Sample records for critical solvent deashing

  1. Coal liquefaction process with enhanced process solvent

    DOEpatents

    Givens, Edwin N.; Kang, Dohee

    1984-01-01

    In an improved coal liquefaction process, including a critical solvent deashing stage, high value product recovery is improved and enhanced process-derived solvent is provided by recycling second separator underflow in the critical solvent deashing stage to the coal slurry mix, for inclusion in the process solvent pool.

  2. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, B.; Goldsmith, R.

    1995-12-31

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The usemore » of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.« less

  3. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOEpatents

    Roberts, George W.; Tao, John C.

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  4. Operation of the solvent-refined-coal pilot plant, Wilsonville, Alabama. Annual technical report, January-December 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, H.E.

    1981-08-01

    The plant was in operation for the equivalent of 247 days, an on-stream factor of 67.7%. Kentucky 9 coals from the Lafayette, Dotiki and Fies mines were processed. During 1980, the operating conditions and equipment were adjusted to evaluate potential process improvements. These experiments produced significant results in the following areas: Operating V103 High Pressure Separator in the hot mode; varying T102 Vacuum Column operating temperature; adding light SRC (LSRC), a product of the third stage of the Critical Solvent Deashing (CSD) unit, to the process solvent; investigating the effects of the chlorine content of the feed coal on corrosionmore » in the process vessels; evaluating the effects of adding sodium carbonate on corrosion rates; operating under conditions of low severity; i.e., low reactor temperature and long residence time; and testing an alternate CSD deashing solvent. A series of simulation runs investigating the design operating conditions for a planned 6000 ton per day SRC-I demonstation plant were also completed. Numerous improvements were made in the CSD processing area, and the components for a hydrotreating unit were installed.« less

  5. Process for improving soluble coal yield in a coal deashing process

    DOEpatents

    Rhodes, Donald E.

    1980-01-01

    Coal liquefaction products are contacted with a deashing solvent and introduced into a first separation zone. The first separation zone is maintained at an elevated temperature and pressure, determined to maximize the recovery of soluble coal products, to cause said coal liquefaction products to separate into a first light phase and a first heavy phase. Under these conditions the heavy phase while still fluid-like in character is substantially non-flowable. Flowability is returned to the fluid-like heavy phase by the introduction of an additional quantity of deashing solvent into the first separation zone at a location below the interface between the first light and heavy phases or into the heavy phase withdrawal conduit during withdrawal of the first heavy phase and prior to any substantial pressure reduction. The first heavy phase then is withdrawn from the first separation zone for additional downstream processing without plugging either the withdrawal conduit or the downstream apparatus. The first light phase comprising the soluble coal products is withdrawn and recovered in an increased yield to provide a more economical coal deashing process.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Prior to 1978, the Wilsonville Advanced Coal Liquefaction facility material balance surrounded only the thermal liquefaction unit and involved analyses of only the slurry stream and individual gas streams. The distillate solvent yield was determined by difference. Subsequently, several modifications and additional process units were introduced to this single unit system. With the inclusion of the deashing unit in 1978 and the catalytic hydrogenation unit in 1981, the process has evolved into a sophisticated two-stage coal liquefaction process and has the potential for various modes of integration. This report presents an elemental balancing procedure and a simplified presentation format thatmore » is sufficiently flexible to meet current and future needs. The development of the elemental balancing technique and the relevant computer programs to handle the calculations have been addressed. This will be useful in modelling individual unit performance as well as determining the impact of each unit on the overall liquefaction system, provided the units are on a steady-state basis. Five different material balance envelopes are defined. Three of these envelopes pertain to the individual units (the thermal liquefaction or TL unit, the Critical Solvent Deashing or CSD unit and the H-Oil Ebullated Bed Hydrotreating or HTR unit). The fourth or single stage material balance envelope combines the TL and CSD units. The fifth envelope is the two-stage configuration combining all three units. 3 references.« less

  7. Deashing macroalgae biomass by pulsed electric field treatment.

    PubMed

    Robin, Arthur; Sack, Martin; Israel, Alvaro; Frey, Wolfgang; Müller, Georg; Golberg, Alexander

    2018-05-01

    Among all biomass constituents, the ashes are major hurdles for biomass processing. Ashes currently have low market value and can make a non-negligible fraction of the biomass dry weight significantly impacting its further processing by degrading equipment, lowering process yield, inhibiting reactions and decreasing products qualities. However, most of the current treatments for deashing biomass are of poor efficiency or industrial relevance. This work is the first report on the use of Pulsed Electric Field (PEF) to enhance deashing of biomass from a high ash content green marine macroalga, Ulva sp., using hydraulic pressing. By inducing cell permeabilization of the fresh biomass, PEF was able to enhance the ash extraction from 18.4% (non-treated control) to 37.4% of the total ash content in average, significantly enhancing the extraction of five of the major ash elements (K, Mg, Na, P and S) compared to pressing alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method.

    PubMed

    Fan, Zixi; Zhang, Qian; Li, Meng; Niu, Dongyuan; Sang, Wenjiao; Verpoort, Francis

    2018-03-01

    In this work, a KMnO 4 -modified-biochar-based composite material with manganese oxide produced at 600 °C was fabricated to investigate the sorption mechanism of Cd(II) and to comprehensively evaluate the effect of the modification on biochar properties. Cd(II) adsorption mechanisms were mainly controlled by interaction with minerals, complexation with oxygen-containing functional groups, and cation-π interaction. The sorption capacity was significantly reduced after a deash treatment of biochar, almost shrunk by 3 and 3.5 times for pristine biochar (PBC) and modified biochar (MBC). For deashed PBC, oxygen-containing functional groups were the main contributor toward Cd(II) adsorption while interaction with minerals was significantly compromised and became negligible. The sorption capacity was also apparently decreased after the deash treatment of MBC; however, for deashed MBC, interaction with minerals still was the main contributor to the sorption ability, which could be attributed to the mechanism of interaction of Cd(II) with loaded MnO x on biochar. Cation-π interaction in MBC was notably enhanced compared to PBC due to the oxidation of KMnO 4 on biomass. Also, sorption performance by oxygen-containing functional groups was also enhanced. Hence, the modification by KMnO 4 has a significant effect on the Cd(II) sorption performance of biochar.

  9. Acetone-butanol-ethanol production from Kraft paper mill sludge by simultaneous saccharification and fermentation.

    PubMed

    Guan, Wenjian; Shi, Suan; Tu, Maobing; Lee, Yoon Y

    2016-01-01

    Paper mill sludge (PS), a solid waste from pulp and paper industry, was investigated as a feedstock for acetone-butanol-ethanol (ABE) production by simultaneous saccharification and fermentation (SSF). ABE fermentation of paper sludge by Clostridium acetobutylicum required partial removal of ash in PS to enhance its enzymatic digestibility. Enzymatic hydrolysis was found to be a rate-limiting step in the SSF. A total of 16.4-18.0g/L of ABE solvents were produced in the SSF of de-ashed PS with solid loading of 6.3-7.4% and enzyme loading of 10-15FPU/g-glucan, and the final solvent yield reached 0.27g/g sugars. No pretreatment and pH control were needed in ABE fermentation of paper sludge, which makes it an attractive feedstock for butanol production. The results suggested utilization of paper sludge should not only consider the benefits of buffering effect of CaCO3 in fermentation, but also take into account its inhibitory effect on enzymatic hydrolysis. Published by Elsevier Ltd.

  10. Fermentation and chemical treatment of pulp and paper mill sludge

    DOEpatents

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  11. Enhanced Ethanol Production from De-Ashed Paper Sludge by Simultaneous Saccharification and Fermentation and Simultaneous Saccharification and Co-Fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, L.; Wang, W.; Pallapolu, V. R.

    2011-11-01

    A previous study demonstrated that paper sludges with high ash contents can be converted to ethanol by simultaneous saccharification and fermentation (SSF) or simultaneous saccharification and co-fermentation (SSCF). High ash content in the sludge, however, limited solid loading in the bioreactor, causing low product concentration. To overcome this problem, sludges were de-ashed before SSF and SSCF. Low ash content in sludges also increased the ethanol yield to the extent that the enzyme dosage required to achieve 70% yield in the fermentation process was reduced by 30%. High solid loading in SSF and SSCF decreased the ethanol yield. High agitation andmore » de-ashing of the sludges were able to restore the part of the yield loss caused by high solid loading. Substitution of the laboratory fermentation medium (peptone and yeast extract) with corn steep liquor did not bring about any adverse effects in the fermentation. Fed-batch operation of the SSCF and SSF using low-ash content sludges was effective in raising the ethanol concentration, achieving 47.8 g/L and 60.0 g/L, respectively.« less

  12. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOEpatents

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  13. Variation in sorption of propiconazole with biochars: The effect of temperature, mineral, molecular structure, and nano-porosity

    USDA-ARS?s Scientific Manuscript database

    Sorption behavior of propiconazole (PROPI) by plant-residue derived biochars (PLABs) and animal manure-derived biochars (ANIBs) obtained at three heating treatment temperatures (HTTs) at 300, 450 and 600 degrees Celsius (denoted as BCs300, BCs450, and BCs600) and their corresponding de-ashed BCs450 ...

  14. Chemical comminution and deashing of low-rank coals

    DOEpatents

    Quigley, David R.

    1992-01-01

    A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

  15. Chemical comminution and deashing of low-rank coals

    DOEpatents

    Quigley, David R.

    1992-12-01

    A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

  16. Enrichment of individual KIR2DL4 sequences from genomic DNA using long-template PCR and allele-specific hybridization to magnetic bead-bound oligonucleotide probes.

    PubMed

    Roberts, C H; Turino, C; Madrigal, J A; Marsh, S G E

    2007-06-01

    DNA enrichment by allele-specific hybridization (DEASH) was used as a means to isolate individual alleles of the killer cell immunoglobulin-like receptor (KIR2DL4) gene from heterozygous genomic DNA. Using long-template polymerase chain reaction (LT-PCR), the complete KIR2DL4 gene was amplified from a cell line that had previously been characterized for its KIR gene content by PCR using sequence-specific primers (PCR-SSP). The whole gene amplicons were sequenced and we identified two heterozygous positions in accordance with the predictions of the PCR-SSP. The amplicons were then hybridized to allele-specific, biotinylated oligonucleotide probes and through binding to streptavidin-coated beads, the targeted alleles were enriched. A second PCR amplified only the exonic regions of the enriched allele, and these were then sequenced in full. We show DEASH to be capable of enriching single alleles from a heterozygous PCR product, and through sequencing the enriched DNA, we are able to produce complete coding sequences of the KIR2DL4 alleles in accordance with the typing predicted by PCR-SSP.

  17. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  18. Method for destroying halocarbon compositions using a critical solvent

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Janikowski, Stuart K.

    2006-01-10

    A method for destroying halocarbons. Halocarbon materials are reacted in a dehalogenation process wherein they are combined with a solvent in the presence of a catalyst. A hydrogen-containing solvent is preferred which functions as both a solvating agent and hydrogen donor. To augment the hydrogen donation capacity of the solvent if needed (or when non-hydrogen-containing solvents are used), a supplemental hydrogen donor composition may be employed. In operation, at least one of the temperature and pressure of the solvent is maintained near, at, or above a critical level. For example, the solvent may be in (1) a supercritical state; (2) a state where one of the temperature or pressure thereof is at or above critical; or (3) a state where at least one of the temperature and pressure thereof is near-critical. This system provides numerous benefits including improved reaction rates, efficiency, and versatility.

  19. Order of wetting transitions in electrolyte solutions.

    PubMed

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2014-05-07

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  20. [Supercritical and near-critical fluid solvents assisted reaction and separation processes].

    PubMed

    Song, R; Zeng, J; Zhong, B

    2001-11-01

    The tunability of supercritical and near-critical fluid (S/NCF) solvents offers environmental improvements and economic advantages from improved performances and flexibility for separation and reaction processes through density changes or cosolvents. The paper reviews the sustainable reaction and separation processes in S/NCF solvents such as supercritical carbon dioxide and near-critical water.

  1. Nonflammable, Nonaqueous, Low Atmospheric Impact, High Performance Cleaning Solvents

    NASA Technical Reports Server (NTRS)

    Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    For many years, chlorofluorocarbon (CFC) and chlorocarbon solvents have played an important part in aerospace operations. These solvents found extensive use as cleaning and analysis (EPA) solvents in precision and critical cleaning. However, CFCs and chlorocarbon solvents have deleterious effects on the ozone layer, are relatively strong greenhouse gases, and some are suspect or known carcinogens. Because of their ozone-depletion potential (ODP), the Montreal Protocol and its amendments, as well as other environmental regulations, have resulted in the phaseout of CFC-113 and 1,1,1-trichloroethane (TCA). Although alternatives have been recommended, they do not perform as well as the original solvents. In addition, some analyses, such as the infrared analysis of extracted hydrocarbons, cannot be performed with the substitute solvents that contain C-H bonds. CFC-113 solvent has been used for many critical aerospace applications. CFC-113, also known as Freon (registered) TF, has been used extensively in NASA's cleaning facilities for precision and critical cleaning, in particular the final rinsing in Class 100 areas, with gas chromatography analysis of rinse residue. While some cleaning can be accomplished by other processes, there are certain critical applications where CFC-113 or a similar solvent is highly cost-effective and ensures safety. Oxygen system components are one example where a solvent compatible with oxygen and capable of removing fluorocarbon grease is needed. Electronic components and precision mechanical components can also be damaged by aggressive cleaning solvents.

  2. Step-wise supercritical extraction of carbonaceous residua

    DOEpatents

    Warzinski, Robert P.

    1987-01-01

    A method of fractionating a mixture containing high boiling carbonaceous material and normally solid mineral matter includes processing with a plurality of different supercritical solvents. The mixture is treated with a first solvent of high critical temperature and solvent capacity to extract a large fraction as solute. The solute is released as liquid from solvent and successively treated with other supercritical solvents of different critical values to extract fractions of differing properties. Fractionation can be supplemented by solute reflux over a temperature gradient, pressure let down in steps and extractions at varying temperature and pressure values.

  3. Constitution of Drop-Tube-Generated Coal Chars from Vitrinite- and Inertinite-Rich South African Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louw, Enette B.; Mitchell, Gareth D.; Wang, Juan

    The structural transformations of coal and the resultant char morphologies are strongly dependent on the initial structure and degree of thermoplasticity achieved during coal-to-char transition. These are a function of petrographic composition, rank, particle size, and heating rate and strongly affect combustion behavior. This study compares the devolatilization and subsequent combustion behavior of an inertinite-rich (87.7% dmmf) and a vitrinite-rich (91.8% dmmf) South African coal, wet-screened to a narrow particle size distribution of 200 x 400 mesh. Pyrolysis chars were generated under rapid-heating conditions (104-105 °C/s) in a drop-tube reactor to closely resemble chars generated in pulverized combustion conditions. Themore » inertinite-rich coal took ~ 400 ms to devolatilize in the drop-tube, compared to only ~ 240 ms for the vitrinite-rich sample. The chemical and physical structure (the constitution) of the chars were investigated through a range of chemical, physical, and optical characteristics including the maceral differences, and high ash yields. To evaluate the combustion reactivity non-isothermal burn-out profiles were obtained through thermogravimetrical analyses (TGA) in air. The vitrinite-rich char had on average 20% higher reaction rates than the inertinite-rich char under the various combustion conditions. The char samples were de-ashed with HCl and HF acid which resulted in an increase in combustion reactivity. The maximum reaction rate of the high-ash (36% ash yield) inertinite-rich char increased with 80% after de-ashing. While the vitrinite-rich char with an ash yield of 15%, had a 20% increase in reactivity after de-ashing. The ash acted as a barrier, and the removal of ash most likely increased the access to reactive surface area. The chemical and physical structures of the chars were characterized through a range of different analytical techniques to quantify the factors contributing to reactivity differences. The morphologies of the chars were characterized with SEM and optical microscopy, while quantitative information on the ordered nature of chars was obtained through XRD on de-ashed chars. The inertinite-rich coal experienced limited fluidity during heat-treatment, resulting in slower devolatilization, limited growth in crystallite height (11.8 to 12.6Å), only rounding of particle edges, and producing > 40% of mixed-dense type chars. The vitrinite-char showed more significant structural transformations; producing mostly (80%) extensively swollen crassisphere, tenuisphere, and network-type chars, and XRD showed a large increase in crystallite height (4.3 to 11.7Å). Nitrogen adsorption and small-angle X-ray scattering (SAXS) were utilized to compare the nitrogen surface areas and pore size distributions. Both chars were mostly mesoporous but the inertinite-rich char had double the average pore size, which also resulted in a larger nitrogen surface area since nitrogen can only access surface areas in larger pores. The BET surface area was 3.9 and 2.7 m2/g for the inertinite- and vitrinite-rich chars respectively. SAXS data showed that the vitrinite-rich char had 60% higher frequencies of pores in the micropore range. Helium porosimetry indicated that the inertinite-rich coal and resultant char had higher densities than the vitrinite coal and char; 1.6 and 2.0 g/cm3, compared to 1.3 and 1.9 g/cm3 (dry basis). Non-isothermal TGA burnout profiles showed the inertinite-rich char had a burnout temperature of 680°C, slightly higher than the vitrinite-rich char’s 650 °C. This, along with the peak shape and position in the burnout profiles indicate that the vitrinite-rich char has a higher reactivity. The higher reactivity is due to a combination of factors likely including less organization, grater porosity and access to the reactive site, less ash blocking, and char morphology differences.« less

  4. Dry-spraying of ascorbic acid or acetaminophen solutions with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wubbolts, F. E.; Bruinsma, O. S. L.; van Rosmalen, G. M.

    1999-03-01

    Carbon dioxide is a very poor solvent for many organic compounds, which makes it a good anti-solvent. When a solution is sprayed into carbon dioxide vapour the anti-solvent reduces the solubility within several tens of milliseconds and the solute precipitates. Two distinct regions can be identified, below and above the mixture critical pressure. Below this critical pressure the yield remains relatively low and the process is not well controlled. Above the critical pressure small crystals are obtained of about 2 μm with a yield of 90%.

  5. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  6. Assessment of critical-fluid extractions in the process industries

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.

  7. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  8. Method of filtering a target compound from a first solvent that is above its critical density

    DOEpatents

    Phelps, Max R [Richland, WA; Yonker, Clement R [Kennewick, WA; Fulton, John L [Richland, WA; Bowman, Lawrence E [Richland, WA

    2001-07-24

    The present invention is a method of separating a first compound having a macromolecular structure from a mixture. The first solvent is a fluid that is a gas at standard temperature and pressure and is at a density greater than a critical density of the fluid. A macromolecular structure containing a first compound is dissolved therein as a mixture. The mixture is contacted onto a selective barrier and the first solvent passed through the selective barrier thereby retaining the first compound, followed by recovering the first compound. By using a fluid that is a gas at standard temperature and pressure at a density greater than its critical density, separation without depressurization is fast and efficient.

  9. Application of chiral critical clusters to assymetric synthesis

    DOEpatents

    Ferrieri, Richard A.

    2002-01-01

    Disclosed is a composition, a method of making and a method of using critical clusters for asymmetric synthesis using substantially optically-pure chiral solvent molecules in a supercritical fluid. The solvent molecules are capable of forming a multipoint hydrogen bonded solvate as they encage at least one solute molecule. The encaged solute molecule is capable of reacting to form an optically active chiral center. In another aspect, there is disclosed a method of directing the position of bonding between a solute molecule and a ligand involving encaging the solute molecule and the ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution in the solute molecule. In yet another aspect, disclosed is a method of making pharmaceutical compounds involving encaging a solute molecule, which is capable of forming a chiral center, and a ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution of the solute molecule. The solute molecule and ligand are then reacted whereby the ligand bonds to the solute molecule forming a chiral center. Also disclosed is a method for racemic resolution using critical clusters involving encaging racemic mixtures of solute molecules with substantially optically-pure chiral solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to form critical clusters. The solvent molecules are capable of multipoint hydrogen bonding with the solute molecules. The encaged solute molecules are then nonenzymatically reacted to enhance the optical purity of the solute molecules.

  10. Determination of residual solvents and investigation of their effect on ampicillin trihydrate crystal structure.

    PubMed

    Nojavan, Saeed; Ghassempour, Alireza; Bashour, Yosef; Darbandi, Masoud Khalilian; Ahmadi, Seyyed Hamid

    2005-01-04

    In the present work, the relationship between residual solvents concentration and ampicillin trihydrate crystals stability has been investigated. The amounts of residual solvents determined by GC, X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FT-IR) were used for characterization of solid state. The obtained results have shown good relationship between concentration of methylene chloride (as a critical residue solvent) and degree of ampicillin trihydrate crystallinity. As with the increasing methylene chloride concentration in the sample the degree of crystallinity decreased after stability test. From this relationship, critical concentration of methylene chloride into the ampicillin trihydrate is obtained and the results can be used for improving the large-scale production of ampicillin trihydrate.

  11. Breakup of a liquid rivulet falling over an inclined plate: Identification of a critical Weber number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh K.; Galvin, Janine E.; Whyatt, Greg A.

    2017-05-01

    We have numerically investigated the breakup of a rivulet falling over a smooth inclined plate using the volume of fluid method. The breakup the rivulet is a complex phenomenon that is dictated by many factors, such as solvent properties, contact angle, inertia, plate inclination, etc. An extensive simulation campaign was conducted wherein these factors were systematically investigated. Regimes for a stable rivulet and an unstable rivulet that leads to the breakup and formation of a droplet are examined in terms of a critical value of the Weber number (Wecr) that delineates these regimes. The effect of plate inclination on themore » breakup of the rivulet shows that the critical Weber number decreases with increased inclination angle () owing to higher liquid velocity. However, the effect is negligible beyond >60. The impact of solvent properties is characterized using the Kapitza number (Ka). Variation of Wecr with Ka shows two trends depending on the Ka value of the solvent. Solvents with lower Ka values, corresponding to high viscosities and/or low surface tensions, show smaller values of the critical Weber number and the variation is linear. While solvents with higher Ka values exhibit higher values of the Wecr and the variation in Wecr is steep. This behavior is more pronounced with increasing contact angle. Higher contact angles promote rivulet breakup so that inertia must be higher to the breakup. A phenomenological scaling for a critical Weber number with the Kapitza number and contact angle is presented that can offer insight into rivulet breakup.« less

  12. Critical Casimir effect in a polymer chain in supercritical solvents.

    PubMed

    Sumi, Tomonari; Imazaki, Nobuyuki; Sekino, Hideo

    2009-03-01

    Density fluctuation effects on the conformation of a polymer chain in a supercritical solvent were investigated by performing a multiscale simulation based on the density-functional theory. We found (a) a universal swelling of the polymer chain near the critical point, irrespective of whether the polymer chain is solvophilic or solvophobic, and (b) a characteristic collapse of the polymer chain having a strong solvophilicity at a temperature slightly higher than the critical point, where the isothermal compressibility becomes less than the ideal one.

  13. Outcomes Related to the Use of Frozen Plasma or Pooled Solvent/Detergent-Treated Plasma in Critically Ill Children.

    PubMed

    Camazine, Maraya N; Karam, Oliver; Colvin, Ryan; Leteurtre, Stephane; Demaret, Pierre; Tucci, Marisa; Muszynski, Jennifer A; Stanworth, Simon; Spinella, Philip C

    2017-05-01

    To determine if the use of fresh frozen plasma/frozen plasma 24 hours compared to solvent detergent plasma is associated with international normalized ratio reduction or ICU mortality in critically ill children. This is an a priori secondary analysis of a prospective, observational study. Study groups were defined as those transfused with either fresh frozen plasma/frozen plasma 24 hours or solvent detergent plasma. Outcomes were international normalized ratio reduction and ICU mortality. Multivariable logistic regression was used to determine independent associations. One hundred one PICUs in 21 countries. All critically ill children admitted to a participating unit were included if they received at least one plasma unit during six predefined 1-week (Monday to Friday) periods. All children were exclusively transfused with either fresh frozen plasma/frozen plasma 24 hours or solvent detergent plasma. None. There were 443 patients enrolled in the study. Twenty-four patients (5%) were excluded because no plasma type was recorded; the remaining 419 patients were analyzed. Fresh frozen plasma/frozen plasma 24 hours group included 357 patients, and the solvent detergent plasma group included 62 patients. The median (interquartile range) age and weight were 1 year (0.2-6.4) and 9.4 kg (4.0-21.1), respectively. There was no difference in reason for admission, severity of illness score, pretransfusion international normalized ratio, or lactate values; however, there was a difference in primary indication for plasma transfusion (p < 0.001). There was no difference in median (interquartile range) international normalized ratio reduction, between fresh frozen plasma/frozen plasma 24 hours and solvent detergent plasma study groups, -0.2 (-0.4 to 0) and -0.2 (-0.3 to 0), respectively (p = 0.80). ICU mortality was lower in the solvent detergent plasma versus fresh frozen plasma/frozen plasma 24 hours groups, 14.5% versus 29.1%%, respectively (p = 0.02). Upon adjusted analysis, solvent detergent plasma transfusion was independently associated with reduced ICU mortality (odds ratio, 0.40; 95% CI, 0.16-0.99; p = 0.05). Solvent detergent plasma use in critically ill children may be associated with improved survival. This hypothesis-generating data support a randomized controlled trial comparing solvent detergent plasma to fresh frozen plasma/frozen plasma 24 hours.

  14. Environmental stress cracking of polymers

    NASA Technical Reports Server (NTRS)

    Mahan, K. I.

    1980-01-01

    A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.

  15. Flory-type theories of polymer chains under different external stimuli

    NASA Astrophysics Data System (ADS)

    Budkov, Yu A.; Kiselev, M. G.

    2018-01-01

    In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.

  16. Are Water-lean Solvent Systems Viable for Post-Combustion CO 2 Capture?

    DOE PAGES

    Heldebrant, David J.; Koech, Phillip K.; Rousseau, Roger; ...

    2017-08-18

    Here, we present here an overview of water-lean solvents that compares their projected costs and performance to aqueous amine systems, emphasizing critical areas of study needed to evaluate their performance against their water-based brethren. The work presented her focuses on bridging these knowledge gaps. Because the majority of water-lean solvents are still at the lab scale, substantial studies are still needed to model their performance at scale. This presents a significant challenge as eachformulation has different physical and thermodynamic properties and behavior, and quantifying how these different properties manifest themselves in conventional absorber-stripper configurations, or identifying new configurations that aremore » specific for a solvent’s signature behavior. We identify critical areas of study that are needed, and our efforts (e.g. custom infrastructure, molecular models) to predict, measure, and model these behaviors. Such findings are critical for determining the rheology required for heat exchanger design; absorber designs and packing to accommodate solvents with gradient changes (e.g. viscosity, contact angle, surface tension), and stripper configurations without direct steam utilization or water reflux. Another critical area of research need is to understand the molecular structure of the liquid interface and bulk as a function of CO 2 loading, and to assess whether conventional film theories accurately quantify solvent behavior, or if thermodynamic models adequately quantify activity coefficients of ions in solution. We conclude with an assessment of our efforts to aid in bridging the knowledge gaps in understanding water-lean solvents, and suggestions of what is needed to enable large-scale demonstrations to meet the United States Department of Energy’s year 2030 goal.« less

  17. Are Water-lean Solvent Systems Viable for Post-Combustion CO 2 Capture?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heldebrant, David J.; Koech, Phillip K.; Rousseau, Roger

    Here, we present here an overview of water-lean solvents that compares their projected costs and performance to aqueous amine systems, emphasizing critical areas of study needed to evaluate their performance against their water-based brethren. The work presented her focuses on bridging these knowledge gaps. Because the majority of water-lean solvents are still at the lab scale, substantial studies are still needed to model their performance at scale. This presents a significant challenge as eachformulation has different physical and thermodynamic properties and behavior, and quantifying how these different properties manifest themselves in conventional absorber-stripper configurations, or identifying new configurations that aremore » specific for a solvent’s signature behavior. We identify critical areas of study that are needed, and our efforts (e.g. custom infrastructure, molecular models) to predict, measure, and model these behaviors. Such findings are critical for determining the rheology required for heat exchanger design; absorber designs and packing to accommodate solvents with gradient changes (e.g. viscosity, contact angle, surface tension), and stripper configurations without direct steam utilization or water reflux. Another critical area of research need is to understand the molecular structure of the liquid interface and bulk as a function of CO 2 loading, and to assess whether conventional film theories accurately quantify solvent behavior, or if thermodynamic models adequately quantify activity coefficients of ions in solution. We conclude with an assessment of our efforts to aid in bridging the knowledge gaps in understanding water-lean solvents, and suggestions of what is needed to enable large-scale demonstrations to meet the United States Department of Energy’s year 2030 goal.« less

  18. Design, construction, and testing a purpose-built climate-controlled solvent vapor annealing chamber for guided self-assembly of block polymer thin films

    NASA Astrophysics Data System (ADS)

    Gnabasik, Ryan; Haase, Rustin; Baruth, Andrew

    2014-03-01

    Despite its efficacy to produce well-ordered, periodic nanostructures, the intricate role multiple parameters play in solvent vapor annealing has not been fully established. In solvent vapor annealing a thin polymer film is exposed to the vapors of a solvent(s) thus forming a swollen and mobile layer to direct the self-assembly process at the nanoscale. Recent developments in both theory and experiment have directly identified critical parameters, but controlling them in any systematic way has proven non-trivial. These identified parameters include vapor pressure, solvent concentration in the film, and, critically, the solvent evaporation rate. To explore their role, a purpose-built solvent vapor annealing chamber was designed and constructed. The all-metal chamber is inert to solvent exposure and pneumatically actuated valves allow for precision timing in the introduction and withdrawal of solvent vapor. Furthermore, the mass flow controlled inlet, chamber pressure gauges, in situ spectral reflectance-based thickness monitoring, and high precision micrometer relief valve, give real-time monitoring and control during the annealing and evaporation phases. Using atomic force microscopy to image the annealed films, we are able to map out the parameter space for a series of polystyrene- b-polylactide (Mn = 75 kg/mol and fPLA = 0.28) block polymer thin films with an intrinsic cylindrical morphology and identify their role in directed assembly. Funded by Creighton University Summer Research Grant.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh K.; Galvin, Janine E.; Sun, Xin

    We have numerically investigated the breakup of a rivulet falling over a smooth inclined plate using the volume of fluid method. The breakup the rivulet is a complex phenomenon that is dictated by many factors, such as solvent properties, contact angle, inertia, plate inclination, etc. An extensive simulation campaign was conducted wherein these factors were systematically investigated. Regimes for a stable rivulet and an unstable rivulet that leads to the breakup and formation of a droplet are examined in terms of a critical value of the Weber number (Wecr) that delineates these regimes. The effect of plate inclination on themore » breakup of the rivulet shows that the critical Weber number decreases with increased inclination angle () owing to higher liquid velocity. However, the effect is negligible beyond >60. The impact of solvent properties is characterized using the Kapitza number (Ka). Variation of Wecr with Ka shows two trends depending on the Ka value of the solvent. Solvents with lower Ka values, corresponding to high viscosities and/or low surface tensions, show smaller values of the critical Weber number and the variation is linear. While solvents with higher Ka values exhibit higher values of the Wecr and the variation in Wecr is steep. This behavior is more pronounced with increasing contact angle. Higher contact angles promote rivulet breakup so that inertia must be higher to the breakup. A phenomenological scaling for a critical Weber number with the Kapitza number and contact angle is presented that can offer insight into rivulet breakup.« less

  20. Breakup of a liquid rivulet falling over an inclined plate: Identification of a critical Weber number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh K.; Galvin, Janine E.; Whyatt, Greg A.

    Here, we have numerically investigated the breakup of a rivulet falling over a smooth inclined plate using the volume of fluid method. The breakup the rivulet is a complex phenomenon that is dictated by many factors, such as solvent properties, contact angle, inertia, plate inclination, etc. An extensive simulation campaign was conducted wherein these factors were systematically investigated. Regimes for a stable rivulet and an unstable rivulet that leads to the breakup and formation of a droplet are examined in terms of a critical value of the Weber number (We cr) that delineates these regimes. The effect of plate inclinationmore » on the breakup of the rivulet shows that the critical Weber number decreases with increased inclination angle (θ) owing to higher liquid velocity. However, the effect is negligible beyond θ > 60°. The impact of solvent properties is characterized using the Kapitza number (Ka). Variation of We cr with Ka shows two trends depending on the Ka value of the solvent. Solvents with lower Ka values, corresponding to high viscosities and/or low surface tensions, show smaller values of the critical Weber number and the variation is linear. While solvents with higher Ka values exhibit higher values of the We cr and the variation in We cr is steep. This behavior is more pronounced with increasing contact angle. Higher contact angles promote rivulet breakup so that inertia must be higher to the breakup. As a result, a phenomenological scaling for a critical Weber number with the Kapitza number and contact angle is presented that can offer insight into rivulet breakup.« less

  1. Breakup of a liquid rivulet falling over an inclined plate: Identification of a critical Weber number

    DOE PAGES

    Singh, Rajesh K.; Galvin, Janine E.; Whyatt, Greg A.; ...

    2017-05-04

    Here, we have numerically investigated the breakup of a rivulet falling over a smooth inclined plate using the volume of fluid method. The breakup the rivulet is a complex phenomenon that is dictated by many factors, such as solvent properties, contact angle, inertia, plate inclination, etc. An extensive simulation campaign was conducted wherein these factors were systematically investigated. Regimes for a stable rivulet and an unstable rivulet that leads to the breakup and formation of a droplet are examined in terms of a critical value of the Weber number (We cr) that delineates these regimes. The effect of plate inclinationmore » on the breakup of the rivulet shows that the critical Weber number decreases with increased inclination angle (θ) owing to higher liquid velocity. However, the effect is negligible beyond θ > 60°. The impact of solvent properties is characterized using the Kapitza number (Ka). Variation of We cr with Ka shows two trends depending on the Ka value of the solvent. Solvents with lower Ka values, corresponding to high viscosities and/or low surface tensions, show smaller values of the critical Weber number and the variation is linear. While solvents with higher Ka values exhibit higher values of the We cr and the variation in We cr is steep. This behavior is more pronounced with increasing contact angle. Higher contact angles promote rivulet breakup so that inertia must be higher to the breakup. As a result, a phenomenological scaling for a critical Weber number with the Kapitza number and contact angle is presented that can offer insight into rivulet breakup.« less

  2. Enzymatic temperature change indicator

    DOEpatents

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  3. The influence of solvent processing on polyester bioabsorbable polymers.

    PubMed

    Manson, Joanne; Dixon, Dorian

    2012-01-01

    Solvent-based methods are commonly employed for the production of polyester-based samples and coatings in both medical device production and research. The influence of solvent casting and subsequent drying time was studied using thermal analysis, spectroscopy and weight measurement for four grades of 50 : 50 poly(lactic-co-glycolic acid) (PLGA) produced by using chloroform, dichloromethane, and acetone. The results demonstrate that solvent choice and PLGA molecular weight are critical factors in terms of solvent removal rate and maintaining sample integrity, respectively. The protocols widely employed result in high levels of residual solvent and a new protocol is presented together with solutions to commonly encountered problems.

  4. Temperature-dependent micellar structures in poly(styrene-b-isoprene) diblock copolymer solutions near the critical micelle temperature

    NASA Astrophysics Data System (ADS)

    Bang, Joona; Viswanathan, Karthik; Lodge, Timothy P.; Park, Moon Jeong; Char, Kookheon

    2004-12-01

    The temperature dependence of the micelle structures formed by poly(styrene-b-isoprene) (SI) diblock copolymers in the selective solvents diethyl phthalate (DEP) and tetradecane (C14), which are selective for the PS and PI blocks, respectively, have been investigated by small angle neutron scattering (SANS). Two nearly symmetric SI diblock copolymers, one with a perdeuterated PS block and the other with a perdeuterated PI block, were examined in both DEP and C14. The SANS scattering length density of the solvent was matched closely to either the core or the corona block. The resulting core and corona contrast data were fitted with a detailed model developed by Pedersen and co-workers. The fits provide quantitative information on micellar characteristics such as aggregation number, core size, overall size, solvent fraction in the core, and corona thickness. As temperature increases, the solvent selectivity decreases, leading to substantial solvent swelling of the core and a decrease in the aggregation number and core size. Both core and corona chains are able to relax their conformations near the critical micelle temperature due to a decrease in the interfacial tension, even though the corona chains are always under good solvent conditions.

  5. NOVEL POLYMERIC MEMBRANE FOR DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for dehydration of organic solvents, removal of organic compounds and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a critical role...

  6. A critical overview of non-aqueous capillary electrophoresis. Part I: mobility and separation selectivity.

    PubMed

    Kenndler, Ernst

    2014-03-28

    This two-part review critically gives an overview on the theoretical and practical advances in non-aqueous capillary electrophoresis (NACE) achieved over the recent five years. Part I starts out by reviewing the aspects relevant to electromigration in organic solvents and evaluates potential advantages of the latter in comparison to aqueous solvent systems. The crucial role of solubility for the species involved in CE - analytes and back ground electrolyte constituents - is discussed both for ionic and neutral compounds. The impact of organic solvents on the electrophoretic and electroosmotic mobility and on the ionization (pKa values) of weak acids and bases is highlighted. Special emphasis is placed on methanol, acetonitrile and mixtures of these solvents, being the most frequent employed media for NACE applications. In addition, also solvents less commonly used in NACE will be covered, including other alcohols, amides (formamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylacetamide), propylene carbonate, dimethylsulphoxide, and nitromethane. The discussions address the consequences of dramatic pKa shifts frequently seen for weak acids and bases, and the important contributions of medium-specific electroosmotic flow (EOF) to electromigration in nonaqueous media. Important for NACE, the role of the water content on pKa and mobility is analyzed. Finally, association phenomena rather specific to nonaqueous solvents (ion pairing, homo- and heteroconjugation) will be addressed, along with their potential advantages for the development of NACE separation protocols. It is pointed out that this review is not intended as a listing of all papers that have been published on NACE in the period mentioned above. It rather deals with general aspects of migration and selectivity in organic solvent systems, and discusses - critically - examples from the literature with particular interest to the topic. An analog discussion about the role of the solvent on efficiency will be presented in Part II. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: the use of WaterMap [WaterMap and Its Implementation in Drug Discovery

    DOE PAGES

    Yang, Yue; Wong, Sergio E.; Lightstone, Felice C.

    2012-09-08

    Solvents play quite an important role in most chemical and biological processes. It is widely accepted that the presence of water or other solvents in many chemical reactions can result in much lower energy barrier. In enzymatic catalysis, water mediated reaction pathways have been observed in various studies. In addition, different conformation flexibility and hydrogen bond patterns have been discovered for cyclic peptides in the presence of membrane and water, further illustrating the impact of solvent in biological activities such like membrane penetration. moreover, as will be discussed later in this review, water also plays a critical role in host-guestmore » chemistry and thus is essential to drug design. As such, it is not surprising that accounting for solvents is critical in drug discovery since drugs must modulate biological systems.« less

  8. Critical conditions of polymer adsorption and chromatography on non-porous substrates.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-07-15

    We present a novel thermodynamic theory and Monte Carlo simulation model for adsorption of macromolecules to solid surfaces that is applied for calculating the chain partition during separation on chromatographic columns packed with non-porous particles. We show that similarly to polymer separation on porous substrates, it is possible to attain three chromatographic modes: size exclusion chromatography at very weak or no adsorption, liquid adsorption chromatography when adsorption effects prevail, and liquid chromatography at critical conditions that occurs at the critical point of adsorption. The main attention is paid to the analysis of the critical conditions, at which the retention is chain length independent. The theoretical results are verified with specially designed experiments on isocratic separation of linear polystyrenes on a column packed with non-porous particles at various solvent compositions. Without invoking any adjustable parameters related to the column and particle geometry, we describe quantitatively the observed transition between the size exclusion and adsorption separation regimes upon the variation of solvent composition, with the intermediate mode occurring at a well-defined critical point of adsorption. A relationship is established between the experimental solvent composition and the effective adsorption potential used in model simulations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Face-Dependent Solvent Adsorption: A Comparative Study on the Interfaces of HMX Crystal with Three Solvents.

    PubMed

    Liu, Yingzhe; Lai, Weipeng; Ma, Yiding; Yu, Tao; Kang, Ying; Ge, Zhongxue

    2017-07-27

    To understand the crystal-solvent interfacial interactions on the molecular scale, the interfaces between three solvents, that is, acetone, γ-butyrolactone, and cyclohexanone, and three growth faces of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) crystal have been investigated with the aid of theoretical chemistry. The results show that the structural features of crystal faces play a critical role in the energetic, structural, and dynamic properties at the interfaces. For each solvent, the same change trend of some properties among the three faces of HMX crystal is observed, including adsorption affinity, local mass density, and solvent diffusion. For example, the rate of solvent diffusion at the three faces ranks as (011) > (110) > (020) regardless of solvent species. This can be attributed to the similar adsorption sites for solvent incorporation at the same face, which are concentrated at the cavities formed by surficial HMX molecules.

  10. Adsorption of flexible polymer chains on a surface: Effects of different solvent conditions

    NASA Astrophysics Data System (ADS)

    Martins, P. H. L.; Plascak, J. A.; Bachmann, M.

    2018-05-01

    Polymer chains undergoing a continuous adsorption-desorption transition are studied through extensive computer simulations. A three-dimensional self-avoiding walk lattice model of a polymer chain grafted onto a surface has been treated for different solvent conditions. We have used an advanced contact-density chain-growth algorithm, in which the density of contacts can be directly obtained. From this quantity, the order parameter and its fourth-order Binder cumulant are computed, as well as the corresponding critical exponents and the adsorption-desorption transition temperature. As the number of configurations with a given number of surface contacts and monomer-monomer contacts is independent of the temperature and solvent conditions, it can be easily applied to get results for different solvent parameter values without the need of any extra simulations. In analogy to continuous magnetic phase transitions, finite-size-scaling methods have been employed. Quite good results for the critical properties and phase diagram of very long single polymer chains have been obtained by properly taking into account the effects of corrections to scaling. The study covers all solvent effects, going from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer structures.

  11. Volatile Solvents as Drugs of Abuse: Focus on the Cortico-Mesolimbic Circuitry

    PubMed Central

    Beckley, Jacob T; Woodward, John J

    2013-01-01

    Volatile solvents such as those found in fuels, paints, and thinners are found throughout the world and are used in a variety of industrial applications. However, these compounds are also often intentionally inhaled at high concentrations to produce intoxication. While solvent use has been recognized as a potential drug problem for many years, research on the sites and mechanisms of action of these compounds lags behind that of other drugs of abuse. In this review, we first discuss the epidemiology of voluntary solvent use throughout the world and then consider what is known about their basic pharmacology and how this may explain their use as drugs of abuse. We next present data from preclinical and clinical studies indicating that these substances induce common addiction sequelae such as dependence, withdrawal, and cognitive impairments. We describe how toluene, the most commonly studied psychoactive volatile solvent, alters synaptic transmission in key brain circuits such as the mesolimbic dopamine system and medial prefrontal cortex (mPFC) that are thought to underlie addiction pathology. Finally, we make the case that activity in mPFC circuits is a critical regulator of the mesolimbic dopamine system's ability to respond to volatile solvents like toluene. Overall, this review provides evidence that volatile solvents have high abuse liability because of their selective effects on critical nodes of the addiction neurocircuitry, and underscores the need for more research into how these compounds induce adaptations in neural circuits that underlie addiction pathology. PMID:23954847

  12. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Brownian motion of a nano-colloidal particle: the role of the solvent.

    PubMed

    Torres-Carbajal, Alexis; Herrera-Velarde, Salvador; Castañeda-Priego, Ramón

    2015-07-15

    Brownian motion is a feature of colloidal particles immersed in a liquid-like environment. Usually, it can be described by means of the generalised Langevin equation (GLE) within the framework of the Mori theory. In principle, all quantities that appear in the GLE can be calculated from the molecular information of the whole system, i.e., colloids and solvent molecules. In this work, by means of extensive Molecular Dynamics simulations, we study the effects of the microscopic details and the thermodynamic state of the solvent on the movement of a single nano-colloid. In particular, we consider a two-dimensional model system in which the mass and size of the colloid are two and one orders of magnitude, respectively, larger than the ones associated with the solvent molecules. The latter ones interact via a Lennard-Jones-type potential to tune the nature of the solvent, i.e., it can be either repulsive or attractive. We choose the linear momentum of the Brownian particle as the observable of interest in order to fully describe the Brownian motion within the Mori framework. We particularly focus on the colloid diffusion at different solvent densities and two temperature regimes: high and low (near the critical point) temperatures. To reach our goal, we have rewritten the GLE as a second kind Volterra integral in order to compute the memory kernel in real space. With this kernel, we evaluate the momentum-fluctuating force correlation function, which is of particular relevance since it allows us to establish when the stationarity condition has been reached. Our findings show that even at high temperatures, the details of the attractive interaction potential among solvent molecules induce important changes in the colloid dynamics. Additionally, near the critical point, the dynamical scenario becomes more complex; all the correlation functions decay slowly in an extended time window, however, the memory kernel seems to be only a function of the solvent density. Thus, the explicit inclusion of the solvent in the description of Brownian motion allows us to better understand the behaviour of the memory kernel at those thermodynamic states near the critical region without any further approximation. This information is useful to elaborate more realistic descriptions of Brownian motion that take into account the particular details of the host medium.

  14. Ionic liquid solutions as extractive solvents for value-added compounds from biomass

    PubMed Central

    Passos, Helena; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid–liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass–solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed. PMID:25516718

  15. Ionic liquid solutions as extractive solvents for value-added compounds from biomass.

    PubMed

    Passos, Helena; Freire, Mara G; Coutinho, João A P

    2014-12-01

    In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid-liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass-solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed.

  16. Inconsistency of the Van't Hoff-Scholander Mechanism of Osmosis

    ERIC Educational Resources Information Center

    Howard, R.; Bradner, H.

    1977-01-01

    Scholander supports a concept of mutually non-interacting, independent solute and solvent pressures. He proposes that the solute can induce this tension in the solvent through bombardment of a free surface. Criticism includes the neglect of a virial expansion for the equation of state by Scholander. (Author/MA)

  17. Process for hydrogenation of hydrocarbon tars

    DOEpatents

    Dolbear, Geoffrey E.

    1978-07-18

    Hydrocarbon tars of high asphaltene content such as tars obtained from pyrolysis of coal are dissolved in a solvent formed from the hydrogenation of the coal tars, and the resultant mixture hydrogenated in the presence of a catalyst at a pressure from about 1500 to 5000 psig at a temperature from about 500.degree. F to about the critical temperature of the solvent to form a light hydrocarbon as a solvent for the tars. Hydrogen content is at least three times the amount of hydrogen consumed.

  18. Sintering Kinetics of Inkjet Printed Conductive Silver Lines on Insulating Plastic Substrate

    DOE PAGES

    Zhou, Wenchao; List, III, Frederick Alyious; Duty, Chad E; ...

    2015-01-24

    This paper focuses on sintering kinetics of inkjet printed lines containing silver nanoparticles deposited on a plastic substrate. Upon heat treatment, the change of resistance in the printed lines was measured as a function of time and sintering temperatures from 150 to 200 C. A critical temperature was observed for the sintering process, beyond which there was no further reduction in resistance. Analysis shows the critical temperature correlates to the boiling point of the solvent, which is attributed to a liquid-mediated sintering mechanism. It is demonstrated that the sintering process shuts down after the solvent has completely evaporated.

  19. Conventional and Accelerated-Solvent Extractions of Green Tea (Camellia sinensis) for Metabolomics-based Chemometrics

    PubMed Central

    Kellogg, Joshua J.; Wallace, Emily D.; Graf, Tyler N.; Oberlies, Nicholas H.; Cech, Nadja B.

    2018-01-01

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. PMID:28787673

  20. Influence of solvent polarity and supersaturation on template-induced nucleation of carbamazepine crystal polymorphs

    NASA Astrophysics Data System (ADS)

    Parambil, Jose V.; Poornachary, Sendhil K.; Tan, Reginald B. H.; Heng, Jerry Y. Y.

    2017-07-01

    Studies on the use of template surfaces to induce heterogeneous crystal nucleation have gained momentum in recent years-with potential applications in selective crystallisation of polymorphs and in the generation of seed crystals in a continuous crystallisation process. In developing a template-assisted solution crystallisation process, the kinetics of homogeneous versus heterogeneous crystal nucleation could be influenced by solute-solvent, solute-template, and solvent-template interactions. In this study, we report the effect of solvents of varying polarity on the nucleation of carbamazepine (CBZ) crystal polymorphs, a model active pharmaceutical ingredient. The experimental results demonstrate that functionalised template surfaces are effective in promoting crystallisation of either the metastable (form II) or stable (form III) polymorphs of CBZ only in moderately (methanol, ethanol, isopropanol) and low polar (toluene) solvents. A solvent with high polarity (acetonitrile) is thought to mask the template effect on heterogeneous nucleation due to strong solute-solvent and solvent-template interactions. The current study highlights that a quality-by-design (QbD) approach-considering the synergistic effects of solute concentration, solvent type, solution temperature, and template surface chemistry on crystal nucleation-is critical to the development of a template-induced crystallisation process.

  1. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    PubMed

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  2. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    PubMed

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-07-11

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO₂ and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO₂ leading to a faster extraction with a higher recovery of the carotenoid.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang

    This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presentedmore » a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.« less

  4. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    PubMed

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  5. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, Robert R.; Schroeder, John L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.

