space based applications Apart from their usefulness and practical applications, every single piece of onboard software deployed into the space represents an enormous investment. With a long lifetime operation and being extremely difficult to maintain and upgrade, at least when comparing with "mainstream" software development, the importance of ensuring their correctness before deployment is immense. Verification &Validation techniques and technologies have a key role in ensuring that the onboard software is correct and error free, or at least free from errors that can potentially lead to catastrophic failures. Many RAMS techniques including both static criticality analysis and dynamic verification techniques have been used as a means to verify and validate critical software and to ensure its correctness. But, traditionally, these have been isolated applied. One of the main reasons is the immaturity of this field in what concerns to its application to the increasing software product(s) within space systems. This paper presents an innovative way of combining both static and dynamic techniques exploiting their synergy and complementarity for software fault removal. The methodology proposed is based on the combination of Software FMEA and FTA with Fault-injection techniques. The case study herein described is implemented with support from two tools: The SoftCare tool for the SFMEA and SFTA, and the Xception tool for fault-injection. Keywords: Verification &Validation, RAMS, Onboard software, SFMEA, STA, Fault-injection 1 This work is being performed under the project STADY Applied Static And Dynamic Verification Of Critical Software, ESA/ESTEC Contract Nr. 15751/02/NL/LvH.
Assessing and Managing Quality of Information Assurance
2010-11-01
such as firewalls, antivirus scanning tools and mechanisms for user authentication and authorization. Advanced mission-critical systems often...imply increased risk to DoD information systems. The Process and Organizational Maturity (POM) class focuses on the maturity of the software and...include architectural quality. Common Weakness Enumeration (CWE) is a recent example that highlights the connection between software quality and
ERIC Educational Resources Information Center
Mohammadi, Hadi
2014-01-01
Use of the Patch Vulnerability Management (PVM) process should be seriously considered for any networked computing system. The PVM process prevents the operating system (OS) and software applications from being attacked due to security vulnerabilities, which lead to system failures and critical data leakage. The purpose of this research is to…
SSME digital control design characteristics
NASA Technical Reports Server (NTRS)
Mitchell, W. T.; Searle, R. F.
1985-01-01
To protect against a latent programming error (software fault) existing in an untried branch combination that would render the space shuttle out of control in a critical flight phase, the Backup Flight System (BFS) was chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases (ascent and descent) by monitoring the activities of the space shuttle flight subsystems that are under control of the primary flight software (PFS) (e.g., navigation, crew interface, propulsion), then, upon manual command by the flightcrew, to assume control of the space shuttle and deliver it to a noncritical flight condition (safe orbit or touchdown). The problems associated with the selection of the PFS/BFS system architecture, the internal BFS architecture, the fault tolerant software mechanisms, and the long term BFS utility are discussed.
Diagnosis and Prognosis of Weapon Systems
NASA Technical Reports Server (NTRS)
Nolan, Mary; Catania, Rebecca; deMare, Gregory
2005-01-01
The Prognostics Framework is a set of software tools with an open architecture that affords a capability to integrate various prognostic software mechanisms and to provide information for operational and battlefield decision-making and logistical planning pertaining to weapon systems. The Prognostics NASA Tech Briefs, February 2005 17 Framework is also a system-level health -management software system that (1) receives data from performance- monitoring and built-in-test sensors and from other prognostic software and (2) processes the received data to derive a diagnosis and a prognosis for a weapon system. This software relates the diagnostic and prognostic information to the overall health of the system, to the ability of the system to perform specific missions, and to needed maintenance actions and maintenance resources. In the development of the Prognostics Framework, effort was focused primarily on extending previously developed model-based diagnostic-reasoning software to add prognostic reasoning capabilities, including capabilities to perform statistical analyses and to utilize information pertaining to deterioration of parts, failure modes, time sensitivity of measured values, mission criticality, historical data, and trends in measurement data. As thus extended, the software offers an overall health-monitoring capability.
Tools Ensure Reliability of Critical Software
NASA Technical Reports Server (NTRS)
2012-01-01
In November 2006, after attempting to make a routine maneuver, NASA's Mars Global Surveyor (MGS) reported unexpected errors. The onboard software switched to backup resources, and a 2-day lapse in communication took place between the spacecraft and Earth. When a signal was finally received, it indicated that MGS had entered safe mode, a state of restricted activity in which the computer awaits instructions from Earth. After more than 9 years of successful operation gathering data and snapping pictures of Mars to characterize the planet's land and weather communication between MGS and Earth suddenly stopped. Months later, a report from NASA's internal review board found the spacecraft's battery failed due to an unfortunate sequence of events. Updates to the spacecraft's software, which had taken place months earlier, were written to the wrong memory address in the spacecraft's computer. In short, the mission ended because of a software defect. Over the last decade, spacecraft have become increasingly reliant on software to carry out mission operations. In fact, the next mission to Mars, the Mars Science Laboratory, will rely on more software than all earlier missions to Mars combined. According to Gerard Holzmann, manager at the Laboratory for Reliable Software (LaRS) at NASA's Jet Propulsion Laboratory (JPL), even the fault protection systems on a spacecraft are mostly software-based. For reasons like these, well-functioning software is critical for NASA. In the same year as the failure of MGS, Holzmann presented a new approach to critical software development to help reduce risk and provide consistency. He proposed The Power of 10: Rules for Developing Safety-Critical Code, which is a small set of rules that can easily be remembered, clearly relate to risk, and allow compliance to be verified. The reaction at JPL was positive, and developers in the private sector embraced Holzmann's ideas.
Final Report of the NASA Office of Safety and Mission Assurance Agile Benchmarking Team
NASA Technical Reports Server (NTRS)
Wetherholt, Martha
2016-01-01
To ensure that the NASA Safety and Mission Assurance (SMA) community remains in a position to perform reliable Software Assurance (SA) on NASAs critical software (SW) systems with the software industry rapidly transitioning from waterfall to Agile processes, Terry Wilcutt, Chief, Safety and Mission Assurance, Office of Safety and Mission Assurance (OSMA) established the Agile Benchmarking Team (ABT). The Team's tasks were: 1. Research background literature on current Agile processes, 2. Perform benchmark activities with other organizations that are involved in software Agile processes to determine best practices, 3. Collect information on Agile-developed systems to enable improvements to the current NASA standards and processes to enhance their ability to perform reliable software assurance on NASA Agile-developed systems, 4. Suggest additional guidance and recommendations for updates to those standards and processes, as needed. The ABT's findings and recommendations for software management, engineering and software assurance are addressed herein.
MISSION: Mission and Safety Critical Support Environment. Executive overview
NASA Technical Reports Server (NTRS)
Mckay, Charles; Atkinson, Colin
1992-01-01
For mission and safety critical systems it is necessary to: improve definition, evolution and sustenance techniques; lower development and maintenance costs; support safe, timely and affordable system modifications; and support fault tolerance and survivability. The goal of the MISSION project is to lay the foundation for a new generation of integrated systems software providing a unified infrastructure for mission and safety critical applications and systems. This will involve the definition of a common, modular target architecture and a supporting infrastructure.
Towards Certification of a Space System Application of Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Feather, Martin S.; Markosian, Lawrence Z.
2008-01-01
Advanced fault detection, isolation and recovery (FDIR) software is being investigated at NASA as a means to the improve reliability and availability of its space systems. Certification is a critical step in the acceptance of such software. Its attainment hinges on performing the necessary verification and validation to show that the software will fulfill its requirements in the intended setting. Presented herein is our ongoing work to plan for the certification of a pilot application of advanced FDIR software in a NASA setting. We describe the application, and the key challenges and opportunities it offers for certification.
Software modifications to the Demonstration Advanced Avionics Systems (DAAS)
NASA Technical Reports Server (NTRS)
Nedell, B. F.; Hardy, G. H.
1984-01-01
Critical information required for the design of integrated avionics suitable for generation aviation is applied towards software modifications for the Demonstration Advanced Avionics System (DAAS). The program emphasizes the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. A demonstration advanced avionics system (DAAS) is designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. Software modifications are made to DAAS at Ames concurrent with the flight test program. The changes are the result of the experience obtained with the system at Ames, and the comments of the pilots who evaluated the system.
Improving the Agency's Software Acquisition Capability
NASA Technical Reports Server (NTRS)
Hankinson, Allen
2003-01-01
External development of software has oftc n led to unsatisfactory results and great frustration for the assurE 7ce community. Contracts frequently omit critical assuranc 4 processes or the right to oversee software development activitie: At a time when NASA depends more and more on software to in plement critical system functions, combination of three factors ex; cerbate this problem: I ) the ever-increasing trend to acquire rather than develop software in-house, 2) the trend toward performance based contracts, and 3) acquisition vehicles that only state softwar 2 requirements while leaving development standards and assur! ince methodologies up to the contractor. We propose to identify specific methods at d tools that NASA projects can use to mitigate the adverse el ects of the three problems. TWO broad classes of methoddt ols will be explored. The first will be those that provide NASA p ojects with insight and oversight into contractors' activities. The st cond will be those that help projects objectively assess, and thus i nprwe, their software acquisition capability. Of particular interest is the Software Engineering Institute's (SEI) Software Acqt isition Capability Maturity Model (SA-CMMO).
2017-03-20
computation, Prime Implicates, Boolean Abstraction, real- time embedded software, software synthesis, correct by construction software design , model...types for time -dependent data-flow networks". J.-P. Talpin, P. Jouvelot, S. Shukla. ACM-IEEE Conference on Methods and Models for System Design ...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Software development environments: Present and future, appendix D
NASA Technical Reports Server (NTRS)
Riddle, W. E.
1980-01-01
Computerized environments which facilitate the development of appropriately functioning software systems are discussed. Their current status is reviewed and several trends exhibited by their history are identified. A number of principles, some at (slight) variance with the historical trends, are suggested and it is argued that observance of these principles is critical to achieving truly effective and efficient software development support environments.
Integrated Systems Health Management (ISHM) Toolkit
NASA Technical Reports Server (NTRS)
Venkatesh, Meera; Kapadia, Ravi; Walker, Mark; Wilkins, Kim
2013-01-01
A framework of software components has been implemented to facilitate the development of ISHM systems according to a methodology based on Reliability Centered Maintenance (RCM). This framework is collectively referred to as the Toolkit and was developed using General Atomics' Health MAP (TM) technology. The toolkit is intended to provide assistance to software developers of mission-critical system health monitoring applications in the specification, implementation, configuration, and deployment of such applications. In addition to software tools designed to facilitate these objectives, the toolkit also provides direction to software developers in accordance with an ISHM specification and development methodology. The development tools are based on an RCM approach for the development of ISHM systems. This approach focuses on defining, detecting, and predicting the likelihood of system functional failures and their undesirable consequences.
A Candidate Strategy for the Software Engineering Institute
1983-03-15
Strategy For The Software Engineering I Institute InstiuteG PL4FOPRMING ONG. REPORT NUMBER 7. AUTNOR(,) S. CONTRACT OR GRANT NUMUERfaj The DoD Joint Service...interface standards, STARS, APSE, training, state-of-the-practice, mission critical systems, software technology, hardware. 20. ABSTRACT fCantinue an , vape ...CLASSIFIrCATION OFr THIS PACE (When Data 211111104, A.•.. A CANDIDATE STRATEGY FOR THE SOFTWARE ENGINEEERING INSTITUTE Aoocession For DTIC TAB u t l It J oil
NASA Technical Reports Server (NTRS)
Aiken, Alexander
2001-01-01
The Scalable Analysis Toolkit (SAT) project aimed to demonstrate that it is feasible and useful to statically detect software bugs in very large systems. The technical focus of the project was on a relatively new class of constraint-based techniques for analysis software, where the desired facts about programs (e.g., the presence of a particular bug) are phrased as constraint problems to be solved. At the beginning of this project, the most successful forms of formal software analysis were limited forms of automatic theorem proving (as exemplified by the analyses used in language type systems and optimizing compilers), semi-automatic theorem proving for full verification, and model checking. With a few notable exceptions these approaches had not been demonstrated to scale to software systems of even 50,000 lines of code. Realistic approaches to large-scale software analysis cannot hope to make every conceivable formal method scale. Thus, the SAT approach is to mix different methods in one application by using coarse and fast but still adequate methods at the largest scales, and reserving the use of more precise but also more expensive methods at smaller scales for critical aspects (that is, aspects critical to the analysis problem under consideration) of a software system. The principled method proposed for combining a heterogeneous collection of formal systems with different scalability characteristics is mixed constraints. This idea had been used previously in small-scale applications with encouraging results: using mostly coarse methods and narrowly targeted precise methods, useful information (meaning the discovery of bugs in real programs) was obtained with excellent scalability.
Trusted Computing Technologies, Intel Trusted Execution Technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guise, Max Joseph; Wendt, Jeremy Daniel
2011-01-01
We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorizedmore » users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.« less
Reliability of Beam Loss Monitor Systems for the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Guaglio, G.; Dehning, B.; Santoni, C.
2005-06-01
The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smidts, Carol; Huang, Funqun; Li, Boyuan
With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be amore » significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty -- measures and methods are needed to assess dependability attributes early on, as well as throughout the life-cycle process of software development. In this research, extensive expert opinion elicitation is used to identify the measures and methods for assessing software dependability. Semi-structured questionnaires were designed to elicit expert knowledge. A new notation system, Causal Mechanism Graphing, was developed to extract and represent such knowledge. The Causal Mechanism Graphs were merged, thus, obtaining the consensus knowledge shared by the domain experts. In this report, we focus on how software contributes to dependability. However, software dependability is not discussed separately from the context of systems or socio-technical systems. Specifically, this report focuses on software dependability, reliability, safety, security, availability, and maintainability. Our research was conducted in the sequence of stages found below. Each stage is further examined in its corresponding chapter. Stage 1 (Chapter 2): Elicitation of causal maps describing the dependencies between dependability attributes. These causal maps were constructed using expert opinion elicitation. This chapter describes the expert opinion elicitation process, the questionnaire design, the causal map construction method and the causal maps obtained. Stage 2 (Chapter 3): Elicitation of the causal map describing the occurrence of the event of interest for each dependability attribute. The causal mechanisms for the “event of interest” were extracted for each of the software dependability attributes. The “event of interest” for a dependability attribute is generally considered to be the “attribute failure”, e.g. security failure. The extraction was based on the analysis of expert elicitation results obtained in Stage 1. Stage 3 (Chapter 4): Identification of relevant measurements. Measures for the “events of interest” and their causal mechanisms were obtained from expert opinion elicitation for each of the software dependability attributes. The measures extracted are presented in this chapter. Stage 4 (Chapter 5): Assessment of the coverage of the causal maps via measures. Coverage was assessed to determine whether the measures obtained were sufficient to quantify software dependability, and what measures are further required. Stage 5 (Chapter 6): Identification of “missing” measures and measurement approaches for concepts not covered. New measures, for concepts that had not been covered sufficiently as determined in Stage 4, were identified using supplementary expert opinion elicitation as well as literature reviews. Stage 6 (Chapter 7): Building of a detailed quantification model based on the causal maps and measurements obtained. Ability to derive such a quantification model shows that the causal models and measurements derived from the previous stages (Stage 1 to Stage 5) can form the technical basis for developing dependability quantification models. Scope restrictions have led us to prioritize this demonstration effort. The demonstration was focused on a critical system, i.e. the reactor protection system. For this system, a ranking of the software dependability attributes by nuclear stakeholders was developed. As expected for this application, the stakeholder ranking identified safety as the most critical attribute to be quantified. A safety quantification model limited to the requirements phase of development was built. Two case studies were conducted for verification. A preliminary control gate for software safety for the requirements stage was proposed and applied to the first case study. The control gate allows a cost effective selection of the duration of the requirements phase.« less
NASA Technical Reports Server (NTRS)
Stensrud, Kjell C.; Hamm, Dustin
2007-01-01
NASA's Johnson Space Center (JSC) / Flight Design and Dynamics Division (DM) has prototyped the use of Open Source middleware technology for building its next generation spacecraft mission support system. This is part of a larger initiative to use open standards and open source software as building blocks for future mission and safety critical systems. JSC is hoping to leverage standardized enterprise architectures, such as Java EE, so that its internal software development efforts can be focused on the core aspects of their problem domain. This presentation will outline the design and implementation of the Trajectory system and the lessons learned during the exercise.
Burn Resuscitation Decision Support System (BRDSS)
2013-09-01
effective for burn care in the deployed and en route care settings. In this period, we completed Human Factors studies, hardware testing , software design ... designated U.S. Army Institute of Surgical Research (USAISR) clinical team. Phase 1 System Requirements and Software Development Arcos will draft a...airworthiness testing . The hardware finalists will be sent to U.S. Army Aeromedical Research Laboratory (USAARL) for critical airworthiness testing . Phase
Assurance of Fault Management: Risk-Significant Adverse Condition Awareness
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2016-01-01
Fault Management (FM) systems are ranked high in risk-based assessment of criticality within flight software, emphasizing the importance of establishing highly competent domain expertise to provide assurance for NASA projects, especially as spaceflight systems continue to increase in complexity. Insight into specific characteristics of FM architectures seen embedded within safety- and mission-critical software systems analyzed by the NASA Independent Verification Validation (IVV) Program has been enhanced with an FM Technical Reference (TR) suite. Benefits are aimed beyond the IVV community to those that seek ways to efficiently and effectively provide software assurance to reduce the FM risk posture of NASA and other space missions. The identification of particular FM architectures, visibility, and associated IVV techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. The role FM has with regard to overall asset protection of flight software systems is being addressed with the development of an adverse condition (AC) database encompassing flight software vulnerabilities.Identification of potential off-nominal conditions and analysis to determine how a system responds to these conditions are important aspects of hazard analysis and fault management. Understanding what ACs the mission may face, and ensuring they are prevented or addressed is the responsibility of the assurance team, which necessarily should have insight into ACs beyond those defined by the project itself. Research efforts sponsored by NASAs Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs, and allowing queries based on project, mission type, domain component, causal fault, and other key characteristics. The repository has a firm structure, initial collection of data, and an interface established for informational queries, with plans for integration within the Enterprise Architecture at NASA IVV, enabling support and accessibility across the Agency. The development of an improved workflow process for adaptive, risk-informed FM assurance is currently underway.
NASA Technical Reports Server (NTRS)
Gupta, Pramod; Schumann, Johann
2004-01-01
High reliability of mission- and safety-critical software systems has been identified by NASA as a high-priority technology challenge. We present an approach for the performance analysis of a neural network (NN) in an advanced adaptive control system. This problem is important in the context of safety-critical applications that require certification, such as flight software in aircraft. We have developed a tool to measure the performance of the NN during operation by calculating a confidence interval (error bar) around the NN's output. Our tool can be used during pre-deployment verification as well as monitoring the network performance during operation. The tool has been implemented in Simulink and simulation results on a F-15 aircraft are presented.
NASA Technical Reports Server (NTRS)
Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.
1992-01-01
The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.
Integrated Syntactic/Semantic XML Data Validation with a Reusable Software Component
ERIC Educational Resources Information Center
Golikov, Steven
2013-01-01
Data integration is a critical component of enterprise system integration, and XML data validation is the foundation for sound data integration of XML-based information systems. Since B2B e-commerce relies on data validation as one of the critical components for enterprise integration, it is imperative for financial industries and e-commerce…
Improving Critical Thinking Using Web Based Argument Mapping Exercises with Automated Feedback
ERIC Educational Resources Information Center
Butchart, Sam; Forster, Daniella; Gold, Ian; Bigelow, John; Korb, Kevin; Oppy, Graham; Serrenti, Alexandra
2009-01-01
In this paper we describe a simple software system that allows students to practise their critical thinking skills by constructing argument maps of natural language arguments. As the students construct their maps of an argument, the system provides automatic, real time feedback on their progress. We outline the background and theoretical framework…
1986-12-01
graphics : The package allows a character set which can be defined by users giving the picture for a character by designating its pixels. Such characters...type lonts and gsei-oriented "help" messages tailored to the operations being performed and user expertise In general, critical design issues...other volumes include command language, software design , description and analysis tools, database management system operating systems; planning and
Architecture of a framework for providing information services for public transport.
García, Carmelo R; Pérez, Ricardo; Lorenzo, Alvaro; Quesada-Arencibia, Alexis; Alayón, Francisco; Padrón, Gabino
2012-01-01
This paper presents OnRoute, a framework for developing and running ubiquitous software that provides information services to passengers of public transportation, including payment systems and on-route guidance services. To achieve a high level of interoperability, accessibility and context awareness, OnRoute uses the ubiquitous computing paradigm. To guarantee the quality of the software produced, the reliable software principles used in critical contexts, such as automotive systems, are also considered by the framework. The main components of its architecture (run-time, system services, software components and development discipline) and how they are deployed in the transportation network (stations and vehicles) are described in this paper. Finally, to illustrate the use of OnRoute, the development of a guidance service for travellers is explained.
An Introduction to Flight Software Development: FSW Today, FSW 2010
NASA Technical Reports Server (NTRS)
Gouvela, John
2004-01-01
Experience and knowledge gained from ongoing maintenance of Space Shuttle Flight Software and new development projects including Cockpit Avionics Upgrade are applied to projected needs of the National Space Exploration Vision through Spiral 2. Lessons learned from these current activities are applied to create a sustainable, reliable model for development of critical software to support Project Constellation. This presentation introduces the technologies, methodologies, and infrastructure needed to produce and sustain high quality software. It will propose what is needed to support a Vision for Space Exploration that places demands on the innovation and productivity needed to support future space exploration. The technologies in use today within FSW development include tools that provide requirements tracking, integrated change management, modeling and simulation software. Specific challenges that have been met include the introduction and integration of Commercial Off the Shelf (COTS) Real Time Operating System for critical functions. Though technology prediction has proved to be imprecise, Project Constellation requirements will need continued integration of new technology with evolving methodologies and changing project infrastructure. Targets for continued technology investment are integrated health monitoring and management, self healing software, standard payload interfaces, autonomous operation, and improvements in training. Emulation of the target hardware will also allow significant streamlining of development and testing. The methodologies in use today for FSW development are object oriented UML design, iterative development using independent components, as well as rapid prototyping . In addition, Lean Six Sigma and CMMI play a critical role in the quality and efficiency of the workforce processes. Over the next six years, we expect these methodologies to merge with other improvements into a consolidated office culture with all processes being guided by automated office assistants. The infrastructure in use today includes strict software development and configuration management procedures, including strong control of resource management and critical skills coverage. This will evolve to a fully integrated staff organization with efficient and effective communication throughout all levels guided by a Mission-Systems Architecture framework with focus on risk management and attention toward inevitable product obsolescence. This infrastructure of computing equipment, software and processes will itself be subject to technological change and need for management of change and improvement,
2009-02-01
management, available at <http://www.iso.org/ iso /en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39612&ICS1=35&ICS2=40 &ICS3=>. ISO /IEC 27001 . Information...Management of the Systems Engineering Process. [ ISO /IEC 27001 ] ISO /IEC 27001 :2005. Information technology -- Security techniques -- Information security...software life cycles [ ISO /IEC 15026]. Software assurance is a key element of national security and homeland security. It is critical because dramatic
Tips for Ensuring Successful Software Implementation
ERIC Educational Resources Information Center
Weathers, Robert
2013-01-01
Implementing an enterprise-level, mission-critical software system is an infrastructure project akin to other sizable projects, such as building a school. It's costly and complex, takes a year or more to complete, requires the collaboration of many different parties, involves uncertainties, results in a long-lived asset requiring ongoing…
Employing Service Oriented Architecture Technologies to Bind a Thousand Ship Navy
2008-06-01
critical of the software lifecycle ( Pressman , 272). This remains true with SOA technologies. Theoretically, SOA provides a rapid development and... Pressman , R. S., “Software Engineering, A Practitioner’s Approach Fifth Edition”, McGraw-Hill, New York, 2001 4. Space and Naval Warfare Systems Center
Using software security analysis to verify the secure socket layer (SSL) protocol
NASA Technical Reports Server (NTRS)
Powell, John D.
2004-01-01
nal Aeronautics and Space Administration (NASA) have tens of thousands of networked computer systems and applications. Software Security vulnerabilities present risks such as lost or corrupted data, information the3, and unavailability of critical systems. These risks represent potentially enormous costs to NASA. The NASA Code Q research initiative 'Reducing Software Security Risk (RSSR) Trough an Integrated Approach '' offers, among its capabilities, formal verification of software security properties, through the use of model based verification (MBV) to address software security risks. [1,2,3,4,5,6] MBV is a formal approach to software assurance that combines analysis of software, via abstract models, with technology, such as model checkers, that provide automation of the mechanical portions of the analysis process. This paper will discuss: The need for formal analysis to assure software systems with respect to software and why testing alone cannot provide it. The means by which MBV with a Flexible Modeling Framework (FMF) accomplishes the necessary analysis task. An example of FMF style MBV in the verification of properties over the Secure Socket Layer (SSL) communication protocol as a demonstration.
Specification-based software sizing: An empirical investigation of function metrics
NASA Technical Reports Server (NTRS)
Jeffery, Ross; Stathis, John
1993-01-01
For some time the software industry has espoused the need for improved specification-based software size metrics. This paper reports on a study of nineteen recently developed systems in a variety of application domains. The systems were developed by a single software services corporation using a variety of languages. The study investigated several metric characteristics. It shows that: earlier research into inter-item correlation within the overall function count is partially supported; a priori function counts, in themself, do not explain the majority of the effort variation in software development in the organization studied; documentation quality is critical to accurate function identification; and rater error is substantial in manual function counting. The implication of these findings for organizations using function based metrics are explored.
Quality Attributes for Mission Flight Software: A Reference for Architects
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan; Fesq, Lorraine; Dvorak, Dan
2016-01-01
In the international standards for architecture descriptions in systems and software engineering (ISO/IEC/IEEE 42010), "concern" is a primary concept that often manifests itself in relation to the quality attributes or "ilities" that a system is expected to exhibit - qualities such as reliability, security and modifiability. One of the main uses of an architecture description is to serve as a basis for analyzing how well the architecture achieves its quality attributes, and that requires architects to be as precise as possible about what they mean in claiming, for example, that an architecture supports "modifiability." This paper describes a table, generated by NASA's Software Architecture Review Board, which lists fourteen key quality attributes, identifies different important aspects of each quality attribute and considers each aspect in terms of requirements, rationale, evidence, and tactics to achieve the aspect. This quality attribute table is intended to serve as a guide to software architects, software developers, and software architecture reviewers in the domain of mission-critical real-time embedded systems, such as space mission flight software.
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Briscoe, Jeri M.
2005-01-01
Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a manned spacecraft. These systems include spacecraft navigation and attitude control, propulsion, automated docking, vehicle health management and life support. ISAACC can integrate local critical subsystem health management with subsystems performing long term health monitoring. The ISAACC system and its relationship to ISHM will be presented.
Instrument control software development process for the multi-star AO system ARGOS
NASA Astrophysics Data System (ADS)
Kulas, M.; Barl, L.; Borelli, J. L.; Gässler, W.; Rabien, S.
2012-09-01
The ARGOS project (Advanced Rayleigh guided Ground layer adaptive Optics System) will upgrade the Large Binocular Telescope (LBT) with an AO System consisting of six Rayleigh laser guide stars. This adaptive optics system integrates several control loops and many different components like lasers, calibration swing arms and slope computers that are dispersed throughout the telescope. The purpose of the instrument control software (ICS) is running this AO system and providing convenient client interfaces to the instruments and the control loops. The challenges for the ARGOS ICS are the development of a distributed and safety-critical software system with no defects in a short time, the creation of huge and complex software programs with a maintainable code base, the delivery of software components with the desired functionality and the support of geographically distributed project partners. To tackle these difficult tasks, the ARGOS software engineers reuse existing software like the novel middleware from LINC-NIRVANA, an instrument for the LBT, provide many tests at different functional levels like unit tests and regression tests, agree about code and architecture style and deliver software incrementally while closely collaborating with the project partners. Many ARGOS ICS components are already successfully in use in the laboratories for testing ARGOS control loops.
NASA Technical Reports Server (NTRS)
Lyle, Stacey D.
2009-01-01
A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time has been developed. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server. The Geospatial Authentication software has two parts Server and Client. The server software is a virtual private network (VPN) developed in Linux operating system using Perl programming language. The server can be a stand-alone VPN server or can be combined with other applications and services. The client software is a GUI Windows CE software, or Mobile Graphical Software, that allows users to authenticate into a network. The purpose of the client software is to pass the needed satellite information to the server for authentication.
Formal Modeling and Analysis of a Preliminary Small Aircraft Transportation System (SATS)Concept
NASA Technical Reports Server (NTRS)
Carrreno, Victor A.; Gottliebsen, Hanne; Butler, Ricky; Kalvala, Sara
2004-01-01
New concepts for automating air traffic management functions at small non-towered airports raise serious safety issues associated with the software implementations and their underlying key algorithms. The criticality of such software systems necessitates that strong guarantees of the safety be developed for them. In this paper we present a formal method for modeling and verifying such systems using the PVS theorem proving system. The method is demonstrated on a preliminary concept of operation for the Small Aircraft Transportation System (SATS) project at NASA Langley.
Security for safety critical space borne systems
NASA Technical Reports Server (NTRS)
Legrand, Sue
1987-01-01
The Space Station contains safety critical computer software components in systems that can affect life and vital property. These components require a multilevel secure system that provides dynamic access control of the data and processes involved. A study is under way to define requirements for a security model providing access control through level B3 of the Orange Book. The model will be prototyped at NASA-Johnson Space Center.
NASA Technical Reports Server (NTRS)
Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk
1993-01-01
The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.
A Model for Assessing the Liability of Seemingly Correct Software
NASA Technical Reports Server (NTRS)
Voas, Jeffrey M.; Voas, Larry K.; Miller, Keith W.
1991-01-01
Current research on software reliability does not lend itself to quantitatively assessing the risk posed by a piece of life-critical software. Black-box software reliability models are too general and make too many assumptions to be applied confidently to assessing the risk of life-critical software. We present a model for assessing the risk caused by a piece of software; this model combines software testing results and Hamlet's probable correctness model. We show how this model can assess software risk for those who insure against a loss that can occur if life-critical software fails.
1992-09-01
Aviation Logistics Command Management Information System (NALCOMIS) prototyping development effort, the critical success factors required to implement prototyping with application generators in other areas of DoD.
Formal methods and their role in digital systems validation for airborne systems
NASA Technical Reports Server (NTRS)
Rushby, John
1995-01-01
This report is based on one prepared as a chapter for the FAA Digital Systems Validation Handbook (a guide to assist FAA certification specialists with advanced technology issues). Its purpose is to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used in critical applications; and to suggest factors for consideration when formal methods are offered in support of certification. The presentation concentrates on the rationale for formal methods and on their contribution to assurance for critical applications within a context such as that provided by DO-178B (the guidelines for software used on board civil aircraft); it is intended as an introduction for those to whom these topics are new.
The aerospace energy systems laboratory: Hardware and software implementation
NASA Technical Reports Server (NTRS)
Glover, Richard D.; Oneil-Rood, Nora
1989-01-01
For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.
Software ``Best'' Practices: Agile Deconstructed
NASA Astrophysics Data System (ADS)
Fraser, Steven
Software “best” practices depend entirely on context - in terms of the problem domain, the system constructed, the software designers, and the “customers” ultimately deriving value from the system. Agile practices no longer have the luxury of “choosing” small non-mission critical projects with co-located teams. Project stakeholders are selecting and adapting practices based on a combina tion of interest, need and staffing. For example, growing product portfolios through a merger or the acquisition of a company exposes legacy systems to new staff, new software integration challenges, and new ideas. Innovation in communications (tools and processes) to span the growth and contraction of both information and organizations, while managing the adoption of changing software practices, is imperative for success. Traditional web-based tools such as web pages, document libraries, and forums are not suf ficient. A blend of tweeting, blogs, wikis, instant messaging, web-based confer encing, and telepresence creates a new dimension of communication “best” practices.
Architecture of a Framework for Providing Information Services for Public Transport
García, Carmelo R.; Pérez, Ricardo; Lorenzo, Álvaro; Quesada-Arencibia, Alexis; Alayón, Francisco; Padrón, Gabino
2012-01-01
This paper presents OnRoute, a framework for developing and running ubiquitous software that provides information services to passengers of public transportation, including payment systems and on-route guidance services. To achieve a high level of interoperability, accessibility and context awareness, OnRoute uses the ubiquitous computing paradigm. To guarantee the quality of the software produced, the reliable software principles used in critical contexts, such as automotive systems, are also considered by the framework. The main components of its architecture (run-time, system services, software components and development discipline) and how they are deployed in the transportation network (stations and vehicles) are described in this paper. Finally, to illustrate the use of OnRoute, the development of a guidance service for travellers is explained. PMID:22778585
Building Safer Systems With SpecTRM
NASA Technical Reports Server (NTRS)
2003-01-01
System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.
Specialized computer system to diagnose critical lined equipment
NASA Astrophysics Data System (ADS)
Yemelyanov, V. A.; Yemelyanova, N. Y.; Morozova, O. A.; Nedelkin, A. A.
2018-05-01
The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors propose and describe the structure of the specialized computer system to diagnose critical lined equipment. The relative results of diagnosing lining condition by the basic system and the proposed specialized computer system are presented. To automate evaluation of lining condition and support in making decisions regarding the operation mode of the lined equipment, the specialized software has been developed.
The methodology of multi-viewpoint clustering analysis
NASA Technical Reports Server (NTRS)
Mehrotra, Mala; Wild, Chris
1993-01-01
One of the greatest challenges facing the software engineering community is the ability to produce large and complex computer systems, such as ground support systems for unmanned scientific missions, that are reliable and cost effective. In order to build and maintain these systems, it is important that the knowledge in the system be suitably abstracted, structured, and otherwise clustered in a manner which facilitates its understanding, manipulation, testing, and utilization. Development of complex mission-critical systems will require the ability to abstract overall concepts in the system at various levels of detail and to consider the system from different points of view. Multi-ViewPoint - Clustering Analysis MVP-CA methodology has been developed to provide multiple views of large, complicated systems. MVP-CA provides an ability to discover significant structures by providing an automated mechanism to structure both hierarchically (from detail to abstract) and orthogonally (from different perspectives). We propose to integrate MVP/CA into an overall software engineering life cycle to support the development and evolution of complex mission critical systems.
Automated Transfer Vehicle (ATV) Critical Safety Software Overview
NASA Astrophysics Data System (ADS)
Berthelier, D.
2002-01-01
The European Automated Transfer Vehicle is an unmanned transportation system designed to dock to International Space Station (ISS) and to contribute to the logistic servicing of the ISS. Concisely, ATV control is realized by a nominal flight control function (using computers, softwares, sensors, actuators). In order to cover the extreme situations where this nominal chain can not ensure safe trajectory with respect to ISS, a segregated proximity flight safety function is activated, where unsafe free drift trajectories can be encountered. This function relies notably on a segregated computer, the Monitoring and Safing Unit (MSU) ; in case of major ATV malfunction detection, ATV is then controlled by MSU software. Therefore, this software is critical because a MSU software failure could result in catastrophic consequences. This paper provides an overview both of this software functions and of the software development and validation method which is specific considering its criticality. First part of the paper describes briefly the proximity flight safety chain. Second part deals with the software functions. Indeed, MSU software is in charge of monitoring nominal computers and ATV corridors, using its own navigation algorithms, and, if an abnormal situation is detected, it is in charge of the ATV control during the Collision Avoidance Manoeuvre (CAM) consisting in an attitude controlled braking boost, followed by a Post-CAM manoeuvre : a Sun-pointed ATV attitude control during up to 24 hours on a safe trajectory. Monitoring, navigation and control algorithms principles are presented. Third part of this paper describes the development and validation process : algorithms functional studies , ADA coding and unit validations ; algorithms ADA code integration and validation on a specific non real-time MATLAB/SIMULINK simulator ; global software functional engineering phase, architectural design, unit testing, integration and validation on target computer.
DMPL: Programming and Verifying Distributed Mixed Synchrony and Mixed Critical Software
2016-06-16
ference on Intelligent Robots and Systems, pages 1495–1502, Chicago, IL, September 2014. IEEE Computer Society. [21] MADARA website . http://sourceforge.net...4.6 DMPL program for 5- robot reconnaissance example 19 Figure 5.1 Generated C++ code for example DMPL program. In practice, local vari- ables (lines...examples of collision avoidance in multi- robot systems. CMU/SEI-2016-TR-005 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University vii
Experience report: Using formal methods for requirements analysis of critical spacecraft software
NASA Technical Reports Server (NTRS)
Lutz, Robyn R.; Ampo, Yoko
1994-01-01
Formal specification and analysis of requirements continues to gain support as a method for producing more reliable software. However, the introduction of formal methods to a large software project is difficult, due in part to the unfamiliarity of the specification languages and the lack of graphics. This paper reports results of an investigation into the effectiveness of formal methods as an aid to the requirements analysis of critical, system-level fault-protection software on a spacecraft currently under development. Our experience indicates that formal specification and analysis can enhance the accuracy of the requirements and add assurance prior to design development in this domain. The work described here is part of a larger, NASA-funded research project whose purpose is to use formal-methods techniques to improve the quality of software in space applications. The demonstration project described here is part of the effort to evaluate experimentally the effectiveness of supplementing traditional engineering approaches to requirements specification with the more rigorous specification and analysis available with formal methods.
