Sample records for criticality analysis modules

  1. The need analysis of chemistry module based on REACT (relating, experiencing, applying, cooperating and transferring) to improve critical thinking ability

    NASA Astrophysics Data System (ADS)

    Tyffani, D. M.; Utomo, S. B.; Rahardjo, S. B.

    2018-05-01

    This research was aimed to find out how students’ need of chemistry module based REACT (Relating, Experiencing, Applying, Cooperating and Transferring) to improve students’ critical thinking ability. The subjects of this research was the studentsof XI grade in three school in even semester of academic year 2016-2017 that contained of 48 students of Senior High School 2 Bandar Lampung, 38 students of Senior High School 3 Bandar Lampung and 46 students of Senior High School 12 Bandar Lampung. The data was gathering used non-test method by using open questionnaire with 13 questions. The results showed that 84,84% of students stated that the development of chemistry module based REACT on colloid material is needed. The analysis of hand’s book was used aspects of critical thinking proposed by Facione (2011) are interpretation, analysis, evaluation, conclusion, and explanation. Based on the result of the analysis of hand’s book at Senior High School 12 Bandar Lampung for critical thinking in colloid material that indicate 50% indicator is appropriate, while for indicator of inference and explanation only 16,67% appropriate, then for indicator analysis and evaluation doesn’t have conformity. Based on the results of the analysis shows that the hand’s book used have not empowered critical thinking ability with maximum. The development of chemistry module on colloid material is needed to overcome the problem of hand’s book that hasn’t maximized critical thinking ability, then the development of module oriented to REACT learning model (Relating, Experiencing, Applying, Cooperating, and Transferring).

  2. Addendum to the User Manual for NASGRO Elastic-Plastic Fracture Mechanics Software Module

    NASA Technical Reports Server (NTRS)

    Gregg, M. Wayne (Technical Monitor); Chell, Graham; Gardner, Brian

    2003-01-01

    The elastic-plastic fracture mechanics modules in NASGRO have been enhanced by the addition of of the following: new J-integral solutions based on the reference stress method and finite element solutions; the extension of the critical crack and critical load modules for cracks with two degrees of freedom that tear and failure by ductile instability; the addition of a proof test analysis module that includes safe life analysis, calculates proof loads, and determines the flaw screening 1 capability for a given proof load; the addition of a tear-fatigue module for ductile materials that simultaneously tear and extend by fatigue; and a multiple cycle proof test module for estimating service reliability following a proof test.

  3. Independent Orbiter Assessment (IOA): Analysis of the reaction control system, volume 3

    NASA Technical Reports Server (NTRS)

    Burkemper, V. J.; Haufler, W. A.; Odonnell, R. A.; Paul, D. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Reaction Control System (RCS). The RCS is situated in three independent modules, one forward in the orbiter nose and one in each OMS/RCS pod. Each RCS module consists of the following subsystems: Helium Pressurization Subsystem; Propellant Storage and Distribution Subsystem; Thruster Subsystem; and Electrical Power Distribution and Control Subsystem. Volume 3 continues the presentation of IOA analysis worksheets and the potential critical items list.

  4. Supply Constraints Analysis | Energy Analysis | NREL

    Science.gov Websites

    module cost, and future price could be critical to the economic viability of this PV technology. Even constraints on future CdTe PV module deployment and found that: CdTe PV modules can remain cost-competitive and 4070 GW of annual CdTe production by 2030. Cost estimates were based on NREL's manufacturing cost

  5. Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/power reactant storage and distribution subsystem

    NASA Technical Reports Server (NTRS)

    Gotch, S. M.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NAA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Power Reactants Storage and Distribution (PRSD) System Hardware is documented. The EPG/PRSD hardware is required for performing critical functions of cryogenic hydrogen and oxygen storage and distribution to the Fuel Cell Powerplants (FCP) and Atmospheric Revitalization Pressure Control Subsystem (ARPCS). Specifically, the EPG/PRSD hardware consists of the following: Hydryogen (H2) tanks; Oxygen (O2) tanks; H2 Relief Valve/Filter Packages (HRVFP); O2 Relief Valve/Filter Packages (ORVFP); H2 Valve Modules (HVM); O2 Valve Modules (OVM); and O2 and H2 lines, components, and fittings.

  6. Co-expression analysis reveals key gene modules and pathway of human coronary heart disease.

    PubMed

    Tang, Yu; Ke, Zun-Ping; Peng, Yi-Gen; Cai, Ping-Tai

    2018-02-01

    Coronary heart disease is a kind of disease which causes great injury to people world-widely. Although gene expression analyses had been performed previously, to our best knowledge, systemic co-expression analysis for this disease is still lacking to date. Microarray data of coronary heart disease was downloaded from NCBI with the accession number of GSE20681. Co-expression modules were constructed by WGCNA. Besides, the connectivity degree of eigengenes was analyzed. Furthermore, GO and KEGG enrichment analysis was performed on these eigengenes in these constructed modules. A total of 11 co-expression modules were constructed by the 3000 up-regulated genes from the 99 samples with coronary heart disease. The average number of genes in these modules was 270. The interaction analysis indicated the relative independence of gene expression in these modules. The functional enrichment analysis showed that there was a significant difference in the enriched terms and degree among these 11 modules. The results showed that modules 9 and 10 played critical roles in the occurrence of coronary disease. Pathways of hsa00190 (oxidative phosphorylation) and (hsa01130: biosynthesis of antibiotics) were thought to be closely related to the occurrence and development of coronary heart disease. Our result demonstrated that modules 9 and 10 were the most critical modules in the occurrence of coronary heart disease. Pathways as hsa00190 (oxidative phosphorylation) and (hsa01130: biosynthesis of antibiotics) had the potential to serve as the prognostic and predictive marker of coronary heart disease. © 2017 Wiley Periodicals, Inc.

  7. Natural science modules with SETS approach to improve students’ critical thinking ability

    NASA Astrophysics Data System (ADS)

    Budi, A. P. S.; Sunarno, W.; Sugiyarto

    2018-05-01

    SETS (Science, Environment, Technology and Society) approach for learning is important to be developed for middle school, since it can improve students’ critical thinking ability. This research aimed to determine feasibility and the effectiveness of Natural Science Module with SETS approach to increase their critical thinking ability. The module development was done by invitation, exploration, explanation, concept fortifying, and assessment. Questionnaire and test performed including pretest and posttest with control group design were used as data collection technique in this research. Two classes were selected randomly as samples and consisted of 32 students in each group. Descriptive data analysis was used to analyze the module feasibility and t-test was used to analyze their critical thinking ability. The results showed that the feasibility of the module development has a very good results based on assessment of the experts, practitioners and peers. Based on the t-test results, there was significant difference between control class and experiment class (0.004), with n-gain score of control and the experiment class respectively 0.270 (low) and 0.470 (medium). It showed that the module was more effective than the textbook. It was able to improve students’ critical thinking ability and appropriate to be used in learning process.

  8. WeaselBoard :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, John C.; Schwartz, Moses Daniel; Berg, Michael J.

    2013-10-01

    Critical infrastructures, such as electrical power plants and oil refineries, rely on programmable logic controllers (PLCs) to control essential processes. State of the art security cannot detect attacks on PLCs at the hardware or firmware level. This renders critical infrastructure control systems vulnerable to costly and dangerous attacks. WeaselBoard is a PLC backplane analysis system that connects directly to the PLC backplane to capture backplane communications between modules. WeaselBoard forwards inter-module traffic to an external analysis system that detects changes to process control settings, sensor values, module configuration information, firmware updates, and process control program (logic) updates. WeaselBoard provides zero-daymore » exploit detection for PLCs by detecting changes in the PLC and the process. This approach to PLC monitoring is protected under U.S. Patent Application 13/947,887.« less

  9. Over ten thousand cases and counting: acidbase.org is serving the critical care community.

    PubMed

    Elbers, Paul W G; Van Regenmortel, Niels; Gatz, Rainer

    2015-01-01

    Acidbase.org has been serving the critical care community for over a decade. The backbone of this online resource consists of Peter Stewart's original text "How to understand Acid-Base" which is freely available to everyone. In addition, Stewart's Textbook of Acid Base, which puts the theory in today's clinical context is available for purchase from the website. However, many intensivists use acidbase.org on a daily basis for its educational content and in particular for its analysis module. This review provides an overview of the history of the website, a tutorial and descriptive statistics of over 10,000 queries submitted to the analysis module.

  10. Independent Orbiter Assessment (IOA): Analysis of the reaction control system, volume 1

    NASA Technical Reports Server (NTRS)

    Burkemper, V. J.; Haufler, W. A.; Odonnell, R. A.; Paul, D. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Reaction Control System (RCS). The purpose of the RCS is to provide thrust in and about the X, Y, Z axes for External Tank (ET) separation; orbit insertion maneuvers; orbit translation maneuvers; on-orbit attitude control; rendezvous; proximity operations (payload deploy and capture); deorbit maneuvers; and abort attitude control. The RCS is situated in three independent modules, one forward in the orbiter nose and one in each OMS/RCS pod. Each RCS module consists of the following subsystems: Helium Pressurization Subsystem; Propellant Storage and Distribution Subsystem; Thruster Subsystem; and Electrical Power Distribution and Control Subsystem. Of the failure modes analyzed, 307 could potentially result in a loss of life and/or loss of vehicle.

  11. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations reported herein is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies inmore » the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of three reactor critical configurations for the Sequoyah Unit 2 Cycle 3. This unit and cycle were chosen because of the relevance in spent fuel benchmark applications: (1) the unit had a significantly long downtime of 2.7 years during the middle of cycle (MOC) 3, and (2) the core consisted entirely of burned fuel at the MOC restart. The first benchmark critical calculation was the MOC restart at hot, full-power (HFP) critical conditions. The other two benchmark critical calculations were the beginning-of-cycle (BOC) startup at both hot, zero-power (HZP) and HFP critical conditions. These latter calculations were used to check for consistency in the calculated results for different burnups and downtimes. The k{sub eff} results were in the range of 1.00014 to 1.00259 with a standard deviation of less than 0.001.« less

  12. Buffering of protons released by mineral formation during amelogenesis in mice.

    PubMed

    Bronckers, Antonius L J J; Lyaruu, Don M; Jalali, Rozita; DenBesten, Pamela K

    2016-10-01

    Regulation of pH by ameloblasts during amelogenesis is critical for enamel mineralization. We examined the effects of reduced bicarbonate secretion and the presence or absence of amelogenins on ameloblast modulation and enamel mineralization. To that end, the composition of fluorotic and non-fluorotic enamel of several different mouse mutants, including enamel of cystic fibrosis transmembrane conductance regulator-deficient (Cftr null), anion exchanger-2-deficient (Ae2a,b null), and amelogenin-deficient (Amelx null) mice, was determined by quantitative X-ray microanalysis. Correlation analysis was carried out to compare the effects of changes in the levels of sulfated-matrix (S) and chlorine (Cl; for bicarbonate secretion) on mineralization and modulation. The chloride (Cl - ) levels in forming enamel determined the ability of ameloblasts to modulate, remove matrix, and mineralize enamel. In general, the lower the Cl - content, the stronger the negative effects. In Amelx-null mice, modulation was essentially normal and the calcium content was reduced least. Retention of amelogenins in enamel of kallikrein-4-deficient (Klk4-null) mice resulted in decreased mineralization and reduced the length of the first acid modulation band without changing the total length of all acidic bands. These data suggest that buffering by bicarbonates is critical for modulation, matrix removal and enamel mineralization. Amelogenins also act as a buffer but are not critical for modulation. © 2016 Eur J Oral Sci.

  13. Seminar and Tutorial Sessions: A Case Study Evaluating Relationships with Academic Performance and Student Satisfaction

    ERIC Educational Resources Information Center

    Clarke, Karen; Lane, Andrew M.

    2005-01-01

    This study investigated the effectiveness of providing tutorial support for education students in core modules. An intervention designed to promote critical thinking skills was developed and delivered in week 11 of a 15 week module. Repeated measures analysis of variance indicated that the improvement in grades in Level 2 was significantly better…

  14. Self-Assessment in Education Management Training through Distance Learning: A Critical Analysis

    ERIC Educational Resources Information Center

    Steyn, G. M.; Kamper, G. D.

    2006-01-01

    In pursuit of quality, the learning process should be continuously improved by changing, among other things, the learning material and the way learning is facilitated. A concern for academics, teaching experience in the B.Ed. module: Personnel Management, a module offered by means of distance education at the University of South Africa, is to…

  15. GOMA: functional enrichment analysis tool based on GO modules

    PubMed Central

    Huang, Qiang; Wu, Ling-Yun; Wang, Yong; Zhang, Xiang-Sun

    2013-01-01

    Analyzing the function of gene sets is a critical step in interpreting the results of high-throughput experiments in systems biology. A variety of enrichment analysis tools have been developed in recent years, but most output a long list of significantly enriched terms that are often redundant, making it difficult to extract the most meaningful functions. In this paper, we present GOMA, a novel enrichment analysis method based on the new concept of enriched functional Gene Ontology (GO) modules. With this method, we systematically revealed functional GO modules, i.e., groups of functionally similar GO terms, via an optimization model and then ranked them by enrichment scores. Our new method simplifies enrichment analysis results by reducing redundancy, thereby preventing inconsistent enrichment results among functionally similar terms and providing more biologically meaningful results. PMID:23237213

  16. Task modulated brain connectivity of the amygdala: a meta-analysis of psychophysiological interactions.

    PubMed

    Di, Xin; Huang, Jia; Biswal, Bharat B

    2017-01-01

    Understanding functional connectivity of the amygdala with other brain regions, especially task modulated connectivity, is a critical step toward understanding the role of the amygdala in emotional processes and the interactions between emotion and cognition. The present study performed coordinate-based meta-analysis on studies of task modulated connectivity of the amygdala which used psychophysiological interaction (PPI) analysis. We first analyzed 49 PPI studies on different types of tasks using activation likelihood estimation (ALE) meta-analysis. Widespread cortical and subcortical regions showed consistent task modulated connectivity with the amygdala, including the medial frontal cortex, bilateral insula, anterior cingulate, fusiform gyrus, parahippocampal gyrus, thalamus, and basal ganglia. These regions were in general overlapped with those showed coactivations with the amygdala, suggesting that these regions and amygdala are not only activated together, but also show different levels of interactions during tasks. Further analyses with subsets of PPI studies revealed task specific functional connectivities with the amygdala that were modulated by fear processing, face processing, and emotion regulation. These results suggest a dynamic modulation of connectivity upon task demands, and provide new insights on the functions of the amygdala in different affective and cognitive processes. The meta-analytic approach on PPI studies may offer a framework toward systematical examinations of task modulated connectivity.

  17. Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westfall, Corey S.; Zubieta, Chloe; Herrmann, Jonathan

    Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid-specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how amore » highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.« less

  18. Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data.

    PubMed

    Farber, Charles R

    2010-11-01

    Bone mineral density (BMD) is influenced by a complex network of gene interactions; therefore, elucidating the relationships between genes and how those genes, in turn, influence BMD is critical for developing a comprehensive understanding of osteoporosis. To investigate the role of transcriptional networks in the regulation of BMD, we performed a weighted gene coexpression network analysis (WGCNA) using microarray expression data on monocytes from young individuals with low or high BMD. WGCNA groups genes into modules based on patterns of gene coexpression. and our analysis identified 11 gene modules. We observed that the overall expression of one module (referred to as module 9) was significantly higher in the low-BMD group (p = .03). Module 9 was highly enriched for genes belonging to the immune system-related gene ontology (GO) category "response to virus" (p = 7.6 × 10(-11)). Using publically available genome-wide association study data, we independently validated the importance of module 9 by demonstrating that highly connected module 9 hubs were more likely, relative to less highly connected genes, to be genetically associated with BMD. This study highlights the advantages of systems-level analyses to uncover coexpression modules associated with bone mass and suggests that particular monocyte expression patterns may mediate differences in BMD. © 2010 American Society for Bone and Mineral Research.

  19. [Development and application of emergency medical information management system].

    PubMed

    Wang, Fang; Zhu, Baofeng; Chen, Jianrong; Wang, Jian; Gu, Chaoli; Liu, Buyun

    2011-03-01

    To meet the needs of clinical practice of rescuing critical illness and develop the information management system of the emergency medicine. Microsoft Visual FoxPro, which is one of Microsoft's visual programming tool, is used to develop computer-aided system included the information management system of the emergency medicine. The system mainly consists of the module of statistic analysis, the module of quality control of emergency rescue, the module of flow path of emergency rescue, the module of nursing care in emergency rescue, and the module of rescue training. It can realize the system management of emergency medicine and,process and analyze the emergency statistical data. This system is practical. It can optimize emergency clinical pathway, and meet the needs of clinical rescue.

  20. Validity And Practicality of Experiment Integrated Guided Inquiry-Based Module on Topic of Colloidal Chemistry for Senior High School Learning

    NASA Astrophysics Data System (ADS)

    Andromeda, A.; Lufri; Festiyed; Ellizar, E.; Iryani, I.; Guspatni, G.; Fitri, L.

    2018-04-01

    This Research & Development study aims to produce a valid and practical experiment integrated guided inquiry based module on topic of colloidal chemistry. 4D instructional design model was selected in this study. Limited trial of the product was conducted at SMAN 7 Padang. Instruments used were validity and practicality questionnaires. Validity and practicality data were analyzed using Kappa moment. Analysis of the data shows that Kappa moment for validity was 0.88 indicating a very high degree of validity. Kappa moments for the practicality from students and teachers were 0.89 and 0.95 respectively indicating high degree of practicality. Analysis on the module filled in by students shows that 91.37% students could correctly answer critical thinking, exercise, prelab, postlab and worksheet questions asked in the module. These findings indicate that the integrated guided inquiry based module on topic of colloidal chemistry was valid and practical for chemistry learning in senior high school.

  1. Process development for automated solar cell and module production. Task 4: Automated array assembly

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A process sequence which can be used in conjunction with automated equipment for the mass production of solar cell modules for terrestrial use was developed. The process sequence was then critically analyzed from a technical and economic standpoint to determine the technological readiness of certain process steps for implementation. The steps receiving analysis were: back contact metallization, automated cell array layup/interconnect, and module edge sealing. For automated layup/interconnect, both hard automation and programmable automation (using an industrial robot) were studied. The programmable automation system was then selected for actual hardware development.

  2. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  3. Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma.

    PubMed

    Wan, Qi; Tang, Jing; Han, Yu; Wang, Dan

    2018-01-01

    Uveal melanoma is an aggressive cancer which has a high percentage recurrence and with a worse prognosis. Identify the potential prognostic markers of uveal melanoma may provide information for early detection of recurrence and treatment. RNA sequence data of uveal melanoma and patient clinic traits were obtained from The Cancer Genome Atlas (TCGA) database. Co-expression modules were built by weighted gene co -expression network analysis (WGCNA) and applied to investigate the relationship underlying modules and clinic traits. Besides, functional enrichment analysis was performed on these co-expression genes from interested modules. First, using WGCNA, identified 21 co-expression modules were constructed by the 10975 genes from the 80 human uveal melanoma samples. The number of genes in these modules ranged from 42 to 5091. Found four co -expression modules significantly correlated with three clinic traits (status, recurrence and recurrence Time). Module red, and purple positively correlated with patient's life status and recurrence Time. Module green positively correlates with recurrence. The result of functional enrichment analysis showed that the module magenta was mainly enriched genetic material assemble processes, the purple module was mainly enriched in tissue homeostasis and melanosome membrane and the module red was mainly enriched metastasis of cell, suggesting its critical role in the recurrence and development of the disease. Additionally, identified the hug gene (top connectivity with other genes) in each module. The hub gene SLC17A7, NTRK2, ABTB1 and ADPRHL1 might play a vital role in recurrence of uveal melanoma. Our findings provided the framework of co-expression gene modules of uveal melanoma and identified some prognostic markers might be detection of recurrence and treatment for uveal melanoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluation of an active learning module to teach hazard and risk in Hazard Analysis and Critical Control Points (HACCP) classes.

    PubMed

    Oyarzabal, Omar A; Rowe, Ellen

    2017-04-01

    The terms hazard and risk are significant building blocks for the organization of risk-based food safety plans. Unfortunately, these terms are not clear for some personnel working in food manufacturing facilities. In addition, there are few examples of active learning modules for teaching adult participants the principles of hazard analysis and critical control points (HACCP). In this study, we evaluated the effectiveness of an active learning module to teach hazard and risk to participants of HACCP classes provided by the University of Vermont Extension in 2015 and 2016. This interactive module is comprised of a questionnaire; group playing of a dice game that we have previously introduced in the teaching of HACCP; the discussion of the terms hazard and risk; and a self-assessment questionnaire to evaluate the teaching of hazard and risk. From 71 adult participants that completed this module, 40 participants (56%) provided the most appropriate definition of hazard, 19 participants (27%) provided the most appropriate definition of risk, 14 participants (20%) provided the most appropriate definitions of both hazard and risk, and 23 participants (32%) did not provide an appropriate definition for hazard or risk. Self-assessment data showed an improvement in the understanding of these terms (P < 0.05). Thirty participants (42%) stated that the most valuable thing they learned with this interactive module was the difference between hazard and risk, and 40 participants (65%) responded that they did not attend similar presentations in the past. The fact that less than one third of the participants answered properly to the definitions of hazard and risk at baseline is not surprising. However, these results highlight the need for the incorporation of modules to discuss these important food safety terms and include more active learning modules to teach food safety classes. This study suggests that active learning helps food personnel better understand important food safety terms that serve as building blocks for the understanding of more complex food safety topics.

  5. Technology Education Practical Activities for Elementary School Teachers.

    ERIC Educational Resources Information Center

    Pedras, Melvin J.; Braukmann, Jim

    This report contains four learning modules designed to support a range of objectives that include increasing technological literacy, and improving written and verbal communication skills, psychomotor skills, computational skills, geometry, analysis, problem solving, and other critical thinking skills. The activities described in each module…

  6. Application of the SCALE TSUNAMI Tools for the Validation of Criticality Safety Calculations Involving 233U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don; Rearden, Bradley T; Hollenbach, Daniel F

    2009-02-01

    The Radiochemical Development Facility at Oak Ridge National Laboratory has been storing solid materials containing 233U for decades. Preparations are under way to process these materials into a form that is inherently safe from a nuclear criticality safety perspective. This will be accomplished by down-blending the {sup 233}U materials with depleted or natural uranium. At the request of the U.S. Department of Energy, a study has been performed using the SCALE sensitivity and uncertainty analysis tools to demonstrate how these tools could be used to validate nuclear criticality safety calculations of selected process and storage configurations. ISOTEK nuclear criticality safetymore » staff provided four models that are representative of the criticality safety calculations for which validation will be needed. The SCALE TSUNAMI-1D and TSUNAMI-3D sequences were used to generate energy-dependent k{sub eff} sensitivity profiles for each nuclide and reaction present in the four safety analysis models, also referred to as the applications, and in a large set of critical experiments. The SCALE TSUNAMI-IP module was used together with the sensitivity profiles and the cross-section uncertainty data contained in the SCALE covariance data files to propagate the cross-section uncertainties ({Delta}{sigma}/{sigma}) to k{sub eff} uncertainties ({Delta}k/k) for each application model. The SCALE TSUNAMI-IP module was also used to evaluate the similarity of each of the 672 critical experiments with each application. Results of the uncertainty analysis and similarity assessment are presented in this report. A total of 142 experiments were judged to be similar to application 1, and 68 experiments were judged to be similar to application 2. None of the 672 experiments were judged to be adequately similar to applications 3 and 4. Discussion of the uncertainty analysis and similarity assessment is provided for each of the four applications. Example upper subcritical limits (USLs) were generated for application 1 based on trending of the energy of average lethargy of neutrons causing fission, trending of the TSUNAMI similarity parameters, and use of data adjustment techniques.« less

  7. Preliminary Structural Sizing and Alternative Material Trade Study of CEV Crew Module

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steve M.; Collier, Craig S.; Yarrington, Phillip W.

    2007-01-01

    This paper presents the results of a preliminary structural sizing and alternate material trade study for NASA s Crew Exploration Vehicle (CEV) Crew Module (CM). This critical CEV component will house the astronauts during ascent, docking with the International Space Station, reentry, and landing. The alternate material design study considers three materials beyond the standard metallic (aluminum alloy) design that resulted from an earlier NASA Smart Buyer Team analysis. These materials are graphite/epoxy composite laminates, discontinuously reinforced SiC/Al (DRA) composites, and a novel integrated panel material/concept known as WebCore. Using the HyperSizer (Collier Research and Development Corporation) structural sizing software and NASTRAN finite element analysis code, a comparison is made among these materials for the three composite CM concepts considered by the 2006 NASA Engineering and Safety Center Composite Crew Module project.

  8. Undergraduate teaching modules featuring geodesy data applied to critical social topics (GETSI: GEodetic Tools for Societal Issues)

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Charlevoix, D. J.; Miller, M. M.

    2015-12-01

    The GETSI project, funded by NSF TUES, is developing and disseminating teaching and learning materials that feature geodesy data applied to critical societal issues such as climate change, water resource management, and natural hazards (serc.carleton.edu/getsi). It is collaborative between UNAVCO (NSF's geodetic facility), Mt San Antonio College, and Indiana University. GETSI was initiated after requests by geoscience faculty for geodetic teaching resources for introductory and majors-level students. Full modules take two weeks but module subsets can also be used. Modules are developed and tested by two co-authors and also tested in a third classroom. GETSI is working in partnership with the Science Education Resource Center's (SERC) InTeGrate project on the development, assessment, and dissemination to ensure compatibility with the growing number of resources for geoscience education. Two GETSI modules are being published in October 2015. "Ice mass and sea level changes" includes geodetic data from GRACE, satellite altimetry, and GPS time series. "Imaging Active Tectonics" has students analyzing InSAR and LiDAR data to assess infrastructure earthquake vulnerability. Another three modules are in testing during fall 2015 and will be published in 2016. "Surface process hazards" investigates mass wasting hazard and risk using LiDAR data. "Water resources and geodesy" uses GRACE, vertical GPS, and reflection GPS data to have students investigating droughts in California and the High Great Plains. "GPS, strain, and earthquakes" helps students learn about infinitesimal and coseismic strain through analysis of horizontal GPS data and includes an extension module on the Napa 2014 earthquake. In addition to teaching resources, the GETSI project is compiling recommendations on successful development of geodesy curricula. The chief recommendations so far are the critical importance of including scientific experts in the authorship team and investing significant resources in data preparation (student interns can be excellent for this). GETSI also includes a research element on the way instructors adapt or adopt the resources. After publication, 4 additional testers will be recruited per module. They will provide feedback on how they choose to use the module elements in their courses.

  9. The Rts1 Regulatory Subunit of Protein Phosphatase 2A Is Required for Control of G1 Cyclin Transcription and Nutrient Modulation of Cell Size

    PubMed Central

    Artiles, Karen; Anastasia, Stephanie; McCusker, Derek; Kellogg, Douglas R.

    2009-01-01

    The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Δ cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates. PMID:19911052

  10. Computational and experimental analysis of short peptide motifs for enzyme inhibition.

    PubMed

    Fu, Jinglin; Larini, Luca; Cooper, Anthony J; Whittaker, John W; Ahmed, Azka; Dong, Junhao; Lee, Minyoung; Zhang, Ting

    2017-01-01

    The metabolism of living systems involves many enzymes that play key roles as catalysts and are essential to biological function. Searching ligands with the ability to modulate enzyme activities is central to diagnosis and therapeutics. Peptides represent a promising class of potential enzyme modulators due to the large chemical diversity, and well-established methods for library synthesis. Peptides and their derivatives are found to play critical roles in modulating enzymes and mediating cellular uptakes, which are increasingly valuable in therapeutics. We present a methodology that uses molecular dynamics (MD) and point-variant screening to identify short peptide motifs that are critical for inhibiting β-galactosidase (β-Gal). MD was used to simulate the conformations of peptides and to suggest short motifs that were most populated in simulated conformations. The function of the simulated motifs was further validated by the experimental point-variant screening as critical segments for inhibiting the enzyme. Based on the validated motifs, we eventually identified a 7-mer short peptide for inhibiting an enzyme with low μM IC50. The advantage of our methodology is the relatively simplified simulation that is informative enough to identify the critical sequence of a peptide inhibitor, with a precision comparable to truncation and alanine scanning experiments. Our combined experimental and computational approach does not rely on a detailed understanding of mechanistic and structural details. The MD simulation suggests the populated motifs that are consistent with the results of the experimental alanine and truncation scanning. This approach appears to be applicable to both natural and artificial peptides. With more discovered short motifs in the future, they could be exploited for modulating biocatalysis, and developing new medicine.

  11. Attack of the Killer Fungus: A Hypothesis-Driven Lab Module †

    PubMed Central

    Sato, Brian K.

    2013-01-01

    Discovery-driven experiments in undergraduate laboratory courses have been shown to increase student learning and critical thinking abilities. To this end, a lab module involving worm capture by a nematophagous fungus was developed. The goals of this module are to enhance scientific understanding of the regulation of worm capture by soil-dwelling fungi and for students to attain a set of established learning goals, including the ability to develop a testable hypothesis and search for primary literature for data analysis, among others. Students in a ten-week majors lab course completed the lab module and generated novel data as well as data that agrees with the published literature. In addition, learning gains were achieved as seen through a pre-module and post-module test, student self-assessment, class exam, and lab report. Overall, this lab module enables students to become active participants in the scientific method while contributing to the understanding of an ecologically relevant model organism. PMID:24358387

  12. The Complexity Analysis Tool

    DTIC Science & Technology

    1988-10-01

    overview of the complexity analysis tool ( CAT ), an automated tool which will analyze mission critical computer resources (MCCR) software. CAT is based...84 MAR UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE 19. ABSTRACT: (cont) CAT automates the metric for BASIC (HP-71), ATLAS (EQUATE), Ada (subset...UNIX 5.2). CAT analyzes source code and computes complexity on a module basis. CAT also generates graphic representations of the logic flow paths and

  13. Bcl2-associated Athanogene 3 Interactome Analysis Reveals a New Role in Modulating Proteasome Activity*

    PubMed Central

    Chen, Ying; Yang, Li-Na; Cheng, Li; Tu, Shun; Guo, Shu-Juan; Le, Huang-Ying; Xiong, Qian; Mo, Ran; Li, Chong-Yang; Jeong, Jun-Seop; Jiang, Lizhi; Blackshaw, Seth; Bi, Li-Jun; Zhu, Heng; Tao, Sheng-Ce; Ge, Feng

    2013-01-01

    Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach. PMID:23824909

  14. Hamiltonian mean-field model: effect of temporal perturbation in coupling matrix

    NASA Astrophysics Data System (ADS)

    Bhadra, Nivedita; Patra, Soumen K.

    2018-05-01

    The Hamiltonian mean-field (HMF) model is a system of fully coupled rotators which exhibits a second-order phase transition at some critical energy in its canonical ensemble. We investigate the case where the interaction between the rotors is governed by a time-dependent coupling matrix. Our numerical study reveals a shift in the critical point due to the temporal modulation. The shift in the critical point is shown to be independent of the modulation frequency above some threshold value, whereas the impact of the amplitude of modulation is dominant. In the microcanonical ensemble, the system with constant coupling reaches a quasi-stationary state (QSS) at an energy near the critical point. Our result indicates that the QSS subsists in presence of such temporal modulation of the coupling parameter.

  15. Zinc Finger Transcription Factors as Novel Genetic Switches to Modulate Metastatic Progression of Breast Tumors

    DTIC Science & Technology

    2008-05-01

    critical level of significance set up at P < 0.05, and significant differences between groups of treatments were analyzed with post hoc Turkish test ...2008 differences between groups of treatments were analyzed with post hoc Turkish test . As shown in Fig. 2A, particular ATFs synergized with chromatin...using ANOVA test and the post hoc Turkish test ; critical level of significance was set up at P < 0.05. B, real- time expression analysis of maspin mRNA

  16. Effect of the microscopic correlated-pinning landscape on the macroscopic critical current density in YBCO films

    NASA Astrophysics Data System (ADS)

    Ghigo, G.; Chiodoni, A.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Mezzetti, E.; Minetti, B.; Camerlingo, C.

    This paper deals with the mechanisms controlling the critical current density vs. field behavior in YBCO films. We base our analysis on a suitable model concerning the existence of a network of intergrain Josephson junctions whose length is modulated by defects. Irradiation with 0.25 GeV Au ions provide a useful tool to check the texture of the sample, in particular to give a gauge length reference to separate “weak” links and high- J c links.

  17. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) Stress Analysis Report, A1 Module. Addendum 1

    NASA Technical Reports Server (NTRS)

    Ely, W.

    1996-01-01

    This addendum reports the structural margins of safety and natural frequency predictions for the design following the EOS AMSU-A1 Mechanical/Structural Subsystem Critical Design Review (CDR), based on a new and more refined finite element model.

  18. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits.

    PubMed

    Cai, Yijun; Zhu, Jinfeng; Liu, Qing Huo; Lin, Timothy; Zhou, Jianyang; Ye, Longfang; Cai, Zhiping

    2015-12-14

    Modulating spatial near-infrared light for ultra-compact electro-optic devices is a critical issue in optical communication and imaging applications. To date, spatial near-infrared modulators based on graphene have been reported, but they showed limited modulation effects due to the relatively weak light-graphene interaction. In combination with graphene and metallic nanoslits, we design a kind of ultrathin near-infrared perfect absorber with enhanced spatial modulation effects and independence on a wide range of incident angles. The modulated spectral shift of central wavelength is up to 258.2 nm in the near-infrared range, which is more promising in applications than state-of-the-art devices. The modulation enhancement is attributed to the plasmonic nanoslit mode, in which the optical electric field is highly concentrated in the deep subwavelength scale and the light-graphene interaction is significantly strengthened. The physical insight is deeply revealed by a combination of equivalent circuit and electromagnetic field analysis. The design principles are not only crucial for spatial near-infrared modulators, but also provide a key guide for developing active near-infrared patch nanoantennas based on graphene.

  19. Independent Orbiter Assessment (IOA): Analysis of the instrumentation subsystem

    NASA Technical Reports Server (NTRS)

    Howard, B. S.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Instrumentation Subsystem are documented. The Instrumentation Subsystem (SS) consists of transducers, signal conditioning equipment, pulse code modulation (PCM) encoding equipment, tape recorders, frequency division multiplexers, and timing equipment. For this analysis, the SS is broken into two major groupings: Operational Instrumentation (OI) equipment and Modular Auxiliary Data System (MADS) equipment. The OI equipment is required to acquire, condition, scale, digitize, interleave/multiplex, format, and distribute operational Orbiter and payload data and voice for display, recording, telemetry, and checkout. It also must provide accurate timing for time critical functions for crew and payload specialist use. The MADS provides additional instrumentation to measure and record selected pressure, temperature, strain, vibration, and event data for post-flight playback and analysis. MADS data is used to assess vehicle responses to the flight environment and to permit correlation of such data from flight to flight. The IOA analysis utilized available SS hardware drawings and schematics for identifying hardware assemblies and components and their interfaces. Criticality for each item was assigned on the basis of the worst-case effect of the failure modes identified.

  20. An integratable microfluidic cartridge for forensic swab samples lysis.

    PubMed

    Yang, Jianing; Brooks, Carla; Estes, Matthew D; Hurth, Cedric M; Zenhausern, Frederic

    2014-01-01

    Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis, (2) compatible with various types of swab samples and chemistries, and (3) integratable to achieve a micro total analysis system (μTAS) for rapid DNA analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Risk analysis of hematopoietic stem cell transplant process: failure mode, effect, and criticality analysis and hazard analysis critical control point methods integration based on guidelines to good manufacturing practice for medicinal product ANNEX 20 (February 2008).

    PubMed

    Gianassi, S; Bisin, S; Bindi, B; Spitaleri, I; Bambi, F

    2010-01-01

    The collection and handling of hematopoietic stem cells (HSCs) must meet high quality requirements. An integrated Quality Risk Management can help to identify and contain potential risks related to HSC production. Risk analysis techniques allow one to "weigh" identified hazards, considering the seriousness of their effects, frequency, and detectability, seeking to prevent the most harmful hazards. The Hazard Analysis Critical Point, recognized as the most appropriate technique to identify risks associated with physical, chemical, and biological hazards for cellular products, consists of classifying finished product specifications and limits of acceptability, identifying all off-specifications, defining activities that can cause them, and finally establishing both a monitoring system for each Critical Control Point and corrective actions for deviations. The severity of possible effects on patients, as well as the occurrence and detectability of critical parameters, are measured on quantitative scales (Risk Priority Number [RPN]). Risk analysis was performed with this technique on manipulation process of HPC performed at our blood center. The data analysis showed that hazards with higher values of RPN with greater impact on the process are loss of dose and tracking; technical skills of operators and manual transcription of data were the most critical parameters. Problems related to operator skills are handled by defining targeted training programs, while other critical parameters can be mitigated with the use of continuous control systems. The blood center management software was completed by a labeling system with forms designed to be in compliance with standards in force and by starting implementation of a cryopreservation management module. Copyright 2010 Elsevier Inc. All rights reserved.

  2. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Functional modules F1--F8 -- Volume 2, Part 1, Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Petrie, L.M.; Westfall, R.M.

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. The manual is divided into three volumes: Volume 1--for the control module documentation; Volume 2--for functional module documentation; and Volume 3--for documentation of the data libraries and subroutine libraries.« less

  3. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration

    NASA Astrophysics Data System (ADS)

    Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.

    2018-02-01

    Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.

  4. Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions

    NASA Astrophysics Data System (ADS)

    Pathak, Pallabi; Sharma, Sumita K.; Nakamura, Y.; Bailung, H.

    2017-12-01

    The evolution of the multi-Peregrine soliton is investigated in a multicomponent plasma and found to be critically dependent on the initial bound state. Formation and splitting of Peregrine soliton, broadening of the frequency spectra provide clear evidence of nonlinear-dispersive focusing due to modulational instability, a generic mechanism for rogue wave formation in which amplitude and phase modulation grow as a result of interplay between nonlinearity and anomalous dispersion. We have shown that initial perturbation parameters (amplitude & temporal length) critically determine the number of solitons evolution. It is also found that a sufficiently long wavelength perturbation of high amplitude invoke strong nonlinearity to generate a supercontinuum state. Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) analysis of the experimental time series data clearly indicate the spatio-temporal localization and spectral broadening. We consider a model based on the frame work of Nonlinear Schrodinger equation (NLSE) to explain the experimental observations.

  5. Structural Damage Prediction and Analysis for Hypervelocity Impacts: Handbook

    NASA Technical Reports Server (NTRS)

    Elfer, N. C.

    1996-01-01

    This handbook reviews the analysis of structural damage on spacecraft due to hypervelocity impacts by meteoroid and space debris. These impacts can potentially cause structural damage to a Space Station module wall. This damage ranges from craters, bulges, minor penetrations, and spall to critical damage associated with a large hole, or even rupture. The analysis of damage depends on a variety of assumptions and the area of most concern is at a velocity beyond well controlled laboratory capability. In the analysis of critical damage, one of the key questions is how much momentum can actually be transfered to the pressure vessel wall. When penetration occurs without maximum bulging at high velocity and obliquities (if less momentum is deposited in the rear wall), then large tears and rupture may be avoided. In analysis of rupture effects of cylindrical geometry, biaxial loading, bending of the crack, a central hole strain rate and R-curve effects are discussed.

  6. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a manned spacecraft. These systems include spacecraft navigation and attitude control, propulsion, automated docking, vehicle health management and life support. ISAACC can integrate local critical subsystem health management with subsystems performing long term health monitoring. The ISAACC system and its relationship to ISHM will be presented.

  7. The Introduction and Refinement of the Assessment of Digitally Recorded Audio Presentations

    ERIC Educational Resources Information Center

    Sinclair, Stefanie

    2016-01-01

    This case study critically evaluates benefits and challenges of a form of assessment included in a final year undergraduate Religious Studies Open University module, which combines a written essay task with a digital audio recording of a short oral presentation. Based on the analysis of student and tutor feedback and sample assignments, this study…

  8. Elucidating compound mechanism of action by network perturbation analysis | Office of Cancer Genomics

    Cancer.gov

    Genome-wide identification of the mechanism of action (MoA) of small-molecule compounds characterizing their targets, effectors, and activity modulators represents a highly relevant yet elusive goal, with critical implications for assessment of compound efficacy and toxicity. Current approaches are labor intensive and mostly limited to elucidating high-affinity binding target proteins.

  9. Entropy-based divergent and convergent modular pattern reveals additive and synergistic anticerebral ischemia mechanisms.

    PubMed

    Yu, Yanan; Zhang, Xiaoxu; Li, Bing; Zhang, Yingying; Liu, Jun; Li, Haixia; Chen, Yinying; Wang, Pengqian; Kang, Ruixia; Wu, Hongli; Wang, Zhong

    2016-12-01

    Module-based network analysis of diverse pharmacological mechanisms is critical to systematically understand combination therapies and disease outcomes. We first constructed drug-target ischemic networks in baicalin, jasminoidin, ursodeoxycholic acid, and their combinations baicalin and jasminoidin as well as jasminoidin and ursodeoxycholic acid groups and identified modules using the entropy-based clustering algorithm. The modules 11, 7, 4, 8 and 3 were identified as baicalin, jasminoidin, ursodeoxycholic acid, baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid-emerged responsive modules, while 12, 8, 15, 17 and 9 were identified as disappeared responsive modules based on variation of topological similarity, respectively. No overlapping differential biological processes were enriched between baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid pure emerged responsive modules, but two were enriched by their co-disappeared responsive modules including nucleotide-excision repair and epithelial structure maintenance. We found an additive effect of baicalin and jasminoidin in a divergent pattern and a synergistic effect of jasminoidin and ursodeoxycholic acid in a convergent pattern on "central hit strategy" of regulating inflammation against cerebral ischemia. The proposed module-based approach may provide us a holistic view to understand multiple pharmacological mechanisms associated with differential phenotypes from the standpoint of modular pharmacology.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  11. An Evaluation Quality Framework for Analysing School-Based Learning (SBL) to Work-Based Learning (WBL) Transition Module

    NASA Astrophysics Data System (ADS)

    Alseddiqi, M.; Mishra, R.; Pislaru, C.

    2012-05-01

    The paper presents the results from a quality framework to measure the effectiveness of a new engineering course entitled 'school-based learning (SBL) to work-based learning (WBL) transition module' in the Technical and Vocational Education (TVE) system in Bahrain. The framework is an extended version of existing information quality frameworks with respect to pedagogical and technological contexts. It incorporates specific pedagogical and technological dimensions as per the Bahrain modern industry requirements. Users' views questionnaire on the effectiveness of the new transition module was distributed to various stakeholders including TVE teachers and students. The aim was to receive critical information in diagnosing, monitoring and evaluating different views and perceptions about the effectiveness of the new module. The analysis categorised the quality dimensions by their relative importance. This was carried out using the principal component analysis available in SPSS. The analysis clearly identified the most important quality dimensions integrated in the new module for SBL-to-WBL transition. It was also apparent that the new module contains workplace proficiencies, prepares TVE students for work placement, provides effective teaching and learning methodologies, integrates innovative technology in the process of learning, meets modern industrial needs, and presents a cooperative learning environment for TVE students. From the principal component analysis finding, to calculate the percentage of relative importance of each factor and its quality dimensions, was significant. The percentage comparison would justify the most important factor as well as the most important quality dimensions. Also, the new, re-arranged quality dimensions from the finding with an extended number of factors tended to improve the extended version of the quality information framework to a revised quality framework.

  12. Critical field-exponents for secure message-passing in modular networks

    NASA Astrophysics Data System (ADS)

    Shekhtman, Louis M.; Danziger, Michael M.; Bonamassa, Ivan; Buldyrev, Sergey V.; Caldarelli, Guido; Zlatić, Vinko; Havlin, Shlomo

    2018-05-01

    We study secure message-passing in the presence of multiple adversaries in modular networks. We assume a dominant fraction of nodes in each module have the same vulnerability, i.e., the same entity spying on them. We find both analytically and via simulations that the links between the modules (interlinks) have effects analogous to a magnetic field in a spin-system in that for any amount of interlinks the system no longer undergoes a phase transition. We then define the exponents δ, which relates the order parameter (the size of the giant secure component) at the critical point to the field strength (average number of interlinks per node), and γ, which describes the susceptibility near criticality. These are found to be δ = 2 and γ = 1 (with the scaling of the order parameter near the critical point given by β = 1). When two or more vulnerabilities are equally present in a module we find δ = 1 and γ = 0 (with β ≥ 2). Apart from defining a previously unidentified universality class, these exponents show that increasing connections between modules is more beneficial for security than increasing connections within modules. We also measure the correlation critical exponent ν, and the upper critical dimension d c , finding that ν {d}c=3 as for ordinary percolation, suggesting that for secure message-passing d c = 6. These results provide an interesting analogy between secure message-passing in modular networks and the physics of magnetic spin-systems.

  13. Effects of intermode nonlinearity and intramode nonlinearity on modulation instability in randomly birefringent two-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Li, Jin Hua; Xu, Hui; Sun, Ting Ting; Pei, Shi Xin; Ren, Hai Dong

    2018-05-01

    We analyze in detail the effects of the intermode nonlinearity (IEMN) and intramode nonlinearity (IRMN) on modulation instability (MI) in randomly birefringent two-mode optical fibers (RB-TMFs). In the anomalous dispersion regime, the MI gain enhances significantly as the IEMN and IRMN coefficients increases. In the normal dispersion regime, MI can be generated without the differential mode group delay (DMGD) effect, as long as the IEMN coefficient between two distinct modes is above a critical value, or the IRMN coefficient inside a mode is below a critical value. This critical IEMN (IRMN) coefficient depends strongly on the given IRMN (IEMN) coefficient and DMGD for a given nonlinear RB-TMF structure, and is independent on the input total power, the power ratio distribution and the group velocity dispersion (GVD) ratio between the two modes. On the other hand, in contrast to the MI band arising from the pure effect of DMGD in the normal dispersion regime, where MI vanishes after a critical total power, the generated MI band under the combined effects of IEMN and IRMN without DMGD exists for any total power and enhances with the total power. The MI analysis is verified numerically by launching perturbed continuous waves (CWs) with wave propagation method.

  14. GIS-based analysis of drinking-water supply structures: a module for microbial risk assessment.

    PubMed

    Kistemann, T; Herbst, S; Dangendorf, F; Exner, M

    2001-05-01

    Water-related infections constitute an important health impact world-wide. A set of tools serving for Microbial Risk Assessment (MRA) of waterborne diseases should comprise the entire drinking-water management system and take into account the Hazard Analysis and Critical Control Point (HACCP) concept which provides specific Critical Control Points (CCPs) reflecting each step of drinking-water provision. A Geographical Information System (GIS) study concerning water-supply structure (WSS) was conducted in the Rhein-Berg District (North Rhine-Westphalia, Germany). As a result, suitability of the existing water databases HYGRIS (hydrological basis geo-information system) and TEIS (drinking-water recording and information system) for the development of a WSS-GIS module could be demonstrated. Spatial patterns within the integrated raw and drinking-water data can easily be uncovered by GIS-specific options. The application of WSS-GIS allows a rapid visualization and analysis of drinking-water supply structure and offers huge advantages concerning microbial monitoring of raw and drinking water as well as recognition and investigation of incidents and outbreaks. Increasing requests regarding health protection and health reporting, demands for a better outbreak management and water-related health impacts of global climate change are major challenges of future water management to be tackled with methods including spatial analysis. GIS is assumed to be a very useful tool to meet these requirements.

  15. Theory in Teacher Education: Students' Views

    ERIC Educational Resources Information Center

    Higgs, Leonie G.

    2012-01-01

    This paper investigates the views of Post Graduate Certificate in Education (PGCE) students' of the theoretical component in one of the modules in their teacher education programme. In this module students are exposed to the following theoretical frameworks: Empiricism, Critical Rationalism, Feminism, Critical Theory, African Philosophy and…

  16. Statechart Analysis with Symbolic PathFinder

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.

    2012-01-01

    We report here on our on-going work that addresses the automated analysis and test case generation for software systems modeled using multiple Statechart formalisms. The work is motivated by large programs such as NASA Exploration, that involve multiple systems that interact via safety-critical protocols and are designed with different Statechart variants. To verify these safety-critical systems, we have developed Polyglot, a framework for modeling and analysis of model-based software written using different Statechart formalisms. Polyglot uses a common intermediate representation with customizable Statechart semantics and leverages the analysis and test generation capabilities of the Symbolic PathFinder tool. Polyglot is used as follows: First, the structure of the Statechart model (expressed in Matlab Stateflow or Rational Rhapsody) is translated into a common intermediate representation (IR). The IR is then translated into Java code that represents the structure of the model. The semantics are provided as "pluggable" modules.

  17. Screening of Critical Genes and MicroRNAs in Blood Samples of Patients with Ruptured Intracranial Aneurysms by Bioinformatic Analysis of Gene Expression Data.

    PubMed

    Bo, Lijuan; Wei, Bo; Wang, Zhanfeng; Kong, Daliang; Gao, Zheng; Miao, Zhuang

    2017-09-20

    BACKGROUND This study aimed to identify more potential genes and miRNAs associated with the pathogenesis of intracranial aneurysms (IAs). MATERIAL AND METHODS The dataset of GSE36791 (accession number) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened for in the blood samples from patients with ruptured IAs and controls, followed by functional and pathway enrichment analyses. In addition, gene co-expression network was constructed and significant modules were extracted from the network by WGCNA R package. Screening for miRNAs that could regulate DEGs in the modules was performed and an analysis of regulatory relationships was conducted. RESULTS A total of 304 DEGs (167 up-regulated and 137 down-regulated genes) were screened for in blood samples from patients with ruptured IAs compared with those from controls. Functional enrichment analysis showed that the up-regulated genes were mainly associated with immune response and the down-regulated DEGs were mainly concerned with the structure of ribosome and translation. Besides, six functional modules were significantly identified, including four modules enriched by up-regulated genes and two modules enriched by down-regulated genes. Thereinto, the blue, yellow, and turquoise modules of up-regulated genes were all linked with immune response. Additionally, 16 miRNAs were predicted to regulate DEGs in the three modules associated with immune response, such as hsa-miR-1304, hsa-miR-33b, hsa-miR-125b, and hsa-miR-125a-5p. CONCLUSIONS Several genes and miRNAs (such as miR-1304, miR-33b, IRS2 and KCNJ2) may take part in the pathogenesis of IAs.

  18. Building and Verifying a Predictive Model of Interruption Resumption

    DTIC Science & Technology

    2012-03-01

    field, the vocal module speaks, the motor module moves the body, and the con- figural and manipulative modules perform spatial proces- sing [14]–[16...person cannot remember themselves. As described earlier, the model depends critically upon the basic properties of declarative memories. When a...success because the model’s ability to re- trieve an episodic code depends critically on the amount of time spent on the interruption. Also recall that

  19. Critical behavior of phase interfaces in porous media: Analysis of scaling properties with the use of noncoherent and coherent light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D. A., E-mail: zimnykov@sgu.ru; Sadovoi, A. V.; Vilenskii, M. A.