  6. Hot and cold water as a supercritical solvent

    NASA Astrophysics Data System (ADS)

    Fuentevilla, Daphne Anne

    This dissertation addresses the anomalous properties of water at high temperatures near the vapor-liquid critical point and at low temperatures in the supercooled liquid region. The first part of the dissertation is concerned with the concentration dependence of the critical temperature, density, and pressure of an aqueous sodium chloride solution. Because of the practical importance of an accurate knowledge of critical parameters for industrial, geochemical, and biological applications, an empirical equation for the critical locus of aqueous sodium chloride solutions was adopted in 1999 by the International Association for the Properties of Water and Steam (IAPWS) as a guideline. However, since this original Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride was developed, two new theoretical developments occurred, motivating the first part of this dissertation. Here, I present a theory-based formulation for the critical parameters of aqueous sodium chloride solutions as a proposed replacement for the empirical formulation currently in use. This formulation has been published in the International Journal of Thermophysics and recommended by the Executive Committee of IAPWS for adoption as a Revised Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride. The second part of the dissertation addresses a new concept, considering cold water as a supercritical solvent. Based on the idea of a second, liquid-liquid, critical point in supercooled water, we explore the possibility of supercooled water as a novel supercooled solvent through the thermodynamics of critical phenomena. In 2006, I published a Physical Review letter presenting a parametric scaled equation of state for supercooled-water. Further developments based on this work led to a phenomenological mean-field "two-state" model, clarifying the nature of the phase separation in a polyamorphic single-component liquid. In this dissertation, I modify this two-state model to incorporate solutes. Critical lines emanating from the pure-water critical point show how even small additions of solute may significantly affect the thermodynamic properties and phase behavior of supercooled aqueous solutions. Some solutes, such as glycerol, can prevent spontaneous crystallization, thus making liquid-liquid separation in supercooled water experimentally accessible. This work will help in resolving the question on liquid polyamorphism in supercooled water.

  7. Structure and diffusion of furans and other cellulose-derived compounds in solvents via MD simulation

    NASA Astrophysics Data System (ADS)

    Rabideau, Brooks; Ismail, Ahmed

    2011-03-01

    There is now a large push towards the development of energy sources that are both environmentally friendly and sustainable; with the conversion of cellulose derived from biomass into biofuels being one promising route. In this conversion, a variety of intermediary compounds have been identified, which appear critical to successful expansion of the process to an industrial scale. Here we examine the structure and diffusion of these furans and acids derived from cellulose within ionic liquids via molecular dynamic simulation. Ionic liquids have shown the ability to dissolve cellulose with certain `green' benefits over existing, conventional solvents. Specifically, we study the solvation properties of these chemicals by examining the pair correlation functions of solute with solvent, and by exploring the agglomeration and separation of these chemicals from the solvent as well as the hydrogen bonding between species. Additionally, we determine the diffusion constant of these compounds in ionic liquid and aqueous solvents.

  8. New Analytical Method for the Determination of Detergent Concentration in Water by Fabric Dyeing

    ERIC Educational Resources Information Center

    Seng, Set; Kita, Masakazu; Sugihara, Reiko

    2007-01-01

    The use of harmful organic solvents in classrooms has become a critical issue of concern in the field of chemistry education. This article describes a classroom activity at a high school in which an acrylic fabric was used as the extraction medium in the analysis of the detergent concentration in water instead of organic solvents. Dyes were used…

  9. High throughput research and evaporation rate modeling for solvent screening for ethylcellulose barrier membranes in pharmaceutical applications.

    PubMed

    Schoener, Cody A; Curtis-Fisk, Jaime L; Rogers, True L; Tate, Michael P

    2016-10-01

    Ethylcellulose is commonly dissolved in a solvent or formed into an aqueous dispersion and sprayed onto various dosage forms to form a barrier membrane to provide controlled release in pharmaceutical formulations. Due to the variety of solvents utilized in the pharmaceutical industry and the importance solvent can play on film formation and film strength it is critical to understand how solvent can influence these parameters. To systematically study a variety of solvent blends and how these solvent blends influence ethylcellulose film formation, physical and mechanical film properties and solution properties such as clarity and viscosity. Using high throughput capabilities and evaporation rate modeling, thirty-one different solvent blends composed of ethanol, isopropanol, acetone, methanol, and/or water were formulated, analyzed for viscosity and clarity, and narrowed down to four solvent blends. Brookfield viscosity, film casting, mechanical film testing and water permeation were also completed. High throughput analysis identified isopropanol/water, ethanol, ethanol/water and methanol/acetone/water as solvent blends with unique clarity and viscosity values. Evaporation rate modeling further rank ordered these candidates from excellent to poor interaction with ethylcellulose. Isopropanol/water was identified as the most suitable solvent blend for ethylcellulose due to azeotrope formation during evaporation, which resulted in a solvent-rich phase allowing the ethylcellulose polymer chains to remain maximally extended during film formation. Consequently, the highest clarity and most ductile films were formed. Employing high throughput capabilities paired with evaporation rate modeling allowed strong predictions between solvent interaction with ethylcellulose and mechanical film properties.

  10. Towards ultra-fast solvent evaporation, the development of a computer controlled solvent vapor annealing chamber

    NASA Astrophysics Data System (ADS)

    Nelson, Gunnar; Wong, J.; Drapes, C.; Grant, M.; Baruth, A.

    Despite the promise of cheap and fast nanoscale ordering of block polymer thin films via solvent vapor annealing, a standardized, scalable production scheme remains elusive. Solvent vapor annealing exposes a nano-thin film to the vapors of one or more solvents with the goal of forming a swollen and mobile state to direct the self-assembly process by tuning surface energies and mediating unfavorable chain interactions. We have shown that optimized annealing conditions, where kinetic and thermal properties for crystal growth are extremely fast (<1s), exist at solvent concentrations just below the order-disorder transition of the film. However, when investigating the propagation of a given morphology into the bulk of a film during drying, the role of solvent evaporation comes under great scrutiny. During this process, the film undergoes a competition between two fronts; phase separation and kinetic trapping. Recent results in both theory and experiment point toward this critical element in controlling the resultant morphologies; however, no current method includes a controllable solvent evaporation rate at ultra-fast time scales. We report on a computer-controlled, pneumatically actuated chamber that provides control over solvent evaporation down to 15 ms. Furthermore, in situ spectral reflectance monitors solvent concentration with 10 ms temporal resolution and reveals several possible evaporation trajectories, ranging from linear to exponential to logarithmic. Funded by Dr. Randolph Ferlic Summer Research Scholarship and NASA Nebraska Space Grant.

  11. Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.

    Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate bymore » fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight. Extraction of catalytic fast pyrolysis oil with near critical propane produced an oil extract that was physically and chemically different from and more stable than the original oil. The propane extract displayed lower viscosity and lower average molecular weight. The species present in the propane extract were likely the less polar that would be expected from using a non-polar solvent (propane). Carbonyl containing species in the extract were likely ketones and esters. The raffinate contained a higher amnount of OH bonded species along with the more polar more polar acids, amides, and alcohols. The higher concentration of nitrogen in the raffinate may confirm the presence of amides. Viscosity of the propane extract increased only half as much as that of the CFP bio-oil. Further, In situ NMR aging studies showed that the propane extract was more stable than the raw oil. In conclusion, propane extraction is a promising method to decrease the nitrogen content of bio-oils and to improve the stability of bio-oils obtained by the catalytic pyrolysis of algae based biomass.« less

  12. Electrostatic Hazard Considerations for ODC Solvent Replacement Selection Testing

    NASA Technical Reports Server (NTRS)

    Fairbourn, Brad

    1999-01-01

    ODC solvents are used to clean many critical substrates during solid rocket motor production operations. Electrostatic charge generation incidental to these cleaning operations can pose a major safety issue. Therefore, while determining the acceptability of various ODC replacement cleaners, one aspect of the selection criteria included determining the extent of electric charge generation during a typical solvent cleaning operation. A total of six candidate replacement cleaners, sixteen critical substrates, and two types of cleaning swatch materials were studied in simulated cleaning operations. Charge generation and accumulation effects were investigated by measuring the peak voltage and brush discharging effects associated with each cleaning process combination. In some cases, charge generation was found to be very severe. Using the conductivity information for each cleaner, the peak voltage data could in some cases, be qualitatively predicted. Test results indicated that severe charging effects could result in brush discharges that could potentially result in flash fire hazards when occurring in close proximity to flammable vapor/air mixtures. Process controls to effectively mitigate these hazards are discussed.

  13. Critical Surface Cleaning and Verification Alternatives

    NASA Technical Reports Server (NTRS)

    Melton, Donald M.; McCool, A. (Technical Monitor)

    2000-01-01

    As a result of federal and state requirements, historical critical cleaning and verification solvents such as Freon 113, Freon TMC, and Trichloroethylene (TCE) are either highly regulated or no longer 0 C available. Interim replacements such as HCFC 225 have been qualified, however toxicity and future phase-out regulations necessitate long term solutions. The scope of this project was to qualify a safe and environmentally compliant LOX surface verification alternative to Freon 113, TCE and HCFC 225. The main effort was focused on initiating the evaluation and qualification of HCFC 225G as an alternate LOX verification solvent. The project was scoped in FY 99/00 to perform LOX compatibility, cleaning efficiency and qualification on flight hardware.

  14. Modelling the crystallization of the globular proteins

    NASA Astrophysics Data System (ADS)

    Shiryayev, Andrey S.

    Crystallization of globular proteins has become a very important subject in recent yearn. However there is still no understanding of the particular conditions that lead to the crystallization. Since nucleation of a crystalline droplet is the critical step toward the formation of the solid phase from the supersaturated solution, this is the focus of current studies. In this work we use different approaches to investigate the collective behavior of a system of globular proteins. Especially we focused on the models which have a metastable critical point, because this reflects the properties of solutions of globular proteins. The first approach is a continuum model of globular proteins. This model was first presented by Talanquer and Oxtoby and is based on the van der Waals theory. The model can have either a stable or a metastable critical point. For the system with the metastable critical point we studied the behavior of the free energy barrier to nucleation; we found that along particular pathways the barrier to nucleation has a minimim around the critical point. As well, the number of molecules in the critical cluster was found to diverge as one approaches the critical point, though most of the molecules are in the fluid tail of the droplet. Our results are an extension of earlier work [17, 7]. The properties of the solvent affect the behavior of the solution. In our second approach, we proposed a model that takes into account the contribution of the solvent free energy to the free energy of the globular proteins. We show that one can map the phase diagram of a repulsive hard core plus attractive square well interacting system to the same system particles in the solvent environment. In particular we show that this leads to phase diagrams with upper critical points, lower critical points and even closed loops with both upper and lower critical points, similar to the one found before [10]. For systems with interaction different from the square well, in the presence of the solvent this mapping procedure can be a first approximation to understand the phase diagram. The final part of this work is dedicated to the behavior of sickle hemoglobin. While the fluid behavior of the HbS molecules can be approximately explained by the uniform interparticle potential, this model fails to describe the polymerization process and the particular structure of fibers. We develop an anisotropic "patchy" model to describe some features of the HbS polymerization process. To determine the degree of polymerization of the system a "patchy" order parameter was defined. Monte Carlo simulations for the simple two-patch model was performed and reveal the possibility of obtaining chains that can be considered as one dimensional crystals.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathias, Paul M.; Afshar, Kash; Zheng, Feng

    This paper describes an unusual solvent regeneration method unique to CO₂BOLs and other switchable ionic liquids; utilizing changes in polarity to shift the free energy of the system. The degree of CO₂ loading in CO₂BOLs is known to control the polarity of the solvent; conversely, polarity could be exploited as a means to control CO₂ loading. In this process, a chemically inert non-polar “antisolvent” is added to aid in de-complexing CO₂ from a CO₂-rich CO₂BOL. The addition of this polarity assist reduces temperatures required for regeneration of CO₂BOLs by as much as 76 °C. The lower regeneration temperatures realized withmore » this polarity change allow for reduced solvent attrition and thermal degradation. Furthermore, the polarity assist shows considerable promise for reducing regeneration energy of CO₂BOL solvents, and separation of the CO₂BOL from the antisolvent is as simple as cooling the mixture below the upper critical solution temperature. Vapour-liquid equilibrium and liquid-liquid equilibrium measurements of a candidate CO₂BOL with CO₂ with and without an antisolvent were completed. From this data, we present the evidence and impacts of a polarity change on a CO₂BOL. Thermodynamic models and analysis of the system were constructed using ASPEN Plus, and forecasts preliminary process configurations and feasibility are also presented. Lastly, projections of solvent performance for removing CO₂ from a sub-critical coal fired power plant (total net power and parasitic load) are presented with and without this polarity assist and compared to DOE’s Case 10 MEA baseline.« less

  16. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, R.R.; Schroeder, J.L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.

  17. Identification of critical process variables affecting particle size following precipitation using a supercritical fluid.

    PubMed

    Sacha, Gregory A; Schmitt, William J; Nail, Steven L

    2006-01-01

    The critical processing parameters affecting average particle size, particle size distribution, yield, and level of residual carrier solvent using the supercritical anti-solvent method (SAS) were identified. Carbon dioxide was used as the supercritical fluid. Methylprednisolone acetate was used as the model solute in tetrahydrofuran. Parameters examined included pressure of the supercritical fluid, agitation rate, feed solution flow rate, impeller diameter, and nozzle design. Pressure was identified as the most important process parameter affecting average particle size, either through the effect of pressure on dispersion of the feed solution into the precipitation vessel or through the effect of pressure on solubility of drug in the CO2/organic solvent mixture. Agitation rate, impeller diameter, feed solution flow rate, and nozzle design had significant effects on particle size, which suggests that dispersion of the feed solution is important. Crimped HPLC tubing was the most effective method of introducing feed solution into the precipitation vessel, largely because it resulted in the least amount of clogging during the precipitation. Yields of 82% or greater were consistently produced and were not affected by the processing variables. Similarly, the level of residual solvent was independent of the processing variables and was present at 0.0002% wt/wt THF or less.

  18. Enzymatic synthesis of esculin ester in ionic liquids buffered with organic solvents.

    PubMed

    Hu, Yifan; Guo, Zheng; Lue, Bena-Marie; Xu, Xuebing

    2009-05-13

    The enzymatic esterification of esculin catalyzed by Candida antarctica lipase B (Novozym 435) was carried out in ionic liquid (IL)-organic solvent mixed systems in comparison with individual systems. The reaction behaviors in IL-organic solvents were systemically evaluated using acetone as a model solvent. With organic solvents as media, the esterification rates of esculin depended mainly on its solubility in solvents; for the reactions in ILs, the reaction rates were generally low, and the anion part of the IL played a critical role in enzyme activity. Therefore, the esterification of esculin in IL-acetone mixtures made it possible to improve the solubility of esculin while the effects of ILs on lipase activity were minimized. Following the benignity of ILs to lipase activity, the anions of ILs were ranked in the order as [Tf(2)N](-) > [PF(6)](-) > [BF(4)](-) > [CF(3)SO(3)](-) > [C(4)F(9)SO(3)](-) > [TAF](-) > [MDEGSO(4)](-) > [OctSO(4)](-) > [ES](-) = [DMP](-) = [OTs](- )= Cl(-). The reaction behaviors differed in different systems and largely depended on the properties of the ILs and organic solvents. In general, improvements were observed in terms of both solubility and reaction efficiency. The knowledge acquired in this work gives a better understanding of multiple interactions in IL-organic solvent systems, which provide guidance for system design and optimization.

  19. A mixed solvent system for preparation of spherically agglomerated crystals of ascorbic acid.

    PubMed

    Ren, Fuzheng; Zhou, Yaru; Liu, Yan; Fu, Jinping; Jing, Qiufang; Ren, Guobin

    2017-09-01

    The objective of this research was to develop a novel solvent system to prepare spherically agglomerated crystals (SAC) of ascorbic acid with improved flowability for direct compression. A spherical agglomeration method was developed by selecting the mixed solvents (n-butyl and ethyl acetate) as a poor solvent and the process was further optimized by using triangular phase diagram and particle vision measurement. Physiochemical properties of SAC were characterized and compared with original drug crystals. It showed that amount of poor solvent, ratio of solvent mixture, and drug concentration are critical for preparation of SAC with desirable properties. The solid state of SAC was same as original crystals according to DSC, XRD, and FT-IR results. There was no significant difference in solubility and dissolution rate of drug between SAC and original crystals. The flowability and packability of SAC as well as the tensile strength and elastic recovery of tablets made from SAC were all significantly improved when compared with original crystals and tablets from crystals. It is concluded that the present method was suitable to prepare SAC of ascorbic acid for direct compression.

  20. Solvent coarsening around colloids driven by temperature gradients

    NASA Astrophysics Data System (ADS)

    Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna

    2018-04-01

    Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.

  1. Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment.

    PubMed

    Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek

    2015-09-01

    In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa

    2000-06-01

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.

  3. Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method.

    PubMed

    Matsumoto, Akihiro; Murao, Satoshi; Matsumoto, Michiko; Watanabe, Chie; Murakami, Masahiro

    The feasibility of fabricating Janus particles based on phase separation between a hard fat and a biocompatible polymer was investigated. The solvent evaporation method used involved preparing an oil-in-water (o/w) emulsion with a mixture of poly (lactic-co-glycolic) acid (PLGA), hard fat, and an organic solvent as the oil phase and a polyvinyl alcohol aqueous solution as the water phase. The Janus particles were formed when the solvent was evaporated to obtain certain concentrations of PLGA and hard fat in the oil phase, at which phase separation was estimated to occur based on the phase diagram analysis. The hard fat hemisphere was proven to be the oil phase using a lipophilic dye Oil Red O. When the solvent evaporation process was performed maintaining a specific volume during the emulsification process; Janus particles were formed within 1.5 h. However, the formed Janus particles were destroyed by stirring for over 6 h. In contrast, a few Janus particles were formed when enough water to dissolve the oil phase solvent was added to the emulsion immediately after the emulsification process. The optimized volume of the solvent evaporation medium dominantly formed Janus particles and maintained the conformation for over 6 h with stirring. These results indicate that the formation and stability of Janus particles depend on the rate of solvent evaporation. Therefore, optimization of the solvent evaporation rate is critical to obtaining stable PLGA and hard fat Janus particles.

  4. Micron-sized columnar grains of CH3NH3PbI3 grown by solvent-vapor assisted low-temperature (75 °C) solid-state reaction: The role of non-coordinating solvent-vapor

    NASA Astrophysics Data System (ADS)

    Zheng, Huifeng; Liu, Yangqiao; Sun, Jing

    2018-04-01

    The preparation of hybrid perovskite films with large columnar grains via low-temperature solid-state reaction remains a big challenge. Conventional solvent annealing using DMF, DMSO and ethanol, etc. fails to work effectively at low temperature (<100 °C). Here, we comprehensively investigated the effects of non-coordinating solvent vapor on the properties of perovskite film, and obtained micron-sized columnar grains (with an average grain size of 1.4 μm) of CH3NH3PbI3 even at a low temperature of 75 °C when annealed with benzyl alcohol vapor. The perovskite solar cells based on benzyl-alcohol-vapor annealing (75 °C), delivered much higher photovoltaic performance, better stability and smaller hysteresis than those based on conventional thermal annealing. Additionally, a champion power conversion efficiency (PCE) of 15.1% was obtained and the average PCE reached 12.2% with a tiny deviation. Finally, the mechanism of solvent annealing with non-coordinating solvent was discussed. Moreover, we revealed that high polarity and high boiling point of the solvent used for generating vapor, was critical to grow micron-sized columnar grains at such a low temperature (75 °C). This work will contribute to understanding the mechanism of grain growth in solvent annealing and improving its facility and effectiveness.

  5. Long-range single domain array of a 5 nm pattern of supramolecules via solvent annealing in a double-sandwich cell.

    PubMed

    Kwon, Kiok; Park, Kangho; Jung, Hee-Tae

    2018-05-10

    In nanotechnology and microelectronics research, the generation of an ultradense, single-grain nanostructure with a long-range lateral order is challenging. In this paper, we report upon a new solvent-annealing method using a double-sandwich confinement to promote the formation of a large-area, single-domain array (>0.3 × 0.3 mm2) of supramolecular cylinders with a small feature size (4.7 nm). The in situ GISAXS experiment result shows the ordering process during solvent evaporation. The diffusion of the solvent molecules led to the disassembly of the supramolecules confined between the top and bottom surfaces and their subsequent mobilization, thereby producing a highly ordered hexagonal array of supramolecular materials under the double-sandwich confinement upon solvent evaporation. In addition, two key factors were found to be crucial in this process for generating highly-ordered supramolecular building blocks: (i) the presence of a top coat during solvent evaporation to provide a geometric confinement template, and (ii) the control of the solvent evaporation rate during the solvent evaporation step to provide the dendrimer sufficient time to self-assemble into the highly ordered state over a large area. Our developed approach, which can be extended to be used for a large family of supramolecules, is of critical importance in providing a new bottom-up lithographic method based on supramolecular self-assembly.

  6. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  7. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  8. Microencapsulation Processes

    NASA Astrophysics Data System (ADS)

    Whateley, T. L.; Poncelet, D.

    2005-06-01

    Microencapsulation by solvent evaporation is a novel technique to enable the controlled delivery of active materials.The controlled release of drugs, for example, is a key challenge in the pharmaceutical industries. Although proposed several decades ago, it remains largely an empirical laboratory process.The Topical Team has considered its critical points and the work required to produce a more effective technology - better control of the process for industrial production, understanding of the interfacial dynamics, determination of the solvent evaporation profile, and establishment of the relation between polymer/microcapsule structures.The Team has also defined how microgravity experiments could help in better understanding microencapsulation by solvent evaporation, and it has proposed a strategy for a collaborative project on the topic.

  9. Contamination of Critical Surfaces from NVR Glove Residues Via Dry Handling and Solvent Cleaning

    NASA Technical Reports Server (NTRS)

    Sovinski, Marjorie F.

    2004-01-01

    Gloves are often used to prevent the contamination of critical surfaces during handling. The type of glove chosen for use should be the glove that produces the least amount of non-volatile residue (NVR). This paper covers the analysis of polyethylene, nitrile, latex, vinyl, and polyurethane gloves using the contact transfer and gravimetric determination methods covered in the NASA GSFC work instruction Gravimetric Determination and Contact Transfer of Non-volatile Residue (NVR) in Cleanroom Glove Samples, 541-WI-5330.1.21 and in the ASTM Standard E-1731M-95, Standard Test Method for Gravimetric Determination of Non-Volatile Residue from Cleanroom Gloves. The tests performed focus on contamination of critical surfaces at the molecular level. The study found that for the most part, all of the gloves performed equally well in the contact transfer testing. However, the polyethylene gloves performed the best in the gravimetric determination testing, and therefore should be used whenever solvent contact is a possibility. The nitrile gloves may be used as a substitute for latex gloves when latex sensitivity is an issue. The use of vinyl gloves should be avoided, especially if solvent contact is a possibility. A glove database will be established by Goddard Space Flight Center (GSFC) Code 541 to compile the results from future testing of new gloves and different glove lots.

  10. RETRACTED: Neoteric FT-IR investigation on the functional groups of phosphonium-based deep eutectic solvents.

    PubMed

    Aissaoui, Tayeb; AlNashef, Inas M; Hayyan, Maan; Hashim, Mohd Ali

    2015-10-05

    Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Balancing size exclusion and adsorption of polymers in nanopores

    NASA Astrophysics Data System (ADS)

    Kim, Won; Ryu, Chang Y.

    2006-03-01

    The liquid chromatography at critical condition (LCCC) presents the condition, at which the size exclusion and adsorption of polymer chains are balanced upon interactions with nanoporous substrates. In this study, we investigate how the polymer interactions with nanopores are affected by the solvent quality and nanopore size. Specifically, we measure the retention times of monodisperse polystyrenes in C18-bonded nanoporous silica column as a function of molecular weight, when a mixed solvent of methylene chloride and acetonitrile are used as elutent. C18-bonded silica particles with 70, 100, and 250 A pore size are used as a stationary phase to study how the transition from SEC-like to IC-like retention behavior depends on the condition of temperature and solvent composition. To locate the LCCC at various nanopore sizes, the temperature and solvent composition have been varied from 0 to 60 C and from 51 to 62 v/v% of methylene chloride, respectively.

  12. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    PubMed

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  13. Reactive extraction at liquid-liquid systems

    NASA Astrophysics Data System (ADS)

    Wieszczycka, Karolina

    2018-01-01

    The chapter summarizes the state of knowledge about a metal transport in two-phase system. The first part of this review focuses on the distribution law and main factors determination in classical solvent extraction (solubility and polarity of the solute, as well as inter- and intramolecules interaction. Next part of the chapter is devoted to the reactive solvent extraction and the molecular modeling requiring knowledge on type of extractants, complexation mechanisms, metals ions speciation and oxidation during complexes forming, and other parameters that enable to understand the extraction process. Also the kinetic data that is needed for proper modeling, simulation and design of processes needed for critical separations are discussed. Extraction at liquid-solid system using solvent impregnated resins is partially identical as in the case of the corresponding solvent extraction, therefore this subject was also presented in all aspects of separation process (equilibrium, mechanism, kinetics).

  14. Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents

    NASA Astrophysics Data System (ADS)

    Park, Chanbum; Kanduč, Matej; Chudoba, Richard; Ronneburg, Arne; Risse, Sebastian; Ballauff, Matthias; Dzubiella, Joachim

    2018-01-01

    The performance of modern lithium-sulfur (Li/S) battery systems critically depends on the electrolyte and solvent compositions. For fundamental molecular insights and rational guidance of experimental developments, efficient and sufficiently accurate molecular simulations are thus in urgent need. Here, we construct a molecular dynamics (MD) computer simulation model of representative state-of-the art electrolyte-solvent systems for Li/S batteries constituted by lithium-bis(trifluoromethane)sulfonimide (LiTFSI) and LiNO3 electrolytes in mixtures of the organic solvents 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL). We benchmark and verify our simulations by comparing structural and dynamic features with various available experimental reference systems and demonstrate their applicability for a wide range of electrolyte-solvent compositions. For the state-of-the-art battery solvent, we finally calculate and discuss the detailed composition of the first lithium solvation shell, the temperature dependence of lithium diffusion, as well as the electrolyte conductivities and lithium transference numbers. Our model will serve as a basis for efficient future predictions of electrolyte structure and transport in complex electrode confinements for the optimization of modern Li/S batteries (and related devices).

  15. Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

    DOE PAGES

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...

    2015-11-03

    The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less

  16. Molecular Level Structure and Dynamics of Electrolytes Using 17O Nuclear Magnetic Resonance Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugesan, Vijayakumar; Han, Kee Sung; Hu, Jianzhi

    2017-03-19

    Electrolytes help harness the energy from electrochemical processes by serving as solvents and transport media for redox-active ions. Molecular-level interactions between ionic solutes and solvent molecules – commonly referred to as solvation phenomena – give rise to many functional properties of electrolytes such as ionic conductivity, viscosity, and stability. It is critical to understand the evolution of solvation phenomena as a function of competing counterions and solvent mixtures to predict and design the optimal electrolyte for a target application. Probing oxygen environments is of great interest as oxygens are located at strategic molecular sites in battery solvents and are directlymore » involved in inter- and intramolecular solvation interactions. NMR signals from 17O nuclei in battery electrolytes offer nondestructive bulk measurements of isotropic shielding, electric field gradient tensors, and transverse and longitudinal relaxation rates, which are excellent means for probing structure, bonding, and dynamics of both solute and solvent molecules. This article describes the use of 17O NMR spectroscopy in probing the solvation structures of various electrolyte systems ranging from transition metal ions in aqueous solution to lithium cations in organic solvent mixtures.« less

  17. Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora

    The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less

  18. Physicochemical Investigation of 2,4,5-Trimethoxybenzylidene Propanedinitrile (TMPN) Dye as Fluorescence off-on Probe for Critical Micelle Concentration (CMC) of SDS and CTAB.

    PubMed

    Khan, Salman A; Asiri, Abdullah M

    2015-11-01

    2,4,5-trimethoxybenzylidene propanedinitrile (TMPN) was synthesized by Knoevenagel condensation. Structure of the TMPN was conformed by the elemental analysis and EI-MS, FT-IR, (1)H-NMR, (13)C-NMR spectroscopy. Absorbance and emission spectrum of the TMPN was studied in different solvent provide that TMPN is good absorbent and emission red shift in absorbance and emission spectra as polarity of the solvents increase. Photophysical properties including, oscillator strength, extinction coefficient, transition dipole moment, stokes shift and fluorescence quantum yield were investigated in order to investigate the physicochemical behaviors of TMPN. Dye undergoes solubilization in different micelles and may be used as a probe to determine the critical micelle concentration (CMC) of SDS and CTAB.

  19. CONTROL MEANS FOR A NUCLEAR REACTOR

    DOEpatents

    Teitel, R.J.

    1961-09-01

    A control means is described for a reactor which employs a liquid fuel consisting of a fissile isotope in a liquid bismuth solvent. The liquid fuel is contained in a plurality of tubular vessels. Control is effected by inserting plungers in the vessels to displace the liquid fuel and provide a critical or non- critical fuel configuration as desired.

  20. Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Samantha A.; Appel, Aaron M.; Linehan, John C.

    A critical scientific challenge for utilization of CO2 is the development of catalyst systems that do not depend upon expensive or environmentally unfriendly reagents, such as precious metals, strong organic bases, and organic solvents. We have used thermodynamic insights to predict and demonstrate that the HCoI(dmpe)2 catalyst system, previously described for use in organic solvents, can hydrogenate CO2 to formate in water with bicarbonate as the only added reagent. Replacing tetrahydrofuran as the solvent with water changes the mechanism for catalysis by altering the thermodynamics for hydride transfer to CO2 from a key dihydride intermediate. The need for a strongmore » organic base was eliminated by performing catalysis in water due to the change in mechanism. These studies demonstrate that the solvent plays a pivotal role in determining the reaction thermodynamics and thereby catalytic mechanism and activity. The research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  1. Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism.

    PubMed

    Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan

    2014-08-12

    Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior.

  2. Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan

    2014-08-01

    Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior.

  3. Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism

    PubMed Central

    Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan

    2014-01-01

    Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior. PMID:25113225

  4. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.

    PubMed

    Zhu, Zhiyuan; Snellings, Geert M B F; Koebel, Matthias M; Malfait, Wim J

    2017-05-31

    Polyisocyanate based aerogels combine ultralow thermal conductivities with better mechanical properties than silica aerogel, but these properties critically depend on the nature of the gelation solvent, perhaps more so than on any other parameter. Here, we present a systematic study of the relationship between the polyurethane-polyisocyanurate (PUR-PIR) aerogel microstructure, surface area, thermal conductivity, and density and the gelation solvent's Hansen solubility parameters for an industrially relevant PUR-PIR rigid foam formulation. We first investigated aerogels prepared in acetone-dimethyl sulfoxide (DMSO) blends and observed a minimum in thermal conductivity (λ) and maximum in specific surface area for an acetone:DMSO ratio of 85:15 v/v. We then prepared PUR-PIR aerogels in 32 different solvent blends, divided into three series with δ Dispersion , δ Polarity , and δ H-bonding fixed at 15.94, 11.30, and 7.48 MPa 1/2 , respectively, corresponding to the optimum parameters for the acetone:DMSO series. The aerogel properties display distinct dependencies on the various solubility parameters: aerogels with low thermal conductivity can be synthesized in solvents with a high δ H-bonding parameter (above 7.2) and δ Dispersion around 16.3 MPa 1/2 . In contrast, the δ Polarity parameter is of lesser importance. Our study highlights the importance of the gelation solvent, clarifies the influence of the different solvent properties, and provides a methodology for a targeted search across the solvent chemical space based on the Hansen solubility parameters.

  5. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  6. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: comparison between hard-sphere solvent and water.

    PubMed

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-04-14

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.

  7. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshima, Hiraku; Kinoshita, Masahiro, E-mail: kinoshit@iae.kyoto-u.ac.jp

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent modelsmore » and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.« less

  8. Blowing bubbles in Lennard-Jonesium along the saturation curve.

    PubMed

    Ashbaugh, Henry S

    2009-05-28

    Extensive molecular simulations of the Lennard-Jones fluid have been performed to determine its liquid-vapor coexistence properties and solvent contact densities with cavities up to ten times the diameter of the solvent from the triple point to the critical point. These simulations are analyzed using a revised scaled-particle theory [H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006)] to evaluate the thermodynamics of cavity solvation and curvature dependent interfacial properties along the saturation curve. While the thermodynamic signatures of cavity solvation are distinct from those in water, exhibiting a chemical potential dominated by a large temperature independent enthalpy, the solvent dewets cavities of increasing size similar with water near coexistence. The interfacial tension for forming a liquid-wall interface is found to be consistently greater than the liquid-vapor surface tension of the Lennard-Jones fluid by up to 10% and potentially reflects the suppression of high amplitude fluctuations at the cavity surface. The first-order curvature correction for the surface tension is negative and appears to diverge to negative infinity at temperatures approaching the critical point. Our results point to the success of the revised scaled-particle theory at bridging molecular and macroscopic descriptions of cavity solvation.

  9. Transport of organic solutes through amorphous teflon AF films.

    PubMed

    Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G

    2005-11-02

    Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.

  10. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, Jr., Henry D.

    1993-01-01

    A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  11. Contamination removal using various solvents and methodologies

    NASA Technical Reports Server (NTRS)

    Jeppsen, J. C.

    1989-01-01

    Critical and non-critical bonding surfaces must be kept free of contamination that may cause potential unbonds. For example, an aft-dome section of a redesigned solid rocket motor that had been contaminated with hydraulic oil did not appear to be sufficiently cleaned when inspected by the optically stimulated electron emission process (Con Scan) after it had been cleaned using a hand double wipe cleaning method. As a result, current and new cleaning methodologies as well as solvent capability in removing various contaminant materials were reviewed and testing was performed. Bonding studies were also done to verify that the cleaning methods used in removing contaminants provide an acceptable bonding surface. The removal of contaminants from a metal surface and the strength of subsequent bonds were tested using the Martin Marietta and double-wipe cleaning methods. Results are reported.

  12. A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction.

    PubMed

    Deng, Lei; Fan, Chao; Zeng, Zhiwen

    2017-12-28

    Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.

  13. Elucidation of ionic interactions in the protic ionic liquid solutions by isothermal titration calorimetry.

    PubMed

    Rai, Gitanjali; Kumar, Anil

    2014-04-17

    The strong hydrogen-bonded network noted in protic ionic liquids (PILs) may lead to stronger interactions of the ionic entities of PILs with solvents (water, methanol, ethylene glycol, dimethylsulfoxide (DMSO), N,N'-dimethylformamide (DMF)) as compared with those of aprotic ionic liquids (APILs). The PILs used in this work are 1-methylimidazolium tetrafluoroborate, 2-methylpyridinium tetrafluoroborate, and N-methylpyrrolodinium tetrafluoroborate in comparison to 1-butyl-3-methylimidazolium tetrafluoroborate, which is classified as an APIL. In this work, the excess partial molar enthalpy, H(E)IL obtained from isothermal calorimetric titrations at 298.15 K is used to probe the nature of interactions of the PIL cations with solvent molecules against those present in APIL-solvent systems. This work also reports interesting flip-flopping in the thermal behavior of these PIL-solvent systems depending upon the structure of the cationic ring of a PIL. In some cases, these flip-flops are the specific fingerprints for specific PILs in a common solvent environment. The excess partial molar enthalpy at infinite dilution, H(E,∞)IL, of these PILs bears a critical dependence on the solvent properties. An analysis of relative apparent molar enthalpies, ϕL, of the PIL solutions by the ion interaction model of Pitzer yields important information on ionic interactions of these systems.

  14. Investigation of Cleanliness Verification Techniques for Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Fritzemeier, Marilyn L.; Skowronski, Raymund P.

    1994-01-01

    Oxidizer propellant systems for liquid-fueled rocket engines must meet stringent cleanliness requirements for particulate and nonvolatile residue. These requirements were established to limit residual contaminants which could block small orifices or ignite in the oxidizer system during engine operation. Limiting organic residues in high pressure oxygen systems, such as in the Space Shuttle Main Engine (SSME), is particularly important. The current method of cleanliness verification for the SSME uses an organic solvent flush of the critical hardware surfaces. The solvent is filtered and analyzed for particulate matter followed by gravimetric determination of the nonvolatile residue (NVR) content of the filtered solvent. The organic solvents currently specified for use (1, 1, 1-trichloroethane and CFC-113) are ozone-depleting chemicals slated for elimination by December 1995. A test program is in progress to evaluate alternative methods for cleanliness verification that do not require the use of ozone-depleting chemicals and that minimize or eliminate the use of solvents regulated as hazardous air pollutants or smog precursors. Initial results from the laboratory test program to evaluate aqueous-based methods and organic solvent flush methods for NVR verification are provided and compared with results obtained using the current method. Evaluation of the alternative methods was conducted using a range of contaminants encountered in the manufacture of rocket engine hardware.

  15. Quality of Chemical Safety Information in Printing Industry.

    PubMed

    Tsai, Chung-Jung; Mao, I-Fang; Ting, Jo-Yu; Young, Chi-Hsien; Lin, Jhih-Sian; Li, Wei-Lun

    2016-04-01

    Employees in printing industries can be exposed to multiple solvents in their work environment. The objectives of this study were to investigate the critical components of chemical solvents by analyzing the components of the solvents and collecting the Safety data sheets (SDSs), and to evaluate the hazard communication implementation status in printing industries. About 152 printing-related industries were recruited by area-stratified random sampling and included 23 plate-making, 102 printing and 27 printing-assistance companies in Taiwan. We analyzed company questionnaires (n = 152), SDSs (n = 180), and solvents (n = 20) collected from this sample of printing-related companies. Analytical results indicated that benzene and ethylbenzene, which were carcinogen and possibly carcinogen, were detectable in the cleaning solvents, and the detection rate were 54.5% (concentrations: <0.011-0.035 wt%) and 63.6% (concentrations: <0.011-6.22 wt%), respectively; however, neither compound was disclosed in the SDS for the solvents. Several other undisclosed components, including methanol, isopropanol and n-butanol, were also identified in the printing inks, fountain solutions and dilution solvents. We noted that, of the companies we surveyed, only 57.2% had a hazard communication program, 61.8% had SDSs on file and 59.9% provided employee safety and health training. We note that hazard communication programs were missing or ineffective in almost half of the 152 printing industries surveyed. Current safety information of solvents components in printing industries was inadequate, and many hazardous compounds were undisclosed in the SDSs of the solvents or the labels of the containers. The implementation of hazard communications in printing industries was still not enough for protecting the employees' safety and health. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, Jack R; Ware, Anne E

    Two catalytic fast pyrolysis (CFP) oils (bottom/heavy fraction) were analyzed in various solvents that are used in common analytical methods (nuclear magnetic resonance - NMR, gas chromatography - GC, gel permeation chromatography - GPC, thermogravimetric analysis - TGA) for oil characterization and speciation. A more accurate analysis of the CFP oils can be obtained by identification and exploitation of solvent miscibility characteristics. Acetone and tetrahydrofuran can be used to completely solubilize CFP oils for analysis by GC and tetrahydrofuran can be used for traditional organic GPC analysis of the oils. DMSO-d6 can be used to solubilize CFP oils for analysismore » by 13C NMR. The fractionation of oils into solvents that did not completely solubilize the whole oils showed that miscibility can be related to the oil properties. This allows for solvent selection based on physico-chemical properties of the oils. However, based on semi-quantitative comparisons of the GC chromatograms, the organic solvent fractionation schemes did not speciate the oils based on specific analyte type. On the other hand, chlorinated solvents did fractionate the oils based on analyte size to a certain degree. Unfortunately, like raw pyrolysis oil, the matrix of the CFP oils is complicated and is not amenable to simple liquid-liquid extraction (LLE) or solvent fractionation to separate the oils based on the chemical and/or physical properties of individual components. For reliable analyses, for each analytical method used, it is critical that the bio-oil sample is both completely soluble and also not likely to react with the chosen solvent. The adoption of the standardized solvent selection protocols presented here will allow for greater reproducibility of analysis across different users and facilities.« less

  17. Reinventing Design Principles for Developing Low-Viscosity Carbon Dioxide-Binding Organic Liquids for Flue Gas Clean Up.

    PubMed

    Malhotra, Deepika; Koech, Phillip K; Heldebrant, David J; Cantu, David C; Zheng, Feng; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2017-02-08

    Anthropogenic CO 2 emissions from point sources (e.g., coal fired-power plants) account for the majority of the greenhouse gases in the atmosphere. Water-lean solvent systems such as CO 2 -binding organic liquids (CO 2 BOLs) are being developed to reduce the energy requirement for CO 2 capture. Many water-lean solvents such as CO 2 BOLs are currently limited by the high viscosities of concentrated electrolyte solvents, thus many of these solvents have yet to move toward commercialization. Conventional standard trial-and-error approaches for viscosity reduction, while effective, are time consuming and economically expensive. We rethink the metrics and design principles of low-viscosity CO 2 -capture solvents using a combined synthesis and computational modeling approach. We critically study the effects of viscosity reducing factors such as orientation of hydrogen bonding, introduction of higher degrees of freedom, and cation or anion charge solvation, and assess whether or how each factor affects viscosity of CO 2 BOL CO 2 capture solvents. Ultimately, we found that hydrogen bond orientation and strength is the predominant factor influencing the viscosity in CO 2 BOL solvents. With this knowledge, a new CO 2 BOL variant, 1-MEIPADM-2-BOL, was synthesized and tested, resulting in a solvent that is approximately 60 % less viscous at 25 mol % CO 2 loading than our base compound 1-IPADM-2-BOL. The insights gained from the current study redefine the fundamental concepts and understanding of what influences viscosity in concentrated organic CO 2 -capture solvents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quality of Chemical Safety Information in Printing Industry

    PubMed Central

    Tsai, Chung-Jung; Mao, I-Fang; Ting, Jo-Yu; Young, Chi-Hsien; Lin, Jhih-Sian; Li, Wei-Lun

    2016-01-01

    Objectives: Employees in printing industries can be exposed to multiple solvents in their work environment. The objectives of this study were to investigate the critical components of chemical solvents by analyzing the components of the solvents and collecting the Safety data sheets (SDSs), and to evaluate the hazard communication implementation status in printing industries. Method: About 152 printing-related industries were recruited by area-stratified random sampling and included 23 plate-making, 102 printing and 27 printing-assistance companies in Taiwan. We analyzed company questionnaires (n = 152), SDSs (n = 180), and solvents (n = 20) collected from this sample of printing-related companies. Results: Analytical results indicated that benzene and ethylbenzene, which were carcinogen and possibly carcinogen, were detectable in the cleaning solvents, and the detection rate were 54.5% (concentrations: <0.011–0.035 wt%) and 63.6% (concentrations: <0.011–6.22 wt%), respectively; however, neither compound was disclosed in the SDS for the solvents. Several other undisclosed components, including methanol, isopropanol and n-butanol, were also identified in the printing inks, fountain solutions and dilution solvents. We noted that, of the companies we surveyed, only 57.2% had a hazard communication program, 61.8% had SDSs on file and 59.9% provided employee safety and health training. We note that hazard communication programs were missing or ineffective in almost half of the 152 printing industries surveyed. Conclusions: Current safety information of solvents components in printing industries was inadequate, and many hazardous compounds were undisclosed in the SDSs of the solvents or the labels of the containers. The implementation of hazard communications in printing industries was still not enough for protecting the employees’ safety and health. PMID:26568584

  19. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, H.D. Jr.

    1993-04-20

    A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  20. Poly(ethylene glycol)-based ionic liquids: properties and uses as alternative solvents in organic synthesis and catalysis.

    PubMed

    Cecchini, Martina Maya; Charnay, Clarence; De Angelis, Francesco; Lamaty, Frédéric; Martinez, Jean; Colacino, Evelina

    2014-01-01

    PEG-based ionic liquids are a new appealing group of solvents making the link between two distinct but very similar fluids: ionic liquids and poly(ethylene glycol)s. They find applications across a range of innumerable disciplines in science, technology, and engineering. In the last years, the possibility to use these as alternative solvents for organic synthesis and catalysis has been increasingly explored. This Review highlights strategies for their synthesis, their physical properties (critical point, glass transition temperature, density, rheological properties), and their application in reactions catalyzed by metals (such as Pd, Cu, W, or Rh) or as organic solvent (for example for multicomponent reactions, organocatalysis, CO2 transformation) with special emphasis on their toxicity, environmental impact, and biodegradability. These aspects, very often neglected, need to be considered in addition to the green criteria usually considered to establish ecofriendly processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Selective free radical reactions using supercritical carbon dioxide.

    PubMed

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  2. Trip report. Eurochemic company assistance: Hanford Atomic Products Operation spent fuel processing technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shank, E.M.

    1959-06-23

    Information obtained from HAPO during visit by M.K. Twichell, UCNC, and E.M. Shank, ORNL, is given. Included are the tentative procedures for obtaining and transmitting information to the Eurochemic company. Discussions are given on pulsed columns, corrosion, puse generators, centrifuges, valves, in-line instrumentation, evaporators, resin column design, off-gas processing, solvent recovery, liquid-waste handling, process control, equipment decontamination, criticality, radiation protection, diluent, and solvent stability, backmixing in a pulsed column, and use of 40% TBP in the purex flowsheet.

  3. Understanding the influence of solvent field and fluctuations on the stability of photo-induced charge-separated state in molecular triad

    NASA Astrophysics Data System (ADS)

    Balamurugan, D.; Aquino, Adelia; Lischka, Hans; Dios, Francis; Flores, Lionel; Cheung, Margaret

    2013-03-01

    Molecular triad composed of fullerene, porphyrin, and carotene is an artificial analogue of natural photosynthetic system and is considered for applications in solar energy conversion because of its ability to produce long-lived photo-induced charge separated state. The goal of the present multiscale simulation is to understand how the stability of photo-induced charge-separated state in molecular triad is influenced by a polar organic solvent, namely tetrahydrofuran (THF). The multiscale approach is based on combined quantum, classical molecular dynamics, and statistical physics calculations. The quantum chemical calculations were performed on the triad using the second order algebraic diagrammatic perturbation and time-dependent density functional theory. Molecular dynamics simulations were performed on triad in a box of THF solvent with the replica exchange method. The two methods on different length and time scales are bridged through an important sampling technique. We have analyzed the free energy landscape, structural fluctuations, and the long- range electrostatic interactions between triad and solvent molecules. The results suggest that the polarity and re-organization of the solvent is critical in stabilization of charge-separated state in triad. Supported by DOE (DE-FG02-10ER16175)

  4. Implementation of quality by design principles in the development of microsponges as drug delivery carriers: Identification and optimization of critical factors using multivariate statistical analyses and design of experiments studies.

    PubMed

    Simonoska Crcarevska, Maja; Dimitrovska, Aneta; Sibinovska, Nadica; Mladenovska, Kristina; Slavevska Raicki, Renata; Glavas Dodov, Marija

    2015-07-15

    Microsponges drug delivery system (MDDC) was prepared by double emulsion-solvent-diffusion technique using rotor-stator homogenization. Quality by design (QbD) concept was implemented for the development of MDDC with potential to be incorporated into semisolid dosage form (gel). Quality target product profile (QTPP) and critical quality attributes (CQA) were defined and identified, accordingly. Critical material attributes (CMA) and Critical process parameters (CPP) were identified using quality risk management (QRM) tool, failure mode, effects and criticality analysis (FMECA). CMA and CPP were identified based on results obtained from principal component analysis (PCA-X&Y) and partial least squares (PLS) statistical analysis along with literature data, product and process knowledge and understanding. FMECA identified amount of ethylcellulose, chitosan, acetone, dichloromethane, span 80, tween 80 and water ratio in primary/multiple emulsions as CMA and rotation speed and stirrer type used for organic solvent removal as CPP. The relationship between identified CPP and particle size as CQA was described in the design space using design of experiments - one-factor response surface method. Obtained results from statistically designed experiments enabled establishment of mathematical models and equations that were used for detailed characterization of influence of identified CPP upon MDDC particle size and particle size distribution and their subsequent optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Benchmark of ReaxFF force field for subcritical and supercritical water.

    PubMed

    Manzano, Hegoi; Zhang, Weiwei; Raju, Muralikrishna; Dolado, Jorge S; López-Arbeloa, Iñigo; van Duin, Adri C T

    2018-06-21

    Water in the subcritical and supercritical states has remarkable properties that make it an excellent solvent for oxidation of hazardous chemicals, waste separation, and green synthesis. Molecular simulations are a valuable complement to experiments in order to understand and improve the relevant sub- and super-critical reaction mechanisms. Since water molecules under these conditions can act not only as a solvent but also as a reactant, dissociative force fields are especially interesting to investigate these processes. In this work, we evaluate the capacity of the ReaxFF force field to reproduce the microstructure, hydrogen bonding, dielectric constant, diffusion, and proton transfer of sub- and super-critical water. Our results indicate that ReaxFF is able to simulate water properties in these states in very good quantitative agreement with the existing experimental data, with the exception of the static dielectric constant that is reproduced only qualitatively.

  6. Nuclear and chemical safety analysis: Purex Plant 1970 thorium campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldt, A.L.; Oberg, G.C.

    The purpose of this document is to discuss the flowsheet and the related processing equipment with respect to nuclear and chemical safety. The analyses presented are based on equipment utilization and revised piping as outlined in the design criteria. Processing of thorium and uranium-233 in the Purex Plant can be accomplished within currently accepted levels of risk with respect to chemical and nuclear safety if minor instrumentation changes are made. Uranium-233 processing is limited to a rate of about 670 grams per hour by equipment capacities and criticality safety considerations. The major criticality prevention problems result from the potential accumulationmore » of uranium-233 in a solvent phase in E-H4 (ICU concentrator), TK-J1 (IUC receiver), and TK-J21 (2AF pump tank). The same potential problems exist in TK-J5 (3AF pump tank) and TK-N1 (3BU receiver), but the probabilities of reaching a critical condition are not as great. In order to prevent the excessive accumulation of uranium-233 in any of these vessels by an extraction mechanism, it is necessary to maintain the uranium-233 and salting agent concentrations below the point at which a critical concentration of uranium-233 could be reached in a solvent phase.« less

  7. Computational and theoretical studies of globular proteins

    NASA Astrophysics Data System (ADS)

    Pagan, Daniel L.