Application of SAE ARP4754A to Flight Critical Systems
NASA Technical Reports Server (NTRS)
Peterson, Eric M.
2015-01-01
This report documents applications of ARP4754A to the development of modern computer-based (i.e., digital electronics, software and network-based) aircraft systems. This study is to offer insight and provide educational value relative to the guidelines in ARP4754A and provide an assessment of the current state-of-the- practice within industry and regulatory bodies relative to development assurance for complex and safety-critical computer-based aircraft systems.
Mitigating Motion Base Safety Issues: The NASA LaRC CMF Implementation
NASA Technical Reports Server (NTRS)
Bryant, Richard B., Jr.; Grupton, Lawrence E.; Martinez, Debbie; Carrelli, David J.
2005-01-01
The NASA Langley Research Center (LaRC), Cockpit Motion Facility (CMF) motion base design has taken advantage of inherent hydraulic characteristics to implement safety features using hardware solutions only. Motion system safety has always been a concern and its implementation is addressed differently by each organization. Some approaches rely heavily on software safety features. Software which performs safety functions is subject to more scrutiny making its approval, modification, and development time consuming and expensive. The NASA LaRC's CMF motion system is used for research and, as such, requires that the software be updated or modified frequently. The CMF's customers need the ability to update the simulation software frequently without the associated cost incurred with safety critical software. This paper describes the CMF engineering team's approach to achieving motion base safety by designing and implementing all safety features in hardware, resulting in applications software (including motion cueing and actuator dynamic control) being completely independent of the safety devices. This allows the CMF safety systems to remain intact and unaffected by frequent research system modifications.
Software engineering aspects of real-time programming concepts
NASA Astrophysics Data System (ADS)
Schoitsch, Erwin
1986-08-01
Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.
Research a Novel Integrated and Dynamic Multi-object Trade-Off Mechanism in Software Project
NASA Astrophysics Data System (ADS)
Jiang, Weijin; Xu, Yuhui
Aiming at practical requirements of present software project management and control, the paper presented to construct integrated multi-object trade-off model based on software project process management, so as to actualize integrated and dynamic trade-oil of the multi-object system of project. Based on analyzing basic principle of dynamic controlling and integrated multi-object trade-off system process, the paper integrated method of cybernetics and network technology, through monitoring on some critical reference points according to the control objects, emphatically discussed the integrated and dynamic multi- object trade-off model and corresponding rules and mechanism in order to realize integration of process management and trade-off of multi-object system.
A Data-Driven Solution for Performance Improvement
NASA Technical Reports Server (NTRS)
2002-01-01
Marketed as the "Software of the Future," Optimal Engineering Systems P.I. EXPERT(TM) technology offers statistical process control and optimization techniques that are critical to businesses looking to restructure or accelerate operations in order to gain a competitive edge. Kennedy Space Center granted Optimal Engineering Systems the funding and aid necessary to develop a prototype of the process monitoring and improvement software. Completion of this prototype demonstrated that it was possible to integrate traditional statistical quality assurance tools with robust optimization techniques in a user- friendly format that is visually compelling. Using an expert system knowledge base, the software allows the user to determine objectives, capture constraints and out-of-control processes, predict results, and compute optimal process settings.
Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer
NASA Technical Reports Server (NTRS)
Goldberg, J.; Kautz, W. H.; Melliar-Smith, P. M.; Green, M. W.; Levitt, K. N.; Schwartz, R. L.; Weinstock, C. B.
1984-01-01
SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness.
Software-based data path for raster-scanned multi-beam mask lithography
NASA Astrophysics Data System (ADS)
Rajagopalan, Archana; Agarwal, Ankita; Buck, Peter; Geller, Paul; Hamaker, H. Christopher; Rao, Nagswara
2016-10-01
According to the 2013 SEMATECH Mask Industry Survey,i roughly half of all photomasks are produced using laser mask pattern generator ("LMPG") lithography. LMPG lithography can be used for all layers at mature technology nodes, and for many non-critical and semi-critical masks at advanced nodes. The extensive use of multi-patterning at the 14-nm node significantly increases the number of critical mask layers, and the transition in wafer lithography from positive tone resist to negative tone resist at the 14-nm design node enables the switch from advanced binary masks back to attenuated phase shifting masks that require second level writes to remove unwanted chrome. LMPG lithography is typically used for second level writes due to its high productivity, absence of charging effects, and versatile non-actinic alignment capability. As multi-patterning use expands from double to triple patterning and beyond, the number of LMPG second level writes increases correspondingly. The desire to reserve the limited capacity of advanced electron beam writers for use when essential is another factor driving the demand for LMPG capacity. The increasing demand for cost-effective productivity has kept most of the laser mask writers ever manufactured running in production, sometimes long past their projected lifespan, and new writers continue to be built based on hardware developed some years ago.ii The data path is a case in point. While state-ofthe- art when first introduced, hardware-based data path systems are difficult to modify or add new features to meet the changing requirements of the market. As data volumes increase, design styles change, and new uses are found for laser writers, it is useful to consider a replacement for this critical subsystem. The availability of low-cost, high-performance, distributed computer systems combined with highly scalable EDA software lends itself well to creating an advanced data path system. EDA software, in routine production today, scales well to hundreds or even thousands of CPU-cores, offering the potential for virtually unlimited capacity. Features available in EDA software such as sizing, scaling, tone reversal, OPC, MPC, rasterization, and others are easily adapted to the requirements of a data path system. This paper presents the motivation, requirements, design and performance of an advanced, scalable software data path system suitable to support multi-beam laser mask lithography.
NASA Astrophysics Data System (ADS)
Tamura, Yoshinobu; Yamada, Shigeru
OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.
Computer systems and software engineering
NASA Technical Reports Server (NTRS)
Mckay, Charles W.
1988-01-01
The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.
Accelerating NASA GN&C Flight Software Development
NASA Technical Reports Server (NTRS)
Tamblyn, Scott; Henry, Joel; Rapp, John
2010-01-01
When the guidance, navigation, and control (GN&C) system for the Orion crew vehicle undergoes Critical Design Review (CDR), more than 90% of the flight software will already be developed - a first for NASA on a project of this scope and complexity. This achievement is due in large part to a new development approach using Model-Based Design.
2015-05-01
quality attributes. Prioritization of the utility tree leafs driven by mission goals help the user ensure that critical requirements are well-specified...Methods: State of the Art and Future Directions”, ACM Computing Surveys. 1996. 10 Laitenberger, Oliver , “A Survey of Software Inspection Technologies, Handbook on Software Engineering and Knowledge Engineering”. 2002.
Adaptive System Modeling for Spacecraft Simulation
NASA Technical Reports Server (NTRS)
Thomas, Justin
2011-01-01
This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).
Software Safety Progress in NASA
NASA Technical Reports Server (NTRS)
Radley, Charles F.
1995-01-01
NASA has developed guidelines for development and analysis of safety-critical software. These guidelines have been documented in a Guidebook for Safety Critical Software Development and Analysis. The guidelines represent a practical 'how to' approach, to assist software developers and safety analysts in cost effective methods for software safety. They provide guidance in the implementation of the recent NASA Software Safety Standard NSS-1740.13 which was released as 'Interim' version in June 1994, scheduled for formal adoption late 1995. This paper is a survey of the methods in general use, resulting in the NASA guidelines for safety critical software development and analysis.
2010-04-01
for predicting central blood volume changes to focus on the development of software algorithms and systems to provide a capability to track, and...which creatively fills this Critical Care gap. Technology in this sense means hardware and software systems which incorporate sensors, processors...devices for use in forward surgical and combat areas. Mil Med 170: 76-82, 2005. [10] Gaylord KM, Cooper DB, Mercado JM, Kennedy JE, Yoder LH, and
Software development for safety-critical medical applications
NASA Technical Reports Server (NTRS)
Knight, John C.
1992-01-01
There are many computer-based medical applications in which safety and not reliability is the overriding concern. Reduced, altered, or no functionality of such systems is acceptable as long as no harm is done. A precise, formal definition of what software safety means is essential, however, before any attempt can be made to achieve it. Without this definition, it is not possible to determine whether a specific software entity is safe. A set of definitions pertaining to software safety will be presented and a case study involving an experimental medical device will be described. Some new techniques aimed at improving software safety will also be discussed.
A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems
NASA Technical Reports Server (NTRS)
Hatanaka, Iwao
2000-01-01
The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.
Safety Metrics for Human-Computer Controlled Systems
NASA Technical Reports Server (NTRS)
Leveson, Nancy G; Hatanaka, Iwao
2000-01-01
The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.
Software engineering processes for Class D missions
NASA Astrophysics Data System (ADS)
Killough, Ronnie; Rose, Debi
2013-09-01
Software engineering processes are often seen as anathemas; thoughts of CMMI key process areas and NPR 7150.2A compliance matrices can motivate a software developer to consider other career fields. However, with adequate definition, common-sense application, and an appropriate level of built-in flexibility, software engineering processes provide a critical framework in which to conduct a successful software development project. One problem is that current models seem to be built around an underlying assumption of "bigness," and assume that all elements of the process are applicable to all software projects regardless of size and tolerance for risk. This is best illustrated in NASA's NPR 7150.2A in which, aside from some special provisions for manned missions, the software processes are to be applied based solely on the criticality of the software to the mission, completely agnostic of the mission class itself. That is, the processes applicable to a Class A mission (high priority, very low risk tolerance, very high national significance) are precisely the same as those applicable to a Class D mission (low priority, high risk tolerance, low national significance). This paper will propose changes to NPR 7150.2A, taking mission class into consideration, and discuss how some of these changes are being piloted for a current Class D mission—the Cyclone Global Navigation Satellite System (CYGNSS).
GPS Software Packages Deliver Positioning Solutions
NASA Technical Reports Server (NTRS)
2010-01-01
"To determine a spacecraft s position, the Jet Propulsion Laboratory (JPL) developed an innovative software program called the GPS (global positioning system)-Inferred Positioning System and Orbit Analysis Simulation Software, abbreviated as GIPSY-OASIS, and also developed Real-Time GIPSY (RTG) for certain time-critical applications. First featured in Spinoff 1999, JPL has released hundreds of licenses for GIPSY and RTG, including to Longmont, Colorado-based DigitalGlobe. Using the technology, DigitalGlobe produces satellite imagery with highly precise latitude and longitude coordinates and then supplies it for uses within defense and intelligence, civil agencies, mapping and analysis, environmental monitoring, oil and gas exploration, infrastructure management, Internet portals, and navigation technology."
Lessons Learned from Autonomous Sciencecraft Experiment
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Mandl, Dan; Frye, Stuart; Trout, Bruce;
2005-01-01
An Autonomous Science Agent has been flying onboard the Earth Observing One Spacecraft since 2003. This software enables the spacecraft to autonomously detect and responds to science events occurring on the Earth such as volcanoes, flooding, and snow melt. The package includes AI-based software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software is in routine use to fly the EO-l mission. In this paper we briefly review the agent architecture and discuss lessons learned from this multi-year flight effort pertinent to deployment of software agents to critical applications.
Perspectives on NASA flight software development - Apollo, Shuttle, Space Station
NASA Technical Reports Server (NTRS)
Garman, John R.
1990-01-01
Flight data systems' software development is chronicled for the period encompassing NASA's Apollo, Space Shuttle, and (ongoing) Space Station Freedom programs, with attention to the methodologies and 'development tools' employed in each case and their mutual relationships. A dominant concern in all three programs has been the accommodation of software change; it has also been noted that any such long-term program carries the additional challenge of identifying which elements of its software-related 'institutional memory' are most critical, in order to preclude their loss through the retirement, promotion, or transfer of its 'last expert'.
NASA Technical Reports Server (NTRS)
Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron
1994-01-01
This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.
Using Sequence Diagrams to Detect Communication Problems Between Systems
NASA Technical Reports Server (NTRS)
Lindvall, Mikael; Ackermann, Chris; Stratton, William C.; Sibol, Deane E.; Ray, Arnab; Yonkwa, Lyly; Kresser, Jan; Godfrey, Sally H.; Knodel, Jens
2008-01-01
Many software systems are evolving complex system of systems (SoS) for which inter-system communication is both mission-critical and error-prone. Such communication problems ideally would be detected before deployment. In a NASA-supported Software Assurance Research Program (SARP) project, we are researching a new approach addressing such problems. In this paper, we show that problems in the communication between two systems can be detected by using sequence diagrams to model the planned communication and by comparing the planned sequence to the actual sequence. We identify different kinds of problems that can be addressed by modeling the planned sequence using different level of abstractions.
Health Monitor for Multitasking, Safety-Critical, Real-Time Software
NASA Technical Reports Server (NTRS)
Zoerner, Roger
2011-01-01
Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.
Software for rapid prototyping in the pharmaceutical and biotechnology industries.
Kappler, Michael A
2008-05-01
The automation of drug discovery methods continues to develop, especially techniques that process information, represent workflow and facilitate decision-making. The magnitude of data and the plethora of questions in pharmaceutical and biotechnology research give rise to the need for rapid prototyping software. This review describes the advantages and disadvantages of three solutions: Competitive Workflow, Taverna and Pipeline Pilot. Each of these systems processes large amounts of data, integrates diverse systems and assists novice programmers and human experts in critical decision-making steps.
KEYNOTE 2 : Rebuilding the Tower of Babel - Better Communication with Standards
2013-02-01
and a member of the Object Management Group (OMG) SysML specification team. He has been developing multi-national complex systems for almost 35 years...critical systems development, virtual team management, systems development, and software development with UML, SysML and Architectural Frameworks
NASA Technical Reports Server (NTRS)
Guarro, Sergio B.
2010-01-01
This report validates and documents the detailed features and practical application of the framework for software intensive digital systems risk assessment and risk-informed safety assurance presented in the NASA PRA Procedures Guide for Managers and Practitioner. This framework, called herein the "Context-based Software Risk Model" (CSRM), enables the assessment of the contribution of software and software-intensive digital systems to overall system risk, in a manner which is entirely compatible and integrated with the format of a "standard" Probabilistic Risk Assessment (PRA), as currently documented and applied for NASA missions and applications. The CSRM also provides a risk-informed path and criteria for conducting organized and systematic digital system and software testing so that, within this risk-informed paradigm, the achievement of a quantitatively defined level of safety and mission success assurance may be targeted and demonstrated. The framework is based on the concept of context-dependent software risk scenarios and on the modeling of such scenarios via the use of traditional PRA techniques - i.e., event trees and fault trees - in combination with more advanced modeling devices such as the Dynamic Flowgraph Methodology (DFM) or other dynamic logic-modeling representations. The scenarios can be synthesized and quantified in a conditional logic and probabilistic formulation. The application of the CSRM method documented in this report refers to the MiniAERCam system designed and developed by the NASA Johnson Space Center.
Health management and controls for Earth-to-orbit propulsion systems
NASA Astrophysics Data System (ADS)
Bickford, R. L.
1995-03-01
Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.
Semantic Service Matchmaking in the ATM Domain Considering Infrastructure Capability Constraints
NASA Astrophysics Data System (ADS)
Moser, Thomas; Mordinyi, Richard; Sunindyo, Wikan Danar; Biffl, Stefan
In a service-oriented environment business processes flexibly build on software services provided by systems in a network. A key design challenge is the semantic matchmaking of business processes and software services in two steps: 1. Find for one business process the software services that meet or exceed the BP requirements; 2. Find for all business processes the software services that can be implemented within the capability constraints of the underlying network, which poses a major problem since even for small scenarios the solution space is typically very large. In this chapter we analyze requirements from mission-critical business processes in the Air Traffic Management (ATM) domain and introduce an approach for semi-automatic semantic matchmaking for software services, the “System-Wide Information Sharing” (SWIS) business process integration framework. A tool-supported semantic matchmaking process like SWIS can provide system designers and integrators with a set of promising software service candidates and therefore strongly reduces the human matching effort by focusing on a much smaller space of matchmaking candidates. We evaluate the feasibility of the SWIS approach in an industry use case from the ATM domain.
FY 2002 Report on Software Visualization Techniques for IV and V
NASA Technical Reports Server (NTRS)
Fotta, Michael E.
2002-01-01
One of the major challenges software engineers often face in performing IV&V is developing an understanding of a system created by a development team they have not been part of. As budgets shrink and software increases in complexity, this challenge will become even greater as these software engineers face increased time and resource constraints. This research will determine which current aspects of providing this understanding (e.g., code inspections, use of control graphs, use of adjacency matrices, requirements traceability) are critical to the performing IV&V and amenable to visualization techniques. We will then develop state-of-the-art software visualization techniques to facilitate the use of these aspects to understand software and perform IV&V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, C.
1997-11-01
For many years, software quality assurance lagged behind hardware quality assurance in terms of methods, metrics, and successful results. New approaches such as Quality Function Deployment (QFD) the ISO 9000-9004 standards, the SEI maturity levels, and Total Quality Management (TQM) are starting to attract wide attention, and in some cases to bring software quality levels up to a parity with manufacturing quality levels. Since software is on the critical path for many engineered products, and for internal business systems as well, the new approaches are starting to affect global competition and attract widespread international interest. It can be hypothesized thatmore » success in mastering software quality will be a key strategy for dominating global software markets in the 21st century.« less
Command and Control Software Development Memory Management
NASA Technical Reports Server (NTRS)
Joseph, Austin Pope
2017-01-01
This internship was initially meant to cover the implementation of unit test automation for a NASA ground control project. As is often the case with large development projects, the scope and breadth of the internship changed. Instead, the internship focused on finding and correcting memory leaks and errors as reported by a COTS software product meant to track such issues. Memory leaks come in many different flavors and some of them are more benign than others. On the extreme end a program might be dynamically allocating memory and not correctly deallocating it when it is no longer in use. This is called a direct memory leak and in the worst case can use all the available memory and crash the program. If the leaks are small they may simply slow the program down which, in a safety critical system (a system for which a failure or design error can cause a risk to human life), is still unacceptable. The ground control system is managed in smaller sub-teams, referred to as CSCIs. The CSCI that this internship focused on is responsible for monitoring the health and status of the system. This team's software had several methods/modules that were leaking significant amounts of memory. Since most of the code in this system is safety-critical, correcting memory leaks is a necessity.
GPM Timeline Inhibits For IT Processing
NASA Technical Reports Server (NTRS)
Dion, Shirley K.
2014-01-01
The Safety Inhibit Timeline Tool was created as one approach to capturing and understanding inhibits and controls from IT through launch. Global Precipitation Measurement (GPM) Mission, which launched from Japan in March 2014, was a joint mission under a partnership between the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM was one of the first NASA Goddard in-house programs that extensively used software controls. Using this tool during the GPM buildup allowed a thorough review of inhibit and safety critical software design for hazardous subsystems such as the high gain antenna boom, solar array, and instrument deployments, transmitter turn-on, propulsion system release, and instrument radar turn-on. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As a result of this process, a new tool safety inhibit timeline was created for management of inhibits and their controls during spacecraft buildup and testing during IT at GSFC and at the launch range in Japan. The Safety Inhibit Timeline Tool was a pathfinder approach for reviewing software that controls the electrical inhibits. The Safety Inhibit Timeline Tool strengthens the Safety Analysts understanding of the removal of inhibits during the IT process with safety critical software. With this tool, the Safety Analyst can confirm proper safe configuration of a spacecraft during each IT test, track inhibit and software configuration changes, and assess software criticality. In addition to understanding inhibits and controls during IT, the tool allows the Safety Analyst to better communicate to engineers and management the changes in inhibit states with each phase of hardware and software testing and the impact of safety risks. Lessons learned from participating in the GPM campaign at NASA and JAXA will be discussed during this session.
Parker, Steve; Mayner, Lidia; Michael Gillham, David
2015-12-01
Undergraduate nursing students are often confused by multiple understandings of critical thinking. In response to this situation, the Critiique for critical thinking (CCT) project was implemented to provide consistent structured guidance about critical thinking. This paper introduces Critiique software, describes initial validation of the content of this critical thinking tool and explores wider applications of the Critiique software. Critiique is flexible, authorable software that guides students step-by-step through critical appraisal of research papers. The spelling of Critiique was deliberate, so as to acquire a unique web domain name and associated logo. The CCT project involved implementation of a modified nominal focus group process with academic staff working together to establish common understandings of critical thinking. Previous work established a consensus about critical thinking in nursing and provided a starting point for the focus groups. The study was conducted at an Australian university campus with the focus group guided by open ended questions. Focus group data established categories of content that academic staff identified as important for teaching critical thinking. This emerging focus group data was then used to inform modification of Critiique software so that students had access to consistent and structured guidance in relation to critical thinking and critical appraisal. The project succeeded in using focus group data from academics to inform software development while at the same time retaining the benefits of broader philosophical dimensions of critical thinking.
Parker, Steve; Mayner, Lidia; Michael Gillham, David
2015-01-01
Background: Undergraduate nursing students are often confused by multiple understandings of critical thinking. In response to this situation, the Critiique for critical thinking (CCT) project was implemented to provide consistent structured guidance about critical thinking. Objectives: This paper introduces Critiique software, describes initial validation of the content of this critical thinking tool and explores wider applications of the Critiique software. Materials and Methods: Critiique is flexible, authorable software that guides students step-by-step through critical appraisal of research papers. The spelling of Critiique was deliberate, so as to acquire a unique web domain name and associated logo. The CCT project involved implementation of a modified nominal focus group process with academic staff working together to establish common understandings of critical thinking. Previous work established a consensus about critical thinking in nursing and provided a starting point for the focus groups. The study was conducted at an Australian university campus with the focus group guided by open ended questions. Results: Focus group data established categories of content that academic staff identified as important for teaching critical thinking. This emerging focus group data was then used to inform modification of Critiique software so that students had access to consistent and structured guidance in relation to critical thinking and critical appraisal. Conclusions: The project succeeded in using focus group data from academics to inform software development while at the same time retaining the benefits of broader philosophical dimensions of critical thinking. PMID:26835469
Software Assurance Challenges for the Commercial Crew Program
NASA Technical Reports Server (NTRS)
Cuyno, Patrick; Malnick, Kathy D.; Schaeffer, Chad E.
2015-01-01
This paper will provide a description of some of the challenges NASA is facing in providing software assurance within the new commercial space services paradigm, namely with the Commercial Crew Program (CCP). The CCP will establish safe, reliable, and affordable access to the International Space Station (ISS) by purchasing a ride from commercial companies. The CCP providers have varying experience with software development in safety-critical space systems. NASA's role in providing effective software assurance support to the CCP providers is critical to the success of CCP. These challenges include funding multiple vehicles that execute in parallel and have different rules of engagement, multiple providers with unique proprietary concerns, providing equivalent guidance to all providers, permitting alternates to NASA standards, and a large number of diverse stakeholders. It is expected that these challenges will exist in future programs, especially if the CCP paradigm proves successful. The proposed CCP approach to address these challenges includes a risk-based assessment with varying degrees of engagement and a distributed assurance model. This presentation will describe NASA IV&V Program's software assurance support and responses to these challenges.
Integrated Software Health Management for Aircraft GN and C
NASA Technical Reports Server (NTRS)
Schumann, Johann; Mengshoel, Ole
2011-01-01
Modern aircraft rely heavily on dependable operation of many safety-critical software components. Despite careful design, verification and validation (V&V), on-board software can fail with disastrous consequences if it encounters problematic software/hardware interaction or must operate in an unexpected environment. We are using a Bayesian approach to monitor the software and its behavior during operation and provide up-to-date information about the health of the software and its components. The powerful reasoning mechanism provided by our model-based Bayesian approach makes reliable diagnosis of the root causes possible and minimizes the number of false alarms. Compilation of the Bayesian model into compact arithmetic circuits makes SWHM feasible even on platforms with limited CPU power. We show initial results of SWHM on a small simulator of an embedded aircraft software system, where software and sensor faults can be injected.
Implementing Software Safety in the NASA Environment
NASA Technical Reports Server (NTRS)
Wetherholt, Martha S.; Radley, Charles F.
1994-01-01
Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of the system to be built. Shortly thereafter, as the system requirements are being defined, the second iteration of hazard analyses takes place, the systems hazard analysis (SHA). During the systems requirements phase, decisions are made as to what functions of the system will be the responsibility of software. This is the most critical time to affect the safety of the software. From this point, software safety analyses as well as software engineering practices are the main focus for assuring safe software. While many of the steps proposed in this paper seem like just sound engineering practices, they are the best technical and most cost effective means to assure safe software within a safe system.
Statechart Analysis with Symbolic PathFinder
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.
2012-01-01
We report here on our on-going work that addresses the automated analysis and test case generation for software systems modeled using multiple Statechart formalisms. The work is motivated by large programs such as NASA Exploration, that involve multiple systems that interact via safety-critical protocols and are designed with different Statechart variants. To verify these safety-critical systems, we have developed Polyglot, a framework for modeling and analysis of model-based software written using different Statechart formalisms. Polyglot uses a common intermediate representation with customizable Statechart semantics and leverages the analysis and test generation capabilities of the Symbolic PathFinder tool. Polyglot is used as follows: First, the structure of the Statechart model (expressed in Matlab Stateflow or Rational Rhapsody) is translated into a common intermediate representation (IR). The IR is then translated into Java code that represents the structure of the model. The semantics are provided as "pluggable" modules.
Engineering of the LISA Pathfinder mission—making the experiment a practical reality
NASA Astrophysics Data System (ADS)
Warren, Carl; Dunbar, Neil; Backler, Mike
2009-05-01
LISA Pathfinder represents a unique challenge in the development of scientific spacecraft—not only is the LISA Test Package (LTP) payload a complex integrated development, placing stringent requirements on its developers and the spacecraft, but the payload also acts as the core sensor and actuator for the spacecraft, making the tasks of control design, software development and system verification unusually difficult. The micro-propulsion system which provides the remaining actuation also presents substantial development and verification challenges. As the mission approaches the system critical design review, flight hardware is completing verification and the process of verification using software and hardware simulators and test benches is underway. Preparation for operations has started, but critical milestones for LTP and field effect electric propulsion (FEEP) lie ahead. This paper summarizes the status of the present development and outlines the key challenges that must be overcome on the way to launch.
A proven approach for more effective software development and maintenance
NASA Technical Reports Server (NTRS)
Pajerski, Rose; Hall, Dana; Sinclair, Craig
1994-01-01
Modern space flight mission operations and associated ground data systems are increasingly dependent upon reliable, quality software. Critical functions such as command load preparation, health and status monitoring, communications link scheduling and conflict resolution, and transparent gateway protocol conversion are routinely performed by software. Given budget constraints and the ever increasing capabilities of processor technology, the next generation of control centers and data systems will be even more dependent upon software across all aspects of performance. A key challenge now is to implement improved engineering, management, and assurance processes for the development and maintenance of that software; processes that cost less, yield higher quality products, and that self-correct for continual improvement evolution. The NASA Goddard Space Flight Center has a unique experience base that can be readily tapped to help solve the software challenge. Over the past eighteen years, the Software Engineering Laboratory within the code 500 Flight Dynamics Division has evolved a software development and maintenance methodology that accommodates the unique characteristics of an organization while optimizing and continually improving the organization's software capabilities. This methodology relies upon measurement, analysis, and feedback much analogous to that of control loop systems. It is an approach with a time-tested track record proven through repeated applications across a broad range of operational software development and maintenance projects. This paper describes the software improvement methodology employed by the Software Engineering Laboratory, and how it has been exploited within the Flight Dynamics Division with GSFC Code 500. Examples of specific improvement in the software itself and its processes are presented to illustrate the effectiveness of the methodology. Finally, the initial findings are given when this methodology was applied across the mission operations and ground data systems software domains throughout Code 500.
Scalable collaborative risk management technology for complex critical systems
NASA Technical Reports Server (NTRS)
Campbell, Scott; Torgerson, Leigh; Burleigh, Scott; Feather, Martin S.; Kiper, James D.
2004-01-01
We describe here our project and plans to develop methods, software tools, and infrastructure tools to address challenges relating to geographically distributed software development. Specifically, this work is creating an infrastructure that supports applications working over distributed geographical and organizational domains and is using this infrastructure to develop a tool that supports project development using risk management and analysis techniques where the participants are not collocated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidd, M.E.C.
1997-02-01
The goal of our work is to provide a high level of confidence that critical software driven event sequences are maintained in the face of hardware failures, malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. The methodology employed here is inspired by previous work in path expressions. This paper discusses the perceived problems, a brief overview of path expressions, the proposed methods, and a discussion of the differences between the proposed methods and traditional path expression usage and implementation.
A new practice-driven approach to develop software in a cyber-physical system environment
NASA Astrophysics Data System (ADS)
Jiang, Yiping; Chen, C. L. Philip; Duan, Junwei
2016-02-01
Cyber-physical system (CPS) is an emerging area, which cannot work efficiently without proper software handling of the data and business logic. Software and middleware is the soul of the CPS. The software development of CPS is a critical issue because of its complicity in a large scale realistic system. Furthermore, object-oriented approach (OOA) is often used to develop CPS software, which needs some improvements according to the characteristics of CPS. To develop software in a CPS environment, a new systematic approach is proposed in this paper. It comes from practice, and has been evolved from software companies. It consists of (A) Requirement analysis in event-oriented way, (B) architecture design in data-oriented way, (C) detailed design and coding in object-oriented way and (D) testing in event-oriented way. It is a new approach based on OOA; the difference when compared with OOA is that the proposed approach has different emphases and measures in every stage. It is more accord with the characteristics of event-driven CPS. In CPS software development, one should focus on the events more than the functions or objects. A case study of a smart home system is designed to reveal the effectiveness of the approach. It shows that the approach is also easy to be operated in the practice owing to some simplifications. The running result illustrates the validity of this approach.
NASA-LaRc Flight-Critical Digital Systems Technology Workshop
NASA Technical Reports Server (NTRS)
Meissner, C. W., Jr. (Editor); Dunham, J. R. (Editor); Crim, G. (Editor)
1989-01-01
The outcome is documented of a Flight-Critical Digital Systems Technology Workshop held at NASA-Langley December 13 to 15 1988. The purpose of the workshop was to elicit the aerospace industry's view of the issues which must be addressed for the practical realization of flight-critical digital systems. The workshop was divided into three parts: an overview session; three half-day meetings of seven working groups addressing aeronautical and space requirements, system design for validation, failure modes, system modeling, reliable software, and flight test; and a half-day summary of the research issues presented by the working group chairmen. Issues that generated the most consensus across the workshop were: (1) the lack of effective design and validation methods with support tools to enable engineering of highly-integrated, flight-critical digital systems, and (2) the lack of high quality laboratory and field data on system failures especially due to electromagnetic environment (EME).
The Infeasibility of Quantifying the Reliability of Life-Critical Real-Time Software
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Finelli, George B.
1991-01-01
This paper affirms that the quantification of life-critical software reliability is infeasible using statistical methods whether applied to standard software or fault-tolerant software. The classical methods of estimating reliability are shown to lead to exhorbitant amounts of testing when applied to life-critical software. Reliability growth models are examined and also shown to be incapable of overcoming the need for excessive amounts of testing. The key assumption of software fault tolerance separately programmed versions fail independently is shown to be problematic. This assumption cannot be justified by experimentation in the ultrareliability region and subjective arguments in its favor are not sufficiently strong to justify it as an axiom. Also, the implications of the recent multiversion software experiments support this affirmation.
Simulation-Based Verification of Autonomous Controllers via Livingstone PathFinder
NASA Technical Reports Server (NTRS)
Lindsey, A. E.; Pecheur, Charles
2004-01-01
AI software is often used as a means for providing greater autonomy to automated systems, capable of coping with harsh and unpredictable environments. Due in part to the enormous space of possible situations that they aim to addrs, autonomous systems pose a serious challenge to traditional test-based verification approaches. Efficient verification approaches need to be perfected before these systems can reliably control critical applications. This publication describes Livingstone PathFinder (LPF), a verification tool for autonomous control software. LPF applies state space exploration algorithms to an instrumented testbed, consisting of the controller embedded in a simulated operating environment. Although LPF has focused on NASA s Livingstone model-based diagnosis system applications, the architecture is modular and adaptable to other systems. This article presents different facets of LPF and experimental results from applying the software to a Livingstone model of the main propulsion feed subsystem for a prototype space vehicle.
X-wing fly-by-wire vehicle management system
NASA Technical Reports Server (NTRS)
Fischer, Jr., William C. (Inventor)
1990-01-01
A complete, computer based, vehicle management system (VMS) for X-Wing aircraft using digital fly-by-wire technology controlling many subsystems and providing functions beyond the classical aircraft flight control system. The vehicle management system receives input signals from a multiplicity of sensors and provides commands to a large number of actuators controlling many subsystems. The VMS includes--segregating flight critical and mission critical factors and providing a greater level of back-up or redundancy for the former; centralizing the computation of functions utilized by several subsystems (e.g. air data, rotor speed, etc.); integrating the control of the flight control functions, the compressor control, the rotor conversion control, vibration alleviation by higher harmonic control, engine power anticipation and self-test, all in the same flight control computer (FCC) hardware units. The VMS uses equivalent redundancy techniques to attain quadruple equivalency levels; includes alternate modes of operation and recovery means to back-up any functions which fail; and uses back-up control software for software redundancy.
The study of production performance of water heater manufacturing by using simulation method
NASA Astrophysics Data System (ADS)
Iqbal, M.; Bamatraf, OAA; Tadjuddin, M.
2018-02-01
In industrial companies, as demand increases, decision-making to increase production becomes difficult due to the complexity of the model systems. Companies are trying to find the optimum methods to tackle such problems so that resources are utilized and production is increased. One line system of a manufacturing company in Malaysia was considered in this research. The Company produces several types of water heater and each type went into many processes, which was divided into twenty six sections. Each section has several operations. The main type of the product was 10G water heater which is produced most compare to other types, hence it was taken under consideration to be studied in this research. It was difficult to find the critical section that could improve the productions of the company. This research paper employed Delmia Quest software, Distribution Analyser software and Design of Experiment (DOE software) to simulate one model system taken from the company to be studied and to find the critical section that will improve the production system. As a result, assembly of inner and outer tank section were found to be the bottleneck section. Adding one section to the bottleneck increases the production rate by four products a day. The buffer size is determined by the experiment was six items.
V and V of ISHM Software for Space Exploration
NASA Technical Reports Server (NTRS)
Markosian, Lawrence; Feather, Martin, S.; Brinza, David; Figueroa, F.
2005-01-01
NASA has established a far-reaching and long-term program for robotic and manned exploration of the solar system, beginning with missions to the moon and Mars. The Crew Transportation System (CTS), a key system for space exploration, imposes four requirements' that ISHM addresses. These requirements have a wide range of implications for V&V and certification of ISHM. There is a range of time-criticality for ISHM actions, from prognostication, which is often (but not always) non-time-critical, to time-critical state estimation and system management under off-nominal emergency conditions. These are externally imposed requirements on ISHM that are subject to V&V. - In addition, a range of techniques are needed to implement an ISHM. The approaches to ISHM are described elsewhere. These approaches range from well-understood algorithms for low-level data analysis, validation and reporting, to AI techniques for state estimation and planning. The range of techniques, and specifically the use of AI techniques such as reasoning under uncertainty and mission planning (and re-planning), implies that several V&V approaches may be required. Depending on the ISHM architecture, traditional testing approaches may be adequate for some ISHM functionality. The AI-based approaches to reasoning under uncertainty, model-based reasoning, and planning share characteristics typical of other complex software systems, but they also have characteristics that set them apart and challenge standard V&V techniques. The range of possible solutions to the overall ISHM problem impose internal challenges to V&V. The V&V challenges increase when hard real-time constraints are imposed for time-critical functionality. For example, there is an external requirement that impending catastrophic failure of the Launch Vehicle (LV) at launch time be detected and life-saving action be taken within two seconds. In this paper we outline the challenges for ISHM V&V, existing approaches and analogs in other software application areas, and possible new approaches to the V&V challenges for space exploration ISHM.
eXascale PRogramming Environment and System Software (XPRESS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Barbara; Gabriel, Edgar
Exascale systems, with a thousand times the compute capacity of today’s leading edge petascale computers, are expected to emerge during the next decade. Their software systems will need to facilitate the exploitation of exceptional amounts of concurrency in applications, and ensure that jobs continue to run despite the occurrence of system failures and other kinds of hard and soft errors. Adapting computations at runtime to cope with changes in the execution environment, as well as to improve power and performance characteristics, is likely to become the norm. As a result, considerable innovation is required to develop system support to meetmore » the needs of future computing platforms. The XPRESS project aims to develop and prototype a revolutionary software system for extreme-scale computing for both exascale and strongscaled problems. The XPRESS collaborative research project will advance the state-of-the-art in high performance computing and enable exascale computing for current and future DOE mission-critical applications and supporting systems. The goals of the XPRESS research project are to: A. enable exascale performance capability for DOE applications, both current and future, B. develop and deliver a practical computing system software X-stack, OpenX, for future practical DOE exascale computing systems, and C. provide programming methods and environments for effective means of expressing application and system software for portable exascale system execution.« less
Review of Estelle and LOTOS with respect to critical computer applications
NASA Technical Reports Server (NTRS)
Bown, Rodney L.