    2009-02-15

    Image sequences of the surface of disordered layers of porous medium (paper) obtained under noncoherent and coherent illumination during capillary rise of a liquid are analyzed. As a result, principles that govern the critical behavior of the interface between liquid and gaseous phases during its pinning are established. By a cumulant analysis of speckle-modulated images of the surface and by the statistical analysis of binarized difference images of the surface under noncoherent illumination, it is shown that the macroscopic dynamics of the interface at the stage of pinning is mainly controlled by the power law dependence of the appearance ratemore » of local instabilities (avalanches) of the interface on the critical parameter, whereas the growth dynamics of the local instabilities is controlled by the diffusion of a liquid in a layer and weakly depends on the critical parameter. A phenomenological model is proposed for the macroscopic dynamics of the phase interface for interpreting experimental data. The values of critical indices are determined that characterize the samples under test within this model. These values are compared with the results of numerical simulation for discrete models of directed percolation corresponding to the Kardar-Parisi-Zhang equation.« less

  20. Crystal structure of FabZ-ACP complex reveals a dynamic seesaw-like catalytic mechanism of dehydratase in fatty acid biosynthesis.

    PubMed

    Zhang, Lin; Xiao, Jianfeng; Xu, Jianrong; Fu, Tianran; Cao, Zhiwei; Zhu, Liang; Chen, Hong-Zhuan; Shen, Xu; Jiang, Hualiang; Zhang, Liang

    2016-12-01

    Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP 3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS.

  1. Encapsulation and backsheet adhesion metrology for photovoltaic modules

    DOE PAGES

    Tracy, Jared; Bosco, Nick; Novoa, Fernando; ...

    2016-09-26

    Photovoltaic modules are designed to operate for decades in terrestrial environments. However, mechanical stress, moisture, and ultraviolet radiation eventually degrade protective materials in modules, particularly their adhesion properties, eventually leading to reduced solar cell performance. Despite the significance of interfacial adhesion to module durability, currently there is no reliable technique for characterizing module adhesion properties. We present a simple and reproducible metrology for characterizing adhesion in photovoltaic modules that is grounded in fundamental concepts of beam and fracture mechanics. Using width-tapered cantilever beam fracture specimens, interfacial adhesion was evaluated on relevant interfaces of encapsulation and backsheet structures of new andmore » 27-year-old historic modules. The adhesion energy, Gc [J/m 2], was calculated from the critical value of the strain energy release rate, G, using G = βP2, where β (a mechanical and geometric parameter of the fracture specimen) and P (the experimentally measured critical load) are constants. Under some circumstances where testing may result in cracking of brittle layers in the test specimen, measurement of the delamination length in addition to the critical load was necessary to determine G. Relative to new module materials, backsheet adhesion was 95% and 98% lower for historic modules that were exposed (operated in the field) and unexposed (stored on-site, but out of direct sunlight), respectively. Encapsulation adhesion was 87-94% lower in the exposed modules and 31% lower in the unexposed module. As a result, the metrology presented here can be used to improve module materials and assess long-term reliability.« less

  2. Low-noise magnetometer based on inductance modulation in high-critical-temperature superconductor coil

    NASA Astrophysics Data System (ADS)

    Enpuku, Keiji; Matsuo, Masaaki; Yoshida, Yujiro; Yamashita, Shigeya; Sasayama, Teruyoshi; Yoshida, Takashi

    2018-06-01

    We developed a magnetometer based on inductance modulation of a coil made from a high-critical-temperature superconducting material. The coil inductance was modulated over time via a modulation current applied to a magnetic wire that was inserted into the coil. The magnetic field was then converted into a signal voltage using this time-dependent inductance. The relationship between magnetometer performance and the modulation current conditions was studied. Under appropriate conditions, the magnetometer had responsivity of 885 V/T. The magnetic field noise was 1.3 pT/Hz1/2 in the white noise region and 5.6 pT/Hz1/2 at f = 1 Hz.

  3. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing

    PubMed Central

    2014-01-01

    Background RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. Results We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification” includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module “mRNA identification” includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module “Target screening” provides expression profiling analyses and graphic visualization. The module “Self-testing” offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program’s functionality. Conclusions eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory. PMID:24593312

  4. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing.

    PubMed

    Yuan, Tiezheng; Huang, Xiaoyi; Dittmar, Rachel L; Du, Meijun; Kohli, Manish; Boardman, Lisa; Thibodeau, Stephen N; Wang, Liang

    2014-03-05

    RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification" includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module "mRNA identification" includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module "Target screening" provides expression profiling analyses and graphic visualization. The module "Self-testing" offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program's functionality. eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory.

  5. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    PubMed Central

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.

    2015-01-01

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694

  6. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions.

    PubMed

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C

    2015-07-29

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  7. HDL Based FPGA Interface Library for Data Acquisition and Multipurpose Real Time Algorithms

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana M.; Pereira, R. C.; Sousa, J.; Batista, A. J. N.; Combo, A.; Carvalho, B. B.; Correia, C. M. B. A.; Varandas, C. A. F.

    2011-08-01

    The inherent parallelism of the logic resources, the flexibility in its configuration and the performance at high processing frequencies makes the field programmable gate array (FPGA) the most suitable device to be used both for real time algorithm processing and data transfer in instrumentation modules. Moreover, the reconfigurability of these FPGA based modules enables exploiting different applications on the same module. When using a reconfigurable module for various applications, the availability of a common interface library for easier implementation of the algorithms on the FPGA leads to more efficient development. The FPGA configuration is usually specified in a hardware description language (HDL) or other higher level descriptive language. The critical paths, such as the management of internal hardware clocks that require deep knowledge of the module behavior shall be implemented in HDL to optimize the timing constraints. The common interface library should include these critical paths, freeing the application designer from hardware complexity and able to choose any of the available high-level abstraction languages for the algorithm implementation. With this purpose a modular Verilog code was developed for the Virtex 4 FPGA of the in-house Transient Recorder and Processor (TRP) hardware module, based on the Advanced Telecommunications Computing Architecture (ATCA), with eight channels sampling at up to 400 MSamples/s (MSPS). The TRP was designed to perform real time Pulse Height Analysis (PHA), Pulse Shape Discrimination (PSD) and Pile-Up Rejection (PUR) algorithms at a high count rate (few Mevent/s). A brief description of this modular code is presented and examples of its use as an interface with end user algorithms, including a PHA with PUR, are described.

  8. An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program.

    PubMed

    Tasseff, Ryan; Jensen, Holly A; Congleton, Johanna; Dai, David; Rogers, Katharine V; Sagar, Adithya; Bunaciu, Rodica P; Yen, Andrew; Varner, Jeffrey D

    2017-10-30

    In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.

  9. Thouless dephasing and amplitude modulation of Aharonov-Bohm oscillations in mesoscopic InGaAs/InAlAs interferometers

    NASA Astrophysics Data System (ADS)

    Heremans, J. J.; Ren, S. L.; Zhang, Yao; Gaspe, C. K.; Vijeyaragunathan, S.; Mishima, T. D.; Santos, M. B.

    2014-03-01

    Aharonov-Bohm oscillations in the low-temperature magnetoresistance of mesoscopic interferometric rings are investigated for their dependence on bias current and temperature, and to explore origins of the observed amplitude modulation in magnetic field. Single-ring interferometers of radius 650 nm and lithographic arm width 300 nm were fabricated on a high-mobility high-density InGaAs/InAlAs heterostructure. The rings show interference oscillations over a wide range of magnetic fields, with amplitudes subject to modulation with applied magnetic field. The quantum phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by comparative study of the amplitude. The variation of the amplitude with bias current and temperature shows the existence of a critical excitation energy consistent with the Thouless energy for quantum phase smearing. Autocorrelation and Fourier analysis are used to determine the quasi-period of the amplitude modulation, which is found to be consistent with an origin in the magnetic flux threading the finite width of the interferometer arms, changing the mesoscopic realization of the system. Supported by DOE DE-FG02-08ER46532 (VT) and NSF DMR-0520550 (UoO).

  10. Manned geosynchronous mission requirements and systems analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    The crew capsule of the MOTV was studied with emphasis on crew accommodations, crew capsule functional requirements, subsystem interface definition between crew module and propulsion module, and man rating requirements. Competing mission modes were studied covering a wide range of propulsion concepts. These included one stage, one and one half stage, and two stage concepts using either the standard STS or an augmented STS. Several deorbit concepts were considered, including all propulsive modes, direct re-entry, and aeromaneuvering skip in skip out in the upper reaches of Earth's atmosphere. A five year plan covering costs, schedules, and critical technology issues is discussed.

  11. Phenomenological analysis of thermal hysteresis in Ni-Mn-Ga Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zagrebin, M. A.; Sokolovskiy, V. V.; Buchelnikov, V. D.

    2018-05-01

    The manipulation of thermal hysteresis in Ni-Mn-Ga Heusler alloys with coupled magnetostructural phase transition is studied theoretically using the Landau theory, including magnetic, elastic and crystal lattice modulation order parameters as well as an external magnetic field. It is shown that for the assigned combination of phenomenological parameters, in the phase diagrams, the Austenite-Martensite first-order phase transition has a finite (critical) point in which the thermal hysteresis is disappeared. Moreover, this point depends on the relation between modulation and elastic constants as well as on the magnetic field. Obtained results have been compared with other theoretical end experimental data.

  12. The relationship between amplitude modulation, coherent structure and critical layers in wall turbulence

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley

    2015-11-01

    The importance of critical layers in determining aspects of the structure of wall turbulence is discussed. We have shown (Jacobi & McKeon, 2013) that the amplitude modulation coefficient investigated most recently by Hutchins & Marusic (2007) and co-authors, which describes the correlation between large scales above a (spatial) wavelength filter with the envelope of small scales below the filter, is dominated by very large scale motion (VLSM) at a single wavelength. The resolvent analysis of McKeon & Sharma (2010) gives a suitable model for the three-dimensional, three-component form of the VLSM and energetic structure at other wavelengths. This model is used to identify the three-dimensional spatial variation of instantaneous critical layers in the presence of a mean velocity profile and to relate this to earlier observations of coherent structure in unperturbed flows (both experimental and via the resolvent model, Sharma & McKeon, 2013); to the phase relationships between scales identified by Chung & McKeon (2010, 2014); and to the structure of wall turbulence that has been modified by the addition of single synthetic scales, e.g. Jacobi & McKeon (2011), Duvvuri & McKeon (2015). The support of AFOSR under grant number FA 9550-12-1-0469 is gratefully acknowledged.

  13. Overview of the NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey

    2001-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between then NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Glenn Research Center (LeRC), and Pratt & Whitney (P&W). The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration. The development of the NCC beta version was essentially completed in June 1998. Technical details of the NCC elements are given in the Reference List. Elements such as the baseline flow solver, turbulence module, and the chemistry module, have been extensively validated; and their parallel performance on large-scale parallel systems has been evaluated and optimized. However the scalar PDF module and the Spray module, as well as their coupling with the baseline flow solver, were developed in a small-scale distributed computing environment. As a result, the validation of the NCC beta version as a whole was quite limited. Current effort has been focused on the validation of the integrated code and the evaluation/optimization of its overall performance on large-scale parallel systems.

  14. Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation

    PubMed Central

    Tang, Liang; Cheng, Pengle

    2017-01-01

    Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic–plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis. PMID:28746390

  15. Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation.

    PubMed

    Tang, Liang; Zhang, Jinjie; Cheng, Pengle

    2017-01-01

    Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.

  16. Entropy-based divergent and convergent modular pattern reveals additive and synergistic anticerebral ischemia mechanisms

    PubMed Central

    Yu, Yanan; Zhang, Xiaoxu; Li, Bing; Zhang, Yingying; Liu, Jun; Li, Haixia; Chen, Yinying; Wang, Pengqian; Kang, Ruixia; Wu, Hongli

    2016-01-01

    Module-based network analysis of diverse pharmacological mechanisms is critical to systematically understand combination therapies and disease outcomes. We first constructed drug-target ischemic networks in baicalin, jasminoidin, ursodeoxycholic acid, and their combinations baicalin and jasminoidin as well as jasminoidin and ursodeoxycholic acid groups and identified modules using the entropy-based clustering algorithm. The modules 11, 7, 4, 8 and 3 were identified as baicalin, jasminoidin, ursodeoxycholic acid, baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid-emerged responsive modules, while 12, 8, 15, 17 and 9 were identified as disappeared responsive modules based on variation of topological similarity, respectively. No overlapping differential biological processes were enriched between baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid pure emerged responsive modules, but two were enriched by their co-disappeared responsive modules including nucleotide-excision repair and epithelial structure maintenance. We found an additive effect of baicalin and jasminoidin in a divergent pattern and a synergistic effect of jasminoidin and ursodeoxycholic acid in a convergent pattern on “central hit strategy” of regulating inflammation against cerebral ischemia. The proposed module-based approach may provide us a holistic view to understand multiple pharmacological mechanisms associated with differential phenotypes from the standpoint of modular pharmacology. PMID:27480252

  17. ROMPS critical design review. Volume 3: Furnace module design documentation

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    As part of the furnace module design documentation, the furnace module Easylab programs definitions and command variables are described. Also included are Easylab commands flow charts and fault conditions.

  18. Catastrophic Failure Modes Assessment of the International Space Station Alpha

    NASA Technical Reports Server (NTRS)

    Lutz, B. E. P.; Goodwin, C. J.

    1996-01-01

    This report summarizes a series of analyses to quantify the hazardous effects of meteoroid/debris penetration of Space Station Alpha manned module protective structures. These analyses concentrate on determining (a) the critical crack length associated with six manned module pressure wall designs that, if exceeded, would lead to unstopped crack propagation and rupture of manned modules, and (b) the likelihood of crew or station loss following penetration of unsymmetrical di-methyl hydrazine tanks aboard the proposed Russian FGB ('Tug') propulsion module and critical elements aboard the control moment gyro module (SPP-1). Results from these quantified safety analyses are useful in improving specific design areas, thereby reducing the overall likelihood of crew or station loss following orbital debris penetration.

  19. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, goodmore » thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.« less

  20. Mutational analysis of human RNA polymerase II subunit 5 (RPB5): the residues critical for interactions with TFIIF subunit RAP30 and hepatitis B virus X protein.

    PubMed

    Le, Thi Thu Thuy; Zhang, Shijun; Hayashi, Naoyuki; Yasukawa, Mami; Delgermaa, Luvsanjav; Murakami, Seishi

    2005-09-01

    RNA polymerase II (RNAPII) subunit 5 (RPB5) is positioned close to DNA downstream of the initiation site and is the site of interaction with several regulators. Hepatitis B virus X protein (HBx) binds the central part of RPB5 to modulate activated transcription, and TFIIF subunit RAP30 interacts with the same part of RPB5 that is critical for the association between TFIIF and RNAPII. However the residues necessary for these interactions remain unknown. Here we report systematic mutagenesis of the central part of RPB5 using two-step alanine scanning libraries to pinpoint critical residues for its binding to RAP30 in the TFIIF complex and/or to HBx, and identified these residues in both mammalian cells and in an in vitro binding assay. Four residues, F76, I104, T111 and S113, are critical for both TFIIF- and HBx-binding, indicating the overlapping nature of the sites of interaction. In addition, V74 and N98 are required for HBx-binding, and T56 and L58 are needed for RAP30-binding. Interestingly the residues exposed to solvent, T111 and S113, are very close to the DNA, implying that two factors may modulate the interaction between DNA and RPB5.

  1. A Series of MATLAB Learning Modules to Enhance Numerical Competency in Applied Marine Sciences

    NASA Astrophysics Data System (ADS)

    Fischer, A. M.; Lucieer, V.; Burke, C.

    2016-12-01

    Enhanced numerical competency to navigate the massive data landscapes are critical skills students need to effectively explore, analyse and visualize complex patterns in high-dimensional data for addressing the complexity of many of the world's problems. This is especially the case for interdisciplinary, undergraduate applied marine science programs, where students are required to demonstrate competency in methods and ideas across multiple disciplines. In response to this challenge, we have developed a series of repository-based data exploration, analysis and visualization modules in MATLAB for integration across various attending and online classes within the University of Tasmania. The primary focus of these modules is to teach students to collect, aggregate and interpret data from large on-line marine scientific data repositories to, 1) gain technical skills in discovering, accessing, managing and visualising large, numerous data sources, 2) interpret, analyse and design approaches to visualise these data, and 3) to address, through numerical approaches, complex, real-world problems, that the traditional scientific methods cannot address. All modules, implemented through a MATLAB live script, include a short recorded lecture to introduce the topic, a handout that gives an overview of the activities, an instructor's manual with a detailed methodology and discussion points, a student assessment (quiz and level-specific challenge task), and a survey. The marine science themes addressed through these modules include biodiversity, habitat mapping, algal blooms and sea surface temperature change and utilize a series of marine science and oceanographic data portals. Through these modules students, with minimal experience in MATLAB or numerical methods are introduced to array indexing, concatenation, sorting, and reshaping, principal component analysis, spectral analysis and unsupervised classification within the context of oceanographic processes, marine geology and marine community ecology.

  2. Optics-based approach to thermal management of photovoltaics: Selective-spectral and radiative cooling

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang; ...

    2017-01-20

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  3. Numerical study on the thermal management system of a liquid metal battery module

    NASA Astrophysics Data System (ADS)

    Guo, Zhenlin; Xu, Cheng; Li, Wei; Zhu, Fangfang; Li, Haomiao; Wang, Kangli; Cheng, Shijie; Jiang, Kai

    2018-07-01

    Liquid metal battery (LMB), with three-liquid-layer structure and high operating temperature (300-700 °C), is a newly emerging technology for large scale energy storage applications. A thermal management system is critical to achieve satisfied LMB performance and extend the life of batteries. In this work, an improved coupling model composing of a 3D heat-transfer model and a 1D electrochemical model is developed for the thermal analysis of a Li||Sb-Sn LMBs module (5.5 kWh). Key results including transient values, the contribution ratio of heat sources, temperature homogeneity and distribution, as well as the energy efficiency of the battery module, are presented. Based on the coupling model, the changeable-power-heating mode, sand filling material and vacuum insulation are further proposed to achieve the high energy efficiency and optimal performance of the LMBs module. Moreover, the LMBs module can achieve "self-heating" when operated at 0.2 C charge/discharge, under the vacuum insulation (0.01 W m-1 K-1 thermal conductivity, 100 mm thickness), requiring no external heating to keep the batteries at operating temperature.

  4. A Novel Approach to Thermal Design of Solar Modules: Selective-Spectral and Radiative Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Dubey, Rajiv; Chattopadhyay, Shashwata

    2016-11-21

    For commercial solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 degrees C higher than the ambient. In the long run, extreme self-heating may erode efficiency and shorten lifetime, thereby, dramatically reducing the total energy output by almost ~10% Therefore, it is critically important to develop effective and practical cooling methods to combat PV self-heating. In this paper, we explore two fundamental sources of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical and thermal properties of the solar module to eliminatemore » the parasitic absorption (selective-spectral cooling) and enhance the thermal emission to the cold cosmos (radiative cooling). The proposed technique should cool the module by ~10 degrees C, to be reflected in significant long-term energy gain (~ 3% to 8% over 25 years) for PV systems under different climatic conditions.« less

  5. Summary and Synthesis: How to Present a Research Proposal.

    PubMed

    Setia, Maninder Singh; Panda, Saumya

    2017-01-01

    This concluding module attempts to synthesize the key learning points discussed during the course of the previous ten sets of modules on methodology and biostatistics. The objective of this module is to discuss how to present a model research proposal, based on whatever was discussed in the preceding modules. The lynchpin of a research proposal is the protocol, and the key component of a protocol is the study design. However, one must not neglect the other areas, be it the project summary through which one catches the eyes of the reviewer of the proposal, or the background and the literature review, or the aims and objectives of the study. Two critical areas in the "methods" section that cannot be emphasized more are the sampling strategy and a formal estimation of sample size. Without a legitimate sample size, none of the conclusions based on the statistical analysis would be valid. Finally, the ethical parameters of the study should be well understood by the researchers, and that should get reflected in the proposal.

  6. Online interprofessional learning: the student experience.

    PubMed

    Miers, Margaret E; Clarke, Brenda A; Pollard, Katherine C; Rickaby, Caroline E; Thomas, Judith; Turtle, Ann

    2007-10-01

    Health and social care students in a faculty in the United Kingdom learn together in an interprofessional module through online discussion boards. The module assessment encourages engagement with technology and with group members through peer review. An evaluation of student experience of the module gathered data from 48 students participating in 10 online groups. Analysis of contributions to discussion boards, and transcripts of interviews with 20 students revealed differing levels of participation between individuals and groups. Many students were apprehensive about the technology and there were different views about the advantages and disadvantages of online learning. Students interacted in a supportive manner. Group leadership was seen as associated with maintaining motivation to complete work on time. Students reported benefiting from the peer review process but were uncomfortable with critiquing each other's work. Sensitivity about group process may have inhibited the level of critical debate. Nevertheless the module brought together students from different professions and different sites. Examples of sharing professional knowledge demonstrated successful interprofessional collaboration online.

  7. Summary and Synthesis: How to Present a Research Proposal

    PubMed Central

    Setia, Maninder Singh; Panda, Saumya

    2017-01-01

    This concluding module attempts to synthesize the key learning points discussed during the course of the previous ten sets of modules on methodology and biostatistics. The objective of this module is to discuss how to present a model research proposal, based on whatever was discussed in the preceding modules. The lynchpin of a research proposal is the protocol, and the key component of a protocol is the study design. However, one must not neglect the other areas, be it the project summary through which one catches the eyes of the reviewer of the proposal, or the background and the literature review, or the aims and objectives of the study. Two critical areas in the “methods” section that cannot be emphasized more are the sampling strategy and a formal estimation of sample size. Without a legitimate sample size, none of the conclusions based on the statistical analysis would be valid. Finally, the ethical parameters of the study should be well understood by the researchers, and that should get reflected in the proposal. PMID:28979004

  8. Independent Orbiter Assessment (IOA): Analysis of the rudder/speed brake subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Rudder/Speedbrake Actuation Mechanism is documented. The function of the Rudder/Speedbrake (RSB) is to provide directional control and to provide a means of energy control during entry. The system consists of two panels on a vertical hinge mounted on the aft part of the vertical stabilizer. These two panels move together to form a rudder but split apart to make a speedbrake. The Rudder/Speedbrake Actuation Mechanism consists of the following elements: (1) Power Drive Unit (PDU) which is composed of hydraulic valve module and a hydraulic motor-powered gearbox which contains differentials and mixer gears to provide PDU torque output; (2) four geared rotary actuators which apply the PDU generated torque to the rudder/speedbrake panels; and (3) ten torque shafts which join the PDU to the rotary actuators and interconnect the four rotary actuators. Each level of hardware was evaluated and analyzed for possible failures and causes. Criticality was assigned based upon the severity of the effect for each failure mode. Critical RSB failures which result in potential loss of vehicle control were mainly due to loss of hydraulic fluid, fluid contaminators, and mechanical failures in gears and shafts.

  9. Teaching CSD Graduate Students to Think Critically, Apply Evidence, and Write Professionally

    ERIC Educational Resources Information Center

    Grillo, Elizabeth U.; Koenig, Mareile A.; Gunter, Cheryl D.; Kim, Sojung

    2015-01-01

    The purpose of this study was to assess the effectiveness of teaching modules designed to enhance the use of critical thinking (CT), evidence-based practice (EBP), and professional writing (PW) skills by graduate students in communication sciences and disorders. Three single-session teaching modules were developed to highlight key features of CT,…

  10. An integrative approach to inferring biologically meaningful gene modules.

    PubMed

    Cho, Ji-Hoon; Wang, Kai; Galas, David J

    2011-07-26

    The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.

  11. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein

    PubMed Central

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-01-01

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223

  12. Perforated Patch-clamp Recording of Mouse Olfactory Sensory Neurons in Intact Neuroepithelium: Functional Analysis of Neurons Expressing an Identified Odorant Receptor

    PubMed Central

    Jarriault, David; Grosmaitre, Xavier

    2015-01-01

    Analyzing the physiological responses of olfactory sensory neurons (OSN) when stimulated with specific ligands is critical to understand the basis of olfactory-driven behaviors and their modulation. These coding properties depend heavily on the initial interaction between odor molecules and the olfactory receptor (OR) expressed in the OSNs. The identity, specificity and ligand spectrum of the expressed OR are critical. The probability to find the ligand of the OR expressed in an OSN chosen randomly within the epithelium is very low. To address this challenge, this protocol uses genetically tagged mice expressing the fluorescent protein GFP under the control of the promoter of defined ORs. OSNs are located in a tight and organized epithelium lining the nasal cavity, with neighboring cells influencing their maturation and function. Here we describe a method to isolate an intact olfactory epithelium and record through patch-clamp recordings the properties of OSNs expressing defined odorant receptors. The protocol allows one to characterize OSN membrane properties while keeping the influence of the neighboring tissue. Analysis of patch-clamp results yields a precise quantification of ligand/OR interactions, transduction pathways and pharmacology, OSNs' coding properties and their modulation at the membrane level.  PMID:26275097

  13. Structural Element Testing in Support of the Design of the NASA Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Wade C.; Thesken, John C.; Schleicher, Eric; Wagner, Perry; Kirsch, Michael T.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). For the design and manufacturing of the CCM, the team adopted the building block approach where design and manufacturing risks were mitigated through manufacturing trials and structural testing at various levels of complexity. Following NASA's Structural Design Verification Requirements, a further objective was the verification of design analysis methods and the provision of design data for critical structural features. Test articles increasing in complexity from basic material characterization coupons through structural feature elements and large structural components, to full-scale structures were evaluated. This paper discusses only four elements tests three of which include joints and one that includes a tapering honeycomb core detail. For each test series included are specimen details, instrumentation, test results, a brief analysis description, test analysis correlation and conclusions.

  14. Error tolerance analysis of wave diagnostic based on coherent modulation imaging in high power laser system

    NASA Astrophysics Data System (ADS)

    Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2018-02-01

    Coherent modulation imaging providing fast convergence speed and high resolution with single diffraction pattern is a promising technique to satisfy the urgent demands for on-line multiple parameter diagnostics with single setup in high power laser facilities (HPLF). However, the influence of noise on the final calculated parameters concerned has not been investigated yet. According to a series of simulations with twenty different sampling beams generated based on the practical parameters and performance of HPLF, the quantitative analysis based on statistical results was first investigated after considering five different error sources. We found the background noise of detector and high quantization error will seriously affect the final accuracy and different parameters have different sensitivity to different noise sources. The simulation results and the corresponding analysis provide the potential directions to further improve the final accuracy of parameter diagnostics which is critically important to its formal applications in the daily routines of HPLF.

  15. Logistics Modeling for Lunar Exploration Systems

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark R.; Merrill, R. Gabe; Earle, Kevin D.

    2008-01-01

    The extensive logistics required to support extended crewed operations in space make effective modeling of logistics requirements and deployment critical to predicting the behavior of human lunar exploration systems. This paper discusses the software that has been developed as part of the Campaign Manifest Analysis Tool in support of strategic analysis activities under the Constellation Architecture Team - Lunar. The described logistics module enables definition of logistics requirements across multiple surface locations and allows for the transfer of logistics between those locations. A key feature of the module is the loading algorithm that is used to efficiently load logistics by type into carriers and then onto landers. Attention is given to the capabilities and limitations of this loading algorithm, particularly with regard to surface transfers. These capabilities are described within the context of the object-oriented software implementation, with details provided on the applicability of using this approach to model other human exploration scenarios. Some challenges of incorporating probabilistics into this type of logistics analysis model are discussed at a high level.

  16. Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations

    PubMed Central

    Hardstone, Richard; Poil, Simon-Shlomo; Schiavone, Giuseppina; Jansen, Rick; Nikulin, Vadim V.; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus

    2012-01-01

    Recent years of research have shown that the complex temporal structure of ongoing oscillations is scale-free and characterized by long-range temporal correlations. Detrended fluctuation analysis (DFA) has proven particularly useful, revealing that genetic variation, normal development, or disease can lead to differences in the scale-free amplitude modulation of oscillations. Furthermore, amplitude dynamics is remarkably independent of the time-averaged oscillation power, indicating that the DFA provides unique insights into the functional organization of neuronal systems. To facilitate understanding and encourage wider use of scaling analysis of neuronal oscillations, we provide a pedagogical explanation of the DFA algorithm and its underlying theory. Practical advice on applying DFA to oscillations is supported by MATLAB scripts from the Neurophysiological Biomarker Toolbox (NBT) and links to the NBT tutorial website http://www.nbtwiki.net/. Finally, we provide a brief overview of insights derived from the application of DFA to ongoing oscillations in health and disease, and discuss the putative relevance of criticality for understanding the mechanism underlying scale-free modulation of oscillations. PMID:23226132

  17. Task-dependent modulation of regions in the left temporal cortex during auditory sentence comprehension.

    PubMed

    Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping

    2015-01-01

    Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Orion Crew Module Adapter

    NASA Image and Video Library

    2015-11-12

    Offloading of the Orion Crew Module Adapter, CMA, at Plum Brook Station. The adapter will connect Orion’s crew module to a service module provided by ESA (European Space Agency). NASA is preparing for a series of tests that will check out the Orion European Service Module, a critical part of the spacecraft that will be launched on future missions to an asteroid and on toward Mars.

  19. Racial bias shapes social reinforcement learning.

    PubMed

    Lindström, Björn; Selbing, Ida; Molapour, Tanaz; Olsson, Andreas

    2014-03-01

    Both emotional facial expressions and markers of racial-group belonging are ubiquitous signals in social interaction, but little is known about how these signals together affect future behavior through learning. To address this issue, we investigated how emotional (threatening or friendly) in-group and out-group faces reinforced behavior in a reinforcement-learning task. We asked whether reinforcement learning would be modulated by intergroup attitudes (i.e., racial bias). The results showed that individual differences in racial bias critically modulated reinforcement learning. As predicted, racial bias was associated with more efficiently learned avoidance of threatening out-group individuals. We used computational modeling analysis to quantitatively delimit the underlying processes affected by social reinforcement. These analyses showed that racial bias modulates the rate at which exposure to threatening out-group individuals is transformed into future avoidance behavior. In concert, these results shed new light on the learning processes underlying social interaction with racial-in-group and out-group individuals.

  20. Bio-inspired intelligent evaporation modulation in a thermo-sensitive nanogel colloid solution for self-thermoregulation.

    PubMed

    Huang, Zhi; Liu, Kang; Feng, Yanhui; Zhou, Jun; Zhang, Xinxin

    2017-06-28

    Intelligent evaporation and temperature modulation plays an important role in self-regulation of living organisms and many industrial applications. Here we demonstrate that a poly(N-isopropylacrylamide) (PNIPAM) nanogel colloid solution can spontaneously and intelligently modulate its evaporation rate with temperature variation, which has a larger evaporation rate than distilled water at a temperature higher than its lower critical solution temperature (LCST) and a smaller evaporation rate at a temperature lower than its LCST. It performs just like human skin. Theoretical analysis based on the thermodynamic derivation reveals that the evaporation rate transition around the LCST may originate from the saturated vapor pressure transition caused by the status transformation of the PNIPAM additives. An intelligent thermoregulation system based on the PNIPAM colloid solution is also demonstrated, illustrating its potential for intelligent temperature control and acting as an artificial skin.

  1. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 1, Part 2: Control modules S1--H1; Revision 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.« less

  2. Nodes packaging option for Space Station application

    NASA Technical Reports Server (NTRS)

    So, Kenneth T.; Hall, John B., Jr.

    1988-01-01

    Space Station nodes packaging analyses are presented relative to moving environmental control and life support system (ECLSS) equipment from the habitability (HAB) module to node 4, in order to provide more living space and privacy for the crew, remove inherently noisy equipment from the crew quarter, retain crew waste collection and processing equipment in one location, and keep objectionable odor away from the living quarters. In addition, options for moving external electronic equipment from the Space Station truss to pressurized node 3 were evaluated in order to reduce the crew extravehicular-activity time required to install and maintain the equipment. Node size considered in this analysis is 3.66 m in diameter and 5.38 m long. The analysis shows that significant external electronic equipment could be relocated from the Space Station truss structure to node 3, and nonlife critical ECLSS HAB module equipment could be moved to node 4.

  3. Lightweight Trauma Module - LTM

    NASA Technical Reports Server (NTRS)

    Hatfield, Thomas

    2008-01-01

    Current patient movement items (PMI) supporting the military's Critical Care Air Transport Team (CCATT) mission as well as the Crew Health Care System for space (CHeCS) have significant limitations: size, weight, battery duration, and dated clinical technology. The LTM is a small, 20 lb., system integrating diagnostic and therapeutic clinical capabilities along with onboard data management, communication services and automated care algorithms to meet new Aeromedical Evacuation requirements. The Lightweight Trauma Module is an Impact Instrumentation, Inc. project with strong Industry, DoD, NASA, and Academia partnerships aimed at developing the next generation of smart and rugged critical care tools for hazardous environments ranging from the battlefield to space exploration. The LTM is a combination ventilator/critical care monitor/therapeutic system with integrated automatic control systems. Additional capabilities are provided with small external modules.

  4. Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-Delay Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Chuss, D. T.; Marriage, T. A.; Wollack, E. J.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Fixsen, D. J.; Harrington, K.; hide

    2016-01-01

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/ f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r= 0.01. Indeed, r less than 0.01 is achievable with commensurately improved characterizations and controls.

  5. Avionics Architecture Standards as an Approach to Obsolescence Management

    DTIC Science & Technology

    2000-10-01

    and goals is one method of system. The term System Architecture refers to a achieving the necessary critical mass of skilled and consistent set of such...Processing Module (GPM), Mass Memory Module executed on the modules within an ASAAC system will (MMM) and Power Conversion Module (PCM). be stored in a central...location, the Mass Memory * MOS -Module Support Layer to Operating System Module (MMM). Therefore, if modules are to be The purpose of the MOS

  6. ROMPS critical design review. Volume 2: Robot module design documentation

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    The robot module design documentation for the Remote Operated Materials Processing in Space (ROMPS) experiment is compiled. This volume presents the following information: robot module modifications; Easylab commands definitions and flowcharts; Easylab program definitions and flowcharts; robot module fault conditions and structure charts; and C-DOC flow structure and cross references.

  7. Simulation verification techniques study. Task report 4: Simulation module performance parameters and performance standards

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Shuttle simulation software modules in the environment, crew station, vehicle configuration and vehicle dynamics categories are discussed. For each software module covered, a description of the module functions and operational modes, its interfaces with other modules, its stored data, inputs, performance parameters and critical performance parameters is given. Reference data sources which provide standards of performance are identified for each module. Performance verification methods are also discussed briefly.

  8. Periodically Self Restoring Redundant Systems for VLSI Based Highly Reliable Design,

    DTIC Science & Technology

    1984-01-01

    fault tolerance technique for realizing highly reliable computer systems for critical control applications . However, VL.SI technology has imposed a...operating correctly; failed critical real time control applications . n modules are discarded from the vote. the classical "static" voted redundancy...redundant modules are failure number of InterconnecttIon3. This results In f aree. However, for applications requiring higm modular complexity because

  9. An integrative approach to inferring biologically meaningful gene modules

    PubMed Central

    2011-01-01

    Background The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. Results We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. Conclusions The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level. PMID:21791051

  10. Human Health in the Balance. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Meade, Melinda S.; Washburn, Sarah; Holman, Jeremy T.

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module states that human health is a product of complex interactions among…

  11. The Geography of Greenhouse Gas Emissions: Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Liverman, Diana; Solem, Michael

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module examines the geography of human activities that produce the major…

  12. Critical Software for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Preden, Antonio; Kaschner, Jens; Rettig, Felix; Rodriggs, Michael

    2017-01-01

    The NASA Orion vehicle that will fly to the moon in the next years is propelled along its mission by the European Service Module (ESM), developed by ESA and its prime contractor Airbus Defense and Space. This paper describes the development of the Propulsion Drive Electronics (PDE) Software that provides the interface between the propulsion hardware of the European Service Module with the Orion flight computers, and highlights the challenges that have been faced during the development. Particularly, the specific aspects relevant to Human Spaceflight in an international cooperation are presented, as the compliance to both European and US standards and the software criticality classification to the highest category A. An innovative aspect of the PDE SW is its Time- Triggered Ethernet interface with the Orion Flight Computers, which has never been flown so far on any European spacecraft. Finally the verification aspects are presented, applying the most exigent quality requirements defined in the European Cooperation for Space Standardization (ECSS) standards such as the structural coverage analysis of the object code and the recourse to an independent software verification and validation activity carried on in parallel by a different team.

  13. The effect of narrow-band noise maskers on increment detection1

    PubMed Central

    Messersmith, Jessica J.; Patra, Harisadhan; Jesteadt, Walt

    2010-01-01

    It is often assumed that listeners detect an increment in the intensity of a pure tone by detecting an increase in the energy falling within the critical band centered on the signal frequency. A noise masker can be used to limit the use of signal energy falling outside of the critical band, but facets of the noise may impact increment detection beyond this intended purpose. The current study evaluated the impact of envelope fluctuation in a noise masker on thresholds for detection of an increment. Thresholds were obtained for detection of an increment in the intensity of a 0.25- or 4-kHz pedestal in quiet and in the presence of noise of varying bandwidth. Results indicate that thresholds for detection of an increment in the intensity of a pure tone increase with increasing bandwidth for an on-frequency noise masker, but are unchanged by an off-frequency noise masker. Neither a model that includes a modulation-filter-bank analysis of envelope modulation nor a model based on discrimination of spectral patterns can account for all aspects of the observed data. PMID:21110593

  14. Nutrient sensing modulates malaria parasite virulence.

    PubMed

    Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T; Grosso, Ana Rita; Modrzynska, Katarzyna K; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M

    2017-07-13

    The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.

  15. Critical evaluation as an aid to improved report writing: a case study

    NASA Astrophysics Data System (ADS)

    Walker, Mirabelle; Williams, Judith

    2014-05-01

    Report writing is an important employability skill for Engineers and Technologists, and this case study describes how a Technology degree module took a novel approach to developing students' report writing skills. Students learned how to use a criterion-referenced critical evaluation framework for reports and other technological documents. They were given opportunities to practise using the framework both through exemplars and through evaluating the work of their peers. They also carried out self-assessment. The authors' analysis of this novel approach shows that most students responded well to it and benefited from it. Lessons are drawn from this work for others who wish to improve their students' report writing skills.

  16. Effects of a Science Education Module on Attitudes towards Modern Biotechnology of Secondary School Students

    NASA Astrophysics Data System (ADS)

    Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.

    2010-06-01

    This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in this particular field. In a quasi-experimental design (experimental-, control groups, and pre- and post-tests), secondary school students' attitudes (N = 365) towards modern biotechnology were measured by a questionnaire. Data were analysed using Chi-square tests. Significant differences were obtained between the control and experimental conditions. Results showed that the science module had a significant effect on attitudes, although predominantly towards a more supportive and not towards a more critical stance. It is discussed that offering a science module of this kind can indeed encourage students to become more aware of modern biotechnology, although promoting a more critical attitude towards modern biotechnology should receive more attention.

  17. The effectiveness of module with critical thinking approach on hydrolysis and buffer materials in chemistry learning

    NASA Astrophysics Data System (ADS)

    Nuswowati, M.; Purwanti, E.

    2018-03-01

    The research aims is to find out the effectiveness of critical thinking approach in Chemistry learning especially on hydrolysis and buffer materials. The level of its effectiveness was viewed from the students’ learning outcomes including knowledge, attitude and skill domains. The data were collected through validation sheets, questionnaires and tests, which were then analyzed by using descriptive quantitative method. The first step conducted was validating the module that was going to be used in the learning processes. The students’ learning outcome on knowledge domain was very good, viewed from the classical attainment by 88.63% with N-gain 0.718 with high criteria. It was also viewed from the students’ criticality level in solving the given problems. The result of the study revealed that more than 75% of the students obtained critical and very critical criteria in solving the given problems. The students’ attitudes and skills values were viewed through observation sheets during the learning processes. The result of the observation stated that more than 75% of the students showed good and very good attitudes and skills values. Based on the data, it could be concluded that the module with critical thinking approach was effective to be used on hydrolysis and buffer materials.

  18. Analysis of error-correction constraints in an optical disk.

    PubMed

    Roberts, J D; Ryley, A; Jones, D M; Burke, D

    1996-07-10

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  19. Analysis of error-correction constraints in an optical disk

    NASA Astrophysics Data System (ADS)

    Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David

    1996-07-01

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  20. Protein-protein interaction network of gene expression in the hydrocortisone-treated keloid.

    PubMed

    Chen, Rui; Zhang, Zhiliang; Xue, Zhujia; Wang, Lin; Fu, Mingang; Lu, Yi; Bai, Ling; Zhang, Ping; Fan, Zhihong

    2015-01-01

    In order to explore the molecular mechanism of hydrocortisone in keloid tissue, the gene expression profiles of keloid samples treated with hydrocortisone were subjected to bioinformatics analysis. Firstly, the gene expression profiles (GSE7890) of five samples of keloid treated with hydrocortisone and five untreated keloid samples were downloaded from the Gene Expression Omnibus (GEO) database. Secondly, data were preprocessed using packages in R language and differentially expressed genes (DEGs) were screened using a significance analysis of microarrays (SAM) protocol. Thirdly, the DEGs were subjected to gene ontology (GO) function and KEGG pathway enrichment analysis. Finally, the interactions of DEGs in samples of keloid treated with hydrocortisone were explored in a human protein-protein interaction (PPI) network, and sub-modules of the DEGs interaction network were analyzed using Cytoscape software. Based on the analysis, 572 DEGs in the hydrocortisone-treated samples were screened; most of these were involved in the signal transduction and cell cycle. Furthermore, three critical genes in the module, including COL1A1, NID1, and PRELP, were screened in the PPI network analysis. These findings enhance understanding of the pathogenesis of the keloid and provide references for keloid therapy. © 2015 The International Society of Dermatology.

  1. Global Change and Environmental Hazards: Is the World Becoming More Disastrous? Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Mitchell, Jerry T.; Cutter, Susan L.

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module introduces the complexities in the relationships among environmental…

  2. Philosophy: A Key To Open the Door to Critical Thinking.

    ERIC Educational Resources Information Center

    Clarke, David J.; Holt, Janet

    2001-01-01

    A learning module for nursing attempts to prepare nurses to understand philosophical inquiry and develop critical thinking skills. Teaching strategies used included exercises involving verbal disagreement and ambiguity and critical examination of publications. (Contains 42 references.) (SK)

  3. Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis.

    PubMed

    Ferrari, Raffaele; Forabosco, Paola; Vandrovcova, Jana; Botía, Juan A; Guelfi, Sebastian; Warren, Jason D; Momeni, Parastoo; Weale, Michael E; Ryten, Mina; Hardy, John

    2016-02-24

    In frontotemporal dementia (FTD) there is a critical lack in the understanding of biological and molecular mechanisms involved in disease pathogenesis. The heterogeneous genetic features associated with FTD suggest that multiple disease-mechanisms are likely to contribute to the development of this neurodegenerative condition. We here present a systems biology approach with the scope of i) shedding light on the biological processes potentially implicated in the pathogenesis of FTD and ii) identifying novel potential risk factors for FTD. We performed a gene co-expression network analysis of microarray expression data from 101 individuals without neurodegenerative diseases to explore regional-specific co-expression patterns in the frontal and temporal cortices for 12 genes (MAPT, GRN, CHMP2B, CTSC, HLA-DRA, TMEM106B, C9orf72, VCP, UBQLN2, OPTN, TARDBP and FUS) associated with FTD and we then carried out gene set enrichment and pathway analyses, and investigated known protein-protein interactors (PPIs) of FTD-genes products. Gene co-expression networks revealed that several FTD-genes (such as MAPT and GRN, CTSC and HLA-DRA, TMEM106B, and C9orf72, VCP, UBQLN2 and OPTN) were clustering in modules of relevance in the frontal and temporal cortices. Functional annotation and pathway analyses of such modules indicated enrichment for: i) DNA metabolism, i.e. transcription regulation, DNA protection and chromatin remodelling (MAPT and GRN modules); ii) immune and lysosomal processes (CTSC and HLA-DRA modules), and; iii) protein meta/catabolism (C9orf72, VCP, UBQLN2 and OPTN, and TMEM106B modules). PPI analysis supported the results of the functional annotation and pathway analyses. This work further characterizes known FTD-genes and elaborates on their biological relevance to disease: not only do we indicate likely impacted regional-specific biological processes driven by FTD-genes containing modules, but also do we suggest novel potential risk factors among the FTD-genes interactors as targets for further mechanistic characterization in hypothesis driven cell biology work.

  4. RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, N. J.; Marriage, T. A.; Appel, J. W.

    2016-02-20

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residualmore » modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.« less

  5. Continuing professional development: researching non-technical competencies can support cognitive reappraisal and reduced stress in clinicians.

    PubMed

    Kinnison, Tierney; May, Stephen

    2017-09-09

    Generic professional capabilities (non-technical competencies) are increasingly valued for their links to patient outcomes and clinician well-being. This study explores the emotional change, and practice-related outcomes, of participants of a veterinary professional key skills (PKS) continuing professional development (CPD) module. Reflective summaries produced by participants were analysed. A change in emotion, from 'negative' to 'positive', was the focus of analysis. Sections regarding these emotions were thematically analysed. Analysis was performed on 46 summaries. Three themes were identified: 'the PKS module' (centred on reluctance becoming surprise and stimulation), 'developing non-technical competencies' (unease to confidence) and 'stress and coping through a reflective focus' (anxiety to harmony). The changing emotions were connected to positive cognitive reappraisal and often behaviour changes, benefitting self, practice, clients and patients. The PKS module teaches participants to reflect; a new and challenging concept. The consequences of this enabled participants to understand the importance of professional topics, to be appreciative as well as critical, and to enjoy their job. Importantly, the module stimulated coping responses. Better understanding of roles led to participants having more reasonable expectations of themselves, more appreciation of their work and reduced stress. This research supports more attention to professional skills CPD for health professions. © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  7. Photovoltaic Module Reliability Workshop 2014: February 25-26, 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2014-02-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  8. Photovoltaic Module Reliability Workshop 2013: February 26-27, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-10-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  9. Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, J.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  10. 2016 NREL Photovoltaic Module Reliability Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology - both critical goals for moving PV technologies deeper into the electricity marketplace.

  11. 2015 NREL Photovoltaic Module Reliability Workshops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  12. Brain modularity controls the critical behavior of spontaneous activity.

    PubMed

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-03-13

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  13. Human Driving Forces and Their Impacts on Land Use/Land Cover. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Moser, Susanne

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module explains that land use/cover change has occurred at all times in all…

  14. The Schizophrenia Risk Gene MIR137 Acts as a Hippocampal Gene Network Node Orchestrating the Expression of Genes Relevant to Nervous System Development and Function

    PubMed Central

    Loohuis, Nikkie FM Olde; Kasri, Nael Nadif; Glennon, Jeffrey C; van Bokhoven, Hans; Hébert, Sébastien S; Kaplan, Barry B.; Martens, Gerard JM; Aschrafi, Armaz

    2016-01-01

    MicroRNAs (miRs) are small regulatory molecules, which orchestrate neuronal development and plasticity through modulation of complex gene networks. microRNA-137 (miR-137) is a brain-enriched RNA with a critical role in regulating brain development and in mediating synaptic plasticity. Importantly, mutations in this miR are associated with the pathoetiology of schizophrenia (SZ), and there is a widespread assumption that disruptions in miR-137 expression lead to aberrant expression of gene regulatory networks associated with SZ. To systematically identify the mRNA targets for this miR, we performed miR-137 gain- and loss-of-function experiments in primary rat hippocampal neurons and profiled differentially expressed mRNAs through next-generation sequencing. We identified 500 genes that were bidirectionally activated or repressed in their expression by the modulation of miR-137 levels. Gene ontology analysis using two independent software resources suggested functions for these miR-137-regulated genes in neurodevelopmental processes, neuronal maturation processes and cell maintenance, all of which known to be critical for proper brain circuitry formation. Since many of the putative miR-137 targets identified here also have been previously shown to be associated with SZ, we propose that this miR acts as a critical gene network hub contributing to the pathophysiology of this neurodevelopmental disorder. PMID:26925706

  15. Modulation of HIV Protease Flexibility by the T80N Mutation

    PubMed Central

    Zhou, Hao; Li, Shangyang; Badger, John; Nalivaika, Ellen; Cai, Yufeng; Foulkes-Murzycki, Jennifer; Schiffer, Celia; Makowski, Lee

    2015-01-01

    The flexibility of HIV protease plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80 which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the potential influence of the T80N mutation on HIVp flexibility, wide-angle scattering (WAXS) data was measured for a series of HIV protease variants. Starting with a calculated WAXS pattern from a rigid atomic model, the modulations in the intensity distribution caused by structural fluctuations in the protein were predicted by simple analytic methods and compared to the experimental data. An analysis of T80N WAXS data shows that this variant is significantly more rigid than the WT across all length scales. The effects of this single point mutation extend throughout the protein, so as to alter the mobility of amino acids in the enzymatic core. These results support the contentions that significant protein flexibility extends throughout HIV protease and is critical to catalytic function. PMID:25488402

  16. Meta-Analysis of the Effect of Overexpression of Dehydration-Responsive Element Binding Family Genes on Temperature Stress Tolerance and Related Responses

    PubMed Central

    Dong, Chao; Ma, Yuanchun; Zheng, Dan; Wisniewski, Michael; Cheng, Zong-Ming

    2018-01-01

    Dehydration-responsive element binding proteins are transcription factors that play a critical role in plant response to temperature stress. Over-expression of DREB genes has been demonstrated to enhance temperature stress tolerance. A series of physiological and biochemical modifications occur in a complex and integrated way when plants respond to temperature stress, which makes it difficult to assess the mechanism underlying the DREB enhancement of stress tolerance. A meta-analysis was conducted of the effect of DREB overexpression on temperature stress tolerance and the various parameters modulated by overexpression that were statistically quantified in 75 published articles. The meta-analysis was conducted to identify the overall influence of DREB on stress-related parameters in transgenic plants, and to determine how different experimental variables affect the impact of DREB overexpression. Viewed across all the examined studies, 7 of the 8 measured plant parameters were significantly (p ≤ 0.05) modulated in DREB-transgenic plants when they were subjected to temperature stress, while 2 of the 8 parameters were significantly affected in non-stressed control plants. The measured parameters were modulated by 32% or more by various experimental variables. The modulating variables included, acclimated or non-acclimated, type of promoter, stress time and severity, source of the donor gene, and whether the donor and recipient were the same genus. These variables all had a significant effect on the observed impact of DREB overexpression. Further studies should be conducted under field conditions to better understand the role of DREB transcription factors in enhancing plant tolerance to temperature stress. PMID:29896212

  17. The visual analysis of emotional actions.

    PubMed

    Chouchourelou, Arieta; Matsuka, Toshihiko; Harber, Kent; Shiffrar, Maggie

    2006-01-01

    Is the visual analysis of human actions modulated by the emotional content of those actions? This question is motivated by a consideration of the neuroanatomical connections between visual and emotional areas. Specifically, the superior temporal sulcus (STS), known to play a critical role in the visual detection of action, is extensively interconnected with the amygdala, a center for emotion processing. To the extent that amygdala activity influences STS activity, one would expect to find systematic differences in the visual detection of emotional actions. A series of psychophysical studies tested this prediction. Experiment 1 identified point-light walker movies that convincingly depicted five different emotional states: happiness, sadness, neutral, anger, and fear. In Experiment 2, participants performed a walker detection task with these movies. Detection performance was systematically modulated by the emotional content of the gaits. Participants demonstrated the greatest visual sensitivity to angry walkers. The results of Experiment 3 suggest that local velocity cues to anger may account for high false alarm rates to the presence of angry gaits. These results support the hypothesis that the visual analysis of human action depends upon emotion processes.