    Protein crystallization is often achieved in experiment through a trial and error approach. To date, there exists a dearth of theoretical understanding of the initial conditions necessary to promote crystallization. While a better understanding of crystallization will help to create good crystals suitable for structure analysis, it will also allow us to prevent the onset of certain diseases. The core of this thesis is to model and, ultimately, understand the phase behavior of protein particles in solution. Toward this goal, we calculate the fluid-fluid coexistence curve in the vicinity of the metastable critical point of the modified Lennard-Jones potential, where it has been shown that nucleation is increased by many orders of magnitude. We use finite-size scaling techniques and grand canonical Monte Carlo simulation methods. This has allowed us to pinpoint the critical point and subcritical region with high accuracy in spite of the critical fluctuations that hinder sampling using other Monte Carlo techniques. We also attempt to model the phase behavior of the gamma-crystallins, mutations of which have been linked to genetic cataracts. The complete phase behavior of the square well potential at the ranges of attraction lambda = 1.15 and lambda = 1.25 is calculated and compared with that of the gammaII-crystallin. The role of solvent is also important in the crystallization process and affects the phase behavior of proteins in solution. We study a model that accounts for the contribution of the solvent free-energy to the free-energy of globular proteins. This model allows us to model phase behavior that includes solvent.

  8. Reaction Mechanism of Organocatalytic Michael Addition of Nitromethane to Cinnamaldehyde: A Case Study on Catalyst Regeneration and Solvent Effects.

    PubMed

    Świderek, Katarzyna; Nödling, Alexander R; Tsai, Yu-Hsuan; Luk, Louis Y P; Moliner, Vicent

    2018-01-11

    The Michael addition of nitromethane to cinnamaldehyde has been computationally studied in the absence of a catalyst and the presence of a biotinylated secondary amine by a combined computational and experimental approach. The calculations were performed at the density functional theory (DFT) level with the M06-2X hybrid functional, and a polarizable continuum model has been employed to mimic the effect of two different solvents: dichloromethane (DCM) and water. Contrary to common assumption, the product-derived iminium intermediate was absent in both of the solvents tested. Instead, hydrating the C1-C2 double bond in the enamine intermediate directly yields the tetrahedral intermediate, which is key for forming the product and regenerating the catalyst. Enamine hydration is concerted and found to be rate-limiting in DCM but segregated into two non-rate-limiting steps when the solvent is replaced with water. However, further analysis revealed that the use of water as solvent also raises the energy barriers for other chemical steps, particularly the critical step of C-C bond formation between the iminium intermediate and nucleophile; this consequently lowers both the reaction yield and enantioselectivity of this LUMO-lowering reaction, as experimentally detected. These findings provide a logical explanation to why water often enhances organocatalysis when used as an additive but hampers the reaction progress when employed as a solvent.

  9. Reaction Mechanism of Organocatalytic Michael Addition of Nitromethane to Cinnamaldehyde: A Case Study on Catalyst Regeneration and Solvent Effects

    PubMed Central

    2017-01-01

    The Michael addition of nitromethane to cinnamaldehyde has been computationally studied in the absence of a catalyst and the presence of a biotinylated secondary amine by a combined computational and experimental approach. The calculations were performed at the density functional theory (DFT) level with the M06-2X hybrid functional, and a polarizable continuum model has been employed to mimic the effect of two different solvents: dichloromethane (DCM) and water. Contrary to common assumption, the product-derived iminium intermediate was absent in both of the solvents tested. Instead, hydrating the C1–C2 double bond in the enamine intermediate directly yields the tetrahedral intermediate, which is key for forming the product and regenerating the catalyst. Enamine hydration is concerted and found to be rate-limiting in DCM but segregated into two non-rate-limiting steps when the solvent is replaced with water. However, further analysis revealed that the use of water as solvent also raises the energy barriers for other chemical steps, particularly the critical step of C–C bond formation between the iminium intermediate and nucleophile; this consequently lowers both the reaction yield and enantioselectivity of this LUMO-lowering reaction, as experimentally detected. These findings provide a logical explanation to why water often enhances organocatalysis when used as an additive but hampers the reaction progress when employed as a solvent. PMID:29256614

  10. Synthesis, stabilization, and characterization of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  11. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, Param H.; Hunt, Arlon J.

    1986-01-01

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  12. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, P.H.; Hunt, A.J.

    1985-09-04

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  13. Free energy landscape for glucose condensation reactions.

    PubMed

    Liu, Dajiang; Nimlos, Mark R; Johnson, David K; Himmel, Michael E; Qian, Xianghong

    2010-12-16

    Ab initio molecular dynamics and metadynamics simulations were used to determine the free energy surfaces (FES) for the acid catalyzed β-D-glucose condensation reaction. Protonation of C1-OH on the β-D-glucose, breakage of the C1-O1 bond, and the formation of C1 carbocation is the rate-limiting step. The effects of solvent on the reaction were investigated by determining the FES both in the absence and presence of solvent water. It was found that water played a critical role in these reactions. The reaction barrier for the proton-catalyzed glucose condensation reaction is solvent induced because of proton's high affinity for water. During these simulations, β-D-glucose conversion to α-d-glucose process via the C1 carbocation was also observed. The associated free energy change and activation barrier for this reaction were determined.

  14. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Radical kinetics in sub- and supercritical carbon dioxide: thermodynamic rate tuning.

    PubMed

    Ghandi, Khashayar; McFadden, Ryan M L; Cormier, Philip J; Satija, Paras; Smith, Marisa

    2012-06-28

    We report rate constants for muonium addition to 1,1-difluoroethylene (vinylidene fluoride) in CO2 at 290-530 K, 40-360 bar, and 0.05-0.90 g cm(-3). Rate constants are mapped against their thermodynamic conditions, demonstrating the kinetic tuning ability of the solvent. The reaction exhibits critical slowing near conditions of maximum solvent isothermal compressibility, where activation volumes of unprecedentedly large magnitudes on the order of ±10(6) cm(3) mol(-1) are observed. Such values are suggestive of pressure being a significant parameter for tuning fluorolkene reactivity.

  16. Thermodynamic Approach to Boron Nitride Nanotube Solubility and Dispersion

    NASA Technical Reports Server (NTRS)

    Tiano, A. L.; Gibbons, L.; Tsui, M.; Applin, S. I.; Silva, R.; Park, C.; Fay, C. C.

    2016-01-01

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(exp 1/2) for delta d, delta p, and delta h, respectively, with a calculated Hildebrand parameter of 21.8 MPa)exp 1/2).

  17. Thermodynamic approach to boron nitride nanotube solubility and dispersion.

    PubMed

    Tiano, A L; Gibbons, L; Tsui, M; Applin, S I; Silva, R; Park, C; Fay, C C

    2016-02-21

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(1/2) for δd, δp, and δh, respectively, with a calculated Hildebrand parameter of 21.8 MPa(1/2).

  18. Confinement effects on lyotropic nematic liquid crystal phases of graphene oxide dispersions

    NASA Astrophysics Data System (ADS)

    Al-Zangana, Shakhawan; Iliut, Maria; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2017-12-01

    Graphene oxide (GO) forms well ordered liquid crystal (LC) phases in polar solvents. Here, we map the lyotropic phase diagram of GO as a function of the lateral dimensions of the GO flakes, their concentration, geometrical confinement configuration and solvent polarity. GO flakes were prepared in water and transferred into other polar solvents. Polarising optical microscopy (POM) was used to determine the phase evolution through the isotropic-biphasic-nematic transitions of the GO LC. We report that the confinement volume and geometry relative to the particle size is critical for the observation of the lyotropic phase, specifically, this determines the low-end concentration limit for the detection of the GO LC. Additionally, a solvent with higher polarisability stabilises the LC phases at lower concentrations and smaller flake sizes. GO LCs have been proposed for a range of applications from display technologies to conductive fibres, and the behaviour of LC phase formation under confinement imposes a limit on miniaturisation of the dimensions of such GO LC systems which could significantly impact on their potential applications.

  19. Glymes as Versatile Solvents for Chemical Reactions and Processes: from the Laboratory to Industry

    PubMed Central

    Tang, Shaokun; Zhao, Hua

    2014-01-01

    Glymes, also known as glycol diethers, are saturated non-cyclic polyethers containing no other functional groups. Most glymes are usually less volatile and less toxic than common laboratory organic solvents; in this context, they are more environmentally benign solvents. However, it is also important to point out that some glymes could cause long-term reproductive and developmental damages despite their low acute toxicities. Glymes have both hydrophilic and hydrophobic characters that common organic solvents are lack of. In addition, they are usually thermally and chemically stable, and can even form complexes with ions. Therefore, glymes are found in a broad range of laboratory applications including organic synthesis, electrochemistry, biocatalysis, materials, and Chemical Vapor Deposition (CVD), etc. In addition, glyme are used in numerous industrial applications, such as cleaning products, inks, adhesives and coatings, batteries and electronics, absorption refrigeration and heat pumps, as well as pharmaceutical formulations, etc. However, there is a lack of comprehensive and critical review on this attractive subject. This review aims to accomplish this task by providing an in-depth understanding of glymes’ physicochemical properties, toxicity and major applications. PMID:24729866

  20. Solvent-coordinate free-energy landscape view of water-mediated ion-pair dissociation

    NASA Astrophysics Data System (ADS)

    Yonetani, Yoshiteru

    2017-12-01

    Water-mediated ion-pair dissociation is studied by molecular dynamics simulations of NaCl in water. Multidimensional free-energy analysis clarifies the relation between two essential solvent coordinates: the water coordination number and water-bridge formation. These two are related in a complex way. Both are necessary to describe ion-pair dissociation. The mechanism constructed with both solvent variables clearly shows the individual roles. The water coordination number is critical for starting ion-pair dissociation. Water-bridge formation is also important because it increases the likelihood of ion-pair dissociation by reducing the dissociation free-energy barrier. Additional Ca-Cl and NH4-Cl calculations show that these conclusions are unaffected by changes in the ion charge and shape. The present results will contribute to future explorations of many other molecular events such as surface water exchange and protein-ligand dissociation because the same mechanism is involved in such events.

  1. Evaluation of alternatives for trichlorotrifluoroethane (CFC-113) to clean and verify liquid oxygen systems

    NASA Technical Reports Server (NTRS)

    Morris, Michelle L.

    1996-01-01

    NASA Langley Research Center (LARC) investigated several alternatives to the use of tri-chloro-tri-fluoroethane(CFC-113) in oxygen cleaning and verification. Alternatives investigated include several replacement solvents, Non-Destructive Evaluation (NDE) and Total Organic Carbon (TOC) analysis. Among the solvents, 1, 1-dichloro-1-fluoroethane (HCFC 141b) and di-chloro-penta-fluoro-propane (HCFC 225) are the most suitable alternatives for cleaning and verification. However, use of HCFC 141b is restricted, HCFC 225 introduces toxicity hazards, and the NDE and TOC methods of verification are not suitable for processes at LaRC. Therefore, the interim recommendation is to sparingly use CFC-113 for the very difficult cleaning tasks where safety is critical and to use HCFC 225 to clean components in a controlled laboratory environment. Meanwhile, evaluation must continue on now solvents and procedures to find one suited to LaRCs oxygen cleaning needs.

  2. X-ray photoelectron spectroscopy study of para-substituted benzoic acids chemisorbed to aluminum oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreil, Justin; Ellingsworth, Edward; Szulczewski, Greg

    A series of para-substituted, halogenated (F, Cl, Br, and I) benzoic acid monolayers were prepared on the native oxide of aluminum surfaces by solution self-assembly and spin-coating techniques. The monolayers were characterized by x-ray photoelectron spectroscopy (XPS) and water contact angles. Several general trends are apparent. First, the polarity of the solvent is critical to monolayer formation. Protic polar solvents produced low coverage monolayers; in contrast, nonpolar solvents produced higher coverage monolayers. Second, solution deposition yields a higher surface coverage than spin coating. Third, the thickness of the monolayers determined from XPS suggests the plane of the aromatic ring ismore » perpendicular to the surface with the carboxylate functional group most likely binding in a bidentate chelating geometry. Fourth, the saturation coverage (∼2.7 × 10{sup 14} molecules cm{sup −2}) is independent of the para-substituent.« less

  3. Headspace profiling of cocaine samples for intelligence purposes.

    PubMed

    Dujourdy, Laurence; Besacier, Fabrice

    2008-08-06

    A method for determination of residual solvents in illicit hydrochloride cocaine samples using static headspace-gas chromatography (HS-GC) associated with a storage computerized procedure is described for the profiling and comparison of seizures. The system involves a gas chromatographic separation of 18 occluded solvents followed by fully automatic data analysis and transfer to a PHP/MySQL database. First, a fractional factorial design was used to evaluate the main effects of some critical method parameters (salt choice, vial agitation intensity, oven temperature, pressurization and loop equilibration) on the results with a minimum of experiments. The method was then validated for tactical intelligence purposes (batch comparison) via several studies: selection of solvents and mathematical comparison tool, reproducibility and "cutting" influence studies. The decision threshold to determine the similarity of two samples was set and false positives and negatives evaluated. Finally, application of the method to distinguish geographical origins is discussed.

  4. Electrodeposition of metals from supercritical fluids

    PubMed Central

    Ke, Jie; Su, Wenta; Howdle, Steven M.; George, Michael W.; Cook, David; Perdjon-Abel, Magda; Bartlett, Philip N.; Zhang, Wenjian; Cheng, Fei; Levason, William; Reid, Gillian; Hyde, Jason; Wilson, James; Smith, David C.; Mallik, Kanad; Sazio, Pier

    2009-01-01

    Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology. PMID:19706479

  5. Solvent-free melting techniques for the preparation of lipid-based solid oral formulations.

    PubMed

    Becker, Karin; Salar-Behzadi, Sharareh; Zimmer, Andreas

    2015-05-01

    Lipid excipients are applied for numerous purposes such as taste masking, controlled release, improvement of swallowability and moisture protection. Several melting techniques have evolved in the last decades. Common examples are melt coating, melt granulation and melt extrusion. The required equipment ranges from ordinary glass beakers for lab scale up to large machines such as fluid bed coaters, spray dryers or extruders. This allows for upscaling to pilot or production scale. Solvent free melt processing provides a cost-effective, time-saving and eco-friendly method for the food and pharmaceutical industries. This review intends to give a critical overview of the published literature on experiences, formulations and challenges and to show possibilities for future developments in this promising field. Moreover, it should serve as a guide for selecting the best excipients and manufacturing techniques for the development of a product with specific properties using solvent free melt processing.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wu; Xiao, Jie; Zhang, Jian

    The selection and optimization of non-aqueous electrolytes for ambient operations of lithium/air batteries has been studied. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between lithium anode and water during discharge process. It is critical to make the electrolytes with high polarity so that it can reduce wetting and flooding of carbon based air electrode and lead to improved battery performance. For ambient operations, the viscosity, ionic conductivity, and oxygen solubility of the electrolyte are less important than the polarity of organic solvents once the electrolyte hasmore » reasonable viscosity, conductivity, and oxygen solubility. It has been found that PC/EC mixture is the best solvent system and LiTFSI is the most feasible salt for ambient operations of Li/air batteries. Battery performance is not very sensitive to PC/EC ratio or salt concentration.« less

  7. Communication: Cosolvency and cononsolvency explained in terms of a Flory-Huggins type theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudowicz, Jacek, E-mail: dudowicz@jfi.uchicago.edu; Freed, Karl F.; Douglas, Jack F.

    2015-10-07

    Standard Flory-Huggins (FH) theory is utilized to describe the enigmatic cosolvency and cononsolvency phenomena for systems of polymers dissolved in mixed solvents. In particular, phase boundaries (specifically upper critical solution temperature spinodals) are calculated for solutions of homopolymers B in pure solvents and in binary mixtures of small molecule liquids A and C. The miscibility (or immiscibility) patterns for the ternary systems are classified in terms of the FH binary interaction parameters (χ{sub αβ}) and the ratio r = ϕ{sub A}/ϕ{sub C} of the concentrations ϕ{sub A} and ϕ{sub C} of the two solvents. The trends in miscibility are comparedmore » to those observed for blends of random copolymers (A{sub x}C{sub 1−x}) with homopolymers (B) and to those deduced for A/B/C solutions of polymers B in liquid mixtures of small molecules A and C that associate into polymeric clusters (A{sub p}C{sub q}){sub i}, (i = 1, 2, …, ∞). Although the classic FH theory is able to explain cosolvency and cononsolvency phenomena, the theory does not include a consideration of the mutual association of the solvent molecules and the competitive association between the solvent molecules and the polymer. These interactions can be incorporated in refinements of the FH theory, and the present paper provides a foundation for such extensions for modeling the rich thermodynamics of polymers in mixed solvents.« less

  8. Developmental toxicity of prenatal exposure to toluene.

    PubMed

    Bowen, Scott E; Hannigan, John H

    2006-01-01

    Organic solvents have become ubiquitous in our environment and are essential for industry. Many women of reproductive age are increasingly exposed to solvents such as toluene in occupational settings (ie, long-term, low-concentration exposures) or through inhalant abuse (eg, episodic, binge exposures to high concentrations). The risk for teratogenic outcome is much less with low to moderate occupational solvent exposure compared with the greater potential for adverse pregnancy outcomes, developmental delays, and neurobehavioral problems in children born to women exposed to high concentrations of abused organic solvents such as toluene, 1,1,1-trichloroethane, xylenes, and nitrous oxide. Yet the teratogenic effects of abuse patterns of exposure to toluene and other inhalants remain understudied. We briefly review how animal models can aid substantially in clarifying the developmental risk of exposure to solvents for adverse biobehavioral outcomes following abuse patterns of use and in the absence of associated health problems and co-drug abuse (eg, alcohol). Our studies also begin to establish the importance of dose (concentration) and critical perinatal periods of exposure to specific outcomes. The present results with our clinically relevant animal model of repeated, brief, high-concentration binge prenatal toluene exposure demonstrate the dose-dependent effect of toluene on prenatal development, early postnatal maturation, spontaneous exploration, and amphetamine-induced locomotor activity. The results imply that abuse patterns of toluene exposure may be more deleterious than typical occupational exposure on fetal development and suggest that animal models are effective in studying the mechanisms and risk factors of organic solvent teratogenicity.

  9. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    PubMed

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.

  10. Method and solvent composition for regenerating an ion exchange resin

    DOEpatents

    Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.

    2002-01-01

    A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.

  11. Permeability of starch gel matrices and select films to solvent vapors

    USDA-ARS?s Scientific Manuscript database

    The controlled release of volatile, agrochemicals is critical in developing approaches to pest control that are economically viable and environmentally sound. Dispensing systems that are made of materials that degrade in agricultural environments when they are spent offer distinct advantages over no...

  12. Homochiral stereochemistry: the missing link of structure to energetics in protein folding.

    PubMed

    Kumar, Anil; Ramakrishnan, Vibin; Ranbhor, Ranjit; Patel, Kirti; Durani, Susheel

    2009-12-24

    The notion is tested that homochiral stereochemistry being ubiquitous to protein structure could be critical to protein folding as well, causing it to become frustrated energetically providing the basis for its solvent- and sequence-mediated control. The proof in support of the notion is found in a consensus of experiment and computation according to which suitable oligopeptides are in their folding-unfolding equilibria, at both macrostate and microstate levels, susceptible to dielectric because of the conflict of peptide-chain electrostatics with interpeptide hydrogen bonds when the structure is poly-L but not when it is alternating-L,D. The argument is thus made that homochiral stereochemistry may in protein folding provide the unifying basis for its solvent- and sequence-mediated control based on screening of peptide-chain electrostatics under conflict with folding of the chain due to homochiral stereochemistry. Dielectric is brought into spotlight as the effect comparatively obscure but presumably critical to the folding in protein structure for its control.

  13. Scaling and self-organized criticality in proteins: Lysozyme c

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2009-11-01

    Proteins appear to be the most dramatic natural example of self-organized criticality (SOC), a concept that explains many otherwise apparently unlikely phenomena. Protein functionality is often dominated by long-range hydro(phobic/philic) interactions, which both drive protein compaction and mediate protein-protein interactions. In contrast to previous reductionist short-range hydrophobicity scales, the holistic Moret-Zebende hydrophobicity scale [Phys. Rev. E 75, 011920 (2007)] represents a hydroanalytic tool that bioinformatically quantifies SOC in a way fully compatible with evolution. Hydroprofiling identifies chemical trends in the activities and substrate binding abilities of model enzymes and antibiotic animal lysozymes c , as well as defensins, which have been the subject of tens of thousands of experimental studies. The analysis is simple and easily performed and immediately yields insights not obtainable by traditional methods based on short-range real-space interactions, as described either by classical force fields used in molecular-dynamics simulations, or hydrophobicity scales based on transference energies from water to organic solvents or solvent-accessible areas.

  14. Evaluating the Properties of Poly(lactic-co-glycolic acid) Nanoparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach.

    PubMed

    Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko

    2017-01-01

    We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.

  15. Theory of Metastable State Relaxation for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.

  16. Solvent induced modifications to fiber nanostructure and morphology for 12HSA molecular gels

    NASA Astrophysics Data System (ADS)

    Gao, Jie

    Molecular organogels are thermo reversible quasi-solid materials, which are formed by low molecular weight organogelators (LMOGs) undergoing supramolecular aggregation via non-covalent interactions, forming a three-dimensional fibrillar network. Numerous applications of molecular organogels are been investigated as edible oils, drug release matrices and personal care products. The chemistry of the organic phase (i.e., solvent) influences every level of structure in organogels. Different solvents induce LMOG to assemble into "crystal like" fibers, which have more than one crystal form, lamellar arrangement and domain size. Differences in these solid states are known to affect the macroscopic properties of the gel, including critical gelator concentration (CGC), melting point, melting enthalpy and opacity.12-hydroxystearic acid (12HSA) was examined in several classes of organic solvents with different function groups. These gels, sols or precipitates were analyzed using a series of techniques including: powder x-ray diffraction (XRD), differential scanning calorimetry (DSC), fourier-transform infrared spectroscopy (FT-IR), pulsed nuclear magnetic resonance spectroscopy (pNMR) and microscopy. Specifically, certain solvents caused 12HSA to self-assemble into a triclinic parallel polymorphic form with subcell spacing of ~4.6, 3.9, and 3.8 A and an interdigitated unit cell with a lamellar arrangement (38~44 A). This polymorphic form corresponded to a less effective sphereultic supramolecular crystalline network, which immobilizes solvents at CGC greater than 1.5 wt %. The other group of solvents induce a hexagonal subcell spacing (i.e., unit sub cell spacing ~4.1 A) and are arranged in a multi lamellar fashion with a unit cell greater than the bimolecular length of 12HSA (~54 A).This polymorphic form corresponds to fibrillar aggregates with a CGC less than 1 wt %.

  17. Homogeneity of gels and gel-derived glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1984-01-01

    The significance and implications of gel preparation procedures in controlling the homogeneity of multicomponent oxide gels are discussed. The role of physicochemical factors such as the structure and chemical reactivities of alkoxides, the formation of double-metal alkoxides, and the nature of solvent(s) are critically analyzed in the context of homogeneity of gels during gelation. Three procedures for preparing gels in the SiO2-B2O3-Na2O system are examined in the context of cation distribution. Light scattering results for glasses in the SiO2-B2O3-Na2O system prepared by both the gel technique and the conventional technique are examined.

  18. H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components.

    PubMed

    Drosos, Marios; Leenheer, Jerry A; Avgeropoulos, Apostolos; Deligiannakis, Yiannis

    2014-03-01

    A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LParentalHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SParentalHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA.

  19. H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components

    USGS Publications Warehouse

    Drosos, Marios; Leenheer, Jerry A.; Avgeropoulos, Apostolos; Deligiannakis, Yiannis

    2014-01-01

    A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LParentalHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SParentalHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA.

  20. Self-Assembly, Surface Activity and Structure of n-Octyl-β-D-thioglucopyranoside in Ethylene Glycol-Water Mixtures

    PubMed Central

    Ruiz, Cristóbal Carnero; Molina-Bolívar, José Antonio; Hierrezuelo, José Manuel; Liger, Esperanza

    2013-01-01

    The effect of the addition of ethylene glycol (EG) on the interfacial adsorption and micellar properties of the alkylglucoside surfactant n-octyl-β-d-thioglucopyranoside (OTG) has been investigated. Critical micelle concentrations (cmc) upon EG addition were obtained by both surface tension measurements and the pyrene 1:3 ratio method. A systematic increase in the cmc induced by the presence of the co-solvent was observed. This behavior was attributed to a reduction in the cohesive energy of the mixed solvent with respect to pure water, which favors an increase in the solubility of the surfactant with EG content. Static light scattering measurements revealed a decrease in the mean aggregation number of the OTG micelles with EG addition. Moreover, dynamic light scattering data showed that the effect of the surfactant concentration on micellar size is also controlled by the content of the co-solvent in the system. Finally, the effect of EG addition on the microstructure of OTG micelles was investigated using the hydrophobic probe Coumarin 153 (C153). Time-resolved fluorescence anisotropy decay curves of the probe solubilized in micelles were analyzed using the two-step model. The results indicate a slight reduction of the average reorientation time of the probe molecule with increasing EG in the mixed solvent system, thereby suggesting a lesser compactness induced by the presence of the co-solvent. PMID:23385232

  1. Self-assembly, surface activity and structure of n-octyl-β-D-thioglucopyranoside in ethylene glycol-water mixtures.

    PubMed

    Ruiz, Cristóbal Carnero; Molina-Bolívar, José Antonio; Hierrezuelo, José Manuel; Liger, Esperanza

    2013-02-05

    The effect of the addition of ethylene glycol (EG) on the interfacial adsorption and micellar properties of the alkylglucoside surfactant n-octyl-β-D-thioglucopyranoside (OTG) has been investigated. Critical micelle concentrations (cmc) upon EG addition were obtained by both surface tension measurements and the pyrene 1:3 ratio method. A systematic increase in the cmc induced by the presence of the co-solvent was observed. This behavior was attributed to a reduction in the cohesive energy of the mixed solvent with respect to pure water, which favors an increase in the solubility of the surfactant with EG content. Static light scattering measurements revealed a decrease in the mean aggregation number of the OTG micelles with EG addition. Moreover, dynamic light scattering data showed that the effect of the surfactant concentration on micellar size is also controlled by the content of the co-solvent in the system. Finally, the effect of EG addition on the microstructure of OTG micelles was investigated using the hydrophobic probe Coumarin 153 (C153). Time-resolved fluorescence anisotropy decay curves of the probe solubilized in micelles were analyzed using the two-step model. The results indicate a slight reduction of the average reorientation time of the probe molecule with increasing EG in the mixed solvent system, thereby suggesting a lesser compactness induced by the presence of the co-solvent.

  2. Stretch-collapse transition of polyelectrolyte brushes in a poor solvent

    NASA Astrophysics Data System (ADS)

    von Goeler, F.; Muthukumar, M.

    1996-12-01

    This paper describes the behavior of charged, polymer brushes in electrolyte solutions of varying solvent quality. The brush height, d, dependence on the chain length, L (=Nl, where l is the Kuhn length), the grafting density σ, and solvent conditions is determined. We consider a monomer-monomer potential consisting of three components: (1) a long-ranged, screened Coulombic component of strength v¯/l (l is the Kuhn length) and range κ-1; (2) a short-ranged, two-body component of strength w¯l; and (3) a short-ranged, three-body component of strength ūl3. In particular, we examine the transition from a stretched state to a collapsed state in a poor solvent (w¯<0) as the solvent quality is decreased. Using dimensional analysis, Monte Carlo methods, and a variational technique, a first order transition is observed as predicted by the scaling arguments of Ross et al. and Borisov et al. for high charge/grafting densities. Using a variational procedure, we derive an analytical expression for the brush size and determine, quantitatively, the critical conditions for a first order transition in terms of key dimensionless variables, vN5/2, κlN1/2, wN3/2, and uN2 (where v=2πσl2v¯, w=σl2w¯, and u=σ2l4ū).

  3. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    PubMed Central

    Nagy, Peter I.

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed. PMID:25353178

  4. Investigation of solvent-free MALDI-TOFMS sample preparation methods for the analysis of organometallic and coordination compounds.

    PubMed

    Hughes, Laura; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2009-01-15

    An investigation of various solvent-free matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) sample preparation methods for the characterization of organometallic and coordination compounds is described. Such methods are desirable for insoluble materials, compounds that are only soluble in disadvantageous solvents, or complexes that dissociate in solution, all of which present a major "difficulty" to most mass spectrometry techniques. First-row transition metal acetylacetonate complexes, which have been characterized previously by solution preparation MALDI-TOFMS, were used to evaluate the various solvent-free procedures. These procedures comprise two distinct steps: the first being the efficient "solids mixing" (the mixing of sample and matrix), and the second being the effective transfer of the sample/matrix mixture to the MALDI target plate. This investigation shows that vortex mixing is the most efficient first step and that smearing using a microspatula is the most effective second step. In addition, the second step is shown to be much more critical than the first step in obtaining high-quality data. Case studies of truly insoluble materials highlight the importance of these techniques for the wider chemistry community.

  5. Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site (1)

    EPA Science Inventory

    A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Of particular importance is the influence of a slab. Therefore, EPA/ORD is funding a research program with the primary...

  6. Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site

    EPA Science Inventory

    A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Therefore, EPA/ORD funded a research project with the primary goal of comparing vertical profiles of soil gas concentrat...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wei; Reese, Cassandra M.; Xiong, Li

    We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using postpolymerization modification (PPM), where the length scale of the buckled features can be tuned using PPM reaction time. Here, we show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling.

  8. MODELING THE TOXICOKINETICS OF INHALED TOLUENE IN RATS: THE IMPACT OF CONDITIONING AND PHYSICAL ACTIVITY

    EPA Science Inventory

    Toluene is found in petroleum-based fuels and used as a solvent in consumer products and industrial applications. The critical effects following inhalation exposure involve the brain and nervous system in both humans and experimental animals whether exposure duration is acute or...

  9. MODELING THE TOXICOKINETICS OF INHALED TOLUENE IN RATS: THE IMPACT OF FEEDING STATUS, PHYSICAL ACTIVITY AND STRAIN

    EPA Science Inventory

    Toluene is found in petroleum-based fuels and used as a solvent in consumer products and industrial applications. The critical effects following inhalation exposure involve the brain and nervous system in both humans and experimental animals whether exposure duration is acute or...

  10. Oligomerization of jojoba oil in super-critical carbon dioxide (green solvent) for different applications

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils are renewable, non-toxic, biodegradable, non-polluting, and relatively harmless to the environment. Approximately 80% of the global plant oil and fat production is from vegetable oil, whereas 20% is from animal origin (share decreasing). Jojoba (Simmondsia chinensis) is a perennial sh...

  11. Modeling the toxicokinetics of 24-hour toluene exposure in rats, impact of activity patterns and enzyme induction

    EPA Science Inventory

    Toluene, a solvent used in numerous consumer and industrial applications, exerts its critical effects on the brain and nervous system following inhalation exposure. Our previously published PBPK model successfully predicted toluene concentrations in blood and brain over a range o...

  12. Oil shale extraction using super-critical extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1983-01-01

    Significant improvement in oil shale extraction under supercritical conditions is provided by extracting the shale at a temperature below 400 C, such as from about 250 C to about 350 C, with a solvent having a Hildebrand solubility parameter within 1 to 2 Hb of the solubility parameter for oil shale bitumen.

  13. First-principles study of solvent-solute mixed dumbbells in body-centered-cubic tungsten crystals

    NASA Astrophysics Data System (ADS)

    Suzudo, Tomoaki; Tsuru, Tomohito; Hasegawa, Akira

    2018-07-01

    Tungsten (W) is considered as a promising candidate for plasma-facing materials for future nuclear fusion devices, and selecting optimal alloying constituents is a critical issue to improve radiation resistance of the W alloys as well as to improve their mechanical properties. We conducted in the current study a series of first-principles calculations for investigating solvent-solute mixed dumbbells in W crystals. The results suggested that titanium (Ti), vanadium (V), and chromium (Cr) are favorable as solutes for W alloys from irradiation-effect perspectives because these elements are expected to promote vacancy-interstitial recombination without causing radiation-induced precipitation that reduces ductility of irradiated materials.

  14. A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinhong; Song, Jongchan; Lee, Hongkyung

    Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion conductor (SPSIC) as the electrolyte medium of the Li–S battery. The SPSIC consisting of a polymeric single-ion conductor and lithium salt-free organic solvents provides Li ion hopping by forming a nanoscale conducting channel and suppresses PS shuttle according to the Donnan exclusion principle when being employed for Li–S batteries. The organic solvents at the interfacemore » of the sulfur/carbon composite and SPSIC eliminate the poor interfacial contact and function as a soluble PS reservoir for maintaining the liquid–solid mechanism. Furthermore, the quasi-solid-state SPSIC allows the fabrication of a bipolar-type stack, which promises the realization of a high-voltage and energy-dense Li–S battery.« less

  15. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.

  16. Stoichiometric sensing to opt between gelation and crystallization.

    PubMed

    Vidyasagar, Adiyala; Sureshan, Kana M

    2015-10-05

    A new class of organogelators having a cyclohexane-1a,3a-diol motif capable of congealing non-polar liquids was developed. These gelators underwent crystallization at low concentration and gelation above the critical gelation concentration (CGC) in the same solvent. The crystals and gel fibers were analyzed by single crystal XRD and PXRD respectively, which revealed their different modes of assembly. The XRD studies and thermogravimetric analysis (TGA) confirmed that the crystals contain a water of crystallization whereas the gel fibers do not. A systematic study revealed that when the concentration of the gelator exceeds that of adventitious water in the solvent, it congeals the solvent and when the concentration of the gelator is less than water, it undergoes crystallization. This unprecedented stoichiometric sensing behavior in deciding the mode of self-assembly offers a handle to opt between mutually competing gelation and crystallization. We have confirmed that the system can be biased to congeal or crystallize by varying the amount of water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Competitive photocyclization/rearrangement of 4-aryl-1,1-dicyanobutenes controlled by intramolecular charge-transfer interaction. Effect of medium polarity, temperature, pressure, excitation wavelength, and confinement.

    PubMed

    Ito, Tadashi; Nishiuchi, Emi; Fukuhara, Gaku; Inoue, Yoshihisa; Mori, Tadashi

    2011-09-01

    A series of 4-aryl-1,1-dicyanobutenes (1a-1f) with different substituents were synthesized to control the intramolecular donor-acceptor or charge-transfer (C-T) interactions in the ground state. Photoexcitation of these C-T substrates led to competitive cyclization and rearrangement, the ratio being critically controlled by various environmental factors, such as solvent polarity, temperature and static pressure, and also by excitation wavelength and supramolecular confinement (polyethylene voids). In non-polar solvents, the rearrangement was dominant (>10 : 1) for all examined substrates, while the cyclization was favoured in polar solvents, in particular at low temperatures. Selective excitation at the C-T band further enhanced the cyclization up to >50 : 1 ratios. More importantly, the cyclization/rearrangement ratio was revealed to be a linear function of the C-T transition energy. However, the substrates with a sterically demanding or highly electron-donating substituent failed to give the cyclization product.

  18. Free energy landscape for glucose condensation and dehydration reactions in dimethyl sulfoxide and the effects of solvent.

    PubMed

    Qian, Xianghong; Liu, Dajiang

    2014-03-31

    The mechanisms and free energy surfaces (FES) for the initial critical steps during proton-catalyzed glucose condensation and dehydration reactions were elucidated in dimethyl sulfoxide (DMSO) using Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics (MTD) simulations. Glucose condensation reaction is initiated by protonation of C1--OH whereas dehydration reaction is initiated by protonation of C2--OH. The mechanisms in DMSO are similar to those in aqueous solution. The DMSO molecules closest to the C1--OH or C2--OH on glucose are directly involved in the reactions and act as proton acceptors during the process. However, the energy barriers are strongly solvent dependent. Moreover, polarization from the long-range electrostatic interaction affects the mechanisms and energetics of glucose reactions. Experimental measurements conducted in various DMSO/Water mixtures also show that energy barriers are solvent dependent in agreement with our theoretical results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Jayven S.; Xantheas, Sotiris S.; Grate, Jay W.

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL’s impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 4-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL’s modularity. Overall, SIIL exhibits themore » potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.« less

  20. Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes.

    PubMed

    Hári, József; Gyürki, Ádám; Sárközi, Márk; Földes, Enikő; Pukánszky, Béla

    2016-01-15

    Halloysite nanotubes used as potential carrier material for a controlled release stabilizer in polyethylene were thoroughly characterized with several techniques including the measurement of specific surface area, pore volume and surface energy. The high surface energy of the halloysite results in the strong bonding of the additive to the surface. Dissolution experiments carried out with eight different solvents for the determination of the effect of solvent characteristics on the amount of irreversibly bonded quercetin proved that adsorption and dissolution depend on competitive interactions prevailing in the system. Solvents with low polarity dissolve only surplus quercetin adsorbed in multilayers. Polyethylene is a very apolar polymer forming weak interactions with every substance; quercetin dissolves into it from the halloysite surface only above a critical surface coverage. Stabilization experiments confirmed that strong adhesion prevents dissolution and results in limited stabilization efficiency. At larger adsorbed amounts better stability and extended effect were measured indicating dissolution and controlled release. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Challenging Times: California Schools Cope with Adversity and the Imperative to Do More

    ERIC Educational Resources Information Center

    Edwards, Brian

    2010-01-01

    California school districts are being expected to "do more with less." They face critical and competing pressures to improve academic achievement while remaining fiscally solvent in a time of increasing budgetary pressures. This report examines the financial circumstances of California's school districts and the actions they have been…

  2. Quantitative analysis of intramolecular exciplex and electron transfer in a double-linked zinc porphyrin-fullerene dyad.

    PubMed

    Al-Subi, Ali Hanoon; Niemi, Marja; Tkachenko, Nikolai V; Lemmetyinen, Helge

    2012-10-04

    Photoinduced charge transfer in a double-linked zinc porphyrin-fullerene dyad is studied. When the dyad is excited at the absorption band of the charge-transfer complex (780 nm), an intramolecular exciplex is formed, followed by the complete charge separated (CCS) state. By analyzing the results obtained from time-resolved transient absorption and emission decay measurements in a range of solvents with different polarities, we derived a dependence between the observable lifetimes and internal parameters controlling the reaction rate constants based on the semiquantum Marcus electron-transfer theory. The critical value of the solvent polarity was found to be ε(r) ≈ 6.5: in solvents with higher dielectric constants, the energy of the CCS state is lower than that of the exciplex and the relaxation takes place via the CCS state predominantly, whereas in solvents with lower polarities the energy of the CCS state is higher and the exciplex relaxes directly to the ground state. In solvents with moderate polarities the exciplex and the CCS state are in equilibrium and cannot be separated spectroscopically. The degree of the charge shift in the exciplex relative to that in the CCS state was estimated to be 0.55 ± 0.02. The electronic coupling matrix elements for the charge recombination process and for the direct relaxation of the exciplex to the ground state were found to be 0.012 ± 0.001 and 0.245 ± 0.022 eV, respectively.

  3. Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Kimura, Y.; Hirota, N.

    We performed a molecular dynamics (MD) simulation for a system of 5 solute molecules in 495 solvent molecules interacting through the Lennard-Jones (LJ) 12-6 potential, in order to study solvent density effects on the diffusion coefficients in supercritical fluids. The effects of the size of the solute and the strength of the solute-solvent attractive interaction on the diffusion coefficient of the solute were examined. The diffusion coefficients of the solute molecules were calculated at T = 1.5 (in the LJ reduced unit), slightly above the critical temperature, from rho = 0.1 to rho = 0.95, where rho is the number density in the LJ reduced unit. The memory function in the generalized Langevin equation was calculated, in order to know the molecular origin of the friction on a solute. The memory function is separated into fast and slow components. The former arises from the solute-solvent repulsive interaction, and is interpreted as collisional Enskog-like friction. The interaction strength dependence of the collisional friction is larger in the low- and medium-density regions, which is consistent with the 'clustering' picture, i.e., the local density enhancement due to the solute-solvent attractive interaction. However, the slow component of the memory function suppresses the effect of the local density on the diffusion coefficients, and as a result the effect of the attractive interaction is smaller on the diffusion coefficients than on the local density. Nonetheless, the solvent density dependence of the effect of the attraction on the diffusion coefficient varies with the local density, and it is concluded that the local density is the principal factor that determines the interaction strength dependence of the diffusion coefficient in the low- and medium-density regions (p < 0.6).

  4. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods.

    PubMed

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa

    2015-04-01

    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    NASA Astrophysics Data System (ADS)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be utilized to model oil recovery, waste disposal, and groundwater contamination processes in the presence of fractures.

  6. Quantification of Structural Isomers via Mode-Selective Irmpd

    NASA Astrophysics Data System (ADS)

    Polfer, Nicolas C.

    2016-06-01

    Mixtures of structural isomers can pose a challenge for vibrational ion spectroscopy. In cases where particular structures display diagnostic vibrations, these structures can be selectively "burned away". In ion traps, the ion population can be subjected to multiple laser shots, in order to fully deplete a particular structure, in effect allowing a quantification of this structure. Protonated para-amino benzoic acid (PABA) serves as an illustrative example. PABA is known to preferentially exist in the N-protonated (N-prot) form in solution, but in the gas phase it is energetically favorable in the O-protonated (O-prot) form. As shown in Figure 1, the N-prot structure can be kinetically trapped in the gas phase when sprayed from non-protic solvent, whereas the O-prot structure is obtained when sprayed from protic solvents, analogous to results by others [1,2]. y parking the light source on the diagnostic 3440 wn mode, the percentage of the O-prot structure can be determined, and by default the remainder is assumed to adopt the N-prot structure. It will be shown that the relative percentages of O-prot vs N-prot are highly dependent on the solvent mixture, going from close to 0% O-prot in non-protic solvents, to 99% in protic solvents. Surprisingly, water behaves much more like a non-protic solvent than methanol. It is observed that the capillary temperature, which aids droplet desolvation by black-body radiation in the ESI source, is critical to promote the appearance of O-prot structures. These results are consistent with the picture that a protic bridge mechanism is at play to facilitate proton transfer, and thus allow conversion from N-prot to O-prot, but that this mechanism is subject to appreciable kinetic barriers on the timescale of solvent evaporation. 1. J. Phys. Chem. A 2011, 115, 7625. 2. Anal. Chem. 2012, 84, 7857.

  7. Ex vivo study of transdermal permeation of four diclofenac salts from different vehicles.

    PubMed

    Minghetti, Paola; Cilurzo, Francesco; Casiraghi, Antonella; Montanari, Luisa; Fini, Adamo

    2007-04-01

    The ex vivo permeation of diclofenac was studied using four different salts (sodium, potassium, diethylamine, and epolamine) dissolved in four different solvents (water, propylene glycol (PG), Transcutol, and oleic acid (OA)) as donor phases through a human skin membrane. The four salts show different solubility values and different behavior in the four solvents, which are also permeation enhancers and this fact further is connected to the permeation results. The same order of magnitude of fluxes through the membrane as those previously reported for acidic diclofenac released from buffer solutions of pH >7 were found, taking into account differences originated by different membranes and other parameters tested in the experiments. Saturation concentration for the four salts in different solvents, necessary to calculate permeation coefficients, was critically evaluated; a short discussion made it possible to explain that corrections in the solubility values must be considered, related to the complex behavior in solution of these salts. Statistical processing of the experimental data suggests that differences between the four salts in promoting absorption of the drug is unproven; while differences are evident between the solvents, water is the most effective enhancing vehicle. Aqueous formulations containing diclofenac salt with an organic base appear to be the best combination to promote permeation in topical applications. (c) 2007 Wiley-Liss, Inc.

  8. Transferring pharmaceuticals into the gas phase

    NASA Astrophysics Data System (ADS)

    Christen, Wolfgang; Krause, Tim; Rademann, Klaus

    2008-11-01

    The dissolution of molecules of biological interest in supercritical carbon dioxide is investigated using pulsed molecular beam mass spectrometry. Due to the mild processing temperatures of most supercritical fluids, their adiabatic expansion into vacuum permits to transfer even thermally very sensitive substances into the gas phase, which is particularly attractive for pharmaceutical and biomedical applications. In addition, supercritical CO2constitutes a chemically inert solvent that is compatible with hydrocarbon-free ultrahigh vacuum conditions. Here, we report on the dissolution and pulsed supersonic jet expansion of caffeine (C8H10N4O2), the provitamin menadione (C11H8O2), and the amino acid derivative l-phenylalanine tert-butyl ester hydrochloride (C6H5CH2CH(NH2)COOC(CH3)3[dot operator]HCl), into vacuum. An on-axis residual gas analyzer is used to monitor the relative amounts of solute and solvent in the molecular beam as a function of solvent densityE The excellent selectivity and sensitivity provided by mass spectrometry permits to probe even trace amounts of solutes. The strong density variation of CO2 close to the critical point results in a pronounced pressure dependence of the relative ion currents of solute and solvent molecules, reflecting a substantial change in solubility.

  9. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode-Electrolyte Interface in Lithium-Ion Batteries.

    PubMed

    Gao, Han; Maglia, Filippo; Lamp, Peter; Amine, Khalil; Chen, Zonghai

    2017-12-27

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in lithium-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a "corrosion inhibitor film" that prevents severely attack and passivation from protons that generated from the solvent oxidation, even the decomposition of solvent cannot be mitigated. Effect of two exemplary electrolyte additives, lithium difluoro(oxalato)borate (LiDFOB) and 3-hexylthiophene (3HT), on LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next-generation high-energy-density lithium-ion chemistries.

  10. Reinventing Design Principles for Developing Low-Viscosity Carbon Dioxide-Binding Organic Liquids for Flue Gas Clean Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2017-01-11

    Anthropogenic carbon dioxide (CO 2) emission from point sources, such as coal fired-power plants, account for the majority of the green houses gasses in the atmosphere. Capture, storage and utilization are required to mitigate adverse environmental effects. Aqueous amine-based CO 2 capture solvents are currently considered the industry standard, but deployment to market is limited by their high regeneration energy demand. In that context, energy efficient and less-viscous water-lean transformational solvent systems known as CO 2 Binding Organic Liquids (CO 2BOLs) are being developed in our group to advance this technology to commercialization. Herein, we present a logical design approachmore » based on fundamental concepts of organic chemistry and computer simulations aimed at lowering solvent viscosity. Conceptually, viscosity reduction would be achieved by systemmatic methods such as introduction of steric hindrance on the anion to minimize the intermolecular cation-anion interactions, fine tuning the electronics, hydrogen bonding orientation and strength, and charge solvation. Conventional standard trial-and-error approaches while effective, are time consuming and economically expensive. Herein, we rethink the metrics and design principles of low-viscosity CO 2 capture solvents using a combined synthesis and computational modeling approach. We critically study the impacts of modyfying factors such as as orientation of hydrogen bonding, introduction of higher degrees of freedom and cation or anion charge solvation and assess if or how each factor impacts viscosity of CO 2BOL CO 2 capture solvents. Ultimately, we found that hydrogen bond orientation and strength is predominantly influencing the viscosity in CO 2BOL solvents. With this knowledge, a new 1-MEIPADM-2-BOL CO 2BOL variant was synthesized and tested, resulting in a solvent that is approximately 60% less viscous at 25 mol% CO 2 loading with respect to our base compound 1-IPADM-2-BOL. The insights gained from the current study redefines the fundamental concepts and understanding of what influences viscosity in concentrated organic CO 2 capture solvents.« less

  11. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    PubMed

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration.

  12. Safety management of an underground-based gravitational wave telescope: KAGRA

    NASA Astrophysics Data System (ADS)

    Ohishi, Naoko; Miyoki, Shinji; Uchiyama, Takashi; Miyakawa, Osamu; Ohashi, Masatake

    2014-08-01

    KAGRA is a unique gravitational wave telescope with its location underground and use of cryogenic mirrors. Safety management plays an important role for secure development and operation of such a unique and large facility. Based on relevant law in Japan, Labor Standard Act and Industrial Safety and Health Law, various countermeasures are mandated to avoid foreseeable accidents and diseases. In addition to the usual safety management of hazardous materials, such as cranes, organic solvents, lasers, there are specific safety issues in the tunnel. Prevention of collapse, flood, and fire accidents are the most critical issues for the underground facility. Ventilation is also important for prevention of air pollution by carbon monoxide, carbon dioxide, organic solvents and radon. Oxygen deficiency should also be prevented.

  13. Analysis of Eight Oil Spill Dispersants Using Rapid, In Vitro Tests for Endocrine and Other Biological Activity

    EPA Science Inventory

    The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and pote...

  14. How Efficient Is My (Medicinal) Chemistry?

    PubMed Central

    Vanden Eynde, Jean Jacques

    2016-01-01

    “Greening” a chemical transformation is not about only changing the nature of a solvent or decreasing the reaction temperature. There are metrics enabling a critical quantification of the efficiency of an experimental protocol. Some of them are applied to different sequences for the preparation of paracetamol in order to understand their performance parameters and elucidate pathways for improvement. PMID:27196914

  15. The Effects of Organic Solvents on the Physicochemical Properties of Human Serum Albumin Nanoparticles.

    PubMed

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Mirzazadeh, Negar; Arpanaei, Ayyoob

    2016-03-01

    Recently, applications of albumin nanoparticles as drug delivery carriers have increased. Most toxicology studies have shown that surface chemistry and size of nanoparticles play an important role in biocompatibility and toxicity. The effect of desolvating agents with different chemical properties on the size of synthesized HSA NPs was investigated. Acetone, ethanol, methanol, and acetonitrile were used to synthesize HSA NPs with controllable size by desolvation method. Scanning electron microscopy (SEM), dynamic light scattering (DLS), and circular dichroism (CD) were employed to characterize produced particles. Finally, the toxicity of HSA NPs synthesized under different conditions was evaluated on PC-12 cells. The sizes of synthesized particles differed according to the different solvents used. The sizes were 275.3 nm, 155.3 nm, 100.11 nm, and 66.2 nm for acetonitrile, ethanol, acetone, and methanol, respectively. CD showed that larger NPs had more changes in the secondary structures. Finally, the toxicity monitored on the cultured PC-12 cells showed no significant toxic effect through treating with these NPs at different concentrations (0-500 μg.mL -1 ). The size of HSA NPs has a strong dependency on the desolvating agent. The mechanism in which the desolvating agent affects the size of HSA NPs is complex. Various factors such as dielectric constant, polarity, functional groups, and hydrogen bonding of the solvents have the potential to affect the size and structure of HSA NPs. CD analysis suggested that the solvent denaturing capability had a critical effect on the HSA particle size. The stronger denaturing capability of the solvent resulted in the larger HSA particle size.