1991-01-01
Man rated NASA space vehicles seem to represent a set of ultimate critical computer applications. These applications require a high degree of security, integrity, and safety. A variety of formal and/or precise modeling techniques are becoming available for the designer of critical systems. The design phase of the software engineering life cycle includes the modification of non-development components. A review of the Estelle and LOTOS formal description languages is presented. Details of the languages and a set of references are provided. The languages were used to formally describe some of the Open System Interconnect (OSI) protocols.
The MINERVA Software Development Process
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony; Munoz, Cesar A.; Dutle, Aaron M.
2017-01-01
This paper presents a software development process for safety-critical software components of cyber-physical systems. The process is called MINERVA, which stands for Mirrored Implementation Numerically Evaluated against Rigorously Verified Algorithms. The process relies on formal methods for rigorously validating code against its requirements. The software development process uses: (1) a formal specification language for describing the algorithms and their functional requirements, (2) an interactive theorem prover for formally verifying the correctness of the algorithms, (3) test cases that stress the code, and (4) numerical evaluation on these test cases of both the algorithm specifications and their implementations in code. The MINERVA process is illustrated in this paper with an application to geo-containment algorithms for unmanned aircraft systems. These algorithms ensure that the position of an aircraft never leaves a predetermined polygon region and provide recovery maneuvers when the region is inadvertently exited.
Review of battery powered embedded systems design for mission-critical low-power applications
NASA Astrophysics Data System (ADS)
Malewski, Matthew; Cowell, David M. J.; Freear, Steven
2018-06-01
The applications and uses of embedded systems is increasingly pervasive. Mission and safety critical systems relying on embedded systems pose specific challenges. Embedded systems is a multi-disciplinary domain, involving both hardware and software. Systems need to be designed in a holistic manner so that they are able to provide the desired reliability and minimise unnecessary complexity. The large problem landscape means that there is no one solution that fits all applications of embedded systems. With the primary focus of these mission and safety critical systems being functionality and reliability, there can be conflicts with business needs, and this can introduce pressures to reduce cost at the expense of reliability and functionality. This paper examines the challenges faced by battery powered systems, and then explores at more general problems, and several real-world embedded systems.
Perspective on intelligent avionics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, H.L.
1987-01-01
Technical issues which could potentially limit the capability and acceptibility of expert systems decision-making for avionics applications are addressed. These issues are: real-time AI, mission-critical software, conventional algorithms, pilot interface, knowledge acquisition, and distributed expert systems. Examples from on-going expert system development programs are presented to illustrate likely architectures and applications of future intelligent avionic systems. 13 references.
NASA Technical Reports Server (NTRS)
Taber, William; Port, Dan
2014-01-01
At the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory we make use of finite exponential based defect models to aid in maintenance planning and management for our widely used critical systems. However a number of pragmatic issues arise when applying defect models for a post-release system in continuous use. These include: how to utilize information from problem reports rather than testing to drive defect discovery and removal effort, practical model calibration, and alignment of model assumptions with our environment.
Questioning the Role of Requirements Engineering in the Causes of Safety-Critical Software Failures
NASA Technical Reports Server (NTRS)
Johnson, C. W.; Holloway, C. M.
2006-01-01
Many software failures stem from inadequate requirements engineering. This view has been supported both by detailed accident investigations and by a number of empirical studies; however, such investigations can be misleading. It is often difficult to distinguish between failures in requirements engineering and problems elsewhere in the software development lifecycle. Further pitfalls arise from the assumption that inadequate requirements engineering is a cause of all software related accidents for which the system fails to meet its requirements. This paper identifies some of the problems that have arisen from an undue focus on the role of requirements engineering in the causes of major accidents. The intention is to provoke further debate within the emerging field of forensic software engineering.
The Legacy of Space Shuttle Flight Software
NASA Technical Reports Server (NTRS)
Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.
2011-01-01
The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.
Model-based reasoning for power system management using KATE and the SSM/PMAD
NASA Technical Reports Server (NTRS)
Morris, Robert A.; Gonzalez, Avelino J.; Carreira, Daniel J.; Mckenzie, F. D.; Gann, Brian
1993-01-01
The overall goal of this research effort has been the development of a software system which automates tasks related to monitoring and controlling electrical power distribution in spacecraft electrical power systems. The resulting software system is called the Intelligent Power Controller (IPC). The specific tasks performed by the IPC include continuous monitoring of the flow of power from a source to a set of loads, fast detection of anomalous behavior indicating a fault to one of the components of the distribution systems, generation of diagnosis (explanation) of anomalous behavior, isolation of faulty object from remainder of system, and maintenance of flow of power to critical loads and systems (e.g. life-support) despite fault conditions being present (recovery). The IPC system has evolved out of KATE (Knowledge-based Autonomous Test Engineer), developed at NASA-KSC. KATE consists of a set of software tools for developing and applying structure and behavior models to monitoring, diagnostic, and control applications.
NASA Technical Reports Server (NTRS)
Rushby, John; Crow, Judith
1990-01-01
The authors explore issues in the specification, verification, and validation of artificial intelligence (AI) based software, using a prototype fault detection, isolation and recovery (FDIR) system for the Manned Maneuvering Unit (MMU). They use this system as a vehicle for exploring issues in the semantics of C-Language Integrated Production System (CLIPS)-style rule-based languages, the verification of properties relating to safety and reliability, and the static and dynamic analysis of knowledge based systems. This analysis reveals errors and shortcomings in the MMU FDIR system and raises a number of issues concerning software engineering in CLIPs. The authors came to realize that the MMU FDIR system does not conform to conventional definitions of AI software, despite the fact that it was intended and indeed presented as an AI system. The authors discuss this apparent disparity and related questions such as the role of AI techniques in space and aircraft operations and the suitability of CLIPS for critical applications.
A Validation Metrics Framework for Safety-Critical Software-Intensive Systems
2009-03-01
so does its definition, tools, and techniques, including means for measuring the validation activity, its outputs, and impact on development...independent of the SDLP. When considering the above SDLPs from the safety engineering team’s perspective, there are also large impacts on the way... impact . Interpretation of any actionable metric data will need to be undertaken in the context of the SDLP. 2. Safety Input The software safety
Software fault tolerance in computer operating systems
NASA Technical Reports Server (NTRS)
Iyer, Ravishankar K.; Lee, Inhwan
1994-01-01
This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.
A study of software standards used in the avionics industry
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.
1994-01-01
Within the past decade, software has become an increasingly common element in computing systems. In particular, the role of software used in the aerospace industry, especially in life- or safety-critical applications, is rapidly expanding. This intensifies the need to use effective techniques for achieving and verifying the reliability of avionics software. Although certain software development processes and techniques are mandated by government regulating agencies, no one methodology has been shown to consistently produce reliable software. The knowledge base for designing reliable software simply has not reached the maturity of its hardware counterpart. In an effort to increase our understanding of software, the Langley Research Center conducted a series of experiments over 15 years with the goal of understanding why and how software fails. As part of this program, the effectiveness of current industry standards for the development of avionics is being investigated. This study involves the generation of a controlled environment to conduct scientific experiments on software processes.
NASA Astrophysics Data System (ADS)
Edwards, John L.; Beekman, Randy M.; Buchanan, David B.; Farner, Scott; Gershzohn, Gary R.; Khuzadi, Mbuyi; Mikula, D. F.; Nissen, Gerry; Peck, James; Taylor, Shaun
2007-04-01
Human space travel is inherently dangerous. Hazardous conditions will exist. Real time health monitoring of critical subsystems is essential for providing a safe abort timeline in the event of a catastrophic subsystem failure. In this paper, we discuss a practical and cost effective process for developing critical subsystem failure detection, diagnosis and response (FDDR). We also present the results of a real time health monitoring simulation of a propellant ullage pressurization subsystem failure. The health monitoring development process identifies hazards, isolates hazard causes, defines software partitioning requirements and quantifies software algorithm development. The process provides a means to establish the number and placement of sensors necessary to provide real time health monitoring. We discuss how health monitoring software tracks subsystem control commands, interprets off-nominal operational sensor data, predicts failure propagation timelines, corroborate failures predictions and formats failure protocol.
NASA Technical Reports Server (NTRS)
Panek, Joseph W.
2001-01-01
The proper operation of the Electronically Scanned Pressure (ESP) System critical to accomplish the following goals: acquisition of highly accurate pressure data for the development of aerospace and commercial aviation systems and continuous confirmation of data quality to avoid costly, unplanned, repeat wind tunnel or turbine testing. Standard automated setup and checkout routines are necessary to accomplish these goals. Data verification and integrity checks occur at three distinct stages, pretest pressure tubing and system checkouts, daily system validation and in-test confirmation of critical system parameters. This paper will give an overview of the existing hardware, software and methods used to validate data integrity.
Service-oriented architecture for the ARGOS instrument control software
NASA Astrophysics Data System (ADS)
Borelli, J.; Barl, L.; Gässler, W.; Kulas, M.; Rabien, Sebastian
2012-09-01
The Advanced Rayleigh Guided ground layer Adaptive optic System, ARGOS, equips the Large Binocular Telescope (LBT) with a constellation of six rayleigh laser guide stars. By correcting atmospheric turbulence near the ground, the system is designed to increase the image quality of the multi-object spectrograph LUCIFER approximately by a factor of 3 over a field of 4 arc minute diameter. The control software has the critical task of orchestrating several devices, instruments, and high level services, including the already existing adaptive optic system and the telescope control software. All these components are widely distributed over the telescope, adding more complexity to the system design. The approach used by the ARGOS engineers is to write loosely coupled and distributed services under the control of different ownership systems, providing a uniform mechanism to offer, discover, interact and use these distributed capabilities. The control system counts with several finite state machines, vibration and flexure compensation loops, and safety mechanism, such as interlocks, aircraft, and satellite avoidance systems.
Research in software allocation for advanced manned mission communications and tracking systems
NASA Technical Reports Server (NTRS)
Warnagiris, Tom; Wolff, Bill; Kusmanoff, Antone
1990-01-01
An assessment of the planned processing hardware and software/firmware for the Communications and Tracking System of the Space Station Freedom (SSF) was performed. The intent of the assessment was to determine the optimum distribution of software/firmware in the processing hardware for maximum throughput with minimum required memory. As a product of the assessment process an assessment methodology was to be developed that could be used for similar assessments of future manned spacecraft system designs. The assessment process was hampered by changing requirements for the Space Station. As a result, the initial objective of determining the optimum software/firmware allocation was not fulfilled, but several useful conclusions and recommendations resulted from the assessment. It was concluded that the assessment process would not be completely successful for a system with changing requirements. It was also concluded that memory requirements and hardware requirements were being modified to fit as a consequence of the change process, and although throughput could not be quantitized, potential problem areas could be identified. Finally, inherent flexibility of the system design was essential for the success of a system design with changing requirements. Recommendations resulting from the assessment included development of common software for some embedded controller functions, reduction of embedded processor requirements by hardwiring some Orbital Replacement Units (ORUs) to make better use of processor capabilities, and improvement in communications between software development personnel to enhance the integration process. Lastly, a critical observation was made regarding the software integration tasks did not appear to be addressed in the design process to the degree necessary for successful satisfaction of the system requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, K; Curran, B
I. Information Security Background (Speaker = Kevin McDonald) Evolution of Medical Devices Living and Working in a Hostile Environment Attack Motivations Attack Vectors Simple Safety Strategies Medical Device Security in the News Medical Devices and Vendors Summary II. Keeping Radiation Oncology IT Systems Secure (Speaker = Bruce Curran) Hardware Security Double-lock Requirements “Foreign” computer systems Portable Device Encryption Patient Data Storage System Requirements Network Configuration Isolating Critical Devices Isolating Clinical Networks Remote Access Considerations Software Applications / Configuration Passwords / Screen Savers Restricted Services / access Software Configuration Restriction Use of DNS to restrict accesse. Patches / Upgrades Awareness Intrusionmore » Prevention Intrusion Detection Threat Risk Analysis Conclusion Learning Objectives: Understanding how Hospital IT Requirements affect Radiation Oncology IT Systems. Illustrating sample practices for hardware, network, and software security. Discussing implementation of good IT security practices in radiation oncology. Understand overall risk and threats scenario in a networked environment.« less
An Analysis of Mission Critical Computer Software in Naval Aviation
1991-03-01
No. Task No. Work Unit Accesion Number 11. TITLE (Include Security Classification) AN ANALYSIS OF MISSION CRITICAL COMPUTER SOFTWARE IN NAVAL AVIATION...software development schedules were sustained without a milestone change being made. Also, software that was released to the fleet had no major...fleet contain any major defects? This research has revealed that only about half of the original software development schedules were sustained without a
Evaluation of Open-Source Hard Real Time Software Packages
NASA Technical Reports Server (NTRS)
Mattei, Nicholas S.
2004-01-01
Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of replacing this somewhat costly implementation is the focus of one of the SA group s current research projects. The explosion of open source software in the last ten years has led to the development of a multitude of software solutions which were once only produced by major corporations. The benefits of these open projects include faster release and bug patching cycles as well as inexpensive if not free software solutions. The main packages for hard real time solutions under Linux are Real Time Application Interface (RTAI) and two varieties of Real Time Linux (RTL), RTLFree and RTLPro. During my time here at NASA I have been testing various hard real time solutions operating as layers on the Linux Operating System. All testing is being run on an Intel SBC 2590 which is a common embedded hardware platform. The test plan was provided to me by the Software Assurance group at the start of my internship and my job has been to test the systems by developing and executing the test cases on the hardware. These tests are constructed so that the Software Assurance group can get hard test data for a comparison between the open source and proprietary implementations of hard real time solutions.
Software Surface Modeling and Grid Generation Steering Committee
NASA Technical Reports Server (NTRS)
Smith, Robert E. (Editor)
1992-01-01
It is a NASA objective to promote improvements in the capability and efficiency of computational fluid dynamics. Grid generation, the creation of a discrete representation of the solution domain, is an essential part of computational fluid dynamics. However, grid generation about complex boundaries requires sophisticated surface-model descriptions of the boundaries. The surface modeling and the associated computation of surface grids consume an extremely large percentage of the total time required for volume grid generation. Efficient and user friendly software systems for surface modeling and grid generation are critical for computational fluid dynamics to reach its potential. The papers presented here represent the state-of-the-art in software systems for surface modeling and grid generation. Several papers describe improved techniques for grid generation.
USDA-ARS?s Scientific Manuscript database
Critical to the use of modeling tools for the hydraulic analysis of surface irrigation systems is characterizing the infiltration and hydraulic resistance process. Since those processes are still not well understood, various formulations are currently used to represent them. A software component h...
Muthuswamy, M B; Thomas, B N; Williams, D; Dingley, J
2014-09-01
Patients recovering from critical illness especially those with critical illness related neuropathy, myopathy, or burns to face, arms and hands are often unable to communicate by writing, speech (due to tracheostomy) or lip reading. This may frustrate both patient and staff. Two low cost movement tracking systems based around a laptop webcam and a laser/optical gaming system sensor were utilised as control inputs for on-screen text creation software and both were evaluated as communication tools in volunteers. Two methods were used to control an on-screen cursor to create short sentences via an on-screen keyboard: (i) webcam-based facial feature tracking, (ii) arm movement tracking by laser/camera gaming sensor and modified software. 16 volunteers with simulated tracheostomy and bandaged arms to simulate communication via gross movements of a burned limb, communicated 3 standard messages using each system (total 48 per system) in random sequence. Ten and 13 minor typographical errors occurred with each system respectively, however all messages were comprehensible. Speed of sentence formation ranged from 58 to 120s with the facial feature tracking system, and 60-160s with the arm movement tracking system. The average speed of sentence formation was 81s (range 58-120) and 104s (range 60-160) for facial feature and arm tracking systems respectively, (P<0.001, 2-tailed independent sample t-test). Both devices may be potentially useful communication aids in patients in general and burns critical care units who cannot communicate by conventional means, due to the nature of their injuries. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.
Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon
2010-06-01
Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.
The Infeasibility of Experimental Quantification of Life-Critical Software Reliability
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Finelli, George B.
1991-01-01
This paper affirms that quantification of life-critical software reliability is infeasible using statistical methods whether applied to standard software or fault-tolerant software. The key assumption of software fault tolerance|separately programmed versions fail independently|is shown to be problematic. This assumption cannot be justified by experimentation in the ultra-reliability region and subjective arguments in its favor are not sufficiently strong to justify it as an axiom. Also, the implications of the recent multi-version software experiments support this affirmation.
NASA Astrophysics Data System (ADS)
Ligori, S.; Corcione, L.; Capobianco, V.; Bonino, D.; Sirri, G.; Fornari, F.; Giacomini, F.; Patrizii, L.; Valenziano, L.; Travaglini, R.; Colodro, C.; Bortoletto, F.; Bonoli, C.; Chiarusi, T.; Margiotta, A.; Mauri, N.; Pasqualini, L.; Spurio, M.; Tenti, M.; Dal Corso, F.; Dusini, S.; Laudisio, F.; Sirignano, C.; Stanco, L.; Ventura, S.; Auricchio, N.; Balestra, A.; Franceschi, E.; Morgante, G.; Trifoglio, M.; Medinaceli, E.; Guizzo, G. P.; Debei, S.; Stephen, J. B.
2016-07-01
In this paper we describe the detailed design of the application software (ASW) of the instrument control unit (ICU) of NISP, the Near-Infrared Spectro-Photometer of the Euclid mission. This software is based on a real-time operating system (RTEMS) and will interface with all the subunits of NISP, as well as the command and data management unit (CDMU) of the spacecraft for telecommand and housekeeping management. We briefly review the main requirements driving the design and the architecture of the software that is approaching the Critical Design Review level. The interaction with the data processing unit (DPU), which is the intelligent subunit controlling the detector system, is described in detail, as well as the concept for the implementation of the failure detection, isolation and recovery (FDIR) algorithms. The first version of the software is under development on a Breadboard model produced by AIRBUS/CRISA. We describe the results of the tests and the main performances and budgets.
A Flexible Evolvable Architecture for Constellation Mission Systems User Applications
NASA Technical Reports Server (NTRS)
Trimble, Jay P.; Crocker, Alan R.
2008-01-01
While simulating a complex set of repair tasks to be performed by EVA crewmembers on an upcoming mission, flight controllers and astronauts determine that the repair will take much longer than originally anticipated. All equipment in the vicinity of the worksite must be powered off to maintain a safe environment for the astronauts. Because heater power will be unavailable, several critical components will now be at risk of freezing and permanent damage. If an impending thermal violation is detected, Mission Control will have very limited time to react. Therefore, flight controllers must not only modify their procedures to account for these risks, they must also incorporate into their displays outputs from thermal models, alternate temperature measurements, new alarm limits, and emergency power-on commands to enable the detection and response to freezing conditions. Current software for mission control systems makes scenarios like this difficult to address. Given the time frame for modifying software, operations teams are left with labor-intensive operational workarounds as their only options. NASA Ames Research Center (ARC) and NASA Johnson Space Center (JSC) are collaborating on the development of a flexible software system for mission operations that will enable greater user flexibility than has been available to date. Using composable software, end users in the scenario described above could recompose procedures and command and control displays to allow flight controllers to monitor temperature measurements, identify time-critical conditions, and execute the procedures required to respond to these conditions before flight hardware is permanently damaged.
The Warfighter Associate: Decision-Support and Metrics for Mission Command
2013-01-01
complex situations can be captured it makes sense to use software to provide this important adjunct to complex human cognitive problems. As a software...tasks that could distract the user from the important events occurring. An Associate System also observes the actions undertaken by a human operator...the Commander’s Critical Information Requirements. ‡It is important to note that the Warfighter Associate maintains a human -in-the-loop for decision
An overview of the V&V of Flight-Critical Systems effort at NASA
NASA Technical Reports Server (NTRS)
Brat, Guillaume P.
2011-01-01
As the US is getting ready for the Next Generation (NextGen) of Air Traffic System, there is a growing concern that the current techniques for verification and validation will not be adequate for the changes to come. The JPDO (in charge of implementing NextGen) has given NASA a mandate to address the problem and it resulted in the formulation of the V&V of Flight-Critical Systems effort. This research effort is divided into four themes: argument-based safety assurance, distributed systems, authority and autonomy, and, software intensive systems. This paper presents an overview of the technologies that will address the problem.
SNAPSHOT: A MODERN, SUSTAINABLE HOLDUP MEASUREMENT SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Nathan C; Younkin, James R; Smith, Steven E
2016-01-01
SNAPSHOT is a software platform designed to eventually replace Holdup Measurement System 4 (HMS 4), which is the current state-of-the-art for acquisition and analysis of nondestructive assay measurement data for in situ nuclear materials, holdup, in support of criticality safety and material control and accounting. HMS 4 is over 10 years old and is currently unsustainable due to hardware and software incompatibilities that have arisen from advances in detector electronics, primarily updates to multi-channel analyzers (MCAs), and both computer and handheld operating systems. SNAPSHOT is a complete redesign of HMS 4 that addresses the issue of compatibility with modern MCAsmore » and operating systems and that is designed with a flexible architecture to support long-term sustainability. It also provides an updated and more user friendly interface and is being developed under an NQA 1 software quality assurance (SQA) program to facilitate site acceptance for safety-related applications. This paper provides an overview of the SNAPSHOT project including details of the software development process, the SQA program, and the architecture designed to support sustainability.« less
The Dangers of Failure Masking in Fault-Tolerant Software: Aspects of a Recent In-Flight Upset Event
NASA Technical Reports Server (NTRS)
Johnson, C. W.; Holloway, C. M.
2007-01-01
On 1 August 2005, a Boeing Company 777-200 aircraft, operating on an international passenger flight from Australia to Malaysia, was involved in a significant upset event while flying on autopilot. The Australian Transport Safety Bureau's investigation into the event discovered that an anomaly existed in the component software hierarchy that allowed inputs from a known faulty accelerometer to be processed by the air data inertial reference unit (ADIRU) and used by the primary flight computer, autopilot and other aircraft systems. This anomaly had existed in original ADIRU software, and had not been detected in the testing and certification process for the unit. This paper describes the software aspects of the incident in detail, and suggests possible implications concerning complex, safety-critical, fault-tolerant software.
Process Management inside ATLAS DAQ
NASA Astrophysics Data System (ADS)
Alexandrov, I.; Amorim, A.; Badescu, E.; Burckhart-Chromek, D.; Caprini, M.; Dobson, M.; Duval, P. Y.; Hart, R.; Jones, R.; Kazarov, A.; Kolos, S.; Kotov, V.; Liko, D.; Lucio, L.; Mapelli, L.; Mineev, M.; Moneta, L.; Nassiakou, M.; Pedro, L.; Ribeiro, A.; Roumiantsev, V.; Ryabov, Y.; Schweiger, D.; Soloviev, I.; Wolters, H.
2002-10-01
The Process Management component of the online software of the future ATLAS experiment data acquisition system is presented. The purpose of the Process Manager is to perform basic job control of the software components of the data acquisition system. It is capable of starting, stopping and monitoring the status of those components on the data acquisition processors independent of the underlying operating system. Its architecture is designed on the basis of a server client model using CORBA based communication. The server part relies on C++ software agent objects acting as an interface between the local operating system and client applications. Some of the major design challenges of the software agents were to achieve the maximum degree of autonomy possible, to create processes aware of dynamic conditions in their environment and with the ability to determine corresponding actions. Issues such as the performance of the agents in terms of time needed for process creation and destruction, the scalability of the system taking into consideration the final ATLAS configuration and minimizing the use of hardware resources were also of critical importance. Besides the details given on the architecture and the implementation, we also present scalability and performance tests results of the Process Manager system.
NASA Technical Reports Server (NTRS)
Withey, James V.
1986-01-01
The validity of real-time software is determined by its ability to execute on a computer within the time constraints of the physical system it is modeling. In many applications the time constraints are so critical that the details of process scheduling are elevated to the requirements analysis phase of the software development cycle. It is not uncommon to find specifications for a real-time cyclic executive program included to assumed in such requirements. It was found that prelininary designs structured around this implementation abscure the data flow of the real world system that is modeled and that it is consequently difficult and costly to maintain, update and reuse the resulting software. A cyclic executive is a software component that schedules and implicitly synchronizes the real-time software through periodic and repetitive subroutine calls. Therefore a design method is sought that allows the deferral of process scheduling to the later stages of design. The appropriate scheduling paradigm must be chosen given the performance constraints, the largest environment and the software's lifecycle. The concept of process inversion is explored with respect to the cyclic executive.
Space station: The role of software
NASA Technical Reports Server (NTRS)
Hall, D.
1985-01-01
Software will play a critical role throughout the Space Station Program. This presentation sets the stage and prompts participant interaction at the Software Issues Forum. The presentation is structured into three major topics: (1) an overview of the concept and status of the Space Station Program; (2) several charts designed to lay out the scope and role of software; and (3) information addressing the four specific areas selected for focus at the forum, specifically: software management, the software development environment, languages, and standards. NASA's current thinking is highlighted and some of the relevant critical issues are raised.
Verification and Validation for Flight-Critical Systems (VVFCS)
NASA Technical Reports Server (NTRS)
Graves, Sharon S.; Jacobsen, Robert A.
2010-01-01
On March 31, 2009 a Request for Information (RFI) was issued by NASA s Aviation Safety Program to gather input on the subject of Verification and Validation (V & V) of Flight-Critical Systems. The responses were provided to NASA on or before April 24, 2009. The RFI asked for comments in three topic areas: Modeling and Validation of New Concepts for Vehicles and Operations; Verification of Complex Integrated and Distributed Systems; and Software Safety Assurance. There were a total of 34 responses to the RFI, representing a cross-section of academic (26%), small & large industry (47%) and government agency (27%).
Assessment team report on flight-critical systems research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)
1989-01-01
The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.
MAX - An advanced parallel computer for space applications
NASA Technical Reports Server (NTRS)
Lewis, Blair F.; Bunker, Robert L.
1991-01-01
MAX is a fault-tolerant multicomputer hardware and software architecture designed to meet the needs of NASA spacecraft systems. It consists of conventional computing modules (computers) connected via a dual network topology. One network is used to transfer data among the computers and between computers and I/O devices. This network's topology is arbitrary. The second network operates as a broadcast medium for operating system synchronization messages and supports the operating system's Byzantine resilience. A fully distributed operating system supports multitasking in an asynchronous event and data driven environment. A large grain dataflow paradigm is used to coordinate the multitasking and provide easy control of concurrency. It is the basis of the system's fault tolerance and allows both static and dynamical location of tasks. Redundant execution of tasks with software voting of results may be specified for critical tasks. The dataflow paradigm also supports simplified software design, test and maintenance. A unique feature is a method for reliably patching code in an executing dataflow application.
Hybrid PV/diesel solar power system design using multi-level factor analysis optimization
NASA Astrophysics Data System (ADS)
Drake, Joshua P.
Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.
The Chandra X-ray Center data system: supporting the mission of the Chandra X-ray Observatory
NASA Astrophysics Data System (ADS)
Evans, Janet D.; Cresitello-Dittmar, Mark; Doe, Stephen; Evans, Ian; Fabbiano, Giuseppina; Germain, Gregg; Glotfelty, Kenny; Hall, Diane; Plummer, David; Zografou, Panagoula
2006-06-01
The Chandra X-ray Center Data System provides end-to-end scientific software support for Chandra X-ray Observatory mission operations. The data system includes the following components: (1) observers' science proposal planning tools; (2) science mission planning tools; (3) science data processing, monitoring, and trending pipelines and tools; and (4) data archive and database management. A subset of the science data processing component is ported to multiple platforms and distributed to end-users as a portable data analysis package. Web-based user tools are also available for data archive search and retrieval. We describe the overall architecture of the data system and its component pieces, and consider the design choices and their impacts on maintainability. We discuss the many challenges involved in maintaining a large, mission-critical software system with limited resources. These challenges include managing continually changing software requirements and ensuring the integrity of the data system and resulting data products while being highly responsive to the needs of the project. We describe our use of COTS and OTS software at the subsystem and component levels, our methods for managing multiple release builds, and adapting a large code base to new hardware and software platforms. We review our experiences during the life of the mission so-far, and our approaches for keeping a small, but highly talented, development team engaged during the maintenance phase of a mission.
System Testing of Ground Cooling System Components
NASA Technical Reports Server (NTRS)
Ensey, Tyler Steven
2014-01-01
This internship focused primarily upon software unit testing of Ground Cooling System (GCS) components, one of the three types of tests (unit, integrated, and COTS/regression) utilized in software verification. Unit tests are used to test the software of necessary components before it is implemented into the hardware. A unit test determines that the control data, usage procedures, and operating procedures of a particular component are tested to determine if the program is fit for use. Three different files are used to make and complete an efficient unit test. These files include the following: Model Test file (.mdl), Simulink SystemTest (.test), and autotest (.m). The Model Test file includes the component that is being tested with the appropriate Discrete Physical Interface (DPI) for testing. The Simulink SystemTest is a program used to test all of the requirements of the component. The autotest tests that the component passes Model Advisor and System Testing, and puts the results into proper files. Once unit testing is completed on the GCS components they can then be implemented into the GCS Schematic and the software of the GCS model as a whole can be tested using integrated testing. Unit testing is a critical part of software verification; it allows for the testing of more basic components before a model of higher fidelity is tested, making the process of testing flow in an orderly manner.
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2014-01-01
A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.
NASA Technical Reports Server (NTRS)
Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia
2005-01-01
The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.
Hufnagel, S; Harbison, K; Silva, J; Mettala, E
1994-01-01
This paper describes a new method for the evolutionary determination of user requirements and system specifications called scenario-based engineering process (SEP). Health care professional workstations are critical components of large scale health care system architectures. We suggest that domain-specific software architectures (DSSAs) be used to specify standard interfaces and protocols for reusable software components throughout those architectures, including workstations. We encourage the use of engineering principles and abstraction mechanisms. Engineering principles are flexible guidelines, adaptable to particular situations. Abstraction mechanisms are simplifications for management of complexity. We recommend object-oriented design principles, graphical structural specifications, and formal components' behavioral specifications. We give an ambulatory care scenario and associated models to demonstrate SEP. The scenario uses health care terminology and gives patients' and health care providers' system views. Our goal is to have a threefold benefit. (i) Scenario view abstractions provide consistent interdisciplinary communications. (ii) Hierarchical object-oriented structures provide useful abstractions for reuse, understandability, and long term evolution. (iii) SEP and health care DSSA integration into computer aided software engineering (CASE) environments. These environments should support rapid construction and certification of individualized systems, from reuse libraries.
Development of a software safety process and a case study of its use
NASA Technical Reports Server (NTRS)
Knight, John C.
1993-01-01
The goal of this research is to continue the development of a comprehensive approach to software safety and to evaluate the approach with a case study. The case study is a major part of the project, and it involves the analysis of a specific safety-critical system from the medical equipment domain. The particular application being used was selected because of the availability of a suitable candidate system. We consider the results to be generally applicable and in no way particularly limited by the domain. The research is concentrating on issues raised by the specification and verification phases of the software lifecycle since they are central to our previously-developed rigorous definitions of software safety. The theoretical research is based on our framework of definitions for software safety. In the area of specification, the main topics being investigated are the development of techniques for building system fault trees that correctly incorporate software issues and the development of rigorous techniques for the preparation of software safety specifications. The research results are documented. Another area of theoretical investigation is the development of verification methods tailored to the characteristics of safety requirements. Verification of the correct implementation of the safety specification is central to the goal of establishing safe software. The empirical component of this research is focusing on a case study in order to provide detailed characterizations of the issues as they appear in practice, and to provide a testbed for the evaluation of various existing and new theoretical results, tools, and techniques. The Magnetic Stereotaxis System is summarized.
Rule groupings: An approach towards verification of expert systems
NASA Technical Reports Server (NTRS)
Mehrotra, Mala
1991-01-01
Knowledge-based expert systems are playing an increasingly important role in NASA space and aircraft systems. However, many of NASA's software applications are life- or mission-critical and knowledge-based systems do not lend themselves to the traditional verification and validation techniques for highly reliable software. Rule-based systems lack the control abstractions found in procedural languages. Hence, it is difficult to verify or maintain such systems. Our goal is to automatically structure a rule-based system into a set of rule-groups having a well-defined interface to other rule-groups. Once a rule base is decomposed into such 'firewalled' units, studying the interactions between rules would become more tractable. Verification-aid tools can then be developed to test the behavior of each such rule-group. Furthermore, the interactions between rule-groups can be studied in a manner similar to integration testing. Such efforts will go a long way towards increasing our confidence in the expert-system software. Our research efforts address the feasibility of automating the identification of rule groups, in order to decompose the rule base into a number of meaningful units.
A USNRC perspective on the use of commercial-off-shelf software (COTS) in advanced reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J.C.
1997-12-01
The use of commercially available digital computer systems and components in safety critical systems (nuclear power plant, military, and commercial applications) is increasing rapidly. While this paper focuses on the software aspects of the application most of these continents are applicable to the hardware aspects as well. Commercial dedication (the process of assuring that a commercial grade item will perform its intended safety function) has demonstrated benefits in cost savings and a wide base of user experience, however, care must be taken to avoid difficulties with some aspects of the dedication process such as access to vendor development information, configurationmore » management long term support, and system integration.« less
17 CFR 39.18 - System safeguards.
Code of Federal Regulations, 2012 CFR
2012-04-01
... physical infrastructure or personnel necessary for it to conduct activities necessary to the clearing and... transportation, telecommunications, power, water, or other critical infrastructure components in a relevant area... Division of Clearing and Risk promptly of: (1) Any hardware or software malfunction, cyber security...
17 CFR 39.18 - System safeguards.
Code of Federal Regulations, 2014 CFR
2014-04-01
... physical infrastructure or personnel necessary for it to conduct activities necessary to the clearing and... transportation, telecommunications, power, water, or other critical infrastructure components in a relevant area... Division of Clearing and Risk promptly of: (1) Any hardware or software malfunction, cyber security...
17 CFR 39.18 - System safeguards.
Code of Federal Regulations, 2013 CFR
2013-04-01
... physical infrastructure or personnel necessary for it to conduct activities necessary to the clearing and... transportation, telecommunications, power, water, or other critical infrastructure components in a relevant area... Division of Clearing and Risk promptly of: (1) Any hardware or software malfunction, cyber security...
The six critical attributes of the next generation of quality management software systems.
Clark, Kathleen
2011-07-01
Driven by both the need to meet regulatory requirements and a genuine desire to drive improved quality, quality management systems encompassing standard operating procedure, corrective and preventative actions and related processes have existed for many years, both in paper and electronic form. The impact of quality management systems on 'actual' quality, however, is often reported as far less than desired. A quality management software system that moves beyond formal forms-driven processes to include a true closed loop design, manage disparate processes across the enterprise, provide support for collaborative processes and deliver insight into the overall state of control has the potential to close the gap between simply accomplishing regulatory compliance and delivering measurable improvements in quality and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linger, Richard C; Pleszkoch, Mark G; Prowell, Stacy J
Organizations maintaining mainframe legacy software can benefit from code modernization and incorporation of security capabilities to address the current threat environment. Oak Ridge National Laboratory is developing the Hyperion system to compute the behavior of software as a means to gain understanding of software functionality and security properties. Computation of functionality is critical to revealing security attributes, which are in fact specialized functional behaviors of software. Oak Ridge is collaborating with MITRE Corporation to conduct a demonstration project to compute behavior of legacy IBM Assembly Language code for a federal agency. The ultimate goal is to understand functionality and securitymore » vulnerabilities as a basis for code modernization. This paper reports on the first phase, to define functional semantics for IBM Assembly instructions and conduct behavior computation experiments.« less
NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities
NASA Technical Reports Server (NTRS)
Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.
2015-01-01
Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult to achieve using LabVIEW. The
Simulation verification techniques study. Subsystem simulation validation techniques
NASA Technical Reports Server (NTRS)
Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.
1974-01-01
Techniques for validation of software modules which simulate spacecraft onboard systems are discussed. An overview of the simulation software hierarchy for a shuttle mission simulator is provided. A set of guidelines for the identification of subsystem/module performance parameters and critical performance parameters are presented. Various sources of reference data to serve as standards of performance for simulation validation are identified. Environment, crew station, vehicle configuration, and vehicle dynamics simulation software are briefly discussed from the point of view of their interfaces with subsystem simulation modules. A detailed presentation of results in the area of vehicle subsystems simulation modules is included. A list of references, conclusions and recommendations are also given.
Composable Framework Support for Software-FMEA Through Model Execution
NASA Astrophysics Data System (ADS)
Kocsis, Imre; Patricia, Andras; Brancati, Francesco; Rossi, Francesco
2016-08-01
Performing Failure Modes and Effect Analysis (FMEA) during software architecture design is becoming a basic requirement in an increasing number of domains; however, due to the lack of standardized early design phase model execution, classic SW-FMEA approaches carry significant risks and are human effort-intensive even in processes that use Model-Driven Engineering.Recently, modelling languages with standardized executable semantics have emerged. Building on earlier results, this paper describes framework support for generating executable error propagation models from such models during software architecture design. The approach carries the promise of increased precision, decreased risk and more automated execution for SW-FMEA during dependability- critical system development.
NASA Technical Reports Server (NTRS)
2012-01-01
Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.
NASA Astrophysics Data System (ADS)
Wedeking, Gregory A.; Zierer, Joseph J.; Jackson, John R.