  18. Lunar Surface Operations. Part 1; Post-Touchdown Lunar Surface and System Checkouts

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the first part of the post-touchdown lunar surface and system checkout tasks. A stay/no stay decision for the lunar lander was made based on the questions: "Is the Lunar Module (LM) stable on the lunar surface?"; "Are there any time critical systems failures or trends indicating impending loss of capability to ascent and achieve a safe lunar orbit?"; and "Is there loss of capability in critical LM systems?" The sequence of these decisions is given as a time after touchdown on the surface of the moon. After the decision to stay is made the next task is to checkout status of the lunar module. While the status of the lunar module is checking out certain conditions, the Command Service Module was also engaged in certain checkout activities.

  19. Indoor Soiling Method and Outdoor Statistical Risk Analysis of Photovoltaic Power Plants

    NASA Astrophysics Data System (ADS)

    Rajasekar, Vidyashree

    This is a two-part thesis. Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules. Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives. The indoor and outdoor soiling studies were jointly performed by two Masters Students, Sravanthi Boppana and Vidyashree Rajasekar. This thesis presents the indoor soiling study, whereas the other thesis presents the outdoor soiling study. Similarly, the statistical risk analyses of two power plants (model J and model JVA) were jointly performed by these two Masters students. Both power plants are located at the same cold-dry climate, but one power plant carries framed modules and the other carries frameless modules. This thesis presents the results obtained on the frameless modules.

  20. Automobile Engine: Basic Ignition Timing. Fordson Bilingual Demonstration Project.

    ERIC Educational Resources Information Center

    Vick, James E.

    These two vocational instructional modules on basic automobile ignition timing and on engine operation, four-stroke cycle, are two of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the…

  1. Introduction to Reactor Statics Modules, RS-1. Nuclear Engineering Computer Modules.

    ERIC Educational Resources Information Center

    Edlund, Milton C.

    The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burn-up for both slow neutron and fast neutron fission reactors. The diffusion…

  2. Safe Driving and Road Signs. Fordson Bilingual Demonstration Project.

    ERIC Educational Resources Information Center

    Stanyar, Angela

    This vocational instructional module on safe driving and road signs is one of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the student preparing for driver's education to recognize,…

  3. Photovoltaic Module Reliability Workshop 2012: February 28 - March 1, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  4. The role of visual representations during the lexical access of spoken words

    PubMed Central

    Lewis, Gwyneth; Poeppel, David

    2015-01-01

    Do visual representations contribute to spoken word recognition? We examine, using MEG, the effects of sublexical and lexical variables at superior temporal (ST) areas and the posterior middle temporal gyrus (pMTG) compared with that of word imageability at visual cortices. Embodied accounts predict early modulation of visual areas by imageability - concurrently with or prior to modulation of pMTG by lexical variables. Participants responded to speech stimuli varying continuously in imageability during lexical decision with simultaneous MEG recording. We employed the linguistic variables in a new type of correlational time course analysis to assess trial-by-trial activation in occipital, ST, and pMTG regions of interest (ROIs). The linguistic variables modulated the ROIs during different time windows. Critically, visual regions reflected an imageability effect prior to effects of lexicality on pMTG. This surprising effect supports a view on which sensory aspects of a lexical item are not a consequence of lexical activation. PMID:24814579

  5. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity

    PubMed Central

    Liu, Xi; Gu, Leilei; Zhang, Qianpeng; Wu, Jiyuan; Long, Yunze; Fan, Zhiyong

    2014-01-01

    High-performance photodetectors are critical for high-speed optical communication and environmental sensing, and flexible photodetectors can be used for a wide range of portable or wearable applications. Here we demonstrate the all-printable fabrication of polycrystalline nanowire-based high-performance photodetectors on flexible substrates. Systematic investigations have shown their ultra-high photoconductive gain, responsivity and detectivity up to 3.3 × 1017 Jones. Further analysis shows that their high performance originates from the unique band-edge modulation along the nanowire axial direction, where the existence of Schottky barriers in series leads to highly suppressed dark current of the device and also gives rise to fast photoelectric response to low-intensity optical signal owing to barrier height modulation. The discovered rationale in this work can be utilized as guideline to design high-performance photodetectors with other nanomaterial systems. The developed fabrication scheme opens up possibility for future flexible and high-performance integrated optoelectronic sensor circuitry. PMID:24898081

  6. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity.

    PubMed

    Liu, Xi; Gu, Leilei; Zhang, Qianpeng; Wu, Jiyuan; Long, Yunze; Fan, Zhiyong

    2014-06-05

    High-performance photodetectors are critical for high-speed optical communication and environmental sensing, and flexible photodetectors can be used for a wide range of portable or wearable applications. Here we demonstrate the all-printable fabrication of polycrystalline nanowire-based high-performance photodetectors on flexible substrates. Systematic investigations have shown their ultra-high photoconductive gain, responsivity and detectivity up to 3.3 × 10(17) Jones. Further analysis shows that their high performance originates from the unique band-edge modulation along the nanowire axial direction, where the existence of Schottky barriers in series leads to highly suppressed dark current of the device and also gives rise to fast photoelectric response to low-intensity optical signal owing to barrier height modulation. The discovered rationale in this work can be utilized as guideline to design high-performance photodetectors with other nanomaterial systems. The developed fabrication scheme opens up possibility for future flexible and high-performance integrated optoelectronic sensor circuitry.

  7. The role of visual representations during the lexical access of spoken words.

    PubMed

    Lewis, Gwyneth; Poeppel, David

    2014-07-01

    Do visual representations contribute to spoken word recognition? We examine, using MEG, the effects of sublexical and lexical variables at superior temporal (ST) areas and the posterior middle temporal gyrus (pMTG) compared with that of word imageability at visual cortices. Embodied accounts predict early modulation of visual areas by imageability--concurrently with or prior to modulation of pMTG by lexical variables. Participants responded to speech stimuli varying continuously in imageability during lexical decision with simultaneous MEG recording. We employed the linguistic variables in a new type of correlational time course analysis to assess trial-by-trial activation in occipital, ST, and pMTG regions of interest (ROIs). The linguistic variables modulated the ROIs during different time windows. Critically, visual regions reflected an imageability effect prior to effects of lexicality on pMTG. This surprising effect supports a view on which sensory aspects of a lexical item are not a consequence of lexical activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Near-critical GLUT1 and Neurodegeneration.

    PubMed

    Barros, L Felipe; San Martín, Alejandro; Ruminot, Ivan; Sandoval, Pamela Y; Fernández-Moncada, Ignacio; Baeza-Lehnert, Felipe; Arce-Molina, Robinson; Contreras-Baeza, Yasna; Cortés-Molina, Francisca; Galaz, Alex; Alegría, Karin

    2017-11-01

    Recent articles have drawn renewed attention to the housekeeping glucose transporter GLUT1 and its possible involvement in neurodegenerative diseases. Here we provide an updated analysis of brain glucose transport and the cellular mechanisms involved in its acute modulation during synaptic activity. We discuss how the architecture of the blood-brain barrier and the low concentration of glucose within neurons combine to make endothelial/glial GLUT1 the master controller of neuronal glucose utilization, while the regulatory role of the neuronal glucose transporter GLUT3 emerges as secondary. The near-critical condition of glucose dynamics in the brain suggests that subtle deficits in GLUT1 function or its activity-dependent control by neurons may contribute to neurodegeneration. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. A robust detector for rolling element bearing condition monitoring based on the modulation signal bispectrum and its performance evaluation against the Kurtogram

    NASA Astrophysics Data System (ADS)

    Tian, Xiange; Xi Gu, James; Rehab, Ibrahim; Abdalla, Gaballa M.; Gu, Fengshou; Ball, A. D.

    2018-02-01

    Envelope analysis is a widely used method for rolling element bearing fault detection. To obtain high detection accuracy, it is critical to determine an optimal frequency narrowband for the envelope demodulation. However, many of the schemes which are used for the narrowband selection, such as the Kurtogram, can produce poor detection results because they are sensitive to random noise and aperiodic impulses which normally occur in practical applications. To achieve the purposes of denoising and frequency band optimisation, this paper proposes a novel modulation signal bispectrum (MSB) based robust detector for bearing fault detection. Because of its inherent noise suppression capability, the MSB allows effective suppression of both stationary random noise and discrete aperiodic noise. The high magnitude features that result from the use of the MSB also enhance the modulation effects of a bearing fault and can be used to provide optimal frequency bands for fault detection. The Kurtogram is generally accepted as a powerful means of selecting the most appropriate frequency band for envelope analysis, and as such it has been used as the benchmark comparator for performance evaluation in this paper. Both simulated and experimental data analysis results show that the proposed method produces more accurate and robust detection results than Kurtogram based approaches for common bearing faults under a range of representative scenarios.

  10. Seasonal water storage, stress modulation, and California seismicity.

    PubMed

    Johnson, Christopher W; Fu, Yuning; Bürgmann, Roland

    2017-06-16

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, water storage deforms the crust as snow and water accumulates during the wet winter months. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. The seasonal loading analysis reveals earthquakes occurring more frequently during stress conditions that favor earthquake rupture. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles. Copyright © 2017, American Association for the Advancement of Science.

  11. New Curricular Material for Science Classes: How Do Students Evaluate It?

    NASA Astrophysics Data System (ADS)

    Freire, Sofia; Faria, Cláudia; Galvão, Cecília; Reis, Pedro

    2013-02-01

    Living in an unpredictable and ever changing society demands from its' citizens the development of complex competencies that challenges school, education and curriculum. PARSEL, a pan-European Project related to science education, emerges as a contribution to curricular development as it proposes a set of teaching-learning materials (modules) in order to make science classes more popular and relevant in the eyes of the students and as such to increase their interest with school science. The goal of this study was to understand how students evaluate those innovative modules. This paper presents data concerning 134 secondary students, collected through interviews, questionnaires and written documents. A quantitative analysis of the data collected through questionnaires was complemented by a qualitative analysis of the data collected by interviews and written documents. Results show that understanding the relationship between science and daily life, participating in practical activities based on problem solving and developing critical thinking and reasoning were the issues most valued by students.

  12. Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.

    2008-01-01

    Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.

  13. [Problem based learning from the perspective of tutors].

    PubMed

    Navarro Hernández, Nancy; Illesca P, Mónica; Cabezas G, Mirtha

    2009-02-01

    Problem based learning is a student centered learning technique that develops deductive, constructive and reasoning capacities among the students. Teachers must adapt to this paradigm of constructing rather than transmitting knowledge. To interpret the importance of tutors in problem based learning during a module of Health research and management given to medical, nursing, physical therapy, midwifery, technology and nutrition students. Eight teachers that participated in a module using problem based learning accepted to participate in an in depth interview. The qualitative analysis of the textual information recorded, was performed using the ATLAS software. We identified 662 meaning units, grouped in 29 descriptive categories, with eight emerging meta categories. The sequential and cross-generated qualitative analysis generated four domains: competence among students, competence of teachers, student-centered learning and evaluation process. Multiprofessional problem based learning contributes to the development of generic competences among future health professionals, such as multidisciplinary work, critical capacity and social skills. Teachers must shelter the students in the context of their problems and social situation.

  14. Re-entrant Projections Modulate Visual Cortex in Affective Perception: Evidence From Granger Causality Analysis

    PubMed Central

    Keil, Andreas; Sabatinelli, Dean; Ding, Mingzhou; Lang, Peter J.; Ihssen, Niklas; Heim, Sabine

    2013-01-01

    Re-entrant modulation of visual cortex has been suggested as a critical process for enhancing perception of emotionally arousing visual stimuli. This study explores how the time information inherent in large-scale electrocortical measures can be used to examine the functional relationships among the structures involved in emotional perception. Granger causality analysis was conducted on steady-state visual evoked potentials elicited by emotionally arousing pictures flickering at a rate of 10 Hz. This procedure allows one to examine the direction of neural connections. Participants viewed pictures that varied in emotional content, depicting people in neutral contexts, erotica, or interpersonal attack scenes. Results demonstrated increased coupling between visual and cortical areas when viewing emotionally arousing content. Specifically, intraparietal to inferotemporal and precuneus to calcarine connections were stronger for emotionally arousing picture content. Thus, we provide evidence for re-entrant signal flow during emotional perception, which originates from higher tiers and enters lower tiers of visual cortex. PMID:18095279

  15. Potential-induced degradation in photovoltaic modules: a critical review

    DOE PAGES

    Luo, Wei; Khoo, Yong Sheng; Hacke, Peter; ...

    2016-11-21

    Potential-induced degradation (PID) has received considerable attention in recent years due to its detrimental impact on photovoltaic (PV) module performance under field conditions. Both crystalline silicon (c-Si) and thin-film PV modules are susceptible to PID. While extensive studies have already been conducted in this area, the understanding of the PID phenomena is still incomplete and it remains a major problem in the PV industry. Herein, a critical review of the available literature is given to serve as a one-stop source for understanding the current status of PID research. This article also aims to provide an overview of future research pathsmore » to address PID-related issues. This paper consists of three parts. In the first part, the modelling of leakage current paths in the module package is discussed. The PID mechanisms in both c-Si and thin-film PV modules are also comprehensively reviewed. The second part summarizes various test methods to evaluate PV modules for PID. The last part focuses on studies related to PID in the omnipresent p-type c-Si PV modules. The dependence of temperature, humidity and voltage on the progression of PID is examined. Preventive measures against PID at the cell, module and system levels are illustrated. Moreover, PID recovery in standard p-type c-Si PV modules is also studied. Most of the findings from p-type c-Si PV modules are also applicable to other PV module technologies.« less

  16. Critical tipping point distinguishing two types of transitions in modular network structures

    NASA Astrophysics Data System (ADS)

    Shai, Saray; Kenett, Dror Y.; Kenett, Yoed N.; Faust, Miriam; Dobson, Simon; Havlin, Shlomo

    2015-12-01

    Modularity is a key organizing principle in real-world large-scale complex networks. The relatively sparse interactions between modules are critical to the functionality of the system and are often the first to fail. We model such failures as site percolation targeting interconnected nodes, those connecting between modules. We find, using percolation theory and simulations, that they lead to a "tipping point" between two distinct regimes. In one regime, removal of interconnected nodes fragments the modules internally and causes the system to collapse. In contrast, in the other regime, while only attacking a small fraction of nodes, the modules remain but become disconnected, breaking the entire system. We show that networks with broader degree distribution might be highly vulnerable to such attacks since only few nodes are needed to interconnect the modules, consequently putting the entire system at high risk. Our model has the potential to shed light on many real-world phenomena, and we briefly consider its implications on recent advances in the understanding of several neurocognitive processes and diseases.

  17. Study of modulation property to incident laser by surface micro-defects on KH2PO4 crystal

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Jun; Cheng, Jian; Li, Ming-Quan; Xiao, Yong

    2012-06-01

    KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 μm. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.

  18. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    DOE PAGES

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; ...

    2015-07-23

    In this study, accurately estimating methane (CH 4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH 4 flux requires explicit representations of microbial processes on CH 4 dynamics because all processes for CH 4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH 4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH 4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out bymore » four microbial functional groups: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO 2) and CH 4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO 2 and CH 4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO 2 and CH 4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH 4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.« less

  19. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes.

    PubMed

    Overmiller, Andrew M; Pierluissi, Jennifer A; Wermuth, Peter J; Sauma, Sami; Martinez-Outschoorn, Ubaldo; Tuluc, Madalina; Luginbuhl, Adam; Curry, Joseph; Harshyne, Larry A; Wahl, James K; South, Andrew P; Mahoney, Mỹ G

    2017-08-01

    Extracellular vesicles (EVs) are nanoscale membrane-derived vesicles that serve as intercellular messengers carrying lipids, proteins, and genetic material. Substantial evidence has shown that cancer-derived EVs, secreted by tumor cells into the blood and other bodily fluids, play a critical role in modulating the tumor microenvironment and affecting the pathogenesis of cancer. Here we demonstrate for the first time that squamous cell carcinoma (SCC) EVs were enriched with the C-terminal fragment of desmoglein 2 (Dsg2), a desmosomal cadherin often overexpressed in malignancies. Overexpression of Dsg2 increased EV release and mitogenic content including epidermal growth factor receptor and c-Src. Inhibiting ectodomain shedding of Dsg2 with the matrix metalloproteinase inhibitor GM6001 resulted in accumulation of full-length Dsg2 in EVs and reduced EV release. When cocultured with Dsg2/green fluorescence protein-expressing SCC cells, green fluorescence protein signal was detected by fluorescence-activated cell sorting analysis in the CD90 + fibroblasts. Furthermore, SCC EVs activated Erk1/2 and Akt signaling and enhanced fibroblast cell proliferation. In vivo, Dsg2 was highly up-regulated in the head and neck SCCs, and EVs isolated from sera of patients with SCC were enriched in Dsg2 C-terminal fragment and epidermal growth factor receptor. This study defines a mechanism by which Dsg2 expression in cancer cells can modulate the tumor microenvironment, a step critical for tumor progression.-Overmiller, A. M., Pierluissi, J. A., Wermuth, P. J., Sauma, S., Martinez-Outschoorn, U., Tuluc, M., Luginbuhl, A., Curry, J., Harshyne, L. A., Wahl, J. K. III, South, A. P., Mahoney, M. G. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. © FASEB.

  20. eLearning to facilitate the education and implementation of the Chelsea Critical Care Physical Assessment: a novel measure of function in critical illness

    PubMed Central

    Corner, Evelyn J; Handy, Jonathan M; Brett, Stephen J

    2016-01-01

    Objective To evaluate the efficacy of eLearning in the widespread standardised teaching, distribution and implementation of the Chelsea Critical Care Physical Assessment (CPAx) tool—a validated tool to assess physical function in critically ill patients. Design Prospective educational study. An eLearning module was developed through a conceptual framework, using the four-stage technique for skills teaching to teach clinicians how to use the CPAx. Example and test video case studies of CPAx assessments were embedded within the module. The CPAx scores for the test case studies and demographic data were recorded in a secure area of the website. Data were analysed for inter-rater reliability using intraclass correlation coefficients (ICCs) to see if an eLearning educational package facilitated consistent use of the tool. A utility and content validity questionnaire was distributed after 1 year to eLearning module registrants (n=971). This was to evaluate uptake of the CPAx in clinical practice and content validity of the CPAx from the perspective of clinical users. Setting The module was distributed for use via professional forums (n=2) and direct contacts (n=95). Participants Critical care clinicians. Primary outcome measure ICC of the test case studies. Results Between July and October 2014, 421 candidates from 15 countries registered for the eLearning module. The ICC for case one was 0.996 (95% CI 0.990 to 0.999; n=207). The ICC for case two was 0.988 (0.996 to 1.000; n=184). The CPAx has a strong total scale content validity index (s-CVI) of 0.94 and is well used. Conclusions eLearning is a useful and reliable way of teaching psychomotor skills, such as the CPAx. The CPAx is a well-used measure with high content validity rated by clinicians. PMID:27067895

  1. eLearning to facilitate the education and implementation of the Chelsea Critical Care Physical Assessment: a novel measure of function in critical illness.

    PubMed

    Corner, Evelyn J; Handy, Jonathan M; Brett, Stephen J

    2016-04-11

    To evaluate the efficacy of eLearning in the widespread standardised teaching, distribution and implementation of the Chelsea Critical Care Physical Assessment (CPAx) tool-a validated tool to assess physical function in critically ill patients. Prospective educational study. An eLearning module was developed through a conceptual framework, using the four-stage technique for skills teaching to teach clinicians how to use the CPAx. Example and test video case studies of CPAx assessments were embedded within the module. The CPAx scores for the test case studies and demographic data were recorded in a secure area of the website. Data were analysed for inter-rater reliability using intraclass correlation coefficients (ICCs) to see if an eLearning educational package facilitated consistent use of the tool. A utility and content validity questionnaire was distributed after 1 year to eLearning module registrants (n=971). This was to evaluate uptake of the CPAx in clinical practice and content validity of the CPAx from the perspective of clinical users. The module was distributed for use via professional forums (n=2) and direct contacts (n=95). Critical care clinicians. ICC of the test case studies. Between July and October 2014, 421 candidates from 15 countries registered for the eLearning module. The ICC for case one was 0.996 (95% CI 0.990 to 0.999; n=207). The ICC for case two was 0.988 (0.996 to 1.000; n=184). The CPAx has a strong total scale content validity index (s-CVI) of 0.94 and is well used. eLearning is a useful and reliable way of teaching psychomotor skills, such as the CPAx. The CPAx is a well-used measure with high content validity rated by clinicians. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    NASA Astrophysics Data System (ADS)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  3. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.

    PubMed

    Henry, Molly J; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.

  4. Dissociable Neural Response Signatures for Slow Amplitude and Frequency Modulation in Human Auditory Cortex

    PubMed Central

    Henry, Molly J.; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. PMID:24205309

  5. Optimal strategy for polarization modulation in the LSPE-SWIPE experiment

    NASA Astrophysics Data System (ADS)

    Buzzelli, A.; de Bernardis, P.; Masi, S.; Vittorio, N.; de Gasperis, G.

    2018-01-01

    Context. Cosmic microwave background (CMB) B-mode experiments are required to control systematic effects with an unprecedented level of accuracy. Polarization modulation by a half wave plate (HWP) is a powerful technique able to mitigate a large number of the instrumental systematics. Aims: Our goal is to optimize the polarization modulation strategy of the upcoming LSPE-SWIPE balloon-borne experiment, devoted to the accurate measurement of CMB polarization at large angular scales. Methods: We departed from the nominal LSPE-SWIPE modulation strategy (HWP stepped every 60 s with a telescope scanning at around 12 deg/s) and performed a thorough investigation of a wide range of possible HWP schemes (either in stepped or continuously spinning mode and at different azimuth telescope scan-speeds) in the frequency, map and angular power spectrum domain. In addition, we probed the effect of high-pass and band-pass filters of the data stream and explored the HWP response in the minimal case of one detector for one operation day (critical for the single-detector calibration process). We finally tested the modulation performance against typical HWP-induced systematics. Results: Our analysis shows that some stepped HWP schemes, either slowly rotating or combined with slow telescope modulations, represent poor choices. Moreover, our results point out that the nominal configuration may not be the most convenient choice. While a large class of spinning designs provides comparable results in terms of pixel angle coverage, map-making residuals and BB power spectrum standard deviations with respect to the nominal strategy, we find that some specific configurations (e.g., a rapidly spinning HWP with a slow gondola modulation) allow a more efficient polarization recovery in more general real-case situations. Conclusions: Although our simulations are specific to the LSPE-SWIPE mission, the general outcomes of our analysis can be easily generalized to other CMB polarization experiments.

  6. Enhanced alpha-oscillations in visual cortex during anticipation of self-generated visual stimulation.

    PubMed

    Stenner, Max-Philipp; Bauer, Markus; Haggard, Patrick; Heinze, Hans-Jochen; Dolan, Ray

    2014-11-01

    The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action-outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time-frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top-down control.

  7. Nutrient sensing modulates malaria parasite virulence

    PubMed Central

    Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T.; Grosso, Ana Rita; Modrzynska, Katarzyna K.; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M.

    2017-01-01

    The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host(s), primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signaling networks that confer to cells the ability to sense and adapt to varying environmental conditions1,2. Canonical nutrient-sensing pathways are presumably absent in the causing agent of malaria Plasmodium3–5, thus raising the question of whether these parasites possess the capacity to sense and cope with host nutrient fluctuations. Here, we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through a rearrangement of their transcriptome accompanied by a significant adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology to SNF1/AMPKα and yeast complementation studies suggest functional conservation of an ancient cellular energy sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical to modulate parasite replication and virulence. PMID:28678779

  8. Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Yang, Ruoting; Li, Guanqun; Wu, Long; Liu, Xiaoyu; Chen, Lei; Ren, Jie; Wang, Zhen

    2018-05-01

    Superconducting quantum interference devices (SQUIDs) with 3D nano-bridge junctions can be miniaturized into nano-SQUIDs that are able to sense a few spins in a large magnetic field. Among all device parameters, the inductance is key to the performance of SQUIDs with 3D nano-bridge junctions. Here, we measured the critical-current magnetic flux modulation curves of 12 devices with three design types using a current strip-line directly coupled to the SQUID loop. A best flux modulation depth of 71% was achieved for our 3D Nb SQUID. From the modulation curves, we extracted the inductance values of the current stripe-line in each design and compared them with the corresponding simulation results of InductEX. In this way, London penetration depths of 110 and 420 nm were determined for our Nb (niobium) and NbN (niobium nitride) films, respectively. Furthermore, we showed that inductances of 11 and 119 pH for Nb and NbN 3D nano-bridge junctions, respectively, dominated the total inductance of our SQUID loops which are 23 pH for Nb and 255 pH for NbN. A screening parameter being equal to one suggests optimal critical currents of 89.6 and 8.1 μA for Nb and NbN SQUIDs, respectively. Additionally, intrinsic flux noise of 110 ± 40 nΦ0/(Hz)1/2 is calculated for the Nb SQUIDs with 3D nano-bridge junctions by Langevin simulation.

  9. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment

    PubMed Central

    Uddin, Raihan; Singh, Shiva M.

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in “learning and memory” related functions and pathways. Subsequent differential network analysis of this “learning and memory” module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they provide a new insight and generate new hypotheses into the molecular mechanisms responsible for age associated learning impairment, including spatial learning. PMID:29066959

  10. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment.

    PubMed

    Uddin, Raihan; Singh, Shiva M

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they provide a new insight and generate new hypotheses into the molecular mechanisms responsible for age associated learning impairment, including spatial learning.

  11. Participative Critical Enquiry in Graduate Field-Based Learning

    ERIC Educational Resources Information Center

    Reilly, Kathy; Clavin, Alma; Morrissey, John

    2016-01-01

    This paper outlines a critical pedagogic approach to field-based learning (FBL) at graduate level. Drawing on student experience stemming from a FBL module and as part of an MA programme in Environment, Society and Development, the paper addresses the complexities associated with student-led, participative critical enquiry during fieldwork in…

  12. Contamination control in hybrid microelectronic modules. Identification of critical process and contaminants, part 1

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Hybrid processes, handling procedures, and materials were examined to identify the critical process steps in which contamination is most likely to occur, to identify the particular contaminants associated with these critical steps, and to propose method for the control of these contaminants.

  13. Focused didactic training for skills lab student tutors – which techniques are considered helpful?

    PubMed Central

    Heni, Martin; Lammerding-Köppel, Maria; Celebi, Nora; Shiozawa, Thomas; Riessen, Reimer; Nikendei, Christoph; Weyrich, Peter

    2012-01-01

    Objective: Peer-assisted learning is widely used in medical education. However, little is known about an appropriate didactic preparation for peer tutors. We herein describe the development of a focused didactic training for skills lab tutors in Internal Medicine and report on a retrospective survey about the student tutors’ acceptance and the perceived transferability of attended didactic training modules. Methods: The course consisted of five training modules: ‘How to present and explain effectively’: the student tutors had to give a short presentation with subsequent video analysis and feedback in order to learn methods of effective presentation. ‘How to explain precisely’: Precise explanation techniques were trained by exercises of exact description of geometric figures and group feedback. ‘How to explain on impulse’: Spontaneous teaching presentations were simulated and feedback was given. ‘Peyton’s 4 Step Approach’: Peyton‘s Method for explanation of practical skills was introduced and trained by the participants. ‘How to deal with critical incidents’: Possibilities to deal with critical teaching situations were worked out in group sessions. Twenty-three student tutors participated in the retrospective survey by filling out an electronic questionnaire, after at least 6 months of teaching experience. Results: The exercise ‘How to present and explain effectively’ received the student tutors’ highest rating for their improvement of didactic qualification and was seen to be most easily transferable into the skills lab environment. This module was rated as the most effective module by nearly half of the participants. It was followed by ‘Peyton’s 4 Step Approach’ , though it was also seen to be the most delicate method in regard to its transfer into the skills lab owing to time concerns. However, it was considered to be highly effective. The other modules received lesser votes by the tutors as the most helpful exercise in improving their didactic qualification for skills lab teaching. Conclusion: We herein present a pilot concept for a focused didactic training of peer tutors and present results of a retrospective survey among our skills lab tutors about the distinct training modules. This report might help other faculties to design didactic courses for skills lab student tutors. PMID:22737196

  14. Focused didactic training for skills lab student tutors - which techniques are considered helpful?

    PubMed

    Heni, Martin; Lammerding-Köppel, Maria; Celebi, Nora; Shiozawa, Thomas; Riessen, Reimer; Nikendei, Christoph; Weyrich, Peter

    2012-01-01

    Peer-assisted learning is widely used in medical education. However, little is known about an appropriate didactic preparation for peer tutors. We herein describe the development of a focused didactic training for skills lab tutors in Internal Medicine and report on a retrospective survey about the student tutors' acceptance and the perceived transferability of attended didactic training modules. The course consisted of five training modules: 1. 'How to present and explain effectively': the student tutors had to give a short presentation with subsequent video analysis and feedback in order to learn methods of effective presentation. 2. 'How to explain precisely': Precise explanation techniques were trained by exercises of exact description of geometric figures and group feedback. 3. 'How to explain on impulse': Spontaneous teaching presentations were simulated and feedback was given. 4. 'Peyton's 4 Step Approach': Peyton's Method for explanation of practical skills was introduced and trained by the participants. 5. 'How to deal with critical incidents': Possibilities to deal with critical teaching situations were worked out in group sessions. Twenty-three student tutors participated in the retrospective survey by filling out an electronic questionnaire, after at least 6 months of teaching experience. The exercise 'How to present and explain effectively' received the student tutors' highest rating for their improvement of didactic qualification and was seen to be most easily transferable into the skills lab environment. This module was rated as the most effective module by nearly half of the participants. It was followed by 'Peyton's 4 Step Approach' , though it was also seen to be the most delicate method in regard to its transfer into the skills lab owing to time concerns. However, it was considered to be highly effective. The other modules received lesser votes by the tutors as the most helpful exercise in improving their didactic qualification for skills lab teaching. We herein present a pilot concept for a focused didactic training of peer tutors and present results of a retrospective survey among our skills lab tutors about the distinct training modules. This report might help other faculties to design didactic courses for skills lab student tutors.

  15. Amino Acid Side Chain Interactions in the Presence of Salts

    PubMed Central

    Hassan, Sergio A.

    2005-01-01

    The effects of salt on the intermolecular interactions between polar/charged amino acids are investigated through molecular dynamics simulations. The mean forces and associated potentials are calculated for NaCl salt in the 0–2 M concentration range at 298 K. It is found that the addition of salt may stabilize or destabilize the interactions, depending on the nature of the interacting molecules. The degree of (de)stabilization is quantified, and the origin of the salt-dependent modulation is discussed based upon an analysis of solvent density profiles. To gain insight into the molecular origin of the salt modulation, spatial distribution functions (sdf’s) are calculated, revealing a high degree of solvent structuredness in all cases. The peaks in the sdf’s are consistent with long-range hydrogen-bonding networks connecting the solute hydrophilic groups, and that contribute to their intermolecular solvent-induced forces. The restructuring of water around the solutes as they dissociate from close contact is analyzed. This analysis offers clues on how the solvent structure modulates the effective intermolecular interactions in complex solutes. This modulation results from a critical balance between bulk electrostatic forces and those exerted by (i) the water molecules in the structured region between the monomers, which is disrupted by ions that transiently enter the hydration shells, and (ii) the ions in the hydration shells in direct interactions with the solutes. The implications of these findings in protein/ligand (noncovalent) association/dissociation mechanisms are briefly discussed. PMID:16479276

  16. Towards a Web-Enabled Geovisualization and Analytics Platform for the Energy and Water Nexus

    NASA Astrophysics Data System (ADS)

    Sanyal, J.; Chandola, V.; Sorokine, A.; Allen, M.; Berres, A.; Pang, H.; Karthik, R.; Nugent, P.; McManamay, R.; Stewart, R.; Bhaduri, B. L.

    2017-12-01

    Interactive data analytics are playing an increasingly vital role in the generation of new, critical insights regarding the complex dynamics of the energy/water nexus (EWN) and its interactions with climate variability and change. Integration of impacts, adaptation, and vulnerability (IAV) science with emerging, and increasingly critical, data science capabilities offers a promising potential to meet the needs of the EWN community. To enable the exploration of pertinent research questions, a web-based geospatial visualization platform is being built that integrates a data analysis toolbox with advanced data fusion and data visualization capabilities to create a knowledge discovery framework for the EWN. The system, when fully built out, will offer several geospatial visualization capabilities including statistical visual analytics, clustering, principal-component analysis, dynamic time warping, support uncertainty visualization and the exploration of data provenance, as well as support machine learning discoveries to render diverse types of geospatial data and facilitate interactive analysis. Key components in the system architecture includes NASA's WebWorldWind, the Globus toolkit, postgresql, as well as other custom built software modules.

  17. Role of IAC in large space systems thermal analysis

    NASA Technical Reports Server (NTRS)

    Jones, G. K.; Skladany, J. T.; Young, J. P.

    1982-01-01

    Computer analysis programs to evaluate critical coupling effects that can significantly influence spacecraft system performance are described. These coupling effects arise from the varied parameters of the spacecraft systems, environments, and forcing functions associated with disciplines such as thermal, structures, and controls. Adverse effects can be expected to significantly impact system design aspects such as structural integrity, controllability, and mission performance. One such needed design analysis capability is a software system that can integrate individual discipline computer codes into a highly user-oriented/interactive-graphics-based analysis capability. The integrated analysis capability (IAC) system can be viewed as: a core framework system which serves as an integrating base whereby users can readily add desired analysis modules and as a self-contained interdisciplinary system analysis capability having a specific set of fully integrated multidisciplinary analysis programs that deal with the coupling of thermal, structures, controls, antenna radiation performance, and instrument optical performance disciplines.

  18. Review article: Critical Care Airway Management eLearning modules.

    PubMed

    Doshi, Deepak; McCarthy, Sally; Mowatt, Elizabeth; Cahill, Angela; Peirce, Bronwyn; Hawking, Geoff; Osborne, Ruth; Hibble, Belinda; Ebbs, Katharine

    2017-11-16

    The Australasian College for Emergency Medicine (ACEM) has recently launched the Critical Care Airway Management eLearning modules to support emergency medicine trainees in developing their airway management skills in the ED. A team of emergency physicians and trainees worked collaboratively to develop the eLearning resources ensuring extensive stakeholder consultation. A comprehensive resource manual was written to provide learners with knowledge that underpins the modules. ACEM provided project coordination as well as administrative and technical team support to the production. Although specifically developed with early ACEM trainees in mind, it is envisaged the resources will be useful for all emergency clinicians. The project was funded by the Australian Commonwealth Department of Health. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  19. Evaluation of MPLM Design and Mission 6A Coupled Loads Analyses

    NASA Technical Reports Server (NTRS)

    Bookout, Paul S.; Ricks, Ed

    1999-01-01

    Through the development of a space shuttle payload, there are usually several coupled loads analyses (CLA) performed: preliminary design, critical design, final design and verification loads analysis (VLA). A final design CLA is the last analysis conducted prior to model delivery to the shuttle program for the VLA. The finite element models used in the final design CLA and the VLA are test verified dynamic math models. Mission 6A is the first of many flights of the Multi-Purpose Logistics Module (MPLM). The MPLM was developed by Alenia Spazio S.p.A. (an Italian aerospace company) and houses the International Standard Payload Racks (ISPR) for transportation to the space station in the shuttle. Marshall Space Flight Center (MSFC), the payload integrator of the MPLM for Mission 6A, performed the final design CLA using the M6.OZC shuttle data for liftoff and landing conditions using the proper shuttle cargo manifest. Alenia performed the preliminary and critical design CLAs for the development of the MPLM. However, these CLAs did not use the current Mission 6A cargo manifest. An evaluation of the preliminary and critical design performed by Alenia and the final design performed by MSFC is presented.

  20. Teenage Pregnancy: An Intensive and Critical Problem in Search of a Solution. Student Fact Finder Leaflet.

    ERIC Educational Resources Information Center

    Glover-Smith, Alma

    This document presents materials from a course designed to teach adolescents about teenage pregnancy and parenting. The materials are organized into nine modules, each of which contains instructions on how to use the module; a pre- and post-test on the information presented in the module; a fact finder leaflet of information; and relevant…

  1. Reactor Statics Module, RS-9: Multigroup Diffusion Program Using an Exponential Acceleration Technique.

    ERIC Educational Resources Information Center

    Macek, Victor C.

    The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burnup for both slow neutron and fast neutron fission reactors. The last module, RS-9,…

  2. Assessment for Learning: Capturing the Interest of Diverse Students on an Academic Writing Module in Postgraduate Vocational Education

    ERIC Educational Resources Information Center

    Strauss, P.; Mooney, S.

    2017-01-01

    This article discusses the complexities surrounding the teaching of a critical thinking and academic writing module on a vocational postgraduate programme. Students enrolled on this programme are strongly industry focused and often fail to see the relevance of such a module, despite the fact that most are international students with English as…

  3. 3D critical layers in fully-developed turbulent flows

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; McKeon, Beverley

    2016-11-01

    Recent work has shown that 3D critical layers drive self-sustaining behavior of exact coherent solutions of the Navier-Stokes equations (Wang et al. 2007; Hall and Sherwin 2010; Park and Graham 2015). This study investigates the role of 3D critical layers in fully-developed turbulent flows. 3D critical layer effects are identified in instantaneous snapshots of turbulent boundary layers in both experimental and DNS data (Wu et al. 2014). Additionally, a 3D critical layer effect is demonstrated to appear using only a few resolvent response modes from the resolvent analysis of McKeon and Sharma 2010, with phase relationships appropriately chosen. Connections are sought to the thin shear layers observed in turbulent boundary layers (Klewicki and Hirschi 2004; Eisma et al. 2015) and to amplitude modulation observations (Mathis et al. 2009; Duvvuri and McKeon 2014). This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060. The support of the Center for Turbulence Research (CTR) summer program at Stanford is gratefully acknowledged.

  4. Teaching critical appraisal skills for nursing research.

    PubMed

    Jones, Sandra C; Crookes, Patrick A; Johnson, Keryn M

    2011-09-01

    Evidence-based practice is a major focus in nursing, yet the literature continues to document a research-practice gap. Reasons for this gap stem partly from a lack of skills to critique and synthesize the literature, a lack of search skills and difficulty in understanding research articles, and limited knowledge of research by nursing professionals. An innovative and quality driven subject to improve critical appraisal and critical thinking skills was developed for the School of Nursing, Midwifery and Indigenous Health at the University of Wollongong, based on formative research with postgraduate students and supervisors. Through face-to-face and online teaching modules students worked through a structured process of analysing the key aspects of published papers using structured analysis tools for each study design. Pre and post surveys of students found improvements in perceived knowledge of all key skills of critical appraisal. External independent evaluation determined that it was a high quality subject showing many hallmarks of good assessment practice and good practice in use of information and communication technology (ICT) in support of the learning outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Applications of the DOE/NASA wind turbine engineering information system

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Spera, D. A.

    1981-01-01

    A statistical analysis of data obtained from the Technology and Engineering Information Systems was made. The systems analyzed consist of the following elements: (1) sensors which measure critical parameters (e.g., wind speed and direction, output power, blade loads and component vibrations); (2) remote multiplexing units (RMUs) on each wind turbine which frequency-modulate, multiplex and transmit sensor outputs; (3) on-site instrumentation to record, process and display the sensor output; and (4) statistical analysis of data. Two examples of the capabilities of these systems are presented. The first illustrates the standardized format for application of statistical analysis to each directly measured parameter. The second shows the use of a model to estimate the variability of the rotor thrust loading, which is a derived parameter.

  6. Xi-CAM v1.2.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PANDOLFI, RONALD; KUMAR, DINESH; VENKATAKRISHNAN, SINGANALLUR

    Xi-CAM aims to provide a community driven platform for multimodal analysis in synchrotron science. The platform core provides a robust plugin infrastructure for extensibility, allowing continuing development to simply add further functionality. Current modules include tools for characterization with (GI)SAXS, Tomography, and XAS. This will continue to serve as a development base as algorithms for multimodal analysis develop. Seamless remote data access, visualization and analysis are key elements of Xi-CAM, and will become critical to synchrotron data infrastructure as expectations for future data volume and acquisition rates rise with continuously increasing throughputs. The highly interactive design elements of Xi-cam willmore » similarly support a generation of users which depend on immediate data quality feedback during high-throughput or burst acquisition modes.« less

  7. Shell stability analysis in a computer aided engineering (CAE) environment

    NASA Technical Reports Server (NTRS)

    Arbocz, J.; Hol, J. M. A. M.

    1993-01-01

    The development of 'DISDECO', the Delft Interactive Shell DEsign COde is described. The purpose of this project is to make the accumulated theoretical, numerical and practical knowledge of the last 25 years or so readily accessible to users interested in the analysis of buckling sensitive structures. With this open ended, hierarchical, interactive computer code the user can access from his workstation successively programs of increasing complexity. The computational modules currently operational in DISDECO provide the prospective user with facilities to calculate the critical buckling loads of stiffened anisotropic shells under combined loading, to investigate the effects the various types of boundary conditions will have on the critical load, and to get a complete picture of the degrading effects the different shapes of possible initial imperfections might cause, all in one interactive session. Once a design is finalized, its collapse load can be verified by running a large refined model remotely from behind the workstation with one of the current generation 2-dimensional codes, with advanced capabilities to handle both geometric and material nonlinearities.

  8. Flight deck engine advisor

    NASA Technical Reports Server (NTRS)

    Shontz, W. D.; Records, R. M.; Antonelli, D. R.

    1992-01-01

    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.

  9. ROBOSIGHT: Robotic Vision System For Inspection And Manipulation

    NASA Astrophysics Data System (ADS)

    Trivedi, Mohan M.; Chen, ChuXin; Marapane, Suresh

    1989-02-01

    Vision is an important sensory modality that can be used for deriving information critical to the proper, efficient, flexible, and safe operation of an intelligent robot. Vision systems are uti-lized for developing higher level interpretation of the nature of a robotic workspace using images acquired by cameras mounted on a robot. Such information can be useful for tasks such as object recognition, object location, object inspection, obstacle avoidance and navigation. In this paper we describe efforts directed towards developing a vision system useful for performing various robotic inspection and manipulation tasks. The system utilizes gray scale images and can be viewed as a model-based system. It includes general purpose image analysis modules as well as special purpose, task dependent object status recognition modules. Experiments are described to verify the robust performance of the integrated system using a robotic testbed.

  10. Reliability of conditioned pain modulation: a systematic review

    PubMed Central

    Kennedy, Donna L.; Kemp, Harriet I.; Ridout, Deborah; Yarnitsky, David; Rice, Andrew S.C.

    2016-01-01

    Abstract A systematic literature review was undertaken to determine if conditioned pain modulation (CPM) is reliable. Longitudinal, English language observational studies of the repeatability of a CPM test paradigm in adult humans were included. Two independent reviewers assessed the risk of bias in 6 domains; study participation; study attrition; prognostic factor measurement; outcome measurement; confounding and analysis using the Quality in Prognosis Studies (QUIPS) critical assessment tool. Intraclass correlation coefficients (ICCs) less than 0.4 were considered to be poor; 0.4 and 0.59 to be fair; 0.6 and 0.75 good and greater than 0.75 excellent. Ten studies were included in the final review. Meta-analysis was not appropriate because of differences between studies. The intersession reliability of the CPM effect was investigated in 8 studies and reported as good (ICC = 0.6-0.75) in 3 studies and excellent (ICC > 0.75) in subgroups in 2 of those 3. The assessment of risk of bias demonstrated that reporting is not comprehensive for the description of sample demographics, recruitment strategy, and study attrition. The absence of blinding, a lack of control for confounding factors, and lack of standardisation in statistical analysis are common. Conditioned pain modulation is a reliable measure; however, the degree of reliability is heavily dependent on stimulation parameters and study methodology and this warrants consideration for investigators. The validation of CPM as a robust prognostic factor in experimental and clinical pain studies may be facilitated by improvements in the reporting of CPM reliability studies. PMID:27559835

  11. A decision support framework for characterizing and managing dermal exposures to chemicals during Emergency Management and Operations.

    PubMed

    Dotson, G Scott; Hudson, Naomi L; Maier, Andrew

    2015-01-01

    Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management.

  12. A decision support framework for characterizing and managing dermal exposures to chemicals during Emergency Management and Operations

    PubMed Central

    Dotson, G. Scott; Hudson, Naomi L.; Maier, Andrew

    2016-01-01

    Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management. PMID:26312660

  13. Quantifying and Improving International Space Station Survivability Following Orbital Debris Penetration

    NASA Technical Reports Server (NTRS)

    Williamsen, Joel; Evans, Hilary; Bohl, Bill; Evans, Steven; Parker, Nelson (Technical Monitor)

    2001-01-01

    The increase of the orbital debris environment in low-earth orbit has prompted NASA to develop analytical tools for quantifying and lowering the likelihood of crew loss following orbital debris penetration of the International Space Station (ISS). NASA uses the Manned Spacecraft and Crew Survivability (MSCSurv) computer program to simulate the events that may cause crew loss following orbital debris penetration of ISS manned modules, including: (1) critical cracking (explosive decompression) of the module; (2) critical external equipment penetration (such as hydrazine and high pressure tanks); (3) critical internal system penetration (guidance, control, and other vital components); (4) hazardous payload penetration (furnaces, pressure bottles, and toxic substances); (5) crew injury (from fragments, overpressure, light flash, and temperature rise); (6) hypoxia from loss of cabin pressure; and (7) thrust from module hole causing high angular velocity (occurring only when key Guidance, Navigation, and Control (GN&C) equipment is damaged) and, thus, preventing safe escape vehicle (EV) departure. MSCSurv is also capable of quantifying the 'end effects' of orbital debris penetration, such as the likelihood of crew escape, the probability of each module depressurizing, and late loss of station control. By quantifying these effects (and their associated uncertainties), NASA is able to improve the likelihood of crew survivability following orbital debris penetration due to improved crew operations and internal designs.

  14. Beyond adaptive-critic creative learning for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.

    2001-10-01

    Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it permits the discovery of the unknown problems, ones that are not yet recognized but may be critical to survival or success.

  15. Taking Bioinformatics to Systems Medicine.

    PubMed

    van Kampen, Antoine H C; Moerland, Perry D

    2016-01-01

    Systems medicine promotes a range of approaches and strategies to study human health and disease at a systems level with the aim of improving the overall well-being of (healthy) individuals, and preventing, diagnosing, or curing disease. In this chapter we discuss how bioinformatics critically contributes to systems medicine. First, we explain the role of bioinformatics in the management and analysis of data. In particular we show the importance of publicly available biological and clinical repositories to support systems medicine studies. Second, we discuss how the integration and analysis of multiple types of omics data through integrative bioinformatics may facilitate the determination of more predictive and robust disease signatures, lead to a better understanding of (patho)physiological molecular mechanisms, and facilitate personalized medicine. Third, we focus on network analysis and discuss how gene networks can be constructed from omics data and how these networks can be decomposed into smaller modules. We discuss how the resulting modules can be used to generate experimentally testable hypotheses, provide insight into disease mechanisms, and lead to predictive models. Throughout, we provide several examples demonstrating how bioinformatics contributes to systems medicine and discuss future challenges in bioinformatics that need to be addressed to enable the advancement of systems medicine.

  16. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  17. Network-Based Disease Module Discovery by a Novel Seed Connector Algorithm with Pathobiological Implications.

    PubMed

    Wang, Rui-Sheng; Loscalzo, Joseph

    2018-05-20

    Understanding the genetic basis of complex diseases is challenging. Prior work shows that disease-related proteins do not typically function in isolation. Rather, they often interact with each other to form a network module that underlies dysfunctional mechanistic pathways. Identifying such disease modules will provide insights into a systems-level understanding of molecular mechanisms of diseases. Owing to the incompleteness of our knowledge of disease proteins and limited information on the biological mediators of pathobiological processes, the key proteins (seed proteins) for many diseases appear scattered over the human protein-protein interactome and form a few small branches, rather than coherent network modules. In this paper, we develop a network-based algorithm, called the Seed Connector algorithm (SCA), to pinpoint disease modules by adding as few additional linking proteins (seed connectors) to the seed protein pool as possible. Such seed connectors are hidden disease module elements that are critical for interpreting the functional context of disease proteins. The SCA aims to connect seed disease proteins so that disease mechanisms and pathways can be decoded based on predicted coherent network modules. We validate the algorithm using a large corpus of 70 complex diseases and binding targets of over 200 drugs, and demonstrate the biological relevance of the seed connectors. Lastly, as a specific proof of concept, we apply the SCA to a set of seed proteins for coronary artery disease derived from a meta-analysis of large-scale genome-wide association studies and obtain a coronary artery disease module enriched with important disease-related signaling pathways and drug targets not previously recognized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Effect of solute immobilization on the stability problem within the fractional model in the solute analog of the Horton-Rogers-Lapwood problem.

    PubMed

    Klimenko, Lyudmila S; Maryshev, Boris S

    2017-11-24

    The paper is devoted to the linear stability analysis within the solute analogue of the Horton-Rogers-Lapwood (HRL) problem. The solid nanoparticles are treated as solute within the continuous approach. Therefore, we consider the infinite horizontal porous layer saturated with a mixture (carrier fluid and solute). Solute transport in porous media is very often complicated by solute immobilization on a solid matrix of porous media. Solute immobilization (solute sorption) is taken into account within the fractal model of the MIM approach. According to this model a solute in porous media immobilizes within random time intervals and the distribution of such random variable does not have a finite mean value, which has a good agreement with some experiments. The solute concentration difference between the layer boundaries is assumed as constant. We consider two cases of horizontal external filtration flux: constant and time-modulated. For the constant flux the system of equations that determines the frequency of neutral oscillations and the critical value of the Rayleigh-Darcy number is derived. Neutral curves of the critical parameters on the governing parameters are plotted. Stability maps are obtained numerically in a wide range of parameters of the system. We have found that taking immobilization into account leads to an increase in the critical value of the Rayleigh-Darcy number with an increase in the intensity of the external filtration flux. The case of weak time-dependent external flux is investigated analytically. We have shown that the modulated external flux leads to an increase in the critical value of the Rayleigh-Darcy number and a decrease in the critical wave number. For moderate time-dependent filtration flux the differential equation with Caputo fractional derivatives has been obtained for the description of the behavior near the convection instability threshold. This equation is analyzed numerically by the Floquet method; the parametric excitation of convection is observed.