  16. Optimization of the emulsification and solvent displacement method for the preparation of solid lipid nanoparticles.

    PubMed

    Noriega-Peláez, Eddy Kei; Mendoza-Muñoz, Néstor; Ganem-Quintanar, Adriana; Quintanar-Guerrero, David

    2011-02-01

    The essential aim of this article is to prepare solid lipid nanoparticles (SLNs) by emulsification and solvent displacement method and to determine the best process conditions to obtain submicron particles. The emulsification and solvent displacement method is a modification of the well-known emulsification-diffusion method, but without dilution of the system. The extraction of the partially water-miscible solvent from the emulsion globules is carried out under reduced pressure, which causes the diffusion of the solvent toward the external phase, with subsequent lipid aggregation in particles whose size will depend on the process conditions. The critical variables affecting the process, such as stirring rate, the proportion of phases in the emulsion, and the amount of stabilizer and lipid, were evaluated and optimized. By this method, it was possible to obtain a high yield of solids in the dispersion for the lipids evaluated (Compritol(®) ATO 888, Geleol(®), Gelucire(®) 44/14, and stearic acid). SLNs of up to ∼20 mg/mL were obtained for all lipids evaluated. A marked reduction in size, between 500 and 2500 rpm, was seen, and a transition from micro- to nanometric size was observed. The smaller particle sizes obtained were 113 nm for Compritol(®) ATO 888, 70 nm for Gelucire(®) 44/14, 210 nm for Geleol(®), and 527 nm for stearic acid, using a rotor-stator homogenizer (Ultra-Turrax(®)) at 16,000 rpm. The best phase ratio (organic/aqueous) was 1 : 2. The process proposed in this study is a new alternative to prepare SLNs with technological potential.

  17. Optical and Photophysical Investigation of (2E)-1-(2,5-Dimethylfuran-3-Yl)-3-(9-Ethyl-9H-Carbazol-3-Yl)Prop-2-en-1-One (DEPO) by Spectrofluorometer in Organized Medium.

    PubMed

    Asiri, Abdullah M; Al-Dies, Al-Anood M; Khan, Salman A

    2017-07-01

    (2E)-1-(2,5-dimethylfuran-3-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (DEPO) was prepared by the reaction of 9-ethyl-9H-carbazole-3-carbaldehyde with 1-(2,5-dimethylfuran-3-yl)ethanone under microwave irradiation. The structure of DEPO was established experimentally by EI-MS, FT-IR, 1 H and 13 C NMR spectral studies. Electronic absorption and emission spectra of DEPO were studied in different solvents on the basis of polarities, and the obtain data were used to determine the solvatochromic properties such as extinction coefficient, oscillator strength, transition dipole moment, stokes shift, fluorescence quantum yield and photochemical quantum yield. Photochemical quantum yield (Φ c ) of DEPO dye was determined in different solvent. The dye comparatively photostable in DMSO but undergoes photodecomposition in chloro methane solvents. The DEPO dye may be use as probe or quencher to determine critical micelle concentration (CMC) of cetyltri methyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS).

  18. Reversible Chromatic Response of Polydiacetylene Derivative Vesicles in D2O Solvent.

    PubMed

    Shin, Min Jae; Kim, Jong-Duk

    2016-01-26

    The thermal chromatic sensitivity of polydiacetylenes (PDAs) with 10,12-pentacosadiynoic acid (PCDA) derivatives, which have a hydroxyl group (HEEPCDA) and an amine group (APPCDA), were investigated using D2O and H2O as solvents. The vesicle solution with polymerized HEEPCDA exhibited a reversible chromatic response during the heating and cooling cycle in D2O, but not in H2O. On the other hand, the vesicle solution with the polymerized APPCDA exhibited a reversible chromatic response in H2O during the heating and cooling cycle, but the color of the solution did not change much in D2O. The critical vesicle concentration of HEEPCDA was lower in D2O than in H2O, and the chromatic sensitivity of the polymerized vesicles to temperature was slower in D2O than in H2O. We think that it is due to D2O being a more highly structured solvent than H2O with the hydrogen bonding in D2O stronger than that in H2O.

  19. Compatibility of Halthane 88-3 urethane adhesive with the replacement cleaning solvent D-Limonene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeMay, J.D.; Mendoza, B.

    1991-08-01

    D-Limonene, (R)1-methyl-4-isopropenyl-1-cyclohexene, has been identified as a leading replacement for chlorinated solvents traditionally used to clean electrical assemblies and critical components in some phases of weapons production. Unfortunately, d-limonene has a much lower vapor pressure than the chlorinated solvents if replaces (<2 torr at ambient). This makes its complete elimination from cleaned subassemblies potentially difficult, and gives rise to concerns about the compatibility of d-limonene with materials in the warhead. During the past year many WR polymers and adhesives have been surveyed for their compatibility with d-limonene. Preliminary test results obtained at Sandia (Albuquerque) and Allied-Signal (KCD) showed that Aluminum/Halthanemore » 88-3/Aluminum joints were destroyed during exposure to saturated d-limonene vapor. The cause of bond failure appeared to be d-limonene induced swelling of the Halthane polymer. This report describes recent work performed at LLNL to study the swelling behavior and bond strength degradation of Halthane 88-3 resulting from exposure to d-limonene vapor.« less

  20. Microscopic solvent structure of subcritical and supercritical methanol from ultraviolet/visible absorption and fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Bulgarevich, Dmitry S.; Sako, Takeshi; Sugeta, Tsutomu; Otake, Katsuto; Takebayashi, Yoshihiro; Kamizawa, Chiyoshi; Uesugi, Masayuki; Kato, Masahiro

    1999-09-01

    Ultraviolet/visible absorption and fluorescence spectroscopies at different temperatures and pressures were applied to investigate the microscopic solvent structures of subcritical and supercritical methanol using 4-nitroanisole, ethyl-(4-dimethylamino)benzoate, Reichardt's dye, and anthracene as the probe molecules. It was found that at temperatures higher than 150 °C the long winding chains of sequentially hydrogen-bonded methanol molecules were probably broken, but the small hydrogen-bonded aggregates possibly existed in methanol even at higher temperature. It was also found that the solvation process of the anthracene molecule in the S0-ground state obeyed the Langmuir adsorption model. However, in the case of fluorescence measurements in supercritical methanol, we detected deviations from the simple Langmuir adsorption model. These deviations were explained in terms of preferential solvation of the solvent molecules around photoexcited anthracene. Judging from the experimental results, it was concluded that the local density augmentation of the supercritical methanol around the nonpolar solute was a short-ranged effect, which did not correspond directly to the large isothermal compressibility of fluid near the critical point.

  1. Photoinduced intramolecular charge transfer and photophysical characteristics of (2Z)-3-[4-(dimethylamino) phenyl]-2-(2-methylphenyl) prop-2-ene-nitrile (DPM) in different media

    NASA Astrophysics Data System (ADS)

    Asiri, Abdullah M.; El-Daly, Samy A.; Alamry, Khalid A.; Arshad, Muhammad Nadeem; Pannipara, Mehboobali

    2015-10-01

    A new fluorophore, (2Z)-3-[4-(dimethylamino) phenyl]-2-(2-methylphenyl) prop-2-ene-nitrile (DPM), was synthesized by knoevenagel condensation of 4-(dimethylamino) benzaldehyde and 2-methylbenzyl cyanide in ethanol using NaOH as base. The electronic absorption and emission characteristic of DPM was studied in different solvents. The X-ray crystallographic structure of DPM was also investigated. A crystalline solid of DPM gives a strong green emission at about 533 nm; these phenomena are important for the application of DPM dye in organic photo emitting diode. DPM exhibits a red shift in its emission spectrum as solvent polarity increases, indicating a large change in the dipole moment of dye molecule upon excitation due to intramolecular charge transfer in excited DPM*. The fluorescence quantum yield depends strongly on the properties of the solvents, which was attributed to positive and negative solvatokinetic effects. The DPM dye displays solubilization in cationic (CTAB) micelle and could be used as a probe to determine the critical micelle concentration (CMC) of CTAB.

  2. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    PubMed

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.

  3. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    DOEpatents

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  4. Prevention of deleterious deposits in a coal liquefaction system

    DOEpatents

    Carr, Norman L.; Prudich, Michael E.; King, Jr., William E.; Moon, William G.

    1984-07-03

    A process for preventing the formation of deleterious coke deposits on the walls of coal liquefaction reactor vessels involves passing hydrogen and a feed slurry comprising feed coal and recycle liquid solvent to a coal liquefaction reaction zone while imparting a critical mixing energy of at least 3500 ergs per cubic centimeter of reaction zone volume per second to the reacting slurry.

  5. Preparation of titanium oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  6. Preparation of titanium oxide ceramic membranes

    DOEpatents

    Anderson, M.A.; Xu, Q.

    1992-03-17

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  7. Natural product studies of U.S. endangered plants: Volatile components of Lindera melissifolia (Lauraceae) repel mosquitoes and ticks

    Treesearch

    Joonseok Oh; John J. Bowling; John F. Carroll; Betul Demirci; K. Hüsnü Can Baser; Theodor D. Leininger; Ulrich R. Berniere; Mark T. Hamann

    2012-01-01

    The number of endangered plant species in the U.S. is significant, yet studies aimed towards utilizing these plants are limited. Ticks and mosquitoes are vectors of significant pathogenic diseases of humans. Repellents are critical means of personal protection against biting arthropods and disease transmission. The essential oil and solvent extracts from ...

  8. Buckling Instabilities in Polymer Brush Surfaces via Postpolymerization Modification

    DOE PAGES

    Guo, Wei; Reese, Cassandra M.; Xiong, Li; ...

    2017-10-30

    We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using postpolymerization modification (PPM), where the length scale of the buckled features can be tuned using PPM reaction time. Here, we show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling.

  9. The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway

    ERIC Educational Resources Information Center

    Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H.

    2007-01-01

    The reaction of a ketone and an aldehyde in aqueous Na[subscript 2]CO[subscript 2] is described. This experiment is performed in the absence of strong bases or organic solvents and offers the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated…

  10. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration

    USGS Publications Warehouse

    Kile, D.E.; Chiou, C.T.

    1989-01-01

    Water solubility enhancements of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT) and 1,2,3-trichlorobenzene (TCB) by aqueous surfactants below and above their critical micelle concentrations (CMCs) have been studied at room temperature with the following surfactants: Triton X-100, Triton X-114, Triton X-405, Brij 35, sodium dodecyl sulfate, and cetyltrimethylammonium bromide. While the solubilities of DDT and TCB are greatly enhanced by all surfactants above the measured CMC, DDT also exhibits significant solubility enhancements below the CMC of the molecularly nonhomogeneous surfactants (the Triton series and Brij 35). The plot of the apparent DDT solubility against the concentration of Triton and Brij surfactants shows an uprising curve below the nominal CMC, which is attributed to the successive micellization of the heterogeneous monomer species. Above the CMC, the enhancement effect with the nonionic surfactants is closely proportional to the nonpolar chain content of the surfactant, whereas the effect with the ionic surfactants is less accountable in terms of their nonpolar chain contents. The solubilization power of a micelle relative to a bulk solvent is evaluated by a comparison of the observed micelle-water and solvent-water partition coefficients.

  11. Anomalous viscosity effect in the early stages of the ion-assisted adhesion/fusion event between lipid bilayers: A theoretical and computational study

    NASA Astrophysics Data System (ADS)

    Raudino, Antonio; Marrink, Siewert J.; Pannuzzo, Martina

    2013-06-01

    The effect of viscosity on the encounter rate of two interacting membranes was investigated by combining a non-equilibrium Fokker-Planck model together with extensive Molecular Dynamics (MD) calculations. The encounter probability and stabilization of transient contact points represent the preliminary steps toward short-range adhesion and fusion of lipid leaflets. To strengthen our analytical model, we used a Coarse Grained MD method to follow the behavior of two charged palmitoyl oleoyl phosphatidylglycerol membranes embedded in a electrolyte-containing box at different viscosity regimes. Solvent friction was modulated by varying the concentration of a neutral, water-soluble polymer, polyethylene glycol, while contact points were stabilized by divalent ions that form bridges among juxtaposed membranes. While a naïve picture foresees a monotonous decrease of the membranes encounter rate with solvent viscosity, both the analytical model and MD simulations show a complex behavior. Under particular conditions, the encounter rate could exhibit a maximum at a critical viscosity value or for a critical concentration of bridging ions. These results seem to be confirmed by experimental observations taken from the literature.

  12. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    PubMed

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  13. Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Shan-Shan; Zheng, Jie-Ning; Ma, Xiaohong; Hu, Yuan-Yuan; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-05-01

    A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media.A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S12 and Tables S1 and S2. See DOI: 10.1039/c3nr06808k

  14. Robustness of solvent/detergent treatment of plasma derivatives: a data collection from Plasma Protein Therapeutics Association member companies.

    PubMed

    Dichtelmüller, Herbert O; Biesert, Lothar; Fabbrizzi, Fabrizio; Gajardo, Rodrigo; Gröner, Albrecht; von Hoegen, Ilka; Jorquera, Juan I; Kempf, Christoph; Kreil, Thomas R; Pifat, Dominique; Osheroff, Wendy; Poelsler, Gerhard

    2009-09-01

    Solvent/detergent (S/D) treatment is an established virus inactivation technology that has been applied in the manufacture of medicinal products derived from human plasma for more than 20 years. Data on the inactivation of enveloped viruses by S/D treatment collected from seven Plasma Protein Therapeutics Association member companies demonstrate the robustness, reliability, and efficacy of this virus inactivation method. The results from 308 studies reflecting production conditions as well as technical variables significantly beyond the product release specification were evaluated for virus inactivation, comprising different combinations of solvent and detergent (tri(n-butyl) phosphate [TNBP]/Tween 80, TNBP/Triton X-100, TNBP/Na-cholate) and different products (Factor [F]VIII, F IX, and intravenous and intramuscular immunoglobulins). Neither product class, process temperature, protein concentration, nor pH value has a significant impact on virus inactivation. A variable that did appear to be critical was the concentration of solvent and detergent. The data presented here demonstrate the robustness of virus inactivation by S/D treatment for a broad spectrum of enveloped test viruses and process variables. Our data substantiate the fact that no transmission of viruses such as human immunodeficiency virus, hepatitis B virus, hepatitis C virus, or of other enveloped viruses was reported for licensed plasma derivatives since the introduction of S/D treatment.

  15. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aproticmore » solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.« less

  16. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Han; Maglia, Filippo; Lamp, Peter

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in Li-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a “corrosion inhibitor film” that prevents severely attack and passivation from protons that generatedmore » from the solvent oxidation, even the decomposition of solvent cannot not mitigated. Effect of three exemplary electrolyte additives: (i) lithium difluoro(oxalato)borate (LiDFOB); (ii) 3-hexylthiophene (3HT); and (iii) tris(hexafluoro-iso-propyl)phosphate (HFiP), on LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next generation high-energy density lithium-ion chemistries.« less

  17. Folding of the four-helix bundle FF domain from a compact on-pathway intermediate state is governed predominantly by water motion.

    PubMed

    Sekhar, Ashok; Vallurupalli, Pramodh; Kay, Lewis E

    2012-11-20

    Friction plays a critical role in protein folding. Frictional forces originating from random solvent and protein fluctuations both retard motion along the folding pathway and activate protein molecules to cross free energy barriers. Studies of friction thus may provide insights into the driving forces underlying protein conformational dynamics. However, the molecular origin of friction in protein folding remains poorly understood because, with the exception of the native conformer, there generally is little detailed structural information on the other states participating in the folding process. Here, we study the folding of the four-helix bundle FF domain that proceeds via a transiently formed, sparsely populated compact on-pathway folding intermediate whose structure was elucidated previously. Because the intermediate is stabilized by both native and nonnative interactions, friction in the folding transition between intermediate and folded states is expected to arise from intrachain reorganization in the protein. However, the viscosity dependencies of rates of folding from or unfolding to the intermediate, as established by relaxation dispersion NMR spectroscopy, clearly indicate that contributions from internal friction are small relative to those from solvent, so solvent frictional forces drive the folding process. Our results emphasize the importance of solvent dynamics in mediating the interconversion between protein configurations, even those that are highly compact, and in equilibrium folding/unfolding fluctuations in general.

  18. The Influence of Carbon-Carbon Multiple Bonds on the Solvolyses of Tertiary Alkyl Halides: a Grunwald-Winstein Analysis

    PubMed Central

    Reis, Marina C.; Elvas-Leitão, Ruben; Martins, Filomena

    2008-01-01

    The influence of carbon-carbon multiple bonds on the solvolyses of 3-chloro-3-methylbutyne (1), 2-chloro-2-phenylpropane (2), 2-bromo-2-methyl-1-phenylpropane (3), 4-chloro-4-methyl-2-pentyne (4) and 2-chloro-2-methylbutane (5) is critically evaluated through the extended Grunwald-Winstein equation. Substrates 1, 3 and 5 lead to correlations with unexpected negative sensitivity, h, to changes in the aromatic ring parameter, I. It is claimed that I is not a pure parameter, reflecting also some solvent nucleophilicity, NOTs, character. In substrates 2 and 4 the possibility of rearside solvation is reduced due to steric hindrance and/or cation stabilization and the best found correlations involve only the solvent ionizing power, Y, and I. PMID:19325827

  19. Method for producing high surface area chromia materials for catalysis

    DOEpatents

    Gash, Alexander E [Brentwood, CA; Satcher, Joe [Patterson, CA; Tillotson, Thomas [Tracy, CA; Hrubesh, Lawrence [Pleasanton, CA; Simpson, Randall [Livermore, CA

    2007-05-01

    Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m.sup.2/g and 520 m.sup.2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.

  20. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    DOE PAGES

    Yeager, J. D.; Chellappa, R.; Singh, S.; ...

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 °C, though we observe small material loss between 60 and 100 °C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is mostmore » common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.« less

  1. [The effect of hydrophobic surface properties of protein on its resistance to denaturation by organic solvents (using modified alpha-chymotrypsin as an example].

    PubMed

    Kudriashova, E V; Belova, A B; Vinogradov, A A; Mozhaev, V V

    1994-03-01

    Catalytic activity of covalently modified alpha-chymotrypsin in water/cosolvent solutions was investigated. The stability of chymotrypsin increases upon modification with hydrophilic reagents, such as glyceraldehyde, pyrometallic and succinic anhydrides, and glucosamine. Correlation was observed between the protein's stability in organic solvents and the degree of hydrophilization of the protein's surface. The protein is the more stable, the higher are the modification degree and the hydrophilicity of the modifying residue. At a certain critical hydrophilization degree of chymotrypsin a limit of stability is achieved. The stabilization effect can be accounted for by the fact that the interaction between water molecules on the surface and protein's functional groups become stronger in the hydrophilized protein.

  2. The role of the attractive and the repulsive interactions in the nonpolar solvation dynamics in simple fluids from the gas-like to the liquid-like densities

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Kimura, Y.; Hirota, N.

    1999-09-01

    We have performed molecular dynamics (MD) simulations of the nonpolar solvation dynamics in simple fluids composed of particles interacting through the Lennard-Jones (LJ) 12-6 potential or its repulsive part. The attractive or the repulsive part of the solute-solvent interaction is assumed to change on the excitation of a solute. We have followed the transition energy fluctuation of the solute by the equilibrium simulation. The division of the LJ potential followed the method of WCA [J. W. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971)]. We have surveyed over a wide solvent density region from gas-like to liquid-like densities at the constant temperature. When the attractive part changes, the relaxation becomes faster with an increase of the solvent density. This result contradicts with previous theories that treat the nonpolar solvation dynamics in terms of the diffusion of solvent particles. The time scale of the initial part of the relaxation is well correlated with the static fluctuation divided by the static average, which suggests the importance of the curvature of the free energy surface in the initial part of the solvation. When the repulsive part changes, the initial part of the relaxation is almost density independent, determined by the binary motion between solute and solvent. It is consistent with the result that the static fluctuation is almost proportional to the static average, which indicates the absence of the static correlation between solvent particles. On the other hand, the solvation correlation function shows rather complicated density dependence at the longer time scale. In the case of the binary mixture solvent, the relaxation time is inversely proportional to the diffusion coefficient. On the basis of the nonpolar solvation dynamics, the validity of the isolated binary collision model for the vibrational energy relaxation is also discussed, and the recent hydrodynamic theory on the vibrational energy relaxation [B. J. Cherayil and M. D. Feyer, J. Chem. Phys. 107, 7642 (1997)] is critically examined.

  3. Optimized Solvent for Energy-Efficient, Environmentally-Friendly Capture of CO{sub 2} at Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farthing, G. A.; Rimpf, L. M.

    The overall goal of this project, as originally proposed, was to optimize the formulation of a novel solvent as a critical enabler for the cost-effective, energy-efficient, environmentally-friendly capture of CO{sub 2} at coal-fired utility plants. Aqueous blends of concentrated piperazine (PZ) with other compounds had been shown to exhibit high rates of CO{sub 2} absorption, low regeneration energy, and other desirable performance characteristics during an earlier 5-year development program conducted by B&W. The specific objective of this project was to identify PZ-based solvent formulations that globally optimize the performance of coal-fired power plants equipped with CO{sub 2} scrubbing systems. Whilemore » previous solvent development studies have tended to focus on energy consumption and absorber size, important issues to be sure, the current work seeks to explore, understand, and optimize solvent formulation across the full gamut of issues related to commercial application of the technology: capital and operating costs, operability, reliability, environmental, health and safety (EH&S), etc. Work on the project was intended to be performed under four budget periods. The objective of the work in the first budget period has been to identify several candidate formulations of a concentrated PZ-based solvent for detailed characterization and evaluation. Work in the second budget period would generate reliable and comprehensive property and performance data for the identified formulations. Work in the third budget period would quantify the expected performance of the selected formulations in a commercial CO{sub 2} scrubbing process. Finally, work in the fourth budget period would provide a final technology feasibility study and a preliminary technology EH&S assessment. Due to other business priorities, however, B&W has requested that this project be terminated at the end of the first budget period. This document therefore serves as the final report for this project. It is the first volume of the two-volume final report and summarizes Budget Period 1 accomplishments under Tasks 1-5 of the project, including the selection of four solvent formulations for further study.« less

  4. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    NASA Astrophysics Data System (ADS)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the superficial velocity of the supercritical carbon dioxide; therefore, the mass transfer resistance can be reduced increasing such velocity. In this work, higher values of superficial velocity were investigated. The experimental apparatus includes a pump, an extraction vessel, an adjustable restrictor and a trap to collect the extracted substance. Liquid carbon dioxide coming from a cylinder with a dip-tube is cooled by a cryostatic bath and then it is compressed by a pneumatic drive pump (the max- imum available pressure is 69 MPa). Subsequently, the pressurised current flows into 1 a heating coil and then into the extraction vessel, which is contained in a stove; the outlet flow is depressurised in an adjustable restrictor and the extracted substance is collected in a trap by dissolution into a solvent. The extracted naphthalene quantity was obtained by weighting the solvent and measuring the naphthalene concentration with a gas chromatograph. The soil sample is a sandy soil geologically representative of the North of Italy that was sampled and physically and chemically characterized: particle-size distribution analysis, diffractometric analysis, Cation Exchange Capac- ity, Total Organic Carbon, iron content and manganese content in order to evaluate the potential sorption degree. The soil was artificially polluted by means of a naphta- lene and methylene chloride solution. The experimental work consists in a number of naphthalene extractions from the spiked soil, that were carried out at different operat- ing conditions, temperature, pressure and flow rate by means of supercritical carbon dioxide evaluating the corresponding recovery efficiencies. The results obtained were analysed and compared in order to determine which parameters influence the system. [1] G. A. Montero, T.D. Giorgio, and K. B. Schnelle, Jr..Removal of Hazardous ,1994, Contaminants form Soils by Supercritical Fluid Extraction. Innovations in Supercriti- cal Fluids. ACS Symposium Series, 608, 280-197. 2

  5. A generalized method for alignment of block copolymer films: solvent vapor annealing with soft shear.

    PubMed

    Qiang, Zhe; Zhang, Yuanzhong; Groff, Jesse A; Cavicchi, Kevin A; Vogt, Bryan D

    2014-08-28

    One of the key issues associated with the utilization of block copolymer (BCP) thin films in nanoscience and nanotechnology is control of their alignment and orientation over macroscopic dimensions. We have recently reported a method, solvent vapor annealing with soft shear (SVA-SS), for fabricating unidirectional alignment of cylindrical nanostructures. This method is a simple extension of the common SVA process by adhering a flat, crosslinked poly(dimethylsiloxane) (PDMS) pad to the BCP thin film. The impact of processing parameters, including annealing time, solvent removal rate and the physical properties of the PDMS pad, on the quality of alignment quantified by the Herman's orientational factor (S) is systematically examined for a model system of polystyrene-block-polyisoprene-block-polystyrene (SIS). As annealing time increases, the SIS morphology transitions from isotropic rods to highly aligned cylinders. Decreasing the rate of solvent removal, which impacts the shear rate imposed by the contraction of the PDMS, improves the orientation factor of the cylindrical domains; this suggests the nanostructure alignment is primarily induced by contraction of PDMS during solvent removal. Moreover, the physical properties of the PDMS controlled by the crosslink density impact the orientation factor by tuning its swelling extent during SVA-SS and elastic modulus. Decreasing the PDMS crosslink density increases S; this effect appears to be primarily driven by the changes in the solubility of the SVA-SS solvent in the PDMS. With this understanding of the critical processing parameters, SVA-SS has been successfully applied to align a wide variety of BCPs including polystyrene-block-polybutadiene-block-polystyrene (SBS), polystyrene-block-poly(N,N-dimethyl-n-octadecylammonium p-styrenesulfonate) (PS-b-PSS-DMODA), polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(2-vinlypyridine) (PS-b-P2VP). These results suggest that SVA-SS is a generalizable method for the alignment of BCP thin films.

  6. Bench Scale Process for Low Cost CO 2 Capture Using a PhaseChanging Absorbent: Techno-Economic Analysis Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina

    The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less

  7. A Physicochemical Method for Separating Rare Earths: Addressing an Impending Shortfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schelter, Eric

    2017-03-14

    There are currently zero operating suppliers of critical rare earth elements La–Lu, Sc, Y (REs), in the western hemisphere. REs are critical materials due to their importance in clean energy and defense applications, including permanent magnets in wind turbines and phosphors in energy efficient lighting. It is not economically viable to produce pure REs in the U.S. given current separations technology. REs production is dominated by suppliers in the People’s Republic of China (PRC) because of their capacity in liquid­liquid solvent extraction (SX) used to purify mixtures. Weak environmental regulations in the PRC also contribute to a competitive advantage. SXmore » is a cost, time, solvent and waste intensive process but is highly optimized and scalable. The low efficiency of SX derives from the small thermodynamic differences in solvation enthalpy between the RE3+ cations. To foster stable domestic RE production there is a critical need for fundamentally new REs chemistry that contributes to disruptive technologies in RE separations. The overall goal of this project was to develop new thermodynamic bases, and apply them, for the solution separation of rare earth metals. We have developed the chemistry of rare earth metals: La–Lu, Sc and Y, with redox active ligands. Our hypothesis for the project was that electron­hole coupling in complexes of certain lanthanide metals with redox active ligands can be used to manifest chemical distinctiveness and affect separations. We also developed separations based on unique solution equilibria from tailored ligands.« less

  8. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion - Solvent evaporation method.

    PubMed

    Amasya, Gulin; Badilli, Ulya; Aksu, Buket; Tarimci, Nilufer

    2016-03-10

    With Quality by Design (QbD), a systematic approach involving design and development of all production processes to achieve the final product with a predetermined quality, you work within a design space that determines the critical formulation and process parameters. Verification of the quality of the final product is no longer necessary. In the current study, the QbD approach was used in the preparation of lipid nanoparticle formulations to improve skin penetration of 5-Fluorouracil, a widely-used compound for treating non-melanoma skin cancer. 5-Fluorouracil-loaded lipid nanoparticles were prepared by the W/O/W double emulsion - solvent evaporation method. Artificial neural network software was used to evaluate the data obtained from the lipid nanoparticle formulations, to establish the design space, and to optimize the formulations. Two different artificial neural network models were developed. The limit values of the design space of the inputs and outputs obtained by both models were found to be within the knowledge space. The optimal formulations recommended by the models were prepared and the critical quality attributes belonging to those formulations were assigned. The experimental results remained within the design space limit values. Consequently, optimal formulations with the critical quality attributes determined to achieve the Quality Target Product Profile were successfully obtained within the design space by following the QbD steps. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Theory of Metastable State Relaxation in a Gravitational Field for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).

  10. A systematic investigation of sample diluents in modern supercritical fluid chromatography.

    PubMed

    Desfontaine, Vincent; Tarafder, Abhijit; Hill, Jason; Fairchild, Jacob; Grand-Guillaume Perrenoud, Alexandre; Veuthey, Jean-Luc; Guillarme, Davy

    2017-08-18

    This paper focuses on the possibility to inject large volumes (up to 10μL) in ultra-high performance supercritical fluid chromatography (UHPSFC) under generic gradient conditions. Several injection and method parameters have been individually evaluated (i.e. analyte concentration, injection volume, initial percentage of co-solvent in the gradient, nature of the weak needle wash solvent, nature of the sample diluent, nature of the column and of the analyte). The most critical parameters were further investigated using in a multivariate approach. The overall results suggested that several aprotic solvents including methyl tert-butyl ether (MTBE), dichloromethane, acetonitrile or cyclopentyl methyl ether (CPME) were well adapted for the injection of large volume in UHPSFC, while MeOH was generally the worst alternative. However, the nature of the stationary phase also had a strong impact and some of these diluents did not perform equally on each column. This was due to the existence of a competition in the adsorption of the analyte and the diluent on the stationary phase. This observation introduced the idea that the sample diluent should not only be chosen according to the analyte but also to the column chemistry to limit the interactions between the diluent and the ligands. Other important characteristics of the "ideal" SFC sample diluent were finally highlighted. Aprotic solvents with low viscosity are preferable to avoid strong solvent effects and viscous fingering, respectively. In the end, the authors suggest that the choice of the sample diluent should be part of the method development, as a function of the analyte and the selected stationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Loganathan, Narasimhan; Bowers, Geoffrey M.

    Layered aluminosilicates play a dominant role in the mechanical and gas storage properties of the subsurface, are used in diverse industrial applications, and serve as model materials for understanding solvent-ion-support systems. Although expansion in the presence of H2O is well known to be systematically correlated with the hydration free energy of the interlayer cation, in environments dominated by non-polar solvents (i.e. CO2), uptake into the interlayer is not well-understood. Using novel high pressure capabilities, we investigated the interaction of super-critical CO2 with Na+-, NH4+-, and Cs+-saturated montmorillonite, comparing results with predictions from molecular dynamics simulations. Despite the known trend inmore » H2O, and that cation solvation energies in CO2 suggest a stronger interaction with Na+, both the NH4+- and Cs+-clays readily absorbed CO2 and expanded while the Na+-clay did not. The apparent inertness of the Na+-clay was not due to kinetics, as experiments seeking a stable expanded state showed that none exists. Molecular dynamics simulations revealed a large endothermicity to CO2 intercalation in the Na+-clay, but little or no energy barrier for the NH4+- and Cs+-clays. Consequently, we have shown for the first time that in the presence of a low dielectric constant gas swelling depends more on the strength of the interaction between interlayer cation and aluminosilicate sheets and less on that with solvent. The finding suggests a distinct regime in layered aluminosilicates swelling behavior triggered by low solvent polarizability, with important implications in geomechanics, storage and retention of volatile gases, and across industrial uses in gelling, decoloring, heterogeneous catalysis, and semi-permeable reactive barriers.« less

  12. The Effects of Organic Solvents on the Physicochemical Properties of Human Serum Albumin Nanoparticles

    PubMed Central

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Mirzazadeh, Negar; Arpanaei, Ayyoob

    2016-01-01

    Background Recently, applications of albumin nanoparticles as drug delivery carriers have increased. Most toxicology studies have shown that surface chemistry and size of nanoparticles play an important role in biocompatibility and toxicity. Objective The effect of desolvating agents with different chemical properties on the size of synthesized HSA NPs was investigated. Materials and Methods Acetone, ethanol, methanol, and acetonitrile were used to synthesize HSA NPs with controllable size by desolvation method. Scanning electron microscopy (SEM), dynamic light scattering (DLS), and circular dichroism (CD) were employed to characterize produced particles. Finally, the toxicity of HSA NPs synthesized under different conditions was evaluated on PC-12 cells. Results The sizes of synthesized particles differed according to the different solvents used. The sizes were 275.3 nm, 155.3 nm, 100.11 nm, and 66.2 nm for acetonitrile, ethanol, acetone, and methanol, respectively. CD showed that larger NPs had more changes in the secondary structures. Finally, the toxicity monitored on the cultured PC-12 cells showed no significant toxic effect through treating with these NPs at different concentrations (0-500 μg.mL-1). Conclusions The size of HSA NPs has a strong dependency on the desolvating agent. The mechanism in which the desolvating agent affects the size of HSA NPs is complex. Various factors such as dielectric constant, polarity, functional groups, and hydrogen bonding of the solvents have the potential to affect the size and structure of HSA NPs. CD analysis suggested that the solvent denaturing capability had a critical effect on the HSA particle size. The stronger denaturing capability of the solvent resulted in the larger HSA particle size. PMID:28959317

  13. The Importance of Water for High Fidelity Information Processing and for Life

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Pohorille, Andrew

    2011-01-01

    Is water an absolute prerequisite for life? Life depends on a variety of non-covalent interactions among molecules, the nature of which is determined as much by the solvent in which they occur as by the molecules themselves. Catalysis and information processing, two essential functions of life, require non-covalent molecular recognition with very high specificity. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g ., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity > 107 : 1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. An electrostatic molecular complex representing 3 units of information (e.g., 3 base pairs) with specificity > 107 per unit has a stability in non-polar solvent comparable to that of a carbon-carbon bond at room temperature. These considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing, and can therefore be considered a critical prerequisite for life.

  14. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1.

    PubMed

    Bhunia, Manas K; Hughes, James T; Fettinger, James C; Navrotsky, Alexandra

    2013-06-25

    Metal-organic framework (MOF) porosity relies upon robust metal-organic bonds to retain structural rigidity upon solvent removal. Both the as-synthesized and activated Cu and Zn polymorphs of HKUST-1 were studied by room temperature acid solution calorimetry. Their enthalpies of formation from dense assemblages (metal oxide (ZnO or CuO), trimesic acid (TMA), and N,N-dimethylformamide (DMF)) were calculated from the calorimetric data. The enthalpy of formation (ΔHf) of the as-synthesized Cu-HKUST-H2O ([Cu3TMA2·3H2O]·5DMF) is -52.70 ± 0.34 kJ per mole of Cu. The ΔHf for Zn-HKUST-DMF ([Zn3TMA2·3DMF]·2DMF) is -54.22 ± 0.57 kJ per mole of Zn. The desolvated Cu-HKUST-dg [Cu3TMA2] has a ΔHf of 16.66 ± 0.51 kJ/mol per mole Cu. The ΔHf for Zn-HKUST-amorph [Zn3TMA2·2DMF] is -3.57 ± 0.21 kJ per mole of Zn. Solvent stabilizes the Cu-HKUST-H2O by -69.4 kJ per mole of Cu and Zn-HKUST-DMF by at least -50.7 kJ per mole of Zn. Such strong chemisorption of solvent is similar in magnitude to the strongly exothermic binding at low coverage for chemisorbed H2O on transition metal oxide nanoparticle surfaces. The strongly exothermic solvent-framework interaction suggests that solvent can play a critical role in obtaining a specific secondary building unit (SBU) topology.

  15. SN2 fluorination reactions in ionic liquids: a mechanistic study towards solvent engineering.

    PubMed

    Oh, Young-Ho; Jang, Hyeong Bin; Im, Suk; Song, Myoung Jong; Kim, So-Yeon; Park, Sung-Woo; Chi, Dae Yoon; Song, Choong Eui; Lee, Sungyul

    2011-01-21

    In the catalysis of S(N)2 fluorination reactions, the ionic liquid anion plays a key role as a Lewis base by binding to the counterion Cs(+) and thereby reducing the retarding Coulombic influence of Cs(+) on the nucleophile F(-). The reaction rates also depend critically on the structures of ionic liquid cation, for example, n-butyl imidazolium gives no S(N)2 products, whereas n-butylmethyl imidazolium works well. The origin of the observed phenomenal synergetic effects by the ionic liquid [mim-(t)OH][OMs], in which t-butanol is bonded covalently to the cation [mim], is that the t-butanol moiety binds to the leaving group of the substrate, moderating the retarding interactions between the acidic hydrogen and F(-). This work is a significant step toward designing and engineering solvents for promoting specific chemical reactions.

  16. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis.

    PubMed

    Sarada, R; Vidhyavathi, R; Usha, D; Ravishankar, G A

    2006-10-04

    Haematococcus pluvialis is one of the potent organisms for production of astaxanthin, a high value ketocarotenoid. Astaxanthin is accumulated in thick-walled cyst cells of Haematococcus. The thick cell wall is made up of sporopollenin-like material, algaenan, which hinders solvent extraction of astaxanthin. In the present study, an improved method for extraction of astaxanthin without homogenization of cells is reported. Extractability of astaxanthin from cyst cells was evaluated by treating cells with various solvents and pretreating the cells with organic and mineral acids at 70 degrees C followed by acetone extraction. Hydrochloric acid treatment facilitated 86-94% extractability of astaxanthin. Treatment time, temperature, and concentration of the acid were found to be critical factors for maximum extractability. The treatment did not affect the astaxanthin ester profile and the treated cells can be preserved until further use.

  17. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials.

    PubMed

    Wrona, Olga; Rafińska, Katarzyna; Możeński, Cezary; Buszewski, Bogusław

    2017-11-01

    There has been growing interest in the application of supercritical solvents over the last several years, many of the applications industrial in nature. The purpose of plant material extraction is to obtain large amounts of extract rich in the desired active compounds in a time-sensitive and cost-effective manner. The productivity and profitability of a supercritical fluid extraction (SFE) process largely depends on the selection of process parameters, which are elaborated upon in this paper. Carbon dioxide (CO2) is the most desirable solvent for the supercritical extraction of natural products. Its near-ambient critical temperature makes it suitable for the extraction of thermolabile components without degradation. A new approach has been adopted for SFE in which the solubility of nonpolar supercritical CO2 can be enhanced by the addition of small amounts of cosolvent.

  18. Probing solvation decay length in order to characterize hydrophobicity-induced bead-bead attractive interactions in polymer chains.

    PubMed

    Das, Siddhartha; Chakraborty, Suman

    2011-08-01

    In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.

  19. Chemical Reactions in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan

    1998-12-01

    Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.

  20. Controlling Fiber Morphology in Simultaneous Centrifugal Spinning and Photopolymerization

    NASA Astrophysics Data System (ADS)

    Fang, Yichen; Dulaney, Austin; Ellison, Christopher

    2015-03-01

    Current synthetic fiber manufacturing technologies use either solvent or heat to transform a solid preformed polymer into a liquid before applying a force to draw the liquid into fiber. While the use of solvent poses concerns regarding process safety and environmental impact, the use of heat may also lead to polymer degradation and excessive energy consumption. To address these critical challenges, here we present an alternative fiber manufacturing method that encompasses extruding a monomer solution through an orifice, drawing it using centrifugal Forcespinning and polymerizing the monomer jet into solid fiber in flight using UV initiated thiol-ene chemistry. This method not only negates the use of both heat and solvent, but also produces fibers that are highly crosslinked, mechanically robust, and thermally stable. In this process, the balance between curing kinetics, fiber flight time, and solution viscoelasticity is essential. Studies were conducted to quantitatively investigate the effect of these factors on fiber formation and morphology. An operating diagram was developed to show how the intricate interplay of these factors led to the formation of smooth fibers and other undesirable fiber defects, such as beads-on-string, fused fibers, and droplets.

  1. Field demonstration of foam injection to confine a chlorinated solvent source zone.

    PubMed

    Portois, Clément; Essouayed, Elyess; Annable, Michael D; Guiserix, Nathalie; Joubert, Antoine; Atteia, Olivier

    2018-05-01

    A novel approach using foam to manage hazardous waste was successfully demonstrated under active site conditions. The purpose of the foam was to divert groundwater flow, that would normally enter the source zone area, to reduce dissolved contaminant release to the aquifer. During the demonstration, foam was pre generated and directly injected surrounding the chlorinated solvent source zone. Despite the constraints related to the industrial activities and non-optimal position of the injection points, the applicability and effectiveness of the approach have been highlighted using multiple metrics. A combination of measurements and modelling allowed definition of the foam extent surrounding each injection point, and this appears to be the critical metric to define the success of the foam injection approach. Information on the transport of chlorinated solvents in groundwater showed a decrease of contaminant flux by a factor of 4.4 downstream of the confined area. The effective permeability reduction was maintained over a period of three months. The successful containment provides evidence for consideration of the use of foam to improve traditional flushing techniques, by increasing the targeting of contaminants by remedial agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Development of wide temperature electrolyte for graphite/ LiNiMnCoO2 Li-ion cells: High throughput screening

    NASA Astrophysics Data System (ADS)

    Kafle, Janak; Harris, Joshua; Chang, Jeremy; Koshina, Joe; Boone, David; Qu, Deyang

    2018-07-01

    In this report, we demonstrate that the low temperature power capability of a Li-ion battery can be substantially improved not by adding commercially unavailable additives into the electrolyte, but by rational design of the composition of the most commonly used solvents. Through the detail analysis with electrochemical impedance spectroscopy, the formation of a homogenous solid electrolyte interface (SEI) layer on the carbon anode surface is found to be critical to ensure the performance of a Li-ion battery in a wide temperature range. The post mortem analysis of the negative electrode by XPS revealed that all the electrolyte compositions form similar compounds in the solid electrolyte interphase. However, the electrolytes which give higher capacities at low temperature showed higher percentage of LiF and lower percentage of carbon containing species such as lithium carbonate and lithium ethylene di-carbonate. The electrolyte compositions where cyclic carbonates make up less than 25% of the total solvent showed increased low temperature performance. The solvent composition with higher percentage of linear short chain carbonates showed an improved low temperature performance. The high temperature performances were similar in almost all the combinations.

  3. Hydration and temperature interdependence of protein picosecond dynamics.

    PubMed

    Lipps, Ferdinand; Levy, Seth; Markelz, A G

    2012-05-14

    We investigate the nature of the solvent motions giving rise to the rapid temperature dependence of protein picoseconds motions at 220 K, often referred to as the protein dynamical transition. The interdependence of picoseconds dynamics on hydration and temperature is examined using terahertz time domain spectroscopy to measure the complex permittivity in the 0.2-2.0 THz range for myoglobin. Both the real and imaginary parts of the permittivity over the frequency range measured have a strong temperature dependence at >0.27 h (g water per g protein), however the permittivity change is strongest for frequencies <1 THz. The temperature dependence of the real part of the permittivity is not consistent with the relaxational response of the bound water, and may reflect the low frequency protein structural vibrations slaved to the solvent excitations. The hydration necessary to observe the dynamical transition is found to be frequency dependent, with a critical hydration of 0.19 h for frequencies >1 THz, and 0.27 h for frequencies <1 THz. The data are consistent with the dynamical transition solvent fluctuations requiring only clusters of ~5 water molecules, whereas the enhancement of lowest frequency motions requires a fully spanning water network. This journal is © the Owner Societies 2012

  4. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1998-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, MSFC is responsible for developing large telescope satellites which require a variety of optical systems to be cleaned. A precision cleaning shop is operated within MSFC by the Fabrication Services Division of the Materials & Processes Laboratory. Verification of cleanliness is performed for all precision cleaned articles in the Environmental and Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that have been in use for many years, including cleaning agents and organic solvents. As MSFC is a research center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  5. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.

    1999-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, the Center is responsible for developing large telescope satellites which requires a variety of optical systems to be cleaned. A precision cleaning shop is operated with-in MSFC by the Fabrication Services Division of the Materials & Processes Division. Verification of cleanliness is performed for all precision cleaned articles in the Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that has been in use for many years, including cleaning agents and organic solvents. As MSFC is a research Center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  6. Structure–property reduced order model for viscosity prediction in single-component CO 2 -binding organic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.

    2016-01-01

    CO2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO2 binding organic liquids (CO2BOLs) based solely on molecular structure and the amount of bound CO2. The functional form of the model correlates the viscosity with the CO2 loading and an electrostatic term describing the charge distribution between the CO2-bearingmore » functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity non-aqueous solvent systems for post-combustion CO2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification.« less

  7. Method of making supercritical fluid molecular spray films, powder and fibers

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a heated nozzle having a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. In another embodiment, the temperature of the solution and nozzle is elevated above the melting point of the solute, which is preferably a polymer, and the solution is maintained at a pressure such that, during expansion, the solute precipitates out of solution within the nozzle in a liquid state. Alternatively, a secondary solvent mutually soluble with the solute and primary solvent and having a higher critical temperature than that of primary solvent is used in a low concentration (<20%) to maintain the solute in a transient liquid state. The solute is discharged in the form of long, thin fibers. The fibers are collected at sufficient distance from the orifice to allow them to solidify in the low pressure/temperature region.

  8. Molecular simulations of self-assembly processes of amphiphiles in dilute solutions: the challenge for quantitative modelling

    NASA Astrophysics Data System (ADS)

    Jusufi, Arben

    2013-11-01

    We report on two recent developments in molecular simulations of self-assembly processes of amphiphilic solutions. We focus on the determination of micelle formation of ionic surfactants which exhibit the archetype of self-assembling compounds in solution. The first approach is centred on the challenge in predicting micellisation properties through explicit solvent molecular dynamics simulations. Even with a coarse-grained (CG) approach and the use of highly optimised software packages run on graphics processing unit hardware, it remains in many cases computationally infeasible to directly extract the critical micelle concentration (cmc). However, combined with a recently presented theoretical mean-field model this task becomes resolved. An alternative approach to study self-assembly is through implicit solvent modelling of the surfactants. Here we review some latest results and present new ones regarding capabilities of such a modelling approach in determining the cmc, and the aggregate structures in the dilute regime, that is currently not accessible through explicit solvent simulations, neither through atomistic nor through CG approaches. A special focus is put on surfactant concentration effects and surfactant correlations quantified by scattering intensities that are compared to recently published small-angle X-ray scattering data.

  9. Amino Acid Side Chain Interactions in the Presence of Salts

    PubMed Central

    Hassan, Sergio A.

    2005-01-01

    The effects of salt on the intermolecular interactions between polar/charged amino acids are investigated through molecular dynamics simulations. The mean forces and associated potentials are calculated for NaCl salt in the 0–2 M concentration range at 298 K. It is found that the addition of salt may stabilize or destabilize the interactions, depending on the nature of the interacting molecules. The degree of (de)stabilization is quantified, and the origin of the salt-dependent modulation is discussed based upon an analysis of solvent density profiles. To gain insight into the molecular origin of the salt modulation, spatial distribution functions (sdf’s) are calculated, revealing a high degree of solvent structuredness in all cases. The peaks in the sdf’s are consistent with long-range hydrogen-bonding networks connecting the solute hydrophilic groups, and that contribute to their intermolecular solvent-induced forces. The restructuring of water around the solutes as they dissociate from close contact is analyzed. This analysis offers clues on how the solvent structure modulates the effective intermolecular interactions in complex solutes. This modulation results from a critical balance between bulk electrostatic forces and those exerted by (i) the water molecules in the structured region between the monomers, which is disrupted by ions that transiently enter the hydration shells, and (ii) the ions in the hydration shells in direct interactions with the solutes. The implications of these findings in protein/ligand (noncovalent) association/dissociation mechanisms are briefly discussed. PMID:16479276

  10. Formalism for calculation of polymer-solvent-mediated potential

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2006-07-01

    A simple theoretical approach is proposed for calculation of a solvent-mediated potential (SMP) between two colloid particles immersed in a polymer solvent bath in which the polymer is modeled as a chain with intramolecular degrees of freedom. The present recipe is only concerned with the estimation of the density profile of a polymer site around a single solute colloid particle instead of two solute colloid particles separated by a varying distance as done in existing calculational methods for polymer-SMP. Therefore the present recipe is far simpler for numerical implementation than the existing methods. The resultant predictions for the polymer-SMP and polymer solvent-mediated mean force (polymer-SMMF) are in very good agreement with available simulation data. With the present recipe, change tendencies of the contact value and second virial coefficiency of the SMP as a function of size ratio between the colloid particle and polymer site, the number of sites per chain, and the polymer concentration are investigated in detail. The metastable critical polymer concentration as a function of size ratio and the number of sites per chain is also reported for the first time. To yield the numerical solution of the present recipe at less than 1min on a personal computer, a rapid and accurate algorithm for the numerical solution of the classical density functional theory is proposed to supply rapid and accurate estimation of the density profile of the polymer site as an input into the present formalism.

  11. Molecular simulation of CO chemisorption on Co(0001) in presence of supercritical fluid solvent: A potential of mean force study

    NASA Astrophysics Data System (ADS)

    Asiaee, Alireza; Benjamin, Kenneth M.

    2016-08-01

    For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (no SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0-1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.

