Sample records for crop diversity trust

  1. Economic and physical determinants of the global distributions of crop pests and pathogens.

    PubMed

    Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J

    2014-05-01

    Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species.

    PubMed

    Martín-Robles, Nieves; Lehmann, Anika; Seco, Erica; Aroca, Ricardo; Rillig, Matthias C; Milla, Rubén

    2018-04-01

    The arbuscular mycorrhizal (AM) symbiosis is key to plant nutrition, and hence is potentially key in sustainable agriculture. Fertilization and other agricultural practices reduce soil AM fungi and root colonization. Such conditions might promote the evolution of low mycorrhizal responsive crops. Therefore, we ask if and how evolution under domestication has altered AM symbioses of crops. We measured the effect of domestication on mycorrhizal responsiveness across 27 crop species and their wild progenitors. Additionally, in a subset of 14 crops, we tested if domestication effects differed under contrasting phosphorus (P) availabilities. The response of AM symbiosis to domestication varied with P availability. On average, wild progenitors benefited from the AM symbiosis irrespective of P availability, while domesticated crops only profited under P-limited conditions. Magnitudes and directions of response were diverse among the 27 crops, and were unrelated to phylogenetic affinities or to the coordinated evolution with fine root traits. Our results indicate disruptions in the efficiency of the AM symbiosis linked to domestication. Under high fertilization, domestication could have altered the regulation of resource trafficking between AM fungi and associated plant hosts. Provided that crops are commonly raised under high fertilization, this result has important implications for sustainable agriculture. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. 7 CFR 1400.100 - Revocable trust.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Revocable trust. 1400.100 Section 1400.100... AND SUBSEQUENT CROP, PROGRAM, OR FISCAL YEARS Payment Limitation § 1400.100 Revocable trust. A revocable trust and the grantor of the trust will be considered to be the same person. ...

  4. 7 CFR 1400.205 - Trusts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Trusts. 1400.205 Section 1400.205 Agriculture... SUBSEQUENT CROP, PROGRAM, OR FISCAL YEARS Payment Eligibility § 1400.205 Trusts. A trust will be considered to be actively engaged in farming with respect to a farming operation if: (a) The trust independently...

  5. Trust-aware recommendation for improving aggregate diversity

    NASA Astrophysics Data System (ADS)

    Liu, Haifeng; Bai, Xiaomei; Yang, Zhuo; Tolba, Amr; Xia, Feng

    2015-10-01

    Recommender systems are becoming increasingly important and prevalent because of the ability of solving information overload. In recent years, researchers are paying increasing attention to aggregate diversity as a key metric beyond accuracy, because improving aggregate recommendation diversity may increase long tails and sales diversity. Trust is often used to improve recommendation accuracy. However, how to utilize trust to improve aggregate recommendation diversity is unexplored. In this paper, we focus on solving this problem and propose a novel trust-aware recommendation method by incorporating time factor into similarity computation. The rationale underlying the proposed method is that, trustees with later creation time of trust relation can bring more diverse items to recommend to their trustors than other trustees with earlier creation time of trust relation. Through relevant experiments on publicly available dataset, we demonstrate that the proposed method outperforms the baseline method in terms of aggregate diversity while maintaining almost the same recall.

  6. The AVRDC - The World Vegetable Center mungbean (Vigna radiata) core and mini core collections.

    PubMed

    Schafleitner, Roland; Nair, Ramakrishnan Madhavan; Rathore, Abhishek; Wang, Yen-wei; Lin, Chen-yu; Chu, Shu-hui; Lin, Pin-yun; Chang, Jian-Cheng; Ebert, Andreas W

    2015-04-29

    Large ex situ germplasm collections generally harbor a wide range of crop diversity. AVRDC--The World Vegetable Center is holding in trust the world's second largest mungbean (Vigna radiata) germplasm collection with more than 6,700 accessions. Screening large collections for traits of interest is laborious and expensive. To enhance the access of breeders to the diversity of the crop, mungbean core and mini core collections have been established. The core collection of 1,481 entries has been built by random selection of 20% of the accessions after geographical stratification and subsequent cluster analysis of eight phenotypic descriptors in the whole collection. Summary statistics, especially the low differences of means, equal variance of the traits in both the whole and core collection and the visual inspection of quantile-quantile plots comparing the variation of phenotypic traits present in both collections indicated that the core collection well represented the pattern of diversity of the whole collection. The core collection was genotyped with 20 simple sequence repeat markers and a mini core set of 289 accessions was selected, which depicted the allele and genotype diversity of the core collection. The mungbean core and mini core collections plus their phenotypic and genotypic data are available for distribution to breeders. It is expected that these collections will enhance the access to biodiverse mungbean germplasm for breeding.

  7. Wider-community Segregation and the Effect of Neighbourhood Ethnic Diversity on Social Capital: An Investigation into Intra-Neighbourhood Trust in Great Britain and London

    PubMed Central

    Laurence, James

    2016-01-01

    Extensive research has demonstrated that neighbourhood ethnic diversity is negatively associated with intra-neighbourhood social capital. This study explores the role of segregation and integration in this relationship. To do so it applies three-level hierarchical linear models to two sets of data from across Great Britain and within London, and examines how segregation across the wider-community in which a neighbourhood is nested impacts trust amongst neighbours. This study replicates the increasingly ubiquitous finding that neighbourhood diversity is negatively associated with neighbour-trust. However, we demonstrate that this relationship is highly dependent on the level of segregation across the wider-community in which a neighbourhood is nested. Increasing neighbourhood diversity only negatively impacts neighbour-trust when nested in more segregated wider-communities. Individuals living in diverse neighbourhoods nested within integrated wider-communities experience no trust-penalty. These findings show that segregation plays a critical role in the neighbourhood diversity/trust relationship, and that its absence from the literature biases our understanding of how ethnic diversity affects social cohesion. PMID:28989199

  8. Wider-community Segregation and the Effect of Neighbourhood Ethnic Diversity on Social Capital: An Investigation into Intra-Neighbourhood Trust in Great Britain and London.

    PubMed

    Laurence, James

    2017-10-01

    Extensive research has demonstrated that neighbourhood ethnic diversity is negatively associated with intra-neighbourhood social capital. This study explores the role of segregation and integration in this relationship. To do so it applies three-level hierarchical linear models to two sets of data from across Great Britain and within London, and examines how segregation across the wider-community in which a neighbourhood is nested impacts trust amongst neighbours. This study replicates the increasingly ubiquitous finding that neighbourhood diversity is negatively associated with neighbour-trust. However, we demonstrate that this relationship is highly dependent on the level of segregation across the wider-community in which a neighbourhood is nested. Increasing neighbourhood diversity only negatively impacts neighbour-trust when nested in more segregated wider-communities. Individuals living in diverse neighbourhoods nested within integrated wider-communities experience no trust-penalty. These findings show that segregation plays a critical role in the neighbourhood diversity/trust relationship, and that its absence from the literature biases our understanding of how ethnic diversity affects social cohesion.

  9. Longyearbyen, Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Longyearbyen is the administrative center of Svalbard and is located on Spitsbergen, the largest island of the Svalbard archipelago, part of the Kingdom of Norway. It is the world's northernmost town with over 1000 people. The settlement was founded in 1906 by John Longyear, owner of the Arctic Coal Company. Until the early 1990s the coal mining industry was the major employer of Longyearbyen. Near Longyearbyen, the Global Crop Diversity Trust administers the Svalbard Global Seed Vault, an Arctic safe capable of storing millions of crop seeds as a safeguard against natural and human disasters. Last week, the first deposit of 250,000 different species of crop seeds was made into the repository. The perspective view was created by draping a simulated natural color image over an ASTER-derived digital elevation model.

    The image was acquired July 12, 2003, and is located at 78.2 degrees north latitude, 15.6 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  10. "Do You Trust Him?" Children's Trust Beliefs and Developmental Trajectories of Aggressive Behavior in an Ethnically Diverse Sample

    ERIC Educational Resources Information Center

    Malti, Tina; Averdijk, Margit; Ribeaud, Denis; Rotenberg, Ken J.; Eisner, Manuel P.

    2013-01-01

    This study investigated the role of trust beliefs (i.e., trustworthiness, trustfulness) on aggression trajectories in a four-wave longitudinal study using an ethnically diverse sample of 8- to 11-year-old children (N = 1,028), as well as the risk profiles of low trust beliefs and low socioeconomic status on aggression trajectories. At Time 1 to…

  11. Trust in Culturally Diverse Teams

    DTIC Science & Technology

    2008-09-01

    Humansystems® Incorporated 111 Farquhar St., Guelph, ON N1H 3N4 Project Manager : Barbara D. Adams, Ph.D. (519) 836 5911 PWGSC Contract...on trust in teams and on the management of trust violations within these teams. Reserve force military personnel (n = 106) were recruited to...cultural diversity on trust in teams and on the management of trust violations within these teams. CF reserve force personnel (n = 106) were

  12. Diversity climate enhances work outcomes through trust and openness in workgroup communication.

    PubMed

    Hofhuis, Joep; van der Rijt, Pernill G A; Vlug, Martijn

    2016-01-01

    Diversity climate, defined as an organizational climate characterized by openness towards and appreciation of individual differences, has been shown to enhance outcomes in culturally diverse teams. To date, it remains unclear which processes are responsible for these findings. This paper presents two quantitative studies (n = 91; 246) that identify trust and openness in workgroup communication as possible mediators. We replicate earlier findings that perceived diversity climate positively relates to job satisfaction, sense of inclusion, work group identification and knowledge sharing in teams. In study 1, trust is shown to mediate the effects of perceived diversity climate on team members' sense of inclusion. In study 2, trust mediates the relationship between perceived diversity climate and workgroup identification and openness mediates its relationship with knowledge sharing.

  13. Building trust and diversity in patient-centered oncology clinical trials: An integrated model.

    PubMed

    Hurd, Thelma C; Kaplan, Charles D; Cook, Elise D; Chilton, Janice A; Lytton, Jay S; Hawk, Ernest T; Jones, Lovell A

    2017-04-01

    Trust is the cornerstone of clinical trial recruitment and retention. Efforts to decrease barriers and increase clinical trial participation among diverse populations have yielded modest results. There is an urgent need to better understand the complex interactions between trust and clinical trial participation. The process of trust-building has been a focus of intense research in the business community. Yet, little has been published about trust in oncology clinical trials or the process of building trust in clinical trials. Both clinical trials and business share common dimensions. Business strategies for building trust may be transferable to the clinical trial setting. This study was conducted to understand and utilize contemporary thinking about building trust to develop an Integrated Model of Trust that incorporates both clinical and business perspectives. A key word-directed literature search of the PubMed, Medline, Cochrane, and Google Search databases for entries dated between 1 January 1985 and 1 September 2015 was conducted to obtain information from which to develop an Integrated Model of Trust. Successful trial participation requires both participants and clinical trial team members to build distinctly different types of interpersonal trust to effect recruitment and retention. They are built under conditions of significant emotional stress and time constraints among people who do not know each other and have never worked together before. Swift Trust and Traditional Trust are sequentially built during the clinical trial process. Swift trust operates during the recruitment and very early active treatment phases of the clinical trial process. Traditional trust is built over time and operates during the active treatment and surveillance stages of clinical trials. The Psychological Contract frames the participants' and clinical trial team members' interpersonal trust relationship. The "terms" of interpersonal trust are negotiated through the psychological contract. Contract renegotiation occurs in response to cyclical changes within the trust relationship throughout trial participation. The Integrated Model of Trust offers a novel framework to interrogate the process by which diverse populations and clinical trial teams build trust. To our knowledge, this is the first model of trust-building in clinical trials that frames trust development through integrated clinical and business perspectives. By focusing on the process, rather than outcomes of trust-building diverse trial participants, clinical trials teams, participants, and cancer centers may be able to better understand, measure, and manage their trust relationships in real time. Ultimately, this may foster increased recruitment and retention of diverse populations to clinical trials.

  14. Understanding crop genetic diversity under modern plant breeding.

    PubMed

    Fu, Yong-Bi

    2015-11-01

    Maximizing crop yield while at the same time minimizing crop failure for sustainable agriculture requires a better understanding of the impacts of plant breeding on crop genetic diversity. This review identifies knowledge gaps and shows the need for more research into genetic diversity changes under plant breeding. Modern plant breeding has made a profound impact on food production and will continue to play a vital role in world food security. For sustainable agriculture, a compromise should be sought between maximizing crop yield under changing climate and minimizing crop failure under unfavorable conditions. Such a compromise requires better understanding of the impacts of plant breeding on crop genetic diversity. Efforts have been made over the last three decades to assess crop genetic diversity using molecular marker technologies. However, these assessments have revealed some temporal diversity patterns that are largely inconsistent with our perception that modern plant breeding reduces crop genetic diversity. An attempt was made in this review to explain such discrepancies by examining empirical assessments of crop genetic diversity and theoretical investigations of genetic diversity changes over time under artificial selection. It was found that many crop genetic diversity assessments were not designed to assess diversity impacts from specific plant breeding programs, while others were experimentally inadequate and contained technical biases from the sampling of cultivars and genomes. Little attention has been paid to theoretical investigations on crop genetic diversity changes from plant breeding. A computer simulation of five simplified breeding schemes showed the substantial effects of plant breeding on the retention of heterozygosity over generations. It is clear that more efforts are needed to investigate crop genetic diversity in space and time under plant breeding to achieve sustainable crop production.

  15. Crop Species Diversity Changes in the United States: 1978–2012

    PubMed Central

    Aguilar, Jonathan; Gramig, Greta G.; Hendrickson, John R.; Archer, David W.; Forcella, Frank; Liebig, Mark A.

    2015-01-01

    Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability. PMID:26308552

  16. Public attitudes to the promotion of genomic crop studies in Japan: correlations between genomic literacy, trust, and favourable attitude.

    PubMed

    Ishiyama, Izumi; Tanzawa, Tetsuro; Watanabe, Maiko; Maeda, Tadahiko; Muto, Kaori; Tamakoshi, Akiko; Nagai, Akiko; Yamagata, Zentaro

    2012-05-01

    This study aimed to assess public attitudes in Japan to the promotion of genomic selection in crop studies and to examine associated factors. We analysed data from a nationwide opinion survey. A total of 4,000 people were selected from the Japanese general population by a stratified two-phase sampling method, and 2,171 people participated by post; this survey asked about the pros and cons of crop-related genomic studies promotion, examined people's scientific literacy in genomics, and investigated factors thought to be related to genomic literacy and attitude. The relationships were examined using logistic regression models stratified by gender. Survey results showed that 50.0% of respondents approved of the promotion of crop-related genomic studies, while 6.7% disapproved. No correlation was found between literacy and attitude towards promotion. Trust in experts, belief in science, an interest in genomic studies and willingness to purchase new products correlated with a positive attitude towards crop-related genomic studies.

  17. Can We Trust Measures of Political Trust? Assessing Measurement Equivalence in Diverse Regime Types.

    PubMed

    Schneider, Irena

    2017-01-01

    Do standard "trust in government" survey questions deliver measures which are reliable and equivalent in meaning across diverse regime types? I test for the measurement equivalence of political trust in a sample of 35 former Soviet and European countries using the 2010 Life in Transition Survey II conducted by the World Bank and European Bank for Reconstruction and Development. Employing multiple group confirmatory factor analysis, I find that trust perceptions in central political institutions differ from (1) trust in regional and local political institutions, (2) trust in protective institutions like the armed forces and police and (3) trust in order institutions like the courts and police. Four measurement models achieve partial metric invariance and two reach partial scalar invariance in most countries, allowing for comparisons of correlates using latent factors from each model. I also found some clustering of measurement error and variation in the dimensionality of political trust between democratic and autocratic portions of the sample. On some measurement parameters, therefore, respondents in diverse cultures and regime types do not have equivalent understandings of political trust. The findings offer both optimism and a note of caution for researchers using political trust measures in cross-regime contexts.

  18. Social Diversity, Institutions and Trust: A Cross-National Analysis

    ERIC Educational Resources Information Center

    Tsai, Ming-Chang; Laczko, Leslie; Bjornskov, Christian

    2011-01-01

    This cross-national investigation examines hypotheses derived from two major alternative perspectives on the determinants of trust in contemporary societies. Is a society's level of generalized trust a function of its ethnic composition, or of its type of governance and political system? The argument that social diversity (ethnic, linguistic, and…

  19. Crop diversity effects on productivity and economic returns under dryland agriculture

    USDA-ARS?s Scientific Manuscript database

    Increasing crop diversity has been identified as a method to improve agronomic performance of cropping systems and increase provision of ecosystem services. However, there is a need to understand the economic performance of more diverse cropping systems. Crop productivity and economic net returns we...

  20. Midwestern US Farmers Perceive Crop Advisers as Conduits of Information on Agricultural Conservation Practices

    NASA Astrophysics Data System (ADS)

    Eanes, Francis R.; Singh, Ajay S.; Bulla, Brian R.; Ranjan, Pranay; Prokopy, Linda S.; Fales, Mary; Wickerham, Benjamin; Doran, Patrick J.

    2017-11-01

    Nonpoint source pollution from agricultural land uses continues to pose one of the most significant threats to water quality in the US, with measurable impacts across local, regional, and national scales. The impact and the influence of targeted conservation efforts are directly related to the degree to which farmers are familiar with and trust the entities providing the information and/or outreach. Recent research suggests that farmers consistently rank independent and retail-affiliated crop advisers as among the most trusted and influential sources for agronomic information, but little is understood about whether farmers are willing to receive advice from crop advisers on the use of practices that conserve soil and water, and, if so, whether crop advisers will be perceived as influential. We present survey data from farmers ( n = 1461) in Michigan's Saginaw Bay (Lake Huron) watershed to explore these questions. Results suggest that farmers view crop advisers as trustworthy sources of information about conservation, and influential on management practices that have large conservation implications. We discuss these results, along with perceived barriers and opportunities to crop advisers partnering with traditional conservation agencies to enhance the impact of voluntary conservation programs.

  1. Midwestern US Farmers Perceive Crop Advisers as Conduits of Information on Agricultural Conservation Practices.

    PubMed

    Eanes, Francis R; Singh, Ajay S; Bulla, Brian R; Ranjan, Pranay; Prokopy, Linda S; Fales, Mary; Wickerham, Benjamin; Doran, Patrick J

    2017-11-01

    Nonpoint source pollution from agricultural land uses continues to pose one of the most significant threats to water quality in the US, with measurable impacts across local, regional, and national scales. The impact and the influence of targeted conservation efforts are directly related to the degree to which farmers are familiar with and trust the entities providing the information and/or outreach. Recent research suggests that farmers consistently rank independent and retail-affiliated crop advisers as among the most trusted and influential sources for agronomic information, but little is understood about whether farmers are willing to receive advice from crop advisers on the use of practices that conserve soil and water, and, if so, whether crop advisers will be perceived as influential. We present survey data from farmers (n = 1461) in Michigan's Saginaw Bay (Lake Huron) watershed to explore these questions. Results suggest that farmers view crop advisers as trustworthy sources of information about conservation, and influential on management practices that have large conservation implications. We discuss these results, along with perceived barriers and opportunities to crop advisers partnering with traditional conservation agencies to enhance the impact of voluntary conservation programs.

  2. The Need to Trust and to Trust More Wisely in Academe

    ERIC Educational Resources Information Center

    Bowman, Richard F.