2010-07-01
The University of Texas, Center for Electromechanics (UT-CEM) is making a major upgrade to the robotic tracking system on the Hobby Eberly Telescope (HET) as part of theWide Field Upgrade (WFU). The upgrade focuses on a seven-fold increase in payload and necessitated a complete redesign of all tracker supporting structure and motion control systems, including the tracker bridge, ten drive systems, carriage frames, a hexapod, and many other subsystems. The cost and sensitivity of the scientific payload, coupled with the tracker system mass increase, necessitated major upgrades to personnel and hardware safety systems. To optimize kinematic design of the entire tracker, UT-CEM developed novel uses of constraints and drivers to interface with a commercially available CAD package (SolidWorks). For example, to optimize volume usage and minimize obscuration, the CAD software was exercised to accurately determine tracker/hexapod operational space needed to meet science requirements. To verify hexapod controller models, actuator travel requirements were graphically measured and compared to well defined equations of motion for Stewart platforms. To ensure critical hardware safety during various failure modes, UT-CEM engineers developed Visual Basic drivers to interface with the CAD software and quickly tabulate distance measurements between critical pieces of optical hardware and adjacent components for thousands of possible hexapod configurations. These advances and techniques, applicable to any challenging robotic system design, are documented and describe new ways to use commercially available software tools to more clearly define hardware requirements and help insure safe operation.
Mining Bug Databases for Unidentified Software Vulnerabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumidu Wijayasekara; Milos Manic; Jason Wright
2012-06-01
Identifying software vulnerabilities is becoming more important as critical and sensitive systems increasingly rely on complex software systems. It has been suggested in previous work that some bugs are only identified as vulnerabilities long after the bug has been made public. These vulnerabilities are known as hidden impact vulnerabilities. This paper discusses the feasibility and necessity to mine common publicly available bug databases for vulnerabilities that are yet to be identified. We present bug database analysis of two well known and frequently used software packages, namely Linux kernel and MySQL. It is shown that for both Linux and MySQL, amore » significant portion of vulnerabilities that were discovered for the time period from January 2006 to April 2011 were hidden impact vulnerabilities. It is also shown that the percentage of hidden impact vulnerabilities has increased in the last two years, for both software packages. We then propose an improved hidden impact vulnerability identification methodology based on text mining bug databases, and conclude by discussing a few potential problems faced by such a classifier.« less
ERIC Educational Resources Information Center
Powner, David A.
To address system problems and other management weaknesses, in 1998 Congress created the Office of Federal Student Aid (FSA) within the Department of Education. This office adopted a new approach to systems integration using middleware (software that can allow an application to access data residing indifferent databases) and Extensible Markup…
Generating Safety-Critical PLC Code From a High-Level Application Software Specification
NASA Technical Reports Server (NTRS)
2008-01-01
The benefits of automatic-application code generation are widely accepted within the software engineering community. These benefits include raised abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at Kennedy Space Center recognized the need for PLC code generation while developing the new ground checkout and launch processing system, called the Launch Control System (LCS). Engineers developed a process and a prototype software tool that automatically translates a high-level representation or specification of application software into ladder logic that executes on a PLC. All the computer hardware in the LCS is planned to be commercial off the shelf (COTS), including industrial controllers or PLCs that are connected to the sensors and end items out in the field. Most of the software in LCS is also planned to be COTS, with only small adapter software modules that must be developed in order to interface between the various COTS software products. A domain-specific language (DSL) is a programming language designed to perform tasks and to solve problems in a particular domain, such as ground processing of launch vehicles. The LCS engineers created a DSL for developing test sequences of ground checkout and launch operations of future launch vehicle and spacecraft elements, and they are developing a tabular specification format that uses the DSL keywords and functions familiar to the ground and flight system users. The tabular specification format, or tabular spec, allows most ground and flight system users to document how the application software is intended to function and requires little or no software programming knowledge or experience. A small sample from a prototype tabular spec application is shown.
Development of 6-DOF painting robot control system
NASA Astrophysics Data System (ADS)
Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang
2017-01-01
With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.
WTEC monograph on instrumentation, control and safety systems of Canadian nuclear facilities
NASA Technical Reports Server (NTRS)
Uhrig, Robert E.; Carter, Richard J.
1993-01-01
This report updates a 1989-90 survey of advanced instrumentation and controls (I&C) technologies and associated human factors issues in the U.S. and Canadian nuclear industries carried out by a team from Oak Ridge National Laboratory (Carter and Uhrig 1990). The authors found that the most advanced I&C systems are in the Canadian CANDU plants, where the newest plant (Darlington) has digital systems in almost 100 percent of its control systems and in over 70 percent of its plant protection system. Increased emphasis on human factors and cognitive science in modern control rooms has resulted in a reduced workload for the operators and the elimination of many human errors. Automation implemented through digital instrumentation and control is effectively changing the role of the operator to that of a systems manager. The hypothesis that properly introducing digital systems increases safety is supported by the Canadian experience. The performance of these digital systems has been achieved using appropriate quality assurance programs for both hardware and software development. Recent regulatory authority review of the development of safety-critical software has resulted in the creation of isolated software modules with well defined interfaces and more formal structure in the software generation. The ability of digital systems to detect impending failures and initiate a fail-safe action is a significant safety issue that should be of special interest to nuclear utilities and regulatory authorities around the world.
The software system for the Control and Data Acquisition for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Wegner, P.; FüBling, M.; Oya, I.; Hagge, L.; Schwanke, U.; Schwarz, J.; Tosti, G.; Conforti, V.; Lyard, E.; Walter, R.; Oliveira Antonino, P.; Morgenstern, A.
2016-10-01
The Cherenkov Telescope Array (CTA), as the next generation ground-based very high-energy gamma-ray observatory, is defining new areas beyond those related to physics. It is also creating new demands on the control and data acquisition system. CTA will consist of two installations, one in each hemisphere, containing tens of telescopes of different sizes. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA array, as well as to time-stamp, read-out, filter and store the scientific data at aggregated rates of a few GB/s. The ACTL system must implement a flexible software architecture to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. In addition ACTL must be able to modify the observation schedule on timescales of a few tens of seconds, to account for changing environmental conditions or to prioritize incoming scientific alerts from time-critical transient phenomena such as gamma-ray bursts. This contribution summarizes the status of the development of the software architecture and the main design choices and plans.
Acoustic Emission Analysis Applet (AEAA) Software
NASA Technical Reports Server (NTRS)
Nichols, Charles T.; Roth, Don J.
2013-01-01
NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.
NASA Technical Reports Server (NTRS)
Garrocq, C. A.; Hurley, M. J.; Dublin, M.
1973-01-01
A baseline implementation plan, including alternative implementation approaches for critical software elements and variants to the plan, was developed. The basic philosophy was aimed at: (1) a progressive release of capability for three major computing systems, (2) an end product that was a working tool, (3) giving participation to industry, government agencies, and universities, and (4) emphasizing the development of critical elements of the IPAD framework software. The results of these tasks indicate an IPAD first release capability 45 months after go-ahead, a five year total implementation schedule, and a total developmental cost of 2027 man-months and 1074 computer hours. Several areas of operational cost increases were identified mainly due to the impact of additional equipment needed and additional computer overhead. The benefits of an IPAD system were related mainly to potential savings in engineering man-hours, reduction of design-cycle calendar time, and indirect upgrading of product quality and performance.
Space Generic Open Avionics Architecture (SGOAA) reference model technical guide
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1993-01-01
This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.
2015-09-01
SOA Service-Oriented Architecture SOTM Satellite Communications-on-the-Move SoS System of Systems SwCIs Software Criticality Indices TPM Technical...into the C2 system. To manage stakeholders’ expectations, there is a need to evaluate the effectiveness of the deployed C2 system having implemented ...the C2 system. However, there is a need to recognize the limitations and constraints on the land battlefield to implement these requirements. There
NASA Technical Reports Server (NTRS)
Graydon, Patrick J.; Holloway, C. M.
2015-01-01
Safe use of software in safety-critical applications requires well-founded means of determining whether software is fit for such use. While software in industries such as aviation has a good safety record, little is known about whether standards for software in safety-critical applications 'work' (or even what that means). It is often (implicitly) argued that software is fit for safety-critical use because it conforms to an appropriate standard. Without knowing whether a standard works, such reliance is an experiment; without carefully collecting assessment data, that experiment is unplanned. To help plan the experiment, we organized a workshop to develop practical ideas for assessing software safety standards. In this paper, we relate and elaborate on the workshop discussion, which revealed subtle but important study design considerations and practical barriers to collecting appropriate historical data and recruiting appropriate experimental subjects. We discuss assessing standards as written and as applied, several candidate definitions for what it means for a standard to 'work,' and key assessment strategies and study techniques and the pros and cons of each. Finally, we conclude with thoughts about the kinds of research that will be required and how academia, industry, and regulators might collaborate to overcome the noted barriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terezakis, Stephanie A., E-mail: stereza1@jhmi.edu; Harris, Kendra M.; Ford, Eric
Purpose: Systems to ensure patient safety are of critical importance. The electronic incident reporting systems (IRS) of 2 large academic radiation oncology departments were evaluated for events that may be suitable for submission to a national reporting system (NRS). Methods and Materials: All events recorded in the combined IRS were evaluated from 2007 through 2010. Incidents were graded for potential severity using the validated French Nuclear Safety Authority (ASN) 5-point scale. These incidents were categorized into 7 groups: (1) human error, (2) software error, (3) hardware error, (4) error in communication between 2 humans, (5) error at the human-software interface,more » (6) error at the software-hardware interface, and (7) error at the human-hardware interface. Results: Between the 2 systems, 4407 incidents were reported. Of these events, 1507 (34%) were considered to have the potential for clinical consequences. Of these 1507 events, 149 (10%) were rated as having a potential severity of ≥2. Of these 149 events, the committee determined that 79 (53%) of these events would be submittable to a NRS of which the majority was related to human error or to the human-software interface. Conclusions: A significant number of incidents were identified in this analysis. The majority of events in this study were related to human error and to the human-software interface, further supporting the need for a NRS to facilitate field-wide learning and system improvement.« less
V & V Within Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1996-01-01
Verification and validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission critical software. This paper describes the working group's success in identifying V&V tasks that could be performed in the domain engineering and transition levels of reuse-based software engineering. The primary motivation for V&V at the domain level is to provide assurance that the domain requirements are correct and that the domain artifacts correctly implement the domain requirements. A secondary motivation is the possible elimination of redundant V&V activities at the application level. The group also considered the criteria and motivation for performing V&V in domain engineering.
NASA Astrophysics Data System (ADS)
Mohammadi, Hadi
Use of the Patch Vulnerability Management (PVM) process should be seriously considered for any networked computing system. The PVM process prevents the operating system (OS) and software applications from being attacked due to security vulnerabilities, which lead to system failures and critical data leakage. The purpose of this research is to create and design a Security and Critical Patch Management Process (SCPMP) framework based on Systems Engineering (SE) principles. This framework will assist Information Technology Department Staff (ITDS) to reduce IT operating time and costs and mitigate the risk of security and vulnerability attacks. Further, this study evaluates implementation of the SCPMP in the networked computing systems of an academic environment in order to: 1. Meet patch management requirements by applying SE principles. 2. Reduce the cost of IT operations and PVM cycles. 3. Improve the current PVM methodologies to prevent networked computing systems from becoming the targets of security vulnerability attacks. 4. Embed a Maintenance Optimization Tool (MOT) in the proposed framework. The MOT allows IT managers to make the most practicable choice of methods for deploying and installing released patches and vulnerability remediation. In recent years, there has been a variety of frameworks for security practices in every networked computing system to protect computer workstations from becoming compromised or vulnerable to security attacks, which can expose important information and critical data. I have developed a new mechanism for implementing PVM for maximizing security-vulnerability maintenance, protecting OS and software packages, and minimizing SCPMP cost. To increase computing system security in any diverse environment, particularly in academia, one must apply SCPMP. I propose an optimal maintenance policy that will allow ITDS to measure and estimate the variation of PVM cycles based on their department's requirements. My results demonstrate that MOT optimizes the process of implementing SCPMP in academic workstations.
Validation of Flight Critical Control Systems
1991-12-01
1985. [8] Avizienis, A., and Lyu, M., "On the Effectiveness of Multiversion Software in Digital Avionics", AIAA Computers in Aerospace VI Conference...Experimentation and Modelling. NASA CR-165036, 1982. [12] Eckhardt, D. E.; and Lee, L. D.: A Theoretical Basis for the Analysis of Multiversion
The Computer in Education--Are We over Our Heads?
ERIC Educational Resources Information Center
Schrader, Vincent E.
1984-01-01
Cautions school systems considering buying microcomputers that staying current with technology is difficult and that much existing software and hardware is inferior; identifies critical concerns involved in integrating computers into education; and stresses the importance of educators' role in controlling high tech. (MJL)
A Starter's Guide to Artificial Intelligence.
ERIC Educational Resources Information Center
McConnell, Barry A.; McConnell, Nancy J.
1988-01-01
Discussion of the history and development of artificial intelligence (AI) highlights a bibliography of introductory books on various aspects of AI, including AI programing; problem solving; automated reasoning; game playing; natural language; expert systems; machine learning; robotics and vision; critics of AI; and representative software. (LRW)
NASA Astrophysics Data System (ADS)
Kristianti, Y.; Prabawanto, S.; Suhendra, S.
2017-09-01
This study aims to examine the ability of critical thinking and students who attain learning mathematics with learning model ASSURE assisted Autograph software. The design of this study was experimental group with pre-test and post-test control group. The experimental group obtained a mathematics learning with ASSURE-assisted model Autograph software and the control group acquired the mathematics learning with the conventional model. The data are obtained from the research results through critical thinking skills tests. This research was conducted at junior high school level with research population in one of junior high school student in Subang Regency of Lesson Year 2016/2017 and research sample of class VIII student in one of junior high school in Subang Regency for 2 classes. Analysis of research data is administered quantitatively. Quantitative data analysis was performed on the normalized gain level between the two sample groups using a one-way anova test. The results show that mathematics learning with ASSURE assisted model Autograph software can improve the critical thinking ability of junior high school students. Mathematical learning using ASSURE-assisted model Autograph software is significantly better in improving the critical thinking skills of junior high school students compared with conventional models.
Adaptive cyber-attack modeling system
NASA Astrophysics Data System (ADS)
Gonsalves, Paul G.; Dougherty, Edward T.
2006-05-01
The pervasiveness of software and networked information systems is evident across a broad spectrum of business and government sectors. Such reliance provides an ample opportunity not only for the nefarious exploits of lone wolf computer hackers, but for more systematic software attacks from organized entities. Much effort and focus has been placed on preventing and ameliorating network and OS attacks, a concomitant emphasis is required to address protection of mission critical software. Typical software protection technique and methodology evaluation and verification and validation (V&V) involves the use of a team of subject matter experts (SMEs) to mimic potential attackers or hackers. This manpower intensive, time-consuming, and potentially cost-prohibitive approach is not amenable to performing the necessary multiple non-subjective analyses required to support quantifying software protection levels. To facilitate the evaluation and V&V of software protection solutions, we have designed and developed a prototype adaptive cyber attack modeling system. Our approach integrates an off-line mechanism for rapid construction of Bayesian belief network (BN) attack models with an on-line model instantiation, adaptation and knowledge acquisition scheme. Off-line model construction is supported via a knowledge elicitation approach for identifying key domain requirements and a process for translating these requirements into a library of BN-based cyber-attack models. On-line attack modeling and knowledge acquisition is supported via BN evidence propagation and model parameter learning.
IWSSA 2009 PC Co-chairs' Message
NASA Astrophysics Data System (ADS)
Chung, Lawrence; Noguera, Manuel; Subramanian, Nary; Garrido, José Luis
Important changes in society are being predicted for the very near future. In many countries, governments look ahead by increasing reserve funds and budgets for strategically critical areas in order to identify key issues and find effective solutions. Not surprisingly, many institutions are launching research and development programs focused on health-care, elderly people, quality of life, social inclusion, energy, education, ecology, etc. Innovation is required for systems supporting such a new assisted, interactive and collaborative world. System and software designers have to be able to address how to reflect in the same system/software architecture a great amount of (sometimes conflicting) requirements. In particular, user-oriented nonfunctional requirements and developer-oriented non-functional requirements (or design constraints) gain special relevance due to the new environments in which the systems have to operate.
Continuation of research in software for space operations support
NASA Technical Reports Server (NTRS)
Collier, Mark D.
1989-01-01
Software technologies relevant to workstation executives are discussed. Evaluations of problems, potential or otherwise, seen with IBM's Workstation Executive (WEX) 2.5 preliminary design and applicable portions of the 2.5 critical design are presented. Diverse graphics requirements of the Johnson Space Center's Mission Control Center Upgrade (MCCU) are also discussed. The key is to use tools that are portable, compatible with the X window system, and best suited to the requirements of the associated application. This will include a User Interface Language (UIL), an interactive display builder, and a graphic plotting/modeling system. Work sheets are provided for POSIX 1003.4 real-time extensions and the requirements for the Center's automated information systems security plan, referred to as POSIX 1003.6, are discussed.
Mission and Safety Critical (MASC) plans for the MASC Kernel simulation
NASA Technical Reports Server (NTRS)
1991-01-01
This report discusses a prototype for Mission and Safety Critical (MASC) kernel simulation which explains the intended approach and how the simulation will be used. Smalltalk is chosen for the simulation because of usefulness in quickly building working models of the systems and its object-oriented approach to software. A scenario is also introduced to give details about how the simulation works. The eventual system will be a fully object-oriented one implemented in Ada via Dragoon. To implement the simulation, a scenario using elements typical of those in the Space Station, was created.
The Role of Free/Libre and Open Source Software in Learning Health Systems.
Paton, C; Karopka, T
2017-08-01
Objective: To give an overview of the role of Free/Libre and Open Source Software (FLOSS) in the context of secondary use of patient data to enable Learning Health Systems (LHSs). Methods: We conducted an environmental scan of the academic and grey literature utilising the MedFLOSS database of open source systems in healthcare to inform a discussion of the role of open source in developing LHSs that reuse patient data for research and quality improvement. Results: A wide range of FLOSS is identified that contributes to the information technology (IT) infrastructure of LHSs including operating systems, databases, frameworks, interoperability software, and mobile and web apps. The recent literature around the development and use of key clinical data management tools is also reviewed. Conclusions: FLOSS already plays a critical role in modern health IT infrastructure for the collection, storage, and analysis of patient data. The nature of FLOSS systems to be collaborative, modular, and modifiable may make open source approaches appropriate for building the digital infrastructure for a LHS. Georg Thieme Verlag KG Stuttgart.
Verified compilation of Concurrent Managed Languages
2017-11-01
designs for compiler intermediate representations that facilitate mechanized proofs and verification; and (d) a realistic case study that combines these...ideas to prove the correctness of a state-of- the-art concurrent garbage collector. 15. SUBJECT TERMS Program verification, compiler design ...Even though concurrency is a pervasive part of modern software and hardware systems, it has often been ignored in safety-critical system designs . A
NASA Astrophysics Data System (ADS)
Marculescu, Bogdan; Feldt, Robert; Torkar, Richard; Green, Lars-Goran; Liljegren, Thomas; Hult, Erika
2011-08-01
Verification and validation is an important part of software development and accounts for significant amounts of the costs associated with such a project. For developers of life or mission critical systems, such as software being developed for space applications, a balance must be reached between ensuring the quality of the system by extensive and rigorous testing and reducing costs and allowing the company to compete.Ensuring the quality of any system starts with a quality development process. To evaluate both the software development process and the product itself, measurements are needed. A balance must be then struck between ensuring the best possible quality of both process and product on the one hand, and reducing the cost of performing requirements on the other.A number of measurements have already been defined and are being used. For some of these, data collection can be automated as well, further lowering costs associated with implementing them. In practice, however, there may be situations where existing measurements are unsuitable for a variety of reasons.This paper describes a framework for creating low cost, flexible measurements in areas where initial information is scarce. The framework, called The Measurements Exploration Framework, is aimed in particular at the Space Software development industry and was developed is such an environment.
A Quantitative Study of Global Software Development Teams, Requirements, and Software Projects
ERIC Educational Resources Information Center
Parker, Linda L.
2016-01-01
The study explored the relationship between global software development teams, effective software requirements, and stakeholders' perception of successful software development projects within the field of information technology management. It examined the critical relationship between Global Software Development (GSD) teams creating effective…
The EMIR experience in the use of software control simulators to speed up the time to telescope
NASA Astrophysics Data System (ADS)
Lopez Ramos, Pablo; López-Ruiz, J. C.; Moreno Arce, Heidy; Rosich, Josefina; Perez Menor, José Maria
2012-09-01
One of the main problems facing development teams working on instrument control systems consists on the need to access mechanisms which are not available until well into the integration phase. The need to work with real hardware creates additional problems like, among others: certain faults cannot be tested due to the possibility of hardware damage, taking the system to the limit may shorten its operational lifespan and the full system may not be available during some periods due to maintenance and/or testing of individual components. These problems can be treated with the use of simulators and by applying software/hardware standards. Since information on the construction and performance of electro-mechanical systems is available at relatively early stages of the project, simulators are developed in advance (before the existence of the mechanism) or, if conventions and standards have been correctly followed, a previously developed simulator might be used. This article describes our experience in building software simulators and the main advantages we have identified, which are: the control software can be developed even in the absence of real hardware, critical tests can be prepared using the simulated systems, test system behavior for hardware failure situations that represent a risk of the real system, and the speed up of in house integration of the entire instrument. The use of simulators allows us to reduce development, testing and integration time.
Expert system verification concerns in an operations environment
NASA Technical Reports Server (NTRS)
Goodwin, Mary Ann; Robertson, Charles C.
1987-01-01
The Space Shuttle community is currently developing a number of knowledge-based tools, primarily expert systems, to support Space Shuttle operations. It is proposed that anticipating and responding to the requirements of the operations environment will contribute to a rapid and smooth transition of expert systems from development to operations, and that the requirements for verification are critical to this transition. The paper identifies the requirements of expert systems to be used for flight planning and support and compares them to those of existing procedural software used for flight planning and support. It then explores software engineering concepts and methodology that can be used to satisfy these requirements, to aid the transition from development to operations and to support the operations environment during the lifetime of expert systems. Many of these are similar to those used for procedural hardware.
Family Day Homes: Get Organized with Information Systems.
ERIC Educational Resources Information Center
Dague, Mindy
1999-01-01
Notes that record keeping and management are critical aspects of home day care centers. Highlights options for tools, including calendars, loose-leaf notebooks, ledgers, computer spreadsheet software, and file boxes. Provides guidelines for organizing information as well as particular information necessary regarding provider, parent, and child.…
An Adaptable Power System with Software Control Algorithm
NASA Technical Reports Server (NTRS)
Castell, Karen; Bay, Mike; Hernandez-Pellerano, Amri; Ha, Kong
1998-01-01
A low cost, flexible and modular spacecraft power system design was developed in response to a call for an architecture that could accommodate multiple missions in the small to medium load range. Three upcoming satellites will use this design, with one launch date in 1999 and two in the year 2000. The design consists of modular hardware that can be scaled up or down, without additional cost, to suit missions in the 200 to 600 Watt orbital average load range. The design will be applied to satellite orbits that are circular, polar elliptical and a libration point orbit. Mission unique adaptations are accomplished in software and firmware. In designing this advanced, adaptable power system, the major goals were reduction in weight volume and cost. This power system design represents reductions in weight of 78 percent, volume of 86 percent and cost of 65 percent from previous comparable systems. The efforts to miniaturize the electronics without sacrificing performance has created streamlined power electronics with control functions residing in the system microprocessor. The power system design can handle any battery size up to 50 Amp-hour and any battery technology. The three current implementations will use both nickel cadmium and nickel hydrogen batteries ranging in size from 21 to 50 Amp-hours. Multiple batteries can be used by adding another battery module. Any solar cell technology can be used and various array layouts can be incorporated with no change in Power System Electronics (PSE) hardware. Other features of the design are the standardized interfaces between cards and subsystems and immunity to radiation effects up to 30 krad Total Ionizing Dose (TID) and 35 Mev/cm(exp 2)-kg for Single Event Effects (SEE). The control algorithm for the power system resides in a radiation-hardened microprocessor. A table driven software design allows for flexibility in mission specific requirements. By storing critical power system constants in memory, modifying the system code for other programs is simple. These constants can be altered also by ground command, or in response to an anomolous event. All critical power system functions have backup hardware functions to prevent a software or computer glitch from propagating. A number of battery charge control schemes can be implemented by selecting the proper control terms in the code. The architecture allows the design engineer to tune the system response to various system components and anticipated load profiles without costly alterations. A design trade was made with the size, weight and power dissipation of the electronics versus the performance of the power bus to load variations. Linear, fine control is maintained with a streamlined electronics design. This paper describes the hardware design as well as the software control algorithm. The challenges of closing the system control loop digitally is discussed. Control loop margin and power system performance is presented. Lab measurements are shown and compared to the system response of a hardware model running actual flight software.
2014-09-01
dollars annually to develop and implement enterprise resource planning ( ERP ) systems, which it considers critical to transforming the department’s...modernization.1 DOD officials have stated that the implementation of the ERPs , such as the Global Combat Support System-Army (GCSS-Army), is a key...1An ERP system is an automated system using commercial off-the-shelf software consisting of multiple, integrated functional modules that perform
Challenges and Demands on Automated Software Revision
NASA Technical Reports Server (NTRS)
Bonakdarpour, Borzoo; Kulkarni, Sandeep S.
2008-01-01
In the past three decades, automated program verification has undoubtedly been one of the most successful contributions of formal methods to software development. However, when verification of a program against a logical specification discovers bugs in the program, manual manipulation of the program is needed in order to repair it. Thus, in the face of existence of numerous unverified and un- certified legacy software in virtually any organization, tools that enable engineers to automatically verify and subsequently fix existing programs are highly desirable. In addition, since requirements of software systems often evolve during the software life cycle, the issue of incomplete specification has become a customary fact in many design and development teams. Thus, automated techniques that revise existing programs according to new specifications are of great assistance to designers, developers, and maintenance engineers. As a result, incorporating program synthesis techniques where an algorithm generates a program, that is correct-by-construction, seems to be a necessity. The notion of manual program repair described above turns out to be even more complex when programs are integrated with large collections of sensors and actuators in hostile physical environments in the so-called cyber-physical systems. When such systems are safety/mission- critical (e.g., in avionics systems), it is essential that the system reacts to physical events such as faults, delays, signals, attacks, etc, so that the system specification is not violated. In fact, since it is impossible to anticipate all possible such physical events at design time, it is highly desirable to have automated techniques that revise programs with respect to newly identified physical events according to the system specification.
Finding Helpful Software Reviews.
ERIC Educational Resources Information Center
Kruse, Ted, Comp.
1987-01-01
Provides a list of evaluation services currently producing critical reviews of educational software. Includes information about The Apple K-12 Curriculum Software Reference, The Educational Software Preview, The Educational Software Selector, MicroSIFT, and Only The Best: The Discriminating Guide for Preschool-Grade 12. (TW)
A Cyber Security Self-Assessment Method for Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glantz, Clifford S.; Coles, Garill A.; Bass, Robert B.
2004-11-01
A cyber security self-assessment method (the Method) has been developed by Pacific Northwest National Laboratory. The development of the Method was sponsored and directed by the U.S. Nuclear Regulatory Commission. Members of the Nuclear Energy Institute Cyber Security Task Force also played a substantial role in developing the Method. The Method's structured approach guides nuclear power plants in scrutinizing their digital systems, assessing the potential consequences to the plant of a cyber exploitation, identifying vulnerabilities, estimating cyber security risks, and adopting cost-effective protective measures. The focus of the Method is on critical digital assets. A critical digital asset is amore » digital device or system that plays a role in the operation, maintenance, or proper functioning of a critical system (i.e., a plant system that can impact safety, security, or emergency preparedness). A critical digital asset may have a direct or indirect connection to a critical system. Direct connections include both wired and wireless communication pathways. Indirect connections include sneaker-net pathways by which software or data are manually transferred from one digital device to another. An indirect connection also may involve the use of instructions or data stored on a critical digital asset to make adjustments to a critical system. The cyber security self-assessment begins with the formation of an assessment team, and is followed by a six-stage process.« less
Status report of the SRT radiotelescope control software: the DISCOS project
NASA Astrophysics Data System (ADS)
Orlati, A.; Bartolini, M.; Buttu, M.; Fara, A.; Migoni, C.; Poppi, S.; Righini, S.
2016-08-01
The Sardinia Radio Telescope (SRT) is a 64-m fully-steerable radio telescope. It is provided with an active surface to correct for gravitational deformations, allowing observations from 300 MHz to 100 GHz. At present, three receivers are available: a coaxial LP-band receiver (305-410 MHz and 1.5-1.8 GHz), a C-band receiver (5.7-7.7 GHz) and a 7-feed K-band receiver (18-26.5 GHz). Several back-ends are also available in order to perform the different data acquisition and analysis procedures requested by scientific projects. The design and development of the SRT control software started in 2004, and now belongs to a wider project called DISCOS (Development of the Italian Single-dish COntrol System), which provides a common infrastructure to the three Italian radio telescopes (Medicina, Noto and SRT dishes). DISCOS is based on the Alma Common Software (ACS) framework, and currently consists of more than 500k lines of code. It is organized in a common core and three specific product lines, one for each telescope. Recent developments, carried out after the conclusion of the technical commissioning of the instrument (October 2013), consisted in the addition of several new features in many parts of the observing pipeline, spanning from the motion control to the digital back-ends for data acquisition and data formatting; we brie y describe such improvements. More importantly, in the last two years we have supported the astronomical validation of the SRT radio telescope, leading to the opening of the first public call for proposals in late 2015. During this period, while assisting both the engineering and the scientific staff, we massively employed the control software and were able to test all of its features: in this process we received our first feedback from the users and we could verify how the system performed in a real-life scenario, drawing the first conclusions about the overall system stability and performance. We examine how the system behaves in terms of network load and system load, how it reacts to failures and errors, and what components and services seem to be the most critical parts of our architecture, showing how the ACS framework impacts on these aspects. Moreover, the exposure to public utilization has highlighted the major flaws in our development and software management process, which had to be tuned and improved in order to achieve faster release cycles in response to user feedback, and safer deploy operations. In this regard we show how the introduction of testing practices, along with continuous integration, helped us to meet higher quality standards. Having identified the most critical aspects of our software, we conclude showing our intentions for the future development of DISCOS, both in terms of software features and software infrastructures.
A Decision Model for Supporting Task Allocation Processes in Global Software Development
NASA Astrophysics Data System (ADS)
Lamersdorf, Ansgar; Münch, Jürgen; Rombach, Dieter
Today, software-intensive systems are increasingly being developed in a globally distributed way. However, besides its benefit, global development also bears a set of risks and problems. One critical factor for successful project management of distributed software development is the allocation of tasks to sites, as this is assumed to have a major influence on the benefits and risks. We introduce a model that aims at improving management processes in globally distributed projects by giving decision support for task allocation that systematically regards multiple criteria. The criteria and causal relationships were identified in a literature study and refined in a qualitative interview study. The model uses existing approaches from distributed systems and statistical modeling. The article gives an overview of the problem and related work, introduces the empirical and theoretical foundations of the model, and shows the use of the model in an example scenario.
NASA Astrophysics Data System (ADS)
Drachova-Strang, Svetlana V.
As computing becomes ubiquitous, software correctness has a fundamental role in ensuring the safety and security of the systems we build. To design and develop software correctly according to their formal contracts, CS students, the future software practitioners, need to learn a critical set of skills that are necessary and sufficient for reasoning about software correctness. This dissertation presents a systematic approach to both introducing these reasoning skills into the curriculum, and assessing how well the students have learned them. Specifically, it introduces a comprehensive Reasoning Concept Inventory (RCI) that captures the fine details of basic reasoning skills that are ideally learned across the undergraduate curriculum to reason about software correctness, to develop high quality software, and to understand why software works as specified. The RCI forms the basis for developing learning outcomes that help educators to assess the adequacy of current techniques and pinpoint necessary improvements. This dissertation contains results from experimentation and assessment over the past few years in multiple CS courses. The results show that the finer principles of mathematical reasoning of software correctness can be taught effectively and continuously improved with the help of the RCI using suitable teaching practices, and supporting methods and tools.
Bureaucracy, Safety and Software: a Potentially Lethal Cocktail
NASA Astrophysics Data System (ADS)
Hatton, Les
This position paper identifies a potential problem with the evolution of software controlled safety critical systems. It observes that the rapid growth of bureaucracy in society quickly spills over into rules for behaviour. Whether the need for the rules comes first or there is simple anticipation of the need for a rule by a bureaucrat is unclear in many cases. Many such rules lead to draconian restrictions and often make the existing situation worse due to the presence of unintended consequences as will be shown with a number of examples.
Initiating Formal Requirements Specifications with Object-Oriented Models
NASA Technical Reports Server (NTRS)
Ampo, Yoko; Lutz, Robyn R.
1994-01-01
This paper reports results of an investigation into the suitability of object-oriented models as an initial step in developing formal specifications. The requirements for two critical system-level software modules were used as target applications. It was found that creating object-oriented diagrams prior to formally specifying the requirements enhanced the accuracy of the initial formal specifications and reduced the effort required to produce them. However, the formal specifications incorporated some information not found in the object-oriented diagrams, such as higher-level strategy or goals of the software.
NASA Technical Reports Server (NTRS)
Fitz, Rhonda; Whitman, Gerek
2016-01-01
Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IV&V) Program, with Software Assurance Research Program support, extracted FM architectures across the IV&V portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IV&V projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management. The identification of particular FM architectures, visibility, and associated IV&V techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. Additionally, the role FM has with regard to strengthened security requirements, with potential to advance overall asset protection of flight software systems, is being addressed with the development of an adverse conditions database encompassing flight software vulnerabilities. Capitalizing on the established framework, this TR suite provides assurance capability for a variety of FM architectures and varied development approaches. Research results are being disseminated across NASA, other agencies, and the software community. This paper discusses the findings and TR suite informing the FM domain in best practices for FM architectural design, visibility observations, and methods employed for IV&V and mission assurance.
NASA Technical Reports Server (NTRS)
Buckner, J. D.; Council, H. W.; Edwards, T. R.
1974-01-01
Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.
Software Certification - Coding, Code, and Coders
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Holzmann, Gerard J.
2011-01-01
We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.
Programming Makes Software; Support Makes Users
NASA Astrophysics Data System (ADS)
Batcheller, A. L.
2010-12-01
Skilled software engineers may build fantastic software for climate modeling, yet fail to achieve their project’s objectives. Software support and related activities are just as critical as writing software. This study followed three different software projects in the climate sciences, using interviews, observation, and document analysis to examine the value added by support work. Supporting the project and interacting with users was a key task for software developers, who often spent 50% of their time on it. Such support work most often involved replying to questions on an email list, but also included talking to users on teleconference calls and in person. Software support increased adoption by building the software’s reputation and showing individuals how the software can meet their needs. In the process of providing support, developers often learned new of requirements as users reported features they desire and bugs they found. As software matures and gains widespread use, support work often increases. In fact, such increases can be one signal that the software has achieved broad acceptance. Maturing projects also find demand for instructional classes, online tutorials and detailed examples of how to use the software. The importance of support highlights the fact that building software systems involves both social and technical aspects. Yes, we need to build the software, but we also need to “build” the users and practices that can take advantage of it.
Vibration analysis of large centrifugal pump rotors
NASA Astrophysics Data System (ADS)
Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.
2013-12-01
Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.
ERD’s Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) is a key to enhancing quality assurance in environmental models and applications. Uncertainty analysis and sensitivity analysis remain critical, though often overlooked steps in the development and e...
Monitoring and tracing of critical software systems: State of the work and project definition
2008-12-01
analysis, troubleshooting and debugging. Some of these subsystems already come with ad hoc tracers for events like wireless connections or SCSI disk... SQLite ). Additional synthetic events (e.g. states) are added to the database. The database thus consists in contexts (process, CPU, state), event...capability on a [operating] system-by-system basis. Additionally, the mechanics of querying the data in an ad - hoc manner outside the boundaries of the
F-35 Joint Strike Fighter Aircraft (F-35)
2013-12-01
Critical Design Review; announcing the decision to terminate development of an alternate Helmet Mounted Display System (HMDS); completing the 2nd F-35B...the 100th aircraft from the production facility at Fort Worth, Texas; and resolving lingering technical design shortfalls to include the F-35C...emphasis on: regular design reviews, systems engineering discipline, software development planning with baseline review boards, and focused metrics
Software security checklist for the software life cycle
NASA Technical Reports Server (NTRS)
Gilliam, D. P.; Wolfe, T. L.; Sherif, J. S.
2002-01-01
A formal approach to security in the software life cycle is essential to protect corporate resources. However, little thought has been given to this aspect of software development. Due to its criticality, security should be integrated as a formal approach in the software life cycle.
NASA Astrophysics Data System (ADS)
Schoitsch, Erwin
1988-07-01
Our society is depending more and more on the reliability of embedded (real-time) computer systems even in every-day life. Considering the complexity of the real world, this might become a severe threat. Real-time programming is a discipline important not only in process control and data acquisition systems, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt- and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other and with respect to their potential to quality and safety.
Fault tolerant testbed evaluation, phase 1
NASA Technical Reports Server (NTRS)
Caluori, V., Jr.; Newberry, T.