  12. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    PubMed

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Mass transfer in supercritical fluids instancing selected fluids in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hu, Miao; Benning, Rainer; Delgado, Antonio; Ertunc, Oezguer

    The research interests lie in a deeper understanding of the mechanisms of diffusion and nucle-ation of organic solutes in near-and supercritical state of a solvent, which count as important means of mass transfer in the process engineering industry. The use of supercritical fluids in industrial processes, such as extraction and particle handling, has become a more and more popular method. Take a closer look at the two processes one would find that there are obviously two sub-processes involved in each of the process, namely the diffusion/nucleation as well as a phase transition procedure. Because of the operational limitations in the practice, this phase transition can-not be neglected. So it is also included in the theoretical approach. Classically to deduce conclusions from experiment results, mathematical/physical models outlining property changes and summarizing characteristics of the two processes are expected. In order to become an insight of these phenomena from the origin, and also to serve as a fundamental attribute for the numerical simulation later, the theories of statistical thermodynamics are adopted here as a proper means to describe the behaviors of the two processes. As the diffusion coefficients of the samples in our case are only of an order of approx. 10-8m2s-1, it can be assumed that the processes are in equilibrium (local changes are neglectably small), a model can be built on a general macroscopic approach for equilibrium systems, namely the Boltzmann-Gibbs distri-bution. And some rather general methods e.g. linear response theory can be applied. But as the transfer phenomena are genuinely not equilibrium systems, from this aspect a model can also be built based on the microscopic description -the kinetic theory of the behaviors of the particles of this non-equilibrium system. The characteristics under compensated gravity are also to be considered in the models. The differences and constraints between the models are to be compared and discussed. As the thermodynamic properties of a fluid are strongly dependent on the dimensions and the conditions in which the process is taken place, the models are limited to the hardware designed for this experiment setup. In order to evolve other applications, they need to be generalized and adjusted to fit the situations accordingly. As usual, the experiment data are to be submitted to these calculations to complete the models, and also to test and to proof if they satisfy some general properties of the systems that are already known. This leads to another very important part of the work -the experiments. Because of the sophistication of the behavior of fluids around their critical points, throughout the literature the theoretical description of the phase transition as well as other processes taken place under this circumstance, still depends largely on the empirical analysis. No matter how well considered a model can be, it represents only a partial and a simplified picture of the whole process. So the experimental part is of great importance not only as a support to the theoretical solution, but also as a means to get first hand data especially for the processes under investigation in this work. As solvent supercritical carbon dioxide was chosen considering its unique economical and ecological effects. As solutes DL-α-tocopherol and n-hexane were cho-sen. Two fundamental mass transfer processes are observed, namely diffusion and nucleation, both in laboratory as well as under compensated gravity (The experiment are to be performed in parabolic flight this March 2010). Both phenomena are obtained under isothermal condition through adjustments of the pressure inside a high pressure container. The container was spe-cially designed for this case. It has a cylindrical geometry with two pistons as movable walls on both sides to control the solvent volume. For diffusion a droplet of sample is fixed between two wetting barriers in the middle of the container with filled solvent -sub-critical CO2. The ex-periment pressure is reached by reducing the volume of the container above the critical pressure of the solvent. For nucleation the container is firstly filled with saturated mixture of solvent -supercritical CO2 and the sample, the experiment pressure is achieved by enlarging the volume of the container below the critical pressure of the solvent. During the experiments the pressure and temperature data are monitored and recorded. As a direct observation means a high speed camera is used, the visual changes inside are recorded through the windows integrated on the container. The experiments are carried out under three different initial conditions, namely with three start temperatures (313K, 333K and 353K), to cover the area from vicinity of the critical point. This research serves as a pilot project topic in cooperation with DLR, which has the ultimate aim of performing the experiments of mass transfer processes in a longtime microgravity facility (e.g. ISS) in order to further explore the influences and utilities of earth gravity on these basic transport processes.

  14. Effects of Solvents on Craze Initiation and Crack Propagation in Transparent Polymers

    DTIC Science & Technology

    1989-04-01

    methyl methacrylate) ( PMMA ) materials, as well as several formulations of polycarbon- ate, show a range of critical strain measurements in crazing...propagation in transparent polymers is demonstrated by a dead weight loading apparatus and compact tension specimens based on ASTM E 399. Samples of PMMA ...environment. This includes the ability to be decontaminated. Polycarbonate (PC) and poly(methyl methacrylate) ( PMMA ) are known to craze while undfer

  15. Supercritical Fluid Spray Application Process for Adhesives and Primers

    DTIC Science & Technology

    2003-03-01

    The basic scheme of SFE process consists of three steps. A solvent, typically carbon dioxide, first is heated and pressurized to a supercritical...passivation step to remove contaminants and to prevent recontamination. Bok et al. (25) describe a pressure pulsation mechanism to stimulate improved...in as a liquid, and then it is heated to above its critical temperature to become a supercritical fluid. The sample is injected and dissolved into

  16. Solventless visible light-curable coating: I. Critical formulation and processing parameters.

    PubMed

    Bose, Sagarika; Bogner, Robin H

    2010-06-30

    Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity x exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8-3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent. 2010 Elsevier B.V. All rights reserved.

  17. Constraints to healthcare waste treatment in low-income countries - a case study from Somaliland.

    PubMed

    Di Bella, Veronica; Ali, Mansoor; Vaccari, Mentore

    2012-06-01

    In low-income countries, healthcare waste is mixed with the municipal waste stream and rarely receives special attention. This paper presents the lessons learned from a pilot project targeted to improve healthcare waste management in Hargeisa (Somaliland). The interventions were carried out in three of the main hospitals in the city. Consideration was also given to improve the overall situation regarding the management of healthcare waste. Three De Montfort incinerators were built and training was provided to operators, waste workers and healthcare personnel. Although the incinerators were constructed in accordance with the required standards, major constraints were identified in the operational phase: irregular de-ashing procedures, misuse of safety equipment, and ineffective separation of healthcare waste were seen in this phase. The paper concludes that in other small hospitals in the developing world, such as those in Hargeisa, on-site incineration by use of low-cost, small-scale incinerators could be successfully applied as an interim solution, provided that an agreed and acceptable plan of operation and maintenance is in place and responsibilities for the management of the facility are clearly identified. Moreover, when replicating this experience in other settings even greater importance should be given to the technical capacity building of operators and pressure should be exercised on local administrations in order to control and supervise the whole management system.

  18. Liquid Chromatography at Critical Conditions: Balancing size exclusion and adsorption in nanopores

    NASA Astrophysics Data System (ADS)

    Abdulahad, Asem; Amos, Jeffrey; Ryu, Chang

    2009-03-01

    Liquid chromatography at critical condition (LCCC) is a measure to identify thermodynamic conditions, in which polymers elute independently of molar mass during high performance liquid chromatography. Under these critical conditions the entropic exclusions that dominate size exclusion chromatography (SEC) and the enthalpic adsorption that governs adsorption-based interaction chromatography (IC) are said to negate one another resulting in simultaneous elution of the polymer of different molecular weights. Using multiple C18-bonded silica columns with different average nanopore sizes (from 5 nm to 30 nm), we will study the LCCC conditions of PS in methylene chloride/acetonitrile solvent mixture at different temperature. In addition, we will show that the separation of polystyrene can be fine tuned using a refined temperature gradient interaction chromatography (TGIC) that employs multiple columns of varying pore size in sequence.

  19. Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm

    NASA Astrophysics Data System (ADS)

    Wang, Hongzhen; Ciret, Charles; Godet, Jean-Luc; Cassagne, Christophe; Boudebs, Georges

    2018-06-01

    The nonlinear (NL) responses of liquid water, ethanol and tetrahydrofuran (THF) are investigated at 355 nm using a Nd:YAG laser delivering pulses of 10 ps. The experiments are performed using the D4σ method combined with the Z-scan technique. Third-order NL refractive indices are determined, as well as the two-photon absorption coefficient and the critical self-focus power. The NL refractive indices are found to be constant for intensity up to 150 GW/cm2 for the three considered solvents, revealing no higher order nonlinearities. Water appears to be a better solvent than ethanol and THF in the UV domain because of its lower NL index and absence of NL absorption. We expect the present study to be useful for NL index measurements in solutions and for numerous future fundamental interest or potential applications.

  20. Choice of solvent extraction technique affects fatty acid composition of pistachio (Pistacia vera L.) oil.

    PubMed

    Abdolshahi, Anna; Majd, Mojtaba Heydari; Rad, Javad Sharifi; Taheri, Mehrdad; Shabani, Aliakbar; Teixeira da Silva, Jaime A

    2015-04-01

    Pistachio (Pistacia vera L.) oil has important nutritional and therapeutic properties because of its high concentration of essential fatty acids. The extraction method used to obtain natural compounds from raw material is critical for product quality, in particular to protect nutritional value. This study compared the fatty acid composition of pistachio oil extracted by two conventional procedures, Soxhlet extraction and maceration, analyzed by a gas chromatography-flame ionization detector (GC-FID). Four solvents with different polarities were tested: n-hexane (Hx), dichloromethane (DCM), ethyl acetate (EtAc) and ethanol (EtOH). The highest unsaturated fatty acid content (88.493 %) was obtained by Soxhlet extraction with EtAc. The Soxhlet method extracted the most oleic and linolenic acids (51.99 % and 0.385 %, respectively) although a higher concentration (36.32 %) of linoleic acid was extracted by maceration.

  1. Self-assemblies, helical ribbons and gelation tuned by solvent-gelator interaction in a bi-1,3,4-oxadiazole gelator

    NASA Astrophysics Data System (ADS)

    Zhao, Chengxiao; Bai, Binglian; Wang, Haitao; Qu, Songnan; Xiao, Guanjun; Tian, Taiji; Li, Min

    2013-04-01

    A bi-1,3,4-oxadiazole derivative (BOXDH-T12) showed intramolecular charge transition at concentrations lower than 1 × 10-5 mol/L. The self-assembling behaviors of BOXDH-T12 depended on solvents that it self-assembled into H-aggregates in alcohols and slipped packing aggregates in DMSO. FTIR, 1H NMR and TGA results revealed that strong gelator-gelator hydrogen bonding interaction induced H-aggregation of BOXDH-T12 in alcohols and the interactions between DMSO and BOXDH-T12 molecules caused a slipped stacking. BOXDH-T12 can gel the mixtures of DMSO and ethanol through a cooperative effect of the hydrogen bonding, van der Waals interaction and π-π stacking forces, furthermore, helical ribbons could be observed in DMSO/ethanol due to DMSO molecule interacting. In alcohols, solvophobic/solvophilic effect plays a critical role in gelation behaviors.

  2. Batch Statistical Process Monitoring Approach to a Cocrystallization Process.

    PubMed

    Sarraguça, Mafalda C; Ribeiro, Paulo R S; Dos Santos, Adenilson O; Lopes, João A

    2015-12-01

    Cocrystals are defined as crystalline structures composed of two or more compounds that are solid at room temperature held together by noncovalent bonds. Their main advantages are the increase of solubility, bioavailability, permeability, stability, and at the same time retaining active pharmaceutical ingredient bioactivity. The cocrystallization between furosemide and nicotinamide by solvent evaporation was monitored on-line using near-infrared spectroscopy (NIRS) as a process analytical technology tool. The near-infrared spectra were analyzed using principal component analysis. Batch statistical process monitoring was used to create control charts to perceive the process trajectory and define control limits. Normal and non-normal operating condition batches were performed and monitored with NIRS. The use of NIRS associated with batch statistical process models allowed the detection of abnormal variations in critical process parameters, like the amount of solvent or amount of initial components present in the cocrystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Amplification of hofmeister effect by alcohols.

    PubMed

    Xu, Yun; Liu, Guangming

    2014-07-03

    We have demonstrated that Hofmeister effect can be amplified by adding alcohols to aqueous solutions. The lower critical solution temperature behavior of poly(N-isopropylacrylamide) has been employed as the model system to study the amplification of Hofmeister effect. The alcohols can more effectively amplify the Hofmeister effect following the series methanol < ethanol < 1-propanol < 2-propanol for the monohydric alcohols and following the series d-sorbitol ≈ xylitol ≈ meso-erythritol < glycerol < ethylene glycol < methanol for the polyhydric alcohols. Our study reveals that the relative extent of amplification of Hofmeister effect is determined by the stability of the water/alcohol complex, which is strongly dependent on the chemical structure of alcohols. The more stable solvent complex formed via stronger hydrogen bonds can more effectively differentiate the anions through the anion-solvent complex interactions, resulting in a stronger amplification of Hofmeister effect. This study provides an alternative method to tune the relative strength of Hofmeister effect besides salt concentration.

  4. Selective dissolution of halide perovskites as a step towards recycling solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  5. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scatteringmore » experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.« less

  6. Selective dissolution of halide perovskites as a step towards recycling solar cells.

    PubMed

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-23

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb(2+) cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  7. The uncertainty of reference standards--a guide to understanding factors impacting uncertainty, uncertainty calculations, and vendor certifications.

    PubMed

    Gates, Kevin; Chang, Ning; Dilek, Isil; Jian, Huahua; Pogue, Sherri; Sreenivasan, Uma

    2009-10-01

    Certified solution standards are widely used in forensic toxicological, clinical/diagnostic, and environmental testing. Typically, these standards are purchased as ampouled solutions with a certified concentration. Vendors present concentration and uncertainty differently on their Certificates of Analysis. Understanding the factors that impact uncertainty and which factors have been considered in the vendor's assignment of uncertainty are critical to understanding the accuracy of the standard and the impact on testing results. Understanding these variables is also important for laboratories seeking to comply with ISO/IEC 17025 requirements and for those preparing reference solutions from neat materials at the bench. The impact of uncertainty associated with the neat material purity (including residual water, residual solvent, and inorganic content), mass measurement (weighing techniques), and solvent addition (solution density) on the overall uncertainty of the certified concentration is described along with uncertainty calculations.

  8. Ultrahigh pressure extraction of bioactive compounds from plants-A review.

    PubMed

    Xi, Jun

    2017-04-13

    Extraction of bioactive compounds from plants is one of the most important research areas for pharmaceutical and food industries. Conventional extraction techniques are usually associated with longer extraction times, lower yields, more organic solvent consumption, and poor extraction efficiency. A novel extraction technique, ultrahigh pressure extraction, has been developed for the extraction of bioactive compounds from plants, in order to shorten the extraction time, decrease the solvent consumption, increase the extraction yields, and enhance the quality of extracts. The mild processing temperature of ultrahigh pressure extraction may lead to an enhanced extraction of thermolabile bioactive ingredients. A critical review is conducted to introduce the different aspects of ultrahigh pressure extraction of plants bioactive compounds, including principles and mechanisms, the important parameters influencing its performance, comparison of ultrahigh pressure extraction with other extraction techniques, advantages, and disadvantages. The future opportunities of ultrahigh pressure extraction are also discussed.

  9. Development of Craze and Impact Resistance in Glazing Plastics by Multiaxial Stretching

    NASA Technical Reports Server (NTRS)

    Kline, G M; Wolock, I; Axilrod, B M; Sherman, M A; George, D A; Cohen, V

    1956-01-01

    The loss of strength of cast polymethyl methacrylate plastic as a result of crazing is of considerable importance to the aircraft industry. Because of the critical need for basic information on the nature of crazing and the effects of various treatments and environmental conditions on its incidence and magnitude, an investigation of this phenomenon was undertaken. The following factors were examined: (1) the effect of stress-solvent crazing on tensile strength of polymethyl methacrylate; (2) the critical stress and strain for onset of crazing at various temperatures; (3) the effect of molecular weight on crazing; and (4) the effect of multiaxial stretching on crazing of polymethyl methacrylate and other acrylic glazing materials.

  10. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.

    PubMed

    Kim, Su Hee; Jung, Youngmee; Kim, Soo Hyun

    2013-03-01

    Supercritical fluids are used in various industrial fields, such as the food and medical industries, because they have beneficial physical and chemical properties and are also nonflammable and inexpensive. In particular, supercritical carbon dioxide (ScCO(2)) is attractive due to its mild critical temperature, pressure values, and nontoxicity. Poly(L-lactide-co-ɛ-caprolactone) (PLCL), which is a biocompatible, biodegradable, and very elastic polymer, has been used in cartilage tissue engineering. However, organic solvents, such as chloroform or dichloromethane, are usually used for the fabrication of a PLCL scaffold through conventional methods. This leads to a cytotoxic effect and long processing time for removing solvents. To alleviate these problems, supercritical fluid processing is introduced here. In this study, we fabricated a mechano-active PLCL scaffold by supercritical fluid processing for cartilage tissue engineering, and we compared it with a scaffold made by a conventional solvent-casting method in terms of physical and biological performance. Also, to examine the optimum condition for preparing scaffolds with ScCO(2), we investigated the effects of pressure, temperature, and the depressurization rate on PLCL foaming. The PLCL scaffolds produced by supercritical fluid processing had a homogeneously interconnected porous structure, and they exhibited a narrow pore size distribution. Also, there was no cytotoxicity of the scaffolds made with ScCO(2) compared to the scaffolds made by the solvent-pressing method. The scaffolds were seeded with chondrocytes, and they were subcutaneously implanted into nude mice for up to 4 weeks. In vivo accumulation of extracellular matrix of cell-scaffold constructs demonstrated that the PLCL scaffold made with ScCO(2) formed a mature and well-developed cartilaginous tissue compared to the PLCL scaffold formed by solvent pressing. Consequently, these results indicated that the PLCL scaffolds made by supercritical fluid processing offer well-interconnected and nontoxic substrates for cell growth, avoiding problems associated with a solvent residue. This suggests that these elastic PLCL scaffolds formed by supercritical fluid processing could be used for cartilage tissue engineering.

  11. Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI) 2 in Diglyme: Implications for Multivalent Electrolytes

    DOE PAGES

    Baskin, Artem; Prendergast, David

    2016-02-05

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskin, Artem; Prendergast, David

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  13. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data.

  14. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review.

    PubMed

    Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C

    2016-01-28

    Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Molecular simulation of CO chemisorption on Co(0001) in presence of supercritical fluid solvent: A potential of mean force study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asiaee, Alireza; Benjamin, Kenneth M., E-mail: kenneth.benjamin@sdsmt.edu

    2016-08-28

    For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (nomore » SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0–1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.« less

  16. Understanding the dissolution of α-zein in aqueous ethanol and acetic acid solutions.

    PubMed

    Li, Yunqi; Li, Ji; Xia, Qiuyang; Zhang, Boce; Wang, Qin; Huang, Qingrong

    2012-10-04

    Zein is a corn prolamin that has broad industrial applications because of its unique physical properties. Currently, the high cost of extraction and purification, which is directly related to the dispersion of zein in different solvents, is the major bottleneck of the zein industry. Solution behaviors of zein have been studied for a long time. However, the physical nature of zein in different solvents remains unclear. In this study, small-angle X-ray scattering (SAXS), static light scattering (SLS), and rheology were combined to study the structure and protein-solvent interaction of α-zein in both acetic acid and aqueous ethanol solutions. We found that the like-dissolve-like rule, the partial unfolding, and the protonation of zein are all critical to understanding the solution behaviors. Zein holds an elongated conformation (i.e., prolate ellipsoid) in all solutions, as revealed from SAXS data. There is an "aging effect" for zein in aqueous ethanol solutions, as evidenced by the transition of Newtonian rheological profiles for fresh zein solutions to the non-Newtonian shear thinning behavior for zein solutions after storage at room temperature for 24 h. Such shear thinning behavior becomes more pronounced for zein solutions at higher concentrations. The SLS results clearly show that acetic acid is a better solvent to dissolve zein than aqueous ethanol solution, as supported by a more negative second virial coefficient. This is majorly caused by the protonation of the protein, which was further verified by the dissolution of zein in water (a nonsolvent for zein) with the addition of acids.

  17. Molecular simulations of self-assembly processes in metal-organic frameworks: Model dependence

    NASA Astrophysics Data System (ADS)

    Biswal, Debasmita; Kusalik, Peter G.

    2017-07-01

    Molecular simulation is a powerful tool for investigating microscopic behavior in various chemical systems, where the use of suitable models is critical to successfully reproduce the structural and dynamic properties of the real systems of interest. In this context, molecular dynamics simulation studies of self-assembly processes in metal-organic frameworks (MOFs), a well-known class of porous materials with interesting chemical and physical properties, are relatively challenging, where a reasonably accurate representation of metal-ligand interactions is anticipated to play an important role. In the current study, we both investigate the performance of some existing models and introduce and test new models to help explore the self-assembly in an archetypal Zn-carboxylate MOF system. To this end, the behavior of six different Zn-ion models, three solvent models, and two ligand models was examined and validated against key experimental structural parameters. To explore longer time scale ordering events during MOF self-assembly via explicit solvent simulations, it is necessary to identify a suitable combination of simplified model components representing metal ions, organic ligands, and solvent molecules. It was observed that an extended cationic dummy atom (ECDA) Zn-ion model combined with an all-atom carboxylate ligand model and a simple dipolar solvent model can reproduce characteristic experimental structures for the archetypal MOF system. The successful use of these models in extensive sets of molecular simulations, which provide key insights into the self-assembly mechanism of this archetypal MOF system occurring during the early stages of this process, has been very recently reported.

  18. Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.

    PubMed

    Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin

    2016-09-27

    While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.

  19. Preparation and evaluation of posaconazole-loaded enteric microparticles in rats.

    PubMed

    Yang, Min; Dong, Zhonghua; Zhang, Yongchun; Zhang, Fang; Wang, Yongjie; Zhao, Zhongxi

    2017-04-01

    Posaconazole (POS) is an antifungal compound which has a low oral bioavailability. The aim of this study was to prepare POS enteric microparticles to enhance its oral bioavailability. POS enteric microparticles were prepared with hypromellose acetate succinate (HPMCAS) via the spray drying method. The solvent mixtures of acetone and ethanol used in the preparation of the microparticles were optimized to produce the ideal POS enteric microparticles. Multivariate data analysis using a principal component analysis (PCA) was used to find the relationship among the HPMCAS molecular characteristics, particle properties and drug release kinetics from the spray dried microparticles. The optimal spray solvent mixtures were critical to produce the POS microparticles with the defined polymer entanglement index, drug surface enrichment, particle size and drug loading. The HPMCAS molecular characteristics affected the microscopic connectivity and diffusivity of polymer matrix and eventually influenced the drug release behavior, and enhanced the bioavailability of POS. These studies suggested that the selection of suitable solvent mixtures of acetone and ethanol used in the spray drying of the microparticles was quite important to produce the entangled polymer structures with preferred polymer molecular properties of polymer coiling, overlap concentration and entanglement index. Additional studies on particle size and surface drug enrichment eventually produced HPMCAS-based enteric microparticles to enhance the oral bioavailability of POS.

  20. Extraction study on uranyl nitrate for energy applications

    NASA Astrophysics Data System (ADS)

    Giri, R.; Nath, G.

    2017-07-01

    Due to the ever-growing demand of energy nuclear reactor materials and the nuclear energy are now considered to be the most critical materials and source of energy for future era. Deposition of nuclear wastes in different industry, nuclear power sector are very much toxic in open environment which are hazardous to living being. There are different methods for extraction and reprocessing of these materials which are cost effective and tedious process. Ultrasonic assisted solvent extraction process is a most efficient and economical way for extraction of such type materials. The presence of third phase in mixing of extractants-diluent pair with aqueous phase imposes the problems in extraction of nuclear reactor materials. The appropriate solvent mixture in proper concentration is an important step in the solvent extraction process. Study of thermo-physical properties helps in selecting an optimum blend for extraction process. In the present work, the extraction of uranium with the binary mixture of Methyl Ethyl Ketone (MEK) and Kerosene was investigated and discussed with the variation of ultrasonic frequency for different temperatures. The result shows that the low frequency and low temperature is suitable environment for extraction. The extraction of uranium by this method is found to be a better result for extraction study in laboratory scale as well as industrial sector.

  1. Application of Ionic Liquids in Pot-in-Pot Reactions.

    PubMed

    Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin

    2016-02-26

    Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction.

  2. Pushing quantitation limits in micro UHPLC-MS/MS analysis of steroid hormones by sample dilution using high volume injection.

    PubMed

    Márta, Zoltán; Bobály, Balázs; Fekete, Jenő; Magda, Balázs; Imre, Tímea; Mészáros, Katalin Viola; Szabó, Pál Tamás

    2016-09-10

    Ultratrace analysis of sample components requires excellent analytical performance in terms of limits of quantitation (LoQ). Micro UHPLC coupling with sensitive tandem mass spectrometry provides state of the art solutions for such analytical problems. Decreased column volume in micro LC limits the injectable sample volume. However, if analyte concentration is extremely low, it might be necessary to inject high sample volumes. This is particularly critical for strong sample solvents and weakly retained analytes, which are often the case when preparing biological samples (protein precipitation, sample extraction, etc.). In that case, high injection volumes may cause band broadening, peak distortion or even elution in dead volume. In this study, we evaluated possibilities of high volume injection onto microbore RP-LC columns, when sample solvent is diluted. The presented micro RP-LC-MS/MS method was optimized for the analysis of steroid hormones from human plasma after protein precipitation with organic solvents. A proper sample dilution procedure helps to increase the injection volume without compromising peak shapes. Finally, due to increased injection volume, the limit of quantitation can be decreased by a factor of 2-5, depending on the analytes and the experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Corn-like indium tin oxide nanostructures: fabrication, characterization and formation mechanism

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Wang, Yihua; Yang, Bin

    2015-11-01

    Electrospinning is a simple but efficient procedure enabling the parallel fabrication of a multitude of inorganic fibers. But the precise control of the fiber's morphology, which seriously affects the electrical, optical and other important properties of such electrospun materials, is still less developed. The creation of nanoscale indium tin oxide fibers with corn-like geometry (corn-like ITO NFs) by our group has provided a good example to show how to modify the morphologies and properties of nanofibers by means of tailoring the fiber's compositions. Here we show that in the fabrication of corn-like ITO NFs, the usage of different solvents N, N-dimethylformamide (DMF) and deionized water, as well as the calcination temperature, can also lead to dramatic morphology changes, from ribbon-like to cylindrical and then to corn-like. The resultant nanoribbons and nanoscale corn-like fibers exhibit different photoluminescence properties. We find that the morphology of the as-spun fibers is closely related to the vapor pressure of the solvent we used, and the generation of ITO crystals sensitively depends on the calcination temperature, which both are critical for the morphology and properties of the final products. Thus, we demonstrate that the formation of this unprecedented nanostructure is determined by the combined effect of the precursor chemical composition, solvent and calcination temperature.

  4. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settle, Amy E.; Berstis, Laura; Zhang, Shuting

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate ( ccDMM) to the trans,trans-form ( ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Densitymore » functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Altogether, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.« less

  5. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    DOE PAGES

    Settle, Amy E.; Berstis, Laura; Zhang, Shuting; ...

    2018-04-16

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate ( ccDMM) to the trans,trans-form ( ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Densitymore » functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Altogether, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.« less

  6. Selection of operating parameters on the basis of hydrodynamics in centrifugal partition chromatography for the purification of nybomycin derivatives.

    PubMed

    Adelmann, S; Baldhoff, T; Koepcke, B; Schembecker, G

    2013-01-25

    The selection of solvent systems in centrifugal partition chromatography (CPC) is the most critical point in setting up a separation. Therefore, lots of research was done on the topic in the last decades. But the selection of suitable operating parameters (mobile phase flow rate, rotational speed and mode of operation) with respect to hydrodynamics and pressure drop limit in CPC is still mainly driven by experience of the chromatographer. In this work we used hydrodynamic analysis for the prediction of most suitable operating parameters. After selection of different solvent systems with respect to partition coefficients for the target compound the hydrodynamics were visualized. Based on flow pattern and retention the operating parameters were selected for the purification runs of nybomycin derivatives that were carried out with a 200 ml FCPC(®) rotor. The results have proven that the selection of optimized operating parameters by analysis of hydrodynamics only is possible. As the hydrodynamics are predictable by the physical properties of the solvent system the optimized operating parameters can be estimated, too. Additionally, we found that dispersion and especially retention are improved if the less viscous phase is mobile. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  7. Hydrogen Bonding Stabilized Self-Assembly of Inorganic Nanoparticles: Mechanism and Collective Properties.

    PubMed

    Yue, Mingli; Li, Yanchun; Hou, Ying; Cao, Wenxin; Zhu, Jiaqi; Han, Jiecai; Lu, Zhongyuan; Yang, Ming

    2015-06-23

    Developing a simple and efficient method to organize nanoscale building blocks into ordered superstructures, understanding the mechanism for self-assembly and revealing the essential collective properties are crucial steps toward the practical use of nanostructures in nanotechnology-based applications. In this study, we showed that the high-yield formation of ZnO nanoparticle chains with micrometer length can be readily achieved by the variation of solvents from methanol to water. Spectroscopic studies confirmed the solvent effect on the surface properties of ZnO nanoparticles, which were found to be critical for the formation of anisotropic assemblies. Quantum mechanical calculations and all atom molecular dynamic simulations indicated the contribution of hydrogen bonding for stabilizing the structure in water. Dissipative particle dynamics further revealed the importance of solvent-nanoparticle interactions for promoting one-dimensional self-assembly. The branching of chains was found upon aging, resulting in the size increase of the ensembles and network formation. Steady-state and time-resolved luminescent spectroscopes, which probed the variation of defect-related emission, revealed stronger Forster resonance energy transfer (FRET) between nanoparticles when the chain networks were formed. The high efficiency of FRET quenching can be ascribed to the presence of multiple energy transfer channels, as well as the short internanoparticle distances and the dipole alignment.

  8. Free energy landscape of a minimalist salt bridge model.

    PubMed

    Li, Xubin; Lv, Chao; Corbett, Karen M; Zheng, Lianqing; Wu, Dongsheng; Yang, Wei

    2016-01-01

    Salt bridges are essential to protein stability and dynamics. Despite the importance, there has been scarce of detailed discussion on how salt bridge partners interact with each other in distinct solvent exposed environments. In this study, employing a recent generalized orthogonal space tempering (gOST) method, we enabled efficient molecular dynamics simulation of repetitive breaking and reforming of salt bridge structures within a minimalist salt-bridge model, the Asp-Arg dipeptide and thereby were able to map its detailed free energy landscape in aqueous solution. Free energy surface analysis shows that although individually-solvated states are more favorable, salt-bridge states still occupy a noticeable portion of the overall population. Notably, the competing forces, e.g. intercharge attractions that drive the formation of salt bridges and solvation forces that pull the charged groups away from each other, are energetically comparable. As the result, the salt bridge stability is highly tunable by local environments; for instance when local water molecules are perturbed to interact more strongly with each other, the population of the salt-bridge states is likely to increase. Our results reveal the critical role of local solvent structures in modulating salt-bridge partner interactions and imply the importance of water fluctuations on conformational dynamics that involves solvent accessible salt bridge formations. © 2015 The Protein Society.

  9. Molecular dynamics simulation on adsorption of pyrene-polyethylene onto ultrathin single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Cai, Lu; Lv, Wenzhen; Zhu, Hong; Xu, Qun

    2016-07-01

    The mechanism of the adsorption of pyrene-polyethylene (Py-PE) onto ultrathin single-walled carbon nanotube (SWNT) was studied by using all-atom molecular dynamics (MD) simulations. We found that solvent polarity and pyrene group are two critical factors in the Py-PE decoration on ultrathin SWNT. Combined MD simulations with free energy calculations, our results indicate that larger solvent polarity can decrease the contribution of conformation entropy, but contributes little to the interaction energy, moreover, larger SWNT diameter can decrease the contribution of conformation entropy but lead to the increasing of the interaction energy. In polar organic solvent (N, N-Dimethylacetamide), the pyrene group plays a key role in the adsorption of Py-PE onto ultrathin SWNT, not only facilitates the spontaneous adsorption of Py-PE onto ultrathin SWNT, but also helps to form compact structure between themselves in the final adsorption states. While in aqueous solution, pyrene group no longer works as an anchor, but still affects a lot to the final adsorption conformation. Our present work provides detailed theoretical clue to understand the noncovalent interaction between aromatic segment appended polymer and ultrathin SWNT, and helps to explore the potential application of ultrathin SWNT in the fields of hybrid material, biomedical and electronic materials.

  10. Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for engineering of anisotropic tissues.

    PubMed

    An, Jia; Chua, Chee Kai; Leong, Kah Fai; Chen, Chih-Hao; Chen, Jyh-Ping

    2012-10-01

    Fabrication of aligned microfiber scaffolds is critical in successful engineering of anisotropic tissues such as tendon, ligaments and nerves. Conventionally, aligned microfiber scaffolds are two dimensional and predominantly fabricated by electrospinning which is solvent dependent. In this paper, we report a novel technique, named microfiber melt drawing, to fabricate a bundle of three dimensionally aligned polycaprolactone microfibers without using any organic solvent. This technique is simple yet effective. It has been demonstrated that polycaprolactone microfibers of 10 μm fiber diameter can be directly drawn from a 2 mm orifice. Orifice diameter, temperature and take-up speed significantly influence the final linear density and fiber diameter of the microfibers. Mechanical test suggests that mechanical properties such as stiffness and breaking force of microfiber bundles can be easily adjusted by the number of fibers. In vitro study shows that these microfibers are able to support the proliferation of human dermal fibroblasts over 7 days. In vivo result of Achilles tendon repair in a rabbit model shows that the microfibers were highly infiltrated by tendon tissue as early as in 1 month, besides, the repaired tendon have a well-aligned tissue structure under the guidance of aligned microfibers. However whether these three dimensionally aligned microfibers can induce three dimensionally aligned cells remains inconclusive.

  11. A systematic coarse-graining strategy for semi-dilute copolymer solutions: from monomers to micelles.

    PubMed

    Capone, Barbara; Coluzza, Ivan; Hansen, Jean-Pierre

    2011-05-18

    A systematic coarse-graining procedure is proposed for the description and simulation of AB diblock copolymers in selective solvents. Each block is represented by a small number, n(A) or n(B), of effective segments or blobs, containing a large number of microscopic monomers. n(A) and n(B) are unequivocally determined by imposing that blobs do not, on average, overlap, even if complete copolymer coils interpenetrate (semi-dilute regime). Ultra-soft effective interactions between blobs are determined by a rigorous inversion procedure in the low concentration limit. The methodology is applied to an athermal copolymer model where A blocks are ideal (theta solvent), B blocks self-avoiding (good solvent), while A and B blocks are mutually avoiding. The model leads to aggregation into polydisperse spherical micelles beyond a critical micellar concentration determined by Monte Carlo simulations for several size ratios f of the two blocks. The simulations also provide accurate estimates of the osmotic pressure and of the free energy of the copolymer solutions over a wide range of concentrations. The mean micellar aggregation numbers are found to be significantly lower than those predicted by an earlier, minimal two-blob representation (Capone et al 2009 J. Phys. Chem. B 113 3629).

  12. Conjugated foldamers with unusually high space-charge-limited current hole mobilities.

    PubMed

    Li, Yong; Dutta, Tanmoy; Gerasimchuk, Nikolay; Wu, Shijie; Shetye, Kuldeep; Jin, Lu; Wang, Ruixin; Zhu, Da-Ming; Peng, Zhonghua

    2015-05-13

    Charge carrier mobility and its optimization play a critical role in the development of cutting-edge organic electronic and optoelectronic devices. Even though space-charge-limited current (SCLC) hole mobilities as high as 1.4 cm(2) V(-1) s(-1) have been reported for microscopically sized highly ordered liquid-crystalline conjugated small molecules, the SCLC hole mobility of device-sized thin films of conjugated polymers is still much lower, ranging from 10(-6) to 10(-3) cm(2) V(-1) s(-1). Herein, we report the synthesis, characterizations, and thin-film SCLC mobility of three discotic conjugated polymers, INDT-TT, INDT-BT, and INDT-NDT. Optical studies indicate that polymer INDT-NDT adopts a folded conformation in solutions of good or poor solvents, whereas polymer INDT-TT stays as random monomeric chains in good solvents and interchain aggregates in poor solvents. INDT-BT polymer chains, however, stay as foldamers in dilute solutions of good solvents but interchain aggregates in concentrated solutions or poor solvents. Circular dichroism spectroscopy provides clear evidence for the helical folding of INDT-NDT in solutions. Thin films spin-coated from 1,2-dichlorobenzene solutions of the polymers show SCLC hole mobility of 2.20 × 10(-6), 8.79 × 10(-5), and 2.77 × 10(-2) cm(2) V(-1) s(-1) for INDT-TT, INDT-BT, and INDT-NDT, respectively. HRTEM and powder XRD measurements show that INDT-NDT pristine thin films contain nanocrystalline domains, whereas the INDT-TT and INDT-BT films are amorphous. Thin films of INDT-NDT:PC71BM blends show increased crystallinity and further improved SCLC hole mobility up to 1.29 × 10(-1) cm(2) V(-1) s(-1), one of the highest SCLC mobility values ever recorded on solution-processed organic semiconducting thin films. The persistent folding conformation of INDT-NDT is believed to be responsible for the high crystallinity of its thin films and its high SCLC mobilities.

  13. Liquid Salt as Green Solvent: A Novel Eco-Friendly Technique to Enhance Solubility and Stability of Poorly Soluble Drugs

    NASA Astrophysics Data System (ADS)

    Patel, Anant A.

    As a result of tremendous efforts in past few decades, various techniques have been developed in order to resolve solubility issues associated with class II and IV drugs, However, majority of these techniques offer benefits associated with certain drawbacks; majorly including low drug loading, physical instability on storage and excessive use of environmentally challenging organic solvents. Hence, current effort was to develop an eco-friendly technique using liquid salt as green solvent, which can offer improvement in dissolution while maintaining long term stability. The liquid salt formulations (LSF) of poorly soluble model drugs ibuprofen, gemfibrozil and indomethacin were developed using 1-Ethyl-3-methylimidazolium ethyl sulfate (EMIM ES) as a non-toxic and environmentally friendly alternate to organic solvents. Liquid medications containing clear solutions of drug, EMIM ES and polysorbate 20, were adsorbed onto porous carrier Neusilin US2 to form free flowing powder. The LSF demonstrated greater rate and extent of dissolution compared to crystalline drugs. The dissolution data revealed that more than 80% drug release from LSF within 20 mins compared to less than 18% release from pure drugs. As high as 70% w/w liquid loading was achieved while maintaining good flowability and compressibility. In addition, the LSF samples exposed to high temperature and high humidity i.e. 40°C/80% RH for 8 weeks, demonstrated excellent physical stability without any signs of precipitation or crystallization. As most desirable form of administration is tablet, the developed liquid salt formulations were transformed into tablets using design of experiment approach by Design Expert Software. The tablet formulation composition and critical parameter were optimized using Box-Behnken Design. This innovative liquid salt formulation technique offered improvement in dissolution rate and extent as well as contributed to excellent physical stability on storage. Moreover, this formulation approach served as eco-friendly compelling alternate to conventional techniques involving organic solvents.

  14. A Novel Method of Measuring the Phase Behavior and Rheology of Polyethylene Solutions Using a Multi-Pass Rheometer

    NASA Astrophysics Data System (ADS)

    Lee, Karen; Lacombe, Y.; Cheluget, E.

    2008-07-01

    The Advanced SCLAIRTECH™ Technology process is used to manufacture Linear Low Density Polyethylene using solution polymerization. In this process ethylene is polymerized in an inert solvent, which is subsequently evaporated and recycled. The reactor effluent in the process is a polymer solution containing the polyethylene product, which is separated from the solvent and unconverted ethylene/co-monomer before being extruded and pelletized. The design of unit operations in this process requires a detailed understanding of the thermophysical properties, phase behaviour and rheology of polymer containing streams at high temperature and pressure, and over a wide range of composition. This paper describes a device used to thermo-rheologically characterize polymer solutions under conditions prevailing in polymerization reactors, downstream heat exchangers and attendant phase separation vessels. The downstream processing of the Advanced SCLAIRTECH™ Technology reactor effluent occurs at temperatures and pressures near the critical point of the solvent and co-monomer mixture. In addition, the process trajectory encompasses regions of liquid-liquid and liquid-liquid-vapour co-existence, which are demarcated by a `cloud point' curve. Knowing the location of this phase boundary is essential for the design of downstream devolatilization processes and for optimizing operating conditions in existing plants. In addition, accurate solution rheology data are required for reliable equipment sizing and design. At NOVA Chemicals, a robust high-temperature and high-pressure-capable version of the Multi-Pass Rheometer (MPR) is used to provide data on solution rheology and phase boundary location. This sophisticated piece of equipment is used to quantify the effects of solvent types, comonomer, and free ethylene concentration on the properties of the reactor effluent. An example of the experimental methodology to characterize a polyethylene solution with hexane solvent, and the ethylene dosing technique developed for the MPR will be described. ™Advanced SCLAIRTECH is a trademark of NOVA Chemicals.

  15. A computer simulation study of the temperature dependence of the hydrophobic hydration

    NASA Astrophysics Data System (ADS)

    Guillot, B.; Guissani, Y.

    1993-11-01

    The test particle method is used to evaluate by molecular dynamics calculations the solubility of rare gases and of methane in water between the freezing point and the critical point. A quantitative agreement is obtained between solubility data and simulation results when the simulated water is modeled by the extended simple point charge model (SPCE). From a thermodynamical point of view, it is shown that the hierarchy of rare gases solubilities in water is governed by the solute-water interaction energy while an entropic term of cavity formation is found to be responsible for the peculiar temperature dependence of the solubility along the coexistence curve, and more precisely, of the solubility minimum exhibited by all the investigated solutes. Near the water critical point, the asymptotic behaviors of the Henry's constant and of the vapor-liquid partition coefficient, respectively, as deduced from the simulation data follow with a good accuracy the critical laws recently proposed in the literature for these quantities. Moreover, the calculated partial molar volume of the solute shows a steep increase above 473 K and becomes proportional to the isothermal compressibility of the pure solvent in the vicinity of the critical point as it is observed experimentally. From a microscopic point of view, the evaluation of the solute-solvent pair distribution functions permits to establish a relationship between the increase of the solubility with the decrease of the temperature in cold water on the one hand, and the formation of cages of the clathrate-type around the solute on the other hand. Nevertheless, as soon as the boiling point of water is reached the computer simulation shows that the water molecules of the first hydration shell are no longer oriented tangentially to the solute and tend to reorientate towards the bulk. At higher temperatures a deficit of water molecules progressively appears around the solute, a deficit which is directly associated with an increase of the partial molar volume. Although this phenomenon could be related to what is observed in supercritical mixtures it is emphasized that no long range critical fluctuation is present in the simulated sample.

  16. The Use of Solar Heating and Heat Cured Polymers for Lunar Surface Stabilization

    NASA Technical Reports Server (NTRS)

    Hintze, Paul; Curran, Jerry; Back, Reddy

    2008-01-01

    Dust ejecta can affect visibility during a lunar landing, erode nearby coated surfaces and get into mechanical assemblies of in-place infrastructure. Regolith erosion was observed at many of the Apollo landing sites. This problem needs to be addressed at the beginning of the lunar base missions, as the amount of infrastructure susceptible to problems will increase with each landing. Protecting infrastructure from dust and debris is a crucial step in its long term functionality. A proposed way to mitigate these hazards is to build a lunar launch pad. Other areas of a lunar habitat will also need surface stabilization methods to help mitigate dust hazards. Roads would prevent dust from being lifted during movement and dust free zones might be required for certain areas critical to crew safety or to critical science missions. Work at NASA Kennedy Space Center (KSC) is investigating methods of stabilizing the lunar regolith including: sintering the regolith into a solid and using heat or UV cured polymers to stabilize the surface. Sintering, a method in which powders are heated until fusing into solids, has been proposed as one way of building a Lunar launch/landing pad. A solar concentrator has been built and used in the field to sinter JSC-1 Lunar stimulant. Polymer palliatives are used by the military to build helicopter landing pads and roads in dusty and sandy areas. Those polymers are dispersed in a solvent (water), making them unsuitable for lunar use. Commercially available, solvent free, polymer powders are being investigated to determine their viability to work in the same way as the solvent borne terrestrial analog. This presentation will describe the ongoing work at KSC in this field. Results from field testing will be presented. Physical testing results, including compression and abrasion, of field and laboratory prepared samples will be presented.

  17. Interactions in micellar solutions of β-casein

    NASA Astrophysics Data System (ADS)

    Leclerc, E.; Calmettes, P.

    1997-02-01

    β-casein is a protein which forms micelles in aqueous solvents. The magnitude and the range of the weight-average interactions between the diverse solute particles are infrared from small-angle neutron scattering measurements made on various β-casein solutions. Well above the critical micelle concentration (CMC), these interactions are repulsive. They weaken with decreasing protein concentration, and finally become strongly attractive near the CMC. Although indispensable for micelle formation this fact has never been reported so far.

  18. International Symposium on Solute-Solute-Solvent Interactions (7th) Held at Reading, United Kingdom on 15-19 July 1985.

    DTIC Science & Technology

    1985-07-19

    analytical, integral equation methods can be applied to the problem of elucidating the detailed structural properties of strongly interacting molecu- lar...curve. r. I equation -)f sate to calculate phase diagrams and critical irv,: for polar-non polar systems is described. Measurements with the .- r...FRANCE The fundamentai] equations of the Onsager approach of transport properties in linear response are summarized. From a reformula- tion of the

  19. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties.

    PubMed

    Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian

    2017-11-01

    Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Drug carrier systems for solubility enhancement of BCS class II drugs: a critical review.

    PubMed

    Kumar, Sumit; Bhargava, Deepak; Thakkar, Arti; Arora, Saahil

    2013-01-01

    Poor aqueous solubility impedes a drug's bioavailability and challenges its pharmaceutical development. Pharmaceutical development of drugs with poor water solubility requires the establishment of a suitable formulation layout among various techniques. Various approaches have been investigated extensively to improve the aqueous solubility and poor dissolution rate of BCS class II and IV drugs. In this literature review, novel formulation options, particularly for class II drugs designed for applications such as micronization, self-emulsification, cyclodextrin complexation, co-crystallisation, super critical fluid technology, solubilisation by change in pH, salt formation, co-solvents, melt granulation, and solid dispersion, liposomal/niosomal formulations, are discussed in detail to introduce biopharmaceutical challenges and recent approaches to facilitate more efficient drug formulation and development.

  1. Shear-induced criticality near a liquid-solid transition of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Miyama, Masamichi J.; Sasa, Shin-Ichi

    2011-02-01

    We investigate colloidal suspensions under shear flow through numerical experiments. By measuring the time-correlation function of a bond-orientational order parameter, we find a divergent time scale near a transition point from a disordered fluid phase to an ordered fluid phase, where the order is characterized by a nonzero value of the bond-orientational order parameter. We also present a phase diagram in the (ρ,γ˙ex) plane, where ρ is the density of the colloidal particles and γ˙ex is the shear rate of the solvent. The transition line in the phase diagram terminates at the equilibrium transition point, while a critical region near the transition line vanishes continuously as γ˙ex→0.

  2. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers.

    PubMed

    Cooper, Christopher D; Bardhan, Jaydeep P; Barba, L A

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known apbs finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the apbs solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is in the order of 1-2% error, when running on one gpu card (nvidia Tesla C2075), compared with apbs running on six Intel Xeon cpu cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using gpus via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  3. On the theory of dielectric spectroscopy of protein solutions

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2012-08-01

    We present a theory of the dielectric response of solutions containing large solutes, of the nanometer size, in a molecular solvent. It combines the molecular dipole moment of the solute with the polarization of a large subensemble of solvent molecules at the solute-solvent interface. The goal of the theory is two-fold: (i) to formulate the problem of the dielectric response avoiding the reliance on the cavity-field susceptibility of dielectric theories and (ii) to separate the non-additive polarization of the interface, jointly produced by the external field of the laboratory experiment and the solute, from specific solute-solvent interactions contributing to the dielectric signal. The theory is applied to experimentally reported frequency-dependent dielectric spectra of lysozyme in solution. The analysis of the data in the broad range of frequencies up to 700 GHz shows that the cavity-field susceptibility, critical for the theory formulation, is consistent with the prediction of Maxwell’s electrostatics in the frequency range of 10-200 GHz, but deviates from it outside this range. In particular, it becomes much smaller than the Maxwell result, and shifts to negative values, at small frequencies. The latter observation implies a dia-electric response, or negative dielectrophoresis, of hydrated lysozyme. It also implies that the effective protein dipole recorded by dielectric spectroscopy is much smaller than the value calculated from the protein’s charge distribution. We suggest an empirical equation that describes both the increment of the static dielectric constant and the decrement of the Debye water peak with increasing protein concentration. It gives fair agreement with broad-band dispersion and loss spectra of protein solutions, but misses the δ-dispersion region.

  4. Simultaneous destraction and desulfurization of Illinois coals with supercritical ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, B.C.

    1983-01-01

    Various Illinois coals (with Illinois number6 being the main one) are liquefied with various supercritical solvents (ethanol being the main solvent) at 543-598 K, system pressures of 6.99-24.23 MPa, flow rates of 3.0-7.5 ml/min, reaction time of 0-180 minutes, and coal particle sizes of 0.36-0.85 mm to 1.00-2.36 mm to systematically investigate the effects of flow rates, reaction time, coal particle size, temperature, pressure, coal characteristics (by using different Illinois coals), supercritical medium (by using different solvents), and the addition of potassium hydroxide. The % weight loss of coal and the % sulfur removal during destraction and desulfurization of coalmore » are functions of the flow rate, the reaction time, the coal particle size, temperature, pressure and the supercritical solvent. Temperature, pressure and the supercritical medium are the most important parameters in controlling the % weight loss of coal and the % sulfur removal. The % weight loss of coal can be related to a power law and fits quite nicely into a second order kinetic model. The % sulfur removal also follows a second order kinetic model. A secondary reaction is observed during the destraction process, which implies that destraction, and possibly desulfurization, of coal is a multistep reaction including a physical extraction step where the major portion of the coal and sulfur was removed and then followed by a chemical reaction. Supercritical ethanol definitely enhances the removal of sulfur compounds from coal. The enhanced selectivity by supercritical ethanol is greatest at a pressure just above the critical pressure of ethanol. Finally, addition of a base such as potassium hydroxide enhances both % weight loss of coal and the % sulfur removal.« less

  5. Transitions of tethered chain molecules under tension.

    PubMed

    Luettmer-Strathmann, Jutta; Binder, Kurt

    2014-09-21

    An applied tension force changes the equilibrium conformations of a polymer chain tethered to a planar substrate and thus affects the adsorption transition as well as the coil-globule and crystallization transitions. Conversely, solvent quality and surface attraction are reflected in equilibrium force-extension curves that can be measured in experiments. To investigate these effects theoretically, we study tethered chains under tension with Wang-Landau simulations of a bond-fluctuation lattice model. Applying our model to pulling experiments on biological molecules we obtain a good description of experimental data in the intermediate force range, where universal features dominate and finite size effects are small. For tethered chains in poor solvent, we observe the predicted two-phase coexistence at transitions from the globule to stretched conformations and also discover direct transitions from crystalline to stretched conformations. A phase portrait for finite chains constructed by evaluating the density of states for a broad range of solvent conditions and tensions shows how increasing tension leads to a disappearance of the globular phase. For chains in good solvents tethered to hard and attractive surfaces we find the predicted scaling with the chain length in the low-force regime and show that our results are well described by an analytical, independent-bond approximation for the bond-fluctuation model for the highest tensions. Finally, for a hard or slightly attractive surface the stretching of a tethered chain is a conformational change that does not correspond to a phase transition. However, when the surface attraction is sufficient to adsorb a chain it will undergo a desorption transition at a critical value of the applied force. Our results for force-induced desorption show the transition to be discontinuous with partially desorbed conformations in the coexistence region.