    2012-01-01

    Where trust is an issue, there is no trust. Trust in diverse organizations has never been lower. A shadow of doubt stalks one's every decision to trust collegially and institutionally. Still, colleagues sense intuitively that institutions cannot function optimally without a bedrock level of trust. In academic life, trust is a form of social…

  3. Being trusted: How team generational age diversity promotes and undermines trust in cross-boundary relationships.

    PubMed

    Williams, Michele

    2016-04-01

    We examine how demographic context influences the trust that boundary spanners experience in their dyadic relationships with clients. Because of the salience of age as a demographic characteristic as well as the increasing prevalence of age diversity and intergenerational conflict in the workplace, we focus on team age diversity as a demographic social context that affects trust between boundary spanners and their clients. Using social categorization theory and theories of social capital, we develop and test our contextual argument that a boundary spanner's experience of being trusted is influenced by the social categorization processes that occur in dyadic interactions with a specific client and, simultaneously, by similar social categorization processes that influence the degree to which the client team as a whole serves as a cooperative resource for demographically similar versus dissimilar boundary spanner-client dyads. Using a sample of 168 senior boundary spanners from the consulting industry, we find that generational diversity among client team members from a client organization undermines the perception of being trusted within homogeneous boundary spanner-client dyads while it enhances the perception of being trusted within heterogeneous dyads. The perception of being trusted is an important aspect of cross-boundary relationships because it influences coordination and the costs associated with coordination. © 2015 The Author Journal of Organizational Behavior Published by John Wiley & Sons Ltd.

  4. Being trusted: How team generational age diversity promotes and undermines trust in cross‐boundary relationships

    PubMed Central

    2015-01-01

    Summary We examine how demographic context influences the trust that boundary spanners experience in their dyadic relationships with clients. Because of the salience of age as a demographic characteristic as well as the increasing prevalence of age diversity and intergenerational conflict in the workplace, we focus on team age diversity as a demographic social context that affects trust between boundary spanners and their clients. Using social categorization theory and theories of social capital, we develop and test our contextual argument that a boundary spanner's experience of being trusted is influenced by the social categorization processes that occur in dyadic interactions with a specific client and, simultaneously, by similar social categorization processes that influence the degree to which the client team as a whole serves as a cooperative resource for demographically similar versus dissimilar boundary spanner–client dyads. Using a sample of 168 senior boundary spanners from the consulting industry, we find that generational diversity among client team members from a client organization undermines the perception of being trusted within homogeneous boundary spanner–client dyads while it enhances the perception of being trusted within heterogeneous dyads. The perception of being trusted is an important aspect of cross‐boundary relationships because it influences coordination and the costs associated with coordination. © 2015 The Author Journal of Organizational Behavior Published by John Wiley & Sons Ltd PMID:27721558

  5. In regulation we trust.

    PubMed

    Wiig, Siri; Tharaldsen, Jorunn Elise

    2012-01-01

    The role of trust has been argued to play an increasingly important role in modern, complex, and ambivalent risk societies. Trust within organizational research is anticipated to have a general strategic impact on aspects such as organizational performance, communication and knowledge exchange, and learning from accidents. Trust is also an important aspect related to regulation of risk. Diverse regulatory regimes, their contexts and risks influence regulators use of trust and distrust in regulatory practice. The aim of this paper is to discuss the relationship between risk regulation and trust across diverse risk regulation regimes. By drawing from studies of risk regulation, risk perception, and trust the purpose is to discuss how regulation and trust are linked and used in practice to control risk across system levels in socio-technical systems in high risk industries. This paper provides new knowledge on 1) how functional and dysfunctional trust and distrust are grounded in the empirical realities of high risk industries, 2) how different perspectives on trust and distrust act together and bring new knowledge on how society control risk.

  6. Fusarium graminearum: pathogen or endophyte of North American grasses?

    PubMed

    Lofgren, Lotus A; LeBlanc, Nicholas R; Certano, Amanda K; Nachtigall, Jonny; LaBine, Kathryn M; Riddle, Jakob; Broz, Karen; Dong, Yanhong; Bethan, Bianca; Kafer, Christopher W; Kistler, H Corby

    2018-02-01

    Mycotoxin-producing Fusarium graminearum and related species cause Fusarium head blight on cultivated grasses, such as wheat and barley. However, these Fusarium species may have had a longer evolutionary history with North American grasses than with cultivated crops and may interact with the ancestral hosts in ways which are biochemically distinct. We assayed 25 species of asymptomatic native grasses for the presence of Fusarium species and confirmed infected grasses as hosts using re-inoculation tests. We examined seed from native grasses for the presence of mycotoxin-producing Fusarium species and evaluated the ability of these fungi to produce mycotoxins in both native grass and wheat hosts using biochemical analysis. Mycotoxin-producing Fusarium species were shown to be prevalent in phylogenetically diverse native grasses, colonizing multiple tissue types, including seeds, leaves and inflorescence structures. Artificially inoculated grasses accumulated trichothecenes to a much lesser extent than wheat, and naturally infected grasses showed little to no accumulation. Native North American grasses are commonly inhabited by Fusarium species, but appear to accommodate these toxigenic fungi differently from cultivated crops. This finding highlights how host identity and evolutionary history may influence the outcome of plant-fungal interactions and may inform future efforts in crop improvement. No claim to original US Government works. New Phytologist © 2017 New Phytologist Trust.

  7. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    PubMed

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.

  8. 12 CFR 585.40 - What convictions or agreements to enter into pre-trial diversions or similar programs are covered...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., breach of trust, or money laundering. Convictions do not cover arrests, pending cases not brought to... for a criminal offense involving dishonesty, breach of trust or money laundering. A pretrial diversion...

  9. Origins of food crops connect countries worldwide.

    USDA-ARS?s Scientific Manuscript database

    Crop genetic diversity is concentrated within specific geographic regions worldwide. While access to this diversity is critical to continued increases in agricultural productivity, the geopolitical significance of the geography of crop diversity has not been quantified. We assess the degree to which...

  10. Mechanisms for increased soil C storage with increasing temporal and spatial plant diversity in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Grandy, S.; Marin-Spiotta, E.; Atkinson, E. E.

    2012-12-01

    Generally, there are positive relationships between plant species diversity and net primary production and other key ecosystem functions. However, the effects of aboveground diversity on soil microbial communities and ecosystem processes they mediate, such as soil C sequestration, remain unclear. In this study, we used an 11-y cropping diversity study where increases in diversity have increased crop yields. At the experimental site, temporal diversity is altered using combinations of annual crop rotations, while spatial diversity is altered using cover crop species. We used five treatments ranging in diversity from one to five species consisting of continuous corn with no cover crop or one cover crop and corn-soy-wheat rotations with no cover, one cover or two cover crop species. We collected soils from four replicate plots of each treatment and measured the distribution of mega- (>2 mm), macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates. Within each aggregate size class, we also measured total soil C and N, permanganate oxidizable C (POXC), extracellular enzyme activities (EEA), and microbial community structure with phospholipid fatty acid (PLFA) analysis. We use these data to address the impacts of both rotational and cover crop diversity on soil physical structure, associated microbial community structure and activity and soil C storage. As spatial diversity increased, we found concurrent increases in mega-aggregate abundance as well as increasing soil C in the mega- and micro-aggregates but not macro-aggregates. The proportion of total soil C in each aggregate size class that is relatively labile (POXC) was highest in the micro-aggregates, as was enzyme activity associated with labile C acquisition across all levels of diversity. Enzyme activity associated with more recalcitrant forms of soil C was highest in the mega-aggregate class, also across all diversity levels; however, the ratio of labile to recalcitrant EEA increased with increasing diversity in the mega- and micro-aggregates. In addition, soil N increased with diversity such that microbial C:N EEA simultaneously decreased in mega-aggregates. We also found that cropping diversity has created distinctive soil microbial communities, highlighted by variation in the abundance of gram positive bacteria and Actinomycetes. Further research will help us determine how these changes in community structure with increasing diversity are related to concomitant changes in aggregation and enzyme activities. We suggest that the additional organic matter inputs from cover crops in the high diversity treatments have increased aggregation processes and C pools. While microbial activity has also increased in association with this increased C availability, the activity of recalcitrant and N-acquiring enzymes has declined, suggesting an overall decrease in SOM mineralization with possible increased SOM stabilization. The addition of crop species in rotation (temporal diversity) had minimal influence on any of the measured parameters. We thus conclude that spatial diversity is a more important driver of soil structure and microbial activity, likely due to the high quality organic matter inputs derived from the leguminous cover crops; however, spatial diversity alone did not lead to the same level of C storage potential as mixtures of temporal and spatial diversity.

  11. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments.

  12. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities

    PubMed Central

    Jarvis, Devra I.; Brown, Anthony H. D.; Cuong, Pham Hung; Collado-Panduro, Luis; Latournerie-Moreno, Luis; Gyawali, Sanjaya; Tanto, Tesema; Sawadogo, Mahamadou; Mar, Istvan; Sadiki, Mohammed; Hue, Nguyen Thi-Ngoc; Arias-Reyes, Luis; Balma, Didier; Bajracharya, Jwala; Castillo, Fernando; Rijal, Deepak; Belqadi, Loubna; Rana, Ram; Saidi, Seddik; Ouedraogo, Jeremy; Zangre, Roger; Rhrib, Keltoum; Chavez, Jose Luis; Schoen, Daniel; Sthapit, Bhuwon; De Santis, Paola; Fadda, Carlo; Hodgkin, Toby

    2008-01-01

    Varietal data from 27 crop species from five continents were drawn together to determine overall trends in crop varietal diversity on farm. Measurements of richness, evenness, and divergence showed that considerable crop genetic diversity continues to be maintained on farm, in the form of traditional crop varieties. Major staples had higher richness and evenness than nonstaples. Variety richness for clonal species was much higher than that of other breeding systems. A close linear relationship between traditional variety richness and evenness (both transformed), empirically derived from data spanning a wide range of crops and countries, was found both at household and community levels. Fitting a neutral “function” to traditional variety diversity relationships, comparable to a species abundance distribution of “neutral ecology,” provided a benchmark to assess the standing diversity on farm. In some cases, high dominance occurred, with much of the variety richness held at low frequencies. This suggested that diversity may be maintained as an insurance to meet future environmental changes or social and economic needs. In other cases, a more even frequency distribution of varieties was found, possibly implying that farmers are selecting varieties to service a diversity of current needs and purposes. Divergence estimates, measured as the proportion of community evenness displayed among farmers, underscore the importance of a large number of small farms adopting distinctly diverse varietal strategies as a major force that maintains crop genetic diversity on farm. PMID:18362337

  13. Spider fauna of semiarid eastern Colorado agroecosystems: diversity, abundance, and effects of crop intensification.

    PubMed

    Kerzicnik, Lauren M; Peairs, Frank B; Cushing, Paula E; Draney, Michael L; Merrill, Scott C

    2013-02-01

    Spiders are critical predators in agroecosystems. Crop management practices can influence predator density and diversity, which, in turn, can influence pest management strategies. Crop intensification is a sustainable agricultural technique that can enhance crop production although optimizing soil moisture. To date, there is no information on how crop intensification affects natural enemy populations, particularly spiders. This study had two objectives: to characterize the abundance and diversity of spiders in eastern Colorado agroecosystems, and to test the hypothesis that spider diversity and density would be higher in wheat (Triticum aestivum L.) in crop-intensified rotations compared with wheat in conventional rotations. We collected spiders through pitfall, vacuum, and lookdown sampling from 2002 to 2007 to test these objectives. Over 11,000 spiders in 19 families from 119 species were captured from all sampling techniques. Interestingly, the hunting spider guild represented 89% of the spider fauna captured from all sites with the families Gnaphosidae and Lycosidae representing 75% of these spiders. Compared with European agroecosystems, these agroecosystems had greater diversity, which can be beneficial for the biological control of pests. Overall, spider densities were low in these semiarid cropping systems, and crop intensification effects on spider densities were not evident at this scale.

  14. Trust and contact in diverse neighbourhoods: An interplay of four ethnicity effects.

    PubMed

    Tolsma, J; van der Meer, T W G

    2018-07-01

    Ethnically diverse neighbourhoods are generally less cohesive. A negative relationship between neighbourhood diversity and social cohesion is, however, neither a necessary nor a sufficient condition to conclude that neighbourhood diversity erodes intra-neighbourhood cohesion. This contribution shows - by using data collected during the second wave of the NEtherlands Longitudinal Lifecourse Study (NELLS) - that: (1) members of ethnic minority groups are more likely to report having contact with and trust their immediate neighbours than natives (ego ethnicity effect); (2) minority group residents are less likely to be contacted and trusted by their neighbours (alter ethnicity effect) and (3) all ethnic groups prefer to mix with coethnics (dyad ethnicity effect). Once we control for these three ethnic composition effects at the ego, alter and dyad-level, neighbourhood ethnic diversity is no longer related to less contact between neighbours. Previously identified negative relationships between neighbourhood diversity and cohesion should therefore be re-evaluated, as they may be the consequence of ethnic composition effects instead of a true neighbourhood diversity effect. Copyright © 2018. Published by Elsevier Inc.

  15. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    PubMed

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  16. Teachers' Beliefs about the Development of Teacher-Adolescent Trust

    ERIC Educational Resources Information Center

    Russell, Shannon L.; Wentzel, Kathryn R.; Donlan, Alice E.

    2016-01-01

    In this study, we examined teachers' beliefs concerning the meaning and nature of teacher--student trust in a diverse sample of secondary-school teachers (n = 34). Using a grounded-theory approach, a process model of teacher-adolescent trust emerged based on semi-structured interviews and focus groups. Antecedents of trust could be categorised as…

  17. Chemistry and microbial functional diversity differences in biofuel crop and grassland soils in multiple geographies

    EPA Science Inventory

    As crop and non-crop lands are increasingly converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples were obtained from diverse regionally distributed biofuel cropping si...

  18. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments. PMID:25658914

  19. Biodiversity, evolution and adaptation of cultivated crops.

    PubMed

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  1. Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil

    DOE PAGES

    McDaniel, M. D.; Grandy, A. S.; Tiemann, L. K.; ...

    2016-08-11

    Agricultural crop rotations have been shown to increase soil carbon (C), nitrogen (N), and microbial biomass. The mechanisms behind these increases remain unclear, but may be linked to the diversity of crop residue inputs to soil organic matter (SOM). Here, we used a residue mixture incubation to examine how variation in long-term diversity of plant communities in agroecosystems influences decomposition of residue mixtures, thus providing a comparison of the effects of plant diversification on decomposition in the long term (via crop rotation) and short term (via residue mixtures). Three crop residue mixtures, ranging in diversity from two to four species,more » were incubated for 360 d with soils from five crop rotations, ranging from monoculture corn (mC) to a complex five-crop rotation. In response, we measured fundamental soil pools and processes underlying C and N cycling. These included soil respiration, inorganic N, microbial biomass, and extracellular enzymes. We hypothesized that soils with more diverse cropping histories would show greater synergistic mixture effects than mC. For most variables (except extracellular enzymes), crop rotation history, or the long-term history of plant diversity in the field, had a stronger effect on soil processes than mixture composition. In contrast to our hypothesis, the mC soil had nearly three and seven times greater synergistic mixture effects for respiration and microbial biomass N, respectively, compared with soils from crop rotations. This was due to the low response of the mC soils to poor quality residues (corn and wheat), likely resulting from a lack of available C and nutrients to cometabolize these residues. These results indicate that diversifying crop rotations in agricultural systems alter the decomposition dynamics of new residue inputs, which may be linked to the benefits of increasing crop rotation diversity on soil nutrient cycling, SOM dynamics, and yields.« less

  2. Summer Flowering Cover Crops Support Wild Bees in Vineyards.

    PubMed

    Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A

    2018-02-08

    Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The Influence of eHealth Literacy on Perceived Trust in Online Health Communication Channels and Sources

    PubMed Central

    Krieger, Janice L.; Stellefson, Michael L.

    2017-01-01

    Disparities in online health information accessibility are partially due to varying levels of eHealth literacy and perceived trust. This study examined the relationship between eHealth literacy and perceived trust in online health communication channels and sources among diverse socio-demographic groups. A stratified sample of Black/African Americans (n = 402) and Caucasians (n = 409) completed a web-based survey that measured eHealth literacy and perceived trustworthiness of online health communication channels and information sources. eHealth literacy positively predicted perceived trust in online health communication channels and sources, but disparities existed by socio-demographic factors. Segmenting audiences according to eHealth literacy level provides a detailed understanding of how perceived trust in discrete online health communication channels and information sources vary among diverse audiences. Black/AAs with low eHealth literacy had high perceived trust in YouTube and Twitter, while Black/AAs with high eHealth literacy had high perceived trust in online government and religious organizations. Older adults with low eHealth literacy had high perceived trust in Facebook but low perceived trust in online support groups. Researchers and practitioners should consider the socio-demographics and eHealth literacy level of an intended audience when tailoring information through trustworthy online health communication channels and information sources. PMID:28001489

  4. The Influence of eHealth Literacy on Perceived Trust in Online Health Communication Channels and Sources.

    PubMed

    Paige, Samantha R; Krieger, Janice L; Stellefson, Michael L

    2017-01-01

    Disparities in online health information accessibility are partially due to varying levels of eHealth literacy and perceived trust. This study examined the relationship between eHealth literacy and perceived trust in online health communication channels and sources among diverse sociodemographic groups. A stratified sample of Black/African Americans (n = 402) and Caucasians (n = 409) completed a Web-based survey that measured eHealth literacy and perceived trustworthiness of online health communication channels and information sources. eHealth literacy positively predicted perceived trust in online health communication channels and sources, but disparities existed by sociodemographic factors. Segmenting audiences according to eHealth literacy level provides a detailed understanding of how perceived trust in discrete online health communication channels and information sources varies among diverse audiences. Black/African Americans with low eHealth literacy had high perceived trust in YouTube and Twitter, whereas Black/African Americans with high eHealth literacy had high perceived trust in online government and religious organizations. Older adults with low eHealth literacy had high perceived trust in Facebook but low perceived trust in online support groups. Researchers and practitioners should consider the sociodemographics and eHealth literacy level of an intended audience when tailoring information through trustworthy online health communication channels and information sources.

  5. Soil microbial biomass and function are altered by 12 years of crop rotation

    NASA Astrophysics Data System (ADS)

    McDaniel, Marshall D.; Grandy, A. Stuart

    2016-11-01

    Declines in plant diversity will likely reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity in agroecosystems (by rotating crops) can partially reverse these trends and enhance soil microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W. K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a 3-year rotation cycle, but all soils were sampled under a corn year. We hypothesized that crop diversity would increase microbial biomass, activity, and catabolic evenness (a measure of functional diversity). Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28-112 % and N by 18-58 % compared to low-diversity systems. Rotations increased potential C mineralization by as much as 53 %, and potential N mineralization by 72 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the soil microbial community showed no, or slightly lower, catabolic evenness in more diverse rotations. However, the catabolic potential indicated that soil microbial communities were functionally distinct, and microbes from monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems, relatively small increases in crop diversity can have large impacts on microbial community size and function, with cover crops appearing to facilitate the largest increases.

  6. Mixed cropping regimes promote the soil fungal community under zero tillage.

    PubMed

    Silvestro, L B; Biganzoli, F; Stenglein, S A; Forjan, H; Manso, L; Moreno, M V

    2018-07-01

    Fungi of yield soils represent a significant portion of the microbial biomass and reflect sensitivity to changes in the ecosystem. Our hypothesis was that crops included in cropping regimes under the zero tillage system modify the structure of the soil fungi community. Conventional and molecular techniques provide complementary information for the analysis of diversity of fungal species and successful information to accept our hypothesis. The composition of the fungal community varied according to different crops included in the cropping regimes. However, we detected other factors as sources of variation among them, season and sampling depth. The mixed cropping regimes including perennial pastures and one crop per year promote fungal diversity and species with potential benefit to soil and crop. The winter season and 0-5 cm depth gave the largest evenness and fungal diversity. Trichoderma aureoviride and Rhizopus stolonifer could be used for monitoring changes in soil under zero tillage.

  7. Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA.

    PubMed

    Ferrero, Rosana; Lima, Mauricio; Davis, Adam S; Gonzalez-Andujar, Jose L

    2017-01-01

    Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields. Results of our study indicate that through the proactive management of weed diversity, it may be possible to promote both high productivity of crops and environmental sustainability.

  8. Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA

    PubMed Central

    Ferrero, Rosana; Lima, Mauricio; Davis, Adam S.; Gonzalez-Andujar, Jose L.

    2017-01-01

    Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields. Results of our study indicate that through the proactive management of weed diversity, it may be possible to promote both high productivity of crops and environmental sustainability. PMID:28286509

  9. What determines the acceptability of genetically modified food that can improve human nutrition?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purchase, Iain F.H.