1993-01-01
In recent years, avionics systems development costs have become the driving factor in the development of space systems, military aircraft, and commercial aircraft. A method of reducing avionics development costs is to utilize state-of-the-art software application generator (autocode) tools and methods. The recent maturity of application generator technology has the potential to dramatically reduce development costs by eliminating software development steps that have historically introduced errors and the need for re-work. Application generator tools have been demonstrated to be an effective method for autocoding non-redundant, relatively low-rate input/output (I/O) applications on the Space Station Freedom (SSF) program; however, they have not been demonstrated for fault tolerant, high-rate I/O, flight critical environments. This contract will evaluate the use of application generators in these harsh environments. Using Boeing's quad-redundant avionics system controller as the target system, Space Shuttle Guidance, Navigation, and Control (GN&C) software will be autocoded, tested, and evaluated in the Johnson (Space Center) Avionics Engineering Laboratory (JAEL). The response of the autocoded system will be shown to match the response of the existing Shuttle General Purpose Computers (GPC's), thereby demonstrating the viability of using autocode techniques in the development of future avionics systems.
Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2018-01-01
Autonomy of aerospace systems requires the ability for flight control systems to be able to adapt to complex uncertain dynamic environment. In spite of the five decades of research in adaptive control, the fact still remains that currently no adaptive control system has ever been deployed on any safety-critical or human-rated production systems such as passenger transport aircraft. The problem lies in the difficulty with the certification of adaptive control systems since existing certification methods cannot readily be used for nonlinear adaptive control systems. Research to address the notion of metrics for adaptive control began to appear in the recent years. These metrics, if accepted, could pave a path towards certification that would potentially lead to the adoption of adaptive control as a future control technology for safety-critical and human-rated production systems. Development of certifiable adaptive control systems represents a major challenge to overcome. Adaptive control systems with learning algorithms will never become part of the future unless it can be proven that they are highly safe and reliable. Rigorous methods for adaptive control software verification and validation must therefore be developed to ensure that adaptive control system software failures will not occur, to verify that the adaptive control system functions as required, to eliminate unintended functionality, and to demonstrate that certification requirements imposed by regulatory bodies such as the Federal Aviation Administration (FAA) can be satisfied. This presentation will discuss some of the technical issues with adaptive flight control and related V&V challenges.
NASA X-34 Technology in Motion
NASA Technical Reports Server (NTRS)
Beech, Geoffrey; Chandler, Kristie
1997-01-01
The X-34 technology development program is a joint industry/government project to develop, test, and operate a small, fully-reusable hypersonic flight vehicle. The objective is to demonstrate key technologies and operating concepts applicable to future reusable launch vehicles. Integrated in the vehicle are various systems to assure successful completion of mission objectives, including the Main Propulsion System (MPS). NASA-Marshall Space Flight Center (MSFC) is responsible for developing the X-34's MPS including the design and complete build package for the propulsion system components. The X-34 will be powered by the Fastrac Engine, which is currently in design and development at NASA-MSFC. Fastrac is a single-stage main engine, which burns a mixture of liquid oxygen (LOX) and kerosene(RP-1). The interface between the MPS and Fastrac engine are critical for proper system operation and technologies applicable to future reusable launch vehicles. Deneb's IGRIP software package with the Dynamic analysis option provided a key tool for conducting studies critical to this interface as well as a mechanism to drive the design of the LOX and RP-1 feedlines. Kinematic models were created for the Fastrac Engine and the feedlines for various design concepts. Based on the kinematic simulation within Envision, design and joint limits were verified and system interference controlled. It was also critical to the program to evaluate the effect of dynamic loads visually, providing a verification tool for dynamic analysis and in some cases uncovering areas that had not been considered. Deneb's software put the X-34 technology in motion and has been a key factor in facilitating the strenuous design schedule.
NASA Astrophysics Data System (ADS)
Martin, L.; Schatalov, M.; Hagner, M.; Goltz, U.; Maibaum, O.
Today's software for aerospace systems typically is very complex. This is due to the increasing number of features as well as the high demand for safety, reliability, and quality. This complexity also leads to significant higher software development costs. To handle the software complexity, a structured development process is necessary. Additionally, compliance with relevant standards for quality assurance is a mandatory concern. To assure high software quality, techniques for verification are necessary. Besides traditional techniques like testing, automated verification techniques like model checking become more popular. The latter examine the whole state space and, consequently, result in a full test coverage. Nevertheless, despite the obvious advantages, this technique is rarely yet used for the development of aerospace systems. In this paper, we propose a tool-supported methodology for the development and formal verification of safety-critical software in the aerospace domain. The methodology relies on the V-Model and defines a comprehensive work flow for model-based software development as well as automated verification in compliance to the European standard series ECSS-E-ST-40C. Furthermore, our methodology supports the generation and deployment of code. For tool support we use the tool SCADE Suite (Esterel Technology), an integrated design environment that covers all the requirements for our methodology. The SCADE Suite is well established in avionics and defense, rail transportation, energy and heavy equipment industries. For evaluation purposes, we apply our approach to an up-to-date case study of the TET-1 satellite bus. In particular, the attitude and orbit control software is considered. The behavioral models for the subsystem are developed, formally verified, and optimized.
Analyzing and Predicting Effort Associated with Finding and Fixing Software Faults
NASA Technical Reports Server (NTRS)
Hamill, Maggie; Goseva-Popstojanova, Katerina
2016-01-01
Context: Software developers spend a significant amount of time fixing faults. However, not many papers have addressed the actual effort needed to fix software faults. Objective: The objective of this paper is twofold: (1) analysis of the effort needed to fix software faults and how it was affected by several factors and (2) prediction of the level of fix implementation effort based on the information provided in software change requests. Method: The work is based on data related to 1200 failures, extracted from the change tracking system of a large NASA mission. The analysis includes descriptive and inferential statistics. Predictions are made using three supervised machine learning algorithms and three sampling techniques aimed at addressing the imbalanced data problem. Results: Our results show that (1) 83% of the total fix implementation effort was associated with only 20% of failures. (2) Both safety critical failures and post-release failures required three times more effort to fix compared to non-critical and pre-release counterparts, respectively. (3) Failures with fixes spread across multiple components or across multiple types of software artifacts required more effort. The spread across artifacts was more costly than spread across components. (4) Surprisingly, some types of faults associated with later life-cycle activities did not require significant effort. (5) The level of fix implementation effort was predicted with 73% overall accuracy using the original, imbalanced data. Using oversampling techniques improved the overall accuracy up to 77%. More importantly, oversampling significantly improved the prediction of the high level effort, from 31% to around 85%. Conclusions: This paper shows the importance of tying software failures to changes made to fix all associated faults, in one or more software components and/or in one or more software artifacts, and the benefit of studying how the spread of faults and other factors affect the fix implementation effort.
Fault Injection Validation of a Safety-Critical TMR Sysem
NASA Astrophysics Data System (ADS)
Irrera, Ivano; Madeira, Henrique; Zentai, Andras; Hergovics, Beata
2016-08-01
Digital systems and their software are the core technology for controlling and monitoring industrial systems in practically all activity domains. Functional safety standards such as the European standard EN 50128 for railway applications define the procedures and technical requirements for the development of software for railway control and protection systems. The validation of such systems is a highly demanding task. In this paper we discuss the use of fault injection techniques, which have been used extensively in several domains, particularly in the space domain, to complement the traditional procedures to validate a SIL (Safety Integrity Level) 4 system for railway signalling, implementing a TMR (Triple Modular Redundancy) architecture. The fault injection tool is based on JTAG technology. The results of our injection campaign showed a high degree of tolerance to most of the injected faults, but several cases of unexpected behaviour have also been observed, helping understanding worst-case scenarios.
ERIC Educational Resources Information Center
Vasu, Ellen Storey; Tyler, Doris Kennedy
1997-01-01
Examined the effects of using Logo or problem-solving oriented simulation software on the spatial and critical thinking skills of fifth graders. Found that the Logo group had a significant pretest-posttest change in spatial scores, and the Simulation group had a significant pretest-posttest change in critical thinking scores. No significant change…
Using Smart Pumps to Understand and Evaluate Clinician Practice Patterns to Ensure Patient Safety
Mansfield, Jennifer; Jarrett, Steven
2013-01-01
Background: Safety software installed on intravenous (IV) infusion pumps has been shown to positively impact the quality of patient care through avoidance of medication errors. The data derived from the use of smart pumps are often overlooked, although these data provide helpful insight into the delivery of quality patient care. Objective: The objectives of this report are to describe the value of implementing IV infusion safety software and analyzing the data and reports generated by this system. Case study: Based on experience at the Carolinas HealthCare System (CHS), executive score cards provide an aggregate view of compliance rate, number of alerts, overrides, and edits. The report of serious errors averted (ie, critical catches) supplies the location, date, and time of the critical catch, thereby enabling management to pinpoint the end-user for educational purposes. By examining the number of critical catches, a return on investment may be calculated. Assuming 3,328 of these events each year, an estimated cost avoidance would be $29,120,000 per year for CHS. Other reports allow benchmarking between institutions. Conclusion: A review of the data about medication safety across CHS has helped garner support for a medication safety officer position with the goal of ultimately creating a safer environment for the patient. PMID:24474836
NASA Software Cost Estimation Model: An Analogy Based Estimation Model
NASA Technical Reports Server (NTRS)
Hihn, Jairus; Juster, Leora; Menzies, Tim; Mathew, George; Johnson, James
2015-01-01
The cost estimation of software development activities is increasingly critical for large scale integrated projects such as those at DOD and NASA especially as the software systems become larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic spacecraft ever flown (Based on the size of the software). Software development activities are also notorious for their cost growth, with NASA flight software averaging over 50% cost growth. All across the agency, estimators and analysts are increasingly being tasked to develop reliable cost estimates in support of program planning and execution. While there has been extensive work on improving parametric methods there is very little focus on the use of models based on analogy and clustering algorithms. In this paper we summarize our findings on effort/cost model estimation and model development based on ten years of software effort estimation research using data mining and machine learning methods to develop estimation models based on analogy and clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II, linear regression, and K- nearest neighbor prediction model performance on the same data set.
NASA Astrophysics Data System (ADS)
Parra, Pablo; da Silva, Antonio; Polo, Óscar R.; Sánchez, Sebastián
2018-02-01
In this day and age, successful embedded critical software needs agile and continuous development and testing procedures. This paper presents the overall testing and code coverage metrics obtained during the unit testing procedure carried out to verify the correctness of the boot software that will run in the Instrument Control Unit (ICU) of the Energetic Particle Detector (EPD) on-board Solar Orbiter. The ICU boot software is a critical part of the project so its verification should be addressed at an early development stage, so any test case missed in this process may affect the quality of the overall on-board software. According to the European Cooperation for Space Standardization ESA standards, testing this kind of critical software must cover 100% of the source code statement and decision paths. This leads to the complete testing of fault tolerance and recovery mechanisms that have to resolve every possible memory corruption or communication error brought about by the space environment. The introduced procedure enables fault injection from the beginning of the development process and enables to fulfill the exigent code coverage demands on the boot software.
Realizing software longevity over a system's lifetime
NASA Astrophysics Data System (ADS)
Lanclos, Kyle; Deich, William T. S.; Kibrick, Robert I.; Allen, Steven L.; Gates, John
2010-07-01
A successful instrument or telescope will measure its productive lifetime in decades; over that period, the technology behind the control hardware and software will evolve, and be replaced on a per-component basis. These new components must successfully integrate with the old, and the difficulty of that integration depends strongly on the design decisions made over the course of the facility's history. The same decisions impact the ultimate success of each upgrade, as measured in terms of observing efficiency and maintenance cost. We offer a case study of these critical design decisions, analyzing the layers of software deployed for instruments under the care of UCO/Lick Observatory, including recent upgrades to the Low Resolution Imaging Spectrometer (LRIS) at Keck Observatory in Hawaii, as well as the Kast spectrograph, Lick Adaptive Optics system, and Hamilton spectrograph, all at Lick Observatory's Shane 3-meter Telescope at Mt. Hamilton. These issues play directly into design considerations for the software intended for use at the next generation of telescopes, such as the Thirty Meter Telescope. We conduct our analysis with the future of observational astronomy infrastructure firmly in mind.
Computer programming for generating visual stimuli.
Bukhari, Farhan; Kurylo, Daniel D
2008-02-01
Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.
BioPortal: An Open-Source Community-Based Ontology Repository
NASA Astrophysics Data System (ADS)
Noy, N.; NCBO Team
2011-12-01
Advances in computing power and new computational techniques have changed the way researchers approach science. In many fields, one of the most fruitful approaches has been to use semantically aware software to break down the barriers among disparate domains, systems, data sources, and technologies. Such software facilitates data aggregation, improves search, and ultimately allows the detection of new associations that were previously not detectable. Achieving these analyses requires software systems that take advantage of the semantics and that can intelligently negotiate domains and knowledge sources, identifying commonality across systems that use different and conflicting vocabularies, while understanding apparent differences that may be concealed by the use of superficially similar terms. An ontology, a semantically rich vocabulary for a domain of interest, is the cornerstone of software for bridging systems, domains, and resources. However, as ontologies become the foundation of all semantic technologies in e-science, we must develop an infrastructure for sharing ontologies, finding and evaluating them, integrating and mapping among them, and using ontologies in applications that help scientists process their data. BioPortal [1] is an open-source on-line community-based ontology repository that has been used as a critical component of semantic infrastructure in several domains, including biomedicine and bio-geochemical data. BioPortal, uses the social approaches in the Web 2.0 style to bring structure and order to the collection of biomedical ontologies. It enables users to provide and discuss a wide array of knowledge components, from submitting the ontologies themselves, to commenting on and discussing classes in the ontologies, to reviewing ontologies in the context of their own ontology-based projects, to creating mappings between overlapping ontologies and discussing and critiquing the mappings. Critically, it provides web-service access to all its content, enabling its integration in semantically enriched applications. [1] Noy, N.F., Shah, N.H., et al., BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res, 2009. 37(Web Server issue): p. W170-3.
NASA Technical Reports Server (NTRS)
Benowitz, E.; Niessner, A.
2003-01-01
This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.
ERIC Educational Resources Information Center
Bagheri, Mahdi; Nowrozi, Reza Ali
2015-01-01
The purpose of this study is to compare the critical thinking skills among the students of accounting and software in the female technical and vocational university in the city of Borojerd. This study is a descriptive-comparative research. The statistical population of this study includes the female students of accounting and software in the…
Effective use of e-grading in the dental simulation clinic.
Morrow, Jay A; Pulido, M Teresa; Smith, P Bradford; McDaniel, Thomas F; Willcox, Austin B
2014-06-01
The purpose of this article is to describe the development and implementation of a grading software system, accessible from any platform, that engages today's generation of students and replaces paper grading. Set up at one U.S. dental school in an all-access, anytime (24/7) web-based program accessed through tablets, the software allows for a comparison between students' self-grading and instructor grading. This comparison facilitates student-faculty interaction, promoting discussion and student learning. The software can also be used for practical examination grading in which blinded grading between instructors is possible. The data gathered can produce descriptive reports students can draw upon to encourage self-learning and guided learning, propelling students to a better understanding of critical principles as they progress through multiple psychomotor skill sets. Other reports generated by the software allow for instructor calibration, exporting of grades directly into the university grading report system, and visual analysis of trends within each class. In a post-course survey, students (56 percent response rate) and faculty (79 percent response rate) agreed that the electronic grading was more efficient and allowed more time for faculty-student interaction than the previous grading system, thus creating an environment more conducive to learning. Overall, the software has improved students' perception of enhanced kinetic skills, while facilitating administration of preclinical projects and practical examinations.
NASA Technical Reports Server (NTRS)
Shell, Elaine M.; Lue, Yvonne; Chu, Martha I.
1999-01-01
Flight software is a mission critical element of spacecraft functionality and performance. When ground operations personnel interface to a spacecraft, they are typically dealing almost entirely with the capabilities of onboard software. This software, even more than critical ground/flight communications systems, is expected to perform perfectly during all phases of spacecraft life. Due to the fact that it can be reprogrammed on-orbit to accommodate degradations or failures in flight hardware, new insights into spacecraft characteristics, new control options which permit enhanced science options, etc., the on- orbit flight software maintenance team is usually significantly responsible for the long term success of a science mission. Failure of flight software to perform as needed can result in very expensive operations work-around costs and lost science opportunities. There are three basic approaches to maintaining spacecraft software--namely using the original developers, using the mission operations personnel, or assembling a center of excellence for multi-spacecraft software maintenance. Not planning properly for flight software maintenance can lead to unnecessarily high on-orbit costs and/or unacceptably long delays, or errors, in patch installations. A common approach for flight software maintenance is to access the original development staff. The argument for utilizing the development staff is that the people who developed the software will be the best people to modify the software on-orbit. However, it can quickly becomes a challenge to obtain the services of these key people. They may no longer be available to the organization. They may have a more urgent job to perform, quite likely on another project under different project management. If they havn't worked on the software for a long time, they may need precious time for refamiliarization to the software, testbeds and tools. Further, a lack of insight into issues related to flight software in its on-orbit environment, may find the developer unprepared for the challenges. The second approach is to train a member of the flight operations team to maintain the spacecraft software. This can prove to be a costly and inflexible solution. The person assigned to this duty may not have enough work to do during a problem free period and may have too much to do when a problem arises. If the person is a talented software engineer, he/she may not enjoy the limited software opportunities available in this position; and may eventually leave for newer technology computer science opportunities. Training replacement flight software personnel can be a difficult and lengthy process. The third approach is to assemble a center of excellence for on-orbit spacecraft software maintenance. Personnel in this specialty center can be managed to support flight software of multiple missions at once. The variety of challenges among a set of on-orbit missions, can result in a dedicated, talented staff which is fully trained and available to support each mission's needs. Such staff are not software developers but are rather spacecraft software systems engineers. The cost to any one mission is extremely low because the software staff works and charges, minimally on missions with no current operations issues; and their professional insight into on-orbit software troubleshooting and maintenance methods ensures low risk, effective and minimal-cost solutions to on-orbit issues.
Tool Support for Parametric Analysis of Large Software Simulation Systems
NASA Technical Reports Server (NTRS)
Schumann, Johann; Gundy-Burlet, Karen; Pasareanu, Corina; Menzies, Tim; Barrett, Tony
2008-01-01
The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.
Optimizing Automatic Deployment Using Non-functional Requirement Annotations
NASA Astrophysics Data System (ADS)
Kugele, Stefan; Haberl, Wolfgang; Tautschnig, Michael; Wechs, Martin
Model-driven development has become common practice in design of safety-critical real-time systems. High-level modeling constructs help to reduce the overall system complexity apparent to developers. This abstraction caters for fewer implementation errors in the resulting systems. In order to retain correctness of the model down to the software executed on a concrete platform, human faults during implementation must be avoided. This calls for an automatic, unattended deployment process including allocation, scheduling, and platform configuration.
2002-07-01
Knowledge From Data .................................................. 25 HIGH-CONFIDENCE SOFTWARE AND SYSTEMS Reliability, Security, and Safety for...NOAA’s Cessna Citation flew over the 16-acre World Trade Center site, scanning with an Optech ALSM unit. The system recorded data points from 33,000...provide the data storage and compute power for intelligence analysis, high-performance national defense systems , and critical scientific research • Large
Testing and validation of computerized decision support systems.
Sailors, R M; East, T D; Wallace, C J; Carlson, D A; Franklin, M A; Heermann, L K; Kinder, A T; Bradshaw, R L; Randolph, A G; Morris, A H
1996-01-01
Systematic, through testing of decision support systems (DSSs) prior to release to general users is a critical aspect of high quality software design. Omission of this step may lead to the dangerous, and potentially fatal, condition of relying on a system with outputs of uncertain quality. Thorough testing requires a great deal of effort and is a difficult job because tools necessary to facilitate testing are not well developed. Testing is a job ill-suited to humans because it requires tireless attention to a large number of details. For these reasons, the majority of DSSs available are probably not well tested prior to release. We have successfully implemented a software design and testing plan which has helped us meet our goal of continuously improving the quality of our DSS software prior to release. While requiring large amounts of effort, we feel that the process of documenting and standardizing our testing methods are important steps toward meeting recognized national and international quality standards. Our testing methodology includes both functional and structural testing and requires input from all levels of development. Our system does not focus solely on meeting design requirements but also addresses the robustness of the system and the completeness of testing.
NASA Technical Reports Server (NTRS)
Jacklin, Stephen; Schumann, Johann; Gupta, Pramod; Richard, Michael; Guenther, Kurt; Soares, Fola
2005-01-01
Adaptive control technologies that incorporate learning algorithms have been proposed to enable automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments. In order for adaptive control systems to be used in safety-critical aerospace applications, they must be proven to be highly safe and reliable. Rigorous methods for adaptive software verification and validation must be developed to ensure that control system software failures will not occur. Of central importance in this regard is the need to establish reliable methods that guarantee convergent learning, rapid convergence (learning) rate, and algorithm stability. This paper presents the major problems of adaptive control systems that use learning to improve performance. The paper then presents the major procedures and tools presently developed or currently being developed to enable the verification, validation, and ultimate certification of these adaptive control systems. These technologies include the application of automated program analysis methods, techniques to improve the learning process, analytical methods to verify stability, methods to automatically synthesize code, simulation and test methods, and tools to provide on-line software assurance.
2007-09-01
Findings______________________________________________________________________ Chinese hackers forced one of its bureaus to cut off Internet access and discard virus -infected...Vulnerability ( IAV ) Management (IAVM) process was created to prepare and rapidly disseminate mitigating actions for potentially critical software...vulnerabilities to DoD Components. IAVM notices have three criticality levels: • IAV Alert (IAVA) – most critical – a vulnerability posing an immediate
2011-03-01
resampling a second time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 70 Plot of RSA bitgroup exponentiation with DAILMOM after a...14 DVFS Dynamic Voltage and Frequency Switching . . . . . . . . . . . . . . . . . . . 14 MDPL Masked Dual-Rail...algorithms to prevent whole-sale discovery of PINs and other simple methods to prevent employee tampering [5]. In time , cryptographic systems have
Do the Critical Success Factors from Learning Analytics Predict Student Outcomes?
ERIC Educational Resources Information Center
Strang, Kenneth David
2016-01-01
This article starts with a detailed literature review of recent studies that focused on using learning analytics software or learning management system data to determine the nature of any relationships between online student activity and their academic outcomes within university-level business courses. The article then describes how data was…
Critical Code: Software Producibility for Defense
2010-01-01
the hazard of a single system failing can often be associated with a much larger aggregate of systems, often spread across a wide geography. The...four words: fault, error, failure, and hazard . These are defined and illustrated in Box 4.2. Information Loss and Traceability As noted above, the...design information when payback is uncertain, diffuse , or most likely far in the future. A goal in formulating incentive models that motivate developer
2006-09-15
POSTGRADUATE SCHOOL GRADUATE SCHOOL OF BUSINESS AND PUBLIC POLICY 555 DYER ROAD MONTEREY, CA 93943-5103 8. PERFORMING ORGANIZATION REPORT NUMBER NPS...Chair, Graduate School of Business & Public Policy, Naval Postgraduate School supported the funding of the research presented herein. Reproduction of...all or part of this report is authorized. The report was prepared by: ________________________________ Brad Naegle, Senior Lecturer Graduate School
1989-10-01
Operating Systems for Mission-Critical Computing, (Sept. 1989) J1-J7. (12) Son, S. H. and N. Haghighi, "Performance Evaluation of Multiversion Database...Hungary, (Oct. 1989), to appear. (14) Son, S. H. and Y. Kim, "A Software Prototyping Environment and Its Use in Developing a Multiversion Distributed...University of Virginia, (Aug. 1989). (23) Son, S. H. and N. Haghighi, "Performance Evaluation of Multiversion Database Systems," Technical Report IPC
Analyzing and Detecting Problems in Systems of Systems
NASA Technical Reports Server (NTRS)
Lindvall, Mikael; Ackermann, Christopher; Stratton, William C.; Sibol, Deane E.; Godfrey, Sally
2008-01-01
Many software systems are evolving complex system of systems (SoS) for which inter-system communication is mission-critical. Evidence indicates that transmission failures and performance issues are not uncommon occurrences. In a NASA-supported Software Assurance Research Program (SARP) project, we are researching a new approach addressing such problems. In this paper, we are presenting an approach for analyzing inter-system communications with the goal to uncover both transmission errors and performance problems. Our approach consists of a visualization and an evaluation component. While the visualization of the observed communication aims to facilitate understanding, the evaluation component automatically checks the conformance of an observed communication (actual) to a desired one (planned). The actual and the planned are represented as sequence diagrams. The evaluation algorithm checks the conformance of the actual to the planned diagram. We have applied our approach to the communication of aerospace systems and were successful in detecting and resolving even subtle and long existing transmission problems.
Testing, Requirements, and Metrics
NASA Technical Reports Server (NTRS)
Rosenberg, Linda; Hyatt, Larry; Hammer, Theodore F.; Huffman, Lenore; Wilson, William
1998-01-01
The criticality of correct, complete, testable requirements is a fundamental tenet of software engineering. Also critical is complete requirements based testing of the final product. Modern tools for managing requirements allow new metrics to be used in support of both of these critical processes. Using these tools, potential problems with the quality of the requirements and the test plan can be identified early in the life cycle. Some of these quality factors include: ambiguous or incomplete requirements, poorly designed requirements databases, excessive or insufficient test cases, and incomplete linkage of tests to requirements. This paper discusses how metrics can be used to evaluate the quality of the requirements and test to avoid problems later. Requirements management and requirements based testing have always been critical in the implementation of high quality software systems. Recently, automated tools have become available to support requirements management. At NASA's Goddard Space Flight Center (GSFC), automated requirements management tools are being used on several large projects. The use of these tools opens the door to innovative uses of metrics in characterizing test plan quality and assessing overall testing risks. In support of these projects, the Software Assurance Technology Center (SATC) is working to develop and apply a metrics program that utilizes the information now available through the application of requirements management tools. Metrics based on this information provides real-time insight into the testing of requirements and these metrics assist the Project Quality Office in its testing oversight role. This paper discusses three facets of the SATC's efforts to evaluate the quality of the requirements and test plan early in the life cycle, thus preventing costly errors and time delays later.
Remote Diagnosis of the International Space Station Utilizing Telemetry Data
NASA Technical Reports Server (NTRS)
Deb, Somnath; Ghoshal, Sudipto; Malepati, Venkat; Domagala, Chuck; Patterson-Hine, Ann; Alena, Richard; Norvig, Peter (Technical Monitor)
2000-01-01
Modern systems such as fly-by-wire aircraft, nuclear power plants, manufacturing facilities, battlefields, etc., are all examples of highly connected network enabled systems. Many of these systems are also mission critical and need to be monitored round the clock. Such systems typically consist of embedded sensors in networked subsystems that can transmit data to central (or remote) monitoring stations. Moreover, many legacy are safety systems were originally not designed for real-time onboard diagnosis, but a critical and would benefit from such a solution. Embedding additional software or hardware in such systems is often considered too intrusive and introduces flight safety and validation concerns. Such systems can be equipped to transmit the sensor data to a remote-processing center for continuous health monitoring. At Qualtech Systems, we are developing a Remote Diagnosis Server (RDS) that can support multiple simultaneous diagnostic sessions from a variety of remote subsystems.
CASE tools and UML: state of the ART.
Agarwal, S
2001-05-01
With increasing need for automated tools to assist complex systems development, software design methods are becoming popular. This article analyzes the state of art in computer-aided software engineering (CASE) tools and unified modeling language (UML), focusing on their evolution, merits, and industry usage. It identifies managerial issues for the tools' adoption and recommends an action plan to select and implement them. While CASE and UML offer inherent advantages like cheaper, shorter, and efficient development cycles, they suffer from poor user satisfaction. The critical success factors for their implementation include, among others, management and staff commitment, proper corporate infrastructure, and user training.
Remote software upload techniques in future vehicles and their performance analysis
NASA Astrophysics Data System (ADS)
Hossain, Irina
Updating software in vehicle Electronic Control Units (ECUs) will become a mandatory requirement for a variety of reasons, for examples, to update/fix functionality of an existing system, add new functionality, remove software bugs and to cope up with ITS infrastructure. Software modules of advanced vehicles can be updated using Remote Software Upload (RSU) technique. The RSU employs infrastructure-based wireless communication technique where the software supplier sends the software to the targeted vehicle via a roadside Base Station (BS). However, security is critically important in RSU to avoid any disasters due to malfunctions of the vehicle or to protect the proprietary algorithms from hackers, competitors or people with malicious intent. In this thesis, a mechanism of secure software upload in advanced vehicles is presented which employs mutual authentication of the software provider and the vehicle using a pre-shared authentication key before sending the software. The software packets are sent encrypted with a secret key along with the Message Digest (MD). In order to increase the security level, it is proposed the vehicle to receive more than one copy of the software along with the MD in each copy. The vehicle will install the new software only when it receives more than one identical copies of the software. In order to validate the proposition, analytical expressions of average number of packet transmissions for successful software update is determined. Different cases are investigated depending on the vehicle's buffer size and verification methods. The analytical and simulation results show that it is sufficient to send two copies of the software to the vehicle to thwart any security attack while uploading the software. The above mentioned unicast method for RSU is suitable when software needs to be uploaded to a single vehicle. Since multicasting is the most efficient method of group communication, updating software in an ECU of a large number of vehicles could benefit from it. However, like the unicast RSU, the security requirements of multicast communication, i.e., authenticity, confidentiality and integrity of the software transmitted and access control of the group members is challenging. In this thesis, an infrastructure-based mobile multicasting for RSU in vehicle ECUs is proposed where an ECU receives the software from a remote software distribution center using the road side BSs as gateways. The Vehicular Software Distribution Network (VSDN) is divided into small regions administered by a Regional Group Manager (RGM). Two multicast Group Key Management (GKM) techniques are proposed based on the degree of trust on the BSs named Fully-trusted (FT) and Semi-trusted (ST) systems. Analytical models are developed to find the multicast session establishment latency and handover latency for these two protocols. The average latency to perform mutual authentication of the software vendor and a vehicle, and to send the multicast session key by the software provider during multicast session initialization, and the handoff latency during multicast session is calculated. Analytical and simulation results show that the link establishment latency per vehicle of our proposed schemes is in the range of few seconds and the ST system requires few ms higher time than the FT system. The handoff latency is also in the range of few seconds and in some cases ST system requires less handoff time than the FT system. Thus, it is possible to build an efficient GKM protocol without putting too much trust on the BSs.
Quality Market: Design and Field Study of Prediction Market for Software Quality Control
ERIC Educational Resources Information Center
Krishnamurthy, Janaki
2010-01-01
Given the increasing competition in the software industry and the critical consequences of software errors, it has become important for companies to achieve high levels of software quality. While cost reduction and timeliness of projects continue to be important measures, software companies are placing increasing attention on identifying the user…
Multimedia Software Evaluation Form for Teachers
ERIC Educational Resources Information Center
Herring, Donna F.; Notar, Charles E.; Wilson, Janell D.
2005-01-01
Schools are currently receiving increased funds for multimedia software for classrooms. There is a need for good software in the schools, and there is a need to know how to evaluate software and not naively rely on advertisements. Evaluators of multimedia software for education must have the skills to critically evaluate and make decisions not…
NASA Technical Reports Server (NTRS)
2002-01-01
Under a Phase II SBIR contract, Kennedy and Lumina Decision Systems, Inc., jointly developed the Schedule and Cost Risk Analysis Modeling (SCRAM) system, based on a version of Lumina's flagship software product, Analytica(R). Acclaimed as "the best single decision-analysis program yet produced" by MacWorld magazine, Analytica is a "visual" tool used in decision-making environments worldwide to build, revise, and present business models, minus the time-consuming difficulty commonly associated with spreadsheets. With Analytica as their platform, Kennedy and Lumina created the SCRAM system in response to NASA's need to identify the importance of major delays in Shuttle ground processing, a critical function in project management and process improvement. As part of the SCRAM development project, Lumina designed a version of Analytica called the Analytica Design Engine (ADE) that can be easily incorporated into larger software systems. ADE was commercialized and utilized in many other developments, including web-based decision support.
Identifying Contingency Requirements using Obstacle Analysis on an Unpiloted Aerial Vehicle
NASA Technical Reports Server (NTRS)
Lutz, Robyn R.; Nelson, Stacy; Patterson-Hine, Ann; Frost, Chad R.; Tal, Doron
2005-01-01
This paper describes experience using Obstacle Analysis to identify contingency requirements on an unpiloted aerial vehicle. A contingency is an operational anomaly, and may or may not involve component failure. The challenges to this effort were: ( I ) rapid evolution of the system while operational, (2) incremental autonomy as capabilities were transferred from ground control to software control and (3) the eventual safety-criticality of such systems as they begin to fly over populated areas. The results reported here are preliminary but show that Obstacle Analysis helped (1) identify new contingencies that appeared as autonomy increased; (2) identify new alternatives for handling both previously known and new contingencies; and (3) investigate the continued validity of existing software requirements for contingency handling. Since many mobile, intelligent systems are built using a development process that poses the same challenges, the results appear to have applicability to other similar systems.
System for critical infrastructure security based on multispectral observation-detection module
NASA Astrophysics Data System (ADS)
Trzaskawka, Piotr; Kastek, Mariusz; Życzkowski, Marek; Dulski, Rafał; Szustakowski, Mieczysław; Ciurapiński, Wiesław; Bareła, Jarosław
2013-10-01
Recent terrorist attacks and possibilities of such actions in future have forced to develop security systems for critical infrastructures that embrace sensors technologies and technical organization of systems. The used till now perimeter protection of stationary objects, based on construction of a ring with two-zone fencing, visual cameras with illumination are efficiently displaced by the systems of the multisensor technology that consists of: visible technology - day/night cameras registering optical contrast of a scene, thermal technology - cheap bolometric cameras recording thermal contrast of a scene and active ground radars - microwave and millimetre wavelengths that record and detect reflected radiation. Merging of these three different technologies into one system requires methodology for selection of technical conditions of installation and parameters of sensors. This procedure enables us to construct a system with correlated range, resolution, field of view and object identification. Important technical problem connected with the multispectral system is its software, which helps couple the radar with the cameras. This software can be used for automatic focusing of cameras, automatic guiding cameras to an object detected by the radar, tracking of the object and localization of the object on the digital map as well as target identification and alerting. Based on "plug and play" architecture, this system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provide high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering. The paper presents a structure and some elements of critical infrastructure protection solution which is based on a modular multisensor security system. System description is focused mainly on methodology of selection of sensors parameters. The results of the tests in real conditions are also presented.
Workflow-Based Software Development Environment
NASA Technical Reports Server (NTRS)
Izygon, Michel E.
2013-01-01
The Software Developer's Assistant (SDA) helps software teams more efficiently and accurately conduct or execute software processes associated with NASA mission-critical software. SDA is a process enactment platform that guides software teams through project-specific standards, processes, and procedures. Software projects are decomposed into all of their required process steps or tasks, and each task is assigned to project personnel. SDA orchestrates the performance of work required to complete all process tasks in the correct sequence. The software then notifies team members when they may begin work on their assigned tasks and provides the tools, instructions, reference materials, and supportive artifacts that allow users to compliantly perform the work. A combination of technology components captures and enacts any software process use to support the software lifecycle. It creates an adaptive workflow environment that can be modified as needed. SDA achieves software process automation through a Business Process Management (BPM) approach to managing the software lifecycle for mission-critical projects. It contains five main parts: TieFlow (workflow engine), Business Rules (rules to alter process flow), Common Repository (storage for project artifacts, versions, history, schedules, etc.), SOA (interface to allow internal, GFE, or COTS tools integration), and the Web Portal Interface (collaborative web environment
Development, Validation and Integration of the ATLAS Trigger System Software in Run 2
NASA Astrophysics Data System (ADS)
Keyes, Robert; ATLAS Collaboration
2017-10-01
The trigger system of the ATLAS detector at the LHC is a combination of hardware, firmware, and software, associated to various sub-detectors that must seamlessly cooperate in order to select one collision of interest out of every 40,000 delivered by the LHC every millisecond. These proceedings discuss the challenges, organization and work flow of the ongoing trigger software development, validation, and deployment. The goal of this development is to ensure that the most up-to-date algorithms are used to optimize the performance of the experiment. The goal of the validation is to ensure the reliability and predictability of the software performance. Integration tests are carried out to ensure that the software deployed to the online trigger farm during data-taking run as desired. Trigger software is validated by emulating online conditions using a benchmark run and mimicking the reconstruction that occurs during normal data-taking. This exercise is computationally demanding and thus runs on the ATLAS high performance computing grid with high priority. Performance metrics ranging from low-level memory and CPU requirements, to distributions and efficiencies of high-level physics quantities are visualized and validated by a range of experts. This is a multifaceted critical task that ties together many aspects of the experimental effort and thus directly influences the overall performance of the ATLAS experiment.
Using Ada: The deeper challenges
NASA Technical Reports Server (NTRS)
Feinberg, David A.