  6. Supercritical fluid technology: concepts and pharmaceutical applications.

    PubMed

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.

  7. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher D.; Bardhan, Jaydeep P.; Barba, L. A.

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known APBS finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the APBS solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is on the order of 1-2% error, when running on one GPU card (NVIDIA Tesla C2075), compared with APBS running on six Intel Xeon CPU cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using GPUs via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  8. Inhibition of gap junction currents by the abused solvent toluene.

    PubMed

    Del Re, Angelo M; Woodward, John J

    2005-05-09

    Abused inhalants are a large class of compounds that are inhaled for their intoxicating and mood altering effects. They include chemicals with known therapeutic uses such as anesthetic gases as well as volatile organic solvents like toluene that are found in paint thinners and adhesives. Because of their widespread commercial use and availability, inhalants are often among the first drugs that children encounter and use of these compounds is often associated with adverse acute and long-term consequences. The cellular and molecular sites of action for abused inhalants is not well known although recent studies report that toluene and other organic solvents alter the activity of specific ligand- and voltage-gated ion channels that regulate cellular excitability. As part of an ongoing effort to define molecular sites of action for abused inhalants, this study examined the effect of toluene on the function of gap junction proteins endogenously expressed in human embryonic kidney (HEK 293) cells. Gap junctions allow cell-to-cell electrical communication as well as passage of small molecular weight substances and are critical for synchronizing cellular activity in certain tissues. Gap junction currents in HEK 293 cells were measured during brief voltage steps using patch-clamp electrophysiology and were blocked by known gap junction blockers confirming expression of connexin proteins in these cells. Toluene dose-dependently inhibited these conductances with threshold effects appearing at approximately 0.4 mM and near complete inhibition occurring at concentrations of 1 mM and higher. The estimated EC50 value for toluene inhibition of gap junction currents in HEK 293 cells was 0.57 mM. The results of these studies suggest that volatile solvents including toluene may produce some of their effects by disrupting inter-cellular communication mediated by gap junction proteins.

  9. Photophysical parameters and fluorescence quenching of 7-diethylaminocoumarin (DEAC) laser dye

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.; Obaid, A. Y.; El-Daly, S. A.

    2011-10-01

    The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 2×10 -3 mol dm -3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser ( λex=337.1 nm). The laser parameters such as tuning range, gain coefficient ( α), emission cross section ( σe), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl 4 at a wavelength of 366 nm. The values of photochemical yield ( ϕc) and rate constant ( k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH 3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.

  10. Relaxation pathways of photoexcited iodide-methanol clusters: a computational investigation.

    PubMed

    Mak, Chun C; Peslherbe, Gilles H

    2014-06-26

    Upon photoexcitation of iodide-methanol clusters, I(-)(CH3OH)n, to a charge-transfer-to-solvent (CTTS) excited state, extensive relaxation was found to occur, accompanied by a convoluted modulation of the stability of the excited electron, which ultimately decreases substantially. In order to develop a molecular-level understanding of the relaxation processes of CTTS excited I(-)(CH3OH)n, high-level quantum chemical calculations are first used to investigate the ground, excited, and ionized states of I(-)(CH3OH)n (n = 2). Because of the relatively small size of I(-)(CH3OH)2, it was possible to characterize the contributions of solvent-solvent interactions to the stability of the CTTS excited cluster relative to dissociation into methanol, iodine, and a free electron, which exhibits a substantial dependence on the cluster geometric configuration. Ab initio molecular dynamics simulations of CTTS excited I(-)(CH3OH)3 are then performed to shed some light onto the nature of the relaxation pathways involved in the modulation of the stability of the excited electron in larger clusters. Simulation results suggest that separation of I and (CH3OH)3(-) accompanied by solvent reorganization in the latter can initially stabilize the excited electron, while gradual cluster fragmentation to I, (CH3OH)2(-), and CH3OH ultimately destabilizes it. This work shows, for the first time, that the inability of small CTTS excited I(-)(CH3OH)n to retain a solvated electron may be attributed to the limited hydrogen-bonding capacity of CH3OH, which increases the propensity for fragmentation to smaller clusters with lower excess-electron binding energies, and highlights the critical role of intricate molecular interactions in the electron solvation process.

  11. A crown ether appended super gelator with multiple stimulus responsiveness.

    PubMed

    Dong, Shengyi; Zheng, Bo; Xu, Donghua; Yan, Xuzhou; Zhang, Mingming; Huang, Feihe

    2012-06-26

    A crown ether appended super gelator is designed and synthesized. It can gel a variety of organic solvents and shows excellent gelation properties with both low critical gelation concentration and short gelation time. Due to the introduction of the crown ether moiety and a secondary ammonium unit, the supramolecular gels show reversible gel-sol transitions. The supramolecular gels can also be molded into shape-persistent and free-standing objects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effects of self-aggregation on the hydration of an amphiphilic antidepressant drug in different aqueous media

    NASA Astrophysics Data System (ADS)

    Taboada, Pablo; Gutiérrez-Pichel, Manuel; Mosquera, Víctor

    2004-03-01

    Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic antidepressant drug clomipramine hydrochloride have been determined from density and ultrasound velocity measurements in the temperature range 288.15-313.15 K in buffered aqueous solution of pH 3.0 and 5.5. Critical concentrations of aggregation of this drug were obtained from inflections on the plots of the sound velocity against drug concentration. Apparent molal adiabatic compressibilities of the aggregates formed by the drug, calculated by combining the ultrasound velocity and density data, were typical of those for a stacked aggregate. From the temperature dependence of the critical concentration and using the mass action model combined with the Phillips definition of the critical concentration the thermodynamic standard quantities: free Gibbs energy, enthalpy and entropy of aggregate formation were calculated. The critical concentration and energy involved in the aggregation process of this drug have been also evaluated experimentally using isothermal titration calorimetry at 298.15 K. The solvent-drug interactions have been discussed from compressibility and calorimetry data.

  13. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    PubMed

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  14. ISDP salt batch #2 supernate qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Nash, C. A.; Fink, S. D.

    2009-01-05

    This report covers the laboratory testing and analyses of the second Integrated Salt Disposition Project (ISDP) salt supernate samples, performed in support of initial radioactive operations of Actinide Removal Process (ARP) and Modular Caustic-Side Solvent Extraction Unit (MCU). Major goals of this work include characterizing Tank 22H supernate, characterizing Tank 41H supernate, verifying actinide and strontium adsorption with a standard laboratory-scale test using monosodium titanate (MST) and filtration, and checking cesium mass transfer behavior for the MCU solvent performance when contacted with the liquid produced from MST contact. This study also includes characterization of a post-blend Tank 49H sample asmore » part of the Nuclear Criticality Safety Evaluation (NCSE). This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP). In addition, a sampling plan will be written to guide analytical future work. Safety and environmental aspects of the work were documented in a Hazard Assessment Package.« less

  15. Selective dissolution of halide perovskites as a step towards recycling solar cells

    PubMed Central

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-01-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells. PMID:27211006

  16. Analysis of edible oil processing options for the BIO-Plex advanced life support system

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J.

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  17. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.

    PubMed

    García-González, Carlos A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-07-15

    The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, not only providing mechanical support for tissue formation, but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions for designing these upgraded scaffolds, namely, regarding the use of organic solvents, shearing forces, and high operating temperatures. In this context, the use of supercritical fluid technology has emerged as an attractive solution to design solvent-free scaffolds and ingredients for scaffolds under mild processing conditions. The state-of-the-art on the technological endeavors for scaffold production using supercritical fluids is presented in this work with a critical review on the key processing parameters as well as the main advantages and limitations of each technique. A special stress is focused on the strategies suitable for the incorporation of bioactive agents (drugs, bioactive glasses, and growth factors) and the in vitro and in vivo performance of supercritical CO2-processed scaffolds.

  18. Conformational energy landscape of the acyl pocket loop in acetylcholinesterase: a Monte Carlo-generalized Born model study.

    PubMed

    Carlacci, Louis; Millard, Charles B; Olson, Mark A

    2004-10-01

    The X-ray crystal structure of the reaction product of acetylcholinesterase (AChE) with the inhibitor diisopropylphosphorofluoridate (DFP) showed significant structural displacement in a loop segment of residues 287-290. To understand this conformational selection, a Monte Carlo (MC) simulation study was performed of the energy landscape for the loop segment. A computational strategy was applied by using a combined simulated annealing and room temperature Metropolis sampling approach with solvent polarization modeled by a generalized Born (GB) approximation. Results from thermal annealing reveal a landscape topology of broader basin opening and greater distribution of energies for the displaced loop conformation, while the ensemble average of conformations at 298 K favored a shift in populations toward the native by a free-energy difference in good agreement with the estimated experimental value. Residue motions along a reaction profile of loop conformational reorganization are proposed where Arg-289 is critical in determining electrostatic effects of solvent interaction versus Coulombic charging.

  19. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    PubMed Central

    Poojary, Mahesha M.; Barba, Francisco J.; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A.; Juliano, Pablo

    2016-01-01

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability. PMID:27879659

  20. Fast assembly of ordered block copolymer nanostructures through microwave annealing.

    PubMed

    Zhang, Xiaojiang; Harris, Kenneth D; Wu, Nathanael L Y; Murphy, Jeffrey N; Buriak, Jillian M

    2010-11-23

    Block copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density. The approach is applied to the commonly used poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) and poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) families of block copolymers, and it is found that the substrate resistivity, solvent environment, and anneal temperature all critically influence the self-assembly process. For selected systems, highly ordered patterns were achieved in less than 3 min. In addition, we establish the compatibility of the technique with directed assembly by graphoepitaxy.

  1. Polymer absorption in dense polymer brushes vs. polymer adsorption on the brush-solvent interface

    NASA Astrophysics Data System (ADS)

    Milchev, Andrey; Binder, Kurt

    2014-06-01

    Molecular-dynamics simulations of a coarse-grained model of a dense brush of flexible polymers (of type A) interacting with a long flexible macromolecule (of type B) are presented, considering the case of an attractive AB interaction, while effective interactions between AA and BB pairs of monomers are repulsive. Varying the strength \\varepsilon_{AB} of the attraction between unlike monomers, an adsorption transition at some critical value \\varepsilon^c_{AB} is found, where the B-chain is bound to the brush-solvent interface, similar to the adsorption on a planar solid substrate. However, when \\varepsilon_{AB} is much higher than \\varepsilon^c_{AB} , the long macromolecule is gradually “sucked in” the brush, developing many pieces that are locally stretched in the z-direction perpendicular to the substrate, in order to fit between the brush chains. The resulting hairpin-like structures of the absorbed chain shows up via oscillatory decay of the bond vector autocorrelation function. Chain relaxation is only possible via reptation.

  2. Selective dissolution of halide perovskites as a step towards recycling solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Here, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO 2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easilymore » decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb 2+ cations. After 10 cycles of recycling, a mesoporous TiO 2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.« less

  3. Ultrafast Decay of the Solvated Electron in a Neat Polar Solvent: The Unusual Case of Propylene Carbonate.

    PubMed

    Le Caër, Sophie; Ortiz, Daniel; Marignier, Jean-Louis; Schmidhammer, Uli; Belloni, Jacqueline; Mostafavi, Mehran

    2016-01-07

    The behavior of carbonates is critical for a detailed understanding of aging phenomena in Li-ion batteries. Here we study the first reaction stages of propylene carbonate (PC), a cyclical carbonate, by picosecond pulse radiolysis. An absorption band with a maximum around 1360 nm is observed at 20 ps after the electron pulse and is shifted to 1310 nm after 50 ps. This band presents the features of a solvated electron absorption band, the solvation lasting up to 50 ps. Surprisingly, in this polar solvent, the solvated electron follows an ultrafast decay and disappears with a half time of 360 ps. This is attributed to the formation of a radical anion PC(-•). The yield of the solvated electron is low, suggesting that the radical anions are mainly directly produced from presolvated electrons. These results demonstrate that the initial electron transfers mechanisms are strongly different in linear compared with cyclical carbonates.

  4. Selective dissolution of halide perovskites as a step towards recycling solar cells

    DOE PAGES

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; ...

    2016-05-23

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Here, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO 2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easilymore » decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb 2+ cations. After 10 cycles of recycling, a mesoporous TiO 2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.« less

  5. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption.

    PubMed

    Zhao, Qiang; Dunlop, John W C; Qiu, Xunlin; Huang, Feihe; Zhang, Zibin; Heyda, Jan; Dzubiella, Joachim; Antonietti, Markus; Yuan, Jiayin

    2014-07-01

    Fast actuation speed, large-shape deformation and robust responsiveness are critical to synthetic soft actuators. A simultaneous optimization of all these aspects without trade-offs remains unresolved. Here we describe porous polymer actuators that bend in response to acetone vapour (24 kPa, 20 °C) at a speed of an order of magnitude faster than the state-of-the-art, coupled with a large-scale locomotion. They are meanwhile multi-responsive towards a variety of organic vapours in both the dry and wet states, thus distinctive from the traditional gel actuation systems that become inactive when dried. The actuator is easy-to-make and survives even after hydrothermal processing (200 °C, 24 h) and pressing-pressure (100 MPa) treatments. In addition, the beneficial responsiveness is transferable, being able to turn 'inert' objects into actuators through surface coating. This advanced actuator arises from the unique combination of porous morphology, gradient structure and the interaction between solvent molecules and actuator materials.

  6. Generation of shrimp waste-based dispersant for oil spill response.

    PubMed

    Zhang, Kedong; Zhang, Baiyu; Song, Xing; Liu, Bo; Jing, Liang; Chen, Bing

    2018-04-01

    In this study, shrimp waste was enzymatically hydrolyzed to generate a green dispersant and the product was tested for crude oil dispersion in seawater. The hydrolysis process was first optimized based on the dispersant effectiveness (DE) of the product. The functional properties of the product were identified including stability, critical micelle concentration, and emulsification activity. Water was confirmed as a good solvent for dispersant generation when compared with three chemical solvents. The effects of salinity, mixing energy, and temperature on the dispersion of the Alaska North Slope (ANS) crude oil were examined. Microtox acute toxicity test was also conducted to evaluate the toxicity of the produced dispersant. In addition, DE of the product on three different types of crude oil, including ANS crude oil, Prudhoe Bay crude oil (PBC), and Arabian Light crude oil (ALC) was compared with that of the Corexit 9500, respectively. The research output could lead to a promising green solution to the oil spill problem and might result in many other environmental applications.

  7. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.

    PubMed

    Poojary, Mahesha M; Barba, Francisco J; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A; Juliano, Pablo

    2016-11-22

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  8. Structural Transformation of Li-Excess Cathode Materials via Facile Preparation and Assembly of Sonication-Induced Colloidal Nanocrystals for Enhanced Lithium Storage Performance.

    PubMed

    Zhao, Jianqing; Huang, Ruiming; Ramos, Pablo; Yue, Yiying; Wu, Qinglin; Pavanello, Michele; Zhou, Jieyu; Kuai, Xiaoxiao; Gao, Lijun; He, Huixin; Wang, Ying

    2017-09-13

    A surfactant-free sonication-induced route is developed to facilely prepare colloidal nanocrystals of Li-excess layered Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 (marked as LMNCO) material. The sonication process plays a critical role in forming LMNCO nanocrystals in ethanol (ethanol molecules marked as EtOHs) and inducing the interaction between LMNCO and solvent molecules. The formation mechanism of LMNCO-EtOH supramolecules in the colloidal dispersion system is proposed and examined by the theoretical simulation and light scattering technique. It is suggested that the as-formed supramolecule is composed of numerous ethanol molecules capping the surface of the LMNCO nanocrystal core via hydrogen bonding. Such chemisorption gives rise to dielectric polarization of the absorbed ethanol molecules, resulting in a negative surface charge of LMNCO colloids. The self-assembly behaviors of colloidal LMNCO nanocrystals are then tentatively investigated by tuning the solvent evaporation condition, which results in diverse superstructures of LMNCO materials after the evaporation of ethanol. The reassembled LMNCO architectures exhibit remarkably improved capacity and cyclability in comparison with the original LMNCO particles, demonstrating a very promising cathode material for high-energy lithium-ion batteries. This work thus provides new insights into the formation and self-assembly of multiple-element complex inorganic colloids in common and surfactant-free solvents for enhanced performance in device applications.

  9. Theory of polyelectrolytes in solvents.

    PubMed

    Chitanvis, Shirish M

    2003-12-01

    Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian, charged chain and derive an effective short-ranged potential between the charges on the chain. This potential is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent characterizing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value obtained for second order phase transitions. For short chains, the radius of gyration varies linearly with N, the chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain length N indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable to experimental verification.

  10. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability.

    PubMed

    Wu, Jian X; Yang, Mingshi; Berg, Frans van den; Pajander, Jari; Rades, Thomas; Rantanen, Jukka

    2011-12-18

    New chemical entities (NCEs) often show poor water solubility necessitating solid dispersion formulation. The aim of the current study is to employ design of experiments in investigating the influence of one critical process factor (solvent evaporation rate) and two formulation factors (PVP:piroxicam ratio (PVP:PRX) and PVP molecular weight (P(MW))) on the physical stability of PRX solid dispersion prepared by the solvent evaporation method. The results showed the rank order of an increase in factors contributing to a decrease in the extent of PRX nucleation being evaporation rate>PVP:PRX>P(MW). The same rank order was found for the decrease in the extent of PRX crystal growth in PVP matrices from day 0 up to day 12. However, after 12days the rank became PVP:PRX>evaporation rate>P(MW). The effects of an increase in evaporation rate and PVP:PRX ratio in stabilizing PRX were of the same order of magnitude, while the effect from P(MW) was much smaller. The findings were confirmed by XRPD. FT-IR showed that PRX recrystallization in the PVP matrix followed Ostwald's step rule, and an increase in the three factors all led to increased hydrogen bonding interaction between PRX and PVP. The present study showed the applicability of the Quality by Design approach in solid dispersion research, and highlights the need for multifactorial analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Towards a comprehensive model for the electronic and vibrational structure of the Creutz-Taube ion.

    PubMed

    Reimers, Jeffrey R; Wallace, Brett B; Hush, Noel S

    2008-01-13

    Since the synthesis of the Creutz-Taube ion, the nature of its charge localization has been of immense scientific interest, this molecule providing a model system for the understanding of the operation of biological photosynthetic and electron-transfer processes. However, recent work has shown that its nature remains an open question. Many systems of this type, including photosynthetic reaction centres, are of current research interest, and thereby the Creutz-Taube ion provides an important chemical paradigm: the key point of interest is the details of how such molecules behave. We lay the groundwork for the construction of a comprehensive model for its chemical and spectroscopic properties. Advances are described in some of the required areas including: simulation of electronic absorption spectra; quantitative depiction of the large interaction of the ion's electronic description with solvent motions; and the physics of Ru-NH3 spectator-mode vibrations. We show that details of the solvent electron-phonon coupling are critical in the interpretation of the spectator-mode vibrations, as these strongly mix with solvent motions when 0.75<2J/lambda<1. In this regime, a double-well potential exists which does not support localized zero-point vibration, and many observed properties of the Creutz-Taube ion are shown to be consistent with the hypothesis that the ion has this character.

  12. A dispersive liquid-liquid micellar microextraction for the determination of pharmaceutical compounds in wastewaters using ultra-high-performace liquid chromatography with DAD detection.

    PubMed

    Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2015-03-01

    A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajput, Nav Nidhi; Murugesan, Vijayakumar; Shin, Yongwoo

    2017-04-10

    Fundamental molecular level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applica-tions. In particular, exhaustive knowledge of solvation structure, stability and transport properties is critical for developing stable electrolytes for fast charging and high energy density next-generation energy storage systems. Here we report the correlation between solubility, solvation structure and translational dynamics of a lithium salt (Li-TFSI) and polysulfides species using well-benchmarked classical molecular dynamics simulations combined with nuclear magnetic resonance (NMR). It is observed that the polysulfide chain length has a significant effect on the ion-ion and ion-solvent interaction asmore » well as on the diffusion coefficient of the ionic species in solution. In particular, extensive cluster formation is observed in lower order poly-sulfides (Sx2-; x≤4), whereas the longer polysulfides (Sx2-; x>4) show high solubility and slow dynamics in the solu-tion. It is observed that optimal solvent/salt ratio is essen-tial to control the solubility and conductivity as the addi-tion of Li salt increases the solubility but decreases the mo-bility of the ionic species. This work provides a coupled theoretical and experimental study of bulk solvation struc-ture and transport properties of multi-component electro-lyte systems, yielding design metrics for developing optimal electrolytes with improved stability and solubility.« less

  14. Natural Attenuation in Streambed Sediment Receiving Chlorinated Solvents from Underlying Fracture Networks

    DOE PAGES

    Şimşir, Burcu; Yan, Jun; Im, Jeongdae; ...

    2017-03-22

    Contaminant discharge from fractured bedrock formations remains a remediation challenge. Here, we applied an integrated approach to assess the natural attenuation potential of sediment that forms the transition zone between upwelling groundwater from a chlorinated solvent-contaminated fractured bedrock aquifer and the receiving surface water. In situ measurements demonstrated that reductive dechlorination in the sediment attenuated chlorinated compounds before reaching the water column. Microcosms established with creek sediment or in situ incubated Bio-Sep beads degraded C 1-C 3 chlorinated solvents to less-chlorinated or innocuous products. Quantitative PCR and 16S rRNA gene amplicon sequencing revealed the abundance and spatial distribution of knownmore » dechlorinator biomarker genes within the creek sediment and demonstrated that multiple dechlorinator populations degrading chlorinatedC 1-C 3 alkanes and alkenes co-inhabit the sediment. Phylogenetic classification of bacterial and archaeal sequences indicated a relatively uniform distribution over spatial (300 m horizontally) scale, but Dehalococcoides and Dehalobacter were more abundant in deeper sediment, where 5.7 ± 0.4 × 10 5 and 5.4 ± 0.9 × 10 6 16S rRNA gene copies per g of sediment, respectively, were measured. The microbiological and hydrogeological characterization demonstrated that microbial processes at the fractured bedrock-sediment interface were crucial for preventing contaminants reaching the water column, emphasizing the relevance of this critical zone environment for contaminant attenuation.« less

  15. Natural Attenuation in Streambed Sediment Receiving Chlorinated Solvents from Underlying Fracture Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şimşir, Burcu; Yan, Jun; Im, Jeongdae

    Contaminant discharge from fractured bedrock formations remains a remediation challenge. Here, we applied an integrated approach to assess the natural attenuation potential of sediment that forms the transition zone between upwelling groundwater from a chlorinated solvent-contaminated fractured bedrock aquifer and the receiving surface water. In situ measurements demonstrated that reductive dechlorination in the sediment attenuated chlorinated compounds before reaching the water column. Microcosms established with creek sediment or in situ incubated Bio-Sep beads degraded C 1-C 3 chlorinated solvents to less-chlorinated or innocuous products. Quantitative PCR and 16S rRNA gene amplicon sequencing revealed the abundance and spatial distribution of knownmore » dechlorinator biomarker genes within the creek sediment and demonstrated that multiple dechlorinator populations degrading chlorinatedC 1-C 3 alkanes and alkenes co-inhabit the sediment. Phylogenetic classification of bacterial and archaeal sequences indicated a relatively uniform distribution over spatial (300 m horizontally) scale, but Dehalococcoides and Dehalobacter were more abundant in deeper sediment, where 5.7 ± 0.4 × 10 5 and 5.4 ± 0.9 × 10 6 16S rRNA gene copies per g of sediment, respectively, were measured. The microbiological and hydrogeological characterization demonstrated that microbial processes at the fractured bedrock-sediment interface were crucial for preventing contaminants reaching the water column, emphasizing the relevance of this critical zone environment for contaminant attenuation.« less

  16. Iodine-Catalyzed Isomerization of Dimethyl Muconate.

    PubMed

    Settle, Amy E; Berstis, Laura; Zhang, Shuting; Rorrer, Nicholas A; Hu, Haiming; Richards, Ryan M; Beckham, Gregg T; Crowley, Michael F; Vardon, Derek R

    2018-06-11

    cis,cis-Muconic acid is a platform bio-based chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations owing to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely because of solvent complexation with iodine. Under select conditions, ttDMM yields of 95 % were achieved in <1 h with methanol, followed by high purity recovery (>98 %) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for bio-based chemicals. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermodynamics of micelle formation in a water-alcohol solution of sodium tetradecyl sulfate

    NASA Astrophysics Data System (ADS)

    Shilova, S. V.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-01-01

    The effects of addition of ethanol and propan-1-ol on sodium tetradecyl sulfate micelle formation in an aqueous solution are studied via microprobe fluorescence microscopy and conductometry. The critical micelle concentration, quantitative characteristics of micelles, and thermodynamic parameters of micelle formation are determined. Addition of 5-15 vol % of ethanol or 5-10 vol % of propan-1-ol is shown to result in a lower critical micelle concentration than in the aqueous solution, and in the formation of mixed spherical micelles whose sizes and aggregation numbers are less than those for the systems without alcohol. The contribution from the enthalpy factor to the free energy of sodium tetradecyl sulfate micelle formation is found to dominate in mixed solvents, in contrast to aqueous solutions.

  18. Entropy-driven complex formation of malvidin-3- O-glucoside with common polyphenols in ethanol-water binary solutions

    NASA Astrophysics Data System (ADS)

    Kunsági-Máté, Sándor; Ortmann, Erika; Kollár, László; Nikfardjam, Martin Pour

    2008-09-01

    The complex formation of malvidin-3- O-glucoside with several polyphenols, the so-called "copigmentation" phenomenon, was studied in aqueous solutions. To simulate the copigmentation process during fermentation, the stability of the formed complexes was examined in dependence of the ethanol content of the aqueous solution. Results indicate that stronger and larger complexes are formed, when the ethanol content exceeds a critical margin of 8 vol.% However, the size of complexes of malvidin/procyanidin and malvidin/epicatechin is drastically reduced above this critical concentration. Fluorescence lifetime and solvent relaxation measurements give insight into the particular processes at molecular level and will help us comprehend the first important steps during winemaking in order to recommend an optimized winemaking technology to ensure extraordinary colour stability in red wines.

  19. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  20. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, Walter A.; Gorski, Alan; Jaehnig, Leo J.; Moskal, Clifford J.; Naylor, Joseph D.; Parimi, Krishnia; Ward, John V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  1. Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products.

    PubMed

    Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen

    2015-11-10

    An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Upgrading tantalum and niobium oxides content in Bangka tin slag with double leaching

    NASA Astrophysics Data System (ADS)

    Soedarsono, J. W.; Permana, S.; Hutauruk, J. K.; Adhyputra, R.; Rustandi, A.; Maksum, A.; Widana, K. S.; Trinopiawan, K.; Anggraini, M.

    2018-03-01

    Tantalum has become one of the 14 types of critical materials where the level of its availability is assumed as the midterm critical metal. Benefits of the element tantalum in the electronics field increased the deficit balance of supply / demand, as more variations of electronic products developed. The tantalum experts calculated the level of availability until 2020. Base on the previous studies, tin slag is a secondary source of tantalum and niobium. This study uses tin slag from Bangka, Indonesia, abbreviated, Bangka Tin Slag (BTS). BTS was roasted, water quenched and sieved, abbreviated BTS-RQS.BTS was roasted, water quenched and sieved, abbreviated BTS-RQS.BTS-RQS was roasted at a temperature 700□C given sample code BTS-R700QS, while roasted at 800°C given sample code BTS-R800QS.A variable leaching experiment on BTS-R700QS was solvent concentration variable and on BTS-R800QS was time variable. The entire residue was characterized by X-Ray Fluorescence (XRF), and the optimum results are on the BTS-R800QS leaching into 5 M NaOH for 20 min followed by 5M HCl for 50 min, with content of Ta2O5 and Nb2O51.56% and 1.11%, respectively. The result of XRF measurement showed was the increasing of TNO content due to the increasing solvent concentration and time of acid leaching. The discussion of thermodynamics this study used was HSC Chemistry 6 as a supporting data.

  3. Solvent-free nanofluid with three structure models based on the composition of a MWCNT/SiO2 core and its adsorption capacity of CO2

    NASA Astrophysics Data System (ADS)

    Yang, R. L.; Zheng, Y. P.; Wang, T. Y.; Li, P. P.; Wang, Y. D.; Yao, D. D.; Chen, L. X.

    2018-01-01

    A series of core/shell nanoparticle organic/inorganic hybrid materials (NOHMs) with different weight ratios of two components, consisting of multi-walled carbon nanotubes (MWCNTs) and silicon dioxide (SiO2) as the core were synthesized. The NOHMs display a liquid-like state in the absence of solvent at room temperature. Five NOHMs were categorized into three kinds of structure states based on different weight ratio of two components in the core, named the power strip model, the critical model and the collapse model. The capture capacities of these NOHMs for CO2 were investigated at 298 K and CO2 pressures ranging from 0 to 5 MPa. Compared with NOHMs having a neat MWCNT core, it was revealed that NOHMs with the power strip model show better adsorption capacity toward CO2 due to its lower viscosity and more reactive groups that can react with CO2. In addition, the capture capacities of NOHMs with the critical model were relatively worse than the neat MWCNT-based NOHM. The result is attributed to the aggregation of SiO2 in these samples, which may cause the consumption and hindrance of reactive groups. However, the capture capacity of NOHMs with the collapse model was the worst of all the NOHMs, owing to its lowest content of reactive groups and hollow structure in MWCNTs. In addition, they presented non-interference of MWCNTs and SiO2 without aggregation state.

  4. The critical main-chain length for helix formation in water: determined in a peptide series with alternating Aib and Ala residues exclusively and detected with ECD spectroscopy.

    PubMed

    Longo, Edoardo; Moretto, Alessandro; Formaggio, Fernando; Toniolo, Claudio

    2011-10-01

    Critical main-chain length for peptide helix formation in the crystal (solid) state and in organic solvents has been already reported. In this short communication, we describe our results aiming at assessing the aforementioned parameter in water solution. To this goal, we synthesized step-by-step by solution procedures a complete series of N-terminally acetylated, C-terminally methoxylated oligopeptides, characterized only by alternating Aib and Ala residues, from the dimer to the nonamer level. All these compounds were investigated by electronic circular dichroism in the far-UV region in water solution as a function of chemical structure, namely presence/absence of an ester moiety or a negative charge at the C-terminus, and temperature. We find that the critical main-chain lengths for 3(10)- and α-helices, although still formed to a limited extent, in aqueous solution are six and eight residues, respectively. © 2011 Wiley-Liss, Inc.

  5. Influence of external factors on the self-assembly of two structurally related antidepressant drugs: a thermodynamic study

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Pichel, Manuel; Attwood, David; Taboada, Pablo; Mosquera, Víctor

    Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic antidepressant drugs imipramine and desipramine hydrochlorides have been determined from density and ultrasound velocity measurements in the temperature range 288.15-313.15 K in buffered solution of pH 3.0 and 5.5. Critical concentrations for aggregation of these drugs were obtained from inflections on the plots of the sound velocity against drug concentration. Positive deviation from the Debye-Hückel limiting law of the apparent molal volume of imipramine provides evidence of limited association at concentrations below the critical concentration over the temperature range studied. Apparent molal adiabatic compressibilities of the aggregates formed by the drugs, calculated by combining the ultrasound velocity and density data, were typical of those for a stacked aggregate. The critical concentration and energy involved in the aggregation process of these drugs have been evaluated using isothermal titration calorimetry. The solvent-aggregate interactions have been discussed from compressibility and calorimetry data.

  6. Water Dynamics at Protein-Protein Interfaces: Molecular Dynamics Study of Virus-Host Receptor Complexes.

    PubMed

    Dutta, Priyanka; Botlani, Mohsen; Varma, Sameer

    2014-12-26

    The dynamical properties of water at protein-water interfaces are unlike those in the bulk. Here we utilize molecular dynamics simulations to study water dynamics in interstitial regions between two proteins. We consider two natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2 and the other in which the same G protein binds to ephrin B3. While the two complexes are structurally similar, the two ephrins share only a modest sequence identity of ∼50%. X-ray crystallography also suggests that these interfaces are fairly extensive and contain exceptionally large amounts of waters. We find that while the interstitial waters tend to occupy crystallographic sites, almost all waters exhibit residence times of less than hundred picoseconds in the interstitial region. We also find that while the differences in the sequence of the two ephrins result in quantitative differences in the dynamics of interstitial waters, the trends in the shifts with respect to bulk values are similar. Despite the high wetness of the protein-protein interfaces, the dynamics of interstitial waters are considerably slower compared to the bulk-the interstitial waters diffuse an order of magnitude slower and have 2-3 fold longer hydrogen bond lifetimes and 2-1000 fold slower dipole relaxation rates. To understand the role of interstitial waters, we examine how implicit solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G conformational density. Ephrin-induced shifts in the G conformational density are critical to the allosteric activation of another viral protein that mediates fusion. We find that in comparison with the explicit solvent model, the implicit solvent model predicts a more compact G-B2 interface, presumably because of the absence of discrete waters at the G-B2 interface. Simultaneously, we find that the two models yield strikingly different induced changes in the G conformational density, even for those residues whose conformational densities in the apo state are unaffected by the treatment of the bulk solvent. Together, these results show that the explicit treatment of interstitial water molecules is necessary for a proper description of allosteric transitions.

  7. Wrinkling of solidifying polymeric coatings

    NASA Astrophysics Data System (ADS)

    Basu, Soumendra Kumar

    2005-07-01

    In coatings, wrinkles are viewed as defects or as desired features for low gloss, and texture. In either case, discovering the origin of wrinkles and the conditions that lead to their formation is important. This research examines what wrinkling requires and proposes a mechanism to explain the observations. All curing wrinkling coatings contain multi-functional reactants. Upon curing, all develop a depth-wise gradient in solidification that result in a cross-linked elastic skin atop a viscous bottom layer. It is hypothesized that compressive stress develops in the skin when liquid below diffuses up into the skin. High enough compressive stress buckles the skin to produce wrinkles. The hypothesis is substantiated by experimental and theoretical evidences. Effects of various application and compositional parameters on wrinkle size in a liquid-applied acrylic coating and a powder-applied epoxy coating were examined. All three components, namely resin, cross-linker and catalyst blocked with at least equimolar volatile blocker, proved to be required for wrinkling. The wrinkling phenomenon was modeled with a theory that accounts for gradient generation, cross-linking reaction and skinning; predictions compared well with observations. Two-layer non-curing coatings that have a stiff elastic layer atop a complaint elastic bottom layer wrinkled when the top layer is compressed. The top layer was compressed by either moisture absorption or differential thermal expansion. Experimental observations compared well with predictions from a theory based on force balance in multilayer systems subjected to differential contraction or expansion. A model based on the Flory-Rehner free energy of a constrained cross-linked gel was constructed that predicts the compressive stress generated in a coating when it absorbs solvent. Linear stability analysis predicts that when a compressed elastic layer is attached atop a viscous layer, it is always unstable to buckles whose wavelength exceeds a critical value; more cross-linking and poor solvent produce higher wavelength, lower amplitude wrinkles. When a compressed elastic layer is attached atop an elastic layer and subjected to more than a critical compressive stress, it is unstable to intermediate wavelengths of buckling; better solvent, higher ratio of bottom-to-top layer thickness, and lower bottom layer modulus produce higher wavelength, higher amplitude wrinkles.

  8. A critical study on efficiency of different materials for fluoride removal from aqueous media

    PubMed Central

    2013-01-01

    Fluoride is a persistent and non-biodegradable pollutant that accumulates in soil, plants, wildlife and in human beings. Therefore, knowledge of its removal, using best technique with optimum efficiency is needed. The present survey highlights on efficacy of different materials for the removal of fluoride from water. The most important results of extensive studies on various key factors (pH, agitation time, initial fluoride concentration, temperature, particle size, surface area, presence and nature of counter ions and solvent dose) fluctuate fluoride removal capacity of materials are reviewed. PMID:23497619

  9. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes.

    PubMed

    Leung, Kevin; Budzien, Joanne L

    2010-07-07

    The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.

  10. Lower critical solution temperature behavior of alpha-substituted poly(acrylic acids)s, cyclopolymerization of N-vinylformamido-methylacrylates, and use of the World-Wide Web in polymer science education

    NASA Astrophysics Data System (ADS)

    Michalovic, Mark Stephen

    A series of alpha-substituted poly(acrylic acid)s was synthesized and characterized. Their aqueous solution properties were investigated with respect to lower critical solution temperature (LCST) behavior. Poly(alpha-methoxymethylacrylic acid) was found to have a lower critical solution temperature (LCST) of 46°C, poly(alpha-methoxyethoxymethylacrylic acid) showed an LCST of 26.5°C and poly(alpha-methoxyethoxyethoxymethylacrylic acid) showed an LCST of 66°C. The cloud points of the solutions of these polymers were found to be sensitive to pH, and to concentrations of additives such as urea, salts, and surfactants. Because of low molecular weight due to chain transfer, high molecular weight analogs of the ether-linked polymers were synthesized in which ester linkages joined the oligo-oxyethylene segment to the acrylate moiety. Poly(alpha-methoxyethoxyacetoxymethylacrylic acid) was the only one of this series to give an LCST with a value of 52.5°C. Copolymers of t-butyl alpha-methoxymethylacrylate (tBMMA) with alpha-(1H,1H- perfluorooctyloxymethyl)acrylic acid (PFOMA) were synthesized, deprotected and their lower critical solution temperatures (LCSTs) evaluated. At PFOMA feed ratios of 0.25 mol % or less, no observable change in the LCST was observed, while at PFOMA feed ratios of above 0.25 mol % to 1.125 mol %, a large linear decrease in the LCST was observed with increasing fluorocarbon content. t-Butyl alpha-(N-vinylformamidomethyl)acrylate (tBVFA) and ethyl alpha-(N-vinylformamidomethyl)acrylate (EVFA) were synthesized from t-butyl alpha-bromomethylacrylate and ethyl alpha-chloromethylacrylate, respectively. tBVFA was found to cyclopolymerize at 120°C in DMF, DMSO, and 1,2-dichlorobenzene at solvent:monomer ratios of 10:1 vol:wt. Molecular weights for poly(tBVFA) ranged from 10,000 to 13,000 as estimated by size-exclusion chromatography. At lower solvent monomer ratio (1:1), and at lower temperature (71°C), crosslinking occurred. EVFA was found to cyclopolymerize, but only in DMF at 122°C and at a 10:1 solvent:monomer ratio. A multimedia educational program called The Macrogalleria dealing with polymer science was created and distributed by the world wide web and on cd-rom. The site is made in the form of a virtual shopping mall in which each store is a lesson on some aspect of polymer science. The lessons are written in informal language to make the material more accessible. Also, the lessons are connected by hypertext links in a nonlinear fashion to allow students to create their own pathways through the material. The Macrogalleria has been very successful, being used by educational institutions to incorporate polymer science into the undergraduate chemistry curriculum, and by many industrial users as well. It has received numerous awards as well.

  11. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity.

    PubMed

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-09-05

    Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.

  12. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    NASA Astrophysics Data System (ADS)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  13. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Alexander, S.; Hodgdon, R. B.

    1977-01-01

    The objective of NAS 3-20108 was the development and evaluation of improved anion selective membranes useful as efficient separators in a redox power storage cell system being constructed. The program was divided into three parts, (a) optimization of the selected candidate membrane systems, (b) investigation of alternative membrane/polymer systems, and (c) characterization of candidate membranes. The major synthesis effort was aimed at improving and optimizing as far as possible each candidate system with respect to three critical membrane properties essential for good redox cell performance. Substantial improvements were made in 5 candidate membrane systems. The critical synthesis variables of cross-link density, monomer ratio, and solvent composition were examined over a wide range. In addition, eight alternative polymer systems were investigated, two of which attained candidate status. Three other alternatives showed potential but required further research and development. Each candidate system was optimized for selectivity.

  14. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  15. Solvent wash solution

    DOEpatents

    Neace, James C.

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  16. Cleaning painted surfaces: evaluation of leaching phenomenon induced by solvents applied for the removal of gel residues.

    PubMed

    Casoli, Antonella; Di Diego, Zaira; Isca, Clelia

    2014-12-01

    Cleaning is one of the most important, delicate, and at the same time controversial processes in the conservation treatment of paintings. Although a strict definition of cleaning would be the removal of dirt, grime, or other accretions (surface cleaning), in the conservation field, cleaning is used in the broader meaning to include thinning/removing altered or “unwanted layers” of materials without damaging or altering the physicochemical properties of the surfaces to be preserved. The cleaning of unvarnished paintings is one of the most critical issues that are currently discussed. Several studies exist regarding different cleaning tools, such as gels, soaps, enzymes, ionic liquids, and foams, as well as various dry methods and lasers, but only a few have been performed on the risk associated with the use of water and organic solvents for the cleaning treatments in relation to the original paint binder. The aim of the study is to verify analytically the behavior of water gelling agents during cleaning treatments and the interaction of the following elements: water or organic solvents applied for the removal of gel residues with the original lipid paint binder. For this purpose, the study was conducted on a fragment of canvas painting (sixteenth to seventeenth century) of Soprintendenza per i Beni Storici, Artistici ed Etnoantropologici del Friuli Venezia Giulia (Superintendence for the Historical, Artistic and Ethno-anthropological Heritage of Friuli Venezia Giulia), Udine by means of Fourier transform infrared spectroscopy, gas chromatography/mass spectrometry, and scanning electron microscopy.

  17. Palladium-catalyzed hydrodehalogenation of 1,2,4,5-tetrachlorobenzene in water-ethanol mixtures.

    PubMed

    Wee, Hun-Young; Cunningham, Jeffrey A

    2008-06-30

    Palladium-catalyzed hydrodehalogenation (HDH) was applied for destroying 1,2,4,5-tetrachlorobenzene (TeCB) in mixtures of water and ethanol. This investigation was performed as a critical step in the development of a new technology for clean-up of soil contaminated by halogenated hydrophobic organic contaminants. The main goals of the investigation were to demonstrate the feasibility of the technology, to determine the effect of the solvent composition (water:ethanol ratio), and to develop a model for the kinetics of the dehalogenation process. All experiments were conducted in a batch reactor at ambient temperature under mild hydrogen pressure. The experimental results are all consistent with a Langmuir-Hinshelwood model for heterogeneous catalysis. Major findings that can be interpreted within the Langmuir-Hinshelwood framework include: (1) the rate of hydrodehalogenation depends strongly on the solvent composition, increasing as the water fraction of the solvent increases; (2) the HDH rate increases as the catalyst concentration in the reactor increases; (3) when enough catalyst is present, the HDH reaction appears to follow first-order kinetics, but the kinetics appear to be zero-order at low catalyst concentrations. TeCB is converted rapidly and quantitatively to benzene, with only trace concentrations of 1,2,4-trichlorobenzene appearing as a reactive intermediate. The results obtained here have important implications for the further development of the proposed soil remediation technology, and may also be important for the treatment of other hazardous waste streams.

  18. Direct and quantitative analysis of underivatized acylcarnitines in serum and whole blood using paper spray mass spectrometry

    PubMed Central

    Yang, Qian; Manicke, Nicholas E.; Wang, He; Petucci, Christopher; Cooks, R. Graham

    2013-01-01

    A simple protocol for rapid quantitation of acylcarnitines in serum and whole blood has been developed using paper spray mass spectrometry. Dried serum and whole blood containing a mixture of ten acylcarnitines at various concentrations were analyzed as spots from paper directly without any sample pretreatment, separation, or derivatization. The composition of the spray solvent was found to be a critical factor: for serum samples, spray solvent of methanol/water/formic acid (80:20:0.1) gave the best signal intensity while for blood samples which contain more matrix components, acetonitrile/water (90:10) was a much more suitable spray solvent. For the paper type and size used, 0.5 μL of sample provided an optimal signal for both serum and whole blood samples. For quantitative profiling, the limits of quantitation obtained from both serum and blood were much lower than the clinically validated cutoff values for diagnosis of fatty acid oxidation disorders in newborn screening. Linearity (R2>0.95) and reproducibility (RSD ~10 %) were achieved in the concentration ranges from 100 nM to 5 μM for the C2 acylcarnitine, and for other acylcarnitines, these values were from 10 to 500 nM. Acylcarnitine profiles offer an effective demonstration of the fact that paper spray mass spectrometry is an appropriate, simple, rapid method with high sensitivity and high reproducibility applicable to newborn screening tests. PMID:22760507

  19. Tar Management and Recycling in Biomass Gasification and Syngas Purification

    NASA Astrophysics Data System (ADS)

    McCaffrey, Zach

    Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.

  20. A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy: a possibility of bioremediation

    PubMed Central

    Matteucci, Federica; Ercole, Claudia; del Gallo, Maddalena

    2015-01-01

    Perchloroethene, trichloroethene, and other chlorinated solvents are widespread groundwater pollutants. They form dense non-aqueous phase liquids that sink through permeable groundwater aquifers until non-permeable zone is reached. In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo (“Val Vibrata”), characterized by a significant chlorinated solvents contamination. Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database. The data matrix was processed with a multivariate statistic analysis (in particular principal component analysis, PCA) and was then imported into geographic information system (GIS), to obtain a model of the contamination. A microcosm anaerobic study was utilized to assess the potential for in situ natural or enhanced bioremediation. Most of the microcosms were positive for dechlorination, particularly those inoculated with a mineral medium. This indicate the presence of an active native dechlorinating population in the subsurface, probably inhibited by co-contaminants in the groundwater, or more likely by the absence or lack of nutritional factors. Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds. PCA and GIS studies allowed delimiting the contamination; the microcosm study helped to identify the conditions to promote the bioremediation of the area. PMID:26388862

  1. Effects of ambient relative humidity and solvent properties on the electrospinning of pure hyaluronic acid nanofibers.

    PubMed

    Yao, Shenglian; Wang, Xiumei; Liu, Xi; Wang, Ronghan; Deng, Changsheng; Cuil, Fuzhai

    2013-07-01

    Nanofibers exist ubiquitously in natural extracellular matrix (ECM) of all kinds of human tissues forming hydrated interwoven network. Electrospinning nanotechnology has been proven to be a powerful technique to fabricate controllable nanofibers mimicking the natural ECM structures. Hyaluronic acid (HA), as a critical component of natural ECM, has been widely used in tissue engineering and regenerative medicine. In this study, pure HA nanofibers with average diameter of 33 +/- 5 nm, 59 +/- 12 nm, 79 +/- 12 nm and 113 +/- 19 nm were successfully prepared using different electrospinning parameters. The effect of the ambient relative humidity on HA electrospinnability was investigated for the first time in detail, which was proven to be one of the most important factors to control the morphology of HA nanofibers beside the solution properties. A critical value of humidity for a defined HA solution was observed, only below which HA nanofibers with similar diameters and morphologies could be successfully obtained. When the ambient relative humidity was higher than the critical value, the HA nanofibers started dissolving at the cross points and even fused together forming a spreading layer. Moreover, only a small amount of N, N-Dimethylformamide (DMF) was found to be required to promote the electrospinnability of HA solution by mixing with water as solvents. With the increase in the DMF content, the surface tension of the solution decreased significantly, which was thought to be benefit for the stable Taylor cone and fluid jet formation in electrospinning. At the same time, it should be noted that the conductivity of the solution also decreased with the increase of DMF content in the solution, which was believed to be responsible for the increasing diameters of HA nanofibers corresponding to higher DMF content. Controllable HA nanofibers with diameter below 100 nm have great promising for developing novel nanobiomaterials applied in tissue engineering and regenerative medicine.

  2. Used Solvent Testing and Reclamation. Volume 2. Vapor Degreasing and Precision Cleaning Solvents

    DTIC Science & Technology

    1988-12-01

    of 5 to 500 ppm in halogenated solvents using Karl - Fischer reagent. Arbitrary criteria to identify a spent solvent have evolved in various industries... methods of managing waste solvent. Some DOD installations are reclaiming used solvents rather than discarding them. Reclamation is feasible because the...most E E CT E reliable methods for testing solvent quality. Further testing isnecessary for chlorinated solvents to determine the inhibitor con- FEB 24

  3. Mutual influence between triel bond and cation-π interactions: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mousavian, Parisasadat

    2017-12-01

    Using ab initio calculations, the cooperative and solvent effects on cation-π and B...N interactions are studied in some model ternary complexes, where these interactions coexist. The nature of the interactions and the mechanism of cooperativity are investigated by means of quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) index and natural bond orbital analysis. The results indicate that all cation-π and B...N binding distances in the ternary complexes are shorter than those of corresponding binary systems. The QTAIM analysis reveals that ternary complexes have higher electron density at their bond critical points relative to the corresponding binary complexes. In addition, according to the QTAIM analysis, the formation of cation-π interaction increases covalency of B...N bonds. The NCI analysis indicates that the cooperative effects in the ternary complexes make a shift in the location of the spike associated with each interaction, which can be regarded as an evidence for the reinforcement of both cation-π and B...N interactions in these systems. Solvent effects on the cooperativity of cation-π and B...N interactions are also investigated.

  4. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries.

    PubMed

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M; Xiao, Jie; Cao, Ruiguo; Chen, Junzheng; Zhang, Jiguang; Mueller, Karl T; Shao, Yuyan; Liu, Jun

    2017-02-08

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li 2 S limits sulfur utilization, increases polarization, and decreases cycling stability. Dissolving Li 2 S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li 2 S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li 2 S by forming complex ligands with S 2- anions coupled with the solvent's solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li 2 S, and therefore enable the direct use of Li 2 S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.