  19. Oscillatory instability of a self-rewetting film driven by thermal modulation

    NASA Astrophysics Data System (ADS)

    Batson, William; Agnon, Yehuda; Oron, Alex

    2016-11-01

    Here we consider the self-rewetting fluids (SRWFs) that exhibit a well-defined minimum surface tension with respect to temperature, in contrast to those where surface tension decreases linearly. Utilization of SRWFs has grown significantly in the past decade, due to observations that heat transfer is enhanced in applications such as film boiling and pulsating heat pipes. With similar applications in mind, we investigate the dynamics of a thin SRWF film which is subjected to a temperature modulation in the bounding gas. A model is developed within the framework of the long-wave approximation, and a time-averaged thermocapillary driving force for destabilization is uncovered for SRWFs that results from the nonlinear surface tension. Linear analysis of the nonlinear PDE for the film thickness is used to determine the critical conditions at which this driving force destabilizes the film, and, numerical integration of this evolution equation reveals that linearly unstable perturbations saturate to regular periodic solutions (when the modulational frequency is set properly). Properties of these flows such as bifurcation and long-domain flows, where multiple unstable linear modes interact, will also be discussed.

  20. Madness in the movies: An evaluation of the use of cinema to explore mental health issues in nurse education.

    PubMed

    McCann, Edward; Huntley-Moore, Sylvia

    2016-11-01

    The research literature on the use of cinema in nurse education is relatively small. This study evaluates student nurses' learning experiences of a new undergraduate elective module called Madness in the Movies. Ethical approval was granted to conduct the study. Data were collected through an online survey and a social media discussion forum. The anonymous online survey responses were collated via Survey Monkey. Content analysis was conducted on the data from the Facebook discussion threads to understand, interpret and conceptualise the meanings from the data. All study participants agreed that their understanding of mental health issues was enriched, their attitudes and beliefs enhanced and their confidence to talk about mental health concerns increased significantly. This module provides a fruitful approach to encourage critical reflection on mental health issues in a safe environment that closely mirrors authentic practice experiences. The module facilitates the development of students' knowledge, values and attitudes in relation to person-centred mental healthcare. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Functional modules of sigma factor regulons guarantee adaptability and evolvability

    PubMed Central

    Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-01-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971

  2. Amplitude modulation detection with concurrent frequency modulation.

    PubMed

    Nagaraj, Naveen K

    2016-09-01

    Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

  3. A characterization of low luminance static and dynamic modulation transfer function curves for P-1, P-43, and P-53 phosphorus

    NASA Astrophysics Data System (ADS)

    Beasley, Howard H.; Martin, John S.; Klymenko, Victor; Harding, Thomas H.; Verona, Robert W.; Rash, Clarence E.

    1995-07-01

    A counterphase modulation technique is used to measure the static and dynamic modulation transfer functions for three phosphorus of current interest to U.S. Army aviation helmet-mounted displays (P-1, P-43, and P-53). A family of modulation transfer curves, one for each temporal frequency, is presented for each phosphorus. The measured MFT curves generally support the supposition that phosphorus persistence is a critical parameter in the ability of a CRT display to accurately reproduce contrast modulation transfer in dynamic environments.

  4. Early Oscillation Detection for Hybrid DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    This paper describes a novel fault detection technique for hybrid DC/DC converter oscillation diagnosis. The technique is based on principles of feedback control loop oscillation and RF signal modulations, and Is realized by using signal spectral analysis. Real-circuit simulation and analytical study reveal critical factors of the oscillation and indicate significant correlations between the spectral analysis method and the gain/phase margin method. A stability diagnosis index (SDI) is developed as a quantitative measure to accurately assign a degree of stability to the DC/DC converter. This technique Is capable of detecting oscillation at an early stage without interfering with DC/DC converter's normal operation and without limitations of probing to the converter.

  5. Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila's circadian clock neuron network.

    PubMed

    Lelito, Katherine R; Shafer, Orie T

    2012-04-01

    The relatively simple clock neuron network of Drosophila is a valuable model system for the neuronal basis of circadian timekeeping. Unfortunately, many key neuronal classes of this network are inaccessible to electrophysiological analysis. We have therefore adopted the use of genetically encoded sensors to address the physiology of the fly's circadian clock network. Using genetically encoded Ca(2+) and cAMP sensors, we have investigated the physiological responses of two specific classes of clock neuron, the large and small ventrolateral neurons (l- and s-LN(v)s), to two neurotransmitters implicated in their modulation: acetylcholine (ACh) and γ-aminobutyric acid (GABA). Live imaging of l-LN(v) cAMP and Ca(2+) dynamics in response to cholinergic agonist and GABA application were well aligned with published electrophysiological data, indicating that our sensors were capable of faithfully reporting acute physiological responses to these transmitters within single adult clock neuron soma. We extended these live imaging methods to s-LN(v)s, critical neuronal pacemakers whose physiological properties in the adult brain are largely unknown. Our s-LN(v) experiments revealed the predicted excitatory responses to bath-applied cholinergic agonists and the predicted inhibitory effects of GABA and established that the antagonism of ACh and GABA extends to their effects on cAMP signaling. These data support recently published but physiologically untested models of s-LN(v) modulation and lead to the prediction that cholinergic and GABAergic inputs to s-LN(v)s will have opposing effects on the phase and/or period of the molecular clock within these critical pacemaker neurons.

  6. Space Qualification Test of a-Silicon Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Lawton, R. A.; Manion, S. J.; Okuno, J. O.; Ruiz, R. P.; Vu, D. T.; Vu, D. T.; Kayali, S. A.; Jeffrey, F. R.

    2004-01-01

    The basic requirements of solar cell modules for space applications are generally described in MIL-S-83576 for the specific needs of the USAF. However, the specifications of solar cells intended for use on space terrestrial applications are not well defined. Therefore, this qualifications test effort was concentrated on critical areas specific to the microseismometer probe which is intended to be included in the Mars microprobe programs. Parameters that were evaluated included performance dependence on: illuminating angles, terrestrial temperatures, lifetime, as well as impact landing conditions. Our qualification efforts were limited to these most critical areas of concern. Most of the tested solar cell modules have met the requirements of the program except the impact tests. Surprisingly, one of the two single PIN 2 x 1 amorphous solar cell modules continued to function even after the 80000G impact tests. The output power parameters, Pout, FF, Isc and Voc, of the single PIN amorphous solar cell module were found to be 3.14 mW, 0.40, 9.98 mA and 0.78 V, respectively. These parameters are good enough to consider the solar module as a possible power source for the microprobe seismometer. Some recommendations were made to improve the usefulness of the amorphous silicon solar cell modules in space terrestrial applications, based on the results obtained from the intensive short term lab test effort.

  7. Yeast Mitoribosome Large Subunit Assembly Proceeds by Hierarchical Incorporation of Protein Clusters and Modules on the Inner Membrane.

    PubMed

    Zeng, Rui; Smith, Erin; Barrientos, Antoni

    2018-03-06

    Mitoribosomes are specialized for the synthesis of hydrophobic membrane proteins encoded by mtDNA, all essential for oxidative phosphorylation. Despite their linkage to human mitochondrial diseases and the recent cryoelectron microscopy reconstruction of yeast and mammalian mitoribosomes, how they are assembled remains obscure. Here, we dissected the yeast mitoribosome large subunit (mtLSU) assembly process by systematic genomic deletion of 44 mtLSU proteins (MRPs). Analysis of the strain collection unveiled 37 proteins essential for functional mtLSU assembly, three of which are critical for mtLSU 21S rRNA stability. Hierarchical cluster analysis of mtLSU subassemblies accumulated in mutant strains revealed co-operative assembly of protein sets forming structural clusters and preassembled modules. It also indicated crucial roles for mitochondrion-specific membrane-binding MRPs in anchoring newly transcribed 21S rRNA to the inner membrane, where assembly proceeds. Our results define the yeast mtLSU assembly landscape in vivo and provide a foundation for studies of mitoribosome assembly across evolution. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli

    PubMed Central

    Nishio, Yousuke; Usuda, Yoshihiro; Matsui, Kazuhiko; Kurata, Hiroyuki

    2008-01-01

    The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer-aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate. PMID:18197177

  9. A Human Factors Evaluation of a Methodology for Pressurized Crew Module Acceptability for Zero-Gravity Ingress of Spacecraft

    NASA Technical Reports Server (NTRS)

    Sanchez, Merri J.

    2000-01-01

    This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.

  10. Advanced space system analysis software. Technical, user, and programmer guide

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.; Zimbelman, H. F.

    1981-01-01

    The LASS computer program provides a tool for interactive preliminary and conceptual design of LSS. Eight program modules were developed, including four automated model geometry generators, an associated mass properties module, an appendage synthesizer module, an rf analysis module, and an orbital transfer analysis module. The existing rigid body controls analysis module was modified to permit analysis of effects of solar pressure on orbital performance. A description of each module, user instructions, and programmer information are included.

  11. CSG test

    NASA Image and Video Library

    2011-09-15

    E-2 Test Stand team members at Stennis Space Center conducted their first series of tests on a three-module chemical steam generator unit Sept. 15. All three modules successfully fired during the tests. The chemical steam generator is a critical component for the A-3 Test Stand under construction at Stennis.

  12. An electronic flow control system for a variable-rate tree sprayer

    USDA-ARS?s Scientific Manuscript database

    Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...

  13. Development of digital flow control system for multi-channel variable-rate sprayers

    USDA-ARS?s Scientific Manuscript database

    Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...

  14. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Ma, Tian-Hsiang; Lin, Yi-Chun; Lo, Szecheng J.; Chang, Ta-Chau

    2016-08-01

    Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm-1) and lipid (~2845 cm-1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.

  15. Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for The Development of Polycrystalline Multijunctions: Annual Report; 24 August 1998-23 August 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.

    2000-08-25

    This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scalemore » equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.« less

  16. Subgenual anterior cingulate cortex controls sadness-induced modulations of cognitive and emotional network hubs.

    PubMed

    Ramirez-Mahaluf, Juan P; Perramon, Joan; Otal, Begonya; Villoslada, Pablo; Compte, Albert

    2018-06-04

    The regulation of cognitive and emotional processes is critical for proper executive functions and social behavior, but its specific mechanisms remain unknown. Here, we addressed this issue by studying with functional magnetic resonance imaging the changes in network topology that underlie competitive interactions between emotional and cognitive networks in healthy participants. Our behavioral paradigm contrasted periods with high emotional and cognitive demands by including a sadness provocation task followed by a spatial working memory task. The sharp contrast between successive tasks was designed to enhance the separability of emotional and cognitive networks and reveal areas that regulate the flow of information between them (hubs). By applying graph analysis methods on functional connectivity between 20 regions of interest in 22 participants we identified two main brain network modules, one dorsal and one ventral, and their hub areas: the left dorsolateral prefrontal cortex (dlPFC) and the left medial frontal pole (mFP). These hub areas did not modulate their mutual functional connectivity following sadness but they did so through an interposed area, the subgenual anterior cingulate cortex (sACC). Our results identify dlPFC and mFP as areas regulating interactions between emotional and cognitive networks, and suggest that their modulation by sadness experience is mediated by sACC.

  17. Mitofusin 2 as a driver that controls energy metabolism and insulin signaling.

    PubMed

    Zorzano, Antonio; Hernández-Alvarez, María Isabel; Sebastián, David; Muñoz, Juan Pablo

    2015-04-20

    Mitochondrial dynamics is a complex process that impacts on mitochondrial biology. Recent evidence indicates that proteins participating in mitochondrial dynamics have additional cellular roles. Mitofusin 2 (Mfn2) is a potent modulator of mitochondrial metabolism with an impact on energy metabolism in muscle, liver, and hypothalamic neurons. In addition, Mfn2 is subjected to tight regulation. Hence, factors such as proinflammatory cytokines, lipid availability, or glucocorticoids block its expression, whereas exercise and increased energy expenditure promote its upregulation. Importantly, Mfn2 controls cell metabolism and insulin signaling by limiting reactive oxygen species production and by modulation of endoplasmic reticulum stress. In this connection, it is critical to understand precisely the molecular mechanisms involved in the global actions of Mfn2. Future directions should concentrate into the analysis of those mechanisms, and to fully demonstrate that Mfn2 represents a cellular hub that senses the metabolic and hormonal milieu and drives the control of metabolic homeostasis.

  18. A story told by a single nanoparticle in the body fluid: demonstration of dissolution-reprecipitation of nanocrystals in a biological system.

    PubMed

    Wu, Cheng-Yeu; Young, David; Martel, Jan; Young, John D

    2015-01-01

    Analysis of the chemical composition of mineral particles found in the body is critical to understand the formation and effects of these entities in vivo. Yet, the possibility that biological fluids may modulate particle composition over time has not been examined. Materials & methods: Mineralo-organic nanoparticles similar to the ones that spontaneously form in human tissues were analyzed using electron microscopy, spectroscopy and proteomic analyses.   We show that the mineralo-organic nanoparticles assimilate various ions and minerals during incubation in ionic solutions simulating body fluids. The particles undergo dissolution-reprecipitation reactions that affect the final protein composition of the particles. The reactions occurring at the mineral-water interface therefore modulate the ionic and organic composition of mineral nanoparticles formed in biological fluids, producing changes that may alter the effects of mineral particles and stones in vivo.

  19. Army Officer Duty Module Manual.

    DTIC Science & Technology

    1975-10-01

    14l 3( RELATIVE CRITICALITY OF THIS Not Least (2) (3) The most PART (MOOULE) TO ENTIRE JOB aplicable critical Average Critical critical a. In actual...3 Directs and controls operations of mobile communications O- support unit -36- I. - O-G-5 Establishes and controls mobile area signal center 0-6-6...ENGINEERING O-EE-1 Directs .and controls combat engineer unit O-EE-2 Directs and controls portable bridging O-EE-3 Directs and controls mobile water

  20. Promoting critical perspectives in mental health nursing education.

    PubMed

    McKie, A; Naysmith, S

    2014-03-01

    This paper explores themes relevant to mental health nursing using the example of one educational module of a nursing degree. The authors argue that the educational preparation of mental health nursing students in higher education must address certain contested philosophical, conceptual, social and ethical dimensions of contemporary mental health care practice. These themes are discussed within the context of a third-year mental health nursing module within a Scottish nursing degree programme. By interlinking epistemology and ontology, the notion of student as 'critical practitioner', involving the encouragement of 'critical thinking', is developed. This is shown via engagement with parallel perspectives of the sciences and the humanities in mental health. Narratives of student nurse engagement with selected literary texts demonstrate the extent to which issues of knowledge, self-awareness and personal development are central to a student's professional journey as they progress through an academic course. The paper concludes by suggesting that these 'critical perspectives' have important wider implications for curriculum design in nursing education. Insights from critical theory can equip nurse educators to challenge consumerist tendencies within contemporary higher education by encouraging them to remain knowledgeable, critical and ethically sensitive towards the needs of their students. © 2013 John Wiley & Sons Ltd.

  1. Glutamine and antioxidants: status of their use in critical illness.

    PubMed

    van Zanten, Arthur R H

    2015-03-01

    Many studies in critically ill patients have addressed enteral or parenteral supplementation of glutamine and antioxidants to counteract assumed deficiencies and induce immune-modulating effects to reduce infections and improve outcome. Older studies showed marked reductions in mortality, infectious morbidity and length of stay. Recent studies no longer show beneficial effects and in contrast even demonstrated increased mortality. This opiniating review focuses on the latest information and the consequences for the use of glutamine and antioxidants in critically ill patients. Positive effects in systematic reviews and meta-analyses are based on results from older, smaller and mainly single-centre studies. New information has challenged the conditional deficiency hypothesis concerning glutamine in critically ill patients. The recent REDOXS and MetaPlus trials studying the effects of glutamine, selenium and other antioxidants have shown no benefits and increased mortality. Given that the first dictum in medicine is to do no harm, we cannot be confident that immune-modulating nutrient supplementation with glutamine and antioxidants is effective and well tolerated for critically ill patients. Until more data are available, it is probably better not to routinely administer glutamine and antioxidants in nonphysiological doses to mechanically ventilated critically ill patients.

  2. Fractional capacity electrolyzer development for CO2 and H2O electrolysis

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.

    1980-01-01

    The electrolyzer module was designed to produce 0.24 kg/d (0.53 lb/d) of breathable oxygen from the electrolysis of metabolic carbon dioxide and water vapor. The fractional capacity electrolyzer module is constructed from three electrochemical tube cells and contains only three critical seals. The module design illustrated an 84 percent reduction in the total number of seals for a one person capacity oxygen generating system based on the solid electrolyte carbon dioxide and water vapor electrolysis concept. The electrolyzer module was successfully endurance tested for 71 days.

  3. Orion Crew Module Move

    NASA Image and Video Library

    2017-11-17

    The Orion crew module for Exploration Mission-1 was moved into the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  4. Orion Crew Module Move

    NASA Image and Video Library

    2017-11-17

    Technicians assist as the Orion crew module for Exploration Mission-1 is moved toward the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  5. What happens in the lab does not stay in the lab [corrected]: Applying midstream modulation to enhance critical reflection in the laboratory.

    PubMed

    Schuurbiers, Daan

    2011-12-01

    In response to widespread policy prescriptions for responsible innovation, social scientists and engineering ethicists, among others, have sought to engage natural scientists and engineers at the 'midstream': building interdisciplinary collaborations to integrate social and ethical considerations with research and development processes. Two 'laboratory engagement studies' have explored how applying the framework of midstream modulation could enhance the reflections of natural scientists on the socio-ethical context of their work. The results of these interdisciplinary collaborations confirm the utility of midstream modulation in encouraging both first- and second-order reflective learning. The potential for second-order reflective learning, in which underlying value systems become the object of reflection, is particularly significant with respect to addressing social responsibility in research practices. Midstream modulation served to render the socio-ethical context of research visible in the laboratory and helped enable research participants to more critically reflect on this broader context. While lab-based collaborations would benefit from being carried out in concert with activities at institutional and policy levels, midstream modulation could prove a valuable asset in the toolbox of interdisciplinary methods aimed at responsible innovation.

  6. Thyroid Hormone Differentially Modulates Warburg Phenotype in Breast Cancer Cells

    PubMed Central

    Suhane, Sonal; Ramanujan, V Krishnan

    2011-01-01

    Sustenance of cancer cells in vivo critically depends on a variety of genetic and metabolic adaptations. Aerobic glycolysis or Warburg effect has been a defining biochemical hallmark of transformed cells for more than five decades although a clear molecular basis of this observation is emerging only in recent years. In this study, we present our findings that thyroid hormone exerts its non-genomic and genomic actions in two model human breast cancer cell lines differentially. By laying a clear foundation for experimentally monitoring the Warburg phenotype in living cancer cells, we demonstrate that thyroid hormone-induced modulation of bioenergetic profiles in these two model cell lines depends on the degree of Warburg phenotype that they display. Further we also show that thyroid hormone can sensitize mitochondria in aggressive, triple-negative breast cancer cells favorably to increase the chemotherapeutic efficacy in these cells. Even though the role of thyroid hormone in modulating mitochondrial metabolism has been known, the current study accentuates the critical role it plays in modulating Warburg phenotype in breast cancer cells. The clinical significance of this finding is the possibility to devise strategies for metabolically modulating aggressive triple-negative tumors so as to enhance their chemosensitivity in vivo. PMID:21945435

  7. Rescue Manual. Module 4.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This learner manual for rescuers covers the current techniques or practices required in the rescue service. The fourth of 10 modules contains 8 chapters: (1) construction and characteristics of rescue rope; (2) knots, bends, and hitches; (3) critical angles; (4) raising systems; (5) rigging; (6) using the brake-bar rack for rope rescue; (7) rope…

  8. Development and Assessment of Modules to Integrate Quantitative Skills in Introductory Biology Courses

    ERIC Educational Resources Information Center

    Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff

    2016-01-01

    Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory…

  9. Dilemmas in Bioethics. [Student's Guide.] Preparing for Tomorrow's World.

    ERIC Educational Resources Information Center

    Iozzi, Louis A.; And Others

    The purpose of this module is to introduce students (grades 10-11) to critical bioethical issues by considering moral dilemmas and knowledge of biomedical advances. The module is organized into 12 topic areas, each containing a dilemma story, introductory reading material, sample student responses, and questions. Dilemmas are essentially brief…

  10. Structural crossover from nonmodulated to long-period modulated tetragonal phase and anomalous change in ferroelectric properties in the lead-free piezoelectric N a1 /2B i1 /2Ti O3-BaTi O3

    NASA Astrophysics Data System (ADS)

    Rao, Badari Narayana; Khatua, Dipak Kumar; Garg, Rohini; Senyshyn, Anatoliy; Ranjan, Rajeev

    2015-06-01

    The highly complex structure-property interrelationship in the lead-free piezoelectric (x )N a1 /2B i1 /2Ti O3- (1 -x ) BaTi O3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x =0.80 , i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x <0.8 ) to a long-period modulated tetragonal phase (for x >0.80 ). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes [Bellaiche and Iniguez, Phys. Rev. B 88, 014104 (2013), 10.1103/PhysRevB.88.014104; Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013), 10.1002/adfm.201201467].

  11. Fostering critical thinking and collaborative learning skills among medical students through a research protocol writing activity in the curriculum.

    PubMed

    Sahoo, Soumendra; Mohammed, Ciraj Ali

    2018-06-01

    This intervention was aimed to analyse the effect of academic writing and journal critiquing as educational approaches in improving critical thinking and collaborative learning among undergraduate medical students. A research proposal writing format was created for the 4th year medical students of Melaka Manipal Medical College, Malaysia during their ophthalmology clinical postings. The students worked in small groups and developed research protocols through an evidence based approach. This was followed by writing reflective summaries in academic portfolios about the activity undertaken. A mixed methods study was designed to explore the possible role of collaborative research proposal writing in enhancing critical thinking and collaborative learning. Analysis of reflections submitted by 188 medical students after the intervention indicate that majority of them found an improvement in their skills of critical thinking and collaborative learning as a result of research protocol writing. All participants agreed that the model helped in applying concepts to new situations in the form of designing their own study, which reflected in enhanced higher order cognitive skills. This study shows that the introduction of a structured module in the core medical curriculum that focuses on research writing skills embedded with collaborative and reflective practices can enhance collaborative learning, critical thinking, and reasoning among medical students.

  12. Process-based quality management for clinical implementation of adaptive radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.

    Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of twomore » clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations.« less

  13. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holliday, Emma B.; Kocak-Uzel, Esengul; Department of Radiation Therapy, Beykent University, Istanbul

    A potential advantage of intensity-modulated proton therapy (IMPT) over intensity-modulated (photon) radiation therapy (IMRT) in the treatment of oropharyngeal carcinoma (OPC) is lower radiation dose to several critical structures involved in the development of nausea and vomiting, mucositis, and dysphagia. The purpose of this study was to quantify doses to critical structures for patients with OPC treated with IMPT and compare those with doses on IMRT plans generated for the same patients and with a matched cohort of patients actually treated with IMRT. In this study, 25 patients newly diagnosed with OPC were treated with IMPT between 2011 and 2012.more » Comparison IMRT plans were generated for these patients and for additional IMRT-treated controls extracted from a database of patients with OPC treated between 2000 and 2009. Cases were matched based on the following criteria, in order: unilateral vs bilateral therapy, tonsil vs base of tongue primary, T-category, N-category, concurrent chemotherapy, induction chemotherapy, smoking status, sex, and age. Results showed that the mean doses to the anterior and posterior oral cavity, hard palate, larynx, mandible, and esophagus were significantly lower with IMPT than with IMRT comparison plans generated for the same cohort, as were doses to several central nervous system structures involved in the nausea and vomiting response. Similar differences were found when comparing dose to organs at risks (OARs) between the IMPT cohort and the case-matched IMRT cohort. In conclusion, these findings suggest that patients with OPC treated with IMPT may experience fewer and less severe side effects during therapy. This may be the result of decreased beam path toxicities with IMPT due to lower doses to several dysphagia, odynophagia, and nausea and vomiting–associated OARs. Further study is needed to evaluate differences in long-term disease control and chronic toxicity between patients with OPC treated with IMPT in comparison to those treated with IMRT.« less

  14. Process-based quality management for clinical implementation of adaptive radiotherapy

    PubMed Central

    Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa

    2014-01-01

    Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations. PMID:25086527

  15. Process-based quality management for clinical implementation of adaptive radiotherapy.

    PubMed

    Noel, Camille E; Santanam, Lakshmi; Parikh, Parag J; Mutic, Sasa

    2014-08-01

    Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations.

  16. Development of Multi-Physics Dynamics Models for High-Frequency Large-Amplitude Structural Response Simulation

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.

    2016-01-01

    An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.

  17. Development, implementation, and analysis of desktop-scale model industrial equipment and a critical thinking rubric for use in chemical engineering education

    NASA Astrophysics Data System (ADS)

    Golter, Paul B.

    In order to address some of the challenges facing engineering education, namely the demand that students be better prepared to practice professional as well as technical skills, we have developed an intervention consisting of equipment, assessments and a novel pedagogy. The equipment consists of desktop-scale replicas of common industrial equipment. These are implemented in the form of modular cartridges that can be interchanged in a base unit containing water, power and instrumentation. These Desktop Learning Modules (DLMs) are effective at providing a hands on experience in most classroom environments without requiring either water or power hook-ups. Furthermore, the DLMs respond quickly enough that multiple experiments by multiple groups can be run in a single one hour class. We refined an existing critical thinking rubric to be more specific to the realm of engineering problem solving. By altering our pedagogy to a project based environment using the critical thinking rubric as a primary grading tool, we are able to observe and measure the critical thinking skills of student groups. This rubric is corroborated with an industrial perspective and measures constructs that are important to the students' future careers.

  18. Apollo Spacecraft and Saturn V Launch Vehicle Pyrotechnics/Explosive Devices

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    The Apollo Mission employs more than 210 pyrotechnic devices per mission.These devices are either automatic of commanded from the Apollo spacecraft systems. All devices require high reliability and safety and most are classified as either crew safety critical or mission critical. Pyrotechnic devices have a wide variety of applications including: launch escape tower separation, separation rocket ignition, parachute deployment and release and electrical circuit opening and closing. This viewgraph presentation identifies critical performance, design requirements and safety measures used to ensure quality, reliability and performance of Apollo pyrotechnic/explosive devices. The major components and functions of a typical Apollo pyrotechnic/explosive device are listed and described (initiators, cartridge assemblies, detonators, core charges). The presentation also identifies the major locations and uses for the devices on: the Command and Service Module, Lunar Module and all stages of the launch vehicle.

  19. High-efficiency L-band T/R Module: Development Results

    NASA Technical Reports Server (NTRS)

    Edelstein, Wendy N.; Andricos, Constantine; Wang, Feiyu; Rutled, David B.

    2005-01-01

    Future interferometric synthetic aperture radar (InSAR) systems require electronically scanned phased-array antennas, where the transmit/receive (T/R) module is a key component. The T/R module efficiency is a critical figure of merit and has direct implications on the power dissipation and power generation requirements of the system. Significant improvements in the efficiency of the T/R module will make SAR missions more feasible and affordable. The results of two high-efficiency T/R modules are presented, each based on different power amplifier technologies. One module uses a 30W GaAs Class-AlB power amplifier and the second module uses a 70W LD-MOS Class-ElF power amplifier, where both modules use a common low power section. Each module operates over an 80MHz bandwidth at L-band (1.2GHz) with an overall module efficiency greater than 58%. We will present the results of these two T/R modules that have been designed, built and tested.

  20. The teaching of drug development to medical students: collaboration between the pharmaceutical industry and medical school

    PubMed Central

    Stanley, A G; Jackson, D; Barnett, D B

    2005-01-01

    Collaboration between the medical school at Leicester and a local pharmaceutical company, AstraZeneca, led to the design and implementation of an optional third year special science skills module teaching medical students about drug discovery and development. The module includes didactic teaching about the complexities of the drug discovery process leading to development of candidate drugs for clinical investigation as well as practical experience of the processes involved in drug evaluation preclinically and clinically. It highlights the major ethical and regulatory issues concerned with the production and testing of novel therapies in industry and the NHS. In addition it helps to reinforce other areas of the medical school curriculum, particularly the understanding of clinical study design and critical appraisal. The module is assessed on the basis of a written dissertation and the critical appraisal of a drug advertisement. This paper describes the objectives of the module and its content. In addition we outline the results of an initial student evaluation of the module and an assessment of its impact on student knowledge and the opinion of the pharmaceutical industry partner. This module has proven to be popular with medical students, who acquire a greater understanding of the work required for drug development and therefore reflect more favourably on the role of pharmaceutical companies in the UK. PMID:15801942

  1. Sparing functional anatomical structures during intensity-modulated radiotherapy: an old problem, a new solution.

    PubMed

    Tan, Wenyong; Han, Guang; Wei, Shaozhong; Hu, Desheng

    2014-08-01

    During intensity-modulated radiotherapy, an organ is usually assumed to be functionally homogeneous and, generally, its anatomical and spatial heterogeneity with respect to radiation response are not taken into consideration. However, advances in imaging and radiation techniques as well as an improved understanding of the radiobiological response of organs have raised the possibility of sparing the critical functional structures within various organs at risk during intensity-modulated radiotherapy. Here, we discuss these structures, which include the critical brain structure, or neural nuclei, and the nerve fiber tracts in the CNS, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional structures in the heart and lung. We suggest that these structures can be used as potential surrogate organs at risk in order to minimize their radiation dose and/or irradiated volume without compromising the dose coverage of the target volume during radiation treatment.

  2. Respiration and Photosynthesis: A Teaching Module. Occasional Paper No. 90.

    ERIC Educational Resources Information Center

    Bishop, Beth A.; And Others

    Designed to address the major conceptual problems associated with respiration and photosynthesis, this module can be used with high school students or college nonscience majors including those in elementary education. It is one in a series developed by the project Overcoming Critical Barriers to Learning in Nonmajors' Science Courses. The…

  3. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    ERIC Educational Resources Information Center

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to…

  4. A Forward Genetic Screen in Zebrafish Identifies the G-Protein-Coupled Receptor CaSR as a Modulator of Sensorimotor Decision Making.

    PubMed

    Jain, Roshan A; Wolman, Marc A; Marsden, Kurt C; Nelson, Jessica C; Shoenhard, Hannah; Echeverry, Fabio A; Szi, Christina; Bell, Hannah; Skinner, Julianne; Cobbs, Emilia N; Sawada, Keisuke; Zamora, Amy D; Pereda, Alberto E; Granato, Michael

    2018-05-07

    Animals continuously integrate sensory information and select contextually appropriate responses. Here, we show that zebrafish larvae select a behavioral response to acoustic stimuli from a pre-existing choice repertoire in a context-dependent manner. We demonstrate that this sensorimotor choice is modulated by stimulus quality and history, as well as by neuromodulatory systems-all hallmarks of more complex decision making. Moreover, from a genetic screen coupled with whole-genome sequencing, we identified eight mutants with deficits in this sensorimotor choice, including mutants of the vertebrate-specific G-protein-coupled extracellular calcium-sensing receptor (CaSR), whose function in the nervous system is not well understood. We demonstrate that CaSR promotes sensorimotor decision making acutely through Gα i/o and Gα q/11 signaling, modulated by clathrin-mediated endocytosis. Combined, our results identify the first set of genes critical for behavioral choice modulation in a vertebrate and reveal an unexpected critical role for CaSR in sensorimotor decision making. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Parametric modulation of thermomagnetic convection in magnetic fluids.

    PubMed

    Engler, H; Odenbach, S

    2008-05-21

    Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.

  6. Design of broadband dispersion flattened fiber for DWDM system: Performance analysis using various modulation formats

    NASA Astrophysics Data System (ADS)

    Goel, Aditya; Pandey, Gaurav

    2018-05-01

    In this paper, unique design of an optimal broadband optical dispersion flattened fiber (DFF) is proposed, which is capable of supporting the data rate of the order of Tb/s. The analysis of the single mode fiber for the design of the proposed DFF has been carried out by employing the quadratic Finite Element Method (FEM) with generalized refractive index (R. I.) profile. The minimization of the dispersion with respect to various profile parameters within the specified wavelength band is the essential optimization criteria. Computations show that a DFF can be designed where the overall dispersion can be restricted within ± 1 ps/km-nm over the entire spectral span ranging from 1290 to 1540 nm (250 nm) exhibiting a very small maximum value of dispersion slope (± 0.02 ps / (nm2-km)) in particular. The detailed performance analysis of the proposed DFF with different modulation techniques has been carried out in order to critically evaluate the performance of the DFF with respect to various significant parameters. The results suggest an excellent design of broadband optical waveguide capable of supporting high-speed data rate (40 Tb/s) through the single DFF, ideally suitable for the long haul dense wavelength division multiplexing (DWDM) optical transmission systems.

  7. Image processing for optical mapping.

    PubMed

    Ravindran, Prabu; Gupta, Aditya

    2015-01-01

    Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical component of Optical Mapping system is the image processing module, which extracts single molecule restriction maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this review, we describe robust and efficient image processing techniques to process these massive datasets and extract accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few applications of the Optical Mapping system.

  8. Orion Crew Module Move

    NASA Image and Video Library

    2017-11-17

    A crane is being prepared for use during move operations of the Orion crew module for Exploration Mission-1 to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  9. Orion Crew Module Move

    NASA Image and Video Library

    2017-11-17

    Technicians check a crane that will be used during move operations of the Orion crew module for Exploration Mission-1 to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  10. Orion Crew Module Move

    NASA Image and Video Library

    2017-11-17

    Technicians prepare a crane for use during move operations of the Orion crew module for Exploration Mission-1 to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  11. Ipsilateral kidney sparing in treatment of pancreatic malignancies using volumetric-modulated arc therapy avoidance sectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Raymond W., E-mail: rwc3b@alumni.virginia.edu; Podgorsak, Matthew B.

    Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on themore » location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm{sup 3}) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.« less

  12. H2O2 production rate in Lactobacillus johnsonii is modulated via the interplay of a heterodimeric flavin oxidoreductase with a soluble 28 Kd PAS domain containing protein

    PubMed Central

    Valladares, Ricardo B.; Graves, Christina; Wright, Kaitlyn; Gardner, Christopher L.; Lorca, Graciela L.; Gonzalez, Claudio F.

    2015-01-01

    Host and commensals crosstalk, mediated by reactive oxygen species (ROS), has triggered a growing scientific interest to understand the mechanisms governing such interaction. However, the majority of the scientific studies published do not evaluate the ROS production by commensals bacteria. In this context we recently showed that Lactobacillus johnsonii N6.2, a strain of probiotic value, modulates the activity of the critical enzymes 2,3-indoleamine dioxygenase via H2O2 production. L. johnsonii N6.2 by decreasing IDO activity, is able to modify the tryptophan/kynurenine ratio in the host blood with further systemic consequences. Understanding the mechanisms of H2O2 production is critical to predict the probiotic value of these strains and to optimize bacterial biomass production in industrial processes. We performed a transcriptome analysis to identify genes differentially expressed in L. johnsonii N6.2 cells collected from cultures grown under different aeration conditions. Herein we described the biochemical characteristics of a heterodimeric FMN reductase (FRedA/B) whose in vitro activity is controlled by LjPAS protein with a typical Per-Arnst-Sim (PAS) sensor domain. Interestingly, LjPAS is fused to the FMN reductase domains in other lactobacillaceae. In L. johnsonii, LjPAS is encoded by an independent gene which expression is repressed under anaerobic conditions (>3 fold). Purified LjPAS was able to slow down the FRedA/B initial activity rate when the holoenzyme precursors (FredA, FredB, and FMN) were mixed in vitro. Altogether the results obtained suggest that LjPAS module regulates the H2O2 production helping the cells to minimize oxidative stress in response to environmental conditions. PMID:26236298

  13. H2O2 production rate in Lactobacillus johnsonii is modulated via the interplay of a heterodimeric flavin oxidoreductase with a soluble 28 Kd PAS domain containing protein.

    PubMed

    Valladares, Ricardo B; Graves, Christina; Wright, Kaitlyn; Gardner, Christopher L; Lorca, Graciela L; Gonzalez, Claudio F

    2015-01-01

    Host and commensals crosstalk, mediated by reactive oxygen species (ROS), has triggered a growing scientific interest to understand the mechanisms governing such interaction. However, the majority of the scientific studies published do not evaluate the ROS production by commensals bacteria. In this context we recently showed that Lactobacillus johnsonii N6.2, a strain of probiotic value, modulates the activity of the critical enzymes 2,3-indoleamine dioxygenase via H2O2 production. L. johnsonii N6.2 by decreasing IDO activity, is able to modify the tryptophan/kynurenine ratio in the host blood with further systemic consequences. Understanding the mechanisms of H2O2 production is critical to predict the probiotic value of these strains and to optimize bacterial biomass production in industrial processes. We performed a transcriptome analysis to identify genes differentially expressed in L. johnsonii N6.2 cells collected from cultures grown under different aeration conditions. Herein we described the biochemical characteristics of a heterodimeric FMN reductase (FRedA/B) whose in vitro activity is controlled by LjPAS protein with a typical Per-Arnst-Sim (PAS) sensor domain. Interestingly, LjPAS is fused to the FMN reductase domains in other lactobacillaceae. In L. johnsonii, LjPAS is encoded by an independent gene which expression is repressed under anaerobic conditions (>3 fold). Purified LjPAS was able to slow down the FRedA/B initial activity rate when the holoenzyme precursors (FredA, FredB, and FMN) were mixed in vitro. Altogether the results obtained suggest that LjPAS module regulates the H2O2 production helping the cells to minimize oxidative stress in response to environmental conditions.

  14. NF-κB Essential Modulator (NEMO) Is Critical for Thyroid Function.

    PubMed

    Reale, Carla; Iervolino, Anna; Scudiero, Ivan; Ferravante, Angela; D'Andrea, Luca Egildo; Mazzone, Pellegrino; Zotti, Tiziana; Leonardi, Antonio; Roberto, Luca; Zannini, Mariastella; de Cristofaro, Tiziana; Shanmugakonar, Muralitharan; Capasso, Giovambattista; Pasparakis, Manolis; Vito, Pasquale; Stilo, Romania

    2016-03-11

    The I-κB kinase (IKK) subunit NEMO/IKKγ (NEMO) is an adapter molecule that is critical for canonical activation of NF-κB, a pleiotropic transcription factor controlling immunity, differentiation, cell growth, tumorigenesis, and apoptosis. To explore the functional role of canonical NF-κB signaling in thyroid gland differentiation and function, we have generated a murine strain bearing a genetic deletion of the NEMO locus in thyroid. Here we show that thyrocyte-specific NEMO knock-out mice gradually develop hypothyroidism after birth, which leads to reduced body weight and shortened life span. Histological and molecular analysis indicate that absence of NEMO in thyrocytes results in a dramatic loss of the thyroid gland cellularity, associated with down-regulation of thyroid differentiation markers and ongoing apoptosis. Thus, NEMO-dependent signaling is essential for normal thyroid physiology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Characterizing SH2 Domain Specificity and Network Interactions Using SPOT Peptide Arrays.

    PubMed

    Liu, Bernard A

    2017-01-01

    Src Homology 2 (SH2) domains are protein interaction modules that recognize and bind tyrosine phosphorylated ligands. Their ability to distinguish binding to over thousands of potential phosphotyrosine (pTyr) ligands within the cell is critical for the fidelity of receptor tyrosine kinase (RTK) signaling. Within humans there are over a hundred SH2 domains with more than several thousand potential ligands across many cell types and cell states. Therefore, defining the specificity of individual SH2 domains is critical for predicting and identifying their physiological ligands. Here, in this chapter, I describe the broad use of SPOT peptide arrays for examining SH2 domain specificity. An orientated peptide array library (OPAL) approach can uncover both favorable and non-favorable residues, thus providing an in-depth analysis to SH2 specificity. Moreover, I discuss the application of SPOT arrays for paneling SH2 ligand binding with physiological peptides.

  16. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.

    PubMed

    Zhang, Chaoyang; Peng, Li; Zhang, Yaqin; Liu, Zhaoyang; Li, Wenling; Chen, Shilian; Li, Guancheng

    2017-06-01

    Liver cancer is a serious threat to public health and has fairly complicated pathogenesis. Therefore, the identification of key genes and pathways is of much importance for clarifying molecular mechanism of hepatocellular carcinoma (HCC) initiation and progression. HCC-associated gene expression dataset was downloaded from Gene Expression Omnibus database. Statistical software R was used for significance analysis of differentially expressed genes (DEGs) between liver cancer samples and normal samples. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, based on R software, were applied for the identification of pathways in which DEGs significantly enriched. Cytoscape software was for the construction of protein-protein interaction (PPI) network and module analysis to find the hub genes and key pathways. Finally, weighted correlation network analysis (WGCNA) was conducted to further screen critical gene modules with similar expression pattern and explore their biological significance. Significance analysis identified 1230 DEGs with fold change >2, including 632 significantly down-regulated DEGs and 598 significantly up-regulated DEGs. GO term enrichment analysis suggested that up-regulated DEG significantly enriched in immune response, cell adhesion, cell migration, type I interferon signaling pathway, and cell proliferation, and the down-regulated DEG mainly enriched in response to endoplasmic reticulum stress and endoplasmic reticulum unfolded protein response. KEGG pathway analysis found DEGs significantly enriched in five pathways including complement and coagulation cascades, focal adhesion, ECM-receptor interaction, antigen processing and presentation, and protein processing in endoplasmic reticulum. The top 10 hub genes in HCC were separately GMPS, ACACA, ALB, TGFB1, KRAS, ERBB2, BCL2, EGFR, STAT3, and CD8A, which resulted from PPI network. The top 3 gene interaction modules in PPI network enriched in immune response, organ development, and response to other organism, respectively. WGCNA revealed that the confirmed eight gene modules significantly enriched in monooxygenase and oxidoreductase activity, response to endoplasmic reticulum stress, type I interferon signaling pathway, processing, presentation and binding of peptide antigen, cellular response to cadmium and zinc ion, cell locomotion and differentiation, ribonucleoprotein complex and RNA processing, and immune system process, respectively. In conclusion, we identified some key genes and pathways closely related with HCC initiation and progression by a series of bioinformatics analysis on DEGs. These screened genes and pathways provided for a more detailed molecular mechanism underlying HCC occurrence and progression, holding promise for acting as biomarkers and potential therapeutic targets.

  17. Teaching Mathematics for Spatial Justice: An Investigation of the Lottery

    ERIC Educational Resources Information Center

    Rubel, Laurie H.; Lim, Vivian Y.; Hall-Wieckert, Maren; Sullivan, Mathew

    2016-01-01

    This article explores integrating place-based education with critical mathematics toward teaching mathematics for spatial justice. "Local Lotto," a curricular module with associated digital tools, was designed to investigate the lottery as a critical spatial phenomenon and piloted in urban high schools. This article describes findings…

  18. A QSAR Model for Thyroperoxidase Inhibition and Screening of a Large Set of Environmental Chemicals (SOT)

    EPA Science Inventory

    Thyroid hormones (THs) are critical modulators of a wide range of biological processes from neurodevelopment to metabolism. Well regulated levels of THs are critical during development and even moderate changes in maternal or fetal TH levels produce irreversible neurological defi...

  19. Use of Biotechnological Devices in the Quantification of Psychophysiological Workload of Professional Chess Players.

    PubMed

    Fuentes, Juan P; Villafaina, Santos; Collado-Mateo, Daniel; de la Vega, Ricardo; Gusi, Narcis; Clemente-Suárez, Vicente Javier

    2018-01-19

    Psychophysiological requirements of chess players are poorly understood, and periodization of training is often made without any empirical basis. For this reason, the aim of the present study was to investigate the psychophysiological response and quantify the player internal load during, and after playing a chess game. The participant was an elite 33 year-old male chess player ranked among the 300 best chess players in the world. Thus, cortical arousal by critical flicker fusion threshold, electroencephalogram by the theta Fz/alpha Pz ratio and autonomic modulation by heart rate variability were analyzed. Data revealed that cortical arousal by critical flicker fusion threshold and theta Fz/alpha Pz ratio increased and heart rate variability decreased during chess game. All these changes indicated that internal load increased during the chess game. In addition, pre-activation was detected in pre-game measure, suggesting that the prefrontal cortex might be preparatory activated. For these reasons, electroencephalogram, critical flicker fusion threshold and heart rate variability analysis may be highly applicable tools to control and monitor workload in chess player.

  20. Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization.

    PubMed

    Tai, Zhaoyang; Yan, Lulu; Zhang, Yanyan; Zhang, Xiaofei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng

    2016-12-01

    The reduction of the residual amplitude modulation (RAM) induced by electro-optic modulation is essential for many applications of frequency modulation spectroscopy requiring a lower system noise floor. Here, we demonstrate a simple passive approach employing an electro-optic modulator (EOM) cut at Brewster's angle. The proposed EOM exhibits a RAM of a few parts per million, which is comparable with that achieved by a common EOM under critical active temperature and bias voltage controls. The frequency instability of a 10 cm cavity-stabilized laser induced by the RAM effect of the proposed EOM is below 3×10-17 for integration times from 1 to 1000 s, and below 4×10-16 for comprehensive noise contributions for integration times from 1 to 100 s.

  1. Annual modulation experiments, galactic models and WIMPs

    NASA Astrophysics Data System (ADS)

    Hudson, Robert G.

    Our task in the paper is to examine some recent experiments (in the period 1996-2002) bearing on the issue of whether there is dark matter in the universe in the form of neutralino WIMPs (weakly interacting massive particles). Our main focus is an experiment performed by the DAMA group that claims to have found an 'annual modulation signature' for the WIMP. DAMA's result has been hotly contested by two other groups, EDELWEISS and CDMS, and we study the details of the experiments performed by all three groups. Our goal is to investigate the philosophic and sociological implications of this controversy. Particularly, using an innovative theoretical strategy suggested by (Copi, C. and L. M. Krauss (2003). Comparing interaction rate detectors for weakly interacting massive particles with annual modulation detectors. Physical Review D, 67, 103 507), we suggest a new way of resolving discordant experimental data (extending a previous analysis by (Franklin, A. (2002). Selectivity and discord. Pittsburgh: University of Pittsburgh Press). In addition, we are in a position to contribute substantively to the debate between realists and constructive empiricists. Finally, from a sociological standpoint, we remark that DAMA's work has been valuable in mobilizing other research teams and providing them with a critical focus.

  2. Modulation of Gamma-Secretase for the Treatment of Alzheimer's Disease

    PubMed Central

    McKee, Timothy D.; Loureiro, Robyn M. B.; Dumin, Jo Ann; Xia, Weiming; Pojasek, Kevin; Austin, Wesley F.; Fuller, Nathan O.; Hubbs, Jed L.; Shen, Ruichao; Jonker, Jeff; Ives, Jeff; Bronk, Brian S.

    2012-01-01

    The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD)—formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline—are triggered by Aβ peptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al., 2005). Since γ-secretase is critical for Aβ production, many in the biopharmaceutical community focused on γ-secretase as a target for therapeutic approaches for Alzheimer's disease. However, pharmacological approaches to control γ-secretase activity are challenging because the enzyme has multiple, physiologically critical protein substrates. To lower amyloidogenic Aβ peptides without affecting other γ-secretase substrates, the epsilon (ε) cleavage that is essential for the activity of many substrates must be preserved. Small molecule modulators of γ-secretase activity have been discovered that spare the ε cleavage of APP and other substrates while decreasing the production of Aβ 42. Multiple chemical classes of γ-secretase modulators have been identified which differ in the pattern of Aβ peptides produced. Ideally, modulators will allow the ε cleavage of all substrates while shifting APP cleavage from Aβ 42 and other highly amyloidogenic Aβ peptides to shorter and less neurotoxic forms of the peptides without altering the total Aβ pool. Here, we compare chemically distinct modulators for effects on APP processing and in vivo activity. PMID:23320246

  3. Flexible programmable logic module

    DOEpatents

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  4. Survey view of EXPRESS Rack 4 in the JPM during Expedition 22

    NASA Image and Video Library

    2009-12-30

    iss022e015850 (12/30/2009) --- The image shows a front view of EXpedite the PRocessing of Experiments to Space Station EXPRESS Rack 4 (Rack 4,JPM/1F5) in the Japanese Experiment Module (JEM) Japanese Pressurized Module (JPM). Equipment visible in the EXPRESS Rack includes the Biotechnology Specimen Temperature Controller (BSTC) and the Gas Supply Module (GSM) support hardware for the CBOSS (Cellular Biotechnology Operations Support Systems) investigations, and the Device for the Study of Critical Liquids and Crystallization (DECLIC).

  5. An efficient multiplexing approach for adaptive aircraft communications via a relay satellite.

    NASA Technical Reports Server (NTRS)

    Devieux, C.; Bisaga, J. J.

    1973-01-01

    Description of a coherent wide-angle multiplexing approach which is 4 to 8 dB more efficient in the utilization of satellite power as compared to a multicarrier transmission accessing a single TWT amplifier transponder. The wide-angle multiplexing approach achieves this performance by efficiently trading the modulation power improvement against backoff at the satellite earth terminal phase modulator. A simple addition of an amplitude clipper at the modulator input is critical to the proper operation of the system.

  6. Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis

    PubMed Central

    Paintdakhi, Ahmad; Parry, Bradley; Campos, Manuel; Irnov, Irnov; Elf, Johan; Surovtsev, Ivan; Jacobs-Wagner, Christine

    2016-01-01

    Summary With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today’s single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals, and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis, and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills. PMID:26538279

  7. Screening key candidate genes and pathways involved in insulinoma by microarray analysis.

    PubMed

    Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin

    2018-06-01

    Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.

  8. Microinverter Thermal Performance in the Real-World: Measurements and Modeling

    PubMed Central

    Hossain, Mohammad Akram; Xu, Yifan; Peshek, Timothy J.; Ji, Liang; Abramson, Alexis R.; French, Roger H.

    2015-01-01

    Real-world performance, durability and reliability of microinverters are critical concerns for microinverter-equipped photovoltaic systems. We conducted a data-driven study of the thermal performance of 24 new microinverters (Enphase M215) connected to 8 different brands of PV modules on dual-axis trackers at the Solar Durability and Lifetime Extension (SDLE) SunFarm at Case Western Reserve University, based on minute by minute power and thermal data from the microinverters and PV modules along with insolation and environmental data from July through October 2013. The analysis shows the strengths of the associations of microinverter temperature with ambient temperature, PV module temperature, irradiance and AC power of the PV systems. The importance of the covariates are rank ordered. A multiple regression model was developed and tested based on stable solar noon-time data, which gives both an overall function that predicts the temperature of microinverters under typical local conditions, and coefficients adjustments reecting refined prediction of the microinverter temperature connected to the 8 brands of PV modules in the study. The model allows for prediction of internal temperature for the Enphase M215 given similar climatic condition and can be expanded to predict microinverter temperature in fixed-rack and roof-top PV systems. This study is foundational in that similar models built on later stage data in the life of a device could reveal potential influencing factors in performance degradation. PMID:26147339

  9. The aryl hydrocarbon receptor modulates acute and late mast cell responses.

    PubMed

    Sibilano, Riccardo; Frossi, Barbara; Calvaruso, Marco; Danelli, Luca; Betto, Elena; Dall'Agnese, Alessandra; Tripodo, Claudio; Colombo, Mario P; Pucillo, Carlo E; Gri, Giorgia

    2012-07-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor whose activity is modulated by xenobiotics as well as physiological ligands. These compounds may modulate inflammatory responses and contribute to the rising prevalence of allergic diseases observed in industrialized countries. Mast cells (MCs), located within tissues at the boundary of the external environment, represent a potential target of AhR ligands. In this study, we report that murine and human MCs constitutively express AhR, and its activation by the high-affinity ligand 6-formylindolo[3,2-b]carbazole (FICZ) determines a boost in degranulation. On the contrary, repeated exposure to FICZ inhibits MC degranulation. Accordingly, histamine release, in an in vivo passive systemic anaphylactic model, is exacerbated by a single dose and is attenuated by repetitive stimulation of AhR. FICZ-exposed MCs produce reactive oxygen species and IL-6 in response to cAMP-dependent signals. Moreover, AhR-activated MCs produce IL-17, a critical player in chronic inflammation and autoimmunity, suggesting a novel pathway for MC activation in the pathogenesis of these diseases. Indeed, histological analysis of patients with chronic obstructive pulmonary disease revealed an enrichment in AhR/IL-6 and AhR/IL-17 double-positive MCs within bronchial lamina propria. Thus, tissue-resident MCs could translate external chemical challenges through AhR by modulating allergic responses and contributing to the generation of inflammation-related diseases.