1986-01-01
The Ada programming language and the associated Ada Programming Support Environment (APSE) and Ada Run Time Environment (ARTE) provide the potential for significant life-cycle cost reductions in computer software development and maintenance activities. The Ada programming language itself is standardized, trademarked, and controlled via formal validation procedures. Though compilers are not yet production-ready as most would desire, the technology for constructing them is sufficiently well known and understood that time and money should suffice to correct current deficiencies. The APSE and ARTE are, on the other hand, significantly newer issues within most software development and maintenance efforts. Currently, APSE and ARTE are highly dependent on differing implementer concepts, strategies, and market objectives. Complex and sophisticated mission-critical computing systems require the use of a complete Ada-based capability, not just the programming language itself; yet the range of APSE and ARTE features which must actually be utilized can vary significantly from one system to another. As a consequence, the need to understand, objectively evaluate, and select differing APSE and ARTE capabilities and features is critical to the effective use of Ada and the life-cycle efficiencies it is intended to promote. It is the selection, collection, and understanding of APSE and ARTE which provide the deeper challenges of using Ada for real-life mission-critical computing systems. Some of the current issues which must be clarified, often on a case-by-case basis, in order to successfully realize the full capabilities of Ada are discussed.
Plutonium Critical Mass Curve Comparison to Mass at Upper Subcritical Limit (USL) Using Whisper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alwin, Jennifer Louise; Zhang, Ning
Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the MCNP ® Monte Carlo radiation transport package. Standard approaches to validation rely on the selection of benchmarks based upon expert judgment. Whisper uses sensitivity/uncertainty (S/U) methods to select relevant benchmarks to a particular application or set of applications being analyzed. Using these benchmarks, Whisper computes a calculational margin. Whisper attempts to quantify the margin of subcriticality (MOS) from errors in software and uncertainties in nuclear data. The combination of the Whisper-derived calculational margin and MOS comprise the baseline upper subcritical limit (USL), tomore » which an additional margin may be applied by the nuclear criticality safety analyst as appropriate to ensure subcriticality. A series of critical mass curves for plutonium, similar to those found in Figure 31 of LA-10860-MS, have been generated using MCNP6.1.1 and the iterative parameter study software, WORM_Solver. The baseline USL for each of the data points of the curves was then computed using Whisper 1.1. The USL was then used to determine the equivalent mass for plutonium metal-water system. ANSI/ANS-8.1 states that it is acceptable to use handbook data, such as the data directly from the LA-10860-MS, as it is already considered validated (Section 4.3 4) “Use of subcritical limit data provided in ANSI/ANS standards or accepted reference publications does not require further validation.”). This paper attempts to take a novel approach to visualize traditional critical mass curves and allows comparison with the amount of mass for which the k eff is equal to the USL (calculational margin + margin of subcriticality). However, the intent is to plot the critical mass data along with USL, not to suggest that already accepted handbook data should have new and more rigorous requirements for validation.« less
Fault Management Architectures and the Challenges of Providing Software Assurance
NASA Technical Reports Server (NTRS)
Savarino, Shirley; Fitz, Rhonda; Fesq, Lorraine; Whitman, Gerek
2015-01-01
The satellite systems Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most is system complexity due to a need to establish a multi-dimensional structure across hardware, software and operations. This structure is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. These architecture, implementation and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (VV) is challenging. A breakout session at the 2012 NASA Independent Verification Validation (IVV) Annual Workshop titled VV of Fault Management: Challenges and Successes exposed these issues in terms of VV for a representative set of architectures. NASA's IVV is funded by NASA's Software Assurance Research Program (SARP) in partnership with NASA's Jet Propulsion Laboratory (JPL) to extend the work performed at the Workshop session. NASA IVV will extract FM architectures across the IVV portfolio and evaluate the data set for robustness, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This work focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures, visibility, and associated VVIVV techniques provides a data set that can enable higher assurance that a satellite system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the satellite community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the research including identification of FM architectures, visibility observations, and methods utilized for VVIVV.
Data Management System (DMS) testbed user's manual development, volumes 1 and 2
NASA Technical Reports Server (NTRS)
Mcbride, John G.; Cohen, Norman
1986-01-01
A critical review of the network communication services contained in the Tinman User's Manual for Data Management System Test Bed (Tinman DMS User's Manual) is presented. The review is from the perspective of applying modern software engineering principles and using the Ada language effectively to ensure the test bed network communication services provide a robust capability. Overall the material on network communication services reflects a reasonably good grasp of the Ada language. Language features are appropriately used for most services. Design alternatives are offered to provide improved system performance and a basis for better application software development. Section two contains a review and suggests clarifications of the Statement of Policies and Services contained in Appendix B of the Tinman DMS User's Manual. Section three contains a review of the Network Communication Services and section four contains concluding comments.
Myths and realities: Defining re-engineering for a large organization
NASA Technical Reports Server (NTRS)
Yin, Sandra; Mccreary, Julia
1992-01-01
This paper describes the background and results of three studies concerning software reverse engineering, re-engineering, and reuse (R3) hosted by the Internal Revenue Service in 1991 and 1992. The situation at the Internal Revenue--aging, piecemeal computer systems and outdated technology maintained by a large staff--is familiar to many institutions, especially among management information systems. The IRS is distinctive for the sheer magnitude and diversity of its problems; the country's tax records are processed using assembly language and COBOL and spread across tape and network DBMS files. How do we proceed with replacing legacy systems? The three software re-engineering studies looked at methods, CASE tool support, and performed a prototype project using re-engineering methods and tools. During the course of these projects, we discovered critical issues broader than the mechanical definitions of methods and tool technology.
An experimental evaluation of software redundancy as a strategy for improving reliability
NASA Technical Reports Server (NTRS)
Eckhardt, Dave E., Jr.; Caglayan, Alper K.; Knight, John C.; Lee, Larry D.; Mcallister, David F.; Vouk, Mladen A.; Kelly, John P. J.
1990-01-01
The strategy of using multiple versions of independently developed software as a means to tolerate residual software design faults is suggested by the success of hardware redundancy for tolerating hardware failures. Although, as generally accepted, the independence of hardware failures resulting from physical wearout can lead to substantial increases in reliability for redundant hardware structures, a similar conclusion is not immediate for software. The degree to which design faults are manifested as independent failures determines the effectiveness of redundancy as a method for improving software reliability. Interest in multi-version software centers on whether it provides an adequate measure of increased reliability to warrant its use in critical applications. The effectiveness of multi-version software is studied by comparing estimates of the failure probabilities of these systems with the failure probabilities of single versions. The estimates are obtained under a model of dependent failures and compared with estimates obtained when failures are assumed to be independent. The experimental results are based on twenty versions of an aerospace application developed and certified by sixty programmers from four universities. Descriptions of the application, development and certification processes, and operational evaluation are given together with an analysis of the twenty versions.
Section 3: Quality and Value-Based Requirements
NASA Astrophysics Data System (ADS)
Mylopoulos, John
Traditionally, research and practice in software engineering has focused its attention on specific software qualities, such as functionality and performance. According to this perspective, a system is deemed to be of good quality if it delivers all required functionality (“fitness-for-purpose”) and its performance is above required thresholds. Increasingly, primarily in research but also in practice, other qualities are attracting attention. To facilitate evolution, maintainability and adaptability are gaining popularity. Usability, universal accessibility, innovativeness, and enjoyability are being studied as novel types of non-functional requirements that we do not know how to define, let alone accommodate, but which we realize are critical under some contingencies. The growing importance of the business context in the design of software-intensive systems has also thrust economic value, legal compliance, and potential social and ethical implications into the forefront of requirements topics. A focus on the broader user environment and experience, as well as the organizational and societal implications of system use, thus has become more central to the requirements discourse. This section includes three contributions to this broad and increasingly important topic.
Formal Methods for Life-Critical Software
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Johnson, Sally C.
1993-01-01
The use of computer software in life-critical applications, such as for civil air transports, demands the use of rigorous formal mathematical verification procedures. This paper demonstrates how to apply formal methods to the development and verification of software by leading the reader step-by-step through requirements analysis, design, implementation, and verification of an electronic phone book application. The current maturity and limitations of formal methods tools and techniques are then discussed, and a number of examples of the successful use of formal methods by industry are cited.
NASA Astrophysics Data System (ADS)
Aufdenkampe, A. K.; Mayorga, E.; Horsburgh, J. S.; Lehnert, K. A.; Zaslavsky, I.
2015-12-01
We have developed a family of solutions to the challenges of integrating diverse data from of biological and geological (BiG) disciplines for Critical Zone (CZ) science. These standards and software solutions have been developed around the new Observations Data Model version 2.0 (ODM2, http://ODM2.org), which was designed as a profile of the Open Geospatial Consortium's (OGC) Observations and Measurements (O&M) standard. The ODM2 standards and software ecosystem has at it's core an information model that balances specificity with flexibility to powerfully and equally serve the needs of multiple dataset types, from multivariate sensor-generated time series to geochemical measurements of specimen hierarchies to multi-dimensional spectral data to biodiversity observations. ODM2 has been adopted as the information model guiding the next generation of cyberinfrastructure development for the Interdisciplinary Earth Data Alliance (http://www.iedadata.org/) and the CUAHSI Water Data Center (https://www.cuahsi.org/wdc). Here we present several components of the ODM2 standards and software ecosystem that were developed specifically to help CZ scientists and their data managers to share and manage data through the national Critical Zone Observatory data integration project (CZOData, http://criticalzone.org/national/data/) and the bio integration with geo for critical zone science data project (BiG CZ Data, http://bigcz.org/). These include the ODM2 Controlled Vocabulary system (http://vocabulary.odm2.org), the YAML Observation Data Archive & exchange (YODA) File Format (https://github.com/ODM2/YODA-File) and the BiG CZ Toolbox, which will combine easy-to-install ODM2 databases (https://github.com/ODM2/ODM2) with a variety of graphical software packages for data management such as ODMTools (https://github.com/ODM2/ODMToolsPython) and the ODM2 Streaming Data Loader (https://github.com/ODM2/ODM2StreamingDataLoader).
NASA Technical Reports Server (NTRS)
Eichenlaub, Carl T.; Harper, C. Douglas; Hird, Geoffrey
1993-01-01
Life-critical applications warrant a higher level of software reliability than has yet been achieved. Since it is not certain that traditional methods alone can provide the required ultra reliability, new methods should be examined as supplements or replacements. This paper describes a mathematical counterpart to the traditional process of empirical testing. ORA's Penelope verification system is demonstrated as a tool for evaluating the correctness of Ada software. Grady Booch's Ada calendar utility package, obtained through NASA, was specified in the Larch/Ada language. Formal verification in the Penelope environment established that many of the package's subprograms met their specifications. In other subprograms, failed attempts at verification revealed several errors that had escaped detection by testing.
A CAD approach to magnetic bearing design
NASA Technical Reports Server (NTRS)
Jeyaseelan, M.; Anand, D. K.; Kirk, J. A.
1988-01-01
A design methodology has been developed at the Magnetic Bearing Research Laboratory for designing magnetic bearings using a CAD approach. This is used in the algorithm of an interactive design software package. The package is a design tool developed to enable the designer to simulate the entire process of design and analysis of the system. Its capabilities include interactive input/modification of geometry, finding any possible saturation at critical sections of the system, and the design and analysis of a control system that stabilizes and maintains magnetic suspension.
A Heuristic for Improving Legacy Software Quality during Maintenance: An Empirical Case Study
ERIC Educational Resources Information Center
Sale, Michael John
2017-01-01
Many organizations depend on the functionality of mission-critical legacy software and the continued maintenance of this software is vital. Legacy software is defined here as software that contains no testing suite, is often foreign to the developer performing the maintenance, lacks meaningful documentation, and over time, has become difficult to…
2005-11-15
Postgraduate School,Graduate School of Business and Public Policy,555 Dyer Road, Room 332,Monterey,CA,93943 8. PERFORMING ORGANIZATION REPORT NUMBER 9...research presented in this report was supported by the Acquisition Chair of the Graduate School of Business & Public Policy at the Naval Postgraduate...2003." BPP Research Colloquium. 25 November 2003. Copies of the Acquisition Sponsored Research Reports may be printed from our website
1994-12-01
be INTRODUCTION familiar: best value source selection, processes and metrics In simplified terms, acquisition and continuous improvement ; of a training ...pro- continuous improvement , MIL-STD- posed processes and metrics are 1379D, the systems approach to placed in the contract in a training , concurrent...identification and 5 Continuous Process Improvement correction of errors are critical to software product 6 Training correctness and quality. Correcting
Advanced construction management for lunar base construction - Surface operations planner
NASA Technical Reports Server (NTRS)
Kehoe, Robert P.
1992-01-01
The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.
Science of Security Lablet - Scalability and Usability
2014-12-16
mobile computing [19]. However, the high-level infrastructure design and our own implementation (both described throughout this paper) can easily...critical and infrastructural systems demands high levels of sophistication in the technical aspects of cybersecurity, software and hardware design...Forget, S. Komanduri, Alessandro Acquisti, Nicolas Christin, Lorrie Cranor, Rahul Telang. "Security Behavior Observatory: Infrastructure for Long-term
Sahraneshin Samani, Fazel; Moore, Jodene K; Khosravani, Pardis; Ebrahimi, Marzieh
2014-08-01
Flow cytometers designed to analyze large particles are enabling new applications in biology. Data analysis is a critical component of the process FCM. In this article we compare features of four free software packages including WinMDI, Cyflogic, Flowing software, and Cytobank.
Independent Orbiter Assessment (IOA): Analysis of the guidance, navigation, and control subsystem
NASA Technical Reports Server (NTRS)
Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Hiott, J. M.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Guidance, Navigation, and Control (GNC) Subsystem hardware are documented. The function of the GNC hardware is to respond to guidance, navigation, and control software commands to effect vehicle control and to provide sensor and controller data to GNC software. Some of the GNC hardware for which failure modes analysis was performed includes: hand controllers; Rudder Pedal Transducer Assembly (RPTA); Speed Brake Thrust Controller (SBTC); Inertial Measurement Unit (IMU); Star Tracker (ST); Crew Optical Alignment Site (COAS); Air Data Transducer Assembly (ADTA); Rate Gyro Assemblies; Accelerometer Assembly (AA); Aerosurface Servo Amplifier (ASA); and Ascent Thrust Vector Control (ATVC). The IOA analysis process utilized available GNC hardware drawings, workbooks, specifications, schematics, and systems briefs for defining hardware assemblies, components, and circuits. Each hardware item was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Automated Diagnosis Of Conditions In A Plant-Growth Chamber
NASA Technical Reports Server (NTRS)
Clinger, Barry R.; Damiano, Alfred L.
1995-01-01
Biomass Production Chamber Operations Assistant software and hardware constitute expert system that diagnoses mechanical failures in controlled-environment hydroponic plant-growth chamber and recommends corrective actions to be taken by technicians. Subjects of continuing research directed toward development of highly automated closed life-support systems aboard spacecraft to process animal (including human) and plant wastes into food and oxygen. Uses Microsoft Windows interface to give technicians intuitive, efficient access to critical data. In diagnostic mode, system prompts technician for information. When expert system has enough information, it generates recovery plan.
Space Generic Open Avionics Architecture (SGOAA) standard specification
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1993-01-01
The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of a specific avionics hardware/software system. This standard defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.
A fast and accurate surface plasmon resonance system
NASA Astrophysics Data System (ADS)
Espinosa Sánchez, Y. M.; Luna Moreno, D.; Noé Arias, E.; Garnica Campos, G.
2012-10-01
In this work we propose a Surface Plasmon Resonance (SPR) system driven by Labview software which produces a fast, simple and accuracy measurements of samples. The system takes 2000 data in a range of 20 degrees in 20 seconds and 0.01 degrees of resolution. All the information is sent from the computer to the microcontroller as an array of bytes in hexadecimal format to be analyzed. Besides to using the system in SPR measurement is possible to make measurement of the critic angle, and Brewster angle using the Abeles method.
Alharthi, Hana; Sultana, Nahid; Al-Amoudi, Amjaad; Basudan, Afrah
2015-01-01
Pharmacy barcode scanning is used to reduce errors during the medication dispensing process. However, this technology has rarely been used in hospital pharmacies in Saudi Arabia. This article describes the barriers to successful implementation of a barcode scanning system in Saudi Arabia. A literature review was conducted to identify the relevant critical success factors (CSFs) for a successful dispensing barcode system implementation. Twenty-eight pharmacists from a local hospital in Saudi Arabia were interviewed to obtain their perception of these CSFs. In this study, planning (process flow issues and training requirements), resistance (fear of change, communication issues, and negative perceptions about technology), and technology (software, hardware, and vendor support) were identified as the main barriers. The analytic hierarchy process (AHP), one of the most widely used tools for decision making in the presence of multiple criteria, was used to compare and rank these identified CSFs. The results of this study suggest that resistance barriers have a greater impact than planning and technology barriers. In particular, fear of change is the most critical factor, and training is the least critical factor.
Proactive Security Testing and Fuzzing
NASA Astrophysics Data System (ADS)
Takanen, Ari
Software is bound to have security critical flaws, and no testing or code auditing can ensure that software is flaw-less. But software security testing requirements have improved radically during the past years, largely due to criticism from security conscious consumers and Enterprise customers. Whereas in the past, security flaws were taken for granted (and patches were quietly and humbly installed), they now are probably one of the most common reasons why people switch vendors or software providers. The maintenance costs from security updates often add to become one of the biggest cost items to large Enterprise users. Fortunately test automation techniques have also improved. Techniques like model-based testing (MBT) enable efficient generation of security tests that reach good confidence levels in discovering zero-day mistakes in software. This technique is called fuzzing.
Fault Management Architectures and the Challenges of Providing Software Assurance
NASA Technical Reports Server (NTRS)
Savarino, Shirley; Fitz, Rhonda; Fesq, Lorraine; Whitman, Gerek
2015-01-01
Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most missions is system complexity due to a need to establish a multi-dimensional structure across hardware, software and spacecraft operations. FM is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. Generally, FM architecture, implementation, and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (V&V) is challenging. A breakout session at the 2012 NASA Independent Verification & Validation (IV&V) Annual Workshop titled "V&V of Fault Management: Challenges and Successes" exposed this issue in terms of V&V for a representative set of architectures. NASA's Software Assurance Research Program (SARP) has provided funds to NASA IV&V to extend the work performed at the Workshop session in partnership with NASA's Jet Propulsion Laboratory (JPL). NASA IV&V will extract FM architectures across the IV&V portfolio and evaluate the data set, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This SARP initiative focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures and associated V&V/IV&V techniques provides a data set that can enable improved assurance that a system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the space community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the research.
NASA Technical Reports Server (NTRS)
2002-01-01
When fully developed for NASA, Vanguard Enforcer(TM) software-which emulates the activities of highly technical security system programmers, auditors, and administrators-was among the first intrusion detection programs to restrict human errors from affecting security, and to ensure the integrity of a computer's operating systems, as well as the protection of mission critical resources. Vanguard Enforcer was delivered in 1991 to Johnson Space Center and has been protecting systems and critical data there ever since. In August of 1999, NASA granted Vanguard exclusive rights to commercialize the Enforcer system for the private sector. In return, Vanguard continues to supply NASA with ongoing research, development, and support of Enforcer. The Vanguard Enforcer 4.2 is one of several surveillance technologies that make up the Vanguard Security Solutions line of products. Using a mainframe environment, Enforcer 4.2 achieves previously unattainable levels of automated security management.
NASA Technical Reports Server (NTRS)
Branch, Drew A.
2014-01-01
Security is one of the most if not the most important areas today. After the several attacks on the United States, security everywhere has heightened from airports to the communication among the military branches legionnaires. With advanced persistent threats (APT's) on the rise following Stuxnet, government branches and agencies are required, more than ever, to follow several standards, policies and procedures to reduce the likelihood of a breach. Attack vectors today are very advanced and are going to continue to get more and more advanced as security controls advance. This creates a need for networks and systems to be in an updated and secured state in a launch control system environment. FISMA is a law that is mandated by the government to follow when government agencies secure networks and devices. My role on this project is to ensure network devices and systems are in compliance with NIST, as outlined in FISMA. I will achieve this by providing assistance with security plan documentation and collection, system hardware and software inventory, malicious code and malware scanning, and configuration of network devices i.e. routers and IDS's/IPS's. In addition, I will be completing security assessments on software and hardware, vulnerability assessments and reporting, and conducting patch management and risk assessments. A guideline that will help with compliance with NIST is the SANS Top 20 Critical Controls. SANS Top 20 Critical Controls as well as numerous security tools, security software and the conduction of research will be used to successfully complete the tasks given to me. This will ensure compliance with FISMA and NIST, secure systems and a secured network. By the end of this project, I hope to have carried out the tasks stated above as well as gain an immense knowledge about compliance, security tools, networks and network devices, as well as policies and procedures.
NASA Technical Reports Server (NTRS)
Branch, Drew
2013-01-01
Security is one of the most if not the most important areas today. After the several attacks on the United States, security everywhere was heightened from Airports to the communication among the military branches legionnaires. With advanced persistent threats (APTs) on the rise following Stuxnet, government branches and agencies are required, more than ever, to follow several standards, policies and procedures to reduce the likelihood of a breach. Attack vectors today are very advanced and are going to continue to get more and more advanced as security controls advance. This creates a need for networks and systems to be in an updated and secured state in a launch control system environment. FISMA is a law that is mandated by the government to follow when government agencies secure networks and devices. My role on this project is to ensure network devices and systems are in compliance with NIST, as outlined in FISMA. I will achieve this by providing assistance with security plan documentation and collection, system hardware and software inventory, malicious code and malware scanning and configuration of network devices i.e. routers and IDSsIPSs. In addition I will be completing security assessments on software and hardware, vulnerability assessments and reporting, conducting patch management and risk assessments. A guideline that will help with compliance with NIST is the SANS Top 20 Critical Controls. SANS Top 20 Critical Controls as well as numerous security tools, security software and the conduction of research will be used to successfully complete the tasks given to me. This will ensure compliance with FISMA and NIST, secure systems and a secured network. By the end of this project, I hope to have carried out stated above as well as gain an immense knowledge about compliance, security tools, networks and network devices, policies and procedures.
Toward More Critical Reviewing and Analysis of CD-ROM User Software Interfaces.
ERIC Educational Resources Information Center
Zink, Steven D.
1991-01-01
Criticizes reviews of library CD-ROM products as being uncritical of the user interface and advocates a more rigorous evaluation, not only to aid potential buyers, but as a way to influence manufacturers. Congressional Information Services' Masterfile 2 is evaluated in the context of Heckel's "Principles of Friendly Software Design." (24…
Gurdita, Akshay; Vovko, Heather; Ungrin, Mark
2016-01-01
Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a "Raspberry Pi" single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them.
Damage Detection Sensor System for Aerospace and Multiple Applications
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy L.; Lane, John; Medelius, Pedro
2017-01-01
NASA has identified structural health monitoring and damage detection and verification as critical needs in multiple technology roadmaps. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The damage detection system has been successfully demonstrated in a harsh environment and remote integration tested over 1000 miles apart. Multiple applications includes: Spacecraft and Aircraft; Inflatable, Deployable and Expandable Structures; Space Debris Monitoring; Space Habitats; Military Shelters; Solar Arrays, Smart Garments and Wearables, Extravehicular activity (EVA) suits; Critical Hardware Enclosures; Embedded Composite Structures; and Flexible Hybrid Printed Electronics and Systems. For better implementation and infusion into more flexible architectures, important and improved designs in advancing embedded software and GUI interface, and increasing flexibility, modularity, and configurable capabilities of the system are currently being carried out.
2002-11-21
The second X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its first flight on November 21, 2002, after taking off from a dry lakebed at NASA's Dryden Flight Research Center, Edwards Air Force Base, California. X-45A vehicle two flew for approximately 30 minutes and reached an airspeed of 195 knots and an altitude of 7500 feet. This flight validated the functionality of the UCAV flight software on the second air vehicle. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.
Integrated prototyping environment for programmable automation
NASA Astrophysics Data System (ADS)
da Costa, Francis; Hwang, Vincent S. S.; Khosla, Pradeep K.; Lumia, Ronald
1992-11-01
We propose a rapid prototyping environment for robotic systems, based on tenets of modularity, reconfigurability and extendibility that may help build robot systems `faster, better, and cheaper.' Given a task specification, (e.g., repair brake assembly), the user browses through a library of building blocks that include both hardware and software components. Software advisors or critics recommend how blocks may be `snapped' together to speedily construct alternative ways to satisfy task requirements. Mechanisms to allow `swapping' competing modules for comparative test and evaluation studies are also included in the prototyping environment. After some iterations, a stable configuration or `wiring diagram' emerges. This customized version of the general prototyping environment still contains all the hooks needed to incorporate future improvements in component technologies and to obviate unplanned obsolescence. The prototyping environment so described is relevant for both interactive robot programming (telerobotics) and iterative robot system development (prototyping).
Integration of communications with the Intelligent Gateway Processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampel, V.E.
1986-01-01
The Intelligent Gateway Processor (IGP) software is being used to interconnect users equipped with different personal computers and ASCII terminals to mainframe machines of different make. This integration is made possible by the IGP's unique user interface and networking software. Prototype systems of the table-driven, interpreter-based IGP have been adapted to very different programmatic requirements and have demonstrated substantial increases in end-user productivity. Procedures previously requiring days can now be carried out in minutes. The IGP software has been under development by the Technology Information Systems (TIS) program at Lawrence Livermore National Laboratory (LLNL) since 1975 and is in usemore » by several federal agencies since 1983: The Air Force is prototyping applications which range from automated identification of spare parts for aircraft to office automation and the controlled storage and distribution of technical orders and engineering drawings. Other applications of the IGP are the Information Management System (IMS) for aviation statistics in the Federal Aviation Administration (FAA), the Nuclear Criticality Information System (NCIS) and a nationwide Cost Estimating System (CES) in the Department of Energy, the library automation network of the Defense Technical Information Center (DTIC), and the modernization program in the Office of the Secretary of Defense (OSD). 31 refs., 9 figs.« less
Tutorial: Advanced fault tree applications using HARP
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.
1993-01-01
Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.
Software support in automation of medicinal product evaluations.
Juric, Radmila; Shojanoori, Reza; Slevin, Lindi; Williams, Stephen
2005-01-01
Medicinal product evaluation is one of the most important tasks undertaken by government health departments and their regulatory authorities, in every country in the world. The automation and adequate software support are critical tasks that can improve the efficiency and interoperation of regulatory systems across the world. In this paper we propose a software solution that supports the automation of the (i) submission of licensing applications, and (ii) evaluations of submitted licensing applications, according to regulatory authorities' procedures. The novelty of our solution is in allowing licensing applications to be submitted in any country in the world and evaluated according to any evaluation procedure (which can be chosen by either regulatory authorities or pharmaceutical companies). Consequently, submission and evaluation procedures become interoperable and the associated data repositories/databases can be shared between various countries and regulatory authorities.
Next Generation Image-Based Phenotyping of Root System Architecture
NASA Astrophysics Data System (ADS)
Davis, T. W.; Shaw, N. M.; Cheng, H.; Larson, B. G.; Craft, E. J.; Shaff, J. E.; Schneider, D. J.; Piñeros, M. A.; Kochian, L. V.
2016-12-01
The development of the Plant Root Imaging and Data Acquisition (PRIDA) hardware/software system enables researchers to collect digital images, along with all the relevant experimental details, of a range of hydroponically grown agricultural crop roots for 2D and 3D trait analysis. Previous efforts of image-based root phenotyping focused on young cereals, such as rice; however, there is a growing need to measure both older and larger root systems, such as those of maize and sorghum, to improve our understanding of the underlying genetics that control favorable rooting traits for plant breeding programs to combat the agricultural risks presented by climate change. Therefore, a larger imaging apparatus has been prototyped for capturing 3D root architecture with an adaptive control system and innovative plant root growth media that retains three-dimensional root architectural features. New publicly available multi-platform software has been released with considerations for both high throughput (e.g., 3D imaging of a single root system in under ten minutes) and high portability (e.g., support for the Raspberry Pi computer). The software features unified data collection, management, exploration and preservation for continued trait and genetics analysis of root system architecture. The new system makes data acquisition efficient and includes features that address the needs of researchers and technicians, such as reduced imaging time, semi-automated camera calibration with uncertainty characterization, and safe storage of the critical experimental data.
Proceedings of the Second NASA Formal Methods Symposium
NASA Technical Reports Server (NTRS)
Munoz, Cesar (Editor)
2010-01-01
This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis.
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-09-18
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.
Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A.
2016-01-01
Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving “live partial-area taxonomies” is demonstrated. PMID:27345947
Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A
2016-08-01
Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving "live partial-area taxonomies" is demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.
DFM for maskmaking: design-aware flexible mask-defect analysis
NASA Astrophysics Data System (ADS)
Driessen, Frank A. J. M.; Westra, J.; Scheffer, M.; Kawakami, K.; Tsujimoto, E.; Yamaji, M.; Kawashima, T.; Hayashi, N.
2007-10-01
We present a novel software system that combines design intent as known by EDA designers with defect inspection results from the maskshop to analyze the severity of defects on photomasks. The software -named Takumi Design- Driven Defect Analyzer (TK-D3A)- analyzes defects by combining actions in the image domain with actions in the design domain and outputs amongst others flexible mask-repair decisions in production formats used by the maskshop. Furthermore, TK-D3A outputs clips of layout (GDS/OASIS) that can be viewed with its graphical user interface for easy review of the defects and associated repair decisions. As inputs the system uses reticle defect-inspection data (text and images) and the respective multi-layer design layouts with the definitions of criticalities. The system does not require confidential design data from IDM, Fabless Design House, or Foundry to be sent to the maskshop and it also has minimal impact on the maskshop's mode of operation. The output of TK-D3A is designed to realize value to the maskshop and its customers in the forms of: 1) improved yield, 2) reduction of delivery times of masks to customers, and 3) enhanced utilization of the maskshop's installed tool base. The system was qualified together with a major IDM on a large set of production reticles in the 90 and beyond-65 nm technology nodes of which results will be presented that show the benefits for maskmaking. The accuracy in detecting defects is extremely high. We show the system's capability to analyze defects well below the pixel resolution of all inspection tools used, as well as the capability to extract multiple types of transmission defects. All of these defects are analyzed design-criticality-aware by TK-D3A, resulting in a large fraction of defects that do not need to be repaired because they are located in non-critical or less-critical parts of the layout, or, more importantly, turn out to be repairable or negligible despite of originally being classified as unrepairable when no such criticality knowledge is used. Finally, we show that the runtimes of TK-D3A are relatively short, despite the fact that the system operates on full-chip designs.
Software for Teaching about AIDS & Sex: A Critical Review of Products. A MicroSIFT Report.
ERIC Educational Resources Information Center
Weaver, Dave
This document contains critical reviews of 10 microcomputer software packages and two interactive videodisc products designed for use in teaching about Acquired Immune Deficiency Syndrome (AIDS) and sex at the secondary school level and above. Each package was reviewed by one or two secondary school health teachers and by a staff member from the…
A research program in empirical computer science
NASA Technical Reports Server (NTRS)
Knight, J. C.
1991-01-01
During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.
NASA Astrophysics Data System (ADS)
Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark
2008-01-01
Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.
Baumuratova, Tatiana; Dobre, Simona; Bastogne, Thierry; Sauter, Thomas
2013-01-01
Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA – a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits. PMID:24367574
Baumuratova, Tatiana; Dobre, Simona; Bastogne, Thierry; Sauter, Thomas
2013-01-01
Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA - a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits.
Failure detection and recovery in the assembly/contingency subsystem
NASA Technical Reports Server (NTRS)
Gantenbein, Rex E.
1993-01-01
The Assembly/Contingency Subsystem (ACS) is the primary communications link on board the Space Station. Any failure in a component of this system or in the external devices through which it communicates with ground-based systems will isolate the Station. The ACS software design includes a failure management capability (ACFM) that provides protocols for failure detection, isolation, and recovery (FDIR). The the ACFM design requirements as outlined in the current ACS software requirements specification document are reviewed. The activities carried out in this review include: (1) an informal, but thorough, end-to-end failure mode and effects analysis of the proposed software architecture for the ACFM; and (2) a prototype of the ACFM software, implemented as a C program under the UNIX operating system. The purpose of this review is to evaluate the FDIR protocols specified in the ACS design and the specifications themselves in light of their use in implementing the ACFM. The basis of failure detection in the ACFM is the loss of signal between the ground and the Station, which (under the appropriate circumstances) will initiate recovery to restore communications. This recovery involves the reconfiguration of the ACS to either a backup set of components or to a degraded communications mode. The initiation of recovery depends largely on the criticality of the failure mode, which is defined by tables in the ACFM and can be modified to provide a measure of flexibility in recovery procedures.
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Day, John H. (Technical Monitor)
2000-01-01
Post-Processing of data related to a Global Positioning System (GPS) simulation is an important activity in qualification of a GPS receiver for space flight. Because a GPS simulator is a critical resource it is desirable to move off the pertinent simulation data from the simulator as soon as a test is completed. The simulator data files are usually moved to a Personal Computer (PC), where the post-processing of the receiver logged measurements and solutions data and simulated data is performed. Typically post-processing is accomplished using PC-based commercial software languages and tools. Because of commercial software systems generality their general-purpose functions are notoriously slow and more than often are the bottleneck problem even for short duration experiments. For example, it may take 8 hours to post-process data from a 6-hour simulation. There is a need to do post-processing faster, especially in order to use the previous test results as feedback for a next simulation setup. This paper demonstrates that a fast software linear interpolation algorithm is applicable to a large class of engineering problems, like GPS simulation data post-processing, where computational time is a critical resource and is one of the most important considerations. An approach is developed that allows to speed-up post-processing by an order of magnitude. It is based on improving the post-processing bottleneck interpolation algorithm using apriori information that is specific to the GPS simulation application. The presented post-processing scheme was used in support of a few successful space flight missions carrying GPS receivers. A future approach to solving the post-processing performance problem using Field Programmable Gate Array (FPGA) technology is described.
Experiences of engineering Grid-based medical software.
Estrella, F; Hauer, T; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T
2007-08-01
Grid-based technologies are emerging as potential solutions for managing and collaborating distributed resources in the biomedical domain. Few examples exist, however, of successful implementations of Grid-enabled medical systems and even fewer have been deployed for evaluation in practice. The objective of this paper is to evaluate the use in clinical practice of a Grid-based imaging prototype and to establish directions for engineering future medical Grid developments and their subsequent deployment. The MammoGrid project has deployed a prototype system for clinicians using the Grid as its information infrastructure. To assist in the specification of the system requirements (and for the first time in healthgrid applications), use-case modelling has been carried out in close collaboration with clinicians and radiologists who had no prior experience of this modelling technique. A critical qualitative and, where possible, quantitative analysis of the MammoGrid prototype is presented leading to a set of recommendations from the delivery of the first deployed Grid-based medical imaging application. We report critically on the application of software engineering techniques in the specification and implementation of the MammoGrid project and show that use-case modelling is a suitable vehicle for representing medical requirements and for communicating effectively with the clinical community. This paper also discusses the practical advantages and limitations of applying the Grid to real-life clinical applications and presents the consequent lessons learned. The work presented in this paper demonstrates that given suitable commitment from collaborating radiologists it is practical to deploy in practice medical imaging analysis applications using the Grid but that standardization in and stability of the Grid software is a necessary pre-requisite for successful healthgrids. The MammoGrid prototype has therefore paved the way for further advanced Grid-based deployments in the medical and biomedical domains.
Providing a complete online multimedia patient record.
Dayhoff, R. E.; Kuzmak, P. M.; Kirin, G.; Frank, S.
1999-01-01
Seamless integration of all types of patient data is a critical feature for clinical workstation software. The Dept. of Veterans Affairs has developed a multimedia online patient record that includes traditional medical chart information as well as a wide variety of medical images from specialties such as cardiology, pulmonary and gastrointestinal medicine, pathology, radiology, hematology, and nuclear medicine. This online patient record can present data in ways not possible with a paper chart or other physical media. Obtaining a critical mass of information online is essential to achieve the maximum benefits from an integrated patient record system. Images Figure 1 Figure 2 PMID:10566357
Information Technology and Community Restoration Studies/Task 1: Information Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upton, Jaki F.; Lesperance, Ann M.; Stein, Steven L.
2009-11-19
Executive Summary The Interagency Biological Restoration Demonstration—a program jointly funded by the Department of Defense's Defense Threat Reduction Agency and the Department of Homeland Security's (DHS's) Science and Technology Directorate—is developing policies, methods, plans, and applied technologies to restore large urban areas, critical infrastructures, and Department of Defense installations following the intentional release of a biological agent (anthrax) by terrorists. There is a perception that there should be a common system that can share information both vertically and horizontally amongst participating organizations as well as support analyses. A key question is: "How far away from this are we?" As partmore » of this program, Pacific Northwest National Laboratory conducted research to identify the current information technology tools that would be used by organizations in the greater Seattle urban area in such a scenario, to define criteria for use in evaluating information technology tools, and to identify current gaps. Researchers interviewed 28 individuals representing 25 agencies in civilian and military organizations to identify the tools they currently use to capture data needed to support operations and decision making. The organizations can be grouped into five broad categories: defense (Department of Defense), environmental/ecological (Environmental Protection Agency/Ecology), public health and medical services, emergency management, and critical infrastructure. The types of information that would be communicated in a biological terrorism incident include critical infrastructure and resource status, safety and protection information, laboratory test results, and general emergency information. The most commonly used tools are WebEOC (web-enabled crisis information management systems with real-time information sharing), mass notification software, resource tracking software, and NW WARN (web-based information to protect critical infrastructure systems). It appears that the current information management tools are used primarily for information gathering and sharing—not decision making. Respondents identified the following criteria for a future software system. It is easy to learn, updates information in real time, works with all agencies, is secure, uses a visualization or geographic information system feature, enables varying permission levels, flows information from one stage to another, works with other databases, feeds decision support tools, is compliant with appropriate standards, and is reasonably priced. Current tools have security issues, lack visual/mapping functions and critical infrastructure status, and do not integrate with other tools. It is clear that there is a need for an integrated, common operating system. The system would need to be accessible by all the organizations that would have a role in managing an anthrax incident to enable regional decision making. The most useful tool would feature a GIS visualization that would allow for a common operating picture that is updated in real time. To capitalize on information gained from the interviews, the following activities are recommended: • Rate emergency management decision tools against the criteria specified by the interviewees. • Identify and analyze other current activities focused on information sharing in the greater Seattle urban area. • Identify and analyze information sharing systems/tools used in other regions.« less
Evaluation of Honeywell Recoverable Computer System (RCS) in Presence of Electromagnetic Effects
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar
1997-01-01
The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time critical communication of data and commands between the RCS and flight simulation code in real-time, while meeting the stringent hard deadlines is also presented. The performance results of the RCS while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields is also discussed.