    It has been predicted that by 2025 there will be an annual shortfall of cereals for feeding the human population of 68.5 million tonnes. One possible solution is the use of genetically modified (GM) crops, which are already grown extensively (59 million ha of GM crops were planted in 2002) in the USA, South America, Africa and China. Nevertheless, there is considerable disagreement about the advisability of using such crops, particularly in Europe. Obviously, the safety of the food derived from the GM crops is a primary consideration. Safety assessment relies on establishing that the food is substantially equivalent tomore » its non-GM counterpart and specific testing for allergenicity of proteins and toxicity of metabolites and the whole food. There appears to be international agreement on the principles of safety assessment. Safety to the environment is equally important, but will not be covered in this presentation. The public's perception of the risk of new technology is critical to its acceptance. Perception of risk, in turn, depends on the credibility of the source of the information and trust in the regulatory process. In many countries, the public appears to have lost its trust in the scientists and government dealing with GM food, making the acceptability of GM crops uncertain. Of equal importance are the socio-economic factors that impinge on the viability of GM produce. These include intellectual property protection, trade liberalisation (through subsidy and tariff barriers in developed countries) and the intensity of bio safety regulations. The socio-economic interests of developed and developing countries may diverge and may even be contradictory in any one country. Acceptance of GM crops will thus depend on detailed issues surrounding particular crops and economies.« less

  10. What determines the acceptability of genetically modified food that can improve human nutrition?

    PubMed

    Purchase, Iain F H

    2005-09-01

    It has been predicted that by 2025 there will be an annual shortfall of cereals for feeding the human population of 68.5 million tones. One possible solution is the use of genetically modified (GM) crops, which are already grown extensively (59 million ha of GM crops were planted in 2002) in the USA, South America, Africa and China. Nevertheless, there is considerable disagreement about the advisability of using such crops, particularly in Europe. Obviously, the safety of the food derived from the GM crops is a primary consideration. Safety assessment relies on establishing that the food is substantially equivalent to its non-GM counterpart and specific testing for allergenicity of proteins and toxicity of metabolites and the whole food. There appears to be international agreement on the principles of safety assessment. Safety to the environment is equally important, but will not be covered in this presentation. The public's perception of the risk of new technology is critical to its acceptance. Perception of risk, in turn, depends on the credibility of the source of the information and trust in the regulatory process. In many countries, the public appears to have lost its trust in the scientists and government dealing with GM food, making the acceptability of GM crops uncertain. Of equal importance are the socio-economic factors that impinge on the viability of GM produce. These include intellectual property protection, trade liberalization (through subsidy and tariff barriers in developed countries) and the intensity of bio safety regulations. The socio-economic interests of developed and developing countries may diverge and may even be contradictory in any one country. Acceptance of GM crops will thus depend on detailed issues surrounding particular crops and economies.

  11. Barriers to implementing climate resilient agricultural strategies: The case of crop diversification in the U.S. Corn Belt

    Treesearch

    Gabrielle E. Roesch-McNally; J.G. Arbuckle; John C. Tyndall

    2018-01-01

    Cropping system diversity can help build greater agroecosystem resilience by suppressing insect, weed, and disease pressures while also mitigating effects of extreme and more variable weather. Despite the potential benefits of cropping systems diversity, few farmers in the US Corn Belt use diverse rotations. This study examines factors that may influence farmers’...

  12. Genetic diversity in Carthamus tinctorius (Asteraceae; safflower), an underutilized oilseed crop.

    PubMed

    Pearl, Stephanie A; Burke, John M

    2014-10-01

    • Underutilized crops are potentially valuable resources for meeting increasing food demands. Safflower, an oilseed crop, is an example of one such underutilized crop that thrives in moisture-limited areas. Characterization of the genetic diversity maintained within the gene pools of underutilized crops such as safflower is an important step in their further development.• A total of 190 safflower individuals, including 134 USDA accessions, 48 breeding lines from two private North American safflower breeding companies, and eight wild safflower individuals, were genotyped using 133 single nucleotide polymorphism (SNP) markers. We then used the resulting data to assess the amount and distribution of genetic diversity within and among these collections of safflower.• Although just a modest reduction in gene diversity was observed in the commercial breeding lines (relative to the other safflower groupings), safflower domestication was accompanied by a significant decrease in allelic richness. Further, our results suggest that most safflower breeding lines originated from a single pool of diversity within the Old World safflower germplasm.• Taken together, our results suggest that both the safflower germplasm collection and related, wild species harbor previously undocumented genetic diversity that could help fuel future improvement efforts. Paired with analyses of functional diversity, the molecular resources described herein will be thus be useful in the continued development of safflower as an oilseed crop. © 2014 Botanical Society of America, Inc.

  13. Crop species diversity changes in the United States: 1978-2012

    USDA-ARS?s Scientific Manuscript database

    Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which is collected on 5-year intervals, we qua...

  14. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    PubMed Central

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  15. Increasing cropping system diversity balances productivity, profitability and environmental health.

    PubMed

    Davis, Adam S; Hill, Jason D; Chase, Craig A; Johanns, Ann M; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003-2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems.

  16. The influence of crop production and socioeconomic factors on seasonal household dietary diversity in Burkina Faso.

    PubMed

    Somé, Jérôme W; Jones, Andrew D

    2018-01-01

    Households in low-income settings are vulnerable to seasonal changes in dietary diversity because of fluctuations in food availability and access. We assessed seasonal differences in household dietary diversity in Burkina Faso, and determined the extent to which household socioeconomic status and crop production diversity modify changes in dietary diversity across seasons, using data from the nationally representative 2014 Burkina Faso Continuous Multisectoral Survey (EMC). A household dietary diversity score based on nine food groups was created from household food consumption data collected during four rounds of the 2014 EMC. Plot-level crop production data, and data on household assets and education were used to create variables on crop diversity and household socioeconomic status, respectively. Analyses included data for 10,790 households for which food consumption data were available for at least one round. Accounting for repeated measurements and controlling for the complex survey design and confounding covariates using a weighted multi-level model, household dietary diversity was significantly higher during both lean seasons periods, and higher still during the harvest season as compared to the post-harvest season (mean: post-harvest: 4.76 (SE 0.04); beginning of lean: 5.13 (SE 0.05); end of lean: 5.21 (SE 0.05); harvest: 5.72 (SE 0.04)), but was not different between the beginning and the end of lean season. Seasonal differences in household dietary diversity were greater among households with higher food expenditures, greater crop production, and greater monetary value of crops sale (P<0.05). Seasonal changes in household dietary diversity in Burkina Faso may reflect nutritional differences among agricultural households, and may be modified both by households' socioeconomic status and agricultural characteristics.

  17. Integrating gene flow, crop biology, and farm management in on-farm conservation of avocado (Persea americana, Lauraceae).

    PubMed

    Birnbaum, Kenneth; Desalle, Rob; Peters, Charles M; Benfey, Philip N

    2003-11-01

    Maintaining crop diversity on farms where cultivars can evolve is a conservation goal, but few tools are available to assess the long-term maintenance of genetic diversity on farms. One important issue for on-farm conservation is gene flow from crops with a narrow genetic base into related populations that are genetically diverse. In a case study of avocado (Persea americana var. americana) in one of its centers of diversity (San Jerónimo, Costa Rica), we used 10 DNA microsatellite markers in a parentage analysis to estimate gene flow from commercialized varieties into a traditional crop population. Five commercialized genotypes comprised nearly 40% of orchard trees, but they contributed only about 14.5% of the gametes to the youngest cohort of trees. Although commercialized varieties and the diverse population were often planted on the same farm, planting patterns appeared to keep the two types of trees separated on small scales, possibly explaining the limited gene flow. In a simulation that combined gene flow estimates, crop biology, and graft tree management, loss of allelic diversity was less than 10% over 150 yr, and selection was effective in retaining desirable alleles in the diverse subpopulation. Simulations also showed that, in addition to gene flow, managing the genetic makeup and life history traits of the invasive commercialized varieties could have a significant impact on genetic diversity in the target population. The results support the feasibility of on-farm crop conservation, but simulations also showed that higher levels of gene flow could lead to severe losses of genetic diversity even if farmers continue to plant diverse varieties.

  18. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed

    Higo, Masao; Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans ( Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha -1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance.

  19. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed Central

    Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Background Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans (Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. Methods In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha−1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. Results The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Discussion Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance. PMID:29682413

  20. Evolutionary response of landraces to climate change in centers of crop diversity

    PubMed Central

    Mercer, Kristin L; Perales, Hugo R

    2010-01-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource. PMID:25567941

  1. Evolutionary response of landraces to climate change in centers of crop diversity.

    PubMed

    Mercer, Kristin L; Perales, Hugo R

    2010-09-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.

  2. An overview of CERES-Sorghum as implemented in the cropping systems model version 4.5

    USDA-ARS?s Scientific Manuscript database

    Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important grain crop globally. It stands out for its diversity of plant types, end-uses, and roles in cropping systems. This diversity presents opportunities but also complicates evaluation of production options, especially under climate uncert...

  3. Australia’s food system is highly dependent on foreign crop diversity

    USDA-ARS?s Scientific Manuscript database

    The food crops that are now produced or consumed in Australia were initially domesticated and evolved over time in specific geographic regions across the planet. Genetic diversity within these crops and their wild relatives is considered to be historically particularly rich within these regions. Los...

  4. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay

    PubMed Central

    Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A.; Martínez, Sebastián; Casales, Luis; Caraballo, María P.; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    Abstract The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country. PMID:29755261

  5. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay.

    PubMed

    Bao, Leticia; Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A; Martínez, Sebastián; Casales, Luis; Caraballo, María P; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country.

  6. The Effects of Crop Intensification on the Diversity of Native Pollinator Communities.

    PubMed

    Mogren, Christina L; Rand, Tatyana A; Fausti, Scott W; Lundgren, Jonathan G

    2016-08-01

    Increases in agricultural conversion are leading to declines in native grasslands and natural resources critical for beneficial insects. However, little is known regarding how these changes affect pollinator diversity. Land use types were categorized within 300 m and 3 km radii of pollinator sampling locations in Brookings County, SD. Pollinator abundance and species richness were regressed on the proportion of the landscape dedicated to row crops, grass and pasture, forage crops, small grains, and aquatic habitats using variance components modeling. Row crops had a negative effect on bee abundance at 300 m, after fixed effects modeling accounted for outliers skewing this relationship. At 3 km, corn positively affected bee abundance and richness, while soybean acreage decreased species richness. The landscape matrix of outlying sites consisted of large monocultured areas with few alternative habitat types available, leading to inflated populations of Melissodes and Halictidae. Syrphids had a positive parabolic relationship between diversity and row crops, indicating potential for competitive exclusion from intermediate landscapes. Unlike other studies, landscape diversity within 300 m was not found to significantly benefit pollinator diversity. Within especially agriculturally developed areas of the region, high abundances of pollinators suggest selection for a few dominant species. There was no effect of forage crops or aquatic habitats on pollinator diversity, indicating that less highly managed areas still represent degraded habitat within the landscape. Incorporating pollinator-friendly crops at the farm level throughout the region is likely to enhance pollinator diversity by lessening the negative effects of large monocultures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Origins of food crops connect countries worldwide

    PubMed Central

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  8. Crop diversity loss as primary cause of grey partridge and common pheasant decline in Lower Saxony, Germany.

    PubMed

    Ronnenberg, Katrin; Strauß, Egbert; Siebert, Ursula

    2016-09-09

    The grey partridge (Perdix perdix) and the common pheasant (Phasianus colchicus) are galliform birds typical of arable lands in Central Europe and exhibit a partly dramatic negative population trend. In order to understand general habitat preferences we modelled grey partridge and common pheasant densities over the entire range of Lower Saxony. Spatially explicit developments in bird densities were modelled using spatially explicit trends of crop cultivation. Pheasant and grey partridge densities counted annually by over 8000 hunting district holders over 10 years in a range of 3.7 Mio ha constitute a unique dataset (wildlife survey of Lower Saxony). Data on main landscape groups, functional groups of agricultural crops (consisting of 9.5 million fields compiled by the Integrated Administration and Control System) and landscape features were aggregated to 420 municipalities. To model linear 8 or 10 year population trends (for common pheasant and grey partridge respectively) we use rho correlation coefficients of densities, but also rho coefficients of agricultural crops. All models confirm a dramatic decline in population densities. The habitat model for the grey partridge shows avoidance of municipalities with a high proportion of woodland and water areas, but a preference for areas with a high proportion of winter grains and high crop diversity. The trend model confirms these findings with a linear positive effect of diversity on grey partridge population development. Similarly, the pheasant avoids wooded areas but showed some preference for municipalities with open water. The effect of maize was found to be positive at medium densities, but negative at very high proportions. Winter grains, landscape features and high crop diversity are favorable. The positive effect of winter grains and higher crop diversity is also supported by the trend model. The results show the strong importance of diverse crop cultivation. Most incentives favor the cultivation of specific crops, which results in large areas of monocultures. The results confirm the importance of sustainable agricultural policies.

  9. Varietal Dynamics and Yam Agro-Diversity Demonstrate Complex Trajectories Intersecting Farmers' Strategies, Networks, and Disease Experience.

    PubMed

    Penet, Laurent; Cornet, Denis; Blazy, Jean-Marc; Alleyne, Angela; Barthe, Emilie; Bussière, François; Guyader, Sébastien; Pavis, Claudie; Pétro, Dalila

    2016-01-01

    Loss of varietal diversity is a worldwide challenge to crop species at risk for genetic erosion, while the loss of biological resources may hinder future breeding objectives. Loss of varieties has been mostly investigated in traditional agricultural systems where variety numbers are dramatically high, or for most economically important crop species for which comparison between pre-intensive and modern agriculture was possible. Varietal dynamics, i.e., turnover, or gains and losses of varieties by farmers, is nevertheless more rarely studied and while we currently have good estimates of genetic or varietal diversity for most crop species, we have less information as to how on farm agro-diversity changes and what cause its dynamics. We therefore investigated varietal dynamics in the agricultural yam system in the Caribbean island of Guadeloupe. We interviewed producers about varieties they cultivated in the past compared to their current varieties, in addition to characterizing yam cropping characteristics and both farm level and producers socio-economic features. We then used regression tree analyses to investigate the components of yam agro-diversity, varietal dynamics and impact of anthracnose on varieties. Our data demonstrated that no dramatic loss of varieties occurred within the last decades. Cultivation changes mostly affected widespread cultivars while frequency of uncommon varieties stayed relatively stable. Varietal dynamics nevertheless followed sub-regional patterns, and socio-economic influences such as producer age or farm crop diversity. Recurrent anthracnose epidemics since the 1970s did not alter varietal dynamics strongly, but sometimes translated into transition from Dioscorea alata to less susceptible species or into a decrease of yam cultivation. Factors affecting changes in agro-diversity were not relating to agronomy in our study, and surprisingly there were different processes delineating short term from long term varietal dynamics, independently of disease risk. Our results highlighted the importance of understanding varietal dynamics, an often overlooked component of agriculture sustainability, in addition to evolutionary forces shaping agro-diversity and genetic diversity distribution within crops. It is also crucial to understand how processes involved do scale up worldwide and for different crop species, so as not to mislead on-farm conservation efforts and efficacy of agro-diversity preservation.

  10. Varietal Dynamics and Yam Agro-Diversity Demonstrate Complex Trajectories Intersecting Farmers’ Strategies, Networks, and Disease Experience

    PubMed Central

    Penet, Laurent; Cornet, Denis; Blazy, Jean-Marc; Alleyne, Angela; Barthe, Emilie; Bussière, François; Guyader, Sébastien; Pavis, Claudie; Pétro, Dalila

    2016-01-01

    Loss of varietal diversity is a worldwide challenge to crop species at risk for genetic erosion, while the loss of biological resources may hinder future breeding objectives. Loss of varieties has been mostly investigated in traditional agricultural systems where variety numbers are dramatically high, or for most economically important crop species for which comparison between pre-intensive and modern agriculture was possible. Varietal dynamics, i.e., turnover, or gains and losses of varieties by farmers, is nevertheless more rarely studied and while we currently have good estimates of genetic or varietal diversity for most crop species, we have less information as to how on farm agro-diversity changes and what cause its dynamics. We therefore investigated varietal dynamics in the agricultural yam system in the Caribbean island of Guadeloupe. We interviewed producers about varieties they cultivated in the past compared to their current varieties, in addition to characterizing yam cropping characteristics and both farm level and producers socio-economic features. We then used regression tree analyses to investigate the components of yam agro-diversity, varietal dynamics and impact of anthracnose on varieties. Our data demonstrated that no dramatic loss of varieties occurred within the last decades. Cultivation changes mostly affected widespread cultivars while frequency of uncommon varieties stayed relatively stable. Varietal dynamics nevertheless followed sub-regional patterns, and socio-economic influences such as producer age or farm crop diversity. Recurrent anthracnose epidemics since the 1970s did not alter varietal dynamics strongly, but sometimes translated into transition from Dioscorea alata to less susceptible species or into a decrease of yam cultivation. Factors affecting changes in agro-diversity were not relating to agronomy in our study, and surprisingly there were different processes delineating short term from long term varietal dynamics, independently of disease risk. Our results highlighted the importance of understanding varietal dynamics, an often overlooked component of agriculture sustainability, in addition to evolutionary forces shaping agro-diversity and genetic diversity distribution within crops. It is also crucial to understand how processes involved do scale up worldwide and for different crop species, so as not to mislead on-farm conservation efforts and efficacy of agro-diversity preservation. PMID:28066500

  11. Genetic diversity in Malus ×domestica (Rosaceae) through time in response to domestication.

    PubMed

    Gross, Briana L; Henk, Adam D; Richards, Christopher M; Fazio, Gennaro; Volk, Gayle M

    2014-10-01

    • Patterns of genetic diversity in domesticated plants are affected by geographic region of origin and cultivation, intentional artificial selection, and unintentional genetic bottlenecks. While bottlenecks are mainly associated with the initial domestication process, they can also affect diversity during crop improvement. Here, we investigate the impact of the improvement process on the genetic diversity of domesticated apple in comparison with other perennial and annual fruit crops.• Apple cultivars that were developed at various times (ranging from the 13th through the 20th century) and 11 of the 15 apple cultivars that are used for 90% of the apple production in the United States were surveyed for genetic diversity based on either 9 or 19 simple sequence repeats (SSRs). Diversity was compared using standard metrics and model-based approaches based on expected heterozygosity (He) at equilibrium. Improvement bottleneck data for fruit crops were also collected from the literature.• Domesticated apples showed no significant reduction in genetic diversity through time across the last eight centuries. Diversity was generally high, with an average He > 0.7 for apples from all centuries. However, diversity of the apples currently used for the bulk of commercial production was lower.• The improvement bottleneck in domesticated apples appears to be mild or nonexistent, in contrast to improvement bottlenecks in many annual and perennial fruit crops, as documented from the literature survey. The low diversity of the subset of cultivars used for commercial production, however, indicates that an improvement bottleneck may be in progress for this perennial crop. © 2014 Botanical Society of America, Inc.

  12. Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity in crop germplasm is an important resource for crop improvement, but information on genetic diversity is rare for Jerusalem artichoke, especially for traits related to water use efficiency. The objectives of this study were to investigate genetic variations for water use and water...

  13. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    NASA Astrophysics Data System (ADS)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In particular, canola production resulted in less overall water use but increased farm profits. Most crop substitutions were resource neutral. If future climate is drier, more winter annual crops like canola are likely to be adopted. Crop displacement is also important for determining market-mediated effects of biomass crop production. Correctly estimating crop displacement at the local scale greatly improves upon estimates for indirect land use change derived from the macro-scale PE and CGE models currently used by US EPA and the California Air Resources Board.