  10. Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    PubMed Central

    Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.

    2012-01-01

    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946

  11. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    NASA Astrophysics Data System (ADS)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  12. Fault tolerant software modules for SIFT

    NASA Technical Reports Server (NTRS)

    Hecht, M.; Hecht, H.

    1982-01-01

    The implementation of software fault tolerance is investigated for critical modules of the Software Implemented Fault Tolerance (SIFT) operating system to support the computational and reliability requirements of advanced fly by wire transport aircraft. Fault tolerant designs generated for the error reported and global executive are examined. A description of the alternate routines, implementation requirements, and software validation are included.

  13. Nutrients: Learner's Guide for a Critical Path in Water Quality Monitoring.

    ERIC Educational Resources Information Center

    Glazer, Richard B.; And Others

    This learner's guide on nutrients is derived from a water monitoring curriculum developed at Ulster County Community College. There are 30 modules in this guide; each introduced with a statement of purpose and then broken down into an objective, learning conditions, and performance level. The modules cover: (1) safety; (2) chemical compounds; (3)…

  14. Into Adolescence: Becoming a Health-Wise Consumer. A Curriculum for Grades 5-8. Contemporary Health Series.

    ERIC Educational Resources Information Center

    Hisgen, Jon W.

    The "Contemporary Health Series" covers critical health and family life topics in a sequence of modules with two curricular divisions: "Into Adolescence" for middle school teachers and "Entering Adulthood" for high school teachers. This module presents middle school students with the information they need to become knowledgeable, concerned…

  15. The Effect of Non-Visual Working Memory Load on Top-Down Modulation of Visual Processing

    ERIC Educational Resources Information Center

    Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark

    2009-01-01

    While a core function of the working memory (WM) system is the active maintenance of behaviorally relevant sensory representations, it is also critical that distracting stimuli are appropriately ignored. We used functional magnetic resonance imaging to examine the role of domain-general WM resources in the top-down attentional modulation of…

  16. Supplemental Driver Safety Program Development. Volume I--Development Research and Evaluation. Final Report.

    ERIC Educational Resources Information Center

    McPherson, Kenard; And Others

    Instructional modules for driver education programs were prepared to improve safe driving knowledge, attitudes, and performances of 16- to 18-year-old drivers. These modules were designed to provide supplementary instruction in five content areas critical to the safe and efficient operation of motor vehicles by young drivers--speed management,…

  17. ROMPS critical design review data package

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    The design elements of the Robot-Operated Material Processing in Space (ROMPS) system are described in outline and graphical form. The following subsystems/topics are addressed: servo system, testbed and simulation results, System V Controller, robot module, furnace module, SCL experiment supervisor and script sample processing control, battery system, watchdog timers, mechanical/thermal considerations, and fault conditions and recovery.

  18. Environmental Dilemmas. Critical Decisions for Society. [Student's Guide.] Preparing for Tomorrow's World.

    ERIC Educational Resources Information Center

    Iozzi, Louis A.; And Others

    The dual purpose of this module is to introduce students (grades 10-11) to current/emerging environmental issues and to emphasize the moral/ethical decision-making related to these issues. The module is organized into 12 topic areas, each containing a dilemma story, introductory reading material, sample student responses, and questions. Dilemmas…

  19. Quantitative evaluation of 3D dosimetry for stereotactic volumetric‐modulated arc delivery using COMPASS

    PubMed Central

    Manigandan, Durai; Karrthick, Karukkupalayam Palaniappan; Sambasivaselli, Raju; Senniandavar, Vellaingiri; Ramu, Mahendran; Rajesh, Thiyagarajan; Lutz, Muller; Muthukumaran, Manavalan; Karthikeyan, Nithyanantham; Tejinder, Kataria

    2014-01-01

    The purpose of this study was to evaluate quantitatively the patient‐specific 3D dosimetry tool COMPASS with 2D array MatriXX detector for stereotactic volumetric‐modulated arc delivery. Twenty‐five patients CT images and RT structures from different sites (brain, head & neck, thorax, abdomen, and spine) were taken from CyberKnife Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in CyberKnife. For each patient, linac based volumetric‐modulated arc therapy (VMAT) stereotactic plans were generated in Monaco TPS v3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5–20 Gy per fraction. Target prescription and critical organ constraints were tried to match the delivered treatment plans. Each plan quality was analyzed using conformity index (CI), conformity number (CN), gradient Index (GI), target coverage (TC), and dose to 95% of volume (D95). Monaco Monte Carlo (MC)‐calculated treatment plan delivery accuracy was quantitatively evaluated with COMPASS‐calculated (CCA) dose and COMPASS indirectly measured (CME) dose based on dose‐volume histogram metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using MultiCube phantom. Routine quality assurance of absolute point dose verification was performed to check the overall delivery accuracy. Quantitative analyses of dose delivery verification were compared with pass and fail criteria of 3 mm and 3% distance to agreement and dose differences. Gamma passing rate was compared with 2D fluence verification from MatriXX with MultiCube. Comparison of COMPASS reconstructed dose from measured fluence and COMPASS computed dose has shown a very good agreement with TPS calculated dose. Each plan was evaluated based on dose volume parameters for target volumes such as dose at 95% of volume (D95) and average dose. For critical organs dose at 20% of volume (D20), dose at 50% of volume (D50), and maximum point doses were evaluated. Comparison was carried out using gamma analysis with passing criteria of 3 mm and 3%. Mean deviation of 1.9%±1% was observed for dose at 95% of volume (D95) of target volumes, whereas much less difference was noticed for critical organs. However, significant dose difference was noticed in two cases due to the smaller tumor size. Evaluation of this study revealed that the COMPASS 3D dosimetry is efficient and easy to use for patient‐specific QA of VMAT stereotactic delivery. 3D dosimetric QA with COMPASS provides additional degrees of freedom to check the high‐dose modulated stereotactic delivery with very high precision on patient CT images. PACS numbers: 87.55.Qr, 87.56.Fc PMID:25679152

  20. CASKS (Computer Analysis of Storage Casks): A microcomputer based analysis system for storage cask review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.F.; Mok, G.C.; Carlson, R.W.

    1996-12-01

    CASKS is a microcomputer based computer system developed by LLNL to assist the Nuclear Regulatory Commission in performing confirmatory analyses for licensing review of radioactive-material storage cask designs. The analysis programs of the CASKS computer system consist of four modules--the impact analysis module, the thermal analysis module, the thermally-induced stress analysis module, and the pressure-induced stress analysis module. CASKS uses a series of menus to coordinate input programs, cask analysis programs, output programs, data archive programs and databases, so the user is able to run the system in an interactive environment. This paper outlines the theoretical background on the impactmore » analysis module and the yielding surface formulation. The close agreement between the CASKS analytical predictions and the results obtained form the two storage asks drop tests performed by SNL and by BNFL at Winfrith serves as the validation of the CASKS impact analysis module.« less

  1. Casks (computer analysis of storage casks): A microcomputer based analysis system for storage cask review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.F.; Mok, G.C.; Carlson, R.W.

    1995-08-01

    CASKS is a microcomputer based computer system developed by LLNL to assist the Nuclear Regulatory Commission in performing confirmatory analyses for licensing review of radioactive-material storage cask designs. The analysis programs of the CASKS computer system consist of four modules: the impact analysis module, the thermal analysis module, the thermally-induced stress analysis module, and the pressure-induced stress analysis module. CASKS uses a series of menus to coordinate input programs, cask analysis programs, output programs, data archive programs and databases, so the user is able to run the system in an interactive environment. This paper outlines the theoretical background on themore » impact analysis module and the yielding surface formulation. The close agreement between the CASKS analytical predictions and the results obtained form the two storage casks drop tests performed by SNL and by BNFL at Winfrith serves as the validation of the CASKS impact analysis module.« less

  2. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways.

    PubMed

    Bezerra, Fábio; Ferreira, Marcel R; Fontes, Giselle N; da Costa Fernandes, Célio Jr; Andia, Denise C; Cruz, Nilson C; da Silva, Rodrigo A; Zambuzzi, Willian F

    2017-08-01

    Although, intracellular signaling pathways are proposed to predict the quality of cell-surface relationship, this study addressed pre-osteoblast behavior in response to nano hydroxyapatite (HA)-blasted titanium (Ti) surface by exploring critical intracellular pathways and pre-osteoblast morphological change. Physicochemical properties were evaluated by atomic force microscopy (AFM) and wettability considering water contact angle of three differently texturized Ti surfaces: Machined (Mac), Dual acid-etching (DAE), and nano hydroxyapatite-blasted (nHA). The results revealed critical differences in surface topography, impacting the water contact angle and later the osteoblast performance. In order to evaluate the effect of those topographical characteristics on biological responses, we have seeded pre-osteoblast cells on the Ti discs for up to 4 h and subjected the cultures to biological analysis. First, we have observed pre-osteoblasts morphological changes resulting from the interaction with the Ti texturized surfaces whereas the cells cultured on nHA presented a more advanced spreading process when compared with the cells cultured on the other surfaces. These results argued us for analyzing the molecular machinery and thus, we have shown that nHA promoted a lower Bax/Bcl2 ratio, suggesting an interesting anti-apoptotic effect, maybe explained by the fact that HA is a natural element present in bone composition. Thereafter, we investigated the potential effect of those surfaces on promoting pre-osteoblast adhesion and survival signaling by performing crystal violet and immunoblotting approaches, respectively. Our results showed that nHA promoted a higher pre-osteoblast adhesion supported by up-modulating FAK and Src activations, both signaling transducers involved during eukaryotic cell adhesion. Also, we have shown Ras-Erk stimulation by the all evaluated surfaces. Finally, we showed that all Ti-texturing surfaces were able to promote osteoblast differentiation up to 10 days, when alkaline phosphatase (ALP) activity and osteogenic transcription factors were up-modulated. Altogether, our results showed for the first time that nano hydroxyapatite-blasted titanium surface promotes crucial intracellular signaling network responsible for cell adapting on the Ti-surface.Biotechnol. Bioeng. 2017;114: 1888-1898. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Modulation of α power and functional connectivity during facial affect recognition.

    PubMed

    Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte; Weisz, Nathan

    2013-04-03

    Research has linked oscillatory activity in the α frequency range, particularly in sensorimotor cortex, to processing of social actions. Results further suggest involvement of sensorimotor α in the processing of facial expressions, including affect. The sensorimotor face area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscillatory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful, neutral, or happy expressions. Induced changes in α power during the different morphs, source analysis, and graph-theoretic metrics served to identify the role of α power modulation and cross-regional coupling by means of phase synchrony during facial affect recognition. Changes from neutral to emotional faces were associated with a 10-15 Hz power increase localized in bilateral sensorimotor areas, together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased transregional connectedness as measured by node degree. Results suggest that modulations in α power facilitate early registration, with sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disruptive input and that subsequent α power decrease together with increased connectedness of sensorimotor areas facilitates successful facial affect recognition.

  4. Distinct Modulations of Human Capsaicin Receptor by Protons and Magnesium through Different Domains*

    PubMed Central

    Wang, Shu; Poon, Kinning; Oswald, Robert E.; Chuang, Huai-hu

    2010-01-01

    The capsaicin receptor (TRPV1) is a nonselective cation channel that integrates multiple painful stimuli, including capsaicin, protons, and heat. Protons facilitate the capsaicin- and heat-induced currents by decreasing thermal threshold or increasing agonist potency for TRPV1 activation (Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basbaum, A. I., and Julius, D. (1998) Neuron 21, 531–543). In the presence of saturating capsaicin, rat TRPV1 (rTRPV1) reaches full activation, with no further stimulation by protons. Human TRPV1 (hTRPV1), a species ortholog with high homology to rTRPV1, is potentiated by extracellular protons and magnesium, even at saturating capsaicin. We investigated the structural basis for protons and magnesium modulation of fully capsaicin-bound human receptors. By analysis of chimeric channels between hTRPV1 and rTRPV1, we found that transmembrane domain 1–4 (TM1–4) of TRPV1 determines whether protons can further open the fully capsaicin-bound receptors. Mutational analysis identified a titratable glutamate residue (Glu-536) in the linker between TM3 and TM4 critical for further stimulation of fully liganded hTRPV1. In contrast, hTRPV1 TM5–6 is required for magnesium augmentation of capsaicin efficacy. Our results demonstrate that capsaicin efficacy of hTRPV1 correlates with the extracellular ion milieu and unravel the relevant structural basis of modulation by protons and magnesium. PMID:20145248

  5. Divide and Conquer: A Valid Approach for Risk Assessment and Decision Making under Uncertainty for Groundwater-Related Diseases

    NASA Astrophysics Data System (ADS)

    Sanchez-Vila, X.; de Barros, F.; Bolster, D.; Nowak, W.

    2010-12-01

    Assessing the potential risk of hydro(geo)logical supply systems to human population is an interdisciplinary field. It relies on the expertise in fields as distant as hydrogeology, medicine, or anthropology, and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties in hydrological, physiological and human behavioral parameters. We propose the use of fault trees to address the task of probabilistic risk analysis (PRA) and to support related management decisions. Fault trees allow decomposing the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural “Divide and Conquer” approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance and stage of analysis. The separation in modules allows for a true inter- and multi-disciplinary approach. This presentation highlights the three novel features of our work: (1) we define failure in terms of risk being above a threshold value, whereas previous studies used auxiliary events such as exceedance of critical concentration levels, (2) we plot an integrated fault tree that handles uncertainty in both hydrological and health components in a unified way, and (3) we introduce a new form of stochastic fault tree that allows to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.

  6. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    PubMed

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  7. Decoding ability makes waves in reading: deficient interactions between attention and phonological analysis in developmental dyslexia.

    PubMed

    Savill, Nicola J; Thierry, Guillaume

    2012-06-01

    Whilst there is general consensus that phonological processing is deficient in developmental dyslexia, recent research also implicates visuo-attentional contributions. Capitalising on the P3a wave of event-related potentials as an index of attentional capture, we tested dyslexic and normal readers on a novel variant of a visual oddball task to examine the interplay of orthographic-phonological integration and attentional engagement. Targets were animal words (10% occurrence). Amongst nontarget stimuli were two critical conditions: pseudohomophones of targets (10%) and control pseudohomophones (of fillers; 10%). Pseudohomophones of targets (but not control pseudohomophones) elicited a large P3 wave in normal readers only, revealing a lack of attentional engagement with these phonologically salient stimuli in dyslexic participants. Critically, both groups showed similar early phonological discrimination as indexed by posterior P2 modulations. Furthermore, phonological engagement, as indexed by P3a differences between pseudohomophone conditions, correlated with several measures of reading. Meanwhile, an analogous experiment using coloured shapes instead of orthographic stimuli failed to show group differences between experimental modulations in the P2 or P3 ranges. Overall, our results show that, whilst automatic aspects of phonological processing appear intact in developmental dyslexia, the breakdown in pseudoword reading occurs at a later stage, when attention is oriented to orthographic-phonological information. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A Phase II Study of Intensity Modulated Radiation Therapy to the Pelvis for Postoperative Patients With Endometrial Carcinoma: Radiation Therapy Oncology Group Trial 0418

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jhingran, Anuja, E-mail: ajhingra@mdanderson.org; Winter, Kathryn; Portelance, Lorraine

    2012-09-01

    Purpose: To determine the feasibility of pelvic intensity modulated radiation therapy (IMRT) for patients with endometrial cancer in a multi-institutional setting and to determine whether this treatment is associated with fewer short-term bowel adverse events than standard radiation therapy. Methods: Patients with adenocarcinoma of the endometrium treated with pelvic radiation therapy alone were eligible. Guidelines for target definition and delineation, dose prescription, and dose-volume constraints for the targets and critical normal structures were detailed in the study protocol and a web-based atlas. Results: Fifty-eight patients were accrued by 25 institutions; 43 were eligible for analysis. Forty-two patients (98%) had anmore » acceptable IMRT plan; 1 had an unacceptable variation from the prescribed dose to the nodal planning target volume. The proportions of cases in which doses to critical normal structures exceeded protocol criteria were as follows: bladder, 67%; rectum, 76%; bowel, 17%; and femoral heads, 33%. Twelve patients (28%) developed grade {>=}2 short-term bowel adverse events. Conclusions: Pelvic IMRT for endometrial cancer is feasible across multiple institutions with use of a detailed protocol and centralized quality assurance (QA). For future trials, contouring of vaginal and nodal tissue will need continued monitoring with good QA and better definitions will be needed for organs at risk.« less

  9. Efficient, nonlinear phase estimation with the nonmodulated pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Frazin, Richard A.

    2018-04-01

    The sensitivity of the the pyramid wavefront sensor (PyWFS) has made it a popular choice for astronomical adaptive optics (AAO) systems, and it is at its most sensitive when it is used without modulation of the input beam. In non-modulated mode, the device is highly nonlinear. Hence, all PyWFS implementations on current AAO systems employ modulation to make the device more linear. The upcoming era of 30-m class telescopes and the demand for ultra-precise wavefront control stemming from science objectives that include direct imaging of exoplanets make using the PyWFS without modulation desirable. This article argues that nonlinear estimation based on Newton's method for nonlinear optimization can be useful for mitigating the effects of nonlinearity in the non-modulated PyWFS. The proposed approach requires all optical modeling to be pre-computed, which has the advantage of avoiding real-time simulations of beam propagation. Further, the required real-time calculations are amenable to massively parallel computation. Numerical experiments simulate a currently operational PyWFS. A singular value analysis shows that the common practice of calculating two "slope" images from the four PyWFS pupil images discards critical information and is unsuitable for the non-modulated PyWFS simulated here. Instead, this article advocates estimators that use the raw pixel values not only from the four geometrical images of the pupil, but from surrounding pixels as well. The simulations indicate that nonlinear estimation can be effective when the Strehl ratio of the input beam is greater than 0.3, and the improvement relative to linear estimation tends to increase at larger Strehl ratios. At Strehl ratios less than about 0.5, the performances of both the nonlinear and linear estimators are relatively insensitive to noise, since they are dominated by nonlinearity error.

  10. Uniform instruction using web-based, asynchronous technology in a geographically distributed clinical clerkship: analysis of osteopathic medical student participation and satisfaction.

    PubMed

    Peska, Don N; Lewis, Kadriye O

    2010-03-01

    As medical schools in the United States increase their class sizes, many institutions are forced to extend their teaching affiliations outside of their immediate communities. Geographic distribution threatens the ability to provide the uniform learning opportunities that students need and accrediting bodies require. To determine if a Web-based, asynchronous learning module can provide an effective, uniform learning opportunity for osteopathic medical students enrolled in clinical clerkship. Third-year osteopathic medical students enrolled in an 8-week core clinical clerkship in surgery were required to participate in a Web-based, asynchronous, interactive instructional module designed to provide opportunities for higher-order thinking through analysis, synthesis, and reflective learning. The quantity and content of students' online course interactions were analyzed to determine quantitative and qualitative features of their course participation. At the completion of the clerkship, students completed a 10-item Likert-type survey of their experience to determine the most helpful attributes of the Web-based learning module. Responses were assigned numerical values from 1 (strongly disagree) to 5 (strongly agree) to obtain a mean score for each question. Sixty-three students completed the Web-based module. The content of their discussions, as determined by message coding, identified the critical thinking needed to acquire abstract conceptualization of the problems presented in a typical surgery clerkship. Students found the content of the module relevant to the clerkship (mean score, 4.18) and valued facilitator feedback (4.00). Although they did not prefer Web-based instruction of classroom lecture (2.66), students indicated that the Web-based module enhanced their overall learning experience in the clerkship (3.30). Web-based technology in the clinical education of third-year osteopathic medical students appears to afford an acceptable teaching alternative when face-to-face instruction cannot be provided. Further study of the impact of instructional design on the quality of higher-order thinking in this domain is needed, as is an appreciation for the dynamics of group learning in a virtual environment.

  11. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana

    2008-02-20

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defectivemore » clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication.« less

  12. Developing the Critical Thinking Skills of Astrobiology Students through Creative and Scientific Inquiry

    PubMed Central

    Lemus, Judith D.

    2015-01-01

    Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292

  13. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere.

    PubMed

    Yoncheva, Yuliya; Maurer, Urs; Zevin, Jason D; McCandliss, Bruce D

    2014-08-15

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective attention to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by manipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data-driven source localization analyses revealed that selective attention to phonology led to significantly greater recruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings suggest a key role for selective attention in on-line phonological computations. Furthermore, these findings motivate future research on the role that neural mechanisms of attention may play in phonological awareness impairments thought to underlie developmental reading disabilities. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere

    PubMed Central

    Yoncheva; Maurer, Urs; Zevin, Jason; McCandliss, Bruce

    2015-01-01

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective atten tion to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by ma nipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data- driven source localization analyses revealed that selective attention to phonology led to significantly greater re cruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings support the key role of selective attention to phonology in the development of literacy and motivate future research on the neural bases of the interaction between phonological awareness and literacy, deemed central to both typical and atypical reading development. PMID:24746955

  15. Fostering critical thinking and collaborative learning skills among medical students through a research protocol writing activity in the curriculum

    PubMed Central

    2018-01-01

    Purpose This intervention was aimed to analyse the effect of academic writing and journal critiquing as educational approaches in improving critical thinking and collaborative learning among undergraduate medical students. Methods A research proposal writing format was created for the 4th year medical students of Melaka Manipal Medical College, Malaysia during their ophthalmology clinical postings. The students worked in small groups and developed research protocols through an evidence based approach. This was followed by writing reflective summaries in academic portfolios about the activity undertaken.A mixed methods study was designed to explore the possible role of collaborative research proposal writing in enhancing critical thinking and collaborative learning. Results Analysis of reflections submitted by 188 medical students after the intervention indicate that majority of them found an improvement in their skills of critical thinking and collaborative learning as a result of research protocol writing. All participants agreed that the model helped in applying concepts to new situations in the form of designing their own study, which reflected in enhanced higher order cognitive skills. Conclusion This study shows that the introduction of a structured module in the core medical curriculum that focuses on research writing skills embedded with collaborative and reflective practices can enhance collaborative learning, critical thinking, and reasoning among medical students. PMID:29860777

  16. Exploring Responses to Xenophobia: Using Workshopping as Critical Pedagogy

    ERIC Educational Resources Information Center

    Singh, L.; Francis, D.

    2010-01-01

    Our article arises out of our involvement in an undergraduate module (Drama Education 310) at UKZN Faculty of Education, where we used workshop theatre to explore how students construct knowledge and develop socio-cultural understandings of critical events in society such as Xenophobia. The project reflects how young black students constitute…

  17. Critical Evaluation as an Aid to Improved Report Writing: A Case Study

    ERIC Educational Resources Information Center

    Walker, Mirabelle; Williams, Judith

    2014-01-01

    Report writing is an important employability skill for Engineers and Technologists, and this case study describes how a Technology degree module took a novel approach to developing students' report writing skills. Students learned how to use a criterion-referenced critical evaluation framework for reports and other technological documents. They…

  18. Post-Translational Modifications of Nucleosomal Histones in Oligodendrocyte Lineage Cells in Development and Disease

    PubMed Central

    Shen, Siming; Casaccia-Bonnefil, Patrizia

    2008-01-01

    The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed. PMID:17999198

  19. (Putative) Sex differences in neuroimmune modulation of memory

    PubMed Central

    Tronson, Natalie C.; Collette, Katie M.

    2016-01-01

    The neuroimmune system is significantly sexually dimorphic, with sex differences evident in the number and activation states of microglia, in the activation of astrocytes, and in cytokine release and function. Neuroimmune cells and signaling are now recognized as critical for many neural functions throughout the lifespan, including synaptic plasticity and memory function. Here we address the question of how cytokines, astrocytes, and microglia contribute to memory, and specifically how neuroimmune modulation of memory differentially affects males and females. Understanding sex differences in both normal memory processes and dysregulation of memory in psychiatric and neurological disorders is critical for developing treatment and preventive strategies for memory disorders that are effective for both men and women. PMID:27870428

  20. Simulation verification techniques study. Subsystem simulation validation techniques

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1974-01-01

    Techniques for validation of software modules which simulate spacecraft onboard systems are discussed. An overview of the simulation software hierarchy for a shuttle mission simulator is provided. A set of guidelines for the identification of subsystem/module performance parameters and critical performance parameters are presented. Various sources of reference data to serve as standards of performance for simulation validation are identified. Environment, crew station, vehicle configuration, and vehicle dynamics simulation software are briefly discussed from the point of view of their interfaces with subsystem simulation modules. A detailed presentation of results in the area of vehicle subsystems simulation modules is included. A list of references, conclusions and recommendations are also given.

  1. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    PubMed

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  2. Neutron and gamma-ray dose-rates from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distancemore » from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures.« less

  3. Data acquisition and analysis in the DOE/NASA Wind Energy Program

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.

    1980-01-01

    Four categories of data systems, each responding to a distinct information need are presented. The categories are: control, technology, engineering and performance. The focus is on the technology data system which consists of the following elements: sensors which measure critical parameters such as wind speed and direction, output power, blade loads and strains, and tower vibrations; remote multiplexing units (RMU) mounted on each wind turbine which frequency modulate, multiplex and transmit sensor outputs; the instrumentation available to record, process and display these signals; and centralized computer analysis of data. The RMU characteristics and multiplexing techniques are presented. Data processing is illustrated by following a typical signal through instruments such as the analog tape recorder, analog to digital converter, data compressor, digital tape recorder, video (CRT) display, and strip chart recorder.

  4. Auditory neural networks involved in attention modulation prefer biologically significant sounds and exhibit sexual dimorphism in anurans.

    PubMed

    Xue, Fei; Yue, Xizi; Fan, Yanzhu; Cui, Jianguo; Brauth, Steven E; Tang, Yezhong; Fang, Guangzhan

    2018-03-09

    Allocating attention to biologically relevant stimuli in a complex environment is critically important for survival and reproductive success. In humans, attention modulation is regulated by the frontal cortex, and is often reflected by changes in specific components of the event-related potential (ERP). Although brain networks for attention modulation have been widely studied in primates and avian species, little is known about attention modulation in amphibians. The present study aimed to investigate the attention modulation networks in an anuran species, the Emei music frog ( Babina daunchina ). Male music frogs produce advertisement calls from within underground nest burrows that modify the acoustic features of the calls, and both males and females prefer calls produced from inside burrows. We broadcast call stimuli to male and female music frogs while simultaneously recording electroencephalographic (EEG) signals from the telencephalon and mesencephalon. Granger causal connectivity analysis was used to elucidate functional brain networks within the time window of ERP components. The results show that calls produced from inside nests which are highly sexually attractive result in the strongest brain connections; both ascending and descending connections involving the left telencephalon were stronger in males while those in females were stronger with the right telencephalon. Our findings indicate that the frog brain allocates neural attention resources to highly attractive sounds within the window of early components of ERP, and that such processing is sexually dimorphic, presumably reflecting the different reproductive strategies of males and females. © 2018. Published by The Company of Biologists Ltd.

  5. Pulse position modulation for compact all-fiber vehicle laser rangefinder development

    NASA Astrophysics Data System (ADS)

    Mao, Xuesong; Cheng, Yongzhi; Xiong, Ying; Inoue, Daisuke; Kagami, Manabu

    2017-10-01

    We propose a method for developing small all-fiber vehicle laser rangefinders that is based on pulse position modulation (PPM) and data integration and present a theoretical study on its performance. Compared with spatial coupling, which is employed by most of the current commercial vehicle laser rangefinders, fiber coupling has the advantage that it can guide laser echoes into the interior of a car, so the electronic components following the photodiode can operate in a moderate-temperature environment. However, optical fibers have numerical apertures (NAs), which means that a laser beam from a receiving lens cannot be coupled into an optical fiber if its incident angle exceeds the critical value. Therefore, the effective size of the receiving lens is typically small since it is limited by its focal length and the NA of the fiber, causing the power of the laser echoes gathered by the receiving lens to be insufficient for performing target identification. Instead of increasing the peak transmitting laser power unrestrictedly, PPM and data integration effectively compensate for the low signal-to-noise ratio that results from the effective receiving lens size reduction. We validated the proposed method by conducting numerical simulations and performance analysis. Finally, we compared the proposed method with pseudorandom noise (PN) code modulation and found that, although the two methods perform equally well in single-target measurement scenarios, PPM is more effective than PN code modulation for multitarget measurement. In addition, PPM enables the transmission of laser beams with higher peak powers and requires less computation than PN code modulation does.

  6. Attentional modulation of neuronal variability in circuit models of cortex

    PubMed Central

    Kanashiro, Tatjana; Ocker, Gabriel Koch; Cohen, Marlene R; Doiron, Brent

    2017-01-01

    The circuit mechanisms behind shared neural variability (noise correlation) and its dependence on neural state are poorly understood. Visual attention is well-suited to constrain cortical models of response variability because attention both increases firing rates and their stimulus sensitivity, as well as decreases noise correlations. We provide a novel analysis of population recordings in rhesus primate visual area V4 showing that a single biophysical mechanism may underlie these diverse neural correlates of attention. We explore model cortical networks where top-down mediated increases in excitability, distributed across excitatory and inhibitory targets, capture the key neuronal correlates of attention. Our models predict that top-down signals primarily affect inhibitory neurons, whereas excitatory neurons are more sensitive to stimulus specific bottom-up inputs. Accounting for trial variability in models of state dependent modulation of neuronal activity is a critical step in building a mechanistic theory of neuronal cognition. DOI: http://dx.doi.org/10.7554/eLife.23978.001 PMID:28590902

  7. Functional analysis of conserved aromatic amino acids in the discoidin domain of Paenibacillus β-1,3-glucanase

    PubMed Central

    2009-01-01

    The 190-kDa Paenibacillus β-1,3-glucanase (LamA) contains a catalytic module of the glycoside hydrolase family 16 (GH16) and several auxiliary domains. Of these, a discoidin domain (DS domain), present in both eukaryotic and prokaryotic proteins with a wide variety of functions, exists at the carboxyl-terminus. To better understand the bacterial DS domain in terms of its structure and function, this domain alone was expressed in Escherichia coli and characterized. The results indicate that the DS domain binds various polysaccharides and enhances the biological activity of the GH16 module on composite substrates. We also investigated the importance of several conserved aromatic residues in the domain's stability and substrate-binding affinity. Both were affected by mutations of these residues; however, the effect on protein stability was more notable. In particular, the forces contributed by a sandwiched triad (W1688, R1756, and W1729) were critical for the presumable β-sandwich fold. PMID:19930717

  8. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor.

    PubMed

    Granovsky, Alexey E; Rosner, Marsha Rich

    2008-04-01

    Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.

  9. Spontaneous Formation of Nanopillar Arrays in Ultrathin Viscous Films: Critical Role of Thermocapillary Stresses

    NASA Astrophysics Data System (ADS)

    Troian, Sandra; Dietzel, Mathias

    2010-03-01

    Nanoscale structures manifest exceedingly large surface to volume ratios and are therefore highly susceptible to control by surface stresses. Actuation techniques which can exploit this feature provide a key strategy for construction and self-organization of large area arrays. During the past decade, several groups have reported that molten polymer nanofilms subject to an ultra-large transverse thermal gradient undergo spontaneous formation of nanopillar arrays. The prevailing explanation is that coherent interfacial reflection of acoustic phonons causes periodic modulation of the radiation pressure leading to instability and pillar growth. We demonstrate instead that thermocapillary forces play a crucial if not dominant role in the formation process due to the strong modulation of surface tension with temperature. Any nanoscale viscous film is prone to such formations, not just polymeric films. Analysis of the governing interface equation reveals the mechanism controlling the growth, spacing and symmetry of these self-assembling arrays. We discuss how these findings are being used in our laboratory to construct nanoscale components for optical and photonic applications.

  10. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  11. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  12. Instruction via Web-Based Modules in Early Childhood Personnel Preparation: A Mixed-Methods Study of Effectiveness and Learner Perspectives

    ERIC Educational Resources Information Center

    Hollingsworth, Heidi L.; Lim, Chih-Ing

    2015-01-01

    Effective personnel preparation is critical to the development of a high quality early childhood workforce that provides optimal care and education for young children. This mixed-methods study examined the effectiveness of, and learner perspectives on, instruction via web-based modules within face-to-face early childhood personnel preparation…

  13. Nouns Referring to Tools and Natural Objects Differentially Modulate the Motor System

    ERIC Educational Resources Information Center

    Gough, Patricia M.; Riggio, Lucia; Chersi, Fabian; Sato, Marc; Fogassi, Leonardo; Buccino, Giovanni

    2012-01-01

    While increasing evidence points to a critical role for the motor system in language processing, the focus of previous work has been on the linguistic category of verbs. Here we tested whether nouns are effective in modulating the motor system and further whether different kinds of nouns--those referring to artifacts or natural items, and items…

  14. Pour une gestion amelioree des ressources humaines dans les departements universitaires--Les possibilites offertes par la modulation des taches des professeurs.

    ERIC Educational Resources Information Center

    Desrosiers, Jean-Yves

    1991-01-01

    Task modulation is being examined as a means for improved utilization of human resources and greater flexibility within departments of Quebec universities. In this paper (written in French), a definition for this concept is proposed, the literature is reviewed, and prerequisite and other conditions critical to successful implementation are…

  15. Glucagon signaling modulates sweet taste responsiveness.

    PubMed

    Elson, Amanda E T; Dotson, Cedrick D; Egan, Josephine M; Munger, Steven D

    2010-10-01

    The gustatory system provides critical information about the quality and nutritional value of food before it is ingested. Thus, physiological mechanisms that modulate taste function in the context of nutritional needs or metabolic status could optimize ingestive decisions. We report that glucagon, which plays important roles in the maintenance of glucose homeostasis, enhances sweet taste responsiveness through local actions in the mouse gustatory epithelium. Using immunohistochemistry and confocal microscopy, we found that glucagon and its receptor (GlucR) are coexpressed in a subset of mouse taste receptor cells. Most of these cells also express the T1R3 taste receptor implicated in sweet and/or umami taste. Genetic or pharmacological disruption of glucagon signaling in behaving mice indicated a critical role for glucagon in the modulation of taste responsiveness. Scg5(-/-) mice, which lack mature glucagon, had significantly reduced responsiveness to sucrose as compared to wild-type littermates in brief-access taste tests. No significant differences were seen in responses to prototypical salty, sour, or bitter stimuli. Taste responsiveness to sucrose was similarly reduced upon acute and local disruption of glucagon signaling by the GlucR antagonist L-168,049. Together, these data indicate a role for local glucagon signaling in the peripheral modulation of sweet taste responsiveness.

  16. Amygdala NRG1–ErbB4 Is Critical for the Modulation of Anxiety-Like Behaviors

    PubMed Central

    Bi, Lin-Lin; Sun, Xiang-Dong; Zhang, Jie; Lu, Yi-Sheng; Chen, Yi-Hua; Wang, Jue; Geng, Fei; Liu, Fang; Zhang, Meng; Liu, Ji-Hong; Li, Xiao-Wen; Mei, Lin; Gao, Tian-Ming

    2015-01-01

    Anxiety disorder is related to the pathophysiology of psychiatric diseases, including major depression, substance abuse, and schizophrenia. The amygdala is important for manifestation and modulation of anxiety. However, relatively little is known regarding the mechanisms that control the amygdala inhibitory activity that is involved in anxiety. We found that almost all ErbB4, which is the only autonomous receptor of neuregulin 1 (NRG1) in the basolateral amygdala (BLA), was expressed in GABAergic neurons. Endogenous NRG1–ErbB4 signaling pathway in the BLA could modulate anxiety-like behaviors and GABA release, whereas it had no effect on glutamatergic transmission. The administration of NRG1 into the BLA of high-anxiety mice alleviated their anxiety and enhanced GABAergic neurotransmission. Moreover, exogenous NRG1 also produced an anxiolytic effect in the stressed mice. Together, these observations indicated that NRG1–ErbB4 signaling is critical to maintaining GABAergic activity in the amygdala and thus to modulating anxiety-like behaviors. Because NRG1 and ErbB4 are susceptibility genes of schizophrenia, our findings might also help to explain the potential mechanism of emotional abnormality in schizophrenia. PMID:25308353

  17. Adaptation and Evaluation of Online Self-learning Modules to Teach Critical Appraisal and Evidence-Based Practice in Nursing: An International Collaboration.

    PubMed

    Gagnon, Johanne; Gagnon, Marie-Pierre; Buteau, Rose-Anne; Azizah, Ginette Mbourou; Jetté, Sylvie; Lampron, Amélie; Simonyan, David; Asua, José; Reviriego, Eva

    2015-07-01

    Healthcare professionals need to update their knowledge and acquire skills to continually inform their practice based on scientific evidence. This study was designed to evaluate online self-learning modules on critical appraisal skills to promote the use of research in clinical practice among nurses from Quebec (Canada) and the Basque Country (Spain). The teaching material was developed in Quebec and adapted to the Basque Country as part of an international collaboration project. A prospective pre-post study was conducted with 36 nurses from Quebec and 47 from the Basque Country. Assessment comprised the administration of questionnaires before and after the course in order to explore the main intervention outcomes: knowledge acquisition and self-learning readiness. Satisfaction was also measured at the end of the course. Two of the three research hypotheses were confirmed: (1) participants significantly improved their overall knowledge score after the educational intervention; and (2) they were, in general, satisfied with the course, giving it a rating of seven out of 10. Participants also reported a greater readiness for self-directed learning after the course, but this result was not significant in Quebec. The study provides unique knowledge on the cultural adaptation of online self-learning modules for teaching nurses about critical appraisal skills and evidence-based practice.

  18. A cascading failure analysis tool for post processing TRANSCARE simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is a MATLAB-based tool to post process simulation results in the EPRI software TRANSCARE, for massive cascading failure analysis following severe disturbances. There are a few key modules available in this tool, including: 1. automatically creating a contingency list to run TRANSCARE simulations, including substation outages above a certain kV threshold, N-k (1, 2 or 3) generator outages and branche outages; 2. read in and analyze a CKO file of PCG definition, an initiating event list, and a CDN file; 3. post process all the simulation results saved in a CDN file and perform critical event corridor analysis; 4.more » provide a summary of TRANSCARE simulations; 5. Identify the most frequently occurring event corridors in the system; and 6. Rank the contingencies using a user defined security index to quantify consequences in terms of total load loss, total number of cascades, etc.« less

  19. A distributed control approach for power and energy management in a notional shipboard power system

    NASA Astrophysics Data System (ADS)

    Shen, Qunying

    The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability of power supply (in terms of quality of service) is developed. This module can supply uninterruptible power to the mission critical loads. In addition, a multi-agent system (MAS) based framework is proposed to implement the PCON based PEMS through a hardware setup that is composed of MAMBA boards and FPGA interface. Agents are implemented using Java Agent DEvelopment Framework (JADE). Various test scenarios were tested to validate the approach.

  20. Modulation of critical brain dynamics using closed-loop neurofeedback stimulation.

    PubMed

    Zhigalov, Alexander; Kaplan, Alexander; Palva, J Matias

    2016-08-01

    EEG long-range temporal correlations (LRTCs) are a significant for both human cognition and brain disorders, but beyond suppression by sensory disruption, there are little means for influencing them non-invasively. We hypothesized that LRTCs could be controlled by engaging intrinsic neuroregulation through closed-loop neurofeedback stimulation. We used a closed-loop-stimulation paradigm where supra-threshold α-waves trigger visual flash stimuli while the subject performs the standard eyes-closed resting-state task. As a "sham" control condition, we applied similar stimulus sequences without the neurofeedback. Over three sessions, a significant difference in the LRTCs of α-band oscillations (U=89, p<0.028, Wilcoxon rank sum test) and their scalp topography (T=-2.92, p<0.010, T-test) emerged between the neurofeedback and sham conditions so that the LRTCs were stronger during neurofeedback than sham. No changes (F=0.16, p>0.69, ANOVA test) in the scalp topography of α-band power were observed in either condition. This study provides proof-of-concept for that EEG LRTCs, and hence critical brain dynamics, can be modulated with closed-loop stimulation in an automatic, involuntary fashion. We suggest that this modulation is mediated by an excitation-inhibition balance change achieved by the closed-loop neuroregulation. Automatic LRTC modulation opens novel avenues for both examining the functional roles of brain criticality in healthy subjects and for developing novel therapeutic approaches for brain disorders associated with abnormal LRTCs. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Active transport of vesicles in neurons is modulated by mechanical tension.

    PubMed

    Ahmed, Wylie W; Saif, Taher A

    2014-03-27

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics.

  2. Active transport of vesicles in neurons is modulated by mechanical tension

    PubMed Central

    Ahmed, Wylie W.; Saif, Taher A.

    2014-01-01

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics. PMID:24670781

  3. Plasmapheresis and other extracorporeal filtration techniques in critical patients.

    PubMed

    Daga Ruiz, D; Fonseca San Miguel, F; González de Molina, F J; Úbeda-Iglesias, A; Navas Pérez, A; Jannone Forés, R

    2017-04-01

    Plasmapheresis is an extracorporeal technique that eliminates macromolecules involved in pathological processes from plasma. A review is made of the technical aspects, main indications in critical care and potential complications of plasmapheresis, as well as of other extracorporeal filtration techniques such as endotoxin-removal columns and other devices designed to eliminate cytokines or modulate the inflammatory immune response in critical patients. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  4. Conceptual design of an on-board optical processor with components

    NASA Technical Reports Server (NTRS)

    Walsh, J. R.; Shackelford, R. G.

    1977-01-01

    The specification of components for a spacecraft on-board optical processor was investigated. A space oriented application of optical data processing and the investigation of certain aspects of optical correlators were examined. The investigation confirmed that real-time optical processing has made significant advances over the past few years, but that there are still critical components which will require further development for use in an on-board optical processor. The devices evaluated were the coherent light valve, the readout optical modulator, the liquid crystal modulator, and the image forming light modulator.

  5. InGaAs multiple quantum well modulating retro-reflector for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Gilbreath, G. Charmaine; Goetz, Peter G.; Mahon, Rita; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Binari, Steven C.; Meehan, Timothy J.; Stell, Mena F.; Sokolsky, Ilene; Vasquez, John A.; Vilcheck, Michael J.

    2002-01-01

    Modulating retro-reflectors provide means for free space optical communication without the need for a laser, telescope or pointer tracker on one end of the link. These systems work by coupling a retro-reflector with an electro- optic shutter. The modulating retro-reflector is then interrogated by a cw laser beam from a conventional optical communications system and returns a modulated signal beam to the interrogator. Over the last few years the Naval Research Laboratory has developed modulating retro-reflector based on corner cubes and large area Transmissive InGaAs multiple quantum well modulators. These devices can allow optical links at speeds up to about 10 Mbps. We will discuss the critical performance characteristics of such systems including modulating rate, power consumption, optical contrast ratio and operating wavelength. In addition a new modulating retro-reflector architecture based upon cat s eye retroreflectors will be discussed. This architecture has the possibility for data rates of hundreds of megabits per second at power consumptions below 100 mW.

  6. Screening Vaccine Formulations in Fresh Human Whole Blood.

    PubMed

    Hakimi, Jalil; Aboutorabian, Sepideh; To, Frederick; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2017-01-01

    Monitoring the immunological functionality of vaccine formulations is critical for vaccine development. While the traditional approach using established animal models has been relatively effective, the use of animals is costly and cumbersome, and animal models are not always reflective of a human response. The development of a human-based approach would be a major step forward in understanding how vaccine formulations might behave in humans. Here, we describe a platform methodology using fresh human whole blood (hWB) to monitor adjuvant-modulated, antigen-specific responses to vaccine formulations, which is amenable to analysis by standard immunoassays as well as a variety of other analytical techniques.

  7. Critical Concerns for Oral Communication Education in the United States and the United Kingdom

    ERIC Educational Resources Information Center

    Emanuel, Richard

    2011-01-01

    An examination of oral communication education in the United States (U.S.) and United Kingdom (U.K.) identified four critical concerns: (1) Today's college students are not getting adequate oral communication education; (2) Oral communication education is being relegated to a "module" in another discipline-specific course; (3) When an…

  8. Dopamine Regulation of Human Speech and Bird Song: A Critical Review

    ERIC Educational Resources Information Center

    Simonyan, Kristina; Horwitz, Barry; Jarvis, Erich D.

    2012-01-01

    To understand the neural basis of human speech control, extensive research has been done using a variety of methodologies in a range of experimental models. Nevertheless, several critical questions about learned vocal motor control still remain open. One of them is the mechanism(s) by which neurotransmitters, such as dopamine, modulate speech and…

  9. What Stick Figures Tell Us about Irish Politics: Creating a Critical and Collaborative Learning Space

    ERIC Educational Resources Information Center

    Feeney, Sharon; Hogan, John; Donnelly, Paul F.

    2015-01-01

    This paper focuses upon the interpretation of freehand drawings produced by a small sample of 220 first-year students taking an Irish politics introductory module in response to the question, "What is Irish Politics?" By sidestepping cognitive verbal-processing routes, through employing freehand drawing, we aim to create a critical and…

  10. Identification of potential transcriptomic markers in developing pediatric sepsis: a weighted gene co-expression network analysis and a case-control validation study.

    PubMed

    Li, Yiping; Li, Yanhong; Bai, Zhenjiang; Pan, Jian; Wang, Jian; Fang, Fang

    2017-12-13

    Sepsis represents a complex disease with the dysregulated inflammatory response and high mortality rate. The goal of this study was to identify potential transcriptomic markers in developing pediatric sepsis by a co-expression module analysis of the transcriptomic dataset. Using the R software and Bioconductor packages, we performed a weighted gene co-expression network analysis to identify co-expression modules significantly associated with pediatric sepsis. Functional interpretation (gene ontology and pathway analysis) and enrichment analysis with known transcription factors and microRNAs of the identified candidate modules were then performed. In modules significantly associated with sepsis, the intramodular analysis was further performed and "hub genes" were identified and validated by quantitative real-time PCR (qPCR) in this study. 15 co-expression modules in total were detected, and four modules ("midnight blue", "cyan", "brown", and "tan") were most significantly associated with pediatric sepsis and suggested as potential sepsis-associated modules. Gene ontology analysis and pathway analysis revealed that these four modules strongly associated with immune response. Three of the four sepsis-associated modules were also enriched with known transcription factors (false discovery rate-adjusted P < 0.05). Hub genes were identified in each of the four modules. Four of the identified hub genes (MYB proto-oncogene like 1, killer cell lectin like receptor G1, stomatin, and membrane spanning 4-domains A4A) were further validated to be differentially expressed between septic children and controls by qPCR. Four pediatric sepsis-associated co-expression modules were identified in this study. qPCR results suggest that hub genes in these modules are potential transcriptomic markers for pediatric sepsis diagnosis. These results provide novel insights into the pathogenesis of pediatric sepsis and promote the generation of diagnostic gene sets.

  11. Fractals and self-organized criticality in anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2014-12-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX-1 and COX-2) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective inhibitors. Extensive structural studies of the biology of prostaglandin synthesis and inhibition have explained some of the differences between COX-1 and COX-2 functionality, but others are still unexplained. Notably these include molecular differences that cause COX-1 inhibitors to produce a slight decrease, and COX-2 inhibitors to induce a significant increase, in heart attacks and strokes. These differences were unexpected because of the 60% overall COX-1 and COX-2 sequence similarity and the 1-2 conservation of catalytic sites. Hydropathic analysis shows important bicyclic differences between COX-1 and COX-2 on a large scale outside the catalytic pocket. These differences involve much stronger amphiphilic interactions in COX-2 than in COX-1, and may explain the selective antiplatelet effectiveness of COX-2. Success of the non-Euclidean structural analysis is the result of using the new Brazilian hydropathicity scale based on self-organized criticality (SOC) of universal protein modules.

  12. Cysteine Cathepsin Activity Regulation by Glycosaminoglycans

    PubMed Central

    Lenarčič, Brigita

    2014-01-01

    Cysteine cathepsins are a group of enzymes normally found in the endolysosomes where they are primarily involved in intracellular protein turnover but also have a critical role in MHC II-mediated antigen processing and presentation. However, in a number of pathologies cysteine cathepsins were found to be heavily upregulated and secreted into extracellular milieu, where they were found to degrade a number of extracellular proteins. A major role in modulating cathepsin activities play glycosaminoglycans, which were found not only to facilitate their autocatalytic activation including at neutral pH, but also to critically modulate their activities such as in the case of the collagenolytic activity of cathepsin K. The interaction between cathepsins and glycosaminoglycans will be discussed in more detail. PMID:25587532

  13. Contribution of chaperones to STAT pathway signaling

    PubMed Central

    Bocchini, Claire E; Kasembeli, Moses M; Roh, Soung-Hun; Tweardy, David J

    2014-01-01

    Aberrant STAT signaling is associated with the development and progression of many cancers and immune related diseases. Recent findings demonstrate that proteostasis modulators under clinical investigation for cancer therapy have a significant impact on STAT signaling, which may be critical for mediating their anti-cancer effects. Chaperones are critical for protein folding, stability and function and, thus, play an essential role in the maintenance of proteostasis. In this review we discuss the role of chaperones in STAT and tyrosine kinase (TK) protein folding, modulation of STAT and TK activity, and degradation of TKs. We highlight the important role of chaperones in STAT signaling, and how this knowledge has provided a framework for the development of new therapeutic avenues of targeting STAT signaling related pathologies. PMID:26413421

  14. University of Wolverhampton Case Study: Embedding Practical Work-Based Modules into a Traditionally, Theoretical Programme

    ERIC Educational Resources Information Center

    Nicholls, Emma; Walsh, Margaret

    2007-01-01

    Purpose: This case study aims to provide a critical evaluation of the decision by the University of Wolverhampton's School of Legal Studies to develop a number of work-based learning modules, offered as part of the undergraduate programme. It seeks to examine why the School has taken the approach of embedding work-based learning into what has…

  15. ROMPS critical design review. Volume 1: Hardware

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    Topics concerning the Robot-Operated Material Processing in Space (ROMPS) Program are presented in viewgraph form and include the following: a systems overview; servocontrol and servomechanisms; testbed and simulation results; system V controller; robot module; furnace module; SCL experiment supervisor; SCL script sample processing control; SCL experiment supervisor fault handling; block diagrams; hitchhiker interfaces; battery systems; watchdog timers; mechanical/thermal systems; and fault conditions and recovery.

  16. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors.