FPGA based control system for space instrumentation
NASA Astrophysics Data System (ADS)
Di Giorgio, Anna M.; Cerulli Irelli, Pasquale; Nuzzolo, Francesco; Orfei, Renato; Spinoglio, Luigi; Liu, Giovanni S.; Saraceno, Paolo
2008-07-01
The prototype for a general purpose FPGA based control system for space instrumentation is presented, with particular attention to the instrument control application software. The system HW is based on the LEON3FT processor, which gives the flexibility to configure the chip with only the necessary HW functionalities, from simple logic up to small dedicated processors. The instrument control SW is developed in ANSI C and for time critical (<10μs) commanding sequences implements an internal instructions sequencer, triggered via an interrupt service routine based on a HW high priority interrupt.
ISEES: an institute for sustainable software to accelerate environmental science
NASA Astrophysics Data System (ADS)
Jones, M. B.; Schildhauer, M.; Fox, P. A.
2013-12-01
Software is essential to the full science lifecycle, spanning data acquisition, processing, quality assessment, data integration, analysis, modeling, and visualization. Software runs our meteorological sensor systems, our data loggers, and our ocean gliders. Every aspect of science is impacted by, and improved by, software. Scientific advances ranging from modeling climate change to the sequencing of the human genome have been rendered possible in the last few decades due to the massive improvements in the capabilities of computers to process data through software. This pivotal role of software in science is broadly acknowledged, while simultaneously being systematically undervalued through minimal investments in maintenance and innovation. As a community, we need to embrace the creation, use, and maintenance of software within science, and address problems such as code complexity, openness,reproducibility, and accessibility. We also need to fully develop new skills and practices in software engineering as a core competency in our earth science disciplines, starting with undergraduate and graduate education and extending into university and agency professional positions. The Institute for Sustainable Earth and Environmental Software (ISEES) is being envisioned as a community-driven activity that can facilitate and galvanize activites around scientific software in an analogous way to synthesis centers such as NCEAS and NESCent that have stimulated massive advances in ecology and evolution. We will describe the results of six workshops (Science Drivers, Software Lifecycles, Software Components, Workforce Development and Training, Sustainability and Governance, and Community Engagement) that have been held in 2013 to envision such an institute. We will present community recommendations from these workshops and our strategic vision for how ISEES will address the technical issues in the software lifecycle, sustainability of the whole software ecosystem, and the critical issue of computational training for the scientific community. Process for envisioning ISEES.
NASA Astrophysics Data System (ADS)
Ramkilowan, A.; Griffith, D. J.
2017-10-01
Surveillance modelling in terms of the standard Detect, Recognise and Identify (DRI) thresholds remains a key requirement for determining the effectiveness of surveillance sensors. With readily available computational resources it has become feasible to perform statistically representative evaluations of the effectiveness of these sensors. A new capability for performing this Monte-Carlo type analysis is demonstrated in the MORTICIA (Monte- Carlo Optical Rendering for Theatre Investigations of Capability under the Influence of the Atmosphere) software package developed at the Council for Scientific and Industrial Research (CSIR). This first generation, python-based open-source integrated software package, currently in the alpha stage of development aims to provide all the functionality required to perform statistical investigations of the effectiveness of optical surveillance systems in specific or generic deployment theatres. This includes modelling of the mathematical and physical processes that govern amongst other components of a surveillance system; a sensor's detector and optical components, a target and its background as well as the intervening atmospheric influences. In this paper we discuss integral aspects of the bespoke framework that are critical to the longevity of all subsequent modelling efforts. Additionally, some preliminary results are presented.
A web-based library consult service for evidence-based medicine: Technical development.
Schwartz, Alan; Millam, Gregory
2006-03-16
Incorporating evidence based medicine (EBM) into clinical practice requires clinicians to learn to efficiently gain access to clinical evidence and effectively appraise its validity. Even using current electronic systems, selecting literature-based data to solve a single patient-related problem can require more time than practicing physicians or residents can spare. Clinical librarians, as informationists, are uniquely suited to assist physicians in this endeavor. To improve support for evidence-based practice, we have developed a web-based EBM library consult service application (LCS). Librarians use the LCS system to provide full text evidence-based literature with critical appraisal in response to a clinical question asked by a remote physician. LCS uses an entirely Free/Open Source Software platform and will be released under a Free Software license. In the first year of the LCS project, the software was successfully developed and a reference implementation put into active use. Two years of evaluation of the clinical, educational, and attitudinal impact on physician-users and librarian staff are underway, and expected to lead to refinement and wide dissemination of the system. A web-based EBM library consult model may provide a useful way for informationists to assist clinicians, and is feasible to implement.
A resilient and secure software platform and architecture for distributed spacecraft
NASA Astrophysics Data System (ADS)
Otte, William R.; Dubey, Abhishek; Karsai, Gabor
2014-06-01
A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.
Health IT for Patient Safety and Improving the Safety of Health IT.
Magrabi, Farah; Ong, Mei-Sing; Coiera, Enrico
2016-01-01
Alongside their benefits health IT applications can pose new risks to patient safety. Problems with IT have been linked to many different types of clinical errors including prescribing and administration of medications; as well as wrong-patient, wrong-site errors, and delays in procedures. There is also growing concern about the risks of data breach and cyber-security. IT-related clinical errors have their origins in processes undertaken to design, build, implement and use software systems in a broader sociotechnical context. Safety can be improved with greater standardization of clinical software and by improving the quality of processes at different points in the technology life cycle, spanning design, build, implementation and use in clinical settings. Oversight processes can be set up at a regional or national level to ensure that clinical software systems meet specific standards. Certification and regulation are two mechanisms to improve oversight. In the absence of clear standards, guidelines are useful to promote safe design and implementation practices. Processes to identify and mitigate hazards can be formalised via a safety management system. Minimizing new patient safety risks is critical to realizing the benefits of IT.
An assessment of space shuttle flight software development processes
NASA Technical Reports Server (NTRS)
1993-01-01
In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.
Pattern Generator for Bench Test of Digital Boards
NASA Technical Reports Server (NTRS)
Berkun, Andrew C.; Chu, Anhua J.
2012-01-01
All efforts to develop electronic equipment reach a stage where they need a board test station for each board. The SMAP digital system consists of three board types that interact with each other using interfaces with critical timing. Each board needs to be tested individually before combining into the integrated digital electronics system. Each board needs critical timing signals from the others to be able to operate. A bench test system was developed to support test of each board. The test system produces all the outputs of the control and timing unit, and is delivered much earlier than the timing unit. Timing signals are treated as data. A large file is generated containing the state of every timing signal at any instant. This file is streamed out to an IO card, which is wired directly to the device-under-test (DUT) input pins. This provides a flexible test environment that can be adapted to any of the boards required to test in a standalone configuration. The problem of generating the critical timing signals is then transferred from a hardware problem to a software problem where it is more easily dealt with.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkeun; Chen, Liangzhe; Duan, Sisi
Abstract Critical Infrastructures (CIs) such as energy, water, and transportation are complex networks that are crucial for sustaining day-to-day commodity flows vital to national security, economic stability, and public safety. The nature of these CIs is such that failures caused by an extreme weather event or a man-made incident can trigger widespread cascading failures, sending ripple effects at regional or even national scales. To minimize such effects, it is critical for emergency responders to identify existing or potential vulnerabilities within CIs during such stressor events in a systematic and quantifiable manner and take appropriate mitigating actions. We present here amore » novel critical infrastructure monitoring and analysis system named URBAN-NET. The system includes a software stack and tools for monitoring CIs, pre-processing data, interconnecting multiple CI datasets as a heterogeneous network, identifying vulnerabilities through graph-based topological analysis, and predicting consequences based on what-if simulations along with visualization. As a proof-of-concept, we present several case studies to show the capabilities of our system. We also discuss remaining challenges and future work.« less
micROS: a morphable, intelligent and collective robot operating system.
Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng
2016-01-01
Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.
Ronquillo, Jay G; Zuckerman, Diana M
2017-09-01
Policy Points: Medical software has become an increasingly critical component of health care, yet the regulation of these devices is inconsistent and controversial. No studies of medical devices and software assess the impact on patient safety of the FDA's current regulatory safeguards and new legislative changes to those standards. Our analysis quantifies the impact of software problems in regulated medical devices and indicates that current regulations are necessary but not sufficient for ensuring patient safety by identifying and eliminating dangerous defects in software currently on the market. New legislative changes will further deregulate health IT, reducing safeguards that facilitate the reporting and timely recall of flawed medical software that could harm patients. Medical software has become an increasingly critical component of health care, yet the regulatory landscape for digital health is inconsistent and controversial. To understand which policies might best protect patients, we examined the impact of the US Food and Drug Administration's (FDA's) regulatory safeguards on software-related technologies in recent years and the implications for newly passed legislative changes in regulatory policy. Using FDA databases, we identified all medical devices that were recalled from 2011 through 2015 primarily because of software defects. We counted all software-related recalls for each FDA risk category and evaluated each high-risk and moderate-risk recall of electronic medical records to determine the manufacturer, device classification, submission type, number of units, and product details. A total of 627 software devices (1.4 million units) were subject to recalls, with 12 of these devices (190,596 units) subject to the highest-risk recalls. Eleven of the devices recalled as high risk had entered the market through the FDA review process that does not require evidence of safety or effectiveness, and one device was completely exempt from regulatory review. The largest high-risk recall categories were anesthesiology and general hospital, with one each in cardiovascular and neurology. Five electronic medical record systems (9,347 units) were recalled for software defects classified as posing a moderate risk to patient safety. Software problems in medical devices are not rare and have the potential to negatively influence medical care. Premarket regulation has not captured all the software issues that could harm patients, evidenced by the potentially large number of patients exposed to software products later subject to high-risk and moderate-risk recalls. Provisions of the 21st Century Cures Act that became law in late 2016 will reduce safeguards further. Absent stronger regulations and implementation to create robust risk assessment and adverse event reporting, physicians and their patients are likely to be at risk from medical errors caused by software-related problems in medical devices. © 2017 Milbank Memorial Fund.
Evolving software reengineering technology for the emerging innovative-competitive era
NASA Technical Reports Server (NTRS)
Hwang, Phillip Q.; Lock, Evan; Prywes, Noah
1994-01-01
This paper reports on a multi-tool commercial/military environment combining software Domain Analysis techniques with Reusable Software and Reengineering of Legacy Software. It is based on the development of a military version for the Department of Defense (DOD). The integrated tools in the military version are: Software Specification Assistant (SSA) and Software Reengineering Environment (SRE), developed by Computer Command and Control Company (CCCC) for Naval Surface Warfare Center (NSWC) and Joint Logistics Commanders (JLC), and the Advanced Research Project Agency (ARPA) STARS Software Engineering Environment (SEE) developed by Boeing for NAVAIR PMA 205. The paper describes transitioning these integrated tools to commercial use. There is a critical need for the transition for the following reasons: First, to date, 70 percent of programmers' time is applied to software maintenance. The work of these users has not been facilitated by existing tools. The addition of Software Reengineering will also facilitate software maintenance and upgrading. In fact, the integrated tools will support the entire software life cycle. Second, the integrated tools are essential to Business Process Reengineering, which seeks radical process innovations to achieve breakthrough results. Done well, process reengineering delivers extraordinary gains in process speed, productivity and profitability. Most importantly, it discovers new opportunities for products and services in collaboration with other organizations. Legacy computer software must be changed rapidly to support innovative business processes. The integrated tools will provide commercial organizations important competitive advantages. This, in turn, will increase employment by creating new business opportunities. Third, the integrated system will produce much higher quality software than use of the tools separately. The reason for this is that producing or upgrading software requires keen understanding of extremely complex applications which is facilitated by the integrated tools. The radical savings in the time and cost associated with software, due to use of CASE tools that support combined Reuse of Software and Reengineering of Legacy Code, will add an important impetus to improving the automation of enterprises. This will be reflected in continuing operations, as well as in innovating new business processes. The proposed multi-tool software development is based on state of the art technology, which will be further advanced through the use of open systems for adding new tools and experience in their use.
2013-06-01
for crop irrigation. The disruptions also 1 idled key industries, led to billions of dollars of lost productivity, and stressed the entire Western...modify the super-system, and to resume the super-system run. 2.2 Requirements An important step in the software development life cycle is to capture...detects the . gms file and associated files in the remote directory that is allocated to the user. 4. If all of the files are present, the files are
Spot: A Programming Language for Verified Flight Software
NASA Technical Reports Server (NTRS)
Bocchino, Robert L., Jr.; Gamble, Edward; Gostelow, Kim P.; Some, Raphael R.
2014-01-01
The C programming language is widely used for programming space flight software and other safety-critical real time systems. C, however, is far from ideal for this purpose: as is well known, it is both low-level and unsafe. This paper describes Spot, a language derived from C for programming space flight systems. Spot aims to maintain compatibility with existing C code while improving the language and supporting verification with the SPIN model checker. The major features of Spot include actor-based concurrency, distributed state with message passing and transactional updates, and annotations for testing and verification. Spot also supports domain-specific annotations for managing spacecraft state, e.g., communicating telemetry information to the ground. We describe the motivation and design rationale for Spot, give an overview of the design, provide examples of Spot's capabilities, and discuss the current status of the implementation.
Trusted Autonomy for Space Flight Systems
NASA Technical Reports Server (NTRS)
Freed, Michael; Bonasso, Pete; Ingham, Mitch; Kortenkamp, David; Perix, John
2005-01-01
NASA has long supported research on intelligent control technologies that could allow space systems to operate autonomously or with reduced human supervision. Proposed uses range from automated control of entire space vehicles to mobile robots that assist or substitute for astronauts to vehicle systems such as life support that interact with other systems in complex ways and require constant vigilance. The potential for pervasive use of such technology to extend the kinds of missions that are possible in practice is well understood, as is its potential to radically improve the robustness, safety and productivity of diverse mission systems. Despite its acknowledged potential, intelligent control capabilities are rarely used in space flight systems. Perhaps the most famous example of intelligent control on a spacecraft is the Remote Agent system flown on the Deep Space One mission (1998 - 2001). However, even in this case, the role of the intelligent control element, originally intended to have full control of the spacecraft for the duration of the mission, was reduced to having partial control for a two-week non-critical period. Even this level of mission acceptance was exceptional. In most cases, mission managers consider intelligent control systems an unacceptable source of risk and elect not to fly them. Overall, the technology is not trusted. From the standpoint of those who need to decide whether to incorporate this technology, lack of trust is easy to understand. Intelligent high-level control means allowing software io make decisions that are too complex for conventional software. The decision-making behavior of these systems is often hard to understand and inspect, and thus hard to evaluate. Moreover, such software is typically designed and implemented either as a research product or custom-built for a particular mission. In the former case, software quality is unlikely to be adequate for flight qualification and the functionality provided by the system is likely driven largely by the need to publish innovative work. In the latter case, the mission represents the first use of the system, a risky proposition even for relatively simple software.
Shuttle orbiter Ku-band radar/communications system design evaluation
NASA Technical Reports Server (NTRS)
Dodds, J.; Holmes, J.; Huth, G. K.; Iwasaki, R.; Maronde, R.; Polydoros, A.; Weber, C.; Broad, P.
1980-01-01
Tasks performed in an examination and critique of a Ku-band radar communications system for the shuttle orbiter are reported. Topics cover: (1) Ku-band high gain antenna/widebeam horn design evaluation; (2) evaluation of the Ku-band SPA and EA-1 LRU software; (3) system test evaluation; (4) critical design review and development test evaluation; (5) Ku-band bent pipe channel performance evaluation; (6) Ku-band LRU interchangeability analysis; and (7) deliverable test equipment evaluation. Where discrepancies were found, modifications and improvements to the Ku-band system and the associated test procedures are suggested.
Chopda, Viki R; Gomes, James; Rathore, Anurag S
2016-01-01
Bioreactor control significantly impacts both the amount and quality of the product being manufactured. The complexity of the control strategy that is implemented increases with reactor size, which may vary from thousands to tens of thousands of litres in commercial manufacturing. The Process Analytical Technology (PAT) initiative has highlighted the need for having robust monitoring tools and effective control schemes that are capable of taking real time information about the critical quality attributes (CQA) and the critical process parameters (CPP) and executing immediate response as soon as a deviation occurs. However, the limited flexibility that present commercial software packages offer creates a hurdle. Visual programming environments have gradually emerged as potential alternatives to the available text based languages. This paper showcases development of an integrated programme using a visual programming environment for a Sartorius BIOSTAT® B Plus 5L bioreactor through which various peripheral devices are interfaced. The proposed programme facilitates real-time access to data and allows for execution of control actions to follow the desired trajectory. Major benefits of such integrated software system include: (i) improved real time monitoring and control; (ii) reduced variability; (iii) improved performance; (iv) reduced operator-training time; (v) enhanced knowledge management; and (vi) easier PAT implementation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging
Entenberg, David; Wyckoff, Jeffrey; Gligorijevic, Bojana; Roussos, Evanthia T; Verkhusha, Vladislav V; Pollard, Jeffrey W; Condeelis, John
2014-01-01
Characterizing biological mechanisms dependent upon the interaction of many cell types in vivo requires both multiphoton microscope systems capable of expanding the number and types of fluorophores that can be imaged simultaneously while removing the wavelength and tunability restrictions of existing systems, and enhanced software for extracting critical cellular parameters from voluminous 4D data sets. We present a procedure for constructing a two-laser multiphoton microscope that extends the wavelength range of excitation light, expands the number of simultaneously usable fluorophores and markedly increases signal to noise via ‘over-clocking’ of detection. We also utilize a custom-written software plug-in that simplifies the quantitative tracking and analysis of 4D intravital image data. We begin by describing the optics, hardware, electronics and software required, and finally the use of the plug-in for analysis. We demonstrate the use of the setup and plug-in by presenting data collected via intravital imaging of a mouse model of breast cancer. The procedure may be completed in ~24 h. PMID:21959234
Enabling Co-Design of Multi-Layer Exascale Storage Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carothers, Christopher
Growing demands for computing power in applications such as energy production, climate analysis, computational chemistry, and bioinformatics have propelled computing systems toward the exascale: systems with 10 18 floating-point operations per second. These systems, to be designed and constructed over the next decade, will create unprecedented challenges in component counts, power consumption, resource limitations, and system complexity. Data storage and access are an increasingly important and complex component in extreme-scale computing systems, and significant design work is needed to develop successful storage hardware and software architectures at exascale. Co-design of these systems will be necessary to find the best possiblemore » design points for exascale systems. The goal of this work has been to enable the exploration and co-design of exascale storage systems by providing a detailed, accurate, and highly parallel simulation of exascale storage and the surrounding environment. Specifically, this simulation has (1) portrayed realistic application checkpointing and analysis workloads, (2) captured the complexity, scale, and multilayer nature of exascale storage hardware and software, and (3) executed in a timeframe that enables “what if'” exploration of design concepts. We developed models of the major hardware and software components in an exascale storage system, as well as the application I/O workloads that drive them. We used our simulation system to investigate critical questions in reliability and concurrency at exascale, helping guide the design of future exascale hardware and software architectures. Additionally, we provided this system to interested vendors and researchers so that others can explore the design space. We validated the capabilities of our simulation environment by configuring the simulation to represent the Argonne Leadership Computing Facility Blue Gene/Q system and comparing simulation results for application I/O patterns to the results of executions of these I/O kernels on the actual system.« less
Case Studies for Enhancing Student Engagement and Active Learning in Software V&V Education
ERIC Educational Resources Information Center
Manohar, Priyadarshan A.; Acharya, Sushil; Wu, Peter; Hansen, Mary; Ansari, Ali; Schilling, Walter
2015-01-01
Two critical problems facing the software (S/W) industry today are the lack of appreciation of the full benefits that can be derived from Software Verification and Validation (V&V) and an associated problem of shortage of adequately trained V&V practitioners. To address this situation, the software V&V course curriculum at the author's…
Microcomputers: Software Evaluation. Evaluation Guides. Guide Number 17.
ERIC Educational Resources Information Center
Gray, Peter J.
This guide discusses three critical steps in selecting microcomputer software and hardware: setting the context, software evaluation, and managing microcomputer use. Specific topics addressed include: (1) conducting an informal task analysis to determine how the potential user's time is spent; (2) identifying tasks amenable to computerization and…
NASA Technical Reports Server (NTRS)
Lyle, Stacey D.
2009-01-01
A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server.
Software development kit for a compact cryo-refrigerator
NASA Astrophysics Data System (ADS)
Gardiner, J.; Hamilton, J.; Lawton, J.; Knight, K.; Wilson, A.; Spagna, S.
2017-12-01
This paper introduces a Software Development Kit (SDK) that enables the creation of custom software applications that automate the control of a cryo-refrigerator (Quantum Design model GA-1) in third party instruments. A remote interface allows real time tracking and logging of critical system diagnostics such as pressures, temperatures, valve states and run modes. The helium compressor scroll capsule speed and Gifford-McMahon (G-M) cold head speed can be manually adjusted over a serial communication line via a CAN interface. This configuration optimizes cooling power, while reducing wear on moving components thus extending service life. Additionally, a proportional speed control mode allows for automated throttling of speeds based on temperature or pressure feedback from a 3rd party device. Warm up and cool down modes allow 1st and 2nd stage temperatures to be adjusted without the use of external heaters.
Bega - Android-Based Beergame Simulation Software for Interactive Training and Innovation
NASA Astrophysics Data System (ADS)
Lestyánszka Škůrková, Katarína; Szander, Norina
2013-12-01
The supply chain management challenges and inventory holding problems can easily be demonstrated by the widely known BeerGame simulation. In the Szabó-Szoba R&D Laboratory, we developed an android-based software application for tablets and smart phones for the purpose of having an adaptable, entertaining and effective program which can provide a real life experience to the participants about the nature of the bullwhip effect. Having an appropriate and comprehensive performance measurement system with the critical parameters and KPIs is inevitable for finding the right solutions - We used four perspectives of the Balanced Scorecard method. The innovative force of our research is based on the trainings: the discussion on outcomes and the team learning. The purpose of the current development is to build a new feature in the software: an artificial client can substitute one or more players in the supply chain, which makes decisions by using genetic algorithms.
Telescience Resource Kit Software Lifecycle
NASA Technical Reports Server (NTRS)
Griner, Carolyn S.; Schneider, Michelle
1998-01-01
The challenge of a global operations capability led to the Telescience Resource Kit (TReK) project, an in-house software development project of the Mission Operations Laboratory (MOL) at NASA's Marshall Space Flight Center (MSFC). The TReK system is being developed as an inexpensive comprehensive personal computer- (PC-) based ground support system that can be used by payload users from their home sites to interact with their payloads on board the International Space Station (ISS). The TReK project is currently using a combination of the spiral lifecycle model and the incremental lifecycle model. As with any software development project, there are four activities that can be very time consuming: Software design and development, project documentation, testing, and umbrella activities, such as quality assurance and configuration management. In order to produce a quality product, it is critical that each of these activities receive the appropriate amount of attention. For TReK, the challenge was to lay out a lifecycle and project plan that provides full support for these activities, is flexible, provides a way to deal with changing risks, can accommodate unknowns, and can respond to changes in the environment quickly. This paper will provide an overview of the TReK lifecycle, a description of the project's environment, and a general overview of project activities.
NASA Technical Reports Server (NTRS)
Goethel, Thomas; Glesner, Sabine
2009-01-01
The correctness of safety-critical embedded software is crucial, whereas non-functional properties like deadlock-freedom and real-time constraints are particularly important. The real-time calculus Timed Communicating Sequential Processes (CSP) is capable of expressing such properties and can therefore be used to verify embedded software. In this paper, we present our formalization of Timed CSP in the Isabelle/HOL theorem prover, which we have formulated as an operational coalgebraic semantics together with bisimulation equivalences and coalgebraic invariants. Furthermore, we apply these techniques in an abstract specification with real-time constraints, which is the basis for current work in which we verify the components of a simple real-time operating system deployed on a satellite.
Formulation of a strategy for monitoring control integrity in critical digital control systems
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe
1991-01-01
Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.
Rocket Engine Health Management: Early Definition of Critical Flight Measurements
NASA Technical Reports Server (NTRS)
Christenson, Rick L.; Nelson, Michael A.; Butas, John P.
2003-01-01
The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.
Babar, Muhammad Imran; Ghazali, Masitah; Jawawi, Dayang N A; Bin Zaheer, Kashif
2015-01-01
Value-based requirements engineering plays a vital role in the development of value-based software (VBS). Stakeholders are the key players in the requirements engineering process, and the selection of critical stakeholders for the VBS systems is highly desirable. Based on the stakeholder requirements, the innovative or value-based idea is realized. The quality of the VBS system is associated with the concrete set of valuable requirements, and the valuable requirements can only be obtained if all the relevant valuable stakeholders participate in the requirements elicitation phase. The existing value-based approaches focus on the design of the VBS systems. However, the focus on the valuable stakeholders and requirements is inadequate. The current stakeholder identification and quantification (SIQ) approaches are neither state-of-the-art nor systematic for the VBS systems. The existing approaches are time-consuming, complex and inconsistent which makes the initiation process difficult. Moreover, the main motivation of this research is that the existing SIQ approaches do not provide the low level implementation details for SIQ initiation and stakeholder metrics for quantification. Hence, keeping in view the existing SIQ problems, this research contributes in the form of a new SIQ framework called 'StakeMeter'. The StakeMeter framework is verified and validated through case studies. The proposed framework provides low-level implementation guidelines, attributes, metrics, quantification criteria and application procedure as compared to the other methods. The proposed framework solves the issues of stakeholder quantification or prioritization, higher time consumption, complexity, and process initiation. The framework helps in the selection of highly critical stakeholders for the VBS systems with less judgmental error.
Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines
NASA Astrophysics Data System (ADS)
Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath
2017-04-01
The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.
Collaborative engineering and design management for the Hobby-Eberly Telescope tracker upgrade
NASA Astrophysics Data System (ADS)
Mollison, Nicholas T.; Hayes, Richard J.; Good, John M.; Booth, John A.; Savage, Richard D.; Jackson, John R.; Rafal, Marc D.; Beno, Joseph H.
2010-07-01
The engineering and design of systems as complex as the Hobby-Eberly Telescope's* new tracker require that multiple tasks be executed in parallel and overlapping efforts. When the design of individual subsystems is distributed among multiple organizations, teams, and individuals, challenges can arise with respect to managing design productivity and coordinating successful collaborative exchanges. This paper focuses on design management issues and current practices for the tracker design portion of the Hobby-Eberly Telescope Wide Field Upgrade project. The scope of the tracker upgrade requires engineering contributions and input from numerous fields including optics, instrumentation, electromechanics, software controls engineering, and site-operations. Successful system-level integration of tracker subsystems and interfaces is critical to the telescope's ultimate performance in astronomical observation. Software and process controls for design information and workflow management have been implemented to assist the collaborative transfer of tracker design data. The tracker system architecture and selection of subsystem interfaces has also proven to be a determining factor in design task formulation and team communication needs. Interface controls and requirements change controls will be discussed, and critical team interactions are recounted (a group-participation Failure Modes and Effects Analysis [FMEA] is one of special interest). This paper will be of interest to engineers, designers, and managers engaging in multi-disciplinary and parallel engineering projects that require coordination among multiple individuals, teams, and organizations.
Why and how Mastering an Incremental and Iterative Software Development Process
NASA Astrophysics Data System (ADS)
Dubuc, François; Guichoux, Bernard; Cormery, Patrick; Mescam, Jean Christophe
2004-06-01
One of the key issues regularly mentioned in the current software crisis of the space domain is related to the software development process that must be performed while the system definition is not yet frozen. This is especially true for complex systems like launchers or space vehicles.Several more or less mature solutions are under study by EADS SPACE Transportation and are going to be presented in this paper. The basic principle is to develop the software through an iterative and incremental process instead of the classical waterfall approach, with the following advantages:- It permits systematic management and incorporation of requirements changes over the development cycle with a minimal cost. As far as possible the most dimensioning requirements are analyzed and developed in priority for validating very early the architecture concept without the details.- A software prototype is very quickly available. It improves the communication between system and software teams, as it enables to check very early and efficiently the common understanding of the system requirements.- It allows the software team to complete a whole development cycle very early, and thus to become quickly familiar with the software development environment (methodology, technology, tools...). This is particularly important when the team is new, or when the environment has changed since the previous development. Anyhow, it improves a lot the learning curve of the software team.These advantages seem very attractive, but mastering efficiently an iterative development process is not so easy and induces a lot of difficulties such as:- How to freeze one configuration of the system definition as a development baseline, while most of thesystem requirements are completely and naturally unstable?- How to distinguish stable/unstable and dimensioning/standard requirements?- How to plan the development of each increment?- How to link classical waterfall development milestones with an iterative approach: when should theclassical reviews be performed: Software Specification Review? Preliminary Design Review? CriticalDesign Review? Code Review? Etc...Several solutions envisaged or already deployed by EADS SPACE Transportation will be presented, both from a methodological and technological point of view:- How the MELANIE EADS ST internal methodology improves the concurrent engineering activitiesbetween GNC, software and simulation teams in a very iterative and reactive way.- How the CMM approach can help by better formalizing Requirements Management and Planningprocesses.- How the Automatic Code Generation with "certified" tools (SCADE) can still dramatically shorten thedevelopment cycle.Then the presentation will conclude by showing an evaluation of the cost and planning reduction based on a pilot application by comparing figures on two similar projects: one with the classical waterfall process, the other one with an iterative and incremental approach.
Built To Last: Using Iterative Development Models for Sustainable Scientific Software Development
NASA Astrophysics Data System (ADS)
Jasiak, M. E.; Truslove, I.; Savoie, M.
2013-12-01
In scientific research, software development exists fundamentally for the results they create. The core research must take focus. It seems natural to researchers, driven by grant deadlines, that every dollar invested in software development should be used to push the boundaries of problem solving. This system of values is frequently misaligned with those of the software being created in a sustainable fashion; short-term optimizations create longer-term sustainability issues. The National Snow and Ice Data Center (NSIDC) has taken bold cultural steps in using agile and lean development and management methodologies to help its researchers meet critical deadlines, while building in the necessary support structure for the code to live far beyond its original milestones. Agile and lean software development and methodologies including Scrum, Kanban, Continuous Delivery and Test-Driven Development have seen widespread adoption within NSIDC. This focus on development methods is combined with an emphasis on explaining to researchers why these methods produce more desirable results for everyone, as well as promoting developers interacting with researchers. This presentation will describe NSIDC's current scientific software development model, how this addresses the short-term versus sustainability dichotomy, the lessons learned and successes realized by transitioning to this agile and lean-influenced model, and the current challenges faced by the organization.
PDS4: Developing the Next Generation Planetary Data System
NASA Technical Reports Server (NTRS)
Crichton, D.; Beebe, R.; Hughes, S.; Stein, T.; Grayzeck, E.
2011-01-01
The Planetary Data System (PDS) is in the midst of a major upgrade to its system. This upgrade is a critical modernization of the PDS as it prepares to support the future needs of both the mission and scientific community. It entails improvements to the software system and the data standards, capitalizing on newer, data system approaches. The upgrade is important not only for the purpose of capturing results from NASA planetary science missions, but also for improving standards and interoperability among international planetary science data archives. As the demands of the missions and science community increase, PDS is positioning itself to evolve and meet those demands.
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-01-01
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596
The 30/20 GHz demonstration system SSUS-D/BSE
NASA Technical Reports Server (NTRS)
1981-01-01
The systems consisting of a 30/20 GHz communication satellite featuring a multiple fixed beam and scanning beam antenna, SS-TDMA, onboard processing and high power TWT's and IMPATT amplifiers, a trunking space-diversity Earth station, a customer premise system (CPS) portable Earth station and a Master Control Station. Hardware, software and personnel are included to build and launch one satellite and to carry on a two year experimentation and demonstration period of advanced Ka-band systems concepts and technology. Included are first level plans identifying all tasks, a schedule for system development and an assessment of critical technology and risk and a preliminary experiments plan.
Autonomy Software: V&V Challenges and Characteristics
NASA Technical Reports Server (NTRS)
Schumann, Johann; Visser, Willem
2006-01-01
The successful operation of unmanned air vehicles requires software with a high degree of autonomy. Only if high level functions can be carried out without human control and intervention, complex missions in a changing and potentially unknown environment can be carried out successfully. Autonomy software is highly mission and safety critical: failures, caused by flaws in the software cannot only jeopardize the mission, but could also endanger human life (e.g., a crash of an UAV in a densely populated area). Due to its large size, high complexity, and use of specialized algorithms (planner, constraint-solver, etc.), autonomy software poses specific challenges for its verification, validation, and certification. -- - we have carried out a survey among researchers aid scientists at NASA to study these issues. In this paper, we will present major results of this study, discussing the broad spectrum. of notions and characteristics of autonomy software and its challenges for design and development. A main focus of this survey was to evaluate verification and validation (V&V) issues and challenges, compared to the development of "traditional" safety-critical software. We will discuss important issues in V&V of autonomous software and advanced V&V tools which can help to mitigate software risks. Results of this survey will help to identify and understand safety concerns in autonomy software and will lead to improved strategies for mitigation of these risks.
WE-G-BRA-02: SafetyNet: Automating Radiotherapy QA with An Event Driven Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, S; Kessler, M; Litzenberg, D
2015-06-15
Purpose: Quality assurance is an essential task in radiotherapy that often requires many manual tasks. We investigate the use of an event driven framework in conjunction with software agents to automate QA and eliminate wait times. Methods: An in house developed subscription-publication service, EventNet, was added to the Aria OIS to be a message broker for critical events occurring in the OIS and software agents. Software agents operate without user intervention and perform critical QA steps. The results of the QA are documented and the resulting event is generated and passed back to EventNet. Users can subscribe to those eventsmore » and receive messages based on custom filters designed to send passing or failing results to physicists or dosimetrists. Agents were developed to expedite the following QA tasks: Plan Revision, Plan 2nd Check, SRS Winston-Lutz isocenter, Treatment History Audit, Treatment Machine Configuration. Results: Plan approval in the Aria OIS was used as the event trigger for plan revision QA and Plan 2nd check agents. The agents pulled the plan data, executed the prescribed QA, stored the results and updated EventNet for publication. The Winston Lutz agent reduced QA time from 20 minutes to 4 minutes and provided a more accurate quantitative estimate of radiation isocenter. The Treatment Machine Configuration agent automatically reports any changes to the Treatment machine or HDR unit configuration. The agents are reliable, act immediately, and execute each task identically every time. Conclusion: An event driven framework has inverted the data chase in our radiotherapy QA process. Rather than have dosimetrists and physicists push data to QA software and pull results back into the OIS, the software agents perform these steps immediately upon receiving the sentinel events from EventNet. Mr Keranen is an employee of Varian Medical Systems. Dr. Moran’s institution receives research support for her effort for a linear accelerator QA project from Varian Medical Systems. Other quality projects involving her effort are funded by Blue Cross Blue Shield of Michigan, Breast Cancer Research Foundation, and the NIH.« less
Software Graphics Processing Unit (sGPU) for Deep Space Applications
NASA Technical Reports Server (NTRS)
McCabe, Mary; Salazar, George; Steele, Glen
2015-01-01
A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an Software Graphics Processing Unit (sGPU)comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety-critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.
Energy 101: Energy Efficient Data Centers
None
2018-04-16
Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance componentsâup to 3% of all U.S. electricity powers data centers. And as more information comes online, data centers will consume even more energy. Data centers can become more energy efficient by incorporating features like power-saving "stand-by" modes, energy monitoring software, and efficient cooling systems instead of energy-intensive air conditioners. These and other efficiency improvements to data centers can produce significant energy savings, reduce the load on the electric grid, and help protect the nation by increasing the reliability of critical computer operations.