  14. Diversifying mechanisms in the on-farm evolution of crop mixtures.

    PubMed

    Thomas, Mathieu; Thépot, Stéphanie; Galic, Nathalie; Jouanne-Pin, Sophie; Remoué, Carine; Goldringer, Isabelle

    2015-06-01

    While modern agriculture relies on genetic homogeneity, diversifying practices associated with seed exchange and seed recycling may allow crops to adapt to their environment. This socio-genetic model is an original experimental evolution design referred to as on-farm dynamic management of crop diversity. Investigating such model can help in understanding how evolutionary mechanisms shape crop diversity submitted to diverse agro-environments. We studied a French farmer-led initiative where a mixture of four wheat landraces called 'Mélange de Touselles' (MDT) was created and circulated within a farmers' network. The 15 sampled MDT subpopulations were simultaneously submitted to diverse environments (e.g. altitude, rainfall) and diverse farmers' practices (e.g. field size, sowing and harvesting date). Twenty-one space-time samples of 80 individuals each were genotyped using 17 microsatellite markers and characterized for their heading date in a 'common-garden' experiment. Gene polymorphism was studied using four markers located in earliness genes. An original network-based approach was developed to depict the particular and complex genetic structure of the landraces composing the mixture. Rapid differentiation among populations within the mixture was detected, larger at the phenotypic and gene levels than at the neutral genetic level, indicating potential divergent selection. We identified two interacting selection processes: variation in the mixture component frequencies, and evolution of within-variety diversity, that shaped the standing variability available within the mixture. These results confirmed that diversifying practices and environments maintain genetic diversity and allow for crop evolution in the context of global change. Including concrete measurements of farmers' practices is critical to disentangle crop evolution processes. © 2015 John Wiley & Sons Ltd.

  15. Male-specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm.

    PubMed

    Cherif, Emira; Zehdi, Salwa; Castillo, Karina; Chabrillange, Nathalie; Abdoulkader, Sabira; Pintaud, Jean-Christophe; Santoni, Sylvain; Salhi-Hannachi, Amel; Glémin, Sylvain; Aberlenc-Bertossi, Frédérique

    2013-01-01

    Whether sex chromosomes are differentiated is an important aspect of our knowledge of dioecious plants, such as date palm (Phoenix dactylifera). In this crop plant, the female individuals produce dates, and are thus the more valuable sex. However, there is no way to identify the sex of date palm plants before reproductive age, and the sex-determining mechanism is still unclear. To identify sex-linked microsatellite markers, we surveyed a set of 52 male and 55 female genotypes representing the geographical diversity of the species. We found three genetically linked loci that are heterozygous only in males. Male-specific alleles allowed us to identify the gender in 100% of individuals. These results confirm the existence of an XY chromosomal system with a nonrecombining XY-like region in the date palm genome. The distribution of Y haplotypes in western and eastern haplogroups allowed us to trace two male ancestral paternal lineages that account for all known Y diversity in date palm. The very low diversity associated with Y haplotypes is consistent with clonal paternal transmission of a nonrecombining male-determining region. Our results establish the date palm as a biological model with one of the most ancient sex chromosomes in flowering plants. © 2012 IRD. New Phytologist © 2013 New Phytologist Trust.

  16. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives.

    PubMed

    Warschefsky, Emily; Penmetsa, R Varma; Cook, Douglas R; von Wettberg, Eric J B

    2014-10-01

    The genetic diversity of our crop plants has been substantially reduced during the process of domestication and breeding. This reduction in diversity necessarily constrains our ability to expand a crop's range of cultivation into environments that are more extreme than those in which it was domesticated, including into "sustainable" agricultural systems with reduced inputs of pesticides, water, and fertilizers. Conversely, the wild progenitors of crop plants typically possess high levels of genetic diversity, which underlie an expanded (relative to domesticates) range of adaptive traits that may be of agricultural relevance, including resistance to pests and pathogens, tolerance to abiotic extremes, and reduced dependence on inputs. Despite their clear potential for crop improvement, wild relatives have rarely been used systematically for crop improvement, and in no cases, have full sets of wild diversity been introgressed into a crop. Instead, most breeding efforts have focused on specific traits and dealt with wild species in a limited and typically ad hoc manner. Although expedient, this approach misses the opportunity to test a large suite of traits and deploy the full potential of crop wild relatives in breeding for the looming challenges of the 21st century. Here we review examples of hybridization in several species, both intentionally produced and naturally occurring, to illustrate the gains that are possible. We start with naturally occurring hybrids, and then examine a range of examples of hybridization in agricultural settings. © 2014 Botanical Society of America, Inc.

  17. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields

    PubMed Central

    Li, Longyun; Wu, Xiaoli; Wang, Yu

    2018-01-01

    In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis. PMID:29538438

  18. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields.

    PubMed

    Song, Xuhong; Pan, Yuan; Li, Longyun; Wu, Xiaoli; Wang, Yu

    2018-01-01

    In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis.

  19. Modeling Pollinator Community Response to Contrasting Bioenergy Scenarios

    PubMed Central

    Bennett, Ashley B.; Meehan, Timothy D.; Gratton, Claudio; Isaacs, Rufus

    2014-01-01

    In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation. PMID:25365559

  20. Fourteen Years of Diverse Annual No-Till Cropping in Washington’s Winter Wheat – Summer Fallow Region

    USDA-ARS?s Scientific Manuscript database

    We have completed the 14th year of a cropping systems experiment to evaluate diverse annual (i.e., no summer fallow) cropping systems using no-till as an alternative to tillage-intensive winter wheat (Triticum aestivum L.) – summer fallow (WW-SF). Soft white and hard white classes of winter and spri...

  1. Components of Effective Diversity Training Programmes.

    ERIC Educational Resources Information Center

    Wentling, Rose Mary; Palma-Rivas, Nilda

    1999-01-01

    Interviews with 12 diversity experts uncovered components of effective diversity training programs: management commitment and support, inclusion in strategic planning, attention to specific organizational needs, qualified trainers, mandatory attendance, inclusiveness, trust and confidentiality, accountability, and clearly focused evaluation. (SK)

  2. School ethnic diversity and White students' civic attitudes in England.

    PubMed

    Janmaat, Jan Germen

    2015-01-01

    The current paper focuses on White British students in lower secondary education and investigates the effect of school ethnic diversity on their levels of trust and inclusive attitudes towards immigrants. Use is made of panel data of the Citizenship Education Longitudinal Study (CELS) to explore these relationships. Ethnic diversity is measured with the proportion of students in a grade identifying with a minority. In agreement with contact theory, the paper initially finds a positive relation between diversity and inclusive attitudes on immigrants. However, this link disappears once controls for social background, gender and prior levels of the outcome are included in the model. This indicates that students with particular pre-enrolment characteristics have self-selected in diverse schools and that inclusive attitudes have stabilized before secondary education. Diversity further appears to have a negative impact on trust, irrespective of the number of controls added to the model. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Birthplace Diversity, Income Inequality and Education Gradients in Generalised Trust: The Relevance of Cognitive Skills in 29 Countries. OECD Education Working Papers, No. 164

    ERIC Educational Resources Information Center

    Borgonovi, Francesca; Pokropek, Artur

    2017-01-01

    The paper examines between-country differences in the mechanisms through which education could promote generalised trust using data from 29 countries participating in the OECD's Survey of Adult Skills (PIAAC). Results indicate that education is strongly associated with generalised trust and that a large part of this association is mediated by…

  4. A multi-domain trust management model for supporting RFID applications of IoT

    PubMed Central

    Li, Feng

    2017-01-01

    The use of RFID technology in complex and distributed environments often leads to a multi-domain RFID system, in which trust establishment among entities from heterogeneous domains without past interaction or prior agreed policy, is a challenge. The current trust management mechanisms in the literature do not meet the specific requirements in multi-domain RFID systems. Therefore, this paper analyzes the special challenges on trust management in multi-domain RFID systems, and identifies the implications and the requirements of the challenges on the solutions to the trust management of multi-domain RFID systems. A multi-domain trust management model is proposed, which provides a hierarchical trust management framework include a diversity of trust evaluation and establishment approaches. The simulation results and analysis show that the proposed method has excellent ability to deal with the trust relationships, better security, and higher accuracy rate. PMID:28708855

  5. A multi-domain trust management model for supporting RFID applications of IoT.

    PubMed

    Wu, Xu; Li, Feng

    2017-01-01

    The use of RFID technology in complex and distributed environments often leads to a multi-domain RFID system, in which trust establishment among entities from heterogeneous domains without past interaction or prior agreed policy, is a challenge. The current trust management mechanisms in the literature do not meet the specific requirements in multi-domain RFID systems. Therefore, this paper analyzes the special challenges on trust management in multi-domain RFID systems, and identifies the implications and the requirements of the challenges on the solutions to the trust management of multi-domain RFID systems. A multi-domain trust management model is proposed, which provides a hierarchical trust management framework include a diversity of trust evaluation and establishment approaches. The simulation results and analysis show that the proposed method has excellent ability to deal with the trust relationships, better security, and higher accuracy rate.

  6. [Spatio-temporal distribution of carabids and spiders between semi-natural field margin and the adjacent crop fields in agricultural landscape].

    PubMed

    Zhang, Xu Zhu; Han, Yin; Yu, Zhen Rong; Liu, Yun Hui

    2017-06-18

    This study was conducted before and after harvesting of wheat and maize in a typical agricultural landscape of the North China Plain. We investigated the diversity of two important natural enemy groups, carabids and spiders, using pitfall traps at crop field margin with different vegetation structures and their neighboring crop field. Throughout the comparison of the spatial and temporal distribution of the diversity of carabids and spiders in field margin and neighboring field, and the investigation of the relationship between arthropod communities and vegetation structure, this study aimed to understand the role of semi-natural field margin in biodiversity conservation of different natural enemy taxa. Results showed that the abundance of spiders was significantly higher in field margin than in neighboring fields over the entire period. No significant difference of the diversity of carabids in field margin and crop field was observed, but the community composition was different. Number of spider families increased in field margin but deceased in crop field after harvesting, indicating a migration activity between field and field margin. Vegetation structure in the field margin had different association with carabids than with spiders, with diversity of dominant carabid species positively associated with herb coverage and negatively with wood coverage, while the diversity of spider family Linyphiidae was positively associated with herb coverage only. Semi-natural habitat benefited the conservation of the diversity of arthropod natural enemies in crop field via promoting their dispersal to crop field, while such impacts differed from different vegetation structures and varied from target beneficial natural enemy communities. Future studies should focus on in-depth understanding of the food and habitat source requirement of different natural enemy taxa, and hence to design suitable semi-natural habitats to maintain a high diversity of natural enemy communities.

  7. 75 FR 81377 - Prohibited Service at Savings and Loan Holding Companies; Reinstitution of Expiration Date of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... of trust, or money laundering (or who has agreed to enter into a pretrial diversion or similar... has been convicted of any criminal offense involving dishonesty, breach of trust, or money laundering...

  8. Assessment of Genetically Modified Soybean in Relation to Natural Variation in the Soybean Seed Metabolome

    PubMed Central

    Clarke, Joseph D.; Alexander, Danny C.; Ward, Dennis P.; Ryals, John A.; Mitchell, Matthew W.; Wulff, Jacob E.; Guo, Lining

    2013-01-01

    Genetically modified (GM) crops currently constitute a significant and growing part of agriculture. An important aspect of GM crop adoption is to demonstrate safety and equivalence with respect to conventional crops. Untargeted metabolomics has the ability to profile diverse classes of metabolites and thus could be an adjunct for GM crop substantial equivalence assessment. To account for environmental effects and introgression of GM traits into diverse genetic backgrounds, we propose that the assessment for GM crop metabolic composition should be understood within the context of the natural variation for the crop. Using a non-targeted metabolomics platform, we profiled 169 metabolites and established their dynamic ranges from the seeds of 49 conventional soybean lines representing the current commercial genetic diversity. We further demonstrated that the metabolome of a GM line had no significant deviation from natural variation within the soybean metabolome, with the exception of changes in the targeted engineered pathway. PMID:24170158

  9. Genetic diversity and population structure analysis of accessions in the Chinese cowpea [Vigna unguiculata (L.) Walp.] germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Cowpea (Vigna unguiculata) is an important legume crop with diverse uses. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, a total of 200 genic and 100 genomic simple sequence repeat (SSR) markers were developed from cowpea unigene ...

  10. Endophytic fungal diversity of Fragaria vesca, a crop wild relative of strawberry, along environmental gradients within a small geographical area

    PubMed Central

    Yokoya, Kazutomo; Postel, Sarah; Fang, Rui

    2017-01-01

    Background Fungal endophytes are highly diverse ubiquitous asymptomatic microorganisms, some of which appear to be symbiotic. Depending on abiotic conditions and genotype of the plant, the diversity of endophytes may confer fitness benefits to plant communities. Methods We studied a crop wild relative (CWR) of strawberry, along environmental gradients with a view to understand the cultivable root-derived endophytic fungi that can be evaluated for promoting growth and tolerating stress in selected plant groups. The main objectives were to understand whether: (a) suboptimal soil types are drivers for fungal distribution and diversity; (b) high pH and poor nutrient availability lead to fungal-plant associations that help deliver fitness benefits; and (c) novel fungi can be identified for their use in improving plant growth, and alleviate stress in diverse crops. Results The study revealed that habitats with high pH and low nutrient availability have higher fungal diversity, with more rare fungi isolated from locations with chalky soil. Plants from location G were the healthiest even though soil from this location was the poorest in nutrients. Study of environmental gradients, especially extreme habitat types, may help understand the root zone fungal diversity of different functional classes. Two small in vitro pilot studies conducted with two isolates showed that endophytic fungi from suboptimal habitats can promote plant growth and fitness benefits in selected plant groups. Discussion Targeting native plants and crop wild relatives for research offers opportunities to unearth diverse functional groups of root-derived endophytic fungi that are beneficial for crops. PMID:28168102

  11. Accessing genetic diversity for crop improvement.

    PubMed

    Glaszmann, J C; Kilian, B; Upadhyaya, H D; Varshney, R K

    2010-04-01

    Vast germplasm collections are accessible but their use for crop improvement is limited-efficiently accessing genetic diversity is still a challenge. Molecular markers have clarified the structure of genetic diversity in a broad range of crops. Recent developments have made whole-genome surveys and gene-targeted surveys possible, shedding light on population dynamics and on the impact of selection during domestication. Thanks to this new precision, germplasm description has gained analytical power for resolving the genetic basis of trait variation and adaptation in crops such as major cereals, chickpea, grapevine, cacao, or banana. The challenge now is to finely characterize all the facets of plant behavior in carefully chosen materials. We suggest broadening the use of 'core reference sets' so as to facilitate material sharing within the scientific community.

  12. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale.

    PubMed

    Figuerola, Eva L M; Guerrero, Leandro D; Türkowsky, Dominique; Wall, Luis G; Erijman, Leonardo

    2015-03-01

    The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Asia’s Indigenous Horticultural Crops: An Introduction

    USDA-ARS?s Scientific Manuscript database

    Crop diversity is an urgent issue today in horticulture, which is faced with an erosion of crop variability as monoculture systems dominate crop production throughout the world, particularly in Europe and North America. At the same time there is great interest in indigenous horticultural crops aroun...

  14. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke.

    PubMed

    Bock, Dan G; Kane, Nolan C; Ebert, Daniel P; Rieseberg, Loren H

    2014-02-01

    The perennial sunflower Helianthus tuberosus, known as Jerusalem Artichoke or Sunchoke, was cultivated in eastern North America before European contact. As such, it represents one of the few taxa that can support an independent origin of domestication in this region. Its tubers were adopted as a source of food and forage when the species was transferred to the Old World in the early 1600s, and are still used today. Despite the cultural and economic importance of this tuber crop species, its origin is debated. Competing hypotheses implicate the occurrence of polyploidization with or without hybridization, and list the annual sunflower H. annuus and five distantly related perennial sunflower species as potential parents. Here, we test these scenarios by skimming the genomes of diverse populations of Jerusalem Artichoke and its putative progenitors. We identify relationships among Helianthus taxa using complete plastomes (151 551 bp), partial mitochondrial genomes (196 853 bp) and 35S (8196 bp) and 5S (514 bp) ribosomal DNA. Our results refute the possibility that Jerusalem Artichoke is of H. annuus ancestry. We provide the first genetic evidence that this species originated recursively from perennial sunflowers of central-eastern North America via hybridization between tetraploid Hairy Sunflower and diploid Sawtooth Sunflower. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  16. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency.

    PubMed

    Orr, Douglas J; Alcântara, André; Kapralov, Maxim V; Andralojc, P John; Carmo-Silva, Elizabete; Parry, Martin A J

    2016-10-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally "better" compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    PubMed

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. The Campus Diversity Initiative: A Case Study

    ERIC Educational Resources Information Center

    Nayak, Sharada

    2005-01-01

    This Case Study presents the Campus Diversity Initiative (CDI), a three-phase project lead by the Educational Resources Project Centre Trust, in New Delhi, India. In a historic and cultural context different from that of India, the American Diversity Initiative was launched by the Ford Foundation in 1990 and addressed their diversity issues by…

  19. Control of cucurbit viruses.

    PubMed

    Lecoq, Hervé; Katis, Nikolaos

    2014-01-01

    More than 70 well-characterized virus species transmitted by a diversity of vectors may infect cucurbit crops worldwide. Twenty of those cause severe epidemics in major production areas, occasionally leading to complete crop failures. Cucurbit viruses' control is based on three major axes: (i) planting healthy seeds or seedlings in a clean environment, (ii) interfering with vectors activity, and (iii) using resistant cultivars. Seed disinfection and seed or seedling quality controls guarantee growers on the sanitary status of their planting material. Removal of virus or vector sources in the crop environment can significantly delay the onset of viral epidemics. Insecticide or oil application may reduce virus spread in some situations. Diverse cultural practices interfere with or prevent vector reaching the crop. Resistance can be obtained by grafting for soil-borne viruses, by cross-protection, or generally by conventional breeding or genetic engineering. The diversity of the actions that may be taken to limit virus spread in cucurbit crops and their limits will be discussed. The ultimate goal is to provide farmers with technical packages that combine these methods within an integrated disease management program and are adapted to different countries and cropping systems.

  20. Appreciating age diversity and German nurse well-being and commitment: co-worker trust as the mediator.

    PubMed

    Lehmann-Willenbrock, Nale; Lei, Zhike; Kauffeld, Simone

    2012-06-01

    Nursing practice faces the challenges of succeeding with a great diversity of customers and managing a diverse workforce with a wide range of age differences. While age diversity can lead to increased creativity and a greater richness of values and skills, it can also lead to value clashes, disrespect of each other's viewpoints, and increased conflict. As a result, nurses frequently experience stress, work-life imbalance, and a withdrawal from commitment. We propose the injection of positive diversity mindsets (age diversity appreciation) as one remedy. Specifically, we suggest that age diversity appreciation is positively related to nurses' well-being (stress and work-life balance), and also positively related to their team commitment. We further hypothesize that nurses' trust in co-workers mediates the hypothesized relationships. Our survey data of 138 nurses in a large hospital in Germany supported our hypotheses. We discuss both theoretical and managerial implications of our findings in the context of age diversity and nursing work outcomes in hospitals. © 2012 Blackwell Publishing Asia Pty Ltd.

  1. Complementary crops and landscape features sustain wild bee communities.

    PubMed

    Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew

    2018-06-01

    Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.

  2. Increasing cropping system diversity balances productivity, profitability and environmental health

    USDA-ARS?s Scientific Manuscript database

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and can have large negative im...

  3. Attitudes, perceptions, and trust. Insights from a consumer survey regarding genetically modified banana in Uganda.

    PubMed

    Kikulwe, Enoch M; Wesseler, Justus; Falck-Zepeda, Jose

    2011-10-01

    Genetically modified (GM) crops and food are still controversial. This paper analyzes consumers' perceptions and institutional awareness and trust toward GM banana regulation in Uganda. Results are based on a study conducted among 421 banana-consuming households between July and August 2007. Results show a high willingness to purchase GM banana among consumers. An explanatory factor analysis is conducted to identify the perceptions toward genetic modification. The identified factors are used in a cluster analysis that grouped consumers into segments of GM skepticism, government trust, health safety concern, and food and environmental safety concern. Socioeconomic characteristics differed significantly across segments. Consumer characteristics and perception factors influence consumers' willingness to purchase GM banana. The institutional awareness and trust varied significantly across segments as well. The findings would be essential to policy makers when designing risk-communication strategies targeting different consumer segments to ensure proper discussion and addressing potential concerns about GM technology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Integrated pest management and weed management in the United States and Canada.