    PubMed

    Wu, Yingjie; Si, Tieyan; Lin, Xiankun; He, Qiang

    2015-01-11

    The use of a near-infrared (NIR) laser for reversible modulation of a bubble-driven Janus polymer capsule motor is demonstrated. This process was mediated through illumination of the metal face of the Janus capsule motor at the critical concentration of peroxide fuel. Such an effective control of the propulsion of chemically powered microengines holds a considerable promise for diverse applications.

  17. Computerized Training in Critical Thinking (CT)2: A Skill-Based Program for Army Personnel

    DTIC Science & Technology

    2008-06-01

    15-minute break, and then completed the Skill 8 posttest . After completing the Skill 8 pretest , the experimental group completed the Skill training...including pretests , training modules, and posttests for each of eight CT skills. The pretests and training modules are highly interactive, include...usability evaluations .....................................26 Table 6: Pretest and posttest means and standard deviations by group, investigation 1

  18. E-Learning for 4-H Volunteers: Who Uses It, and What Can We Learn from Them?

    ERIC Educational Resources Information Center

    Ouellette, Kristy L.; Lesmeister, Marilyn K.; Lobley, Jennifer; Gross, Kerry M.

    2014-01-01

    Orienting and training 4-H volunteers are critical to individuals and the organization. The two-part study reported here re-establishes the profile of the 4-H volunteer and evaluates both the format and content of e-Learning for 4-H Volunteers modules launched in 2006. Volunteers from seven states perceived that online modules made learning more…

  19. Orion Crew Module Move

    NASA Image and Video Library

    2017-11-17

    Technicians in clean-room suits attach a crane to the Orion crew module for Exploration Mission-1 for its move to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Orion will be lifted out of a test stand and lowered onto another stand to for the move. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  20. A computer-based education intervention to enhance surrogates' informed consent for genomics research.

    PubMed

    Shelton, Ann K; Freeman, Bradley D; Fish, Anne F; Bachman, Jean A; Richardson, Lloyd I

    2015-03-01

    Many research studies conducted today in critical care have a genomics component. Patients' surrogates asked to authorize participation in genomics research for a loved one in the intensive care unit may not be prepared to make informed decisions about a patient's participation in the research. To examine the effectiveness of a new, computer-based education module on surrogates' understanding of the process of informed consent for genomics research. A pilot study was conducted with visitors in the waiting rooms of 2 intensive care units in a Midwestern tertiary care medical center. Visitors were randomly assigned to the experimental (education module plus a sample genomics consent form; n = 65) or the control (sample genomics consent form only; n = 69) group. Participants later completed a test on informed genomics consent. Understanding the process of informed consent was greater (P = .001) in the experimental group than in the control group. Specifically, compared with the control group, the experimental group had a greater understanding of 8 of 13 elements of informed consent: intended benefits of research (P = .02), definition of surrogate consenter (P= .001), withdrawal from the study (P = .001), explanation of risk (P = .002), purpose of the institutional review board (P = .001), definition of substituted judgment (P = .03), compensation for harm (P = .001), and alternative treatments (P = .004). Computer-based education modules may be an important addition to conventional approaches for obtaining informed consent in the intensive care unit. Preparing patients' family members who may consider serving as surrogate consenters is critical to facilitating genomics research in critical care. ©2015 American Association of Critical-Care Nurses.

  1. Adaptable Web Modules to Stimulate Active Learning in Engineering Hydrology using Data and Model Simulations of Three Regional Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.

    2013-12-01

    The hydrologic community has long recognized the need for broad reform in hydrologic education. A paradigm shift is critically sought in undergraduate hydrology and water resource education by adopting context-rich, student-centered, and active learning strategies. Hydrologists currently deal with intricate issues rooted in complex natural ecosystems containing a multitude of interconnected processes. Advances in the multi-disciplinary field include observational settings such as Critical Zone and Water, Sustainability and Climate Observatories, Hydrologic Information Systems, instrumentation and modeling methods. These research advances theory and practices call for similar efforts and improvements in hydrologic education. The typical, text-book based approach in hydrologic education has focused on specific applications and/or unit processes associated with the hydrologic cycle with idealizations, rather than the contextual relations in the physical processes and the spatial and temporal dynamics connecting climate and ecosystems. An appreciation of the natural variability of these processes will lead to graduates with the ability to develop independent learning skills and understanding. This appreciation cannot be gained in curricula where field components such as observational and experimental data are deficient. These types of data are also critical when using simulation models to create environments that support this type of learning. Additional sources of observations in conjunction with models and field data are key to students understanding of the challenges associated with using models to represent such complex systems. Recent advances in scientific visualization and web-based technologies provide new opportunities for the development of active learning techniques utilizing ongoing research. The overall goal of the current study is to develop visual, case-based, data and simulation driven learning experiences to instructors and students through a web server-based system. Open source web technologies and community-based tools are used to facilitate wide dissemination and adaptation by diverse, independent institutions. The new hydrologic learning modules are based on recent developments in hydrologic modeling, data, and resources. The modules are embedded in three regional-scale ecosystems, Coastal Louisiana, Florida Everglades, and Utah Great Salt Lake Basin. These sites provide a wealth of hydrologic concepts and scenarios that can be used in most water resource and hydrology curricula. The study develops several learning modules based on the three hydro-systems covering subjects such as: water-budget analysis, effects of human and natural changes, climate-hydrology teleconnections, and water-resource management scenarios. The new developments include an instructional interface to give critical guidance and support to the learner and an instructor's guide containing adaptation and implementation procedures to assist instructors in adopting and integrating the material into courses and provide a consistent experience. The design of the new hydrologic education developments will be transferable to independent institutions and adaptable both instructionally and technically through a server system capable of supporting additional developments by the educational community.

  2. Computational Analysis of Stresses Acting on Intermodular Junctions in Thoracic Aortic Endografts

    PubMed Central

    Prasad, Anamika; To, Lillian K.; Gorrepati, Madhu L.; Zarins, Christopher K.; Figueroa, C. Alberto

    2011-01-01

    Purpose: To evaluate the biomechanical and hemodynamic forces acting on the intermodular junctions of a multi-component thoracic endograft and elucidate their influence on the development of type III endoleak due to disconnection of stent-graft segments. Methods: Three-dimensional computer models of the thoracic aorta and a 4-component thoracic endograft were constructed using postoperative (baseline) and follow-up computed tomography (CT) data from a 69-year-old patient who developed type III endoleak 4 years after stent-graft placement. Computational fluid dynamics (CFD) techniques were used to quantitate the displacement forces acting on the device. The contact stresses between the different modules of the graft were then quantified using computational solid mechanics (CSM) techniques. Lastly, the intermodular junction frictional stability was evaluated using a Coulomb model. Results: The CFD analysis revealed that curvature and length are key determinants of the displacement forces experienced by each endograft and that the first 2 modules were exposed to displacement forces acting in opposite directions in both the lateral and longitudinal axes. The CSM analysis revealed that the highest concentration of stresses occurred at the junction between the first and second modules of the device. Furthermore, the frictional analysis demonstrated that most of the surface area (53%) of this junction had unstable contact. The predicted critical zone of intermodular stress concentration and frictional instability matched the location of the type III endoleak observed in the 4-year follow-up CT image. Conclusion: The region of larger intermodular stresses and highest frictional instability correlated with the zone where a type III endoleak developed 4 years after thoracic stent-graft placement. Computational techniques can be helpful in evaluating the risk of endograft migration and potential for modular disconnection and may be useful in improving device placement strategies and endograft design. PMID:21861748

  3. OVAS: an open-source variant analysis suite with inheritance modelling.

    PubMed

    Mozere, Monika; Tekman, Mehmet; Kari, Jameela; Bockenhauer, Detlef; Kleta, Robert; Stanescu, Horia

    2018-02-08

    The advent of modern high-throughput genetics continually broadens the gap between the rising volume of sequencing data, and the tools required to process them. The need to pinpoint a small subset of functionally important variants has now shifted towards identifying the critical differences between normal variants and disease-causing ones. The ever-increasing reliance on cloud-based services for sequence analysis and the non-transparent methods they utilize has prompted the need for more in-situ services that can provide a safer and more accessible environment to process patient data, especially in circumstances where continuous internet usage is limited. To address these issues, we herein propose our standalone Open-source Variant Analysis Sequencing (OVAS) pipeline; consisting of three key stages of processing that pertain to the separate modes of annotation, filtering, and interpretation. Core annotation performs variant-mapping to gene-isoforms at the exon/intron level, append functional data pertaining the type of variant mutation, and determine hetero/homozygosity. An extensive inheritance-modelling module in conjunction with 11 other filtering components can be used in sequence ranging from single quality control to multi-file penetrance model specifics such as X-linked recessive or mosaicism. Depending on the type of interpretation required, additional annotation is performed to identify organ specificity through gene expression and protein domains. In the course of this paper we analysed an autosomal recessive case study. OVAS made effective use of the filtering modules to recapitulate the results of the study by identifying the prescribed compound-heterozygous disease pattern from exome-capture sequence input samples. OVAS is an offline open-source modular-driven analysis environment designed to annotate and extract useful variants from Variant Call Format (VCF) files, and process them under an inheritance context through a top-down filtering schema of swappable modules, run entirely off a live bootable medium and accessed locally through a web-browser.

  4. 100 GHz FMCW Radar Module Based on Broadband Schottky-diode Transceiver

    NASA Astrophysics Data System (ADS)

    Jiang, Shu; Xu, Jinping; Dou, Jiangling; Wang, Wenbo

    2018-04-01

    We report on a W-band frequency-modulated continuous-wave (FMCW) radar module with fractional bandwidth over 10 %. To improve flatness over large operation bandwidth, the radar module is developed with focus on the 90-101 GHz modular transceiver, for which accurate modeling of Schottky diode in combination with an integrated design method are proposed in this work. Moreover, the nonlinearity compensation approach is introduced to further optimize the range resolution. To verify the design method and RF performance of the radar module, both measurements of critical components and ISAR imaging experiments are performed. The results demonstrate that high resolution in range and azimuth dimensions can be achieved based on the radar module, of which the receiving gain flatness and transmitting power flatness are better than ±1.3 dB and ±0.7 dB over 90 101 GHz, respectively.

  5. Synthesis of the thermoelectric nanopowder recovered from the used thermoelectric modules.

    PubMed

    Lee, Kun-Jae; Jin, Yun-Ho; Kong, Man-Sik

    2014-10-01

    We fabricated the thermoelectric powder using the used thermoelectric modules in a vehicle. As a starting material, the used thermoelectric modules were collected and separated to substrate, electrode, solder, and thermoelectric parts by a thermal process. The separation process was performed in a wet process at the critical temperature. The solder in the module was the neighbor part of the thermoelectric material with the lowest melting temperature in the module. We focused on the thermal property of the solder to separate the thermoelectric chips in the module. After the separation process, we prepared the pure thermoelectric material by the chemical etching for an impurity removal. Also the thermoelectric nanopowder was fabricated by a chemical reduction reaction using the recycled thermoelectric materials. The recovered nanopowder was confirmed to the phase of bismuth telluride (Bi2Te3) with the particle size of -15 nm.

  6. Brain systems underlying encounter expectancy bias in spider phobia.

    PubMed

    Aue, Tatjana; Hoeppli, Marie-Eve; Piguet, Camille; Hofstetter, Christoph; Rieger, Sebastian W; Vuilleumier, Patrik

    2015-06-01

    Spider-phobic individuals are characterized by exaggerated expectancies to be faced with spiders (so-called encounter expectancy bias). Whereas phobic responses have been linked to brain systems mediating fear, little is known about how the recruitment of these systems relates to exaggerated expectancies of threat. We used fMRI to examine spider-phobic and control participants while they imagined visiting different locations in a forest after having received background information about the likelihood of encountering different animals (spiders, snakes, and birds) at these locations. Critically, imagined encounter expectancies modulated brain responses differently in phobics as compared with controls. Phobics displayed stronger negative modulation of activity in the lateral prefrontal cortex, precuneus, and visual cortex by encounter expectancies for spiders, relative to snakes or birds (within-participants analysis); these effects were not seen in controls. Between-participants correlation analyses within the phobic group further corroborated the hypothesis that these phobia-specific modulations may underlie irrationality in encounter expectancies (deviations of encounter expectancies from objective background information) in spider phobia; the greater the negative modulation a phobic participant displayed in the lateral prefrontal cortex, precuneus, and visual cortex, the stronger was her bias in encounter expectancies for spiders. Interestingly, irrationality in expectancies reflected in frontal areas relied on right rather than left hemispheric deactivations. Our data accord with the idea that expectancy biases in spider phobia may reflect deficiencies in cognitive control and contextual integration that are mediated by right frontal and parietal areas.

  7. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    PubMed

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

  8. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation.

    PubMed

    Kostyuk, Vladimir A; Potapovich, Alla I; Suhan, Tatyana O; de Luca, Chiara; Korkina, Liudmila G

    2011-05-11

    Oxidized low-density lipoproteins (oxLDL) play a critical role in the initiation of atherosclerosis through activation of inflammatory signaling. In the present work we investigated the role of antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Significant decrease in intracellular NO level and superoxide overproduction was found in human umbilical vein endothelial cells (HUVEC) treated with oxLDL, but not with LDL. The redox imbalance was prevented by the addition of quercetin or resveratrol. Expression analysis of 14 genes associated with oxidative stress and inflammation revealed oxLDL-mediated up-regulation of genes specifically involved in leukocyte recruitment and adhesion. This up-regulation could be partially avoided by the addition of verbascoside or resveratrol, while treatment with quercetin resulted in a further increase in the expression of these genes. Lipopolysaccharide (LPS)-treated HUVEC were also used for the evaluation of anti-inflammatory potency of plant polyphenols. Significant differences between HUVEC treaded with oxLDL and LPS were found in both the expression pattern of inflammation-related genes and the effects of plant polyphenols on cellular responses. The present data indicate that plant polyphenols may affect vascular inflammation not only as antioxidants but also as modulators of inflammatory redox signaling pathways. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  9. Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia

    PubMed Central

    Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod

    2015-01-01

    Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7–9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. PMID:22682904

  10. Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia.

    PubMed

    Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod

    2012-02-15

    Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7-9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Seasonal variability in Tibetan seismicity 1991-2013

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Day, J.; Burgmann, R.; Manga, M.

    2013-12-01

    Seismicity in the High Himalaya in Nepal (Bollinger et al., GRL, 2007, Bettinelli et al., EPSL, 2008), the San Andreas fault near Parkfield, California (Christiansen et al., 2007), Mt. Hochstaufen in Germany (Hainzl et al., 2006), and some Cascade Range volcanoes (Christiansen et al., GRL, 2005; Saar and Manga, EPSL, 2003) shows seasonal modulation. From 1991 to 2013, seismicity throughout the ~500 km by ~1000 km Tibetan Plateau also appears to be modulated with 66% more shallow (depth < 20km) earthquakes in spring and fall than in the summer and winter. This variation cannot be explained by seasonal changes in seismic network coverage or triggering by (or occurrence of) large magnitude earthquakes. Significant foreshocks and aftershocks of the 2008 M7.9 Wenchuan earthquake in Sichuan dominate the seismic record from 2008 to 2009 and those years are not considered in the statistical analysis. The Tibetan seismicity, although weaker, is very similar to the modulation observed in Nepal and in the locked section of the San Andreas fault at Parkfield. To explain this biannual signal, we assess the possible effects of hydrologic loading (and unloading), pore pressure diffusion, fault plane orientation, evapotranspiration, earth tides, and atmospheric pressure. The similarity in seasonal signals throughout the area suggests that many faults on the Tibetan Plateau are critically stressed and sensitive to small transient stresses.

  12. Quantum effects on compressional Alfven waves in compensated semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, M. R.

    2015-03-15

    Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linearmore » and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.« less

  13. Analysis of a Multiprocessor Guidance Computer. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Maltach, E. G.

    1969-01-01

    The design of the next generation of spaceborne digital computers is described. It analyzes a possible multiprocessor computer configuration. For the analysis, a set of representative space computing tasks was abstracted from the Lunar Module Guidance Computer programs as executed during the lunar landing, from the Apollo program. This computer performs at this time about 24 concurrent functions, with iteration rates from 10 times per second to once every two seconds. These jobs were tabulated in a machine-independent form, and statistics of the overall job set were obtained. It was concluded, based on a comparison of simulation and Markov results, that the Markov process analysis is accurate in predicting overall trends and in configuration comparisons, but does not provide useful detailed information in specific situations. Using both types of analysis, it was determined that the job scheduling function is a critical one for efficiency of the multiprocessor. It is recommended that research into the area of automatic job scheduling be performed.

  14. Trihydroxybenzoic acid glucoside as a global skin color modulator and photo-protectant

    PubMed Central

    Chajra, Hanane; Redziniak, Gérard; Auriol, Daniel; Schweikert, Kuno; Lefevre, Fabrice

    2015-01-01

    Background 3,4,5-Trihydroxybenzoic acid glucoside (THBG), a molecule produced by an original biocatalysis-based technology, was assessed in this study with respect to its skin photoprotective capacity and its skin color control property on Asian-type skin at a clinical level and on skin explant culture models. Methods The double-blinded clinical study was done in comparison to a vehicle by the determination of objective color parameters thanks to recognized quantitative and qualitative analysis tools, including Chroma-Meter, VISIA-CR™, and SIAscope™. Determination of L* (brightness), a* and b* (green–red and blue–yellow chromaticity coordinates), individual typology angle, and C* (chroma) and h* (hue angle) parameters using a Chroma-Meter demonstrated that THBG is able to modify skin color while quantification of ultraviolet (UV) spots by VISIA-CR™ confirmed its photoprotective effect. The mechanism of action of THBG molecule was determined using explant skin culture model coupled to histological analysis (epidermis melanin content staining). Results We have demonstrated that THBG was able to modulate significantly several critical parameters involved in skin color control such as L* (brightness), a* (redness), individual typology angle (pigmentation), and hue angle (yellowness in this study), whereas no modification occurs on b* and C* parameters. We have demonstrated using histological staining that THBG decrease epidermis melanin content under unirradiated and irradiated condition. We also confirmed that THBG molecule is not a sunscreen agent. Conclusion This study demonstrated that THBG controls skin tone via the inhibition of melanin synthesis as well as the modulation of skin brightness, yellowness, and redness. PMID:26648748

  15. Modulation of intrinsic brain activity by electroconvulsive therapy in major depression

    PubMed Central

    Leaver, Amber M.; Espinoza, Randall; Pirnia, Tara; Joshi, Shantanu H.; Woods, Roger P.; Narr, Katherine L.

    2015-01-01

    Introduction One of the most effective interventions for intractable major depressive episodes is electroconvulsive therapy (ECT). Because ECT is also relatively fast-acting, longitudinal study of its neurobiological effects offers critical insight into the mechanisms underlying depression and antidepressant response. Here we assessed modulation of intrinsic brain activity in corticolimbic networks associated with ECT and clinical response. Methods We measured resting-state functional connectivity (RSFC) in patients with treatment-resistant depression (n=30), using functional magnetic resonance imaging (fMRI) acquired before and after completing a treatment series with right-unilateral ECT. Using independent component analysis, we assessed changes in RSFC with 1) symptom improvement and 2) ECT regardless of treatment outcome in patients, with reference to healthy controls (n=33, also scanned twice). Results After ECT, consistent changes in RSFC within targeted depression-relevant functional networks were observed in the dorsal anterior cingulate (ACC), mediodorsal thalamus (mdTh), hippocampus, and right anterior temporal, medial parietal, and posterior cingulate cortex in all patients. In a separate analysis, changes in depressive symptoms were associated with RSFC changes in the dorsal ACC, mdTh, putamen, medial prefrontal, and lateral parietal cortex. RSFC of these regions did not change in healthy controls. Conclusions Neuroplasticity underlying clinical change was in part separable from changes associated with the effects of ECT observed in all patients. However, both ECT and clinical change were associated with RSFC modulation in dorsal ACC, mdTh and hippocampus, which may indicate that these regions underlie the mechanisms of clinical outcome in ECT and may be effective targets for future neurostimulation therapies. PMID:26878070

  16. Handgrip fatiguing exercise can provide objective assessment of cancer-related fatigue: a pilot study.

    PubMed

    Veni, T; Boyas, S; Beaune, B; Bourgeois, H; Rahmani, A; Landry, S; Bochereau, A; Durand, S; Morel, B

    2018-06-24

    As a subjective symptom, cancer-related fatigue is assessed via patient-reported outcomes. Due to the inherent bias of such evaluation, screening and treatment for cancer-related fatigue remains suboptimal. The purpose is to evaluate whether objective cancer patients' hand muscle mechanical parameters (maximal force, critical force, force variability) extracted from a fatiguing handgrip exercise may be correlated to the different dimensions (physical, emotional, and cognitive) of cancer-related fatigue. Fourteen women with advanced breast cancer, still under or having previously received chemotherapy within the preceding 3 months, and 11 healthy women participated to the present study. Cancer-related fatigue was first assessed through the EORTC QLQ-30 and its fatigue module. Fatigability was then measured during 60 maximal repeated handgrip contractions. The maximum force, critical force (asymptote of the force-time evolution), and force variability (root mean square of the successive differences) were extracted. Multiple regression models were performed to investigate the influence of the force parameters on cancer-related fatigue's dimensions. The multiple linear regression analysis evidenced that physical fatigue was best explained by maximum force and critical force (r = 0.81; p = 0.029). The emotional fatigue was best explained by maximum force, critical force, and force variability (r = 0.83; p = 0.008). The cognitive fatigue was best explained by critical force and force variability (r = 0.62; p = 0.035). The handgrip maximal force, critical force, and force variability may offer objective measures of the different dimensions of cancer-related fatigue and could provide a complementary approach to the patient reported outcomes.

  17. Amplitude-modulation detection by gerbils in reverberant sound fields.

    PubMed

    Lingner, Andrea; Kugler, Kathrin; Grothe, Benedikt; Wiegrebe, Lutz

    2013-08-01

    Reverberation can dramatically reduce the depth of amplitude modulations which are critical for speech intelligibility. Psychophysical experiments indicate that humans' sensitivity to amplitude modulation in reverberation is better than predicted from the acoustic modulation depth at the receiver position. Electrophysiological studies on reverberation in rabbits highlight the contribution of neurons sensitive to interaural correlation. Here, we use a prepulse-inhibition paradigm to quantify the gerbils' amplitude modulation threshold in both anechoic and reverberant virtual environments. Data show that prepulse inhibition provides a reliable method for determining the gerbils' AM sensitivity. However, we find no evidence for perceptual restoration of amplitude modulation in reverberation. Instead, the deterioration of AM sensitivity in reverberant conditions can be quantitatively explained by the reduced modulation depth at the receiver position. We suggest that the lack of perceptual restoration is related to physical properties of the gerbil's ear input signals and inner-ear processing as opposed to shortcomings of their binaural neural processing. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A user-friendly workflow for analysis of Illumina gene expression bead array data available at the arrayanalysis.org portal.

    PubMed

    Eijssen, Lars M T; Goelela, Varshna S; Kelder, Thomas; Adriaens, Michiel E; Evelo, Chris T; Radonjic, Marijana

    2015-06-30

    Illumina whole-genome expression bead arrays are a widely used platform for transcriptomics. Most of the tools available for the analysis of the resulting data are not easily applicable by less experienced users. ArrayAnalysis.org provides researchers with an easy-to-use and comprehensive interface to the functionality of R and Bioconductor packages for microarray data analysis. As a modular open source project, it allows developers to contribute modules that provide support for additional types of data or extend workflows. To enable data analysis of Illumina bead arrays for a broad user community, we have developed a module for ArrayAnalysis.org that provides a free and user-friendly web interface for quality control and pre-processing for these arrays. This module can be used together with existing modules for statistical and pathway analysis to provide a full workflow for Illumina gene expression data analysis. The module accepts data exported from Illumina's GenomeStudio, and provides the user with quality control plots and normalized data. The outputs are directly linked to the existing statistics module of ArrayAnalysis.org, but can also be downloaded for further downstream analysis in third-party tools. The Illumina bead arrays analysis module is available at http://www.arrayanalysis.org . A user guide, a tutorial demonstrating the analysis of an example dataset, and R scripts are available. The module can be used as a starting point for statistical evaluation and pathway analysis provided on the website or to generate processed input data for a broad range of applications in life sciences research.

  19. Product Module Rig Test

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Chiappetta, Louis, Jr.; Hautman, Donald J.; Ols, John T.; Padget, Frederick C., IV; Peschke, William O. T.; Shirley, John A.; Siskind, Kenneth S.

    2004-01-01

    The low emissions potential of a Rich-Quench-Lean (RQL) combustor for use in the High Speed Civil Transport (HSCT) application was evaluated as part of Work Breakdown Structure (WBS) 1.0.2.7 of the NASA Critical Propulsion Components (CPC) Program under Contract NAS3-27235. Combustion testing was conducted in cell 1E of the Jet Burner Test Stand at United Technologies Research Center. Specifically, a Rich-Quench-Lean combustor, utilizing reduced scale quench technology implemented in a quench vane concept in a product-like configuration (Product Module Rig), demonstrated the capability of achieving an emissions index of nitrogen oxides (NOx EI) of 8.5 gm/Kg fuel at the supersonic flight condition (relative to the program goal of 5 gm/Kg fuel). Developmental parametric testing of various quench vane configurations in the more fundamental flametube, Single Module Rig Configuration, demonstrated NOx EI as low as 5.2. All configurations in both the Product Module Rig configuration and the Single Module Rig configuration demonstrated exceptional efficiencies, greater than 99.95 percent, relative to the program goal of 99.9 percent efficiency at supersonic cruise conditions. Sensitivity of emissions to quench orifice design parameters were determined during the parametric quench vane test series in support of the design of the Product Module Rig configuration. For the rectangular quench orifices investigated, an aspect ratio (length/width) of approximately 2 was found to be near optimum. An optimum for orifice spacing was found to exist at approximately 0.167 inches, resulting in 24 orifices per side of a quench vane, for the 0.435 inch quench zone channel height investigated in the Single Module Rig. Smaller quench zone channel heights appeared to be beneficial in reducing emissions. Measurements were also obtained in the Single Module Rig configuration on the sensitivity of emissions to the critical combustor parameters of fuel/air ratio, pressure drop, and residence time. Minimal sensitivity was observed for all of these parameters.

  20. The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors.

    PubMed

    Kim, Jieun; Lee, Haeryung; Kim, Yujin; Yoo, Sooyeon; Park, Eunjeong; Park, Soochul

    2010-04-01

    We recently reported that the phosphotyrosine-binding (PTB) domain of Anks family proteins binds to EphA8, thereby positively regulating EphA8-mediated signaling pathways. In the current study, we identified a potential role for the SAM domains of Anks family proteins in EphA signaling. We found that SAM domains of Anks family proteins directly bind to ubiquitin, suggesting that Anks proteins regulate the degradation of ubiquitinated EphA receptors. Consistent with the role of Cbl ubiquitin ligases in the degradation of Eph receptors, our results revealed that the ubiquitin ligase c-Cbl induced the ubiquitination and degradation of EphA8 upon ligand binding. Ubiquitinated EphA8 also bound to the SAM domains of Odin, a member of the Anks family proteins. More importantly, the overexpression of wild-type Odin protected EphA8 and EphA2 from undergoing degradation following ligand stimulation and promoted EphA-mediated inhibition of cell migration. In contrast, a SAM domain deletion mutant of Odin strongly impaired the function of endogenous Odin, suggesting that the mutant functions in a dominant-negative manner. An analysis of Odin-deficient primary embryonic fibroblasts indicated that Odin levels play a critical role in regulating the stability of EphA2 in response to ligand stimulation. Taken together, our studies suggest that the SAM domains of Anks family proteins play a pivotal role in enhancing the stability of EphA receptors by modulating the ubiquitination process.

  1. Instability dynamics and breather formation in a horizontally shaken pendulum chain.

    PubMed

    Xu, Y; Alexander, T J; Sidhu, H; Kevrekidis, P G

    2014-10-01

    Inspired by the experimental results of Cuevas et al. [Phys. Rev. Lett. 102, 224101 (2009)], we consider theoretically the behavior of a chain of planar rigid pendulums suspended in a uniform gravitational field and subjected to a horizontal periodic driving force applied to the pendulum pivots. We characterize the motion of a single pendulum, finding bistability near the fundamental resonance and near the period-3 subharmonic resonance. We examine the development of modulational instability in a driven pendulum chain and find both a critical chain length and a critical frequency for the appearance of the instability. We study the breather solutions and show their connection to the single-pendulum dynamics and extend our analysis to consider multifrequency breathers connected to the period-3 periodic solution, showing also the possibility of stability in these breather states. Finally we examine the problem of breather generation and demonstrate a robust scheme for generation of on-site and off-site breathers.

  2. Comparison of adaptive critic-based and classical wide-area controllers for power systems.

    PubMed

    Ray, Swakshar; Venayagamoorthy, Ganesh Kumar; Chaudhuri, Balarko; Majumder, Rajat

    2008-08-01

    An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC. The classical methods use a linearized model of the system whereas the ACD method is purely measurement-based, leading to a nonlinear controller with fixed parameters. A comparative analysis of the controllers' performances is carried out under different disturbance scenarios. The ACD-based design has shown promising performance with very little knowledge of the system compared to classical model-based controllers. This paper also discusses the advantages and disadvantages of ACDs, SF, and LMI-H(infinity).

  3. Quasiclassical analysis of vortex lattice states in Rashba noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Dan, Yuichiro; Ikeda, Ryusuke

    2015-10-01

    Vortex lattice states occurring in noncentrosymmetric superconductors with a spin-orbit coupling of Rashba type under a magnetic field parallel to the symmetry plane are examined by assuming the s -wave pairing case and in an approach combining the quasiclassical theory with the Landau level expansion of the superconducting order parameter. The resulting field-temperature phase diagrams include not only a discontinuous transition but a continuous crossover between different vortex lattice structures, and, further, a critical end point of a structural transition line is found at an intermediate field and a low temperature in the present approach. It is pointed out that the strange field dependence of the vortex lattice structure is a consequence of that of its anisotropy stemming from the Rashba spin-orbit coupling, and that the critical end point is related to the helical phase modulation peculiar to these materials in the ideal Pauli-limited case. Furthermore, calculation results on the local density of states detectable in STM experiments are also presented.

  4. Mean field study of a propagation-turnover lattice model for the dynamics of histone marking

    NASA Astrophysics Data System (ADS)

    Yao, Fan; Li, FangTing; Li, TieJun

    2017-02-01

    We present a mean field study of a propagation-turnover lattice model, which was proposed by Hodges and Crabtree [Proc. Nat. Acad. Sci. 109, 13296 (2012)] for understanding how posttranslational histone marks modulate gene expression in mammalian cells. The kinetics of the lattice model consists of nucleation, propagation and turnover mechanisms, and exhibits second-order phase transition for the histone marking domain. We showed rigorously that the dynamics essentially depends on a non-dimensional parameter κ = k +/ k -, the ratio between the propagation and turnover rates, which has been observed in the simulations. We then studied the lowest order mean field approximation, and observed the phase transition with an analytically obtained critical parameter. The boundary layer analysis was utilized to investigate the structure of the decay profile of the mark density. We also studied the higher order mean field approximation to achieve sharper estimate of the critical transition parameter and more detailed features. The comparison between the simulation and theoretical results shows the validity of our theory.

  5. Robot Serviced Space Facility

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R. (Inventor)

    1992-01-01

    A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.

  6. BUMPERII - DESIGN ANALYSIS CODE FOR OPTIMIZING SPACECRAFT SHIELDING AND WALL CONFIGURATION FOR ORBITAL DEBRIS AND METEOROID IMPACTS

    NASA Technical Reports Server (NTRS)

    Hill, S. A.

    1994-01-01

    BUMPERII is a modular program package employing a numerical solution technique to calculate a spacecraft's probability of no penetration (PNP) from man-made orbital debris or meteoroid impacts. The solution equation used to calculate the PNP is based on the Poisson distribution model for similar analysis of smaller craft, but reflects the more rigorous mathematical modeling of spacecraft geometry, orientation, and impact characteristics necessary for treatment of larger structures such as space station components. The technique considers the spacecraft surface in terms of a series of flat plate elements. It divides the threat environment into a number of finite cases, then evaluates each element of each threat. The code allows for impact shielding (shadowing) of one element by another in various configurations over the spacecraft exterior, and also allows for the effects of changing spacecraft flight orientation and attitude. Four main modules comprise the overall BUMPERII package: GEOMETRY, RESPONSE, SHIELD, and CONTOUR. The GEOMETRY module accepts user-generated finite element model (FEM) representations of the spacecraft geometry and creates geometry databases for both meteoroid and debris analysis. The GEOMETRY module expects input to be in either SUPERTAB Universal File Format or PATRAN Neutral File Format. The RESPONSE module creates wall penetration response databases, one for meteoroid analysis and one for debris analysis, for up to 100 unique wall configurations. This module also creates a file containing critical diameter as a function of impact velocity and impact angle for each wall configuration. The SHIELD module calculates the PNP for the modeled structure given exposure time, operating altitude, element ID ranges, and the data from the RESPONSE and GEOMETRY databases. The results appear in a summary file. SHIELD will also determine the effective area of the components and the overall model, and it can produce a data file containing the probability of penetration values per surface area for each element in the model. The SHIELD module writes this data file in either SUPERTAB Universal File Format or PATRAN Neutral File Format so threat contour plots can be generated as a post-processing feature of the FEM programs SUPERTAB and PATRAN. The CONTOUR module combines the functions of the RESPONSE module and most of the SHIELD module functions allowing determination of ranges of PNP's by looping over ranges of shield and/or wall thicknesses. A data file containing the PNP's for the corresponding shield and vessel wall thickness is produced. Users may perform sensitivity studies of two kinds. The effects of simple variations in orbital time, surface area, and flux may be analyzed by making changes to the terms in the equation representing the average number of penetrating particles per unit time in the PNP solution equation. The package analyzes other changes, including model environment, surface area, and configuration, by re-running the solution sequence with new GEOMETRY and RESPONSE data. BUMPERII can be run with no interactive output to the screen during execution. This can be particularly useful during batch runs. BUMPERII is written in FORTRAN 77 for DEC VAX series computers running under VMS, and was written for use with the finite-element model code SUPERTAB or PATRAN as both a pre-processor and a post-processor. Use of an alternate FEM code will require either development of a translator to change data format or modification of the GEOMETRY subroutine in BUMPERII. This program is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard distribution media) or on TK50 tape cartridge. The original BUMPER code was developed in 1988 with the BUMPERII revisions following in 1991 and 1992. SUPERTAB is a former name for I-DEAS. I-DEAS Finite Element Modeling is a trademark of Structural Dynamics Research Corporation. DEC, VAX, VMS and TK50 are trademarks of Digital Equipment Corporation.

  7. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE PAGES

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...

    2018-03-15

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  8. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  9. Material selection and assembly method of battery pack for compact electric vehicle

    NASA Astrophysics Data System (ADS)

    Lewchalermwong, N.; Masomtob, M.; Lailuck, V.; Charoenphonphanich, C.

    2018-01-01

    Battery packs become the key component in electric vehicles (EVs). The main costs of which are battery cells and assembling processes. The battery cell is indeed priced from battery manufacturers while the assembling cost is dependent on battery pack designs. Battery pack designers need overall cost as cheap as possible, but it still requires high performance and more safety. Material selection and assembly method as well as component design are very important to determine the cost-effectiveness of battery modules and battery packs. Therefore, this work presents Decision Matrix, which can aid in the decision-making process of component materials and assembly methods for a battery module design and a battery pack design. The aim of this study is to take the advantage of incorporating Architecture Analysis method into decision matrix methods by capturing best practices for conducting design architecture analysis in full account of key design components critical to ensure efficient and effective development of the designs. The methodology also considers the impacts of choice-alternatives along multiple dimensions. Various alternatives for materials and assembly techniques of battery pack are evaluated, and some sample costs are presented. Due to many components in the battery pack, only seven components which are positive busbar and Z busbar are represented in this paper for using decision matrix methods.

  10. Survey view of EXPRESS Rack 4 in the JPM during Expedition 22

    NASA Image and Video Library

    2009-12-30

    iss022e015852 (12/30/2009) --- The image shows a front view of EXpedite the PRocessing of Experiments to Space Station EXPRESS Rack 4 (Rack 4,JPM/1F5) in the Japanese Experiment Module (JEM) Japanese Pressurized Module (JPM). Equipment visible in the EXPRESS Rack includes the Biotechnology Specimen Temperature Controller (BSTC) and the Gas Supply Module (GSM) support hardware for the CBOSS (Cellular Biotechnology Operations Support Systems) investigations, and the Device for the Study of Critical Liquids and Crystallization (DECLIC). Also visible is the Space Acceleration Measurement System (SAMS) II.

  11. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    PubMed

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  12. Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study.

    PubMed

    Mani, Karthick Raj; Upadhayay, Sagar; Das, K J Maria

    2017-03-01

    To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation ([Formula: see text] ± [Formula: see text]) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

  13. Space Qualification Test of a-Silicon Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Lawton, R. A.; Manion, S. J.; Okuno, J. O.; Ruiz, R. P.; Vu, D. T.; Kayali, S. A.; Jeffrey, F. R.

    1997-01-01

    The basic requirement of solar cell modules for space applications are generally described in MIL-S-83576 for the specific needs of the USAF. However, the specifications of solar cells intended for use on space terrestrial applications are not well defined. Therefore this qualification test effort was concentrated on critical areas specific to the microseismometer probe which is intended to be included in the Mars microprobe programs.

  14. James Webb Space Telescope (JWST) Integrated Sciene Instrument Module (ISIM) Cryo-Vac 3 (CV3) Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Packard, Ed

    2016-01-01

    This presentation describes the test objectives, test summary, test configuration and test performance of the James Webb Space Telescope Integrated Science Instrument Module CryoVac 3 Thermal Vacuum Test. Verify the ISIM System in its final configuration after environmental exposure and provide a post-environmental performance baseline, including critical ground calibrations needed for science data processing in flight.

  15. RCRA, superfund and EPCRA hotline training module. Introduction to: RCRA treatment, storage, and disposal facilities (40 cfr parts 264/265, subparts a-e) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The management of hazardous waste at treatment, storage, and disposal facilities (TSDFs) plays a large and critical role in the Resource Conservation and Recovery Act (RCRA) regulatory scheme. The training module presents an overview of the general TSDF standards found in 40 CFR Parts 264/265, Subparts A through E.

  16. iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation

    PubMed Central

    2014-01-01

    Background Comprehensive characterization of the phosphoproteome in living cells is critical in signal transduction research. But the low abundance of phosphopeptides among the total proteome in cells remains an obstacle in mass spectrometry-based proteomic analysis. To provide a solution, an alternative analytic strategy to confidently identify phosphorylated peptides by using the alkaline phosphatase (AP) treatment combined with high-resolution mass spectrometry was provided. While the process is applicable, the key integration along the pipeline was mostly done by tedious manual work. Results We developed a software toolkit, iPhos, to facilitate and streamline the work-flow of AP-assisted phosphoproteome characterization. The iPhos tookit includes one assister and three modules. The iPhos Peak Extraction Assister automates the batch mode peak extraction for multiple liquid chromatography mass spectrometry (LC-MS) runs. iPhos Module-1 can process the peak lists extracted from the LC-MS analyses derived from the original and dephosphorylated samples to mine out potential phosphorylated peptide signals based on mass shift caused by the loss of some multiples of phosphate groups. And iPhos Module-2 provides customized inclusion lists with peak retention time windows for subsequent targeted LC-MS/MS experiments. Finally, iPhos Module-3 facilitates to link the peptide identifications from protein search engines to the quantification results from pattern-based label-free quantification tools. We further demonstrated the utility of the iPhos toolkit on the data of human metastatic lung cancer cells (CL1-5). Conclusions In the comparison study of the control group of CL1-5 cell lysates and the treatment group of dasatinib-treated CL1-5 cell lysates, we demonstrated the applicability of the iPhos toolkit and reported the experimental results based on the iPhos-facilitated phosphoproteome investigation. And further, we also compared the strategy with pure DDA-based LC-MS/MS phosphoproteome investigation. The results of iPhos-facilitated targeted LC-MS/MS analysis convey more thorough and confident phosphopeptide identification than the results of pure DDA-based analysis. PMID:25521246

  17. Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92

    NASA Astrophysics Data System (ADS)

    Hildebrand, Nathaniel; Dwivedi, Anubhav; Nichols, Joseph W.; Jovanović, Mihailo R.; Candler, Graham V.

    2018-01-01

    We investigate flow instability created by an oblique shock wave impinging on a Mach 5.92 laminar boundary layer at a transitional Reynolds number. The adverse pressure gradient of the oblique shock causes the boundary layer to separate from the wall, resulting in the formation of a recirculation bubble. For sufficiently large oblique shock angles, the recirculation bubble is unstable to three-dimensional perturbations and the flow bifurcates from its original laminar state. We utilize direct numerical simulation (DNS) and global stability analysis to show that this first occurs at a critical shock angle of θ =12 .9∘ . At bifurcation, the least-stable global mode is nonoscillatory and it takes place at a spanwise wave number β =0.25 , in good agreement with DNS results. Examination of the critical global mode reveals that it originates from an interaction between small spanwise corrugations at the base of the incident shock, streamwise vortices inside the recirculation bubble, and spanwise modulation of the bubble strength. The global mode drives the formation of long streamwise streaks downstream of the bubble. While the streaks may be amplified by either the lift-up effect or by Görtler instability, we show that centrifugal instability plays no role in the upstream self-sustaining mechanism of the global mode. We employ an adjoint solver to corroborate our physical interpretation by showing that the critical global mode is most sensitive to base flow modifications that are entirely contained inside the recirculation bubble.

  18. Study of run time errors of the ATLAS pixel detector in the 2012 data taking period

    NASA Astrophysics Data System (ADS)

    Gandrajula, Reddy Pratap

    The high resolution silicon Pixel detector is critical in event vertex reconstruction and in particle track reconstruction in the ATLAS detector. During the pixel data taking operation, some modules (Silicon Pixel sensor +Front End Chip+ Module Control Chip (MCC)) go to an auto-disable state, where the Modules don't send the data for storage. Modules become operational again after reconfiguration. The source of the problem is not fully understood. One possible source of the problem is traced to the occurrence of single event upset (SEU) in the MCC. Such a module goes to either a Timeout or Busy state. This report is the study of different types and rates of errors occurring in the Pixel data taking operation. Also, the study includes the error rate dependency on Pixel detector geometry.

  19. Vented Launch Vehicle Adaptor for a Manned Spacecraft with "Pusher" Launch Abort System

    NASA Technical Reports Server (NTRS)

    Vandervort, Robert E. (Inventor)

    2017-01-01

    A system, method, and apparatus for a vented launch vehicle adaptor (LVA) for a manned spacecraft with a "pusher" launch abort system are disclosed. The disclosed LVA provides a structural interface between a commercial crew vehicle (CCV) crew module/service module (CM/SM) spacecraft and an expendable launch vehicle. The LVA provides structural attachment of the module to the launch vehicle. It also provides a means to control the exhaust plume from a pusher-type launch abort system that is integrated into the module. In case of an on-pad or ascent abort, which requires the module to jettison away from the launch vehicle, the launch abort system exhaust plume must be safely directed away from critical and dangerous portions of the launch vehicle in order to achieve a safe and successful jettison.

  20. On reliable time-frequency characterization and delay estimation of stimulus frequency otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Biswal, Milan; Mishra, Srikanta

    2018-05-01

    The limited information on origin and nature of stimulus frequency otoacoustic emissions (SFOAEs) necessitates a thorough reexamination into SFOAE analysis procedures. This will lead to a better understanding of the generation of SFOAEs. The SFOAE response waveform in the time domain can be interpreted as a summation of amplitude modulated and frequency modulated component waveforms. The efficiency of a technique to segregate these components is critical to describe the nature of SFOAEs. Recent advancements in robust time-frequency analysis algorithms have staked claims on the more accurate extraction of these components, from composite signals buried in noise. However, their potential has not been fully explored for SFOAEs analysis. Indifference to distinct information, due to nature of these analysis techniques, may impact the scientific conclusions. This paper attempts to bridge this gap in literature by evaluating the performance of three linear time-frequency analysis algorithms: short-time Fourier transform (STFT), continuous Wavelet transform (CWT), S-transform (ST) and two nonlinear algorithms: Hilbert-Huang Transform (HHT), synchrosqueezed Wavelet transform (SWT). We revisit the extraction of constituent components and estimation of their magnitude and delay, by carefully evaluating the impact of variation in analysis parameters. The performance of HHT and SWT from the perspective of time-frequency filtering and delay estimation were found to be relatively less efficient for analyzing SFOAEs. The intrinsic mode functions of HHT does not completely characterize the reflection components and hence IMF based filtering alone, is not recommended for segregating principal emission from multiple reflection components. We found STFT, WT, and ST to be suitable for canceling multiple internal reflection components with marginal altering in SFOAE.

  1. NASGRO 3.0: A Software for Analyzing Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Mettu, S. R.; Shivakumar, V.; Beek, J. M.; Yeh, F.; Williams, L. C.; Forman, R. G.; McMahon, J. J.; Newman, J. C., Jr.

    1999-01-01

    Structural integrity analysis of aging aircraft is a critical necessity in view of the increasing numbers of such aircraft in general aviation, the airlines and the military. Efforts are in progress by NASA, the FAA and the DoD to focus attention on aging aircraft safety. The present paper describes the NASGRO software which is well-suited for effectively analyzing the behavior of defects that may be found in aging aircraft. The newly revised Version 3.0 has many features specifically implemented to suit the needs of the aircraft community. The fatigue crack growth computer program NASA/FLAGRO 2.0 was originally developed to analyze space hardware such as the Space Shuttle, the International Space Station and the associated payloads. Due to popular demand, the software was enhanced to suit the needs of the aircraft industry. Major improvements in Version 3.0 are the incorporation of the ability to read aircraft spectra of unlimited size, generation of common aircraft fatigue load blocks, and the incorporation of crack-growth models which include load-interaction effects such as retardation due to overloads and acceleration due to underloads. Five new crack-growth models, viz., generalized Willenborg, modified generalized Willenborg, constant closure model, Walker-Chang model and the deKoning-Newman strip-yield model, have been implemented. To facilitate easier input of geometry, material properties and load spectra, a Windows-style graphical user interface has been developed. Features to quickly change the input and rerun the problem as well as examine the output are incorporated. NASGRO has been organized into three modules, the crack-growth module being the primary one. The other two modules are the boundary element module and the material properties module. The boundary-element module provides the ability to model and analyze complex two-dimensional problems to obtain stresses and stress-intensity factors. The material properties module allows users to store and curve-fit fatigue-crack growth data. On-line help and documentation are provided for each of the modules. In addition to the popular PC windows version, a unix-based X-windows version of NASGRO is also available. A portable C++ class library called WxWindows was used to facilitate cross-platform availability of the software.

  2. The design and fabrication of a Stirling engine heat exchanger module with an integral heat pipe

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    1988-01-01

    The conceptual design of a free-piston Stirling Space Engine (SSE) intended for space power applications has been generated. The engine was designed to produce 25 kW of electric power with heat supplied by a nuclear reactor. A novel heat exchanger module was designed to reduce the number of critical joints in the heat exchanger assembly while also incorporating a heat pipe as the link between the engine and the heat source. Two inexpensive verification tests are proposed. The SSE heat exchanger module is described and the operating conditions for the module are outlined. The design process of the heat exchanger modules, including the sodium heat pipe, is briefly described. Similarities between the proposed SSE heat exchanger modules and the LeRC test modules for two test engines are presented. The benefits and weaknesses of using a sodium heat pipe to transport heat to a Stirling engine are discussed. Similarly, the problems encountered when using a true heat pipe, as opposed to a more simple reflux boiler, are described. The instruments incorporated into the modules and the test program are also outlined.

  3. Module Fifteen: Special Topics; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The final module emphasizes utilizing the information learned in modules 1-14 to analyze and evaluate the power supply constructed in Module 0. The module contains the following narrative--power supply evaluation; experiment 1--resistance analysis of the half-wave and semiconductor power supply; experiment 2--voltage analysis of the half-wave and…

  4. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Hartle, M. S.; Mcknight, R. L.; Huang, H.; Holt, R.

    1992-01-01

    Described here are the accomplishments of a 5-year program to develop a methodology for coupled structural, thermal, electromagnetic analysis tailoring of graded component structures. The capabilities developed over the course of the program are the analyzer module and the tailoring module for the modeling of graded materials. Highlighted accomplishments for the past year include the addition of a buckling analysis capability, the addition of mode shape slope calculation for flutter analysis, verification of the analysis modules using simulated components, and verification of the tailoring module.

  5. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    PubMed

    Priest, Henry D; Fox, Samuel E; Rowley, Erik R; Murray, Jessica R; Michael, Todd P; Mockler, Todd C

    2014-01-01

    Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  6. Transcriptomics of the Vaccine Immune Response: Priming With Adjuvant Modulates Recall Innate Responses After Boosting.

    PubMed

    Santoro, Francesco; Pettini, Elena; Kazmin, Dmitri; Ciabattini, Annalisa; Fiorino, Fabio; Gilfillan, Gregor D; Evenroed, Ida M; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2018-01-01

    Transcriptomic profiling of the immune response induced by vaccine adjuvants is of critical importance for the rational design of vaccination strategies. In this study, transcriptomics was employed to profile the effect of the vaccine adjuvant used for priming on the immune response following re-exposure to the vaccine antigen alone. Mice were primed with the chimeric vaccine antigen H56 of Mycobacterium tuberculosis administered alone or with the CAF01 adjuvant and boosted with the antigen alone. mRNA sequencing was performed on blood samples collected 1, 2, and 7 days after priming and after boosting. Gene expression analysis at day 2 after priming showed that the CAF01 adjuvanted vaccine induced a stronger upregulation of the innate immunity modules compared with the unadjuvanted formulation. The immunostimulant effect of the CAF01 adjuvant, used in the primary immunization, was clearly seen after a booster immunization with a low dose of antigen alone. One day after boost, we observed a strong upregulation of multiple genes in blood of mice primed with H56 + CAF01 compared with mice primed with the H56 alone. In particular, blood transcription modules related to innate immune response, such as monocyte and neutrophil recruitment, activation of antigen-presenting cells, and interferon response were activated. Seven days after boost, differential expression of innate response genes faded while a moderate differential expression of T cell activation modules was appreciable. Indeed, immunological analysis showed a higher frequency of H56-specific CD4+ T cells and germinal center B cells in draining lymph nodes, a strong H56-specific humoral response and a higher frequency of antibody-secreting cells in spleen of mice primed with H56 + CAF01. Taken together, these data indicate that the adjuvant used for priming strongly reprograms the immune response that, upon boosting, results in a stronger recall innate response essential for shaping the downstream adaptive response.