  5. CO2 capture in amine solutions: modelling and simulations with non-empirical methods

    NASA Astrophysics Data System (ADS)

    Andreoni, Wanda; Pietrucci, Fabio

    2016-12-01

    Absorption in aqueous amine solutions is the most advanced technology for the capture of CO2, although suffering from drawbacks that do not allow exploitation on large scale. The search for optimum solvents has been pursued with empirical methods and has also motivated a number of computational approaches over the last decade. However, a deeper level of understanding of the relevant chemical reactions in solution is required so as to contribute to this effort. We present here a brief critical overview of the most recent applications of computer simulations using ab initio methods. Comparison of their outcome shows a strong dependence on the structural models employed to represent the molecular systems in solution and on the strategy used to simulate the reactions. In particular, the results of very recent ab initio molecular dynamics augmented with metadynamics are summarized, showing the crucial role of water, which has been so far strongly underestimated both in the calculations and in the interpretation of experimental data. Indications are given for advances in computational approaches that are necessary if meant to contribute to the rational design of new solvents.

  6. Electric Double Layer Composed of an Antagonistic Salt in an Aqueous Mixture: Local Charge Separation and Surface Phase Transition

    NASA Astrophysics Data System (ADS)

    Yabunaka, Shunsuke; Onuki, Akira

    2017-09-01

    We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.

  7. Comparison of Environmentally Friendly Space Compatible Grease to its Predecessor in a Space Mechanism Bearing Test Rig

    NASA Technical Reports Server (NTRS)

    Jett, T. R.; Baker, M. A.; Thom, R. L.

    1997-01-01

    Perfluoroakylpolyether (PFPE) greases are used extensively in critical flight hardware in a space environment. In the past, these greases have been processed using chlorofluorocarbon (CFC) based solvents. In response to the recent ban of CFC's, new formulations of environmentally friendly PFPE greases that are not processed with CFC based solvents were developed. The purpose of this study was to compare the performance of a new environmentally friendly formulation PFPE grease to a previously proven space compatible formulation PFPE grease. A one year test using 20 small electrical motors (two bearings per motor) was conducted in a high vacuum environment(2.0 x 10(exp 4)) Torr at a temperature of 90 C. Twenty bearings were lubricated with a new environmentally friendly formulation, and twenty bearings were lubricated with an old formulation. The mass of each lubricated bearing was measured both pre and post test. Along with mass loss measurements a profilometer trace was taken to measure post test wear of the bearings. In addition the bearings were visually examined and analyzed using an optical microscope.

  8. Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition.

    PubMed

    Mezzomo, Natália; Mileo, Bruna R; Friedrich, Maria T; Martínez, Julian; Ferreira, Sandra R S

    2010-07-01

    Peach kernels are industrial residues from the peach processing, contain oil with important therapeutic properties and attractive nutritional aspects because of the high concentration of oleic and linoleic acids. The extraction method used to obtain natural compounds from raw matter is critical for product quality definition. Thus, the aim of this work was to compare peach almond extraction yields obtained by different procedures: soxhlet extractions (Sox) with different solvents; hydrodistillation (HD); ethanolic maceration (Mac) followed by fractionation with various solvents, and supercritical fluid extraction (SFE) at 30, 40 and 50 degrees C and at 100, 200 and 300bar, performed with pure CO(2) and with a co-solvent. The extracts were evaluated with respect to fatty acid composition (FAC), fractionated chemical profile (FCP) and total phenolic content (TPC). The Sox total yields were generally higher than those obtained by SFE. The crossover pressure for SFE was between 260 and 280bar. The FAC results show oleic and linoleic acids as main components, especially for Sox and SFE extracts. The FCP for samples obtained by Sox and Mac indicated the presence of benzaldehyde and benzyl alcohol, components responsible for almond flavor and with important industrial uses, whereas the SFE extracts present a high content of a possible flavonoid. The higher TPC values were obtained by Sox and Mac with ethanol. In general, the maximum pressure in SFE produced the highest yield, TPC and oleic acid content. The use of ethanol at 5% as co-solvent in SFE did not result in a significant effect on any evaluated parameter. The production of peach almond oil through all techniques is substantially adequate and SFE presented advantages, with respect to the quality of the extracts due to the high oleic acid content, as presented by some Sox samples. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Infrared Database for Process Support Materials

    NASA Technical Reports Server (NTRS)

    Bennett, K. E.; Boothe, R. E.; Burns, H. D.

    2003-01-01

    Process support materials' compatibility with cleaning processes is critical to ensure final hardware cleanliness and that performance requirements are met. Previous discovery of potential contaminants in process materials shows the need for incoming materials testing and establishment of a process materials database. The Contamination Control Team of the Materials, Processes, and Manufacturing (MP&M) Department at Marshall Space Flight Center (MSFC) has initiated the development of such an infrared (IR) database, called the MSFC Process Materials IR database, of the common process support materials used at MSFC. These process support materials include solvents, wiper cloths, gloves, bagging materials, etc. Testing includes evaluation of the potential of gloves, wiper cloths, and other items to transfer contamination to handled articles in the absence of solvent exposure, and the potential for solvent exposure to induce material degradation. This Technical Memorandum (TM) summarizes the initial testing completed through December 2002. It is anticipated that additional testing will be conducted with updates provided in future TMs.Materials were analyzed using two different IR techniques: (1) Dry transference and (2) liquid extraction testing. The first of these techniques utilized the Nicolet Magna 750 IR spectrometer outfitted with a horizontal attenuated total reflectance (HATR) crystal accessory. The region from 650 to 4,000 wave numbers was analyzed, and 50 scans were performed per IR spectrum. A dry transference test was conducted by applying each sample with hand pressure to the HATR crystal to first obtain a spectrum of the parent material. The material was then removed from the HATR crystal and analyzed to determine the presence of any residues. If volatile, liquid samples were examined both prior to and following evaporation.The second technique was to perform an extraction test with each sample in five different solvents.Once the scans were complete for both the dry transference and the extraction tests, the residue from each scan was interpreted.

  10. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  11. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  12. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  13. Optimization of the Ethanol Recycling Reflux Extraction Process for Saponins Using a Design Space Approach

    PubMed Central

    Gong, Xingchu; Zhang, Ying; Pan, Jianyang; Qu, Haibin

    2014-01-01

    A solvent recycling reflux extraction process for Panax notoginseng was optimized using a design space approach to improve the batch-to-batch consistency of the extract. Saponin yields, total saponin purity, and pigment yield were defined as the process critical quality attributes (CQAs). Ethanol content, extraction time, and the ratio of the recycling ethanol flow rate and initial solvent volume in the extraction tank (RES) were identified as the critical process parameters (CPPs) via quantitative risk assessment. Box-Behnken design experiments were performed. Quadratic models between CPPs and process CQAs were developed, with determination coefficients higher than 0.88. As the ethanol concentration decreases, saponin yields first increase and then decrease. A longer extraction time leads to higher yields of the ginsenosides Rb1 and Rd. The total saponin purity increases as the ethanol concentration increases. The pigment yield increases as the ethanol concentration decreases or extraction time increases. The design space was calculated using a Monte-Carlo simulation method with an acceptable probability of 0.90. Normal operation ranges to attain process CQA criteria with a probability of more than 0.914 are recommended as follows: ethanol content of 79–82%, extraction time of 6.1–7.1 h, and RES of 0.039–0.040 min−1. Most of the results of the verification experiments agreed well with the predictions. The verification experiment results showed that the selection of proper operating ethanol content, extraction time, and RES within the design space can ensure that the CQA criteria are met. PMID:25470598

  14. Determination of the critical micelle concentration in simulations of surfactant systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in bothmore » the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)« less

  15. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOEpatents

    Nerad, Bruce A.; Krantz, William B.

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  16. COMPUTER AIDED SOLVENT DESIGN FOR THE ENVIRONMENT

    EPA Science Inventory

    Solvent substitution is an effective and useful means of eliminating the use of harmful solvents, but finding substitute solvents which are less harmful and as effective as currently used solvents presents significant difficulties. Solvent substitution is a form of reverse engin...

  17. Diffusion of Small Solute Particles in Viscous Liquids: Cage Diffusion, a Result of Decoupling of Solute-Solvent Dynamics, Leads to Amplification of Solute Diffusion.

    PubMed

    Acharya, Sayantan; Nandi, Manoj K; Mandal, Arkajit; Sarkar, Sucharita; Bhattacharyya, Sarika Maitra

    2015-08-27

    We study the diffusion of small solute particles through solvent by keeping the solute-solvent interaction repulsive and varying the solvent properties. The study involves computer simulations, development of a new model to describe diffusion of small solutes in a solvent, and also mode coupling theory (MCT) calculations. In a viscous solvent, a small solute diffuses via coupling to the solvent hydrodynamic modes and also through the transient cages formed by the solvent. The model developed can estimate the independent contributions from these two different channels of diffusion. Although the solute diffusion in all the systems shows an amplification, the degree of it increases with solvent viscosity. The model correctly predicts that when the solvent viscosity is high, the solute primarily diffuses by exploiting the solvent cages. In such a scenario the MCT diffusion performed for a static solvent provides a correct estimation of the cage diffusion.

  18. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  19. Solvent-Polarity-Induced Active Layer Morphology Control in Crystalline Diketopyrrolopyrrole-Based Low Band Gap Polymer Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ferdous, Sunzida; Liu, Feng; Wang, Dong; Russell, Thomas

    2014-03-01

    The effects of various processing solvents on the morphology of diketopyrrolopyrrole (DPP)-based low band gap polymer (PDPPBT) and phenyl-C71-butyric acid methyl ester (PC71BM) blends are studied. The quality of the processing solvents was varied systematically using a mixture of a non-aromatic polar primary solvent with high boiling point secondary solvents of increasing polarities. An unfavorable solvent-PC71BM interaction affects the growth process of polymer crystallites inside the blend. When non-aromatic polar solvent was used, large PC71BM aggregates were formed that increase in size with the addition of non-polar secondary solvents. When polar solvents were instead used as the secondary solvents, the size scales of the aggregates decrease markedly, creating a percolated fibrillar network. Power conversion efficiencies of 0.03% to 5% are obtained, depending on the solvent system used.

  20. Development of deep eutectic solvents applied in extraction and separation.

    PubMed

    Li, Xiaoxia; Row, Kyung Ho

    2016-09-01

    Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. PARIS II: Computer Aided Solvent Design for Pollution Prevention

    EPA Science Inventory

    This product is a summary of U.S. EPA researchers' work developing the solvent substitution software tool PARIS II (Program for Assisting the Replacement of Industrial Solvents, version 2.0). PARIS II finds less toxic solvents or solvent mixtures to replace more toxic solvents co...

  2. Organic solvent desorption from two tegafur polymorphs.

    PubMed

    Bobrovs, Raitis; Actiņš, Andris

    2013-11-30

    Desorption behavior of 8 different solvents from α and β tegafur (5-fluoro-1-(tetrahydro-2-furyl)uracil) has been studied in this work. Solvent desorption from samples stored at 95% and 50% relative solvent vapor pressure was studied in isothermal conditions at 30 °C. The results of this study demonstrated that: solvent desorption rate did not differ significantly for both phases; solvent desorption in all cases occurred faster from samples with the largest particle size; and solvent desorption in most cases occurred in two steps. Structure differences and their surface properties were not of great importance on the solvent desorption rates because the main factor affecting desorption rate was sample particle size and sample morphology. Inspection of the structure packing showed that solvent desorption rate and amount of solvent adsorbed were mainly affected by surface molecule arrangement and ability to form short contacts between solvent molecule electron donor groups and freely accessible tegafur tetrahydrofuran group hydrogens, as well as between solvents molecule proton donor groups and fluorouracil ring carbonyl and fluoro groups. Solvent desorption rates of acetone, acetonitrile, ethyl acetate and tetrahydrofuran multilayers from α and β tegafur were approximately 30 times higher than those of solvent monolayers. Scanning electron micrographs showed that sample storage in solvent vapor atmosphere promotes small tegafur particles recrystallization to larger particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Reaction kinetics and critical phenomena: iodination of acetone in isobutyric acid + water near the consolute point.

    PubMed

    Hu, Baichuan; Baird, James K

    2010-01-14

    The rate of iodination of acetone has been measured as a function of temperature in the binary solvent isobutyric acid (IBA) + water near the upper consolute point. The reaction mixture was prepared by the addition of acetone, iodine, and potassium iodide to IBA + water at its critical composition of 38.8 mass % IBA. The value of the critical temperature determined immediately after mixing was 25.43 degrees C. Aliquots were extracted from the mixture at regular intervals in order to follow the time course of the reaction. After dilution of the aliquot with water to quench the reaction, the concentration of triiodide ion was determined by the measurement of the optical density at a wavelength of 565 nm. These measurements showed that the kinetics were zeroth order. When at the end of 24 h the reaction had come to equilibrium, the critical temperature was determined again and found to be 24.83 degrees C. An Arrhenius plot of the temperature dependence of the observed rate constant, k(obs), was linear over the temperature range 27.00-38.00 degrees C, but between 25.43 and 27.00 degrees C, the values of k(obs) fell below the extrapolation of the Arrhenius line. This behavior is evidence in support of critical slowing down. Our experimental method and results are significant in three ways: (1) In contrast to in situ measurements of optical density, the determination of the optical density of diluted aliquots avoided any interference from critical opalescence. (2) The measured reaction rate exhibited critical slowing down. (3) The rate law was pseudo zeroth order both inside and outside the critical region, indicating that the reaction mechanism was unaffected by the presence of the critical point.

  4. The interfacial, emulsification and encapsulation properties of hydrophobically modified inulin.

    PubMed

    Kokubun, S; Ratcliffe, I; Williams, P A

    2018-08-15

    Octenyl- and dodecenyl succinic anhydride derivatives (OSA- and DDSA-) of inulin have been synthesised and their solution and interfacial properties have been determined and compared to a commercially available alkylated inulin, Inutec SP1. All samples formed micellar aggregates in solution above a critical concentration (critical aggregation concentration) and were able to 'dissolve' a hydrophobic dye. They were also able to form stable oil-in-water (O/W) emulsions as assessed by measurements of their droplet size as a function of time. DDSA-inulin with a high degree of substitution was found to be effective at encapsulating beta carotene using the solvent evaporation method which yielded a solid which dissolved readily in simulated gastric fluid. The results confirm the potential application of these materials in a number of areas including, drug delivery, pharmaceuticals, neutraceuticals, cosmetics and personal care. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Physicochemical processes in embryonic plant tissue during the transition to the state of cold anabiosis and storage at liquid nitrogen temperature

    NASA Astrophysics Data System (ADS)

    Khodko, A. T.; Lysak, Yu. S.

    2017-10-01

    Critical opalescence phenomenon was observed in the cytoplasm of garlic embryonic tissue—meristem—upon cooling in liquid nitrogen vapor, indicating liquid-liquid phase transition in the system. It was established that cells of the meristem tissue survive the cooling-thawing cycle. We suggest that the transition of meristem tissue to the state of anabiosis is mainly due to a drastic slowing of the diffusion in the cytoplasm caused by the passage of the solution through the critical point, followed by the formation of a dispersed system—a highly concentrated emulsion—as a result of a liquid-liquid phase transition. This macrophase separation is characteristic of polymer-solvent systems. We established the regime of cooling down to liquid nitrogen temperature and subsequent thawing in the cryopreservation cycle for the biological object under study, which ensures the preservation of tissue viability.

  6. Mechanical instabilities in periodic porous elasto-plastic solids.

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Bertoldi, Katia; Chang, Sehoon; Jang, Ji-Hyun; Young, Seth; Thomas, Edwin; Boyce, Mary; Tsukruk, Vladimir

    2009-03-01

    We describe the transformation of the periodic microporous structures fabricated by interference lithography followed by their freezing below glass transition. Periodic porous microstructures subjected to internal compressive stresses can undergo sudden structural transformation at a critical strain. The pattern transformation of collapsed pores is caused by the stresses originated during the polymerization of acrylic acid (rubbery component) inside of cylindrical pores and the subsequent solvent evaporation in the organized microporous structure. The results of a non-linear numerical investigation confirm the critical role of the bifurcation of the periodic solid under compressive stresses. In striking contrast to the earlier observations of elastic instabilities in porous elastomeric solids, the elastic-plastic nature of the crosslinked periodic microstructure studied here provides for the ability to lock in the transformed pattern with complete relaxation of the internal stresses. By confining the polymerization of acrylic acid to localized porous areas complex microscopic periodic structures are obtained.

  7. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril.

    PubMed

    Nguyen, Crystal N; Young, Tom Kurtzman; Gilson, Michael K

    2012-07-28

    The displacement of perturbed water upon binding is believed to play a critical role in the thermodynamics of biomolecular recognition, but it is nontrivial to unambiguously define and answer questions about this process. We address this issue by introducing grid inhomogeneous solvation theory (GIST), which discretizes the equations of inhomogeneous solvation theory (IST) onto a three-dimensional grid situated in the region of interest around a solute molecule or complex. Snapshots from explicit solvent simulations are used to estimate localized solvation entropies, energies, and free energies associated with the grid boxes, or voxels, and properly summing these thermodynamic quantities over voxels yields information about hydration thermodynamics. GIST thus provides a smoothly varying representation of water properties as a function of position, rather than focusing on hydration sites where solvent is present at high density. It therefore accounts for full or partial displacement of water from sites that are highly occupied by water, as well as for partly occupied and water-depleted regions around the solute. GIST can also provide a well-defined estimate of the solvation free energy and therefore enables a rigorous end-states analysis of binding. For example, one may not only use a first GIST calculation to project the thermodynamic consequences of displacing water from the surface of a receptor by a ligand, but also account, in a second GIST calculation, for the thermodynamics of subsequent solvent reorganization around the bound complex. In the present study, a first GIST analysis of the molecular host cucurbit[7]uril is found to yield a rich picture of hydration structure and thermodynamics in and around this miniature receptor. One of the most striking results is the observation of a toroidal region of high water density at the center of the host's nonpolar cavity. Despite its high density, the water in this toroidal region is disfavored energetically and entropically, and hence may contribute to the known ability of this small receptor to bind guest molecules with unusually high affinities. Interestingly, the toroidal region of high water density persists even when all partial charges of the receptor are set to zero. Thus, localized regions of high solvent density can be generated in a binding site without strong, attractive solute-solvent interactions.

  8. Grid inhomogeneous solvation theory: Hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril

    PubMed Central

    Nguyen, Crystal N.; Kurtzman Young, Tom; Gilson, Michael K.

    2012-01-01

    The displacement of perturbed water upon binding is believed to play a critical role in the thermodynamics of biomolecular recognition, but it is nontrivial to unambiguously define and answer questions about this process. We address this issue by introducing grid inhomogeneous solvation theory (GIST), which discretizes the equations of inhomogeneous solvation theory (IST) onto a three-dimensional grid situated in the region of interest around a solute molecule or complex. Snapshots from explicit solvent simulations are used to estimate localized solvation entropies, energies, and free energies associated with the grid boxes, or voxels, and properly summing these thermodynamic quantities over voxels yields information about hydration thermodynamics. GIST thus provides a smoothly varying representation of water properties as a function of position, rather than focusing on hydration sites where solvent is present at high density. It therefore accounts for full or partial displacement of water from sites that are highly occupied by water, as well as for partly occupied and water-depleted regions around the solute. GIST can also provide a well-defined estimate of the solvation free energy and therefore enables a rigorous end-states analysis of binding. For example, one may not only use a first GIST calculation to project the thermodynamic consequences of displacing water from the surface of a receptor by a ligand, but also account, in a second GIST calculation, for the thermodynamics of subsequent solvent reorganization around the bound complex. In the present study, a first GIST analysis of the molecular host cucurbit[7]uril is found to yield a rich picture of hydration structure and thermodynamics in and around this miniature receptor. One of the most striking results is the observation of a toroidal region of high water density at the center of the host's nonpolar cavity. Despite its high density, the water in this toroidal region is disfavored energetically and entropically, and hence may contribute to the known ability of this small receptor to bind guest molecules with unusually high affinities. Interestingly, the toroidal region of high water density persists even when all partial charges of the receptor are set to zero. Thus, localized regions of high solvent density can be generated in a binding site without strong, attractive solute-solvent interactions. PMID:22852591

  9. Steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry for fast determination of volatile components in jujube (Ziziphus jujuba Mill.) extract.

    PubMed

    Sun, Shi-Hao; Chai, Guo-Bi; Li, Peng; Xie, Jian-Ping; Su, Yue

    2017-10-13

    Jujube extract is commonly used as a food additive and flavoring. The unique jujube aroma and the mild sweet aroma of the extract are critical factors that determine product quality and affect consumer acceptability. The aroma changes with changes in the extraction condition, which is typically dependent on the characteristics of volatile oils in the extract. Despite their importance, the volatile oils of jujube extract have received less attention compared with the soluble components. So, an appropriate qualitative and quantitative method for determination of the volatile oils is vitally important for quality control of the product. A method coupling steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry (S3DE/GC-MS) was developed to determine the volatile components of jujube extract. Steam distillation was coupled with solvent extraction; the resulting condensate containing volatile components from jujube extract was drop-by-drop extracted using 2 mL of methyl tertiary butyl ether. The solvent served two purposes. First, the solvent extracted the volatile components from the condensate. Second, the volatile components were pre-concentrated by drop-by-drop accumulation in the solvent. As a result, the extraction, separation, and concentration of analytes in the sample were simultaneously completed in one step. The main parameters affecting the S3DE procedure, such as the water steam bubbling rate, extraction solvent volume, sample weight and S3DE time, were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R 2  ≥ 0.9887) and good repeatability (RSDs ≤ 10.35%, n = 5) for 16 analytes in spiked standard analyte samples were achieved. With the S3DE/GC-MS method, seventy-six volatile compounds from jujube extract were identified and the content of 16 compounds was measured. The results were similar to those from simultaneous distillation extraction. The developed method was simple, fast, effective, sensitive, and provided an overall profile of the volatile components in jujube extract. Thus, this method can be used to determine the volatile components of extracts. Graphical abstract The diagram of steam distillation/drop-by-drop extraction device.

  10. Rational enhancement of enzyme performance in organic solvents. Final technical report, 1992--1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klibanov, A.M.

    1996-12-31

    This research focused on the following: the dependence of enzymatic activity of several model hydrolases in nonaqueous solvents; control of substrate selectivity of the protease subtilisin Carlsberg by the solvent; control of catalytic activity and enantioselectivity of this enzyme in organic solvents by immobilization support; lipase-catalyzed acylation of sugars in anhydrous hydrophobic media; the possibility of accelerating enzymatic processes in organic solvents by certain cosolvents; whether lipase catalysis in organic solvents can be enhanced by introducing interfaces in the in the reaction medium; the structure of proteins suspended in organic solvents; improving enzymatic enantioselectivity in organic solvents; analyzing the plungemore » in enzymatic activity upon replacing water with organic solvents; and the structural basis for the phenomenon of molecular memory of imprinted proteins in organic solvents.« less

  11. Organic Solvent Effects in Biomass Conversion Reactions.

    PubMed

    Shuai, Li; Luterbacher, Jeremy

    2016-01-01

    Transforming lignocellulosic biomass into fuels and chemicals has been intensely studied in recent years. A large amount of work has been dedicated to finding suitable solvent systems, which can improve the transformation of biomass into value-added chemicals. These efforts have been undertaken based on numerous research results that have shown that organic solvents can improve both conversion and selectivity of biomass to platform molecules. We present an overview of these organic solvent effects, which are harnessed in biomass conversion processes, including conversion of biomass to sugars, conversion of sugars to furanic compounds, and production of lignin monomers. A special emphasis is placed on comparing the solvent effects on conversion and product selectivity in water with those in organic solvents while discussing the origins of the differences that arise. We have categorized results as benefiting from two major types of effects: solvent effects on solubility of biomass components including cellulose and lignin and solvent effects on chemical thermodynamics including those affecting reactants, intermediates, products, and/or catalysts. Finally, the challenges of using organic solvents in industrial processes are discussed from the perspective of solvent cost, solvent stability, and solvent safety. We suggest that a holistic view of solvent effects, the mechanistic elucidation of these effects, and the careful consideration of the challenges associated with solvent use could assist researchers in choosing and designing improved solvent systems for targeted biomass conversion processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Acute behavioural comparisons of toluene and ethanol in human subjects.

    PubMed

    Echeverria, D; Fine, L; Langolf, G; Schork, T; Sampaio, C

    1991-11-01

    A comparison of toluene and ethanol (EtOH) induced changes in central nervous system (CNS) function and symptoms were evaluated in two studies, and when possible the effects of toluene were expressed in EtOH equivalent units. The toluene concentrations were 0, 75, and 150 ppm, bracketing the American Conference of Governmental Industrial Hygienists threshold limit value (ACGIH TLV) of 100 ppm. The socially relevant EtOH doses were 0.00, 0.33, and 0.66 g EtOH/kg body weight, equivalent to two and four 3.5% 12 ounce beers. Forty two paid college students were used in each study. In the first study, subjects were exposed to toluene and an odour masking agent menthol (0.078 ppm) for seven hours over three days. In the second study EtOH or a placebo was administered at 1530 across three days also in the presence of menthol. Verbal and visual short term memory (Sternberg, digit span, Benton, pattern memory), perception (pattern recognition), psychomotor skill (simple reaction time, continuous performance, symbol-digit, hand-eye coordination, finger tapping, and critical tracking), manual dexterity (one hole), mood (profile on mood scales (POMS), fatigue (fatigue checklist), and verbal ability were evaluated at 0800, 1200, and 1600. Voluntary symptoms and observations of sleep were collected daily. A 3 x 3 latin square design evaluated solvent effects simultaneously controlling for learning and dose sequence. An analysis of variance and test for trend were performed on am-pm differences reflecting an eight hour workday and on pm scores for each solvent, in which subjects were their own control Intersubject variation in absorbance was monitored in breath. A 5 to 10% decrement was considered meaningful if consistent with a linear trend at p less than 0.05. At 150 ppm toluene, losses in performance were 6.0% for digit span, 12.1% for pattern recognition (latency), 5% for pattern memory (number correct), 6.5% for one hole, and 3% for critical tracking. The number of headaches and eye irritation also increased in a dose-response manner. The greatest effect was found for an increasing number of observations of sleep. A range of 2 to 7% decrements suggest the ACGIH TLV of 100 ppm toluene may be a good estimate of the biological threshold supporting a re-evaluation of the TLV. At 0.66 g EtOH/kg body weight symptoms and performance decrements were 6.6% for digit span, 9.2% for pattern recognition, 4.0% for continuous performance, 7.9% for symbol-digit, 16.5% for finger tapping, 6.2% for critical tracking, and 5.2% for the one hole test. The EtOH equivalents at 150 ppm toluene for digit span (0.56g EtOH/kg/body weight), the latency for pattern recognition (0.66 g EtOH kg body weight), and the one hole element "move" (0.37 g EtOH kg body weight) show that the first two measures would be affected at or above the 50 mg% blood alcohol concentration. This concentration is recognised as the lowest alcohol concentration associated with increased numbers of automobile accidents. The results suggest that EtOH may be a useful acute standard to compare the effects of various industrial solvents and support investigating an association between exposure to solvents and increased risk to safety in industry.

  13. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices.

    PubMed

    Huang, Fei; Wu, Hongbin; Cao, Yong

    2010-07-01

    Water/alcohol soluble conjugated polymers (WSCPs) can be processed from water or other polar solvents, which offer good opportunities to avoid interfacial mixing upon fabrication of multilayer polymer optoelectronic devices by solution processing, and can dramatically improve charge injection from high work-function metal cathode resulting in greatly enhancement of the device performance. In this critical review, the authors provide a brief review of recent developments in this field, including the materials design, functional principles, and their unique applications as interface modification layer in solution-processable multilayer optoelectronic devices (135 references).

  14. Adhesion of a fluorinated poly(amic acid) with stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Jung, Youngsuk; Song, Sunjin; Kim, Sangmo; Yang, Yooseong; Chae, Jungha; Park, Tai-Gyoo; Dong Cho, Myung

    2013-01-01

    The authors elucidate an origin and probable mechanism of adhesion strength change at an interface of fluorinated poly(amic acid) and stainless steel. Fluorination provides favorable delamination with release strength weaker than 0.08 N/mm from a metal surface, once the amount of residual solvent becomes less than 35 wt. %. However, the release strength critically depends on film drying temperature. Characterization on stainless steel surfaces and thermodynamic analyses on wet films reveal a drying temperature of 80 °C fosters interaction between the metal oxides at stainless steel surface and the free electron donating groups in poly(amic acid).

  15. UV spectral shift of benzene in sub- and supercritical water

    NASA Astrophysics Data System (ADS)

    Kometani, Noritsugu; Takemiya, Koji; Yonezawa, Yoshiro; Amita, Fujitsugu; Kajimoto, Okitsugu

    2004-08-01

    UV absorption spectra of benzene have been measured over the wide range of temperature and pressure from the ambient state to the supercritical state ( T = 400 °C and P = 40 MPa). The analysis of the spectral shift of benzene in water relative to that in the gas indicates that at T = 380 and 390 °C the local solvent density around benzene is likely to be depressed below the bulk density for densities near the critical density. It is found that π-hydrogen bond between benzene and water becomes evident with lowering temperature below T = 340 °C.

  16. Analysis of Nonvolatile Residue (NVR) from Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1985-01-01

    Organic contamination on critical spacecraft surfaces can cause electronic problems, serious attenuation of various optical signals, thermal control changes, and adhesion problems. Such contaminants can be detected early by the controlled use of witness mirrors, witness plates, wipe sampling, or direct solvent extraction. Each method requires careful control of variables of technique and materials to attain the ultimate sensitivities inherent to that procedure. Subsequent chemical analysis of the contaminant sample by infrared and mass spectrometry identifies the components, gives semiquantitative estimates of contaminant thickness, indicates possible sources of the nonvolatile residue (NVR), and provides guidance for effective cleanup procedures.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T.; Hu, M.; Guo, Q.

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexiblemore » electronics manufacturing.« less

  18. Spatially controlled, in situ synthesis of polymers

    DOEpatents

    Caneba, Gerard T.; Tirumala, Vijaya Raghavan; Mancini, Derrick C.; Wang, Hsien-Hau

    2005-03-22

    An in situ polymer microstructure formation method. The monomer mixture is polymerized in a solvent/precipitant through exposure to ionizing radiation in the absence any chemical mediators. If an exposure mask is employed to block out certain regions of the radiation cross section, then a patterned microstructure is formed. The polymerization mechanism is based on the so-called free-radical retrograde-precipitation polymerization process, in which polymerization occurs while the system is phase separating above the lower critical solution temperature. This method was extended to produce a crosslinked line grid-pattern of poly (N-isopropylacrylamide), which has been known to have thermoreversible properties.

  19. Properties of MgB 2 superconductor chemically treated by acetic acid

    NASA Astrophysics Data System (ADS)

    Hušeková, K.; Hušek, I.; Kováč, P.; Kulich, M.; Dobročka, E.; Štrbík, V.

    2010-03-01

    Commercial Alfa Aesar MgB 2 powder was chemically treated by acetic acid with the aim of MgO removing. Single-core MgB 2/Fe ex situ wires have been made by powder-in-tube (PIT) process using the powders treated with different acid concentration. All samples were annealed in argon at 950 °C/0.5 h. Differences in transition temperatures and critical currents of acetic acid treated MgB 2 are related to the normal state resistivity, effective carbon substitution from the organic solvent and the active area fraction (grain-connectivity).

  20. The local phase transitions of the solvent in the neighborhood of a solvophobic polymer at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budkov, Yu. A., E-mail: urabudkov@rambler.ru; National Research University Higher School of Economics, Moscow; Department of Chemistry, Lomonosov Moscow State University, Moscow

    2014-11-28

    We investigate local phase transitions of the solvent in the neighborhood of a solvophobic polymer chain which is induced by a change of the polymer-solvent repulsion and the solvent pressure in the bulk solution. We describe the polymer in solution by the Edwards model, where the conditional partition function of the polymer chain at a fixed radius of gyration is described by a mean-field theory. The contributions of the polymer-solvent and the solvent-solvent interactions to the total free energy are described within the mean-field approximation. We obtain the total free energy of the solution as a function of the radiusmore » of gyration and the average solvent number density within the gyration volume. The resulting system of coupled equations is solved varying the polymer-solvent repulsion strength at high solvent pressure in the bulk. We show that the coil-globule (globule-coil) transition occurs accompanied by a local solvent evaporation (condensation) within the gyration volume.« less

  1. FTIR Imaging Coupled with Multivariate Analysis for Study of Initial Diffusion of Different Solvents in Cellulose Acetate Butyrate Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindblad, M.S.; Keyes, B.; Gedvilas, L.

    Fourier transform infrared (FTIR) spectroscopic imaging was used to study the initial diffusion of different solvents in cellulose acetate butyrate (CAB) films containing different amounts of acetyl and butyryl substituents. Different solvents and solvent/non-solvent mixtures were also studied. The FTIR imaging system allowed acquisition of sequential images of the CAB films as solvent penetration proceeded without disturbing the system. The interface between the non-swollen polymer and the initial swelling front could be identified using multivariate data analysis tools. For a series of ketone solvents the initial diffusion coefficients and diffusion rates could be quantified and were found to be relatedmore » to the polar and hydrogen interaction parameters in the Hansen solubility parameters of the solvents. For the solvent/non-solvent system the initial diffusion rate decreased less than linearly with the weight-percent of non-solvent present in the solution, which probably was due to the swelling characteristic of the non-solvent. For a given solvent, increasing the butyryl content of the CAB increased the initial diffusion rate. Increasing the butyryl content from 17 wt.% butyryl to 37 wt.% butyryl produced a considerably larger increase in initial diffusion rate compared to an increase in butyryl content from 37 wt.% to 50 wt.% butyryl.« less

  2. The solvent component of macromolecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine

    2015-04-30

    On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less

  3. Methods for recovering a polar solvent from a fluid stream contaminated with at least one polar impurity

    DOEpatents

    Ginosar, Daniel M.; Wendt, Daniel S.

    2012-11-13

    A method of removing a polar solvent from a fluid volume contaminated with at least one polar impurity, such as a free fatty acid, is provided. The method comprises providing a fluid volume that includes at least one polar impurity dissolved in at least one solvent. The fluid volume is contacted with an expanding gas to remove the at least one solvent. The expanding gas may be dissolved into the at least one solvent in the fluid volume to form a gas-expanded solvent. The immiscibility of the polar impurities in the gas-expanded solvent enables separation of the polar impurities from the gas-expanded solvent. After separation of the polar impurities, at least one of the temperature and pressure may be reduced to separate the solvent from the expanding gas such that the clean solvent may be reused.

  4. Flow-directed loading of block copolymer micelles with hydrophobic probes in a gas-liquid microreactor.

    PubMed

    Wang, Chih-Wei; Bains, Aman; Sinton, David; Moffitt, Matthew G

    2013-07-02

    We investigate the loading efficiencies of two chemically distinct hydrophobic fluorescent probes, pyrene and naphthalene, for self-assembly and loading of polystyrene-block-poly(acrylic acid) (PS-b-PAA) micelles in gas-liquid segmented microfluidic reactors under different chemical and flow conditions. On-chip loading efficiencies are compared to values obtained via off-chip dropwise water addition to a solution of copolymer and probe. On-chip, probe loading efficiencies depend strongly on the chemical probe, initial solvent, water content, and flow rate. For pyrene and naphthalene probes, maximum on-chip loading efficiencies of 73 ± 6% and 11 ± 3%, respectively, are obtained, in both cases using the more polar solvent (DMF), an intermediate water content (2 wt % above critical), and a low flow rate (∼5 μL/min); these values are compared to 81 ± 6% and 48 ± 2%, respectively, for off-chip loading. On-chip loading shows a significant improvement over the off-chip process where shear-induced formation of smaller micelles enables increased encapsulation of probe. As well, we show that on-chip loading allows off-chip release kinetics to be controlled via flow rate: compared to vehicles produced at ∼5 μL/min, pyrene release kinetics from vehicles produced at ∼50 μL/min showed a longer initial period of burst release, followed by slow release over a longer total period. These results demonstrate the necessity to match probes, solvents, and running conditions to achieve effective loading, which is essential information for further developing these on-chip platforms for manufacturing drug delivery formulations.

  5. Formation of Nanofibrous Matrices, Three-Dimensional Scaffolds, and Microspheres: From Theory to Practice

    PubMed Central

    Ma, Chi

    2017-01-01

    Nanofibrous architecture presents unique biophysical cues to facilitate cellular responses and is considered an indispensable feature of a biomimetic three-dimensional (3D) scaffold and cell carrier. While electrospinning is a widely used method to prepare natural extracellular matrix-like nanofibers, it faces significant challenges to incorporate nanofibrous architecture into well-defined macroporous 3D scaffolds or injectable microspheres. Here we report a nonelectrospinning approach that is effective at generating nanofibers from a variety of synthetic and natural biodegradable polymers and integrating these nanofibers into (1) 3D scaffolds with constructive geometry and designed internal macropore structures; and (2) injectable microspheres. Our approach to generating polymer nanofibers is based on the control of polymer–solvent interaction parameter χp-s. We obtained the χp-s and solvent composition phase diagrams of different temperatures according to the Flory–Huggins classic lattice model and the Hildebrand-Scott solubility parameter equation. A critical polymer–solvent interaction parameter χcrit was introduced as a criterion to predict phase separation and nanofiber formation. To test the effectiveness of our approach, a total of 15 widely used biodegradable polymers were selected and successfully fabricated into nanofibrous matrices. Furthermore, macroporous nanofibrous 3D scaffolds with complex architecture and nanofibrous injectable microspheres were generated from those biodegradable polymers by combining our method with other processes. Our approach is universally effective to fabricate nanofibrous matrices from any polymeric materials. This work, therefore, greatly expands our ability to design appropriate biomimetic 3D scaffolds and injectable cell carriers for advanced regenerative therapies. PMID:27923327

  6. Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology.

    PubMed

    Shin, Jae Man; Kim, YongJoo; Yun, Hongseok; Yi, Gi-Ra; Kim, Bumjoon J

    2017-02-28

    Shape and morphology of polymeric particles are of great importance in controlling their optical properties or self-assembly into unusual superstructures. Confinement of block copolymers (BCPs) in evaporative emulsions affords particles with diverse structures, including prolate ellipsoids, onion-like spheres, oblate ellipsoids, and others. Herein, we report that the evaporation rate of solvent from emulsions encapsulating symmetric polystyrene-b-polybutadiene (PS-b-PB) determines the shape and internal nanostructure of micron-sized BCP particles. A distinct morphological transition from the ellipsoids with striped lamellae to the onion-like spheres was observed with decreasing evaporation rate. Experiments and dissipative particle dynamics (DPD) simulations showed that the evaporation rate affected the organization of BCPs at the particle surface, which determined the final shape and internal nanostructure of the particles. Differences in the solvent diffusion rates in PS and PB at rapid evaporation rates induced alignment of both domains perpendicular to the particle surface, resulting in ellipsoids with axial lamellar stripes. Slower evaporation rates provided sufficient time for BCP organization into onion-like structures with PB as the outermost layer, owing to the preferential interaction of PB with the surroundings. BCP molecular weight was found to influence the critical evaporation rate corresponding to the morphological transition from ellipsoid to onion-like particles, as well as the ellipsoid aspect ratio. DPD simulations produced morphologies similar to those obtained from experiments and thus elucidated the mechanism and driving forces responsible for the evaporation-induced assembly of BCPs into particles with well-defined shapes and morphologies.

  7. Gas separation by composite solvent-swollen membranes

    DOEpatents

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  8. Gas separation by composite solvent-swollen membranes

    DOEpatents

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  9. STABILITY OF A CYLINDRICAL SOLUTE-SOLVENT INTERFACE: EFFECT OF GEOMETRY, ELECTROSTATICS, AND HYDRODYNAMICS.

    PubMed

    Li, B O; Sun, Hui; Zhou, Shenggao

    The solute-solvent interface that separates biological molecules from their surrounding aqueous solvent characterizes the conformation and dynamics of such molecules. In this work, we construct a solvent fluid dielectric boundary model for the solvation of charged molecules and apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The solvent fluid is assumed to be incompressible and is described by the Stokes equation. The solute is modeled simply by the ideal-gas law. All the viscous force, hydrostatic pressure, solute-solvent van der Waals interaction, surface tension, and electrostatic force are balanced at the solute-solvent interface. We model the electrostatics by Poisson's equation in which the solute-solvent interface is treated as a dielectric boundary that separates the low-dielectric solute from the high-dielectric solvent. For a cylindrical geometry, we find multiple cylindrically shaped equilibrium interfaces that describe polymodal (e.g., dry and wet) states of hydration of an underlying molecular system. These steady-state solutions exhibit bifurcation behavior with respect to the charge density. For their linearized systems, we use the projection method to solve the fluid equation and find the dispersion relation. Our asymptotic analysis shows that, for large wavenumbers, the decay rate is proportional to wavenumber with the proportionality half of the ratio of surface tension to solvent viscosity, indicating that the solvent viscosity does affect the stability of a solute-solvent interface. Consequences of our analysis in the context of biomolecular interactions are discussed.

  10. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  11. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures.

    PubMed

    Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E

    2014-08-14

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-01

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the Cdbnd O bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  13. Theory of First Order Chemical Kinetics at the Critical Point of Solution.

    PubMed

    Baird, James K; Lang, Joshua R

    2017-10-26

    Liquid mixtures, which have a phase diagram exhibiting a miscibility gap ending in a critical point of solution, have been used as solvents for chemical reactions. The reaction rate in the forward direction has often been observed to slow down as a function of temperature in the critical region. Theories based upon the Gibbs free energy of reaction as the driving force for chemical change have been invoked to explain this behavior. With the assumption that the reaction is proceeding under relaxation conditions, these theories expand the free energy in a Taylor series about the position of equilibrium. Since the free energy is zero at equilibrium, the leading term in the Taylor series is proportional to the first derivative of the free energy with respect to the extent of reaction. To analyze the critical behavior of this derivative, the theories exploit the principle of critical point isomorphism, which is thought to govern all critical phenomena. They find that the derivative goes to zero in the critical region, which accounts for the slowing down observed in the reaction rate. As has been pointed out, however, most experimental rate investigations have been carried out under irreversible conditions as opposed to relaxation conditions [Shen et al. J. Phys. Chem. A 2015, 119, 8784-8791]. Below, we consider a reaction governed by first order kinetics and invoke transition state theory to take into account the irreversible conditions. We express the apparent activation energy in terms of thermodynamic derivatives evaluated under standard conditions as well as the pseudoequilibrium conditions associated with the reactant and the activated complex. We show that these derivatives approach infinity in the critical region. The apparent activation energy follows this behavior, and its divergence accounts for the slowing down of the reaction rate.

  14. A thermodynamic study of the amphiphilic phenothiazine drug thioridazine hydrochloride in water/ethanol solvent

    NASA Astrophysics Data System (ADS)

    Cheema, Mohammad Arif; Barbosa, Silvia; Taboada, Pablo; Castro, Emilio; Siddiq, Mohammad; Mosquera, Víctor

    2006-09-01

    The thermodynamic properties of aqueous solutions of the tricyclic antidepressant amphiphilic phenothiazine drug thioridazine hydrochloride in the temperature range 20-50 °C and in the presence of ethanol have been measured. The phenothiazine tranquillizing drugs have interesting association characteristics that derive from their rigid, tricyclic hydrophobic groups. Thioridazine hydrochloride is a drug used in treatment of mental illness that shows side effects. Therefore, it is interesting to study the change of its physico-chemical properties with temperature and with the surrounding environment to understand the action mechanism of the drug. Densities, conductivities, and surface tension were measured to obtain surface and bulk solution properties. Critical concentrations, cc, at different temperatures and in the presence of ethanol, and partition coefficients, K, have been calculated, the latter using an indirect method based in the pseudophase model with the help of apparent molar volume data. This method has the advantage that allows calculating the distribution coefficients at solubilizate concentrations below the saturation. Conductivity data show two critical concentrations. The second critical concentration is not clear by density data. The effect of the alcohol is to decrease the first critical concentration due to a decrease in headgroup repulsion. The molar apparent volumes at infinite dilution and in the aggregate in water and in presence of ethanol have been also obtained.

  15. Comparison Pore Aggregate Levels After Extraction With Solvents Pertamax Plus And Gasoline

    NASA Astrophysics Data System (ADS)

    Anggraini, Muthia

    2017-12-01

    Loss of asphalt content extraction results become problems in Field Work For implementing parties. The use of solvents with high octane (pertamax plus) for the extraction, dissolving the asphalt more than gasoline. By comparing the levels of aggregate pores after using solvent extraction pertamax plus compared to gasoline could answer that pertamax plus more solvent dissolves the bitumen compared to gasoline. This study aims to obtain comparative levels of porous aggregate mix AC-WC after using solvent extraction pertamax plus compared to gasoline. This study uses the aggregate that has been extracted from the production of asphalt mixtures, when finisher and after compaction field. The method used is the assay of coarse and fine aggregate pores, extraction of bitumen content to separate the aggregate with bitumen. Results of testing the total absorption after extraction using a solvent preta max plus in the production of asphalt mixtures 0.80%, while gasoline solvent 0.67% deviation occurs 0.13%. In the finisher after the solvent extraction preta max plus 0.77%, while 0.67% gasoline solvent occurs deviation of 0.1%. At the core after extraction and solvent pertamax plus 0.71%, while gasoline solvent 0.60% 0.11% deviation occurs. The total water absorption after extraction using a solvent pertamax plus greater than gasoline. This proves that the solvent dissolves pertamax plus more asphalt than gasoline.

  16. COMPUTER-AIDED SOLVENT DESIGN FOR POLLUTION PREVENTION: PARIS II

    EPA Science Inventory

    Solvent substitution is an attractive way of elijminating the use of regulated solvents because it usually does not require major chanages in existing processes, equipment or operations. Successful solvent substitution is dependent on finding solvents that are as effective or be...

  17. Analytical phase diagrams for colloids and non-adsorbing polymer.

    PubMed

    Fleer, Gerard J; Tuinier, Remco

    2008-11-04

    We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 559] for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the natural thermodynamic parameter for the polymer properties is the insertion work Pi(v), where Pi is the osmotic pressure of the (external) polymer solution and v the volume of a colloid particle. (ii) Curvature effects are included along the lines of Aarts et al. [J. Phys.: Condens. Matt. 14 (2002) 7551] but we find accurate simple power laws which simplify the mathematical procedure considerably. (iii) We find analytical forms for the first, second, and third derivatives of the grand potential, needed for the calculation of the colloid chemical potential, the pressure, gas-liquid critical points and the critical endpoint (cep), where the (stable) critical line ends and then coincides with the triple point. This cep determines the boundary condition for a stable liquid. We first apply these modifications to the so-called colloid limit, where the size ratio q(R)=R/a between the radius of gyration R of the polymer and the particle radius a is small. In this limit the binodal polymer concentrations are below overlap: the depletion thickness delta is nearly equal to R, and Pi can be approximated by the ideal (van't Hoff) law Pi=Pi(0)=phi/N, where phi is the polymer volume fraction and N the number of segments per chain. The results are close to those of the original Lekkerkerker theory. However, our analysis enables very simple analytical expressions for the polymer and colloid concentrations in the critical and triple points and along the binodals as a function of q(R). Also the position of the cep is found analytically. In order to make the model applicable to higher size ratio's q(R) (including the so-called protein limit where q(R)>1) further extensions are needed. We introduce the size ratio q=delta/a, where the depletion thickness delta is no longer of order R. In the protein limit the binodal concentrations are above overlap. In such semidilute solutions delta approximately xi, where the De Gennes blob size (correlation length) xi scales as xi approximately phi(-gamma), with gamma=0.77 for good solvents and gamma=1 for a theta solvent. In this limit Pi=Pi(sd) approximately phi(3gamma). We now apply the following additional modifications: With these latter two modifications we obtain again a fully analytical model with simple equations for critical and triple points as a function of q(R). In the protein limit the binodal polymer concentrations scale as q(R)(1/gamma), and phase diagrams phiq(R)(-1/gamma) versus the colloid concentration eta become universal (i.e., independent of the size ratio q(R)). The predictions of this generalized free-volume theory (GFVT) are in excellent agreement with experiment and with computer simulations, not only for the colloid limit but also for the protein limit (and the crossover between these limits). The q(R)(1/gamma) scaling is accurately reproduced by both simulations and other theoretical models. The liquid window is the region between phi(c) (critical point) and phi(t) (triple point). In terms of the ratio phi(t)/phi(c) the liquid window extends from 1 in the cep (here phi(t)-phi(c)=0) to 2.2 in the protein limit. Hence, the liquid window is narrow: it covers at most a factor 2.2 in (external) polymer concentration.

  18. A New Method to Grow SiC: Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew A.; Neudeck, Philip G.; Sayir, Ali

    2012-01-01

    The solvent-laser heated floating zone (solvent-LHFZ) growth method is being developed to grow long single crystal SiC fibers. The technique combines the single crystal fiber growth ability of laser heated floating zone with solvent based growth techniques (e.g. traveling solvent method) ability to grow SiC from the liquid phase. Initial investigations reported in this paper show that the solvent-LHFZ method readily grows single crystal SiC (retains polytype and orientation), but has a significant amount of inhomogeneous strain and solvent rich inclusions.

  19. Replacement solvents for use in chemical synthesis

    DOEpatents

    Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  20. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    NASA Technical Reports Server (NTRS)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  1. Occupational solvent exposure and cognition

    PubMed Central

    Sabbath, E.L.; Glymour, M.M.; Berr, C.; Singh-Manoux, A.; Zins, M.; Goldberg, M.