Havens: Explicit Reliable Memory Regions for HPC Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hukerikar, Saurabh; Engelmann, Christian
2016-01-01
Supporting error resilience in future exascale-class supercomputing systems is a critical challenge. Due to transistor scaling trends and increasing memory density, scientific simulations are expected to experience more interruptions caused by transient errors in the system memory. Existing hardware-based detection and recovery techniques will be inadequate to manage the presence of high memory fault rates. In this paper we propose a partial memory protection scheme based on region-based memory management. We define the concept of regions called havens that provide fault protection for program objects. We provide reliability for the regions through a software-based parity protection mechanism. Our approach enablesmore » critical program objects to be placed in these havens. The fault coverage provided by our approach is application agnostic, unlike algorithm-based fault tolerance techniques.« less
Gurdita, Akshay; Vovko, Heather; Ungrin, Mark
2016-01-01
Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a “Raspberry Pi” single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them. PMID:26771659
NASA Technical Reports Server (NTRS)
Lu, George C.
2003-01-01
The purpose of the EXPRESS (Expedite the PRocessing of Experiments to Space Station) rack project is to provide a set of predefined interfaces for scientific payloads which allow rapid integration into a payload rack on International Space Station (ISS). VxWorks' was selected as the operating system for the rack and payload resource controller, primarily based on the proliferation of VME (Versa Module Eurocard) products. These products provide needed flexibility for future hardware upgrades to meet everchanging science research rack configuration requirements. On the International Space Station, there are multiple science research rack configurations, including: 1) Human Research Facility (HRF); 2) EXPRESS ARIS (Active Rack Isolation System); 3) WORF (Window Observational Research Facility); and 4) HHR (Habitat Holding Rack). The RIC (Rack Interface Controller) connects payloads to the ISS bus architecture for data transfer between the payload and ground control. The RIC is a general purpose embedded computer which supports multiple communication protocols, including fiber optic communication buses, Ethernet buses, EIA-422, Mil-Std-1553 buses, SMPTE (Society Motion Picture Television Engineers)-170M video, and audio interfaces to payloads and the ISS. As a cost saving and software reliability strategy, the Boeing Payload Software Organization developed reusable common software where appropriate. These reusable modules included a set of low-level driver software interfaces to 1553B. RS232, RS422, Ethernet buses, HRDL (High Rate Data Link), video switch functionality, telemetry processing, and executive software hosted on the FUC computer. These drivers formed the basis for software development of the HRF, EXPRESS, EXPRESS ARIS, WORF, and HHR RIC executable modules. The reusable RIC common software has provided extensive benefits, including: 1) Significant reduction in development flow time; 2) Minimal rework and maintenance; 3) Improved reliability; and 4) Overall reduction in software life cycle cost. Due to the limited number of crew hours available on ISS for science research, operational efficiency is a critical customer concern. The current method of upgrading RIC software is a time consuming process; thus, an improved methodology for uploading RIC software is currently under evaluation.
Virtual test: A student-centered software to measure student's critical thinking on human disease
NASA Astrophysics Data System (ADS)
Rusyati, Lilit; Firman, Harry
2016-02-01
The study "Virtual Test: A Student-Centered Software to Measure Student's Critical Thinking on Human Disease" is descriptive research. The background is importance of computer-based test that use element and sub element of critical thinking. Aim of this study is development of multiple choices to measure critical thinking that made by student-centered software. Instruments to collect data are (1) construct validity sheet by expert judge (lecturer and medical doctor) and professional judge (science teacher); and (2) test legibility sheet by science teacher and junior high school student. Participants consisted of science teacher, lecturer, and medical doctor as validator; and the students as respondent. Result of this study are describe about characteristic of virtual test that use to measure student's critical thinking on human disease, analyze result of legibility test by students and science teachers, analyze result of expert judgment by science teachers and medical doctor, and analyze result of trial test of virtual test at junior high school. Generally, result analysis shown characteristic of multiple choices to measure critical thinking was made by eight elements and 26 sub elements that developed by Inch et al.; complete by relevant information; and have validity and reliability more than "enough". Furthermore, specific characteristic of multiple choices to measure critical thinking are information in form science comic, table, figure, article, and video; correct structure of language; add source of citation; and question can guide student to critical thinking logically.
Participatory Design, User Involvement and Health IT Evaluation.
Kushniruk, Andre; Nøhr, Christian
2016-01-01
End user involvement and input into the design and evaluation of information systems has been recognized as being a critical success factor in the adoption of information systems. Nowhere is this need more critical than in the design of health information systems. Consistent with evidence from the general software engineering literature, the degree of user input into design of complex systems has been identified as one of the most important factors in the success or failure of complex information systems. The participatory approach goes beyond user-centered design and co-operative design approaches to include end users as more active participants in design ideas and decision making. Proponents of participatory approaches argue for greater end user participation in both design and evaluative processes. Evidence regarding the effectiveness of increased user involvement in design is explored in this contribution in the context of health IT. The contribution will discuss several approaches to including users in design and evaluation. Challenges in IT evaluation during participatory design will be described and explored along with several case studies.
A rule-based system for real-time analysis of control systems
NASA Astrophysics Data System (ADS)
Larson, Richard R.; Millard, D. Edward
1992-10-01
An approach to automate the real-time analysis of flight critical health monitoring and system status is being developed and evaluated at the NASA Dryden Flight Research Facility. A software package was developed in-house and installed as part of the extended aircraft interrogation and display system. This design features a knowledge-base structure in the form of rules to formulate interpretation and decision logic of real-time data. This technique has been applied for ground verification and validation testing and flight testing monitoring where quick, real-time, safety-of-flight decisions can be very critical. In many cases post processing and manual analysis of flight system data are not required. The processing is described of real-time data for analysis along with the output format which features a message stack display. The development, construction, and testing of the rule-driven knowledge base, along with an application using the X-31A flight test program, are presented.
A rule-based system for real-time analysis of control systems
NASA Technical Reports Server (NTRS)
Larson, Richard R.; Millard, D. Edward
1992-01-01
An approach to automate the real-time analysis of flight critical health monitoring and system status is being developed and evaluated at the NASA Dryden Flight Research Facility. A software package was developed in-house and installed as part of the extended aircraft interrogation and display system. This design features a knowledge-base structure in the form of rules to formulate interpretation and decision logic of real-time data. This technique has been applied for ground verification and validation testing and flight testing monitoring where quick, real-time, safety-of-flight decisions can be very critical. In many cases post processing and manual analysis of flight system data are not required. The processing is described of real-time data for analysis along with the output format which features a message stack display. The development, construction, and testing of the rule-driven knowledge base, along with an application using the X-31A flight test program, are presented.
High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations
NASA Technical Reports Server (NTRS)
Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.
2003-01-01
Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.
Risk-based Classification of Incidents
NASA Technical Reports Server (NTRS)
Greenwell, William S.; Knight, John C.; Strunk, Elisabeth A.
2003-01-01
As the penetration of software into safety-critical systems progresses, accidents and incidents involving software will inevitably become more frequent. Identifying lessons from these occurrences and applying them to existing and future systems is essential if recurrences are to be prevented. Unfortunately, investigative agencies do not have the resources to fully investigate every incident under their jurisdictions and domains of expertise and thus must prioritize certain occurrences when allocating investigative resources. In the aviation community, most investigative agencies prioritize occurrences based on the severity of their associated losses, allocating more resources to accidents resulting in injury to passengers or extensive aircraft damage. We argue that this scheme is inappropriate because it undervalues incidents whose recurrence could have a high potential for loss while overvaluing fairly straightforward accidents involving accepted risks. We then suggest a new strategy for prioritizing occurrences based on the risk arising from incident recurrence.
Applications and testing of the LSCAD system
NASA Astrophysics Data System (ADS)
Althouse, Mark L.; Gross, Robert L.; Ditillo, John T.; Lagna, William M.; Kolodzey, Steve J.; Keiser, Christopher C.; Nasers, Gary D.
1996-06-01
The lightweight standoff chemical agent detector (LSCAD) is an infrared Michelson interferometer operating in the 8 - 13 micron band and is designed primarily for military contamination avoidance and early warning applications. The system is designed to be operated autonomously from a vehicle while on the move and provide 360 degree coverage. The first group of prototypes were delivered in 1994 and have undergone integration into several platforms including the HMMWV, the M2 Bradley Fighting Vehicle, the M109 self- propelled Howitzer and the Pioneer and Hurricane unmanned air vehicles (UAVs). Additional vehicles and platforms are planned. To meet the restrictions of military applications, the prototype interferometer subsystem has a weight of about 10 lbs and is approximately 0.20 cu fit in size. The full system size and weight depends upon the particular platform and its operational requirements. LSCAD employs onboard instrument control, data collection, analysis and target detection decision software, all of which are critical to real-time operation. The hardware, software, and test results are discussed.
Object-oriented Tools for Distributed Computing
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1993-01-01
Distributed computing systems are proliferating, owing to the availability of powerful, affordable microcomputers and inexpensive communication networks. A critical problem in developing such systems is getting application programs to interact with one another across a computer network. Remote interprogram connectivity is particularly challenging across heterogeneous environments, where applications run on different kinds of computers and operating systems. NetWorks! (trademark) is an innovative software product that provides an object-oriented messaging solution to these problems. This paper describes the design and functionality of NetWorks! and illustrates how it is being used to build complex distributed applications for NASA and in the commercial sector.
Characterization of a Recoverable Flight Control Computer System
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar; Torres, Wilfredo
1999-01-01
The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time-critical communication of data and commands between the RCS and flight simulation code in real-time while meeting the stringent hard deadlines is also submitted. The performance results of the RCS and characteristics of its upset recovery scheme while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields are also discussed.
Cyber Security Threats to Safety-Critical, Space-Based Infrastructures
NASA Astrophysics Data System (ADS)
Johnson, C. W.; Atencia Yepez, A.
2012-01-01
Space-based systems play an important role within national critical infrastructures. They are being integrated into advanced air-traffic management applications, rail signalling systems, energy distribution software etc. Unfortunately, the end users of communications, location sensing and timing applications often fail to understand that these infrastructures are vulnerable to a wide range of security threats. The following pages focus on concerns associated with potential cyber-attacks. These are important because future attacks may invalidate many of the safety assumptions that support the provision of critical space-based services. These safety assumptions are based on standard forms of hazard analysis that ignore cyber-security considerations This is a significant limitation when, for instance, security attacks can simultaneously exploit multiple vulnerabilities in a manner that would never occur without a deliberate enemy seeking to damage space based systems and ground infrastructures. We address this concern through the development of a combined safety and security risk assessment methodology. The aim is to identify attack scenarios that justify the allocation of additional design resources so that safety barriers can be strengthened to increase our resilience against security threats.
Determining the nuclear data uncertainty on MONK10 and WIMS10 criticality calculations
NASA Astrophysics Data System (ADS)
Ware, Tim; Dobson, Geoff; Hanlon, David; Hiles, Richard; Mason, Robert; Perry, Ray
2017-09-01
The ANSWERS Software Service is developing a number of techniques to better understand and quantify uncertainty on calculations of the neutron multiplication factor, k-effective, in nuclear fuel and other systems containing fissile material. The uncertainty on the calculated k-effective arises from a number of sources, including nuclear data uncertainties, manufacturing tolerances, modelling approximations and, for Monte Carlo simulation, stochastic uncertainty. For determining the uncertainties due to nuclear data, a set of application libraries have been generated for use with the MONK10 Monte Carlo and the WIMS10 deterministic criticality and reactor physics codes. This paper overviews the generation of these nuclear data libraries by Latin hypercube sampling of JEFF-3.1.2 evaluated data based upon a library of covariance data taken from JEFF, ENDF/B, JENDL and TENDL evaluations. Criticality calculations have been performed with MONK10 and WIMS10 using these sampled libraries for a number of benchmark models of fissile systems. Results are presented which show the uncertainty on k-effective for these systems arising from the uncertainty on the input nuclear data.
Evaluation of a Teleform-based data collection system: a multi-center obesity research case study.
Jenkins, Todd M; Wilson Boyce, Tawny; Akers, Rachel; Andringa, Jennifer; Liu, Yanhong; Miller, Rosemary; Powers, Carolyn; Ralph Buncher, C
2014-06-01
Utilizing electronic data capture (EDC) systems in data collection and management allows automated validation programs to preemptively identify and correct data errors. For our multi-center, prospective study we chose to use TeleForm, a paper-based data capture software that uses recognition technology to create case report forms (CRFs) with similar functionality to EDC, including custom scripts to identify entry errors. We quantified the accuracy of the optimized system through a data audit of CRFs and the study database, examining selected critical variables for all subjects in the study, as well as an audit of all variables for 25 randomly selected subjects. Overall we found 6.7 errors per 10,000 fields, with similar estimates for critical (6.9/10,000) and non-critical (6.5/10,000) variables-values that fall below the acceptable quality threshold of 50 errors per 10,000 established by the Society for Clinical Data Management. However, error rates were found to widely vary by type of data field, with the highest rate observed with open text fields. Copyright © 2014 Elsevier Ltd. All rights reserved.
Checklists for the Evaluation of Educational Software: Critical Review and Prospects.
ERIC Educational Resources Information Center
Tergan, Sigmar-Olaf
1998-01-01
Reviews strengths and weaknesses of check lists for the evaluation of computer software and outlines consequences for their practical application. Suggests an approach based on an instructional design model and a comprehensive framework to cope with problems of validity and predictive power of software evaluation. Discusses prospects of the…
A software communication tool for the tele-ICU.
Pimintel, Denise M; Wei, Shang Heng; Odor, Alberto
2013-01-01
The Tele Intensive Care Unit (tele-ICU) supports a high volume, high acuity population of patients. There is a high-volume of incoming and outgoing calls, especially during the evening and night hours, through the tele-ICU hubs. The tele-ICU clinicians must be able to communicate effectively to team members in order to support the care of complex and critically ill patients while supporting and maintaining a standard to improve time to intervention. This study describes a software communication tool that will improve the time to intervention, over the paper-driven communication format presently used in the tele-ICU. The software provides a multi-relational database of message instances to mine information for evaluation and quality improvement for all entities that touch the tele-ICU. The software design incorporates years of critical care and software design experience combined with new skills acquired in an applied Health Informatics program. This software tool will function in the tele-ICU environment and perform as a front-end application that gathers, routes, and displays internal communication messages for intervention by priority and provider.
Automated response matching for organic scintillation detector arrays
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Cave, F. D.; Plenteda, R.; Tomanin, A.
2017-07-01
This paper identifies a digitizer technology with unique features that facilitates feedback control for the realization of a software-based technique for automatically calibrating detector responses. Three such auto-calibration techniques have been developed and are described along with an explanation of the main configuration settings and potential pitfalls. Automating this process increases repeatability, simplifies user operation, enables remote and periodic system calibration where consistency across detectors' responses are critical.
Speech recognition technology: an outlook for human-to-machine interaction.
Erdel, T; Crooks, S
2000-01-01
Speech recognition, as an enabling technology in healthcare-systems computing, is a topic that has been discussed for quite some time, but is just now coming to fruition. Traditionally, speech-recognition software has been constrained by hardware, but improved processors and increased memory capacities are starting to remove some of these limitations. With these barriers removed, companies that create software for the healthcare setting have the opportunity to write more successful applications. Among the criticisms of speech-recognition applications are the high rates of error and steep training curves. However, even in the face of such negative perceptions, there remains significant opportunities for speech recognition to allow healthcare providers and, more specifically, physicians, to work more efficiently and ultimately spend more time with their patients and less time completing necessary documentation. This article will identify opportunities for inclusion of speech-recognition technology in the healthcare setting and examine major categories of speech-recognition software--continuous speech recognition, command and control, and text-to-speech. We will discuss the advantages and disadvantages of each area, the limitations of the software today, and how future trends might affect them.
NASA Technical Reports Server (NTRS)
Culbert, Chris; French, Scott W.; Hamilton, David
1994-01-01
Knowledge-based systems (KBS's) are in general use in a wide variety of domains, both commercial and government. As reliance on these types of systems grows, the need to assess their quality and validity reaches critical importance. As with any software, the reliability of a KBS can be directly attributed to the application of disciplined programming and testing practices throughout the development life-cycle. However, there are some essential differences between conventional software and KBSs, both in construction and use. The identification of these differences affect the verification and validation (V&V) process and the development of techniques to handle them. The recognition of these differences is the basis of considerable on-going research in this field. For the past three years IBM (Federal Systems Company - Houston) and the Software Technology Branch (STB) of NASA/Johnson Space Center have been working to improve the 'state of the practice' in V&V of Knowledge-based systems. This work was motivated by the need to maintain NASA's ability to produce high quality software while taking advantage of new KBS technology. To date, the primary accomplishment has been the development and teaching of a four-day workshop on KBS V&V. With the hope of improving the impact of these workshops, we also worked directly with NASA KBS projects to employ concepts taught in the workshop. This paper describes two projects that were part of this effort. In addition to describing each project, this paper describes problems encountered and solutions proposed in each case, with particular emphasis on implications for transferring KBS V&V technology beyond the NASA domain.
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John
2006-01-01
Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.
Real-time operating system timing jitter and its impact on motor control
NASA Astrophysics Data System (ADS)
Proctor, Frederick M.; Shackleford, William P.
2001-12-01
General-purpose microprocessors are increasingly being used for control applications due to their widespread availability and software support for non-control functions like networking and operator interfaces. Two classes of real-time operating systems (RTOS) exist for these systems. The traditional RTOS serves as the sole operating system, and provides all OS services. Examples include ETS, LynxOS, QNX, Windows CE and VxWorks. RTOS extensions add real-time scheduling capabilities to non-real-time OSes, and provide minimal services needed for the time-critical portions of an application. Examples include RTAI and RTL for Linux, and HyperKernel, OnTime and RTX for Windows NT. Timing jitter is an issue in these systems, due to hardware effects such as bus locking, caches and pipelines, and software effects from mutual exclusion resource locks, non-preemtible critical sections, disabled interrupts, and multiple code paths in the scheduler. Jitter is typically on the order of a microsecond to a few tens of microseconds for hard real-time operating systems, and ranges from milliseconds to seconds in the worst case for soft real-time operating systems. The question of its significance on the performance of a controller arises. Naturally, the smaller the scheduling period required for a control task, the more significant is the impact of timing jitter. Aside from this intuitive relationship is the greater significance of timing on open-loop control, such as for stepper motors, than for closed-loop control, such as for servo motors. Techniques for measuring timing jitter are discussed, and comparisons between various platforms are presented. Techniques to reduce jitter or mitigate its effects are presented. The impact of jitter on stepper motor control is analyzed.
Crepaldi, Nathalia Yukie; de Lima, Inacia Bezerra; Vicentine, Fernanda Bergamini; Rodrigues, Lídia Maria Lourençon; Sanches, Tiago Lara Michelin; Ruffino-Netto, Antonio; Alves, Domingos; Rijo, Rui Pedro Charters Lopes
2018-05-08
Assessment of health information systems consider different aspects of the system itself. They focus or on the professional who will use the software or on its usability or on the software engineering metrics or on financial and managerial issues. The existent approaches are very resources consuming, disconnected, and not standardized. As the software becomes more critical in the health organizations and in patients, becoming used as a medical device or a medicine, there is an urgency to identify tools and methods that can be applied in the development process. The present work is one of the steps of a broader study to identify standardized protocols to evaluate the health information systems as medicines and medical devices are evaluated by clinical trials. The goal of the present work was to evaluate the effect of the introduction of an information system for monitoring tuberculosis treatment (SISTB) in a Brazilian municipality from the patients' perspective. The Patient Satisfaction Questionnaire and the Hospital Consumer Assessment of Healthcare Providers and Systems were answered by the patients before and after the SISTB introduction, for comparison. Patients from an outpatient clinic, formed the control group, that is, at this site was not implanted the SISTB. Descriptive statistics and mixed effects model were used for data analysis. Eighty-eight interviews were conducted in the study. The questionnaire's results presented better averages after the system introduction but were not considered statistically significant. Therefore, it was not possible to associate system implantation with improved patient satisfaction. The HIS evaluation need be complete, the technical and managerial evaluation, the safety, the impact on the professionals and direct and/or indirect impact on patients are important. Developing the right tools and methods that can evaluate the software in its entirety, from the beginning of the development cycle with a normalized scale, are needed.
Reading Diagnosis via the Microcomputer (The Printout).
ERIC Educational Resources Information Center
Weisberg, Renee; Balajthy, Ernest
1989-01-01
Examines and evaluates microcomputer software designed to assist in diagnosing students' reading abilities and making instructional decisions. Claims that existing software shows valuable potential when used sensibly and critically by trained reading clinicians. (MM)
Modeling defect trends for iterative development
NASA Technical Reports Server (NTRS)
Powell, J. D.; Spanguolo, J. N.
2003-01-01
The Employment of Defects (EoD) approach to measuring and analyzing defects seeks to identify and capture trends and phenomena that are critical to managing software quality in the iterative software development lifecycle at JPL.
Tactical Approaches for Making a Successful Satellite Passive Microwave ESDR
NASA Astrophysics Data System (ADS)
Hardman, M.; Brodzik, M. J.; Gotberg, J.; Long, D. G.; Paget, A. C.
2014-12-01
Our NASA MEaSUREs project is producing a new, enhanced resolution gridded Earth System Data Record for the entire satellite passive microwave (SMMR, SSM/I-SSMIS and AMSR-E) time series. Our project goals are twofold: to produce a well-documented, consistently processed, high-quality historical record at higher spatial resolutions than have previously been available, and to transition the production software to the NSIDC DAAC for ongoing processing after our project completion. In support of these goals, our distributed team at BYU and NSIDC faces project coordination challenges to produce a high-quality data set that our user community will accept as a replacement for the currently available historical versions of these data. We work closely with our DAAC liaison on format specifications, data and metadata plans, and project progress. In order for the user community to understand and support our project, we have solicited a team of Early Adopters who are reviewing and evaluating a prototype version of the data. Early Adopter feedback will be critical input to our final data content and format decisions. For algorithm transparency and accountability, we have released an Algorithm Theoretical Basis Document (ATBD) and detailed supporting technical documentation, with rationale for all algorithm implementation decisions. For distributed team management, we are using collaborative tools for software revision control and issue tracking. For reliably transitioning a research-quality image reconstruction software system to production-quality software suitable for use at the DAAC, we have adopted continuous integration methods for running automated regression testing. Our presentation will summarize bothadvantages and challenges of each of these tactics in ensuring production of a successful ESDR and an enduring production software system.
Operable Data Management for Ocean Observing Systems
NASA Astrophysics Data System (ADS)
Chavez, F. P.; Graybeal, J. B.; Godin, M. A.
2004-12-01
As oceanographic observing systems become more numerous and complex, data management solutions must follow. Most existing oceanographic data management systems fall into one of three categories: they have been developed as dedicated solutions, with limited application to other observing systems; they expect that data will be pre-processed into well-defined formats, such as netCDF; or they are conceived as robust, generic data management solutions, with complexity (high) and maturity and adoption rates (low) to match. Each approach has strengths and weaknesses; no approach yet fully addresses, nor takes advantage of, the sophistication of ocean observing systems as they are now conceived. In this presentation we describe critical data management requirements for advanced ocean observing systems, of the type envisioned by ORION and IOOS. By defining common requirements -- functional, qualitative, and programmatic -- for all such ocean observing systems, the performance and nature of the general data management solution can be characterized. Issues such as scalability, maintaining metadata relationships, data access security, visualization, and operational flexibility suggest baseline architectural characteristics, which may in turn lead to reusable components and approaches. Interoperability with other data management systems, with standards-based solutions in metadata specification and data transport protocols, and with the data management infrastructure envisioned by IOOS and ORION, can also be used to define necessary capabilities. Finally, some requirements for the software infrastructure of ocean observing systems can be inferred. Early operational results and lessons learned, from development and operations of MBARI ocean observing systems, are used to illustrate key requirements, choices, and challenges. Reference systems include the Monterey Ocean Observing System (MOOS), its component software systems (Software Infrastructure and Applications for MOOS, and the Shore Side Data System), and the Autonomous Ocean Sampling Network (AOSN).
Using Automation to Improve the Flight Software Testing Process
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Andrews, Stephen F.; Morgenstern, Wendy M.; Bartholomew, Maureen O.; McComas, David C.; Bauer, Frank H. (Technical Monitor)
2001-01-01
One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, attitude control, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on previous missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the perceived benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.
Using Automation to Improve the Flight Software Testing Process
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Morgenstern, Wendy M.; Bartholomew, Maureen O.
2001-01-01
One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, knowledge of attitude control, and attitude control hardware, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on other missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.
SCAILET: An intelligent assistant for satellite ground terminal operations
NASA Technical Reports Server (NTRS)
Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.
1993-01-01
NASA Lewis Research Center has applied artificial intelligence to an advanced ground terminal. This software application is being deployed as an experimenter interface to the link evaluation terminal (LET) and was named Space Communication Artificial Intelligence for the Link Evaluation Terminal (SCAILET). The high-burst-rate (HBR) LET provides 30-GHz-transmitting and 20-GHz-receiving, 220-Mbps capability for wide band communications technology experiments with the Advanced Communication Technology Satellite (ACTS). The HBR-LET terminal consists of seven major subsystems. A minicomputer controls and monitors these subsystems through an IEEE-488 or RS-232 protocol interface. Programming scripts (test procedures defined by design engineers) configure the HBR-LET and permit data acquisition. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. This discourages experimenters from utilizing the full capabilities of the HBR-LET system. An intelligent assistant module was developed as part of the SCAILET software. The intelligent assistant addresses critical experimenter needs by solving and resolving problems that are encountered during the configuring of the HBR-LET system. The intelligent assistant is a graphical user interface with an expert system running in the background. In order to further assist and familiarize an experimenter, an on-line hypertext documentation module was developed and included in the SCAILET software.
The Phenix Software for Automated Determination of Macromolecular Structures
Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor; Chen, Vincent B.; Echols, Nathaniel; Headd, Jeffrey J.; Hung, Li-Wei; Jain, Swati; Kapral, Gary J.; Grosse Kunstleve, Ralf W.; McCoy, Airlie J.; Moriarty, Nigel W.; Oeffner, Robert D.; Read, Randy J.; Richardson, David C.; Richardson, Jane S.; Terwilliger, Thomas C.; Zwart, Peter H.
2011-01-01
X-ray crystallography is a critical tool in the study of biological systems. It is able to provide information that has been a prerequisite to understanding the fundamentals of life. It is also a method that is central to the development of new therapeutics for human disease. Significant time and effort are required to determine and optimize many macromolecular structures because of the need for manual interpretation of complex numerical data, often using many different software packages, and the repeated use of interactive three-dimensional graphics. The Phenix software package has been developed to provide a comprehensive system for macromolecular crystallographic structure solution with an emphasis on automation. This has required the development of new algorithms that minimize or eliminate subjective input in favour of built-in expert-systems knowledge, the automation of procedures that are traditionally performed by hand, and the development of a computational framework that allows a tight integration between the algorithms. The application of automated methods is particularly appropriate in the field of structural proteomics, where high throughput is desired. Features in Phenix for the automation of experimental phasing with subsequent model building, molecular replacement, structure refinement and validation are described and examples given of running Phenix from both the command line and graphical user interface. PMID:21821126
A web-based library consult service for evidence-based medicine: Technical development
Schwartz, Alan; Millam, Gregory
2006-01-01
Background Incorporating evidence based medicine (EBM) into clinical practice requires clinicians to learn to efficiently gain access to clinical evidence and effectively appraise its validity. Even using current electronic systems, selecting literature-based data to solve a single patient-related problem can require more time than practicing physicians or residents can spare. Clinical librarians, as informationists, are uniquely suited to assist physicians in this endeavor. Results To improve support for evidence-based practice, we have developed a web-based EBM library consult service application (LCS). Librarians use the LCS system to provide full text evidence-based literature with critical appraisal in response to a clinical question asked by a remote physician. LCS uses an entirely Free/Open Source Software platform and will be released under a Free Software license. In the first year of the LCS project, the software was successfully developed and a reference implementation put into active use. Two years of evaluation of the clinical, educational, and attitudinal impact on physician-users and librarian staff are underway, and expected to lead to refinement and wide dissemination of the system. Conclusion A web-based EBM library consult model may provide a useful way for informationists to assist clinicians, and is feasible to implement. PMID:16542453
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, D; Churby, A; Krieger, E
2011-07-25
The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtualmore » model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.« less
Operability driven space system concept with high leverage technologies
NASA Astrophysics Data System (ADS)
Woo, Henry H.
1997-01-01
One of the common objectives of future launch and space transfer systems is to achieve low-cost and effective operational capability by automating processes from pre-launch to the end of mission. Hierarchical and integrated mission management, system management, autonomous GN&C, and integrated micro-nano avionics technologies are critical to extend or revitalize the exploitation of space. Essential to space transfer, orbital systems, Earth-To-Orbit (ETO), commercial and military aviation, and planetary systems are these high leverage hardware and software technologies. This paper covers the driving issues, goals, and requirements definition supported with typical concepts and utilization of multi-use technologies. The approach and method results in a practical system architecture and lower level design concepts.
Computer Software Training and HRD: What Are the Critical Issues?
ERIC Educational Resources Information Center
Altemeyer, Brad
2005-01-01
The paper explores critical issues for HRD practice from a parsonian framework across the HRD legs of organizational development, adult learning, and training and development. Insights into the critical issues emerge from this approach. Identifying successful transfer of training to be critical for organizational, group, and individual success.…
Adaptive Modeling of the International Space Station Electrical Power System
NASA Technical Reports Server (NTRS)
Thomas, Justin Ray
2007-01-01
Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.
Lee, Jihoon; Fredriksson, David W.; DeCew, Judson; Drach, Andrew; Yim, Solomon C.
2018-01-01
This study provides an engineering approach for designing an aquaculture cage system for use in constructed channel flow environments. As sustainable aquaculture has grown globally, many novel techniques have been introduced such as those implemented in the global Atlantic salmon industry. The advent of several highly sophisticated analysis software systems enables the development of such novel engineering techniques. These software systems commonly include three-dimensional (3D) drafting, computational fluid dynamics, and finite element analysis. In this study, a combination of these analysis tools is applied to evaluate a conceptual aquaculture system for potential deployment in a power plant effluent channel. The channel is supposedly clean; however, it includes elevated water temperatures and strong currents. The first portion of the analysis includes the design of a fish cage system with specific net solidities using 3D drafting techniques. Computational fluid dynamics is then applied to evaluate the flow reduction through the system from the previously generated solid models. Implementing the same solid models, a finite element analysis is performed on the critical components to assess the material stresses produced by the drag force loads that are calculated from the fluid velocities. PMID:29897954
2001-06-01
reflection of the composition of the audience which contained a high proportion of Defence Industry Contractors, who were interested in the practicalities of...to future project cost containment. In proportion to the potential costs, insufficient debate on software obsolescence was presented at this event. T...devoted to it should be proportionate to the risk. The risk is all the greater, as the ASIC is frequently, by its very nature, in the critical path of the
2010-04-01
ADDRESS(ES) GemStone ,1260 NW Waterhouse Ave., Suite 200,Beaverton,OR,97006 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...rates as needed, in massively distributed environments. Such a type of software, a “Data Fabric” is available today from GemStone Systems. It is...Plaza, 23rd Floor New York, NY 10001 | Phone: 646.530.8458 Washington D.C. | Phone: 301.564.0550 Copyright© 2008 by GemStone Systems, Inc. All rights
Creep Measurement Video Extensometer
NASA Technical Reports Server (NTRS)
Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John
2011-01-01
Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.
Design and Implementation of a Secure Modbus Protocol
NASA Astrophysics Data System (ADS)
Fovino, Igor Nai; Carcano, Andrea; Masera, Marcelo; Trombetta, Alberto
The interconnectivity of modern and legacy supervisory control and data acquisition (SCADA) systems with corporate networks and the Internet has significantly increased the threats to critical infrastructure assets. Meanwhile, traditional IT security solutions such as firewalls, intrusion detection systems and antivirus software are relatively ineffective against attacks that specifically target vulnerabilities in SCADA protocols. This paper describes a secure version of the Modbus SCADA protocol that incorporates integrity, authentication, non-repudiation and anti-replay mechanisms. Experimental results using a power plant testbed indicate that the augmented protocol provides good security functionality without significant overhead.
Determination of critical habitat for the endangered Nelson's bighorn sheep in southern California
Turner, J.C.; Douglas, C.L.; Hallum, C.R.; Krausman, P.R.; Ramey, R.R.
2004-01-01
The United States Fish and Wildlife Service's (USFWS) designation of critical habitat for the endangered Nelson's bighorn sheep (Ovis canadensis nelsoni) in the Peninsular Ranges of southern California has been controversial because of an absence of a quantitative, repeatable scientific approach to the designation of critical habitat. We used 12,411 locations of Nelson's bighorn sheep collected from 1984-1998 to evaluate habitat use within 398 km2 of the USFWS-designated critical habitat in the northern Santa Rosa Mountains, Riverside County, California. We developed a multiple logistic regression model to evaluate and predict the probability of bighorn use versus non-use of native landscapes. Habitat predictor variables included elevation, slope, ruggedness, slope aspect, proximity to water, and distance from minimum expanses of escape habitat. We used Earth Resources Data Analysis System Geographic Information System (ERDAS-GIS) software to view, retrieve, and format predictor values for input to the Statistical Analysis Systems (SAS) software. To adequately account for habitat landscape diversity, we carried out an unsupervised classification at the outset of data inquiry using a maximum-likelihood clustering scheme implemented in ERDAS. We used the strata resulting from the unsupervised classification in a stratified random sampling scheme to minimize data loads required for model development. Based on 5 predictor variables, the habitat model correctly classified >96% of observed bighorn sheep locations. Proximity to perennial water was the best predictor variable. Ninety-seven percent of the observations were within 3 km of perennial water. Exercising the model over the northern Santa Rosa Mountain study area provided probabilities of bighorn use at a 30 x 30-m2 pixel level. Within the 398 km 2 of USFWS-designated critical habitat, only 34% had a graded probability of bighorn use to non-use ranging from ???1:1 to 6,044:1. The remaining 66% of the study area had odds of having bighorn use <1:1 or it was more likely not to be used by bighorn sheep. The USFWS designation of critical habitat included areas (45 km2) of importance (2.5 to ???40 observations per km2 per year) to Nelson's bighorn sheep and large landscapes (353 km2) that do not appear to be used (<1 observation per km2 per year).
Independent Verification and Validation of Complex User Interfaces: A Human Factors Approach
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Berman, Andrea; Chmielewski, Cynthia
1996-01-01
The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center has identified and evaluated a potential automated software interface inspection tool capable of assessing the degree to which space-related critical and high-risk software system user interfaces meet objective human factors standards across each NASA program and project. Testing consisted of two distinct phases. Phase 1 compared analysis times and similarity of results for the automated tool and for human-computer interface (HCI) experts. In Phase 2, HCI experts critiqued the prototype tool's user interface. Based on this evaluation, it appears that a more fully developed version of the tool will be a promising complement to a human factors-oriented independent verification and validation (IV&V) process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, D.A.
1995-12-31
Under the Acid Rain Program, by statute and regulation, affected utility units are allocated annual allowances. Each allowance permits a unit to emit one ton of SO{sub 2} during or after a specified year. At year end, utilities must hold allowances equal to or greater than the cumulative SO{sub 2} emissions throughout the year from their affected units. The program has been developing, on a staged basis, two major computer-based information systems: the Allowance Tracking System (ATS) for tracking creation, transfer, and ultimate use of allowances; and the Emissions Tracking System (ETS) for transmission, receipt, processing, and inventory of continuousmore » emissions monitoring (CEM) data. The systems collectively form a logical Acid Rain Data System (ARDS). ARDS will be the largest information system ever used to operate and evaluate an environmental program. The paper describes the progressive software engineering approach the Acid Rain Program has been using to develop ARDS. Iterative software version releases, keyed to critical program deadlines, add the functionality required to support specific statutory and regulatory provisions. Each software release also incorporates continual improvements for efficiency, user-friendliness, and lower life-cycle costs. The program is migrating the independent ATS and ETS systems into a logically coordinated True-Up processing model, to support the end-of-year reconciliation for balancing allowance holdings against annual emissions and compliance plans for Phase 1 affected utility units. The paper provides specific examples and data to illustrate exciting applications of today`s information technology in ARDS.« less
Time-Domain Terahertz Computed Axial Tomography NDE System
NASA Technical Reports Server (NTRS)
Zimdars, David
2012-01-01
NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D slice data with better signal-to-noise using a COTS scanner rather than the gchirped h scanner. The system also reduced to practice a prototype for commercial CT systems for insulating materials where safety concerns cannot accommodate x-ray. A software script was written to automate the COTS software to collect and process TD-THz CT data.
NASA Astrophysics Data System (ADS)
Papa, Mauricio; Shenoi, Sujeet
The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.
Will They Report It? Ethical Attitude of Graduate Software Engineers in Reporting Bad News
ERIC Educational Resources Information Center
Sajeev, A. S. M.; Crnkovic, Ivica
2012-01-01
Hiding critical information has resulted in disastrous failures of some major software projects. This paper investigates, using a subset of Keil's test, how graduates (70% of them with work experience) from different cultural backgrounds who are enrolled in a postgraduate course on global software development would handle negative information that…
Evaluating English Language Teaching Software for Kids: Education or Entertainment or Both?
ERIC Educational Resources Information Center
Kazanci, Zekeriya; Okan, Zuhal
2009-01-01
The purpose of this study is to offer a critical consideration of instructional software designed particularly for children. Since the early 1990s computer applications integrating education with entertainment have been adopted on a large scale by both educators and parents. It is expected that through edutainment software the process of learning…