  7. Aging effects on DNA methylation modules in human brain and blood tissue

    PubMed Central

    2012-01-01

    Background Several recent studies reported aging effects on DNA methylation levels of individual CpG dinucleotides. But it is not yet known whether aging-related consensus modules, in the form of clusters of correlated CpG markers, can be found that are present in multiple human tissues. Such a module could facilitate the understanding of aging effects on multiple tissues. Results We therefore employed weighted correlation network analysis of 2,442 Illumina DNA methylation arrays from brain and blood tissues, which enabled the identification of an age-related co-methylation module. Module preservation analysis confirmed that this module can also be found in diverse independent data sets. Biological evaluation showed that module membership is associated with Polycomb group target occupancy counts, CpG island status and autosomal chromosome location. Functional enrichment analysis revealed that the aging-related consensus module comprises genes that are involved in nervous system development, neuron differentiation and neurogenesis, and that it contains promoter CpGs of genes known to be down-regulated in early Alzheimer's disease. A comparison with a standard, non-module based meta-analysis revealed that selecting CpGs based on module membership leads to significantly increased gene ontology enrichment, thus demonstrating that studying aging effects via consensus network analysis enhances the biological insights gained. Conclusions Overall, our analysis revealed a robustly defined age-related co-methylation module that is present in multiple human tissues, including blood and brain. We conclude that blood is a promising surrogate for brain tissue when studying the effects of age on DNA methylation profiles. PMID:23034122

  8. Addressing disparities in maternal health care in Pakistan: gender, class and exclusion

    PubMed Central

    2012-01-01

    Background After more than two decades of the Safe Motherhood Initiative and Millennium Development Goals aimed at reducing maternal mortality, women continue to die in childbirth at unacceptably high rates in Pakistan. While an extensive literature describes various programmatic strategies, it neglects the rigorous analysis of the reasons these strategies have been unsuccessful, especially for women living at the economic and social margins of society. A critical gap in current knowledge is a detailed understanding of the root causes of disparities in maternal health care, and in particular, how gender and class influence policy formulation and the design and delivery of maternal health care services. Taking Pakistan as a case study, this research builds upon two distinct yet interlinked conceptual approaches to understanding the phenomenon of inequity in access to maternal health care: social exclusion and health systems as social institutions. Methods/Design This four year project consists of two interrelated modules that focus on two distinct groups of participants: (1) poor, disadvantaged women and men and (2) policy makers, program managers and health service providers. Module one will employ critical ethnography to understand the key axes of social exclusion as related to gender, class and zaat and how they affect women’s experiences of using maternal health care. Through health care setting observations, interviews and document review, Module two will assess policy design and delivery of maternal health services. Discussion This research will provide theoretical advances to enhance understanding of the power dynamics of gender and class that may underlie poor women’s marginalization from health care systems in Pakistan. It will also provide empirical evidence to support formulation of maternal health care policies and health care system practices aimed at reducing disparities in maternal health care in Pakistan. Lastly, it will enhance inter-disciplinary research capacity in the emerging field of social exclusion and maternal health and help reduce social inequities and achieve the Millennium Development Goal No. 5. PMID:22871056

  9. CRISP1 as a novel CatSper regulator that modulates sperm motility and orientation during fertilization

    PubMed Central

    Ernesto, Juan I.; Weigel Muñoz, Mariana; Battistone, María A.; Vasen, Gustavo; Martínez-López, Pablo; Orta, Gerardo; Figueiras-Fierro, Dulce; De la Vega-Beltran, José L.; Moreno, Ignacio A.; Guidobaldi, Héctor A.; Giojalas, Laura; Darszon, Alberto; Cohen, Débora J.

    2015-01-01

    Ca2+-dependent mechanisms are critical for successful completion of fertilization. Here, we demonstrate that CRISP1, a sperm protein involved in mammalian fertilization, is also present in the female gamete and capable of modulating key sperm Ca2+ channels. Specifically, we show that CRISP1 is expressed by the cumulus cells that surround the egg and that fertilization of cumulus–oocyte complexes from CRISP1 knockout females is impaired because of a failure of sperm to penetrate the cumulus. We provide evidence that CRISP1 stimulates sperm orientation by modulating sperm hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, patch clamping of sperm revealed that CRISP1 has the ability to regulate CatSper, the principal sperm Ca2+ channel involved in hyperactivation and essential for fertility. Given the critical role of Ca2+ for sperm motility, we propose a novel CRISP1-mediated fine-tuning mechanism to regulate sperm hyperactivation and orientation for successful penetration of the cumulus during fertilization. PMID:26416967

  10. Beta-Adrenergic Receptor Activation during Distinct Patterns of Stimulation Critically Modulates the PKA-Dependence of LTP in the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Gelinas, Jennifer N.; Tenorio, Gustavo; Lemon, Neal; Abel, Ted; Nguyen, Peter V.

    2008-01-01

    Activation of Beta-adrenergic receptors (Beta-ARs) enhances hippocampal memory consolidation and long-term potentiation (LTP), a likely mechanism for memory storage. One signaling pathway linked to Beta-AR activation is the cAMP-PKA pathway. PKA is critical for the consolidation of hippocampal long-term memory and for the expression of some forms…

  11. A Critical Reflection on the Multiple Roles Required to Facilitate Mutual Learning during Service-Learning in Creative Arts Education

    ERIC Educational Resources Information Center

    Meyer, Merna; Wood, Lesley

    2017-01-01

    In this article, I critically reflect on my own learning during a community-based, service-learning pilot project, highlighting the multiple roles that were required of me as facilitator. I provided opportunity for student teachers in a Creative Arts module to engage with youth from a local township community. The purpose of the participatory…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, Bill; Smith, Benjamin

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. The method used back-solves for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the micro-inverter ac production data. When the derived values of DNI and DHI were then used to model the performance of other PV systems, the annual mean bias deviations were within +/- 4%, and only 1% greater than when the PV performance was modeled using high quality irradiance measurements. An uncertainty analysis showsmore » the method better suited for modeling PV performance than using satellite-based global horizontal irradiance.« less

  13. Glycan analysis of recombinant Aspergillus niger endo-polygalacturonase A.

    PubMed

    Woosley, Bryan D; Kim, Young Hwan; Kumar Kolli, V S; Wells, Lance; King, Dan; Poe, Ryan; Orlando, Ron; Bergmann, Carl

    2006-10-16

    The enzyme endo-polygalacturonase A, or PGA, is produced by the fungus, Aspergillus niger, and appears to play a critical role during invasion of plant cell walls. The enzyme has been homologously overexpressed in order to provide sufficient quantities of purified enzyme for structural and biological studies. We have characterized this enzyme in terms of its post-translational modifications (PTMs) and found it to be both N- and O-glycosylated. Additionally, we have characterized the glycosyl moieties using MALDI-TOF and LC-ESI mass spectrometry. The characterization of all PTMs on PGA, along with molecular modeling, allows us to reveal potential roles played by the glycans in modulating the interaction of the enzyme with other macromolecules.

  14. Remote double resonance coupling of radar energy to ionospheric irregularities

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.

    1971-01-01

    Experimental results indicate that low frequency modulation of a high power radar beam, tuned to one of the critical frequencies of the ionosphere, may produce field-aligned density irregularities when the modulation frequency matches an ionospheric eigenfrequency. By choosing the radar carrier frequency and polarization, a number of interaction layers were selected. The variety of possible excitations shows that the double resonance technique may be adaptable to a number of different objectives.

  15. Think Locally, Act Globally! Linking Local and Global Communities through Democracy and Environment. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Dowler, Lorraine

    Designed so that it can be adapted to a wide range of student abilities and institutional settings, this learning module on the human dimensions of global change seeks to: actively engage students in problem solving, challenge them to think critically, invite them to participate in the process of scientific inquiry, and involve them in cooperative…

  16. The Role of the NASA Global Hawk Link Module as an Information Nexus For Atmospheric Mapping Missions

    NASA Technical Reports Server (NTRS)

    Sullivan, D. V.

    2015-01-01

    The Link Module described in this paper was developed for the NASA Uninhabited Aerial System (UAS) Global Hawk Pacific Mission (GloPAC) Airborne Science Campaign; four flights of 30 hour duration, supporting the Aura Validation Experiment (AVE). It was used again during the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth Science field experiment to better understand how tropical storms form and develop into major hurricanes. In these missions, the Link Module negotiated all communication over the high bandwidth Ku satellite link, archived all the science data from onboard experiments in a spatially enabled database, routed command and control of the instruments from the Global Hawk Operations Center, and re-transmitted select data sets directly to experimenters control and analysis systems. The availability of aggregated information from collections of sensors, and remote control capabilities, in real-time, is revolutionizing the way Airborne Science is being conducted. The Link Module NG now being flown in support of the NASA Earth Venture missions, the Hurricane and Severe Storm Sentinel (HS3) mission, and Airborne Tropical Tropopause Experiment (A TTREX) mission, has advanced data fusion technologies that are further advancing the Scientific productivity, flexibility and robustness of these systems. On-the-fly traffic shaping has been developed to allow the high definition video, used for critical flight control segments, to dynamically allocate variable bandwidth on demand. Historically, the Link Module evolved from the instrument and communication interface controller used by NASA's Pathfinder and Pathfinder plus solar powered UAS's in the late 1990' s. It later was expanded for use in the AIRDAS four channel scanner flown on the NASA Altus UAS, and then again to a module in the AMS twelve channel multispectral scanner flying on the NASA (Predator-b) Ikhana UAS. The current system is the answer to the challenges imposed by extremely long duration UASs, with on-board multi-instrument (>= 12) Sensor Webs.

  17. Heart rate variability to monitor performance in elite athletes: Criticalities and avoidable pitfalls.

    PubMed

    Lucini, Daniela; Marchetti, Ilaria; Spataro, Antonio; Malacarne, Mara; Benzi, Manuela; Tamorri, Stefano; Sala, Roberto; Pagani, Massimo

    2017-08-01

    Spectral analysis of Heart Rate Variability (HRV) is a simple, non-invasive technique that is widely used in sport to assess sympatho-vagal regulation of the heart. Its employment is increasing partly due to the rising usage of wearable devices. However data acquisition using these devices may be suboptimal because they cannot discriminate between sinus and non-sinus beats and do not record any data regarding respiratory frequency. This information is mandatory for a correct clinical interpretation. This study involved 974 elite athletes, all of them underwent a complete autonomic assessment, by way of Autoregressive HRV analysis. In 91 subjects (9% of the total population) we observed criticalities of either cardiac rhythm or respiration. Through perusal of one-lead ECG analysis we observed that 77 subjects had atrial or ventricular ectopy, i.e. conditions which impair stationarity and sinus rhythm. Running anyway autonomic nervous system analysis in this population, we observed that RR variance and raw values of LF and HF regions are significantly higher in arrhythmic subjects. In addition 14 subjects had slow (about 6 breath/min, 0.1Hz) respiration. This condition clouds the separation between LF from HF spectral regions of RR interval variability, respectively markers of the prevalent sympathetic and vagal modulation of SA node and of their synergistic interaction. Caution must be payed when assessing HRV with non-ECG wearable devices. Recording ECG signal and ensuring that respiratory rate is higher than 10 breath/min are both prerequisites for a more reliable analysis of HRV particularly in athletes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.

    2012-10-01

    A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W. Hughes, M. Landreman, B. Li, Y. Ma, P. Phillips, M. Porkolab, W. Rowan, S. Wolfe, and S. Wukitch.[4pt] [1] D. R. Ernst et al., Proc. 21st IAEA Fusion Energy Conference, Chengdu, China, paper IAEA-CN-149/TH/1-3 (2006). http://www-pub.iaea.org/MTCD/Meetings/FEC200/th1-3.pdf[0pt] [2] B. Li and D.R. Ernst, Phys. Rev. Lett. 106, 195002 (2011).

  19. Critical Analysis of an e-Learning and Interactive Teaching Module with Respect to the Interpretation of Emergency Computed Tomography of the Brain.

    PubMed

    Groth, Michael; Barthe, Käthe Greta; Riemer, Martin; Ernst, Marielle; Herrmann, Jochen; Fiehler, Jens; Buhk, Jan-Hendrik

    2018-04-01

     To compare the learning benefit of three different teaching strategies on the interpretation of emergency cerebral computed tomography (CT) pathologies by medical students.  Three groups of students with different types of teaching (e-learning, interactive teaching, and standard curricular education in neuroradiology) were tested with respect to the detection of seven CT pathologies. The test results of each group were compared for each CT pathology using the chi-square test. A p-value ≤ 0.05 was considered to be significant.  Opposed to the results of the comparison group (curricular education), the e-learning group and interactive teaching tutorial group both showed a significantly better performance in detecting hyperdense middle cerebral artery sign (p = 0.001 and p < 0.0001) as well as subarachnoid hemorrhage (p = 0.03 and p = 0.001) on CT. Moreover, an increase in performance for the detection of subdural hematoma and skull fracture could be observed for both the interactive teaching group and the e-learning group, with statistical significance in the latter (p = 0.03 and p < 0.0001, respectively). No statistically significant differences were found for the detection of intracranial and epidural hemorrhage, as well as midline shift, among the groups studied.  Our study demonstrates potential learning benefits for both the interactive teaching tutorial and e-learning module group with respect to reading CT scans with slightly different advantages. Thus, the introduction of new learning methods in radiological education might be reasonable at an undergraduate stage but requires learning content-based considerations.   · E-learning can offer benefits regarding the reading of cerebral CT scans by students. · Interactive tutorial can offer benefits regarding the reading of cerebral CT scans by students. · E-learning and interactive tutorial feature different strengths for student learning in radiology. · Application of interactive teaching methods in radiology requires learning content-based considerations. · Groth M, Barthe KG, Riemer M et al. Critical Analysis of an e-Learning and Interactive Teaching Module with Respect to the Interpretation of Emergency Computed Tomography of the Brain. Fortschr Röntgenstr 2017; 190: 334 - 340. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Using Module Analysis for Multiple Choice Responses: A New Method Applied to Force Concept Inventory Data

    ERIC Educational Resources Information Center

    Brewe, Eric; Bruun, Jesper; Bearden, Ian G.

    2016-01-01

    We describe "Module Analysis for Multiple Choice Responses" (MAMCR), a new methodology for carrying out network analysis on responses to multiple choice assessments. This method is used to identify modules of non-normative responses which can then be interpreted as an alternative to factor analysis. MAMCR allows us to identify conceptual…

  1. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction.

    PubMed

    Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2016-08-05

    Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia.

  2. Revealing the Hidden Relationship by Sparse Modules in Complex Networks with a Large-Scale Analysis

    PubMed Central

    Jiao, Qing-Ju; Huang, Yan; Liu, Wei; Wang, Xiao-Fan; Chen, Xiao-Shuang; Shen, Hong-Bin

    2013-01-01

    One of the remarkable features of networks is module that can provide useful insights into not only network organizations but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm, which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both types of modules provide better characterization for the division of a network into functional units than merely cohesive modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally smaller. Sparse modules are also found to have preferences in social and biological networks than others. PMID:23762457

  3. Emergence of system roles in normative neurodevelopment

    PubMed Central

    Gu, Shi; Satterthwaite, Theodore D.; Medaglia, John D.; Yang, Muzhi; Gur, Raquel E.; Gur, Ruben C.; Bassett, Danielle S.

    2015-01-01

    Adult human cognition is supported by systems of brain regions, or modules, that are functionally coherent at rest and collectively activated by distinct task requirements. However, an understanding of how the formation of these modules supports evolving cognitive capabilities has not been delineated. Here, we quantify the formation of network modules in a sample of 780 youth (aged 8–22 y) who were studied as part of the Philadelphia Neurodevelopmental Cohort. We demonstrate that the brain’s functional network organization changes in youth through a process of modular evolution that is governed by the specific cognitive roles of each system, as defined by the balance of within- vs. between-module connectivity. Moreover, individual variability in these roles is correlated with cognitive performance. Collectively, these results suggest that dynamic maturation of network modules in youth may be a critical driver for the development of cognition. PMID:26483477

  4. Engineering Translational Activators with CRISPR-Cas System.

    PubMed

    Du, Pei; Miao, Chensi; Lou, Qiuli; Wang, Zefeng; Lou, Chunbo

    2016-01-15

    RNA parts often serve as critical components in genetic engineering. Here we report a design of translational activators which is composed of an RNA endoribonuclease (Csy4) and two exchangeable RNA modules. Csy4, a member of Cas endoribonuclease, cleaves at a specific recognition site; this cleavage releases a cis-repressive RNA module (crRNA) from the masked ribosome binding site (RBS), which subsequently allows the downstream translation initiation. Unlike small RNA as a translational activator, the endoribonuclease-based activator is able to efficiently unfold the perfect RBS-crRNA pairing. As an exchangeable module, the crRNA-RBS duplex was forwardly and reversely engineered to modulate the dynamic range of translational activity. We further showed that Csy4 and its recognition site, together as a module, can also be replaced by orthogonal endoribonuclease-recognition site homologues. These modularly structured, high-performance translational activators would endow the programming of gene expression in the translation level with higher feasibility.

  5. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules

    PubMed Central

    Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin

    2015-01-01

    Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time (tig), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO2) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m2. This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires. PMID:28793434

  6. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.

    PubMed

    Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin

    2015-07-09

    Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time ( t ig ), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO₂) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m². This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  7. SHARD - a SeisComP3 module for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Weber, B.; Becker, J.; Ellguth, E.; Henneberger, R.; Herrnkind, S.; Roessler, D.

    2016-12-01

    Monitoring building and structure response to strong earthquake ground shaking or human-induced vibrations in real-time forms the backbone of modern structural health monitoring (SHM). The continuous data transmission, processing and analysis reduces drastically the time decision makers need to plan for appropriate response to possible damages of high-priority buildings and structures. SHARD is a web browser based module using the SeisComp3 framework to monitor the structural health of buildings and other structures by calculating standard engineering seismology parameters and checking their exceedance in real-time. Thresholds can be defined, e.g. compliant with national building codes (IBC2000, DIN4149 or EC8), for PGA/PGV/PGD, response spectra and drift ratios. In case thresholds are exceeded automatic or operator driven reports are generated and send to the decision makers. SHARD also determines waveform quality in terms of data delay and variance to report sensor status. SHARD is the perfect tool for civil protection to monitor simultaneously multiple city-wide critical infrastructure as hospitals, schools, governmental buildings and structures as bridges, dams and power substations.

  8. Impaired discrimination learning in interneuronal NMDAR-GluN2B mutant mice.

    PubMed

    Brigman, Jonathan L; Daut, Rachel A; Saksida, Lisa; Bussey, Timothy J; Nakazawa, Kazu; Holmes, Andrew

    2015-06-17

    Previous studies have established a role for N-methyl-D-aspartate receptor (NMDAR) containing the GluN2B subunit in efficient learning behavior on a variety of tasks. Recent findings have suggested that NMDAR on GABAergic interneurons may underlie the modulation of striatal function necessary to balance efficient action with cortical excitatory input. Here we investigated how loss of GluN2B-containing NMDAR on GABAergic interneurons altered corticostriatal-mediated associative learning. Mutant mice (floxed-GluN2B×Ppp1r2-Cre) were generated to produce loss of GluN2B on forebrain interneurons and phenotyped on a touchscreen-based pairwise visual learning paradigm. We found that the mutants showed normal performance during Pavlovian and instrumental pretraining, but were significantly impaired on a discrimination learning task. Detailed analysis of the microstructure of discrimination performance revealed reduced win→stay behavior in the mutants. These results further support the role of NMDAR, and GluN2B in particular, on modulation of striatal function necessary for efficient choice behavior and suggest that NMDAR on interneurons may play a critical role in associative learning.

  9. Developing and Translating a New Model for Teaching Empowerment Into Routine Chronic Care Management

    PubMed Central

    Wallace, Carolyn A; Pontin, David; Dokova, Klara; Mikkonen, Irma; Savage, Eileen; Koskinen, Liisa

    2017-01-01

    Background: Health professional education has been criticized for not integrating patient expertise into professional curricula to develop professional skills in patient empowerment. Objective: To develop and translate a new expert patient-centered model for teaching empowerment into professional education about routine chronic care management. Methods: Eight Finnish patients (known as expert patients), 31 students, and 11 lecturers from 4 European countries participated in a new pilot intensive educational module. Thirteen focus groups, artefacts, and an online student evaluation were analyzed using a thematic analysis and triangulated using a meta-matrix. Results: A patient-centered pedagogical model is presented, which describes 3 phases of empowerment: (1) preliminary work, (2) the elements of empowerment, and (3) the expected outcomes. These 3 phases were bound by 2 cross-cutting themes “time” and “enabling resources.” Conclusion: Patient expertise was embedded into the new module curriculum. Using an example of care planning, and Pentland and Feldman’s theory of routine organization, the results are translated into a patient-centered educational model for teaching empowerment to health profession students. PMID:29582009

  10. Radioligand Recognition of Insecticide Targets.

    PubMed

    Casida, John E

    2018-04-04

    Insecticide radioligands allow the direct recognition and analysis of the targets and mechanisms of toxic action critical to effective and safe pest control. These radioligands are either the insecticides themselves or analogs that bind at the same or coupled sites. Preferred radioligands and their targets, often in both insects and mammals, are trioxabicyclooctanes for the γ-aminobutyric acid (GABA) receptor, avermectin for the glutamate receptor, imidacloprid for the nicotinic receptor, ryanodine and chlorantraniliprole for the ryanodine receptor, and rotenone or pyridaben for NADH + ubiquinone oxidoreductase. Pyrethroids and other Na + channel modulator insecticides are generally poor radioligands due to lipophilicity and high nonspecific binding. For target site validation, the structure-activity relationships competing with the radioligand in the binding assays should be the same as that for insecticidal activity or toxicity except for rapidly detoxified or proinsecticide analogs. Once the radioligand assay is validated for relevance, it will often help define target site modifications on selection of resistant pest strains, selectivity between insects and mammals, and interaction with antidotes and other chemicals at modulator sites. Binding assays also serve for receptor isolation and photoaffinity labeling to characterize the interactions involved.

  11. Space Station accommodation of life sciences in support of a manned Mars mission

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.; Willshire, Kelli F.; Hagaman, Jane A.; Seddon, Rhea M.

    1989-01-01

    Results of a life science impact analysis for accommodation to the Space Station of a manned Mars mission are discussed. In addition to addressing such issues as on-orbit vehicle assembly and checkout, the study also assessed the impact of a life science research program on the station. A better understanding of the effects on the crew of long duration exposure to the hostile space environment and to develop controls for adverse effects was the objective. Elements and products of the life science accommodation include: the identification of critical research areas; the outline of a research program consistent with the mission timeframe; the quantification of resource requirements; the allocation of functions to station facilities; and a determination of the impact on the Space Station program and of the baseline configuration. Results indicate the need at the Space Station for two dedicated life science lab modules; a pocket lab to support a 4-meter centrifuge; a quarantine module for the Mars Sample Return Mission; 3.9 man-years of average crew time; and 20 kilowatts of electrical power.

  12. Investigation on Multiple Algorithms for Multi-Objective Optimization of Gear Box

    NASA Astrophysics Data System (ADS)

    Ananthapadmanabhan, R.; Babu, S. Arun; Hareendranath, KR; Krishnamohan, C.; Krishnapillai, S.; A, Krishnan

    2016-09-01

    The field of gear design is an extremely important area in engineering. In this work a spur gear reduction unit is considered. A review of relevant literatures in the area of gear design indicates that compact design of gearbox involves a complicated engineering analysis. This work deals with the simultaneous optimization of the power and dimensions of a gearbox, which are of conflicting nature. The focus is on developing a design space which is based on module, pinion teeth and face-width by using MATLAB. The feasible points are obtained through different multi-objective algorithms using various constraints obtained from different novel literatures. Attention has been devoted in various novel constraints like critical scoring criterion number, flash temperature, minimum film thickness, involute interference and contact ratio. The output from various algorithms like genetic algorithm, fmincon (constrained nonlinear minimization), NSGA-II etc. are compared to generate the best result. Hence, this is a much more precise approach for obtaining practical values of the module, pinion teeth and face-width for a minimum centre distance and a maximum power transmission for any given material.

  13. Essential attributes identified in the design of a Laboratory Information Management System for a high throughput siRNA screening laboratory.

    PubMed

    Grandjean, Geoffrey; Graham, Ryan; Bartholomeusz, Geoffrey

    2011-11-01

    In recent years high throughput screening operations have become a critical application in functional and translational research. Although a seemingly unmanageable amount of data is generated by these high-throughput, large-scale techniques, through careful planning, an effective Laboratory Information Management System (LIMS) can be developed and implemented in order to streamline all phases of a workflow. Just as important as data mining and analysis procedures at the end of complex processes is the tracking of individual steps of applications that generate such data. Ultimately, the use of a customized LIMS will enable users to extract meaningful results from large datasets while trusting the robustness of their assays. To illustrate the design of a custom LIMS, this practical example is provided to highlight the important aspects of the design of a LIMS to effectively modulate all aspects of an siRNA screening service. This system incorporates inventory management, control of workflow, data handling and interaction with investigators, statisticians and administrators. All these modules are regulated in a synchronous manner within the LIMS. © 2011 Bentham Science Publishers

  14. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... specialized training in the field of radiation oncology physics, ensures the linear accelerator delivers the precise radiation ... critical normal structures, as well as the patient's health. Typically, patients are scheduled for IMRT sessions five ...

  15. Lightwave Communications.

    ERIC Educational Resources Information Center

    Rheam, Harry

    1993-01-01

    Describes simple and inexpensive labs for introducing students to fiber optic communications. Students investigate light as a carrier wave; look into the difficulties associated with "light" communication; and learn about modulation, optical fibers, and critical angles. (PR)

  16. An introduction to Space Weather Integrated Modeling

    NASA Astrophysics Data System (ADS)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  17. Atto-Joule, high-speed, low-loss plasmonic modulator based on adiabatic coupled waveguides

    NASA Astrophysics Data System (ADS)

    Dalir, Hamed; Mokhtari-Koushyar, Farzad; Zand, Iman; Heidari, Elham; Xu, Xiaochuan; Pan, Zeyu; Sun, Shuai; Amin, Rubab; Sorger, Volker J.; Chen, Ray T.

    2018-05-01

    In atomic multi-level systems, adiabatic elimination (AE) is a method used to minimize complicity of the system by eliminating irrelevant and strongly coupled levels by detuning them from one another. Such a three-level system, for instance, can be mapped onto physically in the form of a three-waveguide system. Actively detuning the coupling strength between the respective waveguide modes allows modulating light to propagate through the device, as proposed here. The outer waveguides act as an effective two-photonic-mode system similar to ground and excited states of a three-level atomic system, while the center waveguide is partially plasmonic. In AE regime, the amplitude of the middle waveguide oscillates much faster when compared to the outer waveguides leading to a vanishing field build up. As a result, the plasmonic intermediate waveguide becomes a "dark state," hence nearly zero decibel insertion loss is expected with modulation depth (extinction ratio) exceeding 25 dB. Here, the modulation mechanism relies on switching this waveguide system from a critical coupling regime to AE condition via electrostatically tuning the free-carrier concentration and hence the optical index of a thin indium thin oxide (ITO) layer resides in the plasmonic center waveguide. This alters the effective coupling length and the phase mismatching condition thus modulating in each of its outer waveguides. Our results also promise a power consumption as low as 49.74aJ/bit. Besides, we expected a modulation speed of 160 GHz reaching to millimeter wave range applications. Such anticipated performance is a direct result of both the unity-strong tunability of the plasmonic optical mode in conjunction with utilizing ultra-sensitive modal coupling between the critically coupled and the AE regimes. When taken together, this new class of modulators paves the way for next generation both for energy and speed conscience optical short-reach communication such as those found in interconnects.

  18. Engineering vaccines and niches for immune modulation.

    PubMed

    Purwada, Alberto; Roy, Krishnendu; Singh, Ankur

    2014-04-01

    Controlled modulation of immune response, especially the balance between immunostimulatory and immunosuppressive responses, is critical for a variety of clinical applications, including immunotherapies against cancer and infectious diseases, treatment of autoimmune disorders, transplant surgeries, regenerative medicine, prosthetic implants, etc. Our ability to precisely modify both innate and adaptive immune responses could provide new therapeutic directions in a variety of diseases. In the context of vaccines and immunotherapies, the interplay between antigen-presenting cells (e.g. dendritic cells and macrophages), B cells, T helper and killer subtypes, and regulatory T- and B-cell responses is critical for generating effective immunity against cancer, infectious diseases and autoimmune diseases. In recent years, immunoengineering has emerged as a new field that uses quantitative engineering tools to understand molecular-, cellular- and system-level interactions of the immune system and to develop design-driven approaches to control and modulate immune responses. Biomaterials are an integral part of this engineering toolbox and can exploit the intrinsic biological and mechanical cues of the immune system to directly modulate and train immune cells and direct their response to a particular phenotype. A large body of literature exists on strategies to evade or suppress the immune response in implants, transplantation and regenerative medicine. This review specifically focuses on the use of biomaterials for immunostimulation and controlled modulation, especially in the context of vaccines and immunotherapies against cancer, infectious diseases and autoimmune disorders. Bioengineering smart systems that can simultaneously deliver multiple bioactive agents in a controlled manner or can work as a niche for in situ priming and modulation of the immune system could significantly enhance the efficacy of next-generation immunotherapeutics. In this review, we describe our perspective on the important design aspects for the development of biomaterials that can actively modulate immune responses by stimulating receptor complexes and cells, and delivering multiple immunomodulatory biomolecules. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. The AMPA receptor potentiator Org 26576 modulates stress-induced transcription of BDNF isoforms in rat hippocampus.

    PubMed

    Fumagalli, Fabio; Calabrese, Francesca; Luoni, Alessia; Shahid, Mohammed; Racagni, Giorgio; Riva, Marco A

    2012-02-01

    Brain derived neurotrophic factor (BDNF) is a key mediator of brain plasticity. The modulation of its expression and function is important for cognition and represents a key strategy to enhance neuronal resilience. Within this context, there exists a close interaction between glutamatergic neurotransmission and BDNF activity towards regulating cellular homeostasis and plasticity. The aim of the current study was to investigate the ability of the AMPA receptor potentiator Org 26576 to modulate BDNF expression in selected brain regions under basal conditions or in response to an acute swim stress. Rats subjected to a single intraperitoneal injection with Org 26576 (10mg/kg) or saline were exposed to a swim stress session (5 min) and sacrificed 15 min after the end of stress. Real-time PCR assay was used to determine changes in BDNF transcription in different brain regions. Total BDNF mRNA levels were significantly increased in the hippocampus of animals exposed to the combination of Org 26576 and stress whereas, in prefrontal and frontal cortices, BDNF mRNA levels were modulated by the acute stress, independently from drug treatment. The analysis of BDNF transcripts in the hippocampus revealed a major contribution of exons I and IV. Our results suggest that AMPA receptor potentiation by Org 26576 exerts a positive modulatory influence on BDNF expression during ongoing neuronal activity. Given that these mechanisms are critical for neuronal plasticity, we hypothesized that such changes may facilitate learning/coping mechanisms associated with a mild stressful experience. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The neural speed of familiar face recognition.

    PubMed

    Barragan-Jason, G; Cauchoix, M; Barbeau, E J

    2015-08-01

    Rapidly recognizing familiar people from their faces appears critical for social interactions (e.g., to differentiate friend from foe). However, the actual speed at which the human brain can distinguish familiar from unknown faces still remains debated. In particular, it is not clear whether familiarity can be extracted from rapid face individualization or if it requires additional time consuming processing. We recorded scalp EEG activity in 28 subjects performing a go/no-go, famous/non-famous, unrepeated, face recognition task. Speed constraints were used to encourage subjects to use the earliest familiarity information available. Event related potential (ERP) analyses show that both the N170 and the N250 components were modulated by familiarity. The N170 modulation was related to behaviour: subjects presenting the strongest N170 modulation were also faster but less accurate than those who only showed weak N170 modulation. A complementary Multi-Variate Pattern Analysis (MVPA) confirmed ERP results and provided some more insights into the dynamics of face recognition as the N170 differential effect appeared to be related to a first transitory phase (transitory bump of decoding power) starting at around 140 ms, which returned to baseline afterwards. This bump of activity was henceforth followed by an increase of decoding power starting around 200 ms after stimulus onset. Overall, our results suggest that rather than a simple single-process, familiarity for faces may rely on a cascade of neural processes, including a coarse and fast stage starting at 140 ms and a more refined but slower stage occurring after 200 ms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    NASA Astrophysics Data System (ADS)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  2. Virtual patient instruction for dental students: can it improve dental care access for persons with special needs?

    PubMed

    Sanders, Carla; Kleinert, Harold L; Boyd, Sara E; Herren, Chris; Theiss, Lynn; Mink, John

    2008-01-01

    An interactive, virtual-patient module was produced on compact disc (CD-ROM) in response to the critical need to increase dental students' clinical exposure to patients with developmental disabilities. A content development team consisting of dental faculty members, parents of children with developmental disabilities, an individual with a developmental disability, and educational specialists developed the interactive, virtual-patient module. The module focused on a young man with congenital deafblindness presenting as a new patient with a painful molar. Students were required to make decisions regarding clinical interactions throughout the module. Differences in both comfort and knowledge level were measured pre- and post-module completion, as well as the dental students' overall satisfaction with the learning experience. Significant results were obtained in students' perceived comfort and knowledge base. Participants reported overall satisfaction using the modules. This study demonstrated that an interactive, multi-media (CD-ROM), virtual patient learning module for dental students could be an effective tool in providing students needed clinical exposure to patients with developmental disabilities.

  3. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 2: Accident Model Document (AMD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Accident Model Document is one of three documents of the Preliminary Safety Analysis Report (PSAR) - Reactor System as applied to a Space Base Program. Potential terrestrial nuclear hazards involving the zirconium hydride reactor-Brayton power module are identified for all phases of the Space Base program. The accidents/events that give rise to the hazards are defined and abort sequence trees are developed to determine the sequence of events leading to the hazard and the associated probabilities of occurence. Source terms are calculated to determine the magnitude of the hazards. The above data is used in the mission accident analysis to determine the most probable and significant accidents/events in each mission phase. The only significant hazards during the prelaunch and launch ascent phases of the mission are those which arise form criticality accidents. Fission product inventories during this time period were found to be very low due to very limited low power acceptance testing.

  4. Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Weinberg, Rebecca

    The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity.

  5. International Space Station Major Constituent Analyzer On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Gardner, Ben D.; Erwin, Philip M.; Thoresen, Souzan; Granahan, John; Matty, Chris

    2011-01-01

    The Major Constituent Analyzer (MCA) is an integral part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor. These gases are sampled continuously and automatically in all United States On-Orbit Segment (USOS) modules via the Sample Distribution System (SDS). The MCA is the primary tool for management of atmosphere constituents and is therefore critical for ensuring a habitable ISS environment during both nominal ISS operations and campout EVA preparation in the Airlock. The MCA has been in operation in the US Destiny Laboratory Module for over 10 years, and a second MCA has been delivered to the ISS for Node 3 operation. This paper discusses the performance of the MCA over the two past year, with particular attention to lessons learned regarding the operational life of critical components. Recent data have helped drive design upgrades for a new set of orbit-replaceable units (ORUs) currently in production. Several ORU upgrades are expected to increase expected lifetimes and reliability.

  6. Measuring the critical band for speech.

    PubMed

    Healy, Eric W; Bacon, Sid P

    2006-02-01

    The current experiments were designed to measure the frequency resolution employed by listeners during the perception of everyday sentences. Speech bands having nearly vertical filter slopes and narrow bandwidths were sharply partitioned into various numbers of equal log- or ERBN-width subbands. The temporal envelope from each partition was used to amplitude modulate a corresponding band of low-noise noise, and the modulated carriers were combined and presented to normal-hearing listeners. Intelligibility increased and reached asymptote as the number of partitions increased. In the mid- and high-frequency regions of the speech spectrum, the partition bandwidth corresponding to asymptotic performance matched current estimates of psychophysical tuning across a number of conditions. These results indicate that, in these regions, the critical band for speech matches the critical band measured using traditional psychoacoustic methods and nonspeech stimuli. However, in the low-frequency region, partition bandwidths at asymptote were somewhat narrower than would be predicted based upon psychophysical tuning. It is concluded that, overall, current estimates of psychophysical tuning represent reasonably well the ability of listeners to extract spectral detail from running speech.

  7. PKCθ links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton

    PubMed Central

    Britton, Graham J; Ambler, Rachel; Clark, Danielle J; Hill, Elaine V; Tunbridge, Helen M; McNally, Kerrie E; Burton, Bronwen R; Butterweck, Philomena; Sabatos-Peyton, Catherine; Hampton-O’Neil, Lea A; Verkade, Paul; Wülfing, Christoph; Wraith, David Cameron

    2017-01-01

    Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways. DOI: http://dx.doi.org/10.7554/eLife.20003.001 PMID:28112644

  8. Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng

    2012-06-01

    This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.

  9. Bioresearch module design definition and space shuttle vehicle integration study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Lang, A. L., Jr.

    1971-01-01

    Data presented in the appendices covers: (1) summary description of baseline power system; (2) revised thermal profile analysis; (3) design analysis of television monitor; (4) bioresearch module ground station support evaluation; (5) variable spin control analysis; and (6) bioresearch modules and work flow.

  10. jsc2018m000130_Orion Crew Module for Ascent Abort-2 Arrives in Houston

    NASA Image and Video Library

    2018-03-08

    Ascent Abort-2 Module Arrives in Houston---------------------------------------------------------- NASA’s Johnson Space Center is the center of activity leading the design and build up for a critical safety test of America’s new exploration spacecraft. An Orion crew module was delivered to Houston last week for assembly and outfitting for the April 2019 Ascent Abort-2 test, to demonstrate the ability of the spacecraft’s Launch Abort System to pull the crew module to safety if an emergency ever arises during ascent to space. Doing this work at JSC is part of a lean approach to development, to minimize cost and schedule risks associated with the test. _______________________________________ FOLLOW ORION! Twitter: https://twitter.com/NASA_Orion/ Facebook: https://www.facebook.com/NASAOrion/ Instagram: https://www.instagram.com/explorenasa/

  11. SU-F-T-611: Critical Analysis and Efficacy of Linac Based (Beam Modulator) and Cyberknife Treatment Plans for Acoustic Neuroma/schwannoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KP, Karrthick; Kataria, T; Thiyagarajan, R

    Purpose: To study the critical analysis and efficacy of Linac and Cyberknife (CK) treatment plans for acoustic neuroma/schwannoma. Methods: Twelve of acoustic neuroma/schwannoma patients were taken for these study that. Treatment plans were generated in Multiplan treatment planning system (TPS) for CK using 5,7.5 and 10mm diameter collimators. Target volumes were in the range of 0.280 cc to 9.256 cc. Prescription dose (Rx) ranges from 1150cGy to 1950cGy delivered over 1 to 3 Fractions. For same patients stereotactic Volumetric modulated arc plans were generated using Elekta Linac with MLC thickness of 4mm in Monaco TPS. Appropriate calculation algorithms and gridmore » size were used with same Rx and organ at risk (OAR) constrains for both Linac and CK plans. Treatment plans were developed to achieve at least 95% of the target volume to receive the Rx. The dosimetric indices such as conformity index (CI), coverage, OAR dose and volume receiving 50% of Rx (V50%) were used to evaluate the plans. Results: Target volumes ranges from 0.280 cc to 3.5cc shows the CI of 1.16±0.109 and 1.53±0.360 for cyberknife and Linac plans respectively. For small volume targets, the OARs were well spared in CK plans. There are no significant differences in CI and OAR doses were observed between CK and Linac plans that have the target volume >3.5 cc. Perhaps the V50% were lesser in CK plans, and found to be 12.8± 8.4 and 22.8 ± 15.0 for CK and Linac respectively. Conclusion: The analysis shows the importance of collimator size for small volume targets. The target volumes >3.5 cc can be treated in Linac as comparable with CK. For targets <3.5cc CK plans showed superior plan quality with better CI and OAR sparing than the Linac based plans. Further studies may require evaluating the clinical advantage of CK robotic system.« less

  12. Droplet microfluidics for single-cell analysis.

    PubMed

    Brouzes, Eric

    2012-01-01

    This book chapter aims at providing an overview of all the aspects and procedures needed to develop a droplet-based workflow for single-cell analysis (see Fig. 10.1). The surfactant system used to stabilize droplets is a critical component of droplet microfluidics; its properties define the type of droplet-based assays and workflows that can be developed. The scope of this book chapter is limited to fluorinated surfactant systems that have proved to generate extremely stable droplets and allow to easily retrieve the encapsulated material. The formulation section discusses how the experimental parameters influence the choice of the surfactant system to use. The circuit design section presents recipes to design and integrate different droplet modules into a whole assay. The fabrication section describes the manufacturing of microfluidic chip including the surface treatment which is pivotal in droplet microfluidics. Finally, the last section reviews the experimental setup for fluorescence detection with an emphasis on cell injection and incubation.

  13. Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis

    NASA Astrophysics Data System (ADS)

    Dion, J.-L.; Tawfiq, I.; Chevallier, G.

    2012-01-01

    This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.

  14. Application of fuzzy neural network technologies in management of transport and logistics processes in Arctic

    NASA Astrophysics Data System (ADS)

    Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.

    2018-05-01

    The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.

  15. Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses.

    PubMed

    Vandelle, Elodie; Vannozzi, Alessandro; Wong, Darren; Danzi, Davide; Digby, Anne-Marie; Dal Santo, Silvia; Astegno, Alessandra

    2018-06-04

    Calcium (Ca 2+ ) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca 2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca 2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca 2+ -binding proteins in grapevine and to explore their potential for further biotechnological applications. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit.

    PubMed

    Savoi, Stefania; Wong, Darren C J; Degu, Asfaw; Herrera, Jose C; Bucchetti, Barbara; Peterlunger, Enrico; Fait, Aaron; Mattivi, Fulvio; Castellarin, Simone D

    2017-01-01

    Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis -regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.

  17. miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF α

    PubMed Central

    Xing, Fei; Sharma, Sambad; Liu, Yin; Mo, Yin-Yuan; Wu, Kerui; Zhang, Ying-Yu; Pochampally, Radhika; Martinez, Luis A; Lo, Hui-wen; Watabe, Kounosuke

    2014-01-01

    The median survival time of breast cancer patients with brain metastasis is less than 6 months, and even a small metastatic lesion often causes severe neurological disabilities. Because of the location of metastatic lesions, a surgical approach is limited and most chemotherapeutic drugs are ineffective due to the blood brain barrier (BBB). Despite this clinical importance, the molecular basis of the brain metastasis is poorly understood. In this study, we have isolated RNA from samples obtained from primary breast tumors and also from brain metastatic lesions followed by microRNA profiling analysis. Our results revealed that the miR-509 is highly expressed in the primary tumors, while the expression of this microRNA is significantly decreased in the brain metastatic lesions. MicroRNA target prediction and the analysis of cytokine array for the cells ectopically expressed with miR-509 demonstrated that this microRNA was capable of modulating two genes essential for brain invasion, RhoC and TNFα that affect the invasion of cancer cells and permeability of BBB, respectively. Importantly, high levels of TNFα and RhoC-induced MMP9 were significantly correlated with brain metastasis-free survival of breast cancer patients. Furthermore, the results of our in vivo experiments indicate that miR-509 significantly suppressed the ability of cancer cells to metastasize to the brain. These findings suggest that miR-509 plays a critical role in brain metastasis of breast cancer by modulating the RhoC-TNFα network and that this miR-509 axis may represent a potential therapeutic target or serve as a prognostic tool for brain metastasis. PMID:25659578

  18. Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue.

    PubMed

    Wage, Justin; Ma, Lili; Peluso, Michael; Lamont, Clare; Evens, Andrew M; Hahnfeldt, Philip; Hlatky, Lynn; Beheshti, Afshin

    2015-09-01

    Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to 'hallmark' processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. Laminar circuit organization and response modulation in mouse visual cortex

    PubMed Central

    Olivas, Nicholas D.; Quintanar-Zilinskas, Victor; Nenadic, Zoran; Xu, Xiangmin

    2012-01-01

    The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar circuit responses in living slice preparations of mouse primary visual cortex (V1). During experiments, LSPS using caged glutamate provided spatially restricted neuronal activation in a specific cortical layer, and evoked responses from the stimulated layer to its functionally connected regions were detected by VSD imaging. In this study, we first provided a detailed analysis of spatiotemporal activation patterns at specific V1 laminar locations and measured local circuit connectivity. Then we examined the role of cortical inhibition in the propagation of evoked cortical responses by comparing circuit activity patterns in control and in the presence of GABAa receptor antagonists. We found that GABAergic inhibition was critical in restricting layer-specific excitatory activity spread and maintaining topographical projections. In addition, we investigated how AMPA and NMDA receptors influenced cortical responses and found that blocking AMPA receptors abolished interlaminar functional projections, and the NMDA receptor activity was important in controlling visual cortical circuit excitability and modulating activity propagation. The NMDA receptor antagonist reduced neuronal population activity in time-dependent and laminar-specific manners. Finally, we used the quantitative information derived from the mapping experiments and presented computational modeling analysis of V1 circuit organization. Taken together, the present study has provided important new information about mouse V1 circuit organization and response modulation. PMID:23060751

  20. High motivation for exercise is associated with altered chromatin regulators of monoamine receptor gene expression in the striatum of selectively bred mice.

    PubMed

    Saul, M C; Majdak, P; Perez, S; Reilly, M; Garland, T; Rhodes, J S

    2017-03-01

    Although exercise is critical for health, many lack the motivation to exercise, and it is unclear how motivation might be increased. To uncover the molecular underpinnings of increased motivation for exercise, we analyzed the transcriptome of the striatum in four mouse lines selectively bred for high voluntary wheel running and four non-selected control lines. The striatum was dissected and RNA was extracted and sequenced from four individuals of each line. We found multiple genes and gene systems with strong relationships to both selection and running history over the previous 6 days. Among these genes were Htr1b, a serotonin receptor subunit and Slc38a2, a marker for both glutamatergic and γ-aminobutyric acid (GABA)-ergic signaling. System analysis of the raw results found enrichment of transcriptional regulation and kinase genes. Further, we identified a splice variant affecting the Wnt-related Golgi signaling gene Tmed5. Using coexpression network analysis, we found a cluster of interrelated coexpression modules with relationships to running behavior. From these modules, we built a network correlated with running that predicts a mechanistic relationship between transcriptional regulation by nucleosome structure and Htr1b expression. The Library of Integrated Network-Based Cellular Signatures identified the protein kinase C δ inhibitor, rottlerin, the tyrosine kinase inhibitor, Linifanib and the delta-opioid receptor antagonist 7-benzylidenenaltrexone as potential compounds for increasing the motivation to run. Taken together, our findings support a neurobiological framework of exercise motivation where chromatin state leads to differences in dopamine signaling through modulation of both the primary neurotransmitters glutamate and GABA, and by neuromodulators such as serotonin. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  2. Lunar Crater Mini-Wakes: Structure, Variability, and Volatiles

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Jackson, T. L.; Farrell, W. M.; Stubbs, T. J.

    2012-01-01

    Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a regional plasma mini-wake. In the present work kinetic simulations are utilized to investigate how the most prominent structural aspects of a crater mini-wake are modulated during passage of a solar storm. In addition, the simulated particle fluxes are coupled into an equivalent-circuit model of a roving astronaut,. including triboelectric charging due to frictional contact with the lunar regolith, to characterize charging of the astronaut suit during the various stages of the storm. In some cases, triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, the present results suggest that wake structure plays a critical role in modulating the spatial distribution of volatiles at the lunar poles.

  3. Using Modules in Teaching Complex Analysis

    ERIC Educational Resources Information Center

    Kinney, William M.

    2017-01-01

    Educational modules can play an important part in revitalizing the teaching and learning of complex analysis. At the Westmont College workshop on the subject in June 2014, time was spent generating ideas and creating structures for module proposals. Sharing some of those ideas and giving a few example modules is the main purpose of this paper. The…

  4. Effect of Profilin on Actin Critical Concentration: A Theoretical Analysis

    PubMed Central

    Yarmola, Elena G.; Dranishnikov, Dmitri A.; Bubb, Michael R.

    2008-01-01

    To explain the effect of profilin on actin critical concentration in a manner consistent with thermodynamic constraints and available experimental data, we built a thermodynamically rigorous model of actin steady-state dynamics in the presence of profilin. We analyzed previously published mechanisms theoretically and experimentally and, based on our analysis, suggest a new explanation for the effect of profilin. It is based on a general principle of indirect energy coupling. The fluctuation-based process of exchange diffusion indirectly couples the energy of ATP hydrolysis to actin polymerization. Profilin modulates this coupling, producing two basic effects. The first is based on the acceleration of exchange diffusion by profilin, which indicates, paradoxically, that a faster rate of actin depolymerization promotes net polymerization. The second is an affinity-based mechanism similar to the one suggested in 1993 by Pantaloni and Carlier although based on indirect rather than direct energy coupling. In the model by Pantaloni and Carlier, transformation of chemical energy of ATP hydrolysis into polymerization energy is regulated by direct association of each step in the hydrolysis reaction with a corresponding step in polymerization. Thus, hydrolysis becomes a time-limiting step in actin polymerization. In contrast, indirect coupling allows ATP hydrolysis to lag behind actin polymerization, consistent with experimental results. PMID:18835900

  5. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    NASA Astrophysics Data System (ADS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-11-01

    The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  6. Digital tracking loops for a programmable digital modem

    NASA Technical Reports Server (NTRS)

    Poklemba, John J.

    1992-01-01

    In this paper, an analysis and hardware emulation of the tracking loops for a very flexible programmable digital modem (PDM) will be presented. The modem is capable of being programmed for 2, 4, 8, 16-PSK, 16-QAM, MSK, and Offset-QPSK modulation schemes over a range of data rates from 2.34 to 300 Mbps with programmable spectral occupancy from 1.2 to 1.8 times the symbol rate; these operational parameters are executable in burst or continuous mode. All of the critical processing in both the modulator and demodulator is done at baseband with very high-speed digital hardware and memory. Quadrature analog front-ends are used for translation between baseband and the IF center frequency. The modulator is based on a table lookup approach, where precomputed samples are stored in memory and clocked out according to the incoming data pattern. The sample values are predistorted to counteract the effects of the other filtering functions in the link as well as any transmission impairments. The demodulator architecture was adapted from a joint estimator-detector (JED) mathematical analysis. Its structure is applicable to most signalling formats that can be represented in a two-dimensional space. The JED realization uses interdependent, mutually aiding tracking loops with post-detection data feedback. To expedite and provide for more reliable synchronization, initial estimates for these loops are computed in a parallel acquisition processor. The cornerstone of the demodulator realization is the pre-averager received data filter which allows operation over a broad range of data rates without any hardware changes and greatly simplifies the implementation complexity. The emulation results confirmed tracking loop operation over the entire range of operational parameters listed above, as well as the capability of achieving and maintaining synchronization at BER's in excess of 10(exp -1). The emulation results also showed very close agreement with the tracking loop analysis, and validated the resolution apportionment of the various hardware elements in the tracking loops.

  7. A Pulse Code Modulated Fiber Optic Link Design for Quinault Under-Water Tracking Range.

    DTIC Science & Technology

    1980-09-01

    invented and patented a light-wave communications device, the Photophone . The light beam was acoustically modulated, transmitted through the atmosphere and...a load resistor or feedback resistor. This voltage can be cal- culated by multiplying the received power, the respcnsiv ity and the effective load...frequency is not real critical since the clock, in effect , is synchronized after every eight bits by the timing pulse. The more interesting part of the

  8. The T/R modules for phased-array antennas

    NASA Astrophysics Data System (ADS)

    Peignet, Colette; Mancuso, Yves; Resneau, J. Claude

    1990-09-01

    The concept of phased array radar is critically dependent on the availability of compact, reliable and low power consuming Transmitter/Receiver (T/R) modules. An overview is given on two major programs actually at development stage within the Thomson group and on three major development axis (electrical concept optimization, packaging, and size reduction). The technical feasibility of the concept was proven and the three major axis were enlightened, based on reliability, power added efficiency, and RF tests optimization.