    PubMed

    Owen, Micheal D K; Beckie, Hugh J; Leeson, Julia Y; Norsworthy, Jason K; Steckel, Larry E

    2015-03-01

    There is interest in more diverse weed management tactics because of evolved herbicide resistance in important weeds in many US and Canadian crop systems. While herbicide resistance in weeds is not new, the issue has become critical because of the adoption of simple, convenient and inexpensive crop systems based on genetically engineered glyphosate-tolerant crop cultivars. Importantly, genetic engineering has not been a factor in rice and wheat, two globally important food crops. There are many tactics that help to mitigate herbicide resistance in weeds and should be widely adopted. Evolved herbicide resistance in key weeds has influenced a limited number of growers to include a more diverse suite of tactics to supplement existing herbicidal tactics. Most growers still emphasize herbicides, often to the exclusion of alternative tactics. Application of integrated pest management for weeds is better characterized as integrated weed management, and more typically integrated herbicide management. However, adoption of diverse weed management tactics is limited. Modifying herbicide use will not solve herbicide resistance in weeds, and the relief provided by different herbicide use practices is generally short-lived at best. More diversity of tactics for weed management must be incorporated in crop systems. © 2014 Society of Chemical Industry.

  5. Quality? Is it Allowed? FACTC Focus, 2006

    ERIC Educational Resources Information Center

    Doerr, Mark, Ed.

    2006-01-01

    "FACTC Focus" is a publication of Faculty Association of Community and Technical Colleges (FACTC) with the purpose of presenting diverse views on faculty issues. Included in this issue are: (1) Shooting In The Dark: Evaluating Distance Learning Instruction (Stephanie Delaney); (2) Trust Who? - Trust and Learning: Crafting a Conversation That…

  6. Genetic structure of farmer-managed varieties in clonally-propagated crops.

    PubMed

    Scarcelli, N; Tostain, S; Vigouroux, Y; Luong, V; Baco, M N; Agbangla, C; Daïnou, O; Pham, J L

    2011-08-01

    The relative role of sexual reproduction and mutation in shaping the diversity of clonally propagated crops is largely unknown. We analyzed the genetic diversity of yam-a vegetatively-propagated crop-to gain insight into how these two factors shape its diversity in relation with farmers' classifications. Using 15 microsatellite loci, we analyzed 485 samples of 10 different yam varieties. We identified 33 different genotypes organized in lineages supported by high bootstrap values. We computed the probability that these genotypes appeared by sexual reproduction or mutation within and between each lineage. This allowed us to interpret each lineage as a product of sexual reproduction that has evolved by mutation. Moreover, we clearly noted a similarity between the genetic structure and farmers' classifications. Each variety could thus be interpreted as being the product of sexual reproduction having evolved by mutation. This highly structured diversity of farmer-managed varieties has consequences for the preservation of yam diversity.

  7. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.

    PubMed

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P D; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Ward, Kimiora L; Westphal, Catrin; Potts, Simon G

    2015-06-16

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.

  8. Can reducing tillage and increasing crop diversity benefit grain and forage production?

    USDA-ARS?s Scientific Manuscript database

    Benefits of reduced tillage and diverse rotation cropping systems include reversing soil C loss, mitigating greenhouse gas production, and improving soil health. However, adoption of these strategies is lagging, particularly in the upper Midwest, due to a perception that reduced tillage reduces cro...

  9. Assessment of genetic diversity of sweet potato in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

  10. Extending trust to immigrants: Generalized trust, cross-group friendship and anti-immigrant sentiments in 21 European societies

    PubMed Central

    van der Linden, Meta; Hooghe, Marc; de Vroome, Thomas; Van Laar, Colette

    2017-01-01

    The aim of this study is twofold. First, we expand on the literature by testing whether generalized trust is negatively related to anti-immigrant sentiments in Europe. Second, we examine to what extent the relation between generalized trust and anti-immigrant sentiments is dependent upon cross-group friendships. We apply multilevel linear regression modeling to representative survey data enriched with levels of ethnic diversity covering 21 European countries. Results show that both generalized trust and cross-group friendship are negatively related to anti-immigrant sentiments. However, there is a negligible positive relation between generalized trust and cross-group friendship (r = .10), and we can clearly observe that they operate independently from one another. Hence, trusting actors are not more likely to form more cross-group friendships, and cross-group friendship do not lead to the development of more generalized trust. Instead, the findings show that generalized trust leads immigrants too to be included in the radius of trusted others and, as a consequence, the benign effects of generalized trust apply to them as well. We conclude that the strength of generalized trust is a form of generalization, beyond the confines of individual variations in intergroup experiences. PMID:28481925

  11. Extending trust to immigrants: Generalized trust, cross-group friendship and anti-immigrant sentiments in 21 European societies.

    PubMed

    van der Linden, Meta; Hooghe, Marc; de Vroome, Thomas; Van Laar, Colette

    2017-01-01

    The aim of this study is twofold. First, we expand on the literature by testing whether generalized trust is negatively related to anti-immigrant sentiments in Europe. Second, we examine to what extent the relation between generalized trust and anti-immigrant sentiments is dependent upon cross-group friendships. We apply multilevel linear regression modeling to representative survey data enriched with levels of ethnic diversity covering 21 European countries. Results show that both generalized trust and cross-group friendship are negatively related to anti-immigrant sentiments. However, there is a negligible positive relation between generalized trust and cross-group friendship (r = .10), and we can clearly observe that they operate independently from one another. Hence, trusting actors are not more likely to form more cross-group friendships, and cross-group friendship do not lead to the development of more generalized trust. Instead, the findings show that generalized trust leads immigrants too to be included in the radius of trusted others and, as a consequence, the benign effects of generalized trust apply to them as well. We conclude that the strength of generalized trust is a form of generalization, beyond the confines of individual variations in intergroup experiences.

  12. Knowing when to trust a teacher: The contribution of category status and sample composition to young children's judgments of informant trustworthiness.

    PubMed

    Lawson, Chris A

    2018-09-01

    Two experiments examined the extent to which category status influences children's attention to the composition of evidence samples provided by different informants. Children were told about two informants, each of whom presented different samples of evidence, and then were asked to judge which informant they would trust to help them learn something new. The composition of evidence samples was manipulated such that one sample included either a large number (n = 5) or a diverse range of exemplars relative to the other sample, which included either a small number (n = 2) or a homogeneous range of exemplars. Experiment 1 revealed that participants (N = 37; M age = 4.76 years) preferred to place their trust in the informant who presented the large or diverse sample when each informant was labeled "teacher" but exhibited no preference when each informant was labeled "child." Experiment 2 revealed developmental differences in responses when labels and sample composition were pitted against each other. Younger children (n = 32; M age = 3.42 years) consistently trusted the "teacher" regardless of the composition of the sample the informant was said to have provided, whereas older children (n = 30; M age = 5.54 years) consistently trusted the informant who provided the large or diverse sample regardless of whether it was provided by a "teacher" or a "child." These results have important implications for understanding the interplay between children's category knowledge and their evaluation of evidence. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Diversity in phenotypic and nutritional traits in vegetable amaranth (Amaranthus tricolor), a nutritionally underutilised crop.

    PubMed

    Shukla, Sudhir; Bhargava, Atul; Chatterjee, Avijeet; Pandey, Avinash Chandra; Mishra, Brij K

    2010-01-15

    Assessment of genetic diversity in a crop-breeding programme helps in the identification of diverse parental combinations to create segregating progenies with maximum genetic variability and facilitates introgression of desirable genes from diverse germplasm into the available genetic base. In the present study, 39 strains of vegetable amaranth (Amaranthus tricolor) were evaluated for eight morphological and seven quality traits for two test seasons to study the extent of genetic divergence among the strains. Multivariate analysis showed that the first four principal components contributed 67.55% of the variability. Cluster analysis grouped the strains into six clusters that displayed a wide range of diversity for most of the traits. Cluster analysis has proved to be an effective method in grouping strains that may facilitate effective management and utilisation in crop-breeding programmes. The diverse strains falling in different clusters were identified, which can be utilised in different hybridisation programmes to develop high-foliage-yielding varieties rich in nutritional components. Copyright (c) 2009 Society of Chemical Industry.

  14. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices.

    PubMed

    Tan, Yong; Cui, Yinshan; Li, Haoyu; Kuang, Anxiu; Li, Xiaoran; Wei, Yunlin; Ji, Xiuling

    2017-01-01

    Rhizosphere and endophytic fungal communities are considered critically important for plant health and soil fertility. In response to continuous cropping, Panax notoginseng becomes vulnerable to attack by fungal pathogens. In the present study, culture-independent Illumina MiSeq was used to investigate the rhizospheric and root endophytic fungi in response to continuous Panax notoginseng cropping practices. The results demonstrated that fungal diversity is increased inside the roots and in rhizospheric. Ascomycota, Zygomycota, Basidiomycota and Chytridiomycota were the dominant phyla detected during the continuous cropping of Panax notoginseng. The fungal diversity in the rhizospheric soil and roots of root-rot P. notoginseng plants are less than that of healthy plants in the same cultivating year, thus showing that root-rot disease also affects the community structure and diversity of rhizospheric and root endophytic fungi. Similarities in the major fungal components show that endophytic fungal communities are similar to rhizospheric soil fungal community based on a specialized subset of organisms. Canonical correspondence analysis on the fungal communities in root-rot rhizospheric from both healthy plants and rotation soils reveals that the soil pH and organic matter have the greatest impact upon the microbial community composition during continuous cropping, whereas soil nutrition status does not significantly affect the fungal community composition in response to continuous cropping practices. In addition, the results suggest that the unclassified genera Leotiomycetes, Cylindrocarpon, Fusarium and Mycocentrospora are shown as the potential pathogens which are responsible for the obstacles in continuous cropping of P. notoginseng. Further exploration of these potential pathogens might be useful for the biological control of continuous cropping of P. notoginseng. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Population structure and phylogenetic relationships in a diverse panel of Brassica rapa L

    USDA-ARS?s Scientific Manuscript database

    The crop species Brassica rapa L. has significant economic importance around the globe. Crop domestication and improvement has resulted in extreme phenotypic diversity and subspecies that are used for oilseed, food for human consumption and fodder for livestock. However, the global distribution and ...

  16. Long-term productivity in traditional, organic and low-input management systems of the Upper Midwest

    USDA-ARS?s Scientific Manuscript database

    Traditional cropping practices in the Upper Midwest are marked by low-diversity and high tillage disturbance. Eight years of production were evaluated to determine potential benefits of adopting low-input and organic management practices on system productivity. Increased crop rotation diversity, red...

  17. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems

    PubMed Central

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-01-01

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits. PMID:28587254

  18. How community trust was gained by an NGO in Malawi, Central Africa, to mitigate the impact of HIV/AIDS.

    PubMed

    MacIntyre, Linda M; Waters, Catherine M; Rankin, Sally H; Schell, Ellen; Laviwa, Jones; Luhanga, Melton Richard

    2013-07-01

    Trust is valuable social capital that is essential for effective partnerships to improve a community's health. Yet, how to establish trust in culturally diverse communities is elusive for many researchers, practitioners, and agencies. The purpose of this qualitative study was to obtain perspectives of individuals working for a nongovernmental organization (NGO) about gaining community trust in Malawi in order to mitigate the impact of HIV/AIDS. Twenty-six interviews were conducted over 12 months. Content analysis revealed the relationship between NGO staff and the community is crucial to gaining community trust. Gender, social context, and religious factors influence the establishment of trust within the relationship, but NGO assumptions about the community can erode community trust. Nurses and other health professionals working with the NGOs can help create conditions to build trust in an ethically and culturally sensitive manner whereby communities can develop processes to address their own health concerns.

  19. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    PubMed

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  20. Composition and diversity of weed communities in Al-Jouf province, northern Saudi Arabia

    PubMed Central

    Gomaa, Nasr H.

    2012-01-01

    The aim of this study was to identify the main weed communities in Al-Jouf province in northern Saudi Arabia. Moreover, the composition and diversity of these communities were studied in relation to soil variables and crop type. Some 54 stands representing olive orchards, date palm orchards, wheat crop and watermelon crop were studied, using ten quadrats (1 × 1 m) per stand. A total of 71 species belonging to 22 families and 61 genera were observed. The classification of vegetation using the Two Way Indicator Species Analysis (TWINSPAN) resulted in the recognition of four vegetation groups representing wheat crop, orchards in winter season, orchards in summer season and watermelon crop. These results suggested the importance of both crop and season for the formation of weed community. Detrended Correspondence Analysis (DCA) showed that these groups are clearly distinguished by the first two DCA axes. The species richness was higher in both olive and date palm orchards than in wheat and watermelon crops. This pattern of species richness could be related to farm management practices and habitat micro-heterogeneity. Soil electrical conductivity, organic carbon and soil texture showed significant correlations with species richness and the cover values of some dominant species, suggesting the significant role of soil characteristics in weed community structure and diversity. PMID:23961198

  1. Nutrition education, farm production diversity, and commercialization on household and individual dietary diversity in Zimbabwe.

    PubMed

    Murendo, Conrad; Nhau, Brighton; Mazvimavi, Kizito; Khanye, Thamsanqa; Gwara, Simon

    2018-01-01

    Nutrition education is crucial for improved nutrition outcomes. However, there are no studies to the best of our knowledge that have jointly analysed the roles of nutrition education, farm production diversity and commercialization on household, women and child dietary diversity. This article jointly analyses the role of nutrition education, farm production diversity and commercialization on household, women and children dietary diversity in Zimbabwe. In addition, we analyze separately the roles of crop and livestock diversity and individual agricultural practices on dietary diversity. Data were collected from 2,815 households randomly selected in eight districts. Negative binomial regression was used for model estimations. Nutrition education increased household, women, and child dietary diversity by 3, 9 and 24%, respectively. Farm production diversity had a strong and positive association with household and women dietary diversity. Crop diversification led to a 4 and 5% increase in household and women dietary diversity, respectively. Furthermore, livestock diversification and market participation were positively associated with household, women, and children dietary diversity. The cultivation of pulses and fruits increased household, women, and children dietary diversity. Vegetable production and goat rearing increased household and women dietary diversity. Nutrition education and improving access to markets are promising strategies to improve dietary diversity at both household and individual level. Results demonstrate the value of promoting nutrition education; farm production diversity; small livestock; pulses, vegetables and fruits; crop-livestock integration; and market access for improved nutrition.

  2. Nutrition education, farm production diversity, and commercialization on household and individual dietary diversity in Zimbabwe

    PubMed Central

    Murendo, Conrad; Nhau, Brighton; Mazvimavi, Kizito; Khanye, Thamsanqa; Gwara, Simon

    2018-01-01

    Background Nutrition education is crucial for improved nutrition outcomes. However, there are no studies to the best of our knowledge that have jointly analysed the roles of nutrition education, farm production diversity and commercialization on household, women and child dietary diversity. Objective This article jointly analyses the role of nutrition education, farm production diversity and commercialization on household, women and children dietary diversity in Zimbabwe. In addition, we analyze separately the roles of crop and livestock diversity and individual agricultural practices on dietary diversity. Design Data were collected from 2,815 households randomly selected in eight districts. Negative binomial regression was used for model estimations. Results Nutrition education increased household, women, and child dietary diversity by 3, 9 and 24%, respectively. Farm production diversity had a strong and positive association with household and women dietary diversity. Crop diversification led to a 4 and 5% increase in household and women dietary diversity, respectively. Furthermore, livestock diversification and market participation were positively associated with household, women, and children dietary diversity. The cultivation of pulses and fruits increased household, women, and children dietary diversity. Vegetable production and goat rearing increased household and women dietary diversity. Conclusions Nutrition education and improving access to markets are promising strategies to improve dietary diversity at both household and individual level. Results demonstrate the value of promoting nutrition education; farm production diversity; small livestock; pulses, vegetables and fruits; crop-livestock integration; and market access for improved nutrition.

  3. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    PubMed

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2018-03-01

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Statistical modeling of yield and variance instability in conventional and organic cropping systems

    USDA-ARS?s Scientific Manuscript database

    Cropping systems research was undertaken to address declining crop diversity and verify competitiveness of alternatives to the predominant conventional cropping system in the northern Corn Belt. To understand and capitalize on temporal yield variability within corn and soybean fields, we quantified ...

  5. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3 —N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  6. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems.

  7. The Role of Teacher Trust in Segregated Elementary Schools: A Multilevel Repeated Measures Examination

    ERIC Educational Resources Information Center

    Dewulf, Lisa; van Braak, Johan; Van Houtte, Mieke

    2017-01-01

    This study aims to investigate how teachers' trust in their students relates to reading comprehension achievement in socially and ethnically segregated elementary schools in Flanders (Belgium) by taking into account class composition characteristics. It is examined how student variables, ethnic diversity and the proportion of non-native students…

  8. Limited Impact of a Fall-Seeded, Spring-Terminated Rye Cover Crop on Beneficial Arthropods.

    PubMed

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2017-04-01

    Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Crop yield responses to a hardwood biochar across varied soils and climate conditions

    USDA-ARS?s Scientific Manuscript database

    Biochars applied to soil for crop yield improvements have produced mixed results. The assorted crop yield responses may be linked to employing biochars with diverse chemical and physical characteristics. To clarify if biochars can improve crop yields, it may be prudent to evaluate one biochar type...

  10. Wheat yield and yield stability of eight dryland crop rotations

    USDA-ARS?s Scientific Manuscript database

    The winter wheat (Triticum aestivum L.)-fallow (WF) dryland production system employed in the Central Great Plains has evolved in the past 40 years to include a diversity of other crops, with a reduction in fallow frequency. Wheat remains the base crop for essentially all cropping systems. Decisions...

  11. Intensifying a semi-arid dryland crop rotation by replacing fallow with pea

    USDA-ARS?s Scientific Manuscript database

    Increasing dryland cropping system intensity in the semi-arid central Great Plains by reducing frequency of fallow can add diversity to cropping systems and decrease erosion potential. However elimination of the periodic fallow phase has been shown to reduce yields of subsequent crops in this region...

  12. Diverse rotations and poultry litter improves soybean yield

    USDA-ARS?s Scientific Manuscript database

    Continuous cropping systems without rotations or cover crops are perceived as unsustainable for long-term yield and soil health. Continuous systems, defined as continually producing a crop on the same parcel of land for more than three years, is thought to reduce yields. Given that crop rotations a...

  13. Canola integration into semi-arid wheat cropping systems of the inland Pacific Northwestern USA

    USDA-ARS?s Scientific Manuscript database

    The inland Pacific Northwestern USA (iPNW) wheat-producing region has a diversity of environments and soils, yet it lacks crop diversity and is one of the few semi-arid wheat-growing regions without significant integration of oilseeds. Four major agroecological zones, primarily characterised by wate...

  14. Rotational Effects of Cuphea on Corn, Spring Wheat, and Soybean

    USDA-ARS?s Scientific Manuscript database

    Agricultural diversity is lacking in the northern Corn Belt. Adding crop diversity to rotations can give economic and environmental benefits. Cuphea (Cuphea viscosissima Jacq. x C. lanceolata W.T. Aiton; PSR23), which grows well in the northern Corn Belt, is a new oilseed crop and a source of medium...

  15. Assessment of Cropping System Diversity in the Fergana Valley Through Image Fusion of Landsat 8 and SENTINEL-1

    NASA Astrophysics Data System (ADS)

    Dimov, D.; Kuhn, J.; Conrad, C.