    2012-01-01

    Objective: Chronic occupational solvent exposure is associated with long-term cognitive deficits. Cognitive reserve may protect solvent-exposed workers from cognitive impairment. We tested whether the association between chronic solvent exposure and cognition varied by educational attainment, a proxy for cognitive reserve. Methods: Data were drawn from a prospective cohort of French national gas and electricity (GAZEL) employees (n = 4,134). Lifetime exposure to 4 solvent types (chlorinated solvents, petroleum solvents, benzene, and nonbenzene aromatic solvents) was assessed using a validated job-exposure matrix. Education was dichotomized at less than secondary school or below. Cognitive impairment was defined as scoring below the 25th percentile on the Digit Symbol Substitution Test at mean age 59 (SD 2.8; 88% of participants were retired at testing). Log-binomial regression was used to model risk ratios (RRs) for poor cognition as predicted by solvent exposure, stratified by education and adjusted for sociodemographic and behavioral factors. Results: Solvent exposure rates were higher among less-educated patients. Within this group, there was a dose-response relationship between lifetime exposure to each solvent type and RR for poor cognition (e.g., for high exposure to benzene, RR = 1.24, 95% confidence interval 1.09–1.41), with significant linear trends (p < 0.05) in 3 out of 4 solvent types. Recency of solvent exposure also predicted worse cognition among less-educated patients. Among those with secondary education or higher, there was no significant or near-significant relationship between any quantification of solvent exposure and cognition. Conclusions: Solvent exposure is associated with poor cognition only among less-educated individuals. Higher cognitive reserve in the more-educated group may explain this finding. PMID:22641403

  2. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less

  3. Process for solvent refining of coal using a denitrogenated and dephenolated solvent

    DOEpatents

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1984-01-01

    A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.

  4. Tuning aggregation of microemulsion droplets and silica nanoparticles using solvent mixtures.

    PubMed

    Salabat, Alireza; Eastoe, Julian; Mutch, Kevin J; Tabor, Rico F

    2008-02-15

    The effect of solvent on stability of water-in-oil microemulsions has been studied with AOT (sodium bis(2-ethylhexyl)sulfosuccinate) and different solvent mixtures of n-heptane, toluene and dodecane. Dynamic light scattering DLS was used to monitor the apparent diffusion coefficient D(A) and effective microemulsion droplet diameter on changing composition of the solvent. Interdroplet attractive interactions, as indicated by variations in D(A), can be tuned by formulation of appropriate solvent mixtures using heptane, toluene, and dodecane. In extreme cases, solvent mixtures can be used to induce phase transitions in the microemulsions. Aggregation and stability of model AOT-stabilized silica nanoparticles in different solvents were also investigated to explore further these solvent effects. For both systems the state of aggregation can be correlated with the effective molecular volume of the solvent V(mol)(eff) mixture.

  5. Solvent effects on infrared spectra of progesterone in CHCl 3/ cyclo-C 6H 12 binary solvent systems

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Xiao-yan; Zhang, Hui

    2007-01-01

    The infrared spectroscopy studies of the C 3 and C 20 carbonyl stretching vibrations ( υ(C dbnd O)) of progesterone in CHCl 3/ cyclo-C 6H 12 binary solvent systems were undertaken to investigate the solute-solvent interactions. With the mole fraction of CHC1 3 in the binary solvent mixtures increase, three types of C 3 and C 20 carbonyl stretching vibration band of progesterone are observed, respectively. The assignments of υ(C dbnd O) of progesterone are discussed in detail. In the CHCl 3-rich binary solvent systems or pure CHCl 3 solvent, two kinds of solute-solvent hydrogen bonding interactions coexist for C 20 C dbnd O. Comparisons are drawn for the solvent sensitivities of υ(C dbnd O) for acetophenone and 5α-androstan-3,17-dione, respectively.

  6. Methods for recovering a solvent from a fluid volume and methods of removing at least one compound from a nonpolar solvent

    DOEpatents

    Ginosar, Daniel M.; Wendt, Daniel S.; Petkovic, Lucia M.

    2014-06-10

    A method of removing a nonpolar solvent from a fluid volume that includes at least one nonpolar compound, such as a fat, an oil or a triglyceride, is provided. The method comprises contacting a fluid volume with an expanding gas to expand the nonpolar solvent and form a gas-expanded solvent. The gas-expanded solvent may have a substantially reduced density in comparison to the at least one nonpolar compound and/or a substantially reduced capacity to solubilize the nonpolar compound, causing the nonpolar compounds to separate from the gas-expanded nonpolar solvent into a separate liquid phase. The liquid phase including the at least one nonpolar compound may be separated from the gas-expanded solvent using conventional techniques. After separation of the liquid phase, at least one of the temperature and pressure may be reduced to separate the nonpolar solvent from the expanding gas such that the nonpolar solvent may be recovered and reused.

  7. Solvent Reaction Field Potential inside an Uncharged Globular Protein: A Bridge between Implicit and Explicit Solvent Models?

    PubMed Central

    Baker, Nathan A.; McCammon, J. Andrew

    2008-01-01

    The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217

  8. Solvent reaction field potential inside an uncharged globular protein: A bridge between implicit and explicit solvent models?

    NASA Astrophysics Data System (ADS)

    Cerutti, David S.; Baker, Nathan A.; McCammon, J. Andrew

    2007-10-01

    The solvent reaction field potential of an uncharged protein immersed in simple point charge/extended explicit solvent was computed over a series of molecular dynamics trajectories, in total 1560ns of simulation time. A finite, positive potential of 13-24 kbTec-1 (where T =300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0Å from the solute surface, on average 0.008ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99.

  9. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... injection unless the solvent waste is a solvent-water mixture or solvent-containing sludge containing less...

  10. FINDING SOLVENT REPLACEMENTS TO REDUCE THE POTENTIAL ENVIRONMENTAL IMPACT OF INDUSTRIAL WASTES

    EPA Science Inventory

    The United States Environmental Protection Agency has developed a solvent substitution software tool PARIS II (Program for Assisting the Replacement of Industrial Solvents, version 2.0). The purpose of this tool is to find less toxic solvents or solvent mixtures which may functi...

  11. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  12. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  13. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  14. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  15. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    PubMed

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  16. Compressed air-assisted solvent extraction (CASX) for metal removal.

    PubMed

    Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien

    2008-03-01

    A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.

  17. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  18. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  19. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  20. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  1. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review

    PubMed Central

    Miazek, Krystian; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Goffin, Dorothee

    2017-01-01

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted. PMID:28677659

  2. Effect on de-greasing solvents on conductive separable connector shields and semiconductive cable shields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, D.D.; Bolcar, J.P.

    1990-04-01

    A study has been conducted to determine the effects of commercial degreasing solvents on the conductivity of an EPDM separable connector shield and two types of cable shields based on EPR and XLPE, respectively. Solvents tested included a chlorinated solvent based on 1,1,1-trichloroethane and several so-called citrus solvents consisting of the natural terpene, limonene, or blends of limonene with other hydrocarbons. All the solvents significantly degraded the conductivity of the EPR and EPDM materials, but had little effect on the XLPE cable shield. The solvents differed, however, in the extent of their effects, the rate of recovery of conductivity aftermore » removal of the solvent, and the degree to which the original conductivity of the material was restored. The consequences of these results in terms of appropriate field use of these types of solvents by utility personnel are discussed.« less

  3. Thermal degradation of the solvent employed in the next-generation caustic-side solvent extraction process and its effect on the extraction, scrubbing, and stripping of cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Benjamin D.; Williams, Neil J.; Moyer, Bruce A.

    As part of the ongoing development of the Next-Generation Caustic-Side Solvent Extraction (NGS) process, the thermal stability of the process solvent was investigated and shown to be adequate for industrial application. The solvent was thermally treated at 35 C over a period of 13 months whilst in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS 15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). The effect of thermal treatment was evaluated by assessing batch extract/scrub/strip performance as a function of time, by monitoringmore » the sodium extraction capacity of the solvent, and by analysis of the solvent using electrospray mass spectrometry. Current studies indicate that the NGS solvent should be thermally robust for a period of XXX months at the Modular Caustic-Side Solvent Extraction Unit (MCU) pilot plant located at Savannah River Site. Furthermore, the guanidine suppressor appears to be the solvent component most significantly impacted by thermal treatment of the solvent, showing significant degradation over time.« less

  4. Thermal degradation of the solvent employed in the next-generation caustic-side solvent extraction process and its effect on the extraction, scrubbing, and stripping of cesium

    DOE PAGES

    Roach, Benjamin D.; Williams, Neil J.; Moyer, Bruce A.

    2015-09-02

    As part of the ongoing development of the Next-Generation Caustic-Side Solvent Extraction (NGS) process, the thermal stability of the process solvent was investigated and shown to be adequate for industrial application. The solvent was thermally treated at 35 C over a period of 13 months whilst in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS 15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). The effect of thermal treatment was evaluated by assessing batch extract/scrub/strip performance as a function of time, by monitoringmore » the sodium extraction capacity of the solvent, and by analysis of the solvent using electrospray mass spectrometry. Current studies indicate that the NGS solvent should be thermally robust for a period of XXX months at the Modular Caustic-Side Solvent Extraction Unit (MCU) pilot plant located at Savannah River Site. Furthermore, the guanidine suppressor appears to be the solvent component most significantly impacted by thermal treatment of the solvent, showing significant degradation over time.« less

  5. Role of solvent in metal-on-metal surface diffusion: A case for rational solvent selection for materials synthesis

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Jagannath, Mantha Sai Pavan; Chatterjee, Abhijit

    2018-09-01

    The effect of solvent on diffusion at metal surfaces is poorly understood despite its importance to morphological evolution during materials processing, corrosion and catalysis. In this article, we probe the metal-solvent interfacial structure, effective nature of interactions and dynamics when a solvent is in contact with a metal using a novel accelerated molecular dynamics simulation technique called temperature programmed molecular dynamics (TPMD). TPMD simulations reveal that surface diffusion of metal-on-metal can be made to vary over orders-of-magnitude by tuning the metal-solvent interaction. Ultimately, the solvent can have an indirect effect on diffusion. As the solvent tugs at the metal surface the separation between the adsorbed metal atom (adatom) and the surface layer can be modulated via metal-solvent interactions. The resulting adatom-surface separation can cause stronger/weaker binding of the adatom to the metal surface, which in turn results in the observed slower/enhanced diffusion in the presence of solvent. We believe this effect is ubiquitous in pure metal and metal alloys and in principle one could rationally select solvent to control the material structural evolution. Implications on materials synthesis are discussed in the context of formation of nanoporous materials.

  6. Degradation of palm oil empty fruit bunch (EFB) into bio-oil in sub-and supercritical solvents

    NASA Astrophysics Data System (ADS)

    Sarwono, Rakhman; Pusfitasari, Eka Dian

    2017-01-01

    Hydrothemal Liquefaction (HTL) of empty fruit bunch (EFB) of palm oil in different solvents (water, ethanol and hexane) were comparatively investigated. Experiments were carried out in an autoclave in different EFB loading of 9%, 11%, and 13%. The temperature operation was 350 oC, without any catalysts and reaction time of 5 hours. The efficiency of above solvents in terms of conversion rate, soluble liquid and carbon products were found in this experiments. The water solvent gave higher conversion rate of 35 - 36.5 %, while hexane gave conversion of 17 - 25.25 %, and ethanol gave the lower conversion rate of 12.65 - 30.3%, respectively. Increasing the EFB load decreased the conversion rate for ethanol and hexane solvents, for water there are no significant change in the conversion rate. The bio-oil as soluble liquid produced were in order of water, ethanol, and hexane solvents, respectively. The chemical properties of bio-oil products were significantly affected by the type of liquefaction solvent. The compositional of bio-oil consists of mostly of a mixture of organic acids, ketones, and esters. The hexane and ethanol solvents resulted mostly organic acids. In water solvent resulted 2-pentanone, 4-hydroxy-4-methyl and others substances. According to the bio-oil results, organic solvents resulted higher HHV compared to water solvent. The higher heating value (HHV) of the carbon products were also comparatively, ethanol solvent resulted soluble liquid with higher HHV compared to the water solvent.

  7. Probing the Hofmeister series beyond water: Specific-ion effects in non-aqueous solvents

    NASA Astrophysics Data System (ADS)

    Mazzini, Virginia; Liu, Guangming; Craig, Vincent S. J.

    2018-06-01

    We present an experimental investigation of specific-ion effects in non-aqueous solvents, with the aim of elucidating the role of the solvent in perturbing the fundamental ion-specific trend. The focus is on the anions: CH3COO->F->Cl->Br->I->ClO4 ->SCN- in the solvents water, methanol, formamide, dimethyl sulfoxide (DMSO), and propylene carbonate (PC). Two types of experiments are presented. The first experiment employs the technique of size exclusion chromatography to evaluate the elution times of electrolytes in the different solvents. We observe that the fundamental (Hofmeister) series is observed in water and methanol, whilst the series is reversed in DMSO and PC. No clear series is observed for formamide. The second experiment uses the quartz crystal microbalance technique to follow the ion-induced swelling and collapse of a polyelectrolyte brush. Here the fundamental series is observed in the protic solvents water, methanol, and formamide, and the series is once again reversed in DMSO and PC. These behaviours are not attributed to the protic/aprotic nature of the solvents, but rather to the polarisability of the solvents and are due to the competition between the interaction of ions with the solvent and the surface. A rule of thumb is proposed for ion specificity in non-aqueous solvents. In weakly polarisable solvents, the trends in specific-ion effects will follow those in water, whereas in strongly polarisable solvents the reverse trend will be observed. Solvents of intermediate polarisability will give weak specific-ion effects.

  8. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.

    PubMed

    Gupta, Anshu; Khare, S K

    2009-01-01

    Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.

  9. Probing the Hofmeister series beyond water: Specific-ion effects in non-aqueous solvents.

    PubMed

    Mazzini, Virginia; Liu, Guangming; Craig, Vincent S J

    2018-06-14

    We present an experimental investigation of specific-ion effects in non-aqueous solvents, with the aim of elucidating the role of the solvent in perturbing the fundamental ion-specific trend. The focus is on the anions: CH 3 COO - >F - >Cl - >Br - >I - >ClO 4 - >SCN - in the solvents water, methanol, formamide, dimethyl sulfoxide (DMSO), and propylene carbonate (PC). Two types of experiments are presented. The first experiment employs the technique of size exclusion chromatography to evaluate the elution times of electrolytes in the different solvents. We observe that the fundamental (Hofmeister) series is observed in water and methanol, whilst the series is reversed in DMSO and PC. No clear series is observed for formamide. The second experiment uses the quartz crystal microbalance technique to follow the ion-induced swelling and collapse of a polyelectrolyte brush. Here the fundamental series is observed in the protic solvents water, methanol, and formamide, and the series is once again reversed in DMSO and PC. These behaviours are not attributed to the protic/aprotic nature of the solvents, but rather to the polarisability of the solvents and are due to the competition between the interaction of ions with the solvent and the surface. A rule of thumb is proposed for ion specificity in non-aqueous solvents. In weakly polarisable solvents, the trends in specific-ion effects will follow those in water, whereas in strongly polarisable solvents the reverse trend will be observed. Solvents of intermediate polarisability will give weak specific-ion effects.

  10. Exact solutions of a two parameter flux model and cryobiological applications.

    PubMed

    Benson, James D; Chicone, Carmen C; Critser, John K

    2005-06-01

    Solute-solvent transmembrane flux models are used throughout biological sciences with applications in plant biology, cryobiology (transplantation and transfusion medicine), as well as circulatory and kidney physiology. Using a standard two parameter differential equation model of solute and solvent transmembrane flux described by Jacobs [The simultaneous measurement of cell permeability to water and to dissolved substances, J. Cell. Comp. Physiol. 2 (1932) 427-444], we determine the functions that describe the intracellular water volume and moles of intracellular solute for every time t and every set of initial conditions. Here, we provide several novel biophysical applications of this theory to important biological problems. These include using this result to calculate the value of cell volume excursion maxima and minima along with the time at which they occur, a novel result that is of significant relevance to the addition and removal of permeating solutes during cryopreservation. We also present a methodology that produces extremely accurate sum of squares estimates when fitting data for cellular permeability parameter values. Finally, we show that this theory allows a significant increase in both accuracy and speed of finite element methods for multicellular volume simulations, which has critical clinical biophysical applications in cryosurgical approaches to cancer treatment.

  11. Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics

    NASA Astrophysics Data System (ADS)

    Mansbach, Rachael A.; Ferguson, Andrew L.

    2015-03-01

    The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.

  12. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    PubMed Central

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  13. Application of a novel large-volume injection method using a stomach-shaped inlet liner in capillary gas chromatographic trace analysis of dioxins in human milk and plasma.

    PubMed

    Saito, Koichi; Ohmura, Atsuko; Takekuma, Mikiko; Sasano, Ryoichi; Matsuki, Yasuhiko; Nakazawa, Hiroyuki

    2007-06-01

    A newly developed large-volume injection (LVI) technique that employs a unique stomach-shaped inlet liner (SSIL) inside of a programmable temperature vaporizer was used for the determination of trace amounts of dioxins in human milk and plasma. The initial temperature and the initial dwelling time of the inlet and the kind of solvent used were found to be critical in determining the analytical sensitivity of dioxins due to the loss of these relatively volatile compounds during solvent vaporization. Human milk and plasma were purified and fractionated by pre-packed multi-layered silica-gel chromatography and activated carbon silica-gel column chromatography. A 20-microL aliquot of the fraction collected from the chromatography with toluene was directly applied to the LVI system in high-resolution gas chromatography/high-resolution mass spectrometry. Excellent correlation (r > 0.97) between the values obtained by the LVI method using the SSIL device and those by the conventional regular-volume splitless injection method was obtained for PCDDs, PCDFs and non-ortho PCBs in human milk and plasma samples.

  14. Three-dimensional desirability spaces for quality-by-design-based HPLC development.

    PubMed

    Mokhtar, Hatem I; Abdel-Salam, Randa A; Hadad, Ghada M

    2015-04-01

    In this study, three-dimensional desirability spaces were introduced as a graphical representation method of design space. This was illustrated in the context of application of quality-by-design concepts on development of a stability indicating gradient reversed-phase high-performance liquid chromatography method for the determination of vinpocetine and α-tocopheryl acetate in a capsule dosage form. A mechanistic retention model to optimize gradient time, initial organic solvent concentration and ternary solvent ratio was constructed for each compound from six experimental runs. Then, desirability function of each optimized criterion and subsequently the global desirability function were calculated throughout the knowledge space. The three-dimensional desirability spaces were plotted as zones exceeding a threshold value of desirability index in space defined by the three optimized method parameters. Probabilistic mapping of desirability index aided selection of design space within the potential desirability subspaces. Three-dimensional desirability spaces offered better visualization and potential design spaces for the method as a function of three method parameters with ability to assign priorities to this critical quality as compared with the corresponding resolution spaces. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Boost the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues

    DOE PAGES

    Xue, Guobiao; Xin, Huolin L.; Wu, Jiake; ...

    2015-10-29

    Enhancing electron transport to match with the development in hole transport is critical for organic electronics in the future. As electron motion is susceptible to extrinsic factors, seeking these factors and avoiding their negative effects have become the central challenge. Here, the existence of polar solvent residues in solution-grown single-crystals of 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene is identified as a factor detrimental to electron motion. Field-effect transistors of the crystals exhibit electron mobility boosted by about 60% after the residues are removed. The average electron mobility reaches up to 8.0 ± 2.2 cm 2 V –1 s –1 with a highest value of 13.3more » cm 2 V –1 s –1; these results are significantly higher than those obtained previously for the same molecule (1.0–5.0 cm 2 V –1 s –1). Furthermore, the achieved mobility is also higher than the maximum reported electron mobility for organic materials (11 cm 2 V –1 s –1). As a result, this work should greatly accelerate the advancement of organic electron-transporting materials.« less

  16. Oxygen solubility and transport in Li–air battery electrolytes: Establishing criteria and strategies for electrolyte design

    DOE PAGES

    Gittleson, Forrest S.; Jones, Reese E.; Ward, Donald K.; ...

    2017-02-15

    Li–air or Li–oxygen batteries promise significantly higher energies than existing commercial battery technologies, yet their development has been hindered by a lack of suitable electrolytes. In this article, we evaluate the physical properties of varied electrolyte compositions to form generalized criteria for electrolyte design. We show that oxygen transport through non-aqueous electrolytes has a critical impact on the discharge rate and capacity of Li–air batteries. Through experiments and molecular dynamics simulations, we highlight that the choice of salt species and concentration have an outsized influence on oxygen solubility, while solvent choice is the major influence on oxygen diffusivity. The stabilitymore » of superoxide reaction intermediates, key to the oxygen reduction mechanism, is also affected by variations in salt concentration and the choice of solvent. The importance of reactant transport is confirmed through Li–air cell discharge, which demonstrates good agreement between the observed and calculated mass transport-limited currents. Furthermore, these results showcase the impact of electrolyte composition on transport in metal–air batteries and provide guiding principles and simulation-based tools for future electrolyte design.« less

  17. Structural characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) from Sphingobium chlorophenolicum, a new type of aromatic ring-cleavage enzyme.

    PubMed

    Hayes, Robert P; Green, Abigail R; Nissen, Mark S; Lewis, Kevin M; Xun, Luying; Kang, Chulhee

    2013-05-01

    PcpA (2,6-dichloro-p-hydroquinone 1,2-dioxygenase) from Sphingobium chlorophenolicum, a non-haem Fe(II) dioxygenase capable of cleaving the aromatic ring of p-hydroquinone and its substituted variants, is a member of the recently discovered p-hydroquinone 1,2-dioxygenases. Here we report the 2.6 Å structure of PcpA, which consists of four βαβββ motifs, a hallmark of the vicinal oxygen chelate superfamily. The secondary co-ordination sphere of the Fe(II) centre forms an extensive hydrogen-bonding network with three solvent exposed residues, linking the catalytic Fe(II) to solvent. A tight hydrophobic pocket provides p-hydroquinones access to the Fe(II) centre. The p-hydroxyl group is essential for the substrate-binding, thus phenols and catechols, lacking a p-hydroxyl group, do not bind to PcpA. Site-directed mutagenesis and kinetic analysis confirm the critical catalytic role played by the highly conserved His10, Thr13, His226 and Arg259. Based on these results, we propose a general reaction mechanism for p-hydroquinone 1,2-dioxygenases. © 2013 Blackwell Publishing Ltd.

  18. Structural characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) from Sphingobium chlorophenolicum, a new type of aromatic ring-cleavage enzyme

    PubMed Central

    Hayes, Robert P.; Green, Abigail R.; Nissen, Mark S.; Lewis, Kevin M.; Xun, Luying; Kang, ChulHee

    2014-01-01

    Summary PcpA (2,6-dichloro-p-hydroquinone 1,2-dioxygenase) from Sphingobium chlorophenolicum, a non-haem Fe(II) dioxygenase capable of cleaving the aromatic ring of p-hydroquinone and its substituted variants, is a member of the recently discovered p-hydroquinone 1,2-dioxygenases. Here we report the 2.6 Å structure of PcpA, which consists of four βαβββ motifs, a hallmark of the vicinal oxygen chelate superfamily. The secondary co-ordination sphere of the Fe(II) centre forms an extensive hydrogen-bonding network with three solvent exposed residues, linking the catalytic Fe(II) to solvent. A tight hydrophobic pocket provides p-hydroquinones access to the Fe(II) centre. The p-hydroxyl group is essential for the substrate-binding, thus phenols and catechols, lacking a p-hydroxyl group, do not bind to PcpA. Site-directed mutagenesis and kinetic analysis confirm the critical catalytic role played by the highly conserved His10, Thr13, His226 and Arg259. Based on these results, we propose a general reaction mechanism for p-hydroquinone 1,2-dioxygenases. PMID:23489289

  19. Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics.

    PubMed

    Mansbach, Rachael A; Ferguson, Andrew L

    2015-03-14

    The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.

  20. X-Ray Fluorescence Solvent Detection at the Substrate-Adhesive Interface

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Evans, Kurt; Weber, Bart; Headrick, Sarah

    2005-01-01

    With environmental regulations limiting the use of volatile organic compounds, low-vapor pressure solvents have replaced traditional degreasing solvents for bond substrate preparation. When used to clean and prepare porous bond substrates such as phenolic composites, low vapor pressure solvents can penetrate deep into substrate pore networks and remain there for extended periods. Trapped solvents can interact with applied adhesives either prior to or during cure, potentially compromising bond properties. Currently, methods for characterizing solvent time-depth profiles in bond substrates are limited to bulk gravimetric or sectioning techniques. While sectioning techniques such as microtome allow construction of solvent depth profiles, their depth resolution and reliability are limited by substrate type. Sectioning techniques are particularly limited near the adhesive-substrate interface where depth resolution is further limited by adhesive-substrate hardness and, in the case of a partially cured adhesive, mechanical properties differences. Additionally, sectioning techniques cannot provide information about lateral solvent diffusion. Cross-section component mapping is an alternative method for measuring solvent migration in porous substrates that eliminates the issues associated with sectioning techniques. With cross-section mapping, the solvent-wiped substrate is sectioned perpendicular rather than parallel to the wiped surface, and the sectioned surface is analyzed for the solvent or solvent components of interest using a two-dimensional mapping or imaging technique. Solvent mapping can be performed using either direct or indirect methods. With a direct method, one or more solvent components are mapped using red or Raman spectroscopy together with a moveable sample stage and/or focal plane array detector. With an indirect method, an elemental "tag" not present in the substrate is added to the solvent before the substrate is wiped. Following cross sectioning, the tag element can then be mapped by its characteristic x-ray emission using either x-ray fluorescence, or electron-beam energy-and wavelength-dispersive x-ray spectrometry. The direct mapping techniques avoid issues of different diffusion or migration rates of solvents and elemental tags, while the indirect techniques avoid spectral resolution issues in cases where solvents and substrates have adjacent or overlapping peaks. In this study, cross-section component indirect mapping is being evaluated as a method for measuring migration of d-limonene based solvents in glass-cloth phenolic composite (GCP) prior to and during subsequent bonding and epoxy adhesive cure.

  1. Sorption mechanisms of sulfamethazine to soil humin and its subfractions after sequential treatments.

    PubMed

    Guo, Xiaoying; Shen, Xiaofang; Zhang, Meng; Zhang, Haiyun; Chen, Weixiao; Wang, Hui; Koelmans, A A; Cornelissen, Gerard; Tao, Shu; Wang, Xilong

    2017-02-01

    Sorption mechanisms of an antibiotic sulfamethazine (SMT) to humin (HM) isolated from a peat soil and its subfractions after sequential treatments were examined. The treatments of HM included removal of ash, O-alkyl carbon, lipid, and lignin components. The HF/HCl de-ashing treatment removed a large amount of minerals (mainly silicates), releasing a fraction of hydrophobic carbon sorption domains that previously were blocked, increasing the sorption of SMT by 33.3%. The de-O-alkyl carbon treatment through acid hydrolysis greatly reduced polarity of HM samples, thus weakening the interaction between sorbents with water at the interfaces via H-bonding, leaving more effective sorption sites. Sorption of SMT via mechanisms such as van der Waals forces and π-π interactions was enhanced by factors of 2.04-2.50. After removing the lipid/lignin component with the improved Soxhlet extraction/acid hydrolysis, the organic carbon content-normalized sorption enhancement index E oc was calculated. The results demonstrated that the E oc-lipid for SMT (16.9%) was higher than E oc-lignin (10.1%), implying that removal of unit organic carbon mass of lipid led to a higher increase in sorption strength than that of lignin. As each component was progressively removed from HM, the sorption strength and isotherm nonlinearity of the residual HM samples for SMT were gradually enhanced. The K oc values of SMT by HM samples were positively correlated with their aromatic carbon contents, implying that π-π electron donor-acceptor interactions between the benzene ring of sorbate and the aromatic domains in HM played a significant role in their interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Connecting Free Energy Surfaces in Implicit and Explicit Solvent: an Efficient Method to Compute Conformational and Solvation Free Energies

    PubMed Central

    Deng, Nanjie; Zhang, Bin W.; Levy, Ronald M.

    2015-01-01

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions and protein-ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ~3 kcal/mol at only ~8 % of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the explicit/implicit thermodynamic cycle. PMID:26236174

  3. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    PubMed

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  4. Computer-aided solvent selection for multiple scenarios operation of limited-known properties solute

    NASA Astrophysics Data System (ADS)

    Anantpinijwatna, Amata

    2017-12-01

    Solvents have been applied for both production and separation of the complex chemical substance such as the pyrrolidine-2-carbonyl chloride (C5H8ClNO). Since the properties of the target substance itself are largely unknown, the selection of the solvent is limited by experiment only. However, the reaction carried out in conventional solvents are either afforded low yields or obtained slow reaction rates. Moreover, the solvents are also highly toxic and environmental unfriendly. Alternative solvents are required to enhance the production and lessen the harmful effect toward both organism and environment. A costly, time-consuming, and laborious experiments are required for acquiring a better solvent suite for production and separation of these complex compounds; whereas, a limited improvement can be obtained. On the other hand, the combination of the state-of-the-art thermodynamic models can provide faster and more robust solutions to this solvent selection problem. In this work, a framework for solvents selection in complex chemical production process is presented. The framework combines a group-contribution thermodynamic model and a segment activity coefficient model for predicting chemical properties and solubilities of the target chemical in newly formulated solvents. A guideline for solvent selection is also included. The potential of the selected solvents is then analysed and verified. The improvement toward the production yield, production rate, and product separation is then discussed.

  5. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-base solvent wash paint subcategory. 446.10 Section 446.10 Protection of Environment ENVIRONMENTAL...-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base solvent wash... production of oil-base paint where the tank cleaning is performed using solvents. When a plant is subject to...

  6. Crystal morphology optimization of thiamine hydrochloride in solvent system: Experimental and molecular dynamics simulation studies

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Han, Dandan; Du, Shichao; Wu, Songgu; Gong, Junbo

    2018-01-01

    Thiamine hydrochloride (THCL) was produced in methanol accompanied with agglomeration in industry, the plate like morphology of THCL in methanol was not deserve to have a good quality. Selecting a suitable solvent should be considered because solvent could be one of the essential factors to impact morphology. Methanol and methanol/ethyl acetate solvent (0.2 vol fraction of methanol) was selected as the solvent system in reactive crystallization of THCL. The experiment results show the THCL crystal morphology in methanol/ethyl acetate solvent system was granular and more regular than that in methanol. In order to explicate the different crystal morphology in different solvents, molecular dynamics (MD) simulation was introduced to simulate crystal morphology in different solvents. The attachment energy (AE) model was employed to investigate the morphology of THCL under vacuum conditions, methanol and methanol/ethyl acetate solvent conditions, respectively. The simulation crystal morphology was in a good agreement with that of experimented. The particle of THCL in methanol/ethyl acetate solvent has less tendency to agglomeration, and then it is favorable to the downstream process, such as filtration, storage and transportation.

  7. Enhancement of ionization efficiency of mass spectrometric analysis from non-electrospray ionization friendly solvents with conventional and novel ionization techniques.

    PubMed

    Jiang, Ping; Lucy, Charles A

    2015-10-15

    Electrospray ionization mass spectrometry (ESI-MS) has significantly impacted the analysis of complex biological and petroleum samples. However ESI-MS has limited ionization efficiency for samples in low dielectric and low polarity solvents. Addition of a make-up solvent through a T union or electrospray solvent through continuous flow extractive desorption electrospray ionization (CF-EDESI) enable ionization of analytes in non-ESI friendly solvents. A conventional make-up solvent addition setup was used and a CF-EDESI source was built for ionization of nitrogen-containing standards in hexane or hexane/isopropanol. Factors affecting the performance of both sources have been investigated and optimized. Both the make-up solvent addition and CF-EDESI improve the ionization efficiency for heteroatom compounds in non-ESI friendly solvents. Make-up solvent addition provides higher ionization efficiency than CF-EDESI. Neither the make-up solvent addition nor the CF-EDESI eliminates ionization suppression of nitrogen-containing compounds caused by compounds of the same chemical class. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Issues Related to Cleaning Complex Geometry Surfaces with ODC-Free Solvents

    NASA Technical Reports Server (NTRS)

    Bradford, Blake F.; Wurth, Laura A.; Nayate, Pramod D.; McCool, Alex (Technical Monitor)

    2001-01-01

    Implementing ozone depleting chemicals (ODC)-free solvents into full-scale reusable solid rocket motor cleaning operations has presented problems due to the low vapor pressures of the solvents. Because of slow evaporation, solvent retention is a problem on porous substrates or on surfaces with irregular geometry, such as threaded boltholes, leak check ports, and nozzle backfill joints. The new solvents are being evaluated to replace 1,1,1-trichloroethane, which readily evaporates from these surfaces. Selection of the solvents to be evaluated on full-scale hardware was made based on results of subscale tests performed with flat surface coupons, which did not manifest the problem. Test efforts have been undertaken to address concerns with the slow-evaporating solvents. These concerns include effects on materials due to long-term exposure to solvent, potential migration from bolthole threads to seal surfaces, and effects on bolt loading due to solvent retention in threads. Tests performed to date have verified that retained solvent does not affect materials or hardware performance. Process modifications have also been developed to assist drying, and these can be implemented if additional drying becomes necessary.

  9. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations.

    PubMed

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W; Garland, Marc V

    2013-12-28

    The partial molar volumes, V(i), of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. V(i) is determined with the direct method, while the composition of V(i) is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated V(i) deviate only 3.4 cm(3) mol(-1) (7.1%) from experimental literature values. Experimental V(i) variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of V(i) variations. In all solutions, larger V(i) are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus V(i). Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the V(i) trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute movement. This wake behind the moving solute is more pronounced in case of mobile H2 and in solvents with weaker internal interactions. However, deviations from a spherical solvent cage shape do not influence solute-solvent radial distribution functions after averaging over all solvent cage orientations and hence do not change V(i). Overall, the applied methodology reproduces V(i) and its variations reliably and the used V(i) decompositions identify the underlying reasons behind observed V(i) variations.

  10. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W.; Garland, Marc V.

    2013-12-01

    The partial molar volumes, bar V_i, of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. bar V_i is determined with the direct method, while the composition of bar V_i is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated bar V_i deviate only 3.4 cm3 mol-1 (7.1%) from experimental literature values. Experimental bar V_i variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of bar V_i variations. In all solutions, larger bar V_i are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus bar V_i. Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the bar V_i trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute movement. This wake behind the moving solute is more pronounced in case of mobile H2 and in solvents with weaker internal interactions. However, deviations from a spherical solvent cage shape do not influence solute-solvent radial distribution functions after averaging over all solvent cage orientations and hence do not change bar V_i. Overall, the applied methodology reproduces bar V_i and its variations reliably and the used bar V_i decompositions identify the underlying reasons behind observed bar V_i variations.

  11. Investigating the potential of electrospun gelatin and collagen scaffolds for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Sisson, Kristin M.

    Electrospinning provides an avenue to explore tissue engineering with the ability to produce nano- and micro-sized fibers in a non-woven construct with properties ideal for a tissue engineered scaffold including: small diameter fibers, which create a large surface to volume ratio, and an interconnected porous network that enables cell migration, good mechanical integrity and a three-dimensional structure. A tissue engineered scaffold also must be biocompatible, biodegradable, non-toxic and able to be sterilized. All of these requirements can be satisfied by choosing an appropriate polymer and solvent system for electrospinning. The main objective of this research is to create a non-toxic, flat, bone tissue engineered scaffold to place into a non-immune compromised mouse. The current bone tissue repair and replacement methodologies include using metal and ceramic replacements or autologous and autogenous bone grafts. Each of these has its own set of disadvantages. Autologous grafts are bone harvested in one location in a patient and used in another location. This procedure is expensive, often results in pain and infection at the replacement site, and the actual harvesting procedure can cause problems for the patient. Autogenous grafts are bone harvested in one patient and used in another patient. The shortcomings include low donor availability and the possibility of rejection of the implant. The other options include using metal and ceramics to create replacement bone. However, metals provide good mechanical stability but can fail due to infection and also have poor integration into natural tissue. Ceramics, on the other hand, are brittle and have very low tensile strength. The natural extracellular matrix (ECM) of bone consists mainly of collagen type I. Electrospun fiber diameters closely resemble those of the natural ECM of bone. Thus, electrospinning a natural polymer like collagen type I for bone tissue engineering could make sense. Applications for these electrospun tissue engineered scaffolds include flat bone repair (skull, scapula, pelvis and sternum) or replacement applications. In order to meet the main objective, several critical milestones must be completed. The first is to develop an electrospinning system that uses less toxic solvents. Until recently, fluorinated solvents have been used to electrospin collagen and gelatin. These fluorinated solvents are cytotoxic and, even with vacuum drying and extensive washing, these toxic solvents may remain in the electrospun scaffolds. A solvent system using less toxic, non-fluorinated solvents to electrospin collagen and gelatin is necessary. Due to the high expense of collagen type I, gelatin is being used as a material substitute since gelatin is simply denatured collagen. Gelatin, like collagen, will dissolve in aqueous media unless it is crosslinked. The chemical generally used for crosslinking gelatin is glutaraldehyde, which is considered toxic. Therefore, the second objective is to find a less toxic method to crosslink the electrospun gelatin while maintaining the fiber morphology. The new crosslinking methods must also prove to be biocompatible in vivo. Another important objective is to investigate cell penetration as a function of fiber size, which is directly proportional to pore size. The final objective involves growing bone cells such as MG63 (osteoblast-like) in the electrospun scaffolds and compare to two-dimensional culture.

  12. Co-solvents with high coulombic efficiency in propylene carbonate based electrolytes

    DOEpatents

    Liu, Gao; Zhao, Hui; Park, Sang-Jae

    2017-06-27

    A homologous series of cyclic carbonate or propylene carbonate (PC) analogue solvents with increasing length of linear alkyl substitutes were synthesized and used as co-solvents with PC for graphite based lithium ion half cells. A graphite anode reaches a capacity around 310 mAh/g in PC and its analogue co-solvents with 99.95% Coulombic efficiency. Cyclic carbonate co-solvents with longer alkyl chains are able to prevent exfoliation of graphite when used as co-solvents with PC. The cyclic carbonate co-solvents of PC compete for solvation of Li ion with PC solvent, delaying PC co-intercalation. Reduction products of PC on graphite surfaces via single-electron path form a stable Solid Electrolyte Interphase (SEI), which allows the reversible cycling of graphite.

  13. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    PubMed

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less competition with water at the specific hydration layer around the protein, thus reducing protein-solvent interactions and retaining lysozyme's native conformation. The structure-property links established in this study are considered to be applicable to other proteins.

  14. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    PubMed Central

    Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  15. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    PubMed

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-07-28

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  16. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  17. Process and apparatus for solvent extraction of oil from oil-containing diatomite ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnofsky, G. B.

    1980-12-16

    A process for solvent extraction of oil from oil bearing diatomite ore and an apparatus for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent, solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom, and solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure.

  18. Batch extracting process using magneticparticle held solvents

    DOEpatents

    Nunez, Luis; Vandergrift, George F.

    1995-01-01

    A process for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents.

  19. Computing pKa Values in Different Solvents by Electrostatic Transformation.

    PubMed

    Rossini, Emanuele; Netz, Roland R; Knapp, Ernst-Walter

    2016-07-12

    We introduce a method that requires only moderate computational effort to compute pKa values of small molecules in different solvents with an average accuracy of better than 0.7 pH units. With a known pKa value in one solvent, the electrostatic transform method computes the pKa value in any other solvent if the proton solvation energy is known in both considered solvents. To apply the electrostatic transform method to a molecule, the electrostatic solvation energies of the protonated and deprotonated molecular species are computed in the two considered solvents using a dielectric continuum to describe the solvent. This is demonstrated for 30 molecules belonging to 10 different molecular families by considering 77 measured pKa values in 4 different solvents: water, acetonitrile, dimethyl sulfoxide, and methanol. The electrostatic transform method can be applied to any other solvent if the proton solvation energy is known. It is exclusively based on physicochemical principles, not using any empirical fetch factors or explicit solvent molecules, to obtain agreement with measured pKa values and is therefore ready to be generalized to other solute molecules and solvents. From the computed pKa values, we obtained relative proton solvation energies, which agree very well with the proton solvation energies computed recently by ab initio methods, and used these energies in the present study.

  20. Processing Solvent Dependent Morphology of Diketopyrrolopyrrole (DPP) based Low Band Gap Polymer and PCBM Blends

    NASA Astrophysics Data System (ADS)

    Ferdous, Sunzida; Liu, Feng; Russell, Thomas

    2013-03-01

    Solution processing of polymer semiconductors is widely used for fabrication of low cost organic solar cells. Recently, mixed solvent systems or additive based systems for fabricating polymer solar cells have proven to be beneficial for obtaining high performance devices with multi-length scale morphologies. To control the morphology during the processing step, one needs to understand the effect of solvent as it evaporates to form the final thin film structure. In this study, we used diketopyrrolopyrrole (DPP) based low band gap polymer and phenyl-C71-butyric acid methyl ester (PCBM) blend in a series of mixed solvent systems consisting of a good solvent for both of the active material components, as well as different solvents that are good solvents for PCBM, but poor solvents for the polymer. Different evaporation times of the poor solvents during the drying process, and different solubility of the polymer in these poor solvents as well as their interaction with the substrate play an important role in the final morphology. In-situ GIWAXS studies were performed to observe the evolution of the structure as the solvent evaporates. The final morphologies of the thin film devices were also characterized by AFM, TEM, and various x-ray scattering techniques to correlate the morphology with the obtained device performances.

  1. Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent.

    PubMed

    Park, Hyun June; Joo, Jeong Chan; Park, Kyungmoon; Kim, Yong Hwan; Yoo, Young Je

    2013-02-10

    Enzyme reactions in organic solvent such as for organic synthesis have great industrial potential. However, enzymes lose their stability in hydrophilic organic solvents due to the deformation of the enzyme by the solvent. It is thus important to enhance the stability of enzymes in hydrophilic organic solvents. Previous approaches have not considered on the interaction between enzymes and solvents due to the lack of information. In this study, the structural motions of the enzyme in methanol cosolvent and the interaction between the enzyme surface and the solvent molecule were investigated using molecular dynamics simulation (MD). By analyzing the MD simulation results, the surface residues of Candida antarctica lipase B (CalB) with higher root mean square deviation (RMSD) in a methanol solvent were considered as methanol affecting site and selected for site-directed mutagenesis. The methanol affecting site was computationally redesigned by lowering the RMSD. Among the candidate mutants, the A8T, A92E, N97Q and T245S mutants showed higher organic solvent stability at various methanol concentrations. The rational approach developed in this study could be applied to the stabilization of other industrial enzymes used in organic solvents. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  3. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents.

    PubMed

    Li, Song; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Feng, Guang; Dai, Sheng; Cummings Peter, T

    2014-07-16

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance-electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation.

  4. Preferential solvation of Brooker's merocyanine in binary solvent mixtures composed of formamides and hydroxylic solvents.

    PubMed

    Bevilaqua, Tharly; da Silva, Domingas C; Machado, Vanderlei G

    2004-03-01

    The ET polarity values of 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (Brooker's merocyanine) were collected in mixed-solvent systems comprising a formamide [N,N-dimethylformamide (DMF), N-methylformamide (NMF) or formamide (FA)] and a hydroxylic (water, methanol, ethanol, propan-2-ol or butan-1-ol) solvent. Binary mixtures involving DMF and the other formamides (NMF and FA) as well as NMF and FA were also studied. These data were employed in the investigation of the preferential solvation (PS) of the probe. Each solvent system was analyzed in terms of both solute-solvent and solvent-solvent interactions. These latter interactions were responsible for the synergism observed in many binary mixtures. This synergistic behaviour was observed for DMF-propan-2-ol, DMF-butan-1-ol, FA-methanol, FA-ethanol and for the mixtures of the alcohols with NMF. All data were successfully fitted to a model based on solvent-exchange equilibria, which allowed the separation of the different contributions of the solvent species in the solvation shell of the dye. The results suggest that both hydrogen bonding and solvophobic interactions contribute to the formation of the solvent complexes responsible for the observed synergistic effects in the PS of the dye.

  5. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents.

    PubMed

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-05

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Thermodynamic of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar; Chu, Jhih-Wei

    2013-04-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  7. Thermodynamic of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar

    2013-03-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  8. Thermodynamics of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar; Chu, Jhih-Wei

    2012-10-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  9. Thermodynamic of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar

    2012-11-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  10. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    PubMed

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Aprotic solvents effect on the UV-visible absorption spectra of bixin

    NASA Astrophysics Data System (ADS)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-01

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0 → S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  12. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  13. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  14. Physical and Chemical Toeholds for Exoplanet Bioastronomy

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori

    2013-01-01

    If a search for exoplanet life were mounted today, the likely focus would be to detect oxygen (or ozone) in the atmosphere of a water-bearing rocky planet orbiting roughly 1AU from a G-type star. This appropriately conservative and practical default is necessary in large part because biological input on the question of where and how to look for life has progressed little beyond a purely empirical reliance on the example of terrestrial biology. However, fundamental physical and chemical considerations may impose significant yet universal constraints on biological potential. The liquid water + oxygen paradigm will be considered as an example, with a focus on the question, is liquid water a prerequisite for life? . Life requires a solvent to mediate interactions among biological molecules. A key class of these interactions is molecular recognition with high specificity, which is essential for high fidelity catalysis and (especially) information processing. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity greater than 10(exp 7):1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. Such considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing a feature that must be common to all biology and can therefore be considered a critical prerequisite for life.

  15. Entropy-enthalpy compensation at the single protein level: pH sensing in the bacterial channel OmpF.

    PubMed

    Alcaraz, Antonio; Queralt-Martín, María; Verdiá-Báguena, Carmina; Aguilella, Vicente M; Mafé, Salvador

    2014-12-21

    The pH sensing mechanism of the OmpF channel operates via ligand modification: increasing acidity induces the replacement of cations with protons in critical binding sites decreasing the channel conductance. Aside from the change in enthalpy associated with the binding, there is also a change in the microscopic arrangements of ligands, receptors and the surrounding solvent. We show that the pH-modulation of the single channel conduction involves small free energy changes because large enthalpic and entropic contributions change in opposite ways, demonstrating an approximate enthalpy-entropy compensation for different salts and concentrations.

  16. Environmental Hazards Education for Childbirth Educators

    PubMed Central

    Ondeck, Michele; Focareta, Judith

    2009-01-01

    The purpose of this article is to educate childbirth educators about environmental hazards and provide resources. Hazardous chemicals have been found in cord blood, placenta, meconium, and breastmilk samples. These chemicals include commonly known hazards such as lead, mercury, and environmental tobacco smoke, as well as some pesticides, solvents, products containing chlorine, and other chemicals referred to as “persistent organic pollutants.” The fetus is particularly vulnerable to environmental chemicals that can disrupt the developmental process at critical times during gestation. Childbirth educators are encouraged to inform themselves in order to inform childbearing families to take preventive action and explore alternative behaviors to reduce exposure to environmental hazards. PMID:20808430

  17. Amorphous or Crystalline? A Comparison of Particle Engineering Methods and Selection.

    PubMed

    Thakkar, Sachin G; Fathe, Kristin; Smyth, Hugh D C

    2015-01-01

    This review is intended to provide a critical account of the current goals and technologies of particle engineering regarding the production of crystalline and amorphous particles. The technologies discussed here cover traditional crystallization technologies, supercritical fluid technologies, spray drying, controlled solvent crystallization, and sonocrystallization. Also recent advancements in particle engineering including spray freezing into liquid, thin-film freeze-drying, PRINT technology are presented. The paper also examines the merits and limitations of these technologies with respect to their methods of characterization. Additionally a section discussing the utility of creating amorphous and crystalline formulation approaches in regards to bioavailability and utility in formulation is presented.

  18. 1H NMR-based metabolomics reveals interactive effects between the carrier solvent methanol and a pharmaceutical mixture in an amphibian developmental bioassay with Limnodynastes peronii.

    PubMed

    Melvin, Steven D; Jones, Oliver A H; Carroll, Anthony R; Leusch, Frederic D L

    2018-05-01

    Organic carrier solvents are used in aquatic toxicity testing to improve chemical solubility and facilitate the exploration of dose-response relationships. Both water- and solvent-control groups are normally included in these scenarios to ensure that the solvent itself has no effect on the test organism, but this fails to consider possible interactive effects between carrier solvents and contaminants of interest. We explored this topic by exposing Limnodynastes peronii tadpoles to a mixture of common water-soluble pharmaceuticals (diclofenac, metformin and valproic acid) in the presence and absence of the carrier solvent methanol, according to standard developmental bioassay methodology. Nuclear Magnetic Resonance (NMR) spectroscopy was applied as a platform for untargeted metabolomics, to compare broad sub-lethal hepatotoxicity in solvent- and solvent-free exposure scenarios. Considerable interactive effects were identified between the pharmaceutical mixture and a typical dose of methanol (0.003%). Specifically, pronounced differences were observed between the solvent- and solvent-free exposure groups for leucine, acetate, glutamine, citrate, glycogen, tyrosine, arginine, purine nucleotides and an unidentified metabolite at 6.53 ppm. Various other metabolites exhibited similar disparity related to the use of carrier solvent, but the interactions were non-significant. These results raise important questions about the use of carrier solvents for chemical exposures in aquatic ecotoxicology, and particularly for studies interested in sub-lethal mechanistic information and/or biomarker discovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Entry into and Release of Solvents by Escherichia coli in an Organic-Aqueous Two-Liquid-Phase System and Substrate Specificity of the AcrAB-TolC Solvent-Extruding Pump

    PubMed Central

    Tsukagoshi, Norihiko; Aono, Rikizo

    2000-01-01

    Growth of Escherichia coli is inhibited upon exposure to a large volume of a harmful solvent, and there is an inverse correlation between the degree of inhibition and the log POW of the solvent, where POW is the partition coefficient measured for the partition equilibrium established between the n-octanol and water phases. The AcrAB-TolC efflux pump system is involved in maintaining intrinsic solvent resistance. We inspected the solvent resistance of ΔacrAB and/or ΔtolC mutants in the presence of a large volume of solvent. Both mutants were hypersensitive to weakly harmful solvents, such as nonane (log POW = 5.5). The ΔtolC mutant was more sensitive to nonane than the ΔacrAB mutant. The solvent entered the E. coli cells rapidly. Entry of solvents with a log POW higher than 4.4 was retarded in the parent cells, and the intracellular levels of these solvents were maintained at low levels. The ΔtolC mutant accumulated n-nonane or decane (log POW = 6.0) more abundantly than the parent or the ΔacrAB mutant. The AcrAB-TolC complex likely extrudes solvents with a log POW in the range of 3.4 to 6.0 through a first-order reaction. The most favorable substrates for the efflux system were considered to be octane, heptane, and n-hexane. PMID:10940021

  20. A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.

    PubMed

    Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia

    2016-07-05

    Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.

Top