  9. A Novel Dynamic Physical Layer Impairment-Aware Routing and Wavelength Assignment (PLI-RWA) Algorithm for Mixed Line Rate (MLR) Wavelength Division Multiplexed (WDM) Optical Networks

    NASA Astrophysics Data System (ADS)

    Iyer, Sridhar

    2016-12-01

    The ever-increasing global Internet traffic will inevitably lead to a serious upgrade of the current optical networks' capacity. The legacy infrastructure can be enhanced not only by increasing the capacity but also by adopting advance modulation formats, having increased spectral efficiency at higher data rate. In a transparent mixed-line-rate (MLR) optical network, different line rates, on different wavelengths, can coexist on the same fiber. Migration to data rates higher than 10 Gbps requires the implementation of phase modulation schemes. However, the co-existing on-off keying (OOK) channels cause critical physical layer impairments (PLIs) to the phase modulated channels, mainly due to cross-phase modulation (XPM), which in turn limits the network's performance. In order to mitigate this effect, a more sophisticated PLI-Routing and Wavelength Assignment (PLI-RWA) scheme needs to be adopted. In this paper, we investigate the critical impairment for each data rate and the way it affects the quality of transmission (QoT). In view of the aforementioned, we present a novel dynamic PLI-RWA algorithm for MLR optical networks. The proposed algorithm is compared through simulations with the shortest path and minimum hop routing schemes. The simulation results show that performance of the proposed algorithm is better than the existing schemes.

  10. Systems and methods for knowledge discovery in spatial data

    DOEpatents

    Obradovic, Zoran; Fiez, Timothy E.; Vucetic, Slobodan; Lazarevic, Aleksandar; Pokrajac, Dragoljub; Hoskinson, Reed L.

    2005-03-08

    Systems and methods are provided for knowledge discovery in spatial data as well as to systems and methods for optimizing recipes used in spatial environments such as may be found in precision agriculture. A spatial data analysis and modeling module is provided which allows users to interactively and flexibly analyze and mine spatial data. The spatial data analysis and modeling module applies spatial data mining algorithms through a number of steps. The data loading and generation module obtains or generates spatial data and allows for basic partitioning. The inspection module provides basic statistical analysis. The preprocessing module smoothes and cleans the data and allows for basic manipulation of the data. The partitioning module provides for more advanced data partitioning. The prediction module applies regression and classification algorithms on the spatial data. The integration module enhances prediction methods by combining and integrating models. The recommendation module provides the user with site-specific recommendations as to how to optimize a recipe for a spatial environment such as a fertilizer recipe for an agricultural field.

  11. Insulin receptor-mediated signaling via phospholipase C-γ regulates growth and differentiation in Drosophila.

    PubMed

    Murillo-Maldonado, Juan M; Zeineddine, Fouad Bou; Stock, Rachel; Thackeray, Justin; Riesgo-Escovar, Juan R

    2011-01-01

    Coordination between growth and patterning/differentiation is critical if appropriate final organ structure and size is to be achieved. Understanding how these two processes are regulated is therefore a fundamental and as yet incompletely answered question. Here we show through genetic analysis that the phospholipase C-γ (PLC-γ) encoded by small wing (sl) acts as such a link between growth and patterning/differentiation by modulating some MAPK outputs once activated by the insulin pathway; particularly, sl promotes growth and suppresses ectopic differentiation in the developing eye and wing, allowing cells to attain a normal size and differentiate properly. sl mutants have previously been shown to have a combination of both growth and patterning/differentiation phenotypes: small wings, ectopic wing veins, and extra R7 photoreceptor cells. We show here that PLC-γ activated by the insulin pathway participates broadly and positively during cell growth modulating EGF pathway activity, whereas in cell differentiation PLC-γ activated by the insulin receptor negatively regulates the EGF pathway. These roles require different SH2 domains of PLC-γ, and act via classic PLC-γ signaling and EGF ligand processing. By means of PLC-γ, the insulin receptor therefore modulates differentiation as well as growth. Overall, our results provide evidence that PLC-γ acts during development at a time when growth ends and differentiation begins, and is important for proper coordination of these two processes.

  12. Trypanosoma cruzi transcriptome during axenic epimastigote growth curve

    PubMed Central

    dos Santos, Cyndia Mara Bezerra; Ludwig, Adriana; Kessler, Rafael Luis; Rampazzo, Rita de Cássia Pontello; Inoue, Alexandre Haruo; Krieger, Marco Aurélio; Pavoni, Daniela Parada; Probst, Christian Macagnan

    2018-01-01

    BACKGROUND Trypanosoma cruzi is an important protozoan parasite and the causative agent of Chagas disease. A critical step in understanding T. cruzi biology is the study of cellular and molecular features exhibited during its growth curve. OBJECTIVES We aimed to acquire a global view of the gene expression profile of T. cruzi during epimastigote growth. METHODS RNA-Seq analysis of total and polysomal/granular RNA fractions was performed along the 10 days T. cruzi epimastigote growth curve in vitro, in addition to cell viability and cell cycle analyses. We also analysed the polysome profile and investigated the presence of granular RNA by FISH and western blotting. FINDINGS We identified 1082 differentially expressed genes (DEGs), of which 220 were modulated in both fractions. According to the modulation pattern, DEGs were grouped into 12 clusters and showed enrichment of important gene ontology (GO) terms. Moreover, we showed that by the sixth day of the growth curve, polysomal content declined greatly and the RNA granules content appeared to increase, suggesting that a portion of mRNAs isolated from the sucrose gradient during late growth stages was associated with RNA granules and not only polyribosomes. Furthermore, we discuss several modulated genes possibly involved in T. cruzi growth, mainly during the stationary phase, such as genes related to cell cycle, pathogenesis, metabolic processes and RNA-binding proteins. PMID:29668769

  13. Comparative Initial and Sustained Engagement in Web-based Training by Behavioral Healthcare Providers in New York State.

    PubMed

    Talley, Rachel; Chiang, I-Chin; Covell, Nancy H; Dixon, Lisa

    2018-06-01

    Improved dissemination is critical to implementation of evidence-based practice in community behavioral healthcare settings. Web-based training modalities are a promising strategy for dissemination of evidence-based practice in community behavioral health settings. Initial and sustained engagement of these modalities in large, multidisciplinary community provider samples is not well understood. This study evaluates comparative engagement and user preferences by provider type in a web-based training platform in a large, multidisciplinary community sample of behavioral health staff in New York State. Workforce make-up among platform registrants was compared to the general NYS behavioral health workforce. Training completion by functional job type was compared to characterize user engagement and preferences. Frequently completed modules were classified by credit and requirement incentives. High initial training engagement across professional role was demonstrated, with significant differences in initial and sustained engagement by professional role. The most frequently completed modules across functional job types contained credit or requirement incentives. The analysis demonstrated that high engagement of a web-based training in a multidisciplinary provider audience can be achieved without tailoring content to specific professional roles. Overlap between frequently completed modules and incentives suggests a role for incentives in promoting engagement of web-based training. These findings further the understanding of strategies to promote large-scale dissemination of evidence-based practice in community behavioral health settings.

  14. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae.

    PubMed

    Arlia-Ciommo, Anthony; Leonov, Anna; Piano, Amanda; Svistkova, Veronika; Titorenko, Vladimir I

    2014-05-27

    A body of evidence supports the view that the signaling pathways governing cellular aging - as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae . Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific "master regulator" proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest), the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  15. Tired and misconnected: A breakdown of brain modularity following sleep deprivation.

    PubMed

    Ben Simon, Eti; Maron-Katz, Adi; Lahav, Nir; Shamir, Ron; Hendler, Talma

    2017-06-01

    Sleep deprivation (SD) critically affects a range of cognitive and affective functions, typically assessed during task performance. Whether such impairments stem from changes to the brain's intrinsic functional connectivity remain largely unknown. To examine this hypothesis, we applied graph theoretical analysis on resting-state fMRI data derived from 18 healthy participants, acquired during both sleep-rested and sleep-deprived states. We hypothesized that parameters indicative of graph connectivity, such as modularity, will be impaired by sleep deprivation and that these changes will correlate with behavioral outcomes elicited by sleep loss. As expected, our findings point to a profound reduction in network modularity without sleep, evident in the limbic, default-mode, salience and executive modules. These changes were further associated with behavioral impairments elicited by SD: a decrease in salience module density was associated with worse task performance, an increase in limbic module density was predictive of stronger amygdala activation in a subsequent emotional-distraction task and a shift in frontal hub lateralization (from left to right) was associated with increased negative mood. Altogether, these results portray a loss of functional segregation within the brain and a shift towards a more random-like network without sleep, already detected in the spontaneous activity of the sleep-deprived brain. Hum Brain Mapp 38:3300-3314, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Geometric parameter analysis to predetermine optimal radiosurgery technique for the treatment of arteriovenous malformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestrovic, Ante; Clark, Brenda G.; Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia

    2005-11-01

    Purpose: To develop a method of predicting the values of dose distribution parameters of different radiosurgery techniques for treatment of arteriovenous malformation (AVM) based on internal geometric parameters. Methods and Materials: For each of 18 previously treated AVM patients, four treatment plans were created: circular collimator arcs, dynamic conformal arcs, fixed conformal fields, and intensity-modulated radiosurgery. An algorithm was developed to characterize the target and critical structure shape complexity and the position of the critical structures with respect to the target. Multiple regression was employed to establish the correlation between the internal geometric parameters and the dose distribution for differentmore » treatment techniques. The results from the model were applied to predict the dosimetric outcomes of different radiosurgery techniques and select the optimal radiosurgery technique for a number of AVM patients. Results: Several internal geometric parameters showing statistically significant correlation (p < 0.05) with the treatment planning results for each technique were identified. The target volume and the average minimum distance between the target and the critical structures were the most effective predictors for normal tissue dose distribution. The structure overlap volume with the target and the mean distance between the target and the critical structure were the most effective predictors for critical structure dose distribution. The predicted values of dose distribution parameters of different radiosurgery techniques were in close agreement with the original data. Conclusions: A statistical model has been described that successfully predicts the values of dose distribution parameters of different radiosurgery techniques and may be used to predetermine the optimal technique on a patient-to-patient basis.« less

  17. Development of a three-dimensional core dynamics analysis program for commercial boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessho, Yasunori; Yokomizo, Osamu; Yoshimoto, Yuichiro

    1997-03-01

    Development and qualification results are described for a three-dimensional, time-domain core dynamics analysis program for commercial boiling water reactors (BWRs). The program allows analysis of the reactor core with a detailed mesh division, which eliminates calculational ambiguity in the nuclear-thermal-hydraulic stability analysis caused by reactor core regional division. During development, emphasis was placed on high calculational speed and large memory size as attained by the latest supercomputer technology. The program consists of six major modules, namely a core neutronics module, a fuel heat conduction/transfer module, a fuel channel thermal-hydraulic module, an upper plenum/separator module, a feedwater/recirculation flow module, and amore » control system module. Its core neutronics module is based on the modified one-group neutron kinetics equation with the prompt jump approximation and with six delayed neutron precursor groups. The module is used to analyze one fuel bundle of the reactor core with one mesh (region). The fuel heat conduction/transfer module solves the one-dimensional heat conduction equation in the radial direction with ten nodes in the fuel pin. The fuel channel thermal-hydraulic module is based on separated three-equation, two-phase flow equations with the drift flux correlation, and it analyzes one fuel bundle of the reactor core with one channel to evaluate flow redistribution between channels precisely. Thermal margin is evaluated by using the GEXL correlation, for example, in the module.« less

  18. Hydropedology: Synergistic integration of soil science and hydrology in the Critical Zone

    USGS Publications Warehouse

    Lin, H.S.; McDonnell, J.J.; Nimmo, John R.; Pachepsky, Y. A.

    2016-01-01

    Soil and water are the two critical components of theEarth’s Critical Zone (Figure 1): Soil modulates the connection between bedrock and the atmospheric boundary layer and water is a major driving force and transport agent between these two zones. The interactions between soil and water are so intimate and complex that they cannot be effectively studied in a piecemeal manner; they require a systems approach. In this spirit, hydropedology has emerged in recent years as a synergistic integration of soil science and hydrology that offers a renewed perspective and an integrated approach to understanding interactive pedologic and hydrologic processes and their properties in the Critical Zone.

  19. Business/Marketing Education. Business Analysis/Business Computer Applications.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of Occupational Education Programs.

    This document contains 12 modules: 4 on business analysis and 8 on business computer applications. The business analysis modules are as follows: (1) the framework of business; (2) universal activities of business; (3) selected business subsystems; and (4) your place in business. Computer applications modules are on the following topics: (1)…

  20. Lifetime Stress Cumulatively Programs Brain Transcriptome and Impedes Stroke Recovery: Benefit of Sensory Stimulation

    PubMed Central

    Zucchi, Fabíola C. R.; Yao, Youli; Ilnytskyy, Yaroslav; Robbins, Jerrah C.; Soltanpour, Nasrin; Kovalchuk, Igor; Kovalchuk, Olga; Metz, Gerlinde A. S.

    2014-01-01

    Prenatal stress (PS) represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1) if PS modulates recovery following cortical ischemia in adulthood; (2) if a second hit by adult stress (AS) exaggerates stress responses and ischemic damage; and (3) if tactile stimulation (TS) attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health. PMID:24651125

  1. Nurses' knowledge of evidence-based guidelines for prevention of ventilator-associated pneumonia in critical care areas: a pre and post test design.

    PubMed

    Meherali, Salima Moez; Parpio, Yasmin; Ali, Tazeen S; Javed, Fawad

    2011-01-01

    Ventilator associated pneumonia (VAP) is a common hospital acquired pneumonia in ventilated patients. VAP is associated with increased morbidity, mortality duration of hospitalization and cost of treatment. Critical care nurses are usually unaware of evidence based preventive guidelines for VAP, resulting in negative impact on all aspects of patient care. This study investigated the impact of a 5-hour teaching module on nurses' knowledge to practice evidence based guidelines for the prevention of VAP. This study was conducted at a private tertiary care teaching hospital in Karachi, Pakistan. Single group pre-test design was used. Forty nurses were included in the study. The knowledge of nurses was assessed before, immediately after and 4 weeks after the intervention. The final sample (n=40) was selected on the basis of the set inclusion criteria. The demographic data sheet was used to collect relevant information about the participants. Knowledge was assessed through a self-developed validated tool, consisting of multiple choice questions. The difference in knowledge was analysed through repeated measures of analysis of variance. The mean scores at 3 time points were compared using the Tukey's multiple comparison procedure. Knowledge scores of participants increased significantly after the educational intervention in the first post-test; however, there was a decline in the score in post-test 2. the 5-hour teaching module significantly enhanced nurses' knowledge towards evidence based guidelines for the prevention of VAP. Further research is needed to assess the impact of training on nursing practice and to explore factors affecting attitudinal change.

  2. Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study.

    PubMed

    Hertle, Daniel N; Santos, Edgar; Hagenston, Anna M; Jungk, Christine; Haux, Daniel; Unterberg, Andreas W; Sakowitz, Oliver W

    2015-07-01

    Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (<1 mmol/L) and noncritical (>1 mmol/L) extracellular brain glucose levels. We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (P<0.05). For critical brain glucose levels, extracellular brain glucose was unaffected by any type of sedative. These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.

  3. Policy on Hazard Analysis and Critical Control Point (HACCP) and adherence to food preparation guidelines: a cross sectional survey of stakeholders in food service in Kumasi, Ghana.

    PubMed

    Agyei-Baffour, Peter; Sekyere, Kofi Boateng; Addy, Ernestine Akosua

    2013-11-04

    Food borne diseases claim more lives and are growing public health concerns. Simple preventive techniques such as adoption and adherence to hazard analysis and critical control point (HACCP) policy can significantly reduce this disease burden. Though food screening and inspection are done, the ultimate regulation, Hazard Analysis and Critical Control Point, which is known and accepted worldwide, appears not to be popular among food operators in Ghana. This paper examines the level of awareness of the existence of policy on hazard analysis and critical control point (HACCP) and its adherence to food preparation guidelines among food service providers in Ghana. The results revealed the mean age of food providers as 33.1 years with a standard deviation of 7.5, range of 18-55 years, more females, in full time employment and with basic education. Of the fifty institutional managers, 42 (84%) were senior officers and had worked for more than five years. Education and type of food operator had strong statistically significant relationship with the implementation of HCCP policy and adherence with food preparation guidelines. The enforcement of HACCP policy and adherence with food safety guidelines was led by the Ghana Tourist Board, Public Health officers, and KMA, respectively. While a majority of food operators 373/450 (83.3%) did not know HACCP policy is part of food safety guidelines, staff of food safety law enforcement 44/50 (88%) confirmed knowing that food operators were not aware of the HACCP policy. The study documents evidence on the practice of food safety principles or HACCP policy or adherence to food preparation guidelines. Existing food safety guidelines incorporate varying principles of HACCP, however, awareness is low among food operators. The implication is that food production is likely to fall short of acceptable standards and not be wholesome putting consumers at health risk. Repeating this study in rural and urban areas in Ghana is necessary to provide much more evidence to inform food safety guidelines. Further studies on chemical analysis of food and implementing training modules on HACCP policy for food producers and law enforcement agencies may be helpful to improve existing situation.

  4. Policy on Hazard Analysis and Critical Control Point (HACCP) and adherence to food preparation guidelines: a cross sectional survey of stakeholders in food service in Kumasi, Ghana

    PubMed Central

    2013-01-01

    Background Food borne diseases claim more lives and are growing public health concerns. Simple preventive techniques such as adoption and adherence to hazard analysis and critical control point (HACCP) policy can significantly reduce this disease burden. Though food screening and inspection are done, the ultimate regulation, Hazard Analysis and Critical Control Point, which is known and accepted worldwide, appears not to be popular among food operators in Ghana. This paper examines the level of awareness of the existence of policy on hazard analysis and critical control point (HACCP) and its adherence to food preparation guidelines among food service providers in Ghana. Results The results revealed the mean age of food providers as 33.1 years with a standard deviation of 7.5, range of 18–55 years, more females, in full time employment and with basic education. Of the fifty institutional managers, 42 (84%) were senior officers and had worked for more than five years. Education and type of food operator had strong statistically significant relationship with the implementation of HCCP policy and adherence with food preparation guidelines. The enforcement of HACCP policy and adherence with food safety guidelines was led by the Ghana Tourist Board, Public Health officers, and KMA, respectively. While a majority of food operators 373/450 (83.3%) did not know HACCP policy is part of food safety guidelines, staff of food safety law enforcement 44/50 (88%) confirmed knowing that food operators were not aware of the HACCP policy. Conclusion The study documents evidence on the practice of food safety principles or HACCP policy or adherence to food preparation guidelines. Existing food safety guidelines incorporate varying principles of HACCP, however, awareness is low among food operators. The implication is that food production is likely to fall short of acceptable standards and not be wholesome putting consumers at health risk. Repeating this study in rural and urban areas in Ghana is necessary to provide much more evidence to inform food safety guidelines. Further studies on chemical analysis of food and implementing training modules on HACCP policy for food producers and law enforcement agencies may be helpful to improve existing situation. PMID:24180236

  5. Off-line breath acetone analysis in critical illness.

    PubMed

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p < 0.0001) and arterial beta-hydroxybutyrate (rs = 0.52, p < 0.0001) concentrations. Changes in breath acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  6. Evaluation of best practices in the design of online evidence-based practice instructional modules*

    PubMed Central

    Foster, Margaret J.; Shurtz, Suzanne; Pepper, Catherine

    2014-01-01

    Objectives: The research determined to what extent best practices are being followed by freely available online modules aimed at teaching critical thinking and evidence-based practices (EBPs) in health sciences fields. Methods: In phase I, an evaluation rubric was created after reviewing the literature. Individual rubric questions were assigned point values and grouped into sections, and the sections weighted. Phase II involved searching Internet platforms to locate online EBP modules, which were screened to determine if they met predetermined criteria for inclusion. Phase III comprised a first evaluation, in which two authors assessed each module, followed by a second evaluation of the top-scoring modules by five representatives from different health sciences units. Results: The rubric's 28 questions were categorized into 4 sections: content, design, interactivity, and usability. After retrieving 170 online modules and closely screening 91, 42 were in the first evaluation and 8 modules were in the second evaluation. Modules in the first evaluation earned, on average, 59% of available points; modules in the second earned an average of 68%. Both evaluations had a moderate level of inter-rater reliability. Conclusions: The rubric was effective and reliable in evaluating the modules. Most modules followed best practices for content and usability but not for design and interactivity. Implications: By systematically collecting and evaluating instructional modules, the authors found many potentially useful elements for module creation. Also, by reviewing the limitations of the evaluated modules, the authors were able to anticipate and plan ways to overcome potential issues in module design. PMID:24415917

  7. SCALE Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  8. SCALE Code System 6.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  9. Amplitude modulation reduces loudness adaptation to high-frequency tones.

    PubMed

    Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang

    2015-07-01

    Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.

  10. 4-Stage Online Presence Model: Model for Module Design and Delivery Using Web 2.0 Technologies to Facilitate Critical Thinking Skills

    ERIC Educational Resources Information Center

    Goh, WeiWei; Dexter, Barbara; Self, Richard

    2014-01-01

    The main purpose of this paper is to present a conceptual model for the use of web 2.0 online technologies in order to develop and enhance students' critical thinking skills at higher education level. Wiki is chosen as the main focus in this paper. The model integrates Salmon's 5-stage model (Salmon, 2002) with Garrison's Community of Inquiry…

  11. Relationship between Telomere Length, Genetic Traits and Environmental/Occupational Exposures in Bladder Cancer Risk by Structural Equation Modelling.

    PubMed

    Pavanello, Sofia; Carta, Angela; Mastrangelo, Giuseppe; Campisi, Manuela; Arici, Cecilia; Porru, Stefano

    2017-12-21

    Background : Telomere length (TL) maintenance plays an important role in bladder cancer (BC) and prognosis. However the manifold influence of everyday life exposures and genetic traits on leucocyte TL (LTL), is not fully elucidated. Methods : Within the framework of a hospital-based case ( n = 96)/control ( n = 94) study (all Caucasian males), we investigated the extent to which LTL and BC risk were modulated by genetic polymorphisms and environmental and occupational exposures. Data on lifetime smoking, alcohol and coffee drinking, dietary habits and occupational exposures, pointing to aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs) were collected. Structural equation modelling (SEM) analysis appraised this complex relationships. Results : The SEM analysis indicates negative direct links ( p < 0.05) between LTL with age, DNA adducts, alcohol and NAT2, and positive ones with coffee, MPO and XRCC3; and between BC risk ( p < 0.01) with cigarettes, cumulative exposure to AAs and coffee, while are negative with LTL and age. There was evidence of indirect effects ( p < 0.05) on BC risk, probably via LTL reduction, by age and NAT2 (positive link), MPO and XRCC3 (negative link). Our study supports evidence that LTL attrition is a critical event in BC. The new finding that LTL erosion depends on some preventable everyday life exposures genetically modulated, opens new perspectives in BC prevention.

  12. Relationship between Telomere Length, Genetic Traits and Environmental/Occupational Exposures in Bladder Cancer Risk by Structural Equation Modelling

    PubMed Central

    Pavanello, Sofia; Carta, Angela; Mastrangelo, Giuseppe; Campisi, Manuela; Porru, Stefano

    2017-01-01

    Background: Telomere length (TL) maintenance plays an important role in bladder cancer (BC) and prognosis. However the manifold influence of everyday life exposures and genetic traits on leucocyte TL (LTL), is not fully elucidated. Methods: Within the framework of a hospital-based case (n = 96)/control (n = 94) study (all Caucasian males), we investigated the extent to which LTL and BC risk were modulated by genetic polymorphisms and environmental and occupational exposures. Data on lifetime smoking, alcohol and coffee drinking, dietary habits and occupational exposures, pointing to aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs) were collected. Structural equation modelling (SEM) analysis appraised this complex relationships. Results: The SEM analysis indicates negative direct links (p < 0.05) between LTL with age, DNA adducts, alcohol and NAT2, and positive ones with coffee, MPO and XRCC3; and between BC risk (p < 0.01) with cigarettes, cumulative exposure to AAs and coffee, while are negative with LTL and age. There was evidence of indirect effects (p < 0.05) on BC risk, probably via LTL reduction, by age and NAT2 (positive link), MPO and XRCC3 (negative link). Conclusions: Our study supports evidence that LTL attrition is a critical event in BC. The new finding that LTL erosion depends on some preventable everyday life exposures genetically modulated, opens new perspectives in BC prevention. PMID:29267235

  13. Analysis of Zinc-Exporters Expression in Prostate Cancer.

    PubMed

    Singh, Chandra K; Malas, Kareem M; Tydrick, Caitlin; Siddiqui, Imtiaz A; Iczkowski, Kenneth A; Ahmad, Nihal

    2016-11-11

    Maintaining optimal intracellular zinc (Zn) concentration is crucial for critical cellular functions. Depleted Zn has been associated with prostate cancer (PCa) progression. Solute carrier family 30 (SLC30A) proteins maintain cytoplasmic Zn balance by exporting Zn out to the extracellular space or by sequestering cytoplasmic Zn into intracellular compartments. In this study, we determined the involvement of Zn-exporters, SLC30A 1-10 in PCa, in the context of racial health disparity in human PCa samples obtained from European-American (EA) and African-American (AA) populations. We also analyzed the levels of Zn-exporters in a panel of PCa cells derived from EA and AA populations. We further explored the expression profile of Zn-exporters in PCa using Oncomine database. Zn-exporters were found to be differentially expressed at the mRNA level, with a significant upregulation of SLC30A1, SLC30A9 and SLC30A10, and downregulation of SLC30A5 and SLC30A6 in PCa, compared to benign prostate. Moreover, Ingenuity Pathway analysis revealed several interactions of Zn-exporters with certain tumor suppressor and promoter proteins known to be modulated in PCa. Our study provides an insight regarding Zn-exporters in PCa, which may open new avenues for future studies aimed at enhancing the levels of Zn by modulating Zn-transporters via pharmacological means.

  14. Analysis of Zinc-Exporters Expression in Prostate Cancer

    PubMed Central

    Singh, Chandra K.; Malas, Kareem M.; Tydrick, Caitlin; Siddiqui, Imtiaz A.; Iczkowski, Kenneth A.; Ahmad, Nihal

    2016-01-01

    Maintaining optimal intracellular zinc (Zn) concentration is crucial for critical cellular functions. Depleted Zn has been associated with prostate cancer (PCa) progression. Solute carrier family 30 (SLC30A) proteins maintain cytoplasmic Zn balance by exporting Zn out to the extracellular space or by sequestering cytoplasmic Zn into intracellular compartments. In this study, we determined the involvement of Zn-exporters, SLC30A 1–10 in PCa, in the context of racial health disparity in human PCa samples obtained from European-American (EA) and African-American (AA) populations. We also analyzed the levels of Zn-exporters in a panel of PCa cells derived from EA and AA populations. We further explored the expression profile of Zn-exporters in PCa using Oncomine database. Zn-exporters were found to be differentially expressed at the mRNA level, with a significant upregulation of SLC30A1, SLC30A9 and SLC30A10, and downregulation of SLC30A5 and SLC30A6 in PCa, compared to benign prostate. Moreover, Ingenuity Pathway analysis revealed several interactions of Zn-exporters with certain tumor suppressor and promoter proteins known to be modulated in PCa. Our study provides an insight regarding Zn-exporters in PCa, which may open new avenues for future studies aimed at enhancing the levels of Zn by modulating Zn-transporters via pharmacological means. PMID:27833104

  15. DOPI and PALM imaging of single carbohydrate binding modules bound to cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Dagel, D. J.; Liu, Y.-S.; Zhong, L.; Luo, Y.; Zeng, Y.; Himmel, M.; Ding, S.-Y.; Smith, S.

    2011-03-01

    We use single molecule imaging methods to study the binding characteristics of carbohydrate-binding modules (CBMs) to cellulose crystals. The CBMs are carbohydrate specific binding proteins, and a functional component of most cellulase enzymes, which in turn hydrolyze cellulose, releasing simple sugars suitable for fermentation to biofuels. The CBM plays the important role of locating the crystalline face of cellulose, a critical step in cellulase action. A biophysical understanding of the CBM action aids in developing a mechanistic picture of the cellulase enzyme, important for selection and potential modification. Towards this end, we have genetically modified cellulose-binding CBM derived from bacterial source with green fluorescent protein (GFP), and photo-activated fluorescence protein PAmCherry tags, respectively. Using the single molecule method known as Defocused Orientation and Position Imaging (DOPI), we observe a preferred orientation of the CBM-GFP complex relative to the Valonia cellulose nanocrystals. Subsequent analysis showed the CBMs bind to the opposite hydrophobic <110> faces of the cellulose nanocrystals with a welldefined cross-orientation of about { 70°. Photo Activated Localization Microscopy (PALM) is used to localize CBMPAmCherry with a localization accuracy of { 10nm. Analysis of the nearest neighbor distributions along and perpendicular to the cellulose nanocrystal axes are consistent with single-file CBM binding along the fiber axis, and microfibril bundles consisting of close packed { 20nm or smaller cellulose microfibrils.

  16. Cabin Noise Studies for the Orion Spacecraft Crew Module

    NASA Technical Reports Server (NTRS)

    Dandaroy, Indranil; Chu, S. Reynold; Larson, Lauren; Allen, Christopher S.

    2010-01-01

    Controlling cabin acoustic noise levels in the Crew Module (CM) of the Orion spacecraft is critical for adequate speech intelligibility, to avoid fatigue and to prevent any possibility of temporary and permanent hearing loss. A vibroacoustic model of the Orion CM cabin has been developed using Statistical Energy Analysis (SEA) to assess compliance with acoustic Constellation Human Systems Integration Requirements (HSIR) for the on-orbit mission phase. Cabin noise in the Orion CM needs to be analyzed at the vehicle-level to assess the cumulative acoustic effect of various Orion systems at the crewmember's ear. The SEA model includes all major structural and acoustic subsystems inside the CM including the Environmental Control and Life Support System (ECLSS), which is the primary noise contributor in the cabin during the on-orbit phase. The ECLSS noise sources used to excite the vehicle acoustic model were derived using a combination of established empirical predictions and fan development acoustic testing. Baseline noise predictions were compared against acoustic HSIR requirements. Key noise offenders and paths were identified and ranked using noise transfer path analysis. Parametric studies were conducted with various acoustic treatment packages in the cabin to reduce the noise levels and define vehicle-level mass impacts. An acoustic test mockup of the CM cabin has also been developed and noise treatment optimization tests were conducted to validate the results of the analyses.

  17. Some failure modes and analysis techniques for terrestrial solar cell modules

    NASA Technical Reports Server (NTRS)

    Shumka, A.; Stern, K. H.

    1978-01-01

    Analysis data are presented on failed/defective silicon solar cell modules of various types and produced by different manufacturers. The failure mode (e.g., internal short and open circuits, output power degradation, isolation resistance degradation, etc.) are discussed in detail and in many cases related to the type of technology used in the manufacture of the modules; wherever applicable, appropriate corrective actions are recommended. Consideration is also given to some failure analysis techniques that are applicable to such modules, including X-ray radiography, capacitance measurement, cell shunt resistance measurement by the shadowing technique, steady-state illumination test station for module performance illumination, laser scanning techniques, and the SEM.

  18. Comprehensive analysis of transport aircraft flight performance

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance, atmospheric effects, economic Mach number and noise trajectories at F.A.R. landing points.

  19. Documentation of the analysis of the benefits and costs of aeronautical research and technology models, volume 1

    NASA Technical Reports Server (NTRS)

    Bobick, J. C.; Braun, R. L.; Denny, R. E.

    1979-01-01

    The analysis of the benefits and costs of aeronautical research and technology (ABC-ART) models are documented. These models were developed by NASA for use in analyzing the economic feasibility of applying advanced aeronautical technology to future civil aircraft. The methodology is composed of three major modules: fleet accounting module, airframe manufacturing module, and air carrier module. The fleet accounting module is used to estimate the number of new aircraft required as a function of time to meet demand. This estimation is based primarily upon the expected retirement age of existing aircraft and the expected change in revenue passenger miles demanded. Fuel consumption estimates are also generated by this module. The airframe manufacturer module is used to analyze the feasibility of the manufacturing the new aircraft demanded. The module includes logic for production scheduling and estimating manufacturing costs. For a series of aircraft selling prices, a cash flow analysis is performed and a rate of return on investment is calculated. The air carrier module provides a tool for analyzing the financial feasibility of an airline purchasing and operating the new aircraft. This module includes a methodology for computing the air carrier direct and indirect operating costs, performing a cash flow analysis, and estimating the internal rate of return on investment for a set of aircraft purchase prices.

  20. Photothermal characterization of encapsulant materials for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Gupta, A.; Distefano, S.

    1982-01-01

    A photothermal test matrix and a low cost testing apparatus for encapsulant materials of photovoltaic modules were defined. Photothermal studies were conducted to screen and rank existing as well as future encapsulant candidate materials and/or material formulations in terms of their long term physiochemical stability under accelerated photothermal aging conditions. Photothermal characterization of six candidate pottant materials and six candidate outer cover materials were carried out. Principal products of photothermal degradation are identified. Certain critical properties are also monitored as a function of photothermal aging.

  1. Proceedings of the International Conference on High-Power Particle Beams (12th) Held in Haifa, Israel on June 7-12, 1998. Volume 1

    DTIC Science & Technology

    1998-06-12

    Bucharest, Romania 257 TO THE THEORY OF A PLASMA FILLED ION DIODE L.I. Rudakov, RRC Kurchatov Institute, Moscow, Russia, A.S. Chuvatin, Ecole...B. Moosman, S.J. Stephanakis, Naval Research Laboratory, Washington DC, USA 306 -XVII- PLASMA EVOLUTION OF A POS: COMPARISON OF THEORY AND...POSs. INTRODUCTION The POS is a critical component of the multi-module DECADE generator.’ At present, maximum bremsstrahlung is produced on DECADE Module

  2. RCRA/UST, Superfund, and EPCRA hotline training module. Introduction to superfund community involvement. Directive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This module covers EPA`s Superfund community involvement program, a set of requirements under the National Contingency Plan (NCP) designed to ensure that public is informed about site conditions and given the opportunity to comment on the proposed remedy of a Superfund site. The NCP serves to uphold the public`s right to voice opinions and express concerns about Superfund site activities. EPA must involve communities throughout Superfund process - particularly at critical decision-making steps in the process.

  3. Advances in cholangiocyte immunobiology

    PubMed Central

    Syal, Gaurav; Fausther, Michel

    2012-01-01

    Cholangiocytes, or bile duct epithelia, were once thought to be the simple lining of the conduit system comprising the intra- and extrahepatic bile ducts. Growing experimental evidence demonstrated that cholangiocytes are in fact the first line of defense of the biliary system against foreign substances. Experimental advances in recent years have unveiled previously unknown roles of cholangiocytes in both innate and adaptive immune responses. Cholangiocytes can release inflammatory modulators in a regulated fashion. Moreover, they express specialized pattern-recognizing molecules that identify microbial components and activate intracellular signaling cascades leading to a variety of downstream responses. The cytokines secreted by cholangiocytes, in conjunction with the adhesion molecules expressed on their surface, play a role in recruitment, localization, and modulation of immune responses in the liver and biliary tract. Cholangiocyte survival and function is further modulated by cytokines and inflammatory mediators secreted by immune cells and cholangiocytes themselves. Because cholangiocytes act as professional APCs via expression of major histocompatibility complex antigens and secrete antimicrobial peptides in bile, their role in response to biliary infection is critical. Finally, because cholangiocytes release mediators critical to myofibroblastic differentiation of portal fibroblasts and hepatic stellate cells, cholangiocytes may be essential in the pathogenesis of biliary cirrhosis. PMID:22961800

  4. Advances in cholangiocyte immunobiology.

    PubMed

    Syal, Gaurav; Fausther, Michel; Dranoff, Jonathan A

    2012-11-15

    Cholangiocytes, or bile duct epithelia, were once thought to be the simple lining of the conduit system comprising the intra- and extrahepatic bile ducts. Growing experimental evidence demonstrated that cholangiocytes are in fact the first line of defense of the biliary system against foreign substances. Experimental advances in recent years have unveiled previously unknown roles of cholangiocytes in both innate and adaptive immune responses. Cholangiocytes can release inflammatory modulators in a regulated fashion. Moreover, they express specialized pattern-recognizing molecules that identify microbial components and activate intracellular signaling cascades leading to a variety of downstream responses. The cytokines secreted by cholangiocytes, in conjunction with the adhesion molecules expressed on their surface, play a role in recruitment, localization, and modulation of immune responses in the liver and biliary tract. Cholangiocyte survival and function is further modulated by cytokines and inflammatory mediators secreted by immune cells and cholangiocytes themselves. Because cholangiocytes act as professional APCs via expression of major histocompatibility complex antigens and secrete antimicrobial peptides in bile, their role in response to biliary infection is critical. Finally, because cholangiocytes release mediators critical to myofibroblastic differentiation of portal fibroblasts and hepatic stellate cells, cholangiocytes may be essential in the pathogenesis of biliary cirrhosis.

  5. Energy limit in cyclotron autoresonance acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.; Hirshfield, J.L.

    1995-03-01

    A multimegawatt gyroharmonic converter depends critically on the parameters of a spatiotemporally modulated gyrating electron beam prepared using a cyclotron autoresonance accelerator (CARA). This paper extends a prior analysis of CARA [B. Hafizi, P. Sprangle, and J. L. Hirshfield, Phys. Rev. E 50, 3077 (1994)] to identify an approximate constant of the motion and, therefore, to give limits to the beam energy from CARA that can be utilized in a harmonic converter. It is also shown that particles are strongly phase trapped during acceleration in CARA and thus are insensitive to deviations from exact autoresonance. This fact could simplify constructionmore » of the up-tapered guide magnetic field in the device and augurs well for production of high-quality multimegawatt beams using CARA.« less

  6. Signaling by STATs.

    PubMed

    Ivashkiv, Lionel B; Hu, Xiaoyu

    2004-01-01

    A variety of cytokines and growth factors use the Janus kinase (Jak)-STAT signaling pathway to transmit extracellular signals to the nucleus. STATs (signal transducers and activators of transcription) are latent cytoplasmic transcription factors. There are seven mammalian STATs and they have critical, nonredundant roles in mediating cellular transcriptional responses to cytokines. The physiological roles of STATs have been elucidated by analysis of mice rendered deficient in STAT genes. STAT activation is regulated and can be modulated in a positive or negative fashion; it can be reprogrammed to drive different cellular responses. Several auto-regulatory and signaling crosstalk mechanisms for regulating Jak-STAT signaling have been described. Understanding and manipulation of the function of STATs will help in the development of therapeutic strategies for diseases that are regulated by cytokines.

  7. Noise estimation of beam position monitors at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, X.; Bai, M.; Lee, S. Y.

    2014-02-10

    Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable opticsmore » measurement and beam dynamics analysis based on turn-by-turn data.« less

  8. Atacama Cosmology Telescope: Polarization calibration analysis for CMB measurements with ACTPol and Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Koopman, Brian; ACTPol Collaboration

    2015-04-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. Achieving first light in 2013, ACTPol is entering its third observation season. Advanced ACTPol is a next generation upgrade for ACTPol, with additional frequencies, polarization modulation, and new detector arrays, that will begin in 2016. I will first present an overview of the two projects and then focus on describing the methods used for polarization angle calibration of the ACTPol detectors. These methods utilize polarization ray tracing in the optical design software CODEV together with detector positions determined from planet observations and represent a critical input for mapping the polarization of the CMB.

  9. Dust ion acoustic freak waves in a plasma with two temperature electrons featuring Tsallis distribution

    NASA Astrophysics Data System (ADS)

    Chahal, Balwinder Singh; Singh, Manpreet; Shalini; Saini, N. S.

    2018-02-01

    We present an investigation for the nonlinear dust ion acoustic wave modulation in a plasma composed of charged dust grains, two temperature (cold and hot) nonextensive electrons and ions. For this purpose, the multiscale reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave number, which indicates where the modulational instability sets in, has been determined precisely for various regimes. The influence of plasma background nonextensivity on the growth rate of modulational instability is discussed. The modulated wavepackets in the form of either bright or dark type envelope solitons may exist. Formation of rogue waves from bright envelope solitons is also discussed. The investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are significantly affected by nonextensivity, dust concentration, cold electron-ion density ratio and temperature ratio.

  10. Quasiperiodic Quantum Ising Transitions in 1D

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Chandran, A.; Laumann, C. R.

    2018-04-01

    Unlike random potentials, quasiperiodic modulation can induce localization-delocalization transitions in one dimension. In this Letter, we analyze the implications of this for symmetry breaking in the quasiperiodically modulated quantum Ising chain. Although weak modulation is irrelevant, strong modulation induces new ferromagnetic and paramagnetic phases which are fully localized and gapless. The quasiperiodic potential and localized excitations lead to quantum criticality that is intermediate to that of the clean and randomly disordered models with exponents of ν =1+ (exact) and z ≈1.9 , Δσ≈0.16 , and Δγ≈0.63 (up to logarithmic corrections). Technically, the clean Ising transition is destabilized by logarithmic wandering of the local reduced couplings. We conjecture that the wandering coefficient w controls the universality class of the quasiperiodic transition and show its stability to smooth perturbations that preserve the quasiperiodic structure of the model.

  11. Cancer Cell Biology: A Student-Centered Instructional Module Exploring the Use of Multimedia to Enrich Interactive, Constructivist Learning of Science

    PubMed Central

    Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.

    2003-01-01

    Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. Cancer Cell Biology, an interactive, multimedia, problem-based module, focuses on how mutations in protooncogenes and tumor suppressor genes can lead to uncontrolled cell proliferation by engaging students as research scientists/physicians with the task of diagnosing the molecular basis of tumor growth for a group of patients. The process of constructing the module, which was guided by scientist and student feedback/responses, is described. The completed module and insights gained from its development are presented as a potential “multimedia pedagogy” for the development of other multimedia science learning environments. PMID:12822037

  12. Integrative Analysis of GWASs, Human Protein Interaction, and Gene Expression Identified Gene Modules Associated With BMDs

    PubMed Central

    He, Hao; Zhang, Lei; Li, Jian; Wang, Yu-Ping; Zhang, Ji-Gang; Shen, Jie; Guo, Yan-Fang

    2014-01-01

    Context: To date, few systems genetics studies in the bone field have been performed. We designed our study from a systems-level perspective by integrating genome-wide association studies (GWASs), human protein-protein interaction (PPI) network, and gene expression to identify gene modules contributing to osteoporosis risk. Methods: First we searched for modules significantly enriched with bone mineral density (BMD)-associated genes in human PPI network by using 2 large meta-analysis GWAS datasets through a dense module search algorithm. One included 7 individual GWAS samples (Meta7). The other was from the Genetic Factors for Osteoporosis Consortium (GEFOS2). One was assigned as a discovery dataset and the other as an evaluation dataset, and vice versa. Results: In total, 42 modules and 129 modules were identified significantly in both Meta7 and GEFOS2 datasets for femoral neck and spine BMD, respectively. There were 3340 modules identified for hip BMD only in Meta7. As candidate modules, they were assessed for the biological relevance to BMD by gene set enrichment analysis in 2 expression profiles generated from circulating monocytes in subjects with low versus high BMD values. Interestingly, there were 2 modules significantly enriched in monocytes from the low BMD group in both gene expression datasets (nominal P value <.05). Two modules had 16 nonredundant genes. Functional enrichment analysis revealed that both modules were enriched for genes involved in Wnt receptor signaling and osteoblast differentiation. Conclusion: We highlighted 2 modules and novel genes playing important roles in the regulation of bone mass, providing important clues for therapeutic approaches for osteoporosis. PMID:25119315

  13. Osteonecrosis of the jaw (ONJ) in patients who receive Bone Targeting Agents (BTAs): the power of e-learning.

    PubMed

    Nicolatou-Galitis, Ourania; Migliorati, Cesar

    2018-01-01

    The definition, pathobiology and risk factors of ONJ in cancer patients who receive BTAs are discussed in the recent ecancer module for osteonecrosis of the jaw (http://ecancer.org/education/module/276-osteonecrosis-of-the-jaw.php). ONJ prevention, early diagnosis and management are presented. The critical question of the performance of dental extraction, during BTA therapy, as indicated with the recent studies, is supported. The importance of the collaboration between dental and oncology professionals and the patients is highlighted and can be achieved through appropriate education. The ecancer modules are valuable tools for successful e-learning in medical oncology education, including ONJ.

  14. Transient Response in Monolithic Mach-Zehnder Optical Modulator Using (Ba,Sr)TiO3 Film Sputtered at Low Temperature on Silicon

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Nagata, Kazuma; Tanushi, Yuichiro; Yokoyama, Shin

    2007-04-01

    We have fabricated Mach-Zhender interferometers (MZIs) using the (Ba,Sr)TiO3 (BST) film sputter-deposited at 450 °C, which is a critical temperature for the process after metallization. An optical modulation of about 10% is achieved when 200 V is applied (electric field in BST is 1.2× 104 V/cm). However, the response time of optical modulation to step function voltage is slow (1.0-6.3 s). We propose a model for the slow transient behavior based on movable ions and a long dielectric relaxation time for the BST film, and good qualitative agreement is obtained with experimental results.

  15. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    A crane lifts the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  16. Architectural Considerations of Fiber-Radio Millimeter-Wave Wireless Access Systems

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-Ichi

    The architecture of fiber-radio mm-wave wireless access systems critically depends upon the optical mm-wave generation and transport techniques. Four optical mm-wave generation and transport techniques: 1) optical self-heterodyning, 2) external modulation, 3) up- and downconversion, and 4) optical transceiver, will be assessed. From the technical viewpoints, their advantages and disadvantages are discussed. The economical assessment, focusing on the cost of a base station BS ( ), will suggest that the optical transceiver looks the most promising in the long run, but in the near future, however, the external modulation will be cost-effective. The experimental results of 60 GHz testbeds using the external modulation will support the conclusion.

  17. Description of web-enhanced virtual character simulation system to standardize patient hand-offs.

    PubMed

    Filichia, Lori; Halan, Shivashankar; Blackwelder, Ethan; Rossen, Brent; Lok, Benjamin; Korndorffer, James; Cendan, Juan

    2011-04-01

    The 80-h work week has increased discontinuity of patient care resulting in reports of increased medication errors and preventable adverse events. Graduate medical programs are addressing these shortcomings in a number of ways. We have developed a computer simulation platform called the Virtual People Factory (VPF), which allows us to capture and simulate the dialogue between a real user and a virtual character. We have converted the system to reflect a physician in the process of "checking-out" a patient to a covering physician. The responses are tracked and matched to educator-defined information termed "discoveries." Our proof of concept represented a typical post-operative patient with tachycardia. The system is web enabled. So far, 26 resident users at two institutions have completed the module. The critical discovery of tachycardia was identified by 62% of users. Residents spend 85% of the time asking intraoperative, postoperative, and past medical history questions. The system improves over time such that there is a near-doubling of questions that yield appropriate answers between users 13 and 22. Users who identified the virtual patient's underlying tachycardia expressed more concern and were more likely to order further testing for the patient in a post-module questionnaire (P = 0.13 and 0.08, respectively, NS). The VPF system can capture unique details about the hand-off interchange. The system improves with sequential users such that better matching of questions and answers occurs within the initial 25 users allowing rapid development of new modules. A catalog of hand-off modules could be easily developed. Wide-scale web-based deployment was uncomplicated. Identification of the critical findings appropriately translated to user concern for the patient though our series was too small to reach significance. Performance metrics based on the identification of critical discoveries could be used to assess readiness of the user to carry off a successful hand-off. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    NASA Astrophysics Data System (ADS)

    Chandler, David; Limmer, David

    2013-03-01

    Our detailed and controlled studies of free energy surfaces for models of water find no evidence for reversible polyamorphism, and a general theoretical analysis of the phase behavior of cold water in nano pores shows that measured behaviors of these systems reflect surface modulation and dynamics of ice, not a liquid-liquid critical point. A few workers reach different conclusions, reporting evidence of a liquid-liquid critical point in computer simulations of supercooled water. In some cases, it appears that these contrary results are based upon simulation algorithms that are inconsistent with principles of statistical mechanics, such as using barostats that do not reproduce the correct distribution of volume fluctuations. In other cases, the results appear to be associated with difficulty equilibrating the supercooled material and mistaking metastability for coarsening of the ordered ice phase. In this case, sufficient information is available for us to reproduce the contrary results and to establish that they are artifacts of finite time sampling. This finding leads us to the conclusion that two distinct, reversible liquid phases do not exist in models of supercooled water.

  19. Placental 11 β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression very early during human pregnancy.

    PubMed

    Salvante, K G; Milano, K; Kliman, H J; Nepomnaschy, P A

    2017-04-01

    Maternal physiologic stress during gestation has been reported to be associated with negative developmental outcomes, including intra-uterine growth restriction and reduced birth weight, which can impact postnatal development, behavior and health. The human fetus is partially protected from elevated cortisol exposure by placental 11 β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which oxidizes bioactive cortisol into bio-inactive cortisone. Importantly, despite the critical protective role hypothesized for 11β-HSD2, the onset of its placental expression has yet to be clearly established. To this aim, we present immunocytochemical analysis of placentas collected 3-6 weeks post-conception. 11β-HSD2 was present as early as 3 weeks post-conception in syncytiotrophoblasts, where most maternal-fetal exchange occurs, and in columnar epithelial cells encircling uterine endometrial glands, which provide early histiopathic nutrition to the embryo. 11β-HSD2 expression in these critical maternal-fetal exchange areas is consistent with its hypothesized protective role. Future studies should investigate the mechanisms that may modulate embryonic glucocorticoid exposure earlier, immediately post-conception.

  20. PGE2 through the EP4 receptor controls smooth muscle gene expression patterns in the ductus arteriosus critical for remodeling at birth

    PubMed Central

    Gruzdev, Artiom; Nguyen, MyTrang; Kovarova, Martina; Koller, Beverly H.

    2012-01-01

    The ductus arteriosus (DA) is a fetal shunt that directs right ventricular outflow away from pulmonary circulation and into the aorta. Critical roles for prostaglandin E2 (PGE2) and the EP4 receptor (EP4) have been established in maintaining both the patency of the vessel in utero and in its closure at birth. Here we have generated mice in which loss of EP4 expression is limited to either the smooth muscle (SMC) or endothelial cells and demonstrated that SMC, but not endothelial cell expression of EP4 is required for DA closure. The genome wide expression analysis of full term wild type and EP4−/− DA indicates that PGE2/EP4 signaling modulates expression of a number of unique pathways, including those involved in SMC proliferation, cell migration, and vascular tone. Together this supports a mechanism by which maturation and increased contractility of the vessel is coupled to the potent smooth muscle dilatory actions of PGE2. PMID:22342504

Top