    2016-06-01

    In the transitioning agricultural societies of the world, food security is an essential element of livelihood and economic development with the agricultural sector very often being the major employment factor and income source. Rapid population growth, urbanization, pollution, desertification, soil degradation and climate change pose a variety of threats to a sustainable agricultural development and can be expressed as agricultural vulnerability components. Diverse cropping patterns may help to adapt the agricultural systems to those hazards in terms of increasing the potential yield and resilience to water scarcity. Thus, the quantification of crop diversity using indices like the Simpson Index of Diversity (SID) e.g. through freely available remote sensing data becomes a very important issue. This however requires accurate land use classifications. In this study, the focus is set on the cropping system diversity of garden plots, summer crop fields and orchard plots which are the prevalent agricultural systems in the test area of the Fergana Valley in Uzbekistan. In order to improve the accuracy of land use classification algorithms with low or medium resolution data, a novel processing chain through the hitherto unique fusion of optical and SAR data from the Landsat 8 and Sentinel-1 platforms is proposed. The combination of both sensors is intended to enhance the object's textural and spectral signature rather than just to enhance the spatial context through pansharpening. It could be concluded that the Ehlers fusion algorithm gave the most suitable results. Based on the derived image fusion different object-based image classification algorithms such as SVM, Naïve Bayesian and Random Forest were evaluated whereby the latter one achieved the highest classification accuracy. Subsequently, the SID was applied to measure the diversification of the three main cropping systems.

  16. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    PubMed Central

    Muñoz, Nacira; Liu, Ailin; Kan, Leo; Li, Man-Wah; Lam, Hon-Ming

    2017-01-01

    Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes. PMID:28165413

  17. Importance of Soil Temperature for the Growth of Temperate Crops under a Tropical Climate and Functional Role of Soil Microbial Diversity.

    PubMed

    Sabri, Nurul Syazwani Ahmad; Zakaria, Zuriati; Mohamad, Shaza Eva; Jaafar, A Bakar; Hara, Hirofumi

    2018-04-28

    A soil cooling system that prepares soil for temperate soil temperatures for the growth of temperate crops under a tropical climate is described herein. Temperate agriculture has been threatened by the negative impact of temperature increases caused by climate change. Soil temperature closely correlates with the growth of temperate crops, and affects plant processes and soil microbial diversity. The present study focuses on the effects of soil temperatures on lettuce growth and soil microbial diversity that maintains the growth of lettuce at low soil temperatures. A model temperate crop, loose leaf lettuce, was grown on eutrophic soil under soil cooling and a number of parameters, such as fresh weight, height, the number of leaves, and root length, were evaluated upon harvest. Under soil cooling, significant differences were observed in the average fresh weight (P<0.05) and positive development of the roots, shoots, and leaves of lettuce. Janthinobacterium (8.142%), Rhodoplanes (1.991%), Arthrospira (1.138%), Flavobacterium (0.857%), Sphingomonas (0.790%), Mycoplana (0.726%), and Pseudomonas (0.688%) were the dominant bacterial genera present in cooled soil. Key soil fungal communities, including Pseudaleuria (18.307%), Phoma (9.968%), Eocronartium (3.527%), Trichosporon (1.791%), and Pyrenochaeta (0.171%), were also recovered from cooled soil. The present results demonstrate that the growth of temperate crops is dependent on soil temperature, which subsequently affects the abundance and diversity of soil microbial communities that maintain the growth of temperate crops at low soil temperatures.

  18. Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes.

    PubMed

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants.

  19. Diversity of Rhizosphere Soil Arbuscular Mycorrhizal Fungi in Various Soybean Cultivars under Different Continuous Cropping Regimes

    PubMed Central

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants. PMID:23977368

  20. Genetic erosion in maize's center of origin.

    PubMed

    Dyer, George A; López-Feldman, Alejandro; Yúnez-Naude, Antonio; Taylor, J Edward

    2014-09-30

    Crop genetic diversity is an indispensable resource for farmers and professional breeders responding to changing climate, pests, and diseases. Anecdotal appraisals in centers of crop origin have suggested serious threats to this diversity for over half a century. However, a nationwide inventory recently found all maize races previously described for Mexico, including some formerly considered nearly extinct. A flurry of social studies seems to confirm that farmers maintain considerable diversity. Here, we compare estimates of maize diversity from case studies over the past 15 y with nationally and regionally representative matched longitudinal data from farmers across rural Mexico. Our findings reveal an increasing bias in inferences based on case study results and widespread loss of diversity. Cross-sectional, case study data suggest that farm-level richness has increased by 0.04 y(-1) nationwide; however, direct estimates using matched longitudinal data reveal that richness dropped -0.04 y(-1) between 2002 and 2007, from 1.43 to 1.22 varieties per farm. Varietal losses occurred across regions and altitudinal zones, and regardless of farm turnover within the sector. Extinction of local maize populations may not have resulted in an immediate loss of alleles, but low varietal richness and changes in maize's metapopulation dynamics may prevent farmers from accessing germplasm suitable to a rapidly changing climate. Declining yields could then lead farmers to leave the sector and result in a further loss of diversity. Similarities in research approaches across crops suggest that methodological biases could conceal a loss of diversity at other centers of crop origin.

  1. One plant, two plants, three plants, four: does soil carbon respond to diversifying by one plant more? (Invited)

    NASA Astrophysics Data System (ADS)

    Grandy, S.

    2013-12-01

    Plant diversity is known to strongly influence aboveground ecosystem functions, but our understanding of its effects on belowground carbon (C) cycling has not kept pace. We know in broad terms that the belowground implications of reducing plant diversity include changes in soil nutrient cycling and biological communities, but remain uncertain about the specific links between plant diversity, soil microbial communities, and soil C cycling. Our knowledge gap is especially wide in agricultural systems, which comprise ~50% of the contiguous U.S. and differ from non-managed systems because diversity: (1) occurs primarily over time (i.e. crop rotations) rather than in space (i.e. inter-cropping); (2) exists as one of multiple management factors that potentially regulates soil C dynamics; and (3) is almost always low, with the addition or subtraction of a single plant species often representing a substantial change in diversity. I have been addressing the uncertain relationships between agricultural plant diversity and soil C cycling with a multi-tiered approach that includes a global meta-analysis, site-specific field manipulations, and intensive laboratory analyses. The meta-analysis using 122 studies shows that compared to single-crop monocultures, rotations increased soil microbial biomass C by 20.7% and microbial biomass N by 26.1% as well as total soil C and N. In a complimentary field study at the W.K. Kellogg Biological Station LTER Cropping Biodiversity Gradient Experiment we examined microbial communities, C cycling processes, and trace gas emissions in five rotation sequences varying in complexity from continuous corn monoculture to a five crop three-year rotation. Finding striking differences between monocultures and systems with more complex plant communities, these results confirm our meta-analysis, and highlight the strong effects of diversifying plant communities in agricultural systems. A complimentary lab study examining decomposition processes in monocultures and more diverse rotations shows that rotation soils process chemically complex C more rapidly. My studies point to complex relationships between the chemistry of substrate inputs and their fate in soils, while also emphasizing an important management consideration: maintaining soil biological functions and ecosystem services in managed agricultural systems requires the rotation of different crops, rather than the production of single crop monocultures.

  2. Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa.

    PubMed

    Yarkhunova, Yulia; Edwards, Christine E; Ewers, Brent E; Baker, Robert L; Aston, Timothy Llewellyn; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2016-04-01

    Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation among three crop morphotypes (leaf, turnip, and oilseed) and for correlated evolution of circadian, gas exchange, and phenological traits. We also examined internal and surficial leaf anatomical features and biochemical limits to photosynthesis. Crop types differed in gas exchange; oilseed varieties had higher net carbon assimilation and stomatal conductance relative to vegetable types. Phylogenetically independent contrasts indicated correlated evolution between circadian traits and both gas exchange and biomass accumulation; shifts to shorter circadian period (closer to 24 h) between phylogenetic nodes are associated with higher stomatal conductance, lower photosynthetic rate (when CO2 supply is factored out), and lower biomass accumulation. Crop type differences in gas exchange are also associated with stomatal density, epidermal thickness, numbers of palisade layers, and biochemical limits to photosynthesis. Brassica crop diversification involves correlated evolution of circadian and physiological traits, which is potentially relevant to understanding mechanistic targets for crop improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Are diverse societies less cohesive? Testing contact and mediated contact theories.

    PubMed

    McKenna, Sarah; Lee, Eunro; Klik, Kathleen A; Markus, Andrew; Hewstone, Miles; Reynolds, Katherine J

    2018-01-01

    Previous research has demonstrated that there is a negative relationship between ethnic diversity in a local community and social cohesion. Often the way social cohesion is assessed, though, varies across studies and only some aspects of the construct are included (e.g., trust). The current research explores the relationship between diversity and social cohesion across a number of indicators of social cohesion including neighbourhood social capital, safety, belonging, generalized trust, and volunteering. Furthermore, social psychological theories concerning the role of positive contact and its impact on feelings of threat are investigated. Using a sample of 1070 third generation 'majority' Australians and structural equation modelling (SEM), findings suggest ethnic diversity is related to positive intergroup contact, and that contact showed beneficial impacts for some indicators of social cohesion both directly and indirectly through reducing perceived threat. When interethnic contact and perceived threat are included in the model there is no direct negative effect between diversity and social cohesion. The theoretical implications of these findings are outlined including the importance of facilitating opportunities for positive contact in diverse communities.

  4. Are diverse societies less cohesive? Testing contact and mediated contact theories

    PubMed Central

    Lee, Eunro; Klik, Kathleen A.; Markus, Andrew; Hewstone, Miles; Reynolds, Katherine J.

    2018-01-01

    Previous research has demonstrated that there is a negative relationship between ethnic diversity in a local community and social cohesion. Often the way social cohesion is assessed, though, varies across studies and only some aspects of the construct are included (e.g., trust). The current research explores the relationship between diversity and social cohesion across a number of indicators of social cohesion including neighbourhood social capital, safety, belonging, generalized trust, and volunteering. Furthermore, social psychological theories concerning the role of positive contact and its impact on feelings of threat are investigated. Using a sample of 1070 third generation ‘majority’ Australians and structural equation modelling (SEM), findings suggest ethnic diversity is related to positive intergroup contact, and that contact showed beneficial impacts for some indicators of social cohesion both directly and indirectly through reducing perceived threat. When interethnic contact and perceived threat are included in the model there is no direct negative effect between diversity and social cohesion. The theoretical implications of these findings are outlined including the importance of facilitating opportunities for positive contact in diverse communities. PMID:29596501

  5. Crop Diversity for Yield Increase

    PubMed Central

    Li, Chengyun; He, Xiahong; Zhu, Shusheng; Zhou, Huiping; Wang, Yunyue; Li, Yan; Yang, Jing; Fan, Jinxiang; Yang, Jincheng; Wang, Guibin; Long, Yunfu; Xu, Jiayou; Tang, Yongsheng; Zhao, Gaohui; Yang, Jianrong; Liu, Lin; Sun, Yan; Xie, Yong; Wang, Haining; Zhu, Youyong

    2009-01-01

    Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean – either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER) of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand. PMID:19956624

  6. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    PubMed Central

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893

  7. Why Trust Matters: How Confidence in Leaders Transforms What Adolescents Gain From Youth Programs.

    PubMed

    Griffith, Aisha N; Larson, Reed W

    2016-12-01

    Youth's trust in program leaders is considered a key to the positive impact of youth programs. We sought to understand how trust influences youth's program experiences from their perspective. We interviewed 108 ethnically diverse youth (ages 12-19) participating in 13 arts, leadership, and technology programs. Analysis of these accounts suggested five ways in which youth's trust in leaders amplified program benefits. Trust increased youth's (1) confidence in leaders' guidance in program activities, (2) motivation in the program, (3) use of leaders for mentoring, (4) use of leaders as a model of a well-functioning relationship, and (5) experience of program cohesiveness. Across benefits, trust allowed youth to draw on leaders' expertise, opened them to new experiences, and helped increase youth's agency. © 2015 The Authors. Journal of Research on Adolescence © 2015 Society for Research on Adolescence.

  8. Soil Eukaryotic Microorganism Succession as Affected by Continuous Cropping of Peanut - Pathogenic and Beneficial Fungi were Selected

    PubMed Central

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2012-01-01

    Peanut is an important oil crop worldwide and shows considerable adaptability but growth and yield are negatively affected by continuous cropping. Soil micro-organisms are efficient bio-indicators of soil quality and plant health and are critical to the sustainability of soil-based ecosystem function and to successful plant growth. In this study, 18S rRNA gene clone library analyses were employed to study the succession progress of soil eukaryotic micro-organisms under continuous peanut cultivation. Eight libraries were constructed for peanut over three continuous cropping cycles and its representative growth stages. Cluster analyses indicated that soil micro-eukaryotic assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. Six eukaryotic groups were found and fungi predominated in all libraries. The fungal populations showed significant dynamic change and overall diversity increased over time under continuous peanut cropping. The abundance and/or diversity of clones affiliated with Eurotiales, Hypocreales, Glomerales, Orbiliales, Mucorales and Tremellales showed an increasing trend with continuous cropping but clones affiliated with Agaricales, Cantharellales, Pezizales and Pyxidiophorales decreased in abundance and/or diversity over time. The current data, along with data from previous studies, demonstrated that the soil microbial community was affected by continuous cropping, in particular, the pathogenic and beneficial fungi that were positively selected over time, which is commonplace in agro-ecosystems. The trend towards an increase in fungal pathogens and simplification of the beneficial fungal community could be important factors contributing to the decline in peanut growth and yield over many years of continuous cropping. PMID:22808226

  9. Trust in automation: integrating empirical evidence on factors that influence trust.

    PubMed

    Hoff, Kevin Anthony; Bashir, Masooda

    2015-05-01

    We systematically review recent empirical research on factors that influence trust in automation to present a three-layered trust model that synthesizes existing knowledge. Much of the existing research on factors that guide human-automation interaction is centered around trust, a variable that often determines the willingness of human operators to rely on automation. Studies have utilized a variety of different automated systems in diverse experimental paradigms to identify factors that impact operators' trust. We performed a systematic review of empirical research on trust in automation from January 2002 to June 2013. Papers were deemed eligible only if they reported the results of a human-subjects experiment in which humans interacted with an automated system in order to achieve a goal. Additionally, a relationship between trust (or a trust-related behavior) and another variable had to be measured. All together, 101 total papers, containing 127 eligible studies, were included in the review. Our analysis revealed three layers of variability in human-automation trust (dispositional trust, situational trust, and learned trust), which we organize into a model. We propose design recommendations for creating trustworthy automation and identify environmental conditions that can affect the strength of the relationship between trust and reliance. Future research directions are also discussed for each layer of trust. Our three-layered trust model provides a new lens for conceptualizing the variability of trust in automation. Its structure can be applied to help guide future research and develop training interventions and design procedures that encourage appropriate trust. © 2014, Human Factors and Ergonomics Society.

  10. Trusted computation through biologically inspired processes

    NASA Astrophysics Data System (ADS)

    Anderson, Gustave W.

    2013-05-01

    Due to supply chain threats it is no longer a reasonable assumption that traditional protections alone will provide sufficient security for enterprise systems. The proposed cognitive trust model architecture extends the state-of-the-art in enterprise anti-exploitation technologies by providing collective immunity through backup and cross-checking, proactive health monitoring and adaptive/autonomic threat response, and network resource diversity.

  11. Children's Trust and the Development of Prosocial Behavior

    ERIC Educational Resources Information Center

    Malti, Tina; Averdijk, Margit; Zuffianò, Antonio; Ribeaud, Denis; Betts, Lucy R.; Rotenberg, Ken J.; Eisner, Manuel P.

    2016-01-01

    This study examined the role of children's trust beliefs and trustworthiness in the development of prosocial behavior using data from four waves of a longitudinal study in a large, ethnically-diverse sample of children in Switzerland (mean age = 8.11 years at Time 1, N = 1,028). Prosocial behavior directed towards peers was measured at all…

  12. Changes in N-Transforming Archaea and Bacteria in Soil during the Establishment of Bioenergy Crops

    PubMed Central

    Mao, Yuejian; Yannarell, Anthony C.; Mackie, Roderick I.

    2011-01-01

    Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community. PMID:21935454

  13. Crop biomass not species richness drives weed suppression in warm-season annual grass-legume intercrops in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Intercropping with functionally diverse crops can reduce the availability of resources that could otherwise be used by weeds. An experiment was conducted six times across the northeastern United States in 2013 and 2014 to examine the effects of functional diversity and species richness on weed suppr...

  14. Genotypic diversity in the responses of yield and yield components to elevated ozone of diverse inbred and hybrid maize

    USDA-ARS?s Scientific Manuscript database

    Current tropospheric ozone concentrations ([O3]), an important air pollutant, are phytotoxic and detrimental to crop yield causing significant losses of ~14-26 billion in 4 of the world’s major crops. Until recent years, it was believed that agricultural and economically important C4 plants, such as...

  15. Maize diversity and ethnolinguistic diversity in Chiapas, Mexico

    PubMed Central

    Perales, Hugo R.; Benz, Bruce F.; Brush, Stephen B.

    2005-01-01

    The objective of this study is to investigate whether ethnolinguistic diversity influences crop diversity. Factors suggest a correlation between biological diversity of crops and cultural diversity. Although this correlation has been noted, little systematic research has focused on the role of culture in shaping crop diversity. This paper reports on research in the Maya highlands (altitude > 1,800 m) of central Chiapas in southern Mexico that examined the distribution of maize (Zea mays) types among communities of two groups, the Tzeltal and Tzotzil. The findings suggest that maize populations are distinct according to ethnolinguistic group. However, a study of isozymes indicates no clear separation of the region's maize into two distinct populations based on ethnolin-guistic origin. A reciprocal garden experiment shows that there is adaptation of maize to its environment but that Tzeltal maize sometimes out-yields Tzotzil maize in Tzotzil environments. Because of the proximity of the two groups and selection for yield, we would expect that the superior maize would dominate both groups' maize populations, but we find that such domination is not the case. The role of ethnolinguistic identity in shaping social networks and information exchange is discussed in relation to landrace differentiation. PMID:15640353

  16. Maize diversity and ethnolinguistic diversity in Chiapas, Mexico.

    PubMed

    Perales, Hugo R; Benz, Bruce F; Brush, Stephen B

    2005-01-18

    The objective of this study is to investigate whether ethnolinguistic diversity influences crop diversity. Factors suggest a correlation between biological diversity of crops and cultural diversity. Although this correlation has been noted, little systematic research has focused on the role of culture in shaping crop diversity. This paper reports on research in the Maya highlands (altitude >1,800 m) of central Chiapas in southern Mexico that examined the distribution of maize (Zea mays) types among communities of two groups, the Tzeltal and Tzotzil. The findings suggest that maize populations are distinct according to ethnolinguistic group. However, a study of isozymes indicates no clear separation of the region's maize into two distinct populations based on ethnolinguistic origin. A reciprocal garden experiment shows that there is adaptation of maize to its environment but that Tzeltal maize sometimes out-yields Tzotzil maize in Tzotzil environments. Because of the proximity of the two groups and selection for yield, we would expect that the superior maize would dominate both groups' maize populations, but we find that such domination is not the case. The role of ethnolinguistic identity in shaping social networks and information exchange is discussed in relation to landrace differentiation.

  17. African migrant patients' trust in Chinese physicians: a social ecological approach to understanding patient-physician trust.

    PubMed

    McLaughlin, Megan M; Simonson, Louis; Zou, Xia; Ling, Li; Tucker, Joseph D

    2015-01-01

    Patient trust in physicians is a critical determinant of health seeking behaviors, medication adherence, and health outcomes. A crisis of interpersonal trust exists in China, extending throughout multiple social spheres, including the healthcare system. At the same time, with increased migration from Africa to China in the last two decades, Chinese physicians must establish mutual trust with an increasingly diverse patient population. We undertook a qualitative study to identify factors affecting African migrants' trust in Chinese physicians and to identify potential mechanisms for promoting trust. We conducted semi-structured, in-depth interviews with 40 African migrants in Guangzhou, China. A modified version of the social ecological model was used as a theoretical framework. At the patient-physician level, interpersonal treatment, technical competence, perceived commitment and motive, and language concordance were associated with enhanced trust. At the health system level, two primary factors influenced African migrants' trust in their physicians: the fee-for-service payment system and lack of continuity with any one physician. Patients' social networks and the broader socio-cultural context of interactions between African migrants and Chinese locals also influenced patients' trust of their physicians. These findings demonstrate the importance of factors beyond the immediate patient-physician interaction and suggest opportunities to promote trust through health system interventions.

  18. Science and society: protecting crop genetic diversity for food security: political, ethical and technical challenges.

    PubMed

    Esquinas-Alcázar, José

    2005-12-01

    Crop genetic diversity - which is crucial for feeding humanity, for the environment and for sustainable development - is being lost at an alarming rate. Given the enormous interdependence of countries and generations on this genetic diversity, this loss raises critical socio-economic, ethical and political questions. The recent ratification of a binding international treaty, and the development of powerful new technologies to conserve and use resources more effectively, have raised expectations that must now be fulfilled.

  19. "It's a Two-Way Street": Examining How Trust, Diversity, and Contradiction Influence a Sense of Community

    ERIC Educational Resources Information Center

    Puig, Victoria I.; Erwin, Elizabeth J.; Evenson, Tara L.; Beresford, Madeleine

    2015-01-01

    As interest in establishing and maintaining high-quality inclusive early childhood environments continues to grow, the population of children and families being served by these programs is becoming increasingly diverse. In response to these demographic and social trends, this study was conducted to explore how diversity is perceived within an…

  20. GM foods and the misperception of risk perception.

    PubMed

    Gaskell, George; Allum, Nick; Wagner, Wolfgang; Kronberger, Nicole; Torgersen, Helge; Hampel, Juergen; Bardes, Julie

    2004-02-01

    Public opposition to genetically modified (GM) food and crops is widely interpreted as the result of the public's misperception of the risks. With scientific assessment pointing to no unique risks from GM crops and foods, a strategy of accurate risk communication from trusted sources has been advocated. This is based on the assumption that the benefits of GM crops and foods are self-evident. Informed by the interpretation of some qualitative interviews with lay people, we use data from the Eurobarometer survey on biotechnology to explore the hypothesis that it is not so much the perception of risks as the absence of benefits that is the basis of the widespread rejection of GM foods and crops by the European public. Some respondents perceive both risks and benefits, and may be trading off these attributes along the lines of a rational choice model. However, for others, one attribute-benefit-appears to dominate their judgments: the lexicographic heuristic. For these respondents, their perception of risk is of limited importance in the formation of attitudes toward GM food and crops. The implication is that the absence of perceived benefits from GM foods and crops calls into question the relevance of risk communication strategies for bringing about change in public opinion.

  1. Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities.

    PubMed

    Zhaolei, Li; Naishun, Bu; Xueping, Chen; Jun, Cui; Manqiu, Xiao; Zhiping, Song; Ming, Nie; Changming, Fang

    2018-05-15

    Bt crops that are transgenic crops engineered to produce Bt toxins which occur naturally with Bacillus thuringiensis (Bt) have been widely planted and its environmental risk assessment has been heavily debated. The effects of Bt crops on soil microbial communities are possible through changing the quantity and quality of C inputs and potential toxic activity of Bt protein on soil organisms. To date, the direct effects of Bt protein on soil microorganisms is unclear. Here we added Cry1Ac, one of the most commonly used Bt protein in Bt crops, to the soil and monitored changes in soil bacterial, fungal and archaeal diversities and community structures using ribosomal DNA-fingerprinting method, as well as their population sizes by real-time PCR over a 100-day period. Despite the fact that variations were observed in the indices of evenness, diversity and population sizes of bacteria, fungi and archaea with different Cry1Ac addition rates up to 100ngg -1 soil, the indices of soil microbial diversities and evennesses did not significantly shift with Cry1Ac protein addition, nor did population sizes change over time. The diversities of the dominant bacteria, fungi and archaea were not significantly changed, given Cry1Ac protein addition rates over a period of 100 days. These results suggested that Bt protein derived by cultivations of transgenic Bt crops is unlikely to cause transient or even persisting significant changes in soil microorganisms in field. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Genetic erosion in maize’s center of origin

    PubMed Central

    Dyer, George A.; López-Feldman, Alejandro; Yúnez-Naude, Antonio; Taylor, J. Edward

    2014-01-01

    Crop genetic diversity is an indispensable resource for farmers and professional breeders responding to changing climate, pests, and diseases. Anecdotal appraisals in centers of crop origin have suggested serious threats to this diversity for over half a century. However, a nationwide inventory recently found all maize races previously described for Mexico, including some formerly considered nearly extinct. A flurry of social studies seems to confirm that farmers maintain considerable diversity. Here, we compare estimates of maize diversity from case studies over the past 15 y with nationally and regionally representative matched longitudinal data from farmers across rural Mexico. Our findings reveal an increasing bias in inferences based on case study results and widespread loss of diversity. Cross-sectional, case study data suggest that farm-level richness has increased by 0.04 y−1 nationwide; however, direct estimates using matched longitudinal data reveal that richness dropped −0.04 y−1 between 2002 and 2007, from 1.43 to 1.22 varieties per farm. Varietal losses occurred across regions and altitudinal zones, and regardless of farm turnover within the sector. Extinction of local maize populations may not have resulted in an immediate loss of alleles, but low varietal richness and changes in maize’s metapopulation dynamics may prevent farmers from accessing germplasm suitable to a rapidly changing climate. Declining yields could then lead farmers to leave the sector and result in a further loss of diversity. Similarities in research approaches across crops suggest that methodological biases could conceal a loss of diversity at other centers of crop origin. PMID:25197088

  3. Partnership, Trust and Leadership among Nursing Researchers.

    PubMed

    Zanchetta, Margareth S; Edwards, Susanne; Salami, Bukola; Osino, Eunice; Yu, Lina; Babalola, Oluwafunmbi; Cooper, Linda

    2016-01-01

    Members of a nursing research cluster realized that they needed to determine whether, given their diverse philosophies, they could formulate a collective research agenda responding to an administrative recommendation. The cluster's leaders conducted an appraisal of the role and importance of trust as an element for promoting collaboration in a nursing research cluster and for building a collective social identity. The Social Exchange Theory framed the appraisal. A survey and a facilitation session about trust in research partnerships were conducted with eight female nursing researchers/faculty. Facilitation day's discussion was fully audio recorded, transcribed verbatim and the content coded using ATLAS.ti 6. Thematic analysis was employed to analyze the qualitative aspects of the recorded discussion and the survey questionnaire explanatory responses. Responses to survey closed-questions were compiled as descriptive statistics. Participants revealed that mutual support, valuing each other and working collaboratively facilitated trust in intellectual partnership. Hindering factors were an environment suppressing expression of ideas and views, lack of open dialogue and decision-making among team members and lack of a sense of belonging. This paper has the potential to contribute to the knowledge of nursing leaders who are intending to develop and sustain nursing research teams in both academic and non-academic organizations. The paper will be especially useful as they deal with issues of trust in intellectual partnership in diverse settings.

  4. African Orphan Crops under Abiotic Stresses: Challenges and Opportunities.

    PubMed

    Tadele, Zerihun

    2018-01-01

    A changing climate, a growing world population, and a reduction in arable land devoted to food production are all problems facing the world food security. The development of crops that can yield under uncertain and extreme climatic and soil growing conditions can play a key role in mitigating these problems. Major crops such as maize, rice, and wheat are responsible for a large proportion of global food production but many understudied crops (commonly known as "orphan crops") including millets, cassava, and cowpea feed millions of people in Asia, Africa, and South America and are already adapted to the local environments in which they are grown. The application of modern genetic and genomic tools to the breeding of these crops can provide enormous opportunities for ensuring world food security but is only in its infancy. In this review, the diversity and types of understudied crops will be introduced, and the beneficial traits of these crops as well as their role in the socioeconomics of Africa will be discussed. In addition, the response of orphan crops to diverse types of abiotic stresses is investigated. A review of the current tools and their application to the breeding of enhanced orphan crops will also be described. Finally, few examples of global efforts on tackling major abiotic constraints in Africa are presented.

  5. High-Trust Leadership and Blended Learning in the Age of Disruptive Innovation: Strategic Thinking for Colleges and Schools of Education

    ERIC Educational Resources Information Center

    Holland, Denise D.; Piper, Randy T.

    2016-01-01

    We introduce diverse definitions of leadership and its evolutionary history and then we integrate this idea network: strategic thinking, high-trust leadership, blended learning, and disruptive innovation. Following the lead of Marx's (2014) model of Teaching Leadership and Strategy and Rehm's (2014) model of High School Student Leadership…

  6. Origin and diversity of an underutilized fruit tree crop, cempedak (Artocarpus integer, Moraceae).

    PubMed

    Wang, Maria M H; Gardner, Elliot M; Chung, Richard C K; Chew, Ming Yee; Milan, Abd Rahman; Pereira, Joan T; Zerega, Nyree J C

    2018-06-06

    Underutilized crops and their wild relatives are important resources for crop improvement and food security. Cempedak [Artocarpus integer (Thunb). Merr.] is a significant crop in Malaysia but underutilized elsewhere. Here we performed molecular characterization of cempedak and its putative wild relative bangkong (Artocarpus integer (Thunb). Merr. var. silvestris Corner) to address questions regarding the origin and diversity of cempedak. Using data from 12 microsatellite loci, we assessed the genetic diversity and genetic/geographic structure for 353 cempedak and 175 bangkong accessions from Malaysia and neighboring countries and employed clonal analysis to characterize cempedak cultivars. We conducted haplotype network analyses on the trnH-psbA region in a subset of these samples. We also analyzed key vegetative characters that reportedly differentiate cempedak and bangkong. We show that cempedak and bangkong are sister taxa and distinct genetically and morphologically, but the directionality of domestication origin is unclear. Genetic diversity was generally higher in bangkong than in cempedak. We found a distinct genetic cluster for cempedak from Borneo as compared to cempedak from Peninsular Malaysia. Finally, cempedak cultivars with the same names did not always share the same genetic fingerprint. Cempedak origins are complex, with likely admixture and hybridization with bangkong, warranting further investigation. We provide a baseline of genetic diversity of cempedak and bangkong in Malaysia and found that germplasm collections in Malaysia represent diverse coverage of the four cempedak genetic clusters detected. © 2018 Botanical Society of America.

  7. Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-11-01

    Incorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil. Community structure was most affected by location and by the rhizosphere effect, followed by sampling time and amendment treatment. These effects were associated with soil physicochemical properties, including pH, moisture, organic matter, and nutrient levels. Treatment differences were apparent in bulk and rhizosphere soils at the time of peak corn growth in the season following cover crop and fertilizer application. Cover crop and fertilizer treatments tended to lower alpha diversity in early season samples. However, winter rye, oilseed radish, and buckwheat cover crop treatments increased alpha diversity in some later season samples compared to a no-amendment control. Fertilizer treatments and some cover crops decreased relative abundance of members of the ammonia-oxidizing family Nitrosomonadaceae. Pelleted poultry manure and Sustane® (a commercial fertilizer) decreased the relative abundance of Rhizobiales. Our data point to a need for future research exploring how (1) cover crops influence bacterial community structure and functions, (2) these effects differ with biomass composition and quantity, and (3) existing soil conditions and microbial community composition influence how soil microbial populations respond to agricultural management practices.

  8. Genomics of crop wild relatives: expanding the gene pool for crop improvement.

    PubMed

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert J

    2016-04-01

    Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus.

    PubMed

    McGee, C F; Byrne, H; Irvine, A; Wilson, J

    2017-01-01

    Commercial cultivation of the button mushroom Agaricus bisporus is performed through the inoculation of a semipasteurized composted material. Pasteurization of the compost material prior to inoculation results in a substrate with a fungal community that becomes dominated by A. bisporus. However, little is known about the composition and activity in the wider fungal community beyond the presence of A. bisporus in compost throughout the mushroom cropping process. In this study, the fungal cropping compost community was characterized by sequencing nuc rDNA ITS1-5.8S-ITS2 amplified from extractable DNA and RNA. The fungal community generated from DNA extracts identified a diverse community containing 211 unique species, although only 51 were identified from cDNA. Agaricus bisporus was found to dominate in the DNA-derived fungal community for the duration of the cropping process. However, analysis of cDNA extracts found A. bisporus to dominate only up to the first crop flush, after which activity decreased sharply and a much broader fungal community became active. This study has highlighted the diverse fungal community that is present in mushroom compost during cropping.

  10. Potential effects of climate change on Oregon crops

    EPA Science Inventory

    This talk will discuss: 1) potential changes in the Pacific Northwest climate with global climate change, 2) how climate change can affect crops, 3) the diversity of Oregon agriculture, 4) examples of potential response of Oregon crops – especially dryland winter wheat, and 5) br...

  11. RNAi-mediated resistance to viruses in genetically engineered plants.

    PubMed

    Ibrahim, Abdulrazak B; Aragão, Francisco J L

    2015-01-01

    RNA interference (RNAi) has emerged as a leading technology in designing genetically modified crops engineered to resist viral infection. The last decades have seen the development of a large number of crops whose inherent posttranscriptional gene silencing mechanism has been exploited to target essential viral genes through the production of dsRNA that triggers an endogenous RNA-induced silencing complex (RISC), leading to gene silencing in susceptible viruses conferring them with resistance even before the onset of infection. Selection and breeding events have allowed for establishing this highly important agronomic trait in diverse crops. With improved techniques and the availability of new data on genetic diversity among several viruses, significant progress is being made in engineering plants using RNAi with the release of a number of commercially available crops. Biosafety concerns with respect to consumption of RNAi crops, while relevant, have been addressed, given the fact that experimental evidence using miRNAs associated with the crops shows that they do not pose any health risk to humans and animals.

  12. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems

    DOE PAGES

    Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.; ...

    2015-10-03

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.« less

  13. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.« less

  14. The GRIN-Taxonomy Crop Wild Relative Inventory. Pp 453-457 in Maxted, N., Mulloo, M.E., Ford-Lloyd, B.V. Enhancing crop genepool use: capturing wild relative and landrace diversity for crop improvement

    USDA-ARS?s Scientific Manuscript database

    In order to provide an informational tool for assessing and prioritizing germplasm needs for ex situ conservation in the U.S. National Plant Germplasm System (NPGS), the USDA Agricultural Research Service in 2008 initiated a project to identify crop wild relatives (CWR) of major and minor crops. Eac...

  15. African Migrant Patients’ Trust in Chinese Physicians: A Social Ecological Approach to Understanding Patient-Physician Trust

    PubMed Central

    McLaughlin, Megan M.; Simonson, Louis; Zou, Xia; Ling, Li; Tucker, Joseph D.

    2015-01-01

    Background Patient trust in physicians is a critical determinant of health seeking behaviors, medication adherence, and health outcomes. A crisis of interpersonal trust exists in China, extending throughout multiple social spheres, including the healthcare system. At the same time, with increased migration from Africa to China in the last two decades, Chinese physicians must establish mutual trust with an increasingly diverse patient population. We undertook a qualitative study to identify factors affecting African migrants’ trust in Chinese physicians and to identify potential mechanisms for promoting trust. Methods / Principal Findings We conducted semi-structured, in-depth interviews with 40 African migrants in Guangzhou, China. A modified version of the social ecological model was used as a theoretical framework. At the patient-physician level, interpersonal treatment, technical competence, perceived commitment and motive, and language concordance were associated with enhanced trust. At the health system level, two primary factors influenced African migrants’ trust in their physicians: the fee-for-service payment system and lack of continuity with any one physician. Patients’ social networks and the broader socio-cultural context of interactions between African migrants and Chinese locals also influenced patients’ trust of their physicians. Conclusions These findings demonstrate the importance of factors beyond the immediate patient-physician interaction and suggest opportunities to promote trust through health system interventions. PMID:25965064

  16. The relationship between education and levels of trust and tolerance in Europe.

    PubMed

    Borgonovi, Francesca

    2012-03-01

    In this article we explore the relationship between education and levels of trust and tolerance in Europe. More specifically we assess whether the relationship between years of schooling and the extent to which individuals trust others in their communities and are tolerant towards immigrants varies across European countries and attempt to identify possible sources of these variations. Findings based on data from the first three rounds of the European Social Survey indicate that the association between education and levels of trust and tolerance varies significantly across countries and that a major source of this variation lies in the way in which individuals react to the level of diversity in the country where they live. © London School of Economics and Political Science 2012.

  17. Change in land use alters the diversity and composition of Bradyrhizobium communities and led to the introduction of Rhizobium etli into the tropical rain forest of Los Tuxtlas (Mexico).

    PubMed

    Ormeño-Orrillo, Ernesto; Rogel-Hernández, Marco A; Lloret, Lourdes; López-López, Aline; Martínez, Julio; Barois, Isabelle; Martínez-Romero, Esperanza

    2012-05-01

    Nitrogen-fixing bacteria of the Bradyrhizobium genus are major symbionts of legume plants in American tropical forests, but little is known about the effects of deforestation and change in land use on their diversity and community structure. Forest clearing is followed by cropping of bean (Phaseolus vulgaris) and maize as intercropped plants in Los Tuxtlas tropical forest of Mexico. The identity of bean-nodulating rhizobia in this area is not known. Using promiscuous trap plants, bradyrhizobia were isolated from soil samples collected in Los Tuxtlas undisturbed forest, and in areas where forest was cleared and land was used as crop fields or as pastures, or where secondary forests were established. Rhizobia were also trapped by using bean plants. Bradyrhizobium strains were classified into genospecies by dnaK sequence analysis supported by recA, glnII and 16S-23S rDNA IGS loci analyses. A total of 29 genospecies were identified, 24 of which did not correspond to any described taxa. A reduction in Bradyrhizobium diversity was observed when forest was turned to crop fields or pastures. Diversity seemed to recover to primary forest levels in secondary forests that derived from abandoned crop fields or pastures. The shifts in diversity were not related to soil characteristics but seemingly to the density of nodulating legumes present at each land use system (LUS). Bradyrhizobium community composition in soils was dependent on land use; however, similarities were observed between crop fields and pastures but not among forest and secondary forest. Most Bradyrhizobium genospecies present in forest were not recovered or become rare in the other LUS. Rhizobium etli was found as the dominant bean-nodulating rhizobia present in crop fields and pastures, and evidence was found that this species was introduced in Los Tuxtlas forest.

  18. Crop and livestock enterprise integration: Livestock impacts on forage, stover, and grain production

    USDA-ARS?s Scientific Manuscript database

    Enterprise diversity is the key to ensure productive and sustainable agriculture for the future. Integration of crops and livestock enterprises is one way to improve agricultural sustainability, and take advantage of beneficial enterprise synergistic effects. Our objectives were to develop cropping ...

  19. Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture

    ERIC Educational Resources Information Center

    Garcia, Maria Alice; Altieri, Miguel A.

    2005-01-01

    The potential for genetically modified (GM) crops to threaten biodiversity conservation and sustainable agriculture is substantial. Megadiverse countries and centers of origin and/or diversity of crop species are particularly vulnerable regions. The future of sustainable agriculture may be irreversibly jeopardized by contamination of in situ…

  20. Cover Crop Chart: An Outreach Tool for Agricultural Producers

    USDA-ARS?s Scientific Manuscript database

    Interest in cover crops by farmers and ranchers throughout the Northern Great Plains has increased the need for information on the suitability of a diverse portfolio of crops for different production and management resource goals. To help address this need, Northern Great Plains Research Laboratory...

  1. Genetic diversity and genetic structure of Persian walnut (Juglans regia) accessions from 14 European, African, and Asian countries using SSR markers

    Treesearch

    Aziz Ebrahimi; Abdolkarim Zarei; Shaneka Lawson; Keith E. Woeste; M. J. M. Smulders

    2016-01-01

    Persian walnut (Juglans regia L.) is the world's most widely grown nut crop, but large-scale assessments and comparisons of the genetic diversity of the crop are notably lacking. To guide the conservation and utilization of Persian walnut genetic resources, genotypes (n = 189) from 25 different regions in 14 countries on...

  2. Trust and Reflection in Primary Care Practice Redesign.

    PubMed

    Lanham, Holly Jordan; Palmer, Raymond F; Leykum, Luci K; McDaniel, Reuben R; Nutting, Paul A; Stange, Kurt C; Crabtree, Benjamin F; Miller, William L; Jaén, Carlos Roberto

    2016-08-01

    To test a conceptual model of relationships, reflection, sensemaking, and learning in primary care practices transitioning to patient-centered medical homes (PCMH). Primary data were collected as part of the American Academy of Family Physicians' National Demonstration Project of the PCMH. We conducted a cross-sectional survey of clinicians and staff from 36 family medicine practices across the United States. Surveys measured seven characteristics of practice relationships (trust, diversity, mindfulness, heedful interrelation, respectful interaction, social/task relatedness, and rich and lean communication) and three organizational attributes (reflection, sensemaking, and learning) of practices. We surveyed 396 clinicians and practice staff. We performed a multigroup path analysis of the data. Parameter estimates were calculated using a Bayesian estimation method. Trust and reflection were important in explaining the characteristics of practice relationships and their associations with sensemaking and learning. The strongest associations between relationships, sensemaking, and learning were found under conditions of high trust and reflection. The weakest associations were found under conditions of low trust and reflection. Trust and reflection appear to play a key role in moderating relationships, sensemaking, and learning in practices undergoing practice redesign. © Health Research and Educational Trust.

  3. A trust-based recommendation method using network diffusion processes

    NASA Astrophysics Data System (ADS)

    Chen, Ling-Jiao; Gao, Jian

    2018-09-01

    A variety of rating-based recommendation methods have been extensively studied including the well-known collaborative filtering approaches and some network diffusion-based methods, however, social trust relations are not sufficiently considered when making recommendations. In this paper, we contribute to the literature by proposing a trust-based recommendation method, named CosRA+T, after integrating the information of trust relations into the resource-redistribution process. Specifically, a tunable parameter is used to scale the resources received by trusted users before the redistribution back to the objects. Interestingly, we find an optimal scaling parameter for the proposed CosRA+T method to achieve its best recommendation accuracy, and the optimal value seems to be universal under several evaluation metrics across different datasets. Moreover, results of extensive experiments on the two real-world rating datasets with trust relations, Epinions and FriendFeed, suggest that CosRA+T has a remarkable improvement in overall accuracy, diversity and novelty. Our work takes a step towards designing better recommendation algorithms by employing multiple resources of social network information.

  4. African Orphan Crops under Abiotic Stresses: Challenges and Opportunities

    PubMed Central

    2018-01-01

    A changing climate, a growing world population, and a reduction in arable land devoted to food production are all problems facing the world food security. The development of crops that can yield under uncertain and extreme climatic and soil growing conditions can play a key role in mitigating these problems. Major crops such as maize, rice, and wheat are responsible for a large proportion of global food production but many understudied crops (commonly known as “orphan crops”) including millets, cassava, and cowpea feed millions of people in Asia, Africa, and South America and are already adapted to the local environments in which they are grown. The application of modern genetic and genomic tools to the breeding of these crops can provide enormous opportunities for ensuring world food security but is only in its infancy. In this review, the diversity and types of understudied crops will be introduced, and the beneficial traits of these crops as well as their role in the socioeconomics of Africa will be discussed. In addition, the response of orphan crops to diverse types of abiotic stresses is investigated. A review of the current tools and their application to the breeding of enhanced orphan crops will also be described. Finally, few examples of global efforts on tackling major abiotic constraints in Africa are presented. PMID:29623231

  5. Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation

    PubMed Central

    Jin, Xin; Chen, Yu; Liu, Ping; Li, Chen; Cai, Xingxing; Rong, Jun

    2018-01-01

    Abstract Maintaining genetic integrity is essential for in situ and ex situ conservation of crop wild relative (CWR) species. However, introgression of crop alleles into CWR species/populations may change their genetic structure and diversity, resulting in more invasive weeds or, in contrast, the extinction of endangered populations. To determine crop-wild introgression and its consequences, we examined the genetic structure and diversity of six wild rice (Oryza rufipogon) populations under in situ conservation in China. Thirty-four simple sequence repeat (SSR) and 34 insertion/deletion markers were used to genotype the wild rice populations and two sets of rice cultivars (O. sativa), corresponding to the two types of molecular markers. Shared alleles and STRUCTURE analyses suggested a variable level of crop-wild introgression and admixture. Principal coordinates and cluster analyses indicated differentiation of wild rice populations, which was associated with the spatial distances to cultivated rice fields. The level of overall genetic diversity was comparable between wild rice populations and rice cultivars, but a great number of wild-specific alleles was detected in the wild populations. We conclude based on the results that crop-wild introgression can considerably alter the pattern of genetic structure and relationships of CWR populations. Appropriate measures should be taken for effective in situ conservation of CWR species under the scenario of crop-wild introgression. PMID:29308123

  6. Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation.

    PubMed

    Jin, Xin; Chen, Yu; Liu, Ping; Li, Chen; Cai, Xingxing; Rong, Jun; Lu, Bao-Rong

    2018-02-01

    Maintaining genetic integrity is essential for in situ and ex situ conservation of crop wild relative (CWR) species. However, introgression of crop alleles into CWR species/populations may change their genetic structure and diversity, resulting in more invasive weeds or, in contrast, the extinction of endangered populations. To determine crop-wild introgression and its consequences, we examined the genetic structure and diversity of six wild rice ( Oryza rufipogon ) populations under in situ conservation in China. Thirty-four simple sequence repeat (SSR) and 34 insertion/deletion markers were used to genotype the wild rice populations and two sets of rice cultivars ( O. sativa ), corresponding to the two types of molecular markers. Shared alleles and STRUCTURE analyses suggested a variable level of crop-wild introgression and admixture. Principal coordinates and cluster analyses indicated differentiation of wild rice populations, which was associated with the spatial distances to cultivated rice fields. The level of overall genetic diversity was comparable between wild rice populations and rice cultivars, but a great number of wild-specific alleles was detected in the wild populations. We conclude based on the results that crop-wild introgression can considerably alter the pattern of genetic structure and relationships of CWR populations. Appropriate measures should be taken for effective in situ conservation of CWR species under the scenario of crop-wild introgression.

  7. Breeding for plant heat tolerance at vegetative and reproductive stages.

    PubMed

    Driedonks, Nicky; Rieu, Ivo; Vriezen, Wim H

    2016-06-01

    Thermotolerant crop research. Global warming has become a serious worldwide threat. High temperature is a major environmental factor limiting crop productivity. Current adaptations to high temperature via alterations to technical and management systems are insufficient to sustain yield. For this reason, breeding for heat-tolerant crops is in high demand. This review provides an overview of the effects of high temperature on plant physiology, fertility and crop yield and discusses the strategies for breeding heat-tolerant cultivars. Generating thermotolerant crops seems to be a challenging task as heat sensitivity is highly variable across developmental stages and processes. In response to heat, plants trigger a cascade of events, switching on numerous genes. Although breeding has made substantial advances in developing heat-tolerant lines, the genetic basis and diversity of heat tolerance in plants remain largely unknown. The development of new varieties is expensive and time-consuming, and knowledge of heat tolerance mechanisms would aid the design of strategies to screen germplasm for heat tolerance traits. However, gains in heat tolerance are limited by the often narrow genetic diversity. Exploration and use of wild relatives and landraces in breeding can increase useful genetic diversity in current crops. Due to the complex nature of plant heat tolerance and its immediate global concern, it is essential to face this breeding challenge in a multidisciplinary holistic approach involving governmental agencies, private companies and academic institutions.

  8. Trust, confidence, procedural fairness, outcome fairness, moral conviction, and the acceptance of GM field experiments.

    PubMed

    Siegrist, Michael; Connor, Melanie; Keller, Carmen

    2012-08-01

    In 2005, Swiss citizens endorsed a moratorium on gene technology, resulting in the prohibition of the commercial cultivation of genetically modified crops and the growth of genetically modified animals until 2013. However, scientific research was not affected by this moratorium, and in 2008, GMO field experiments were conducted that allowed us to examine the factors that influence their acceptance by the public. In this study, trust and confidence items were analyzed using principal component analysis. The analysis revealed the following three factors: "economy/health and environment" (value similarity based trust), "trust and honesty of industry and scientists" (value similarity based trust), and "competence" (confidence). The results of a regression analysis showed that all the three factors significantly influenced the acceptance of GM field experiments. Furthermore, risk communication scholars have suggested that fairness also plays an important role in the acceptance of environmental hazards. We, therefore, included measures for outcome fairness and procedural fairness in our model. However, the impact of fairness may be moderated by moral conviction. That is, fairness may be significant for people for whom GMO is not an important issue, but not for people for whom GMO is an important issue. The regression analysis showed that, in addition to the trust and confidence factors, moral conviction, outcome fairness, and procedural fairness were significant predictors. The results suggest that the influence of procedural fairness is even stronger for persons having high moral convictions compared with persons having low moral convictions. © 2012 Society for Risk Analysis.

  9. Origin of year-long bean (Phaseolus dumosus Macfady, Fabaceae) from reticulated hybridization events between multiple Phaseolus species.

    PubMed

    Mina-Vargas, Angela M; McKeown, Peter C; Flanagan, Nicola S; Debouck, Daniel G; Kilian, Andrzej; Hodkinson, Trevor R; Spillane, Charles

    2016-08-06

    Improved understanding of the secondary gene pools of crops is essential for advancing genetic gain in breeding programmes. Common bean, Phaseolus vulgaris, is a staple crop with several wild relatives in its secondary gene pool. The year-long bean, P. dumosus, an important crop in Guatemala, is considered particularly closely related to P. vulgaris and a potential source of novel variation. However, the genetic diversity and relationship to other Phaseolus species of P. dumosus remain unclear. We conducted the first comprehensive investigation of P. dumosus genetic diversity using both nuclear and chloroplast genome markers. Our nuclear marker set included over 700 markers present within the Phaseolus DArT (Diversity Arrays Technology) array, which we applied to P. dumosus and other relatives of P. vulgaris (including every secondary gene pool species: P. acutifolius, P. albescens, P. coccineus and P. costaricensis). Phaseolus dumosus arose from hybridization of P. vulgaris and P. coccineus, followed by at least two later hybridizations with sympatric congener populations. Existing P. dumosus collections have low genetic diversity. The under-utilized crop P. dumosus has a complex hybrid origin. Further sampling in the region in which it arose may uncover additional germplasm for introgressing favourable traits into crops within the P. vulgaris gene pool. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture

    USDA-ARS?s Scientific Manuscript database

    Genetic solutions to protect crops against pests and pathogens are preferable to agrichemicals 1. Wild crop relatives carry immense diversity of disease resistance (R) genes that could enable more sustainable disease control. However, recruiting R genes for crop improvement typically involves long b...

  11. Start with the seed: Native crops, indigenous knowledge, and community seed systems prerequisites for food sovereignty

    USDA-ARS?s Scientific Manuscript database

    The dynamic conservation and sustainable utilization of native crop genetic resources are crucial for food sovereignty of Native American communities. Indigenous knowledge of crop diversity when linked to food traditions, local practices and social norms provide the basis for building sovereign comm...

  12. Legume crops phylogeny and genetic diversity for science and breeding

    USDA-ARS?s Scientific Manuscript database

    Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal ...

  13. Soil-profile distribution of inorganic N during 6 years of integrated crop-livestock management

    USDA-ARS?s Scientific Manuscript database

    Excessive accumulation of soil nitrate-N can threaten water and air quality. How integrated crop-livestock systems might influence soil-profile nitrate-N accumulation has not been investigated. Therefore, we determined soil nitrate-N accumulation during 6 years of evaluation of diverse cropping sy...

  14. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.)

    USDA-ARS?s Scientific Manuscript database

    Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and...

  15. Detecting and correcting logically inconsistent crop rotations and other land-use sequences

    USDA-ARS?s Scientific Manuscript database

    Multi-year landuse data of adequate duration and quality has the potential to identify crop rotation history on individual fields. In the diverse landscape of western Oregon where many crops are established perennials whose stands can remain in production for multiple years, our interests included m...

  16. Effects of Transparency on Pilot Trust and Agreement in the Autonomous Constrained Flight Planner

    NASA Technical Reports Server (NTRS)

    Sadler, Garrett; Battiste, Henri; Ho, Nhut; Hoffmann, Lauren; Lyons, Joseph; Johnson, Walter; Shively, Robert; Smith, David

    2016-01-01

    We performed a human-in-the-loop study to explore the role of transparency in engendering trust and reliance within highly automated systems. Specifically, we examined how transparency impacts trust in and reliance upon the Autonomous Constrained Flight Planner (ACFP), a critical automated system being developed as part of NASA's Reduced Crew Operations (RCO) Concept. The ACFP is designed to provide an enhanced ground operator, termed a super dispatcher, with recommended diversions for aircraft when their primary destinations are unavailable. In the current study, 12 commercial transport rated pilots who played the role of super dispatchers were given six time-pressured all land scenarios where they needed to use the ACFP to determine diversions for multiple aircraft. Two factors were manipulated. The primary factor was level of transparency. In low transparency scenarios the pilots were given a recommended airport and runway, plus basic information about the weather conditions, the aircraft types, and the airport and runway characteristics at that and other airports. In moderate transparency scenarios the pilots were also given a risk evaluation for the recommended airport, and for the other airports if they requested it. In the high transparency scenario additional information including the reasoning for the risk evaluations was made available to the pilots. The secondary factor was level of risk, either high or low. For high-risk aircraft, all potential diversions were rated as highly risky, with the ACFP giving the best option for a bad situation. For low-risk aircraft the ACFP found only low-risk options for the pilot. Both subjective and objective measures were collected, including rated trust, whether the pilots checked the validity of the automation recommendation, and whether the pilots eventually flew to the recommended diversion airport. Key results show that: 1) Pilots trust increased with higher levels of transparency, 2) Pilots were more likely to verify ACFPs recommendations with low levels of transparency and when risk was high, 3) Pilots were more likely to explore other options from the ACFP in low transparency conditions and when risk was high, and 4) Pilots decision to accept or reject ACFPs recommendations increased as a function of the transparency in the explanation. The finding that higher levels of transparency was coupled with higher levels of trust, a lower need to verify other options, and higher levels of agreement with ACFP recommendations, confirms the importance of transparency in aiding reliance on automated recommendations. Additional analyses of qualitative data gathered from subjects through surveys and during debriefing interviews also provided the basis for new design recommendations for the ACFP.

  17. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    PubMed Central

    Barkla, Bronwyn J.

    2016-01-01

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised. PMID:28248236

  18. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity.

    PubMed

    Barkla, Bronwyn J

    2016-09-08

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  19. [Effect of conservation tillage on weeds in a rotation system on the Loess Plateau of eastern Gansu, Northwest China].

    PubMed

    Zhao, Yu-xin; Lu, Jiao-yun; Yang, Hui-min

    2015-04-01

    A field study was conducted to investigate the influences of no-tillage, stubble retention and crop type on weed density, species composition and community feature in a rotation system (winter wheat-common vetch-maize) established 12 years ago on the Loess Plateau of eastern Gansu. This study showed that the weed species composition, density and community feature varied with the change of crop phases. No-tillage practice increased the weed density at maize phase, while rotation with common vetch decreased the density in the no-tillage field. Stubble retention reduced the weed density under maize phase and the lowest density was observed in the no-tillage plus stubble retention field. No-tillage practice significantly increased the weed species diversity under winter wheat phase and decreased the diversity under common vetch phase. At maize phase, a greater species diversity index was observed in the no-tillage field. These results suggested that no-tillage practice and stubble retention possibly suppress specific weeds with the presence of some crops and crop rotation is a vital way to controlling weeds in a farming system.

  20. Plant volatile-mediated signalling and its application in agriculture: successes and challenges.

    PubMed

    Pickett, John A; Khan, Zeyaur R

    2016-12-01

    856 I. 856 II. 857 III. 858 IV. 859 V. 860 VI. 862 VII. 863 VIII. 864 IX. 866 866 References 866 SUMMARY: The mediation of volatile secondary metabolites in signalling between plants and other organisms has long been seen as presenting opportunities for sustainable crop protection. Initially, exploitation of interactions between plants and other organisms, particularly insect pests, foundered because of difficulties in delivering, sustainably, the signal systems for crop protection. We now have mounting and, in some cases, clear practical evidence for successful delivery by companion cropping or next-generation genetic modification (GM). At the same time, the type of plant signalling being exploited has expanded to signalling from plants to organisms antagonistic to pests, and to plant stress-induced, or primed, plant-to-plant signalling for defence and growth stimulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Soil fertility, crop biodiversity, and farmers' revenues: Evidence from Italy.

    PubMed

    Di Falco, Salvatore; Zoupanidou, Elisavet

    2017-03-01

    This paper analyzes the interplay between soil fertility, crop biodiversity, and farmers' revenues. We use a large, original, farm-level panel dataset. Findings indicate that both crop biodiversity and soil fertility have positive effects on farmers' revenues. It is also shown that crop biodiversity and soil fertility may act as substitutes. These results provide evidence for the important role of diversity in the resilience of agroecosystems. Crop diversification can be a potential strategy to support productivity when soils are less fertile.

  2. The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions.

    PubMed

    Cheeseman, John M

    2015-04-01

    The effective development of salt tolerant crops requires an understanding that the evolution of halophytes, glycophytes and our major grain crops has involved significantly different processes. Halophytes (and other edaphic endemics) generally arose through colonization of habitats in severe disequilibrium by pre-adapted individuals, rather than by gradual adaptation from populations of 'glycophytes'. Glycophytes, by contrast, occur in low sodium ecosystems, where sodium was and is the major limiting nutrient in herbivore diets, suggesting that their evolution reflects the fact that low sodium individuals experienced lower herbivory and had higher fitness. For domestication/evolution of crop plants, the selective pressure was human imposed and involved humans co-opting functions of defense and reproductive security. Unintended consequences of this included loss of tolerance to various stresses and loss of the genetic variability needed to correct that. Understanding, combining and manipulating all three modes of evolution are now critical to the development of salt tolerant crops, particularly those that will offer food security in countries with few economic resources and limited infrastructure. Such efforts will require exploiting the genetic structures of recently evolved halophytes, the genetic variability of model plants, and endemic halophytes and 'minor' crops that already exist. © 2014 The Author. New Phytologist © 2014 New Phytologist Trust.

  3. New carrot and garlic germplasm to advance breeding and understand crop origins

    USDA-ARS?s Scientific Manuscript database

    The genetic variation provided by diverse plant germplasm is the basic building material used for crop improvement that shapes the crops we grow today. Wild carrot from the U.S. provided the cytoplasm used to develop a reliable system to produce hybrid carrots that account for most of the commercial...

  4. Chemistry and microbial functional diversity differences in biofuel crop and grassland soils in multiple geographies

    USDA-ARS?s Scientific Manuscript database

    As crop and non-crop lands are increasingly becoming converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples obtained from 6 regional sets of switchgrass (Panicum virgatum L.) and 3 regiona...

  5. Diversity of stink bug (Hemiptera:Pentatomidae) egg parasitoids in woodland and crop habitats in southwest Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    Nezara viridula (L.) and Euschistus servus (Say) (Hemiptera: Pentatomidae) are economic pests of cotton, Gossypium hirsutum L. They move within and between closely associated crop and non-crop habitats throughout the growing season in response to deteriorating suitability of their current host plant...

  6. Public Acceptance of Plant Biotechnology and GM Crops.

    PubMed

    Lucht, Jan M

    2015-07-30

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths-also affecting the development of virus resistant transgenic crops-of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer's attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion-including calls for labeling of GM food-in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers' concerns with transgenic crops, but it is not clear yet how consumers' attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  7. Genetic Diversity and Ecological Niche Modelling of Wild Barley: Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?

    PubMed Central

    Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian

    2014-01-01

    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252

  8. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators.

    PubMed

    Cariveau, Daniel P; Williams, Neal M; Benjamin, Faye E; Winfree, Rachael

    2013-07-01

    More diverse biological communities may provide ecosystem services that are less variable over space or time. However, the mechanisms underlying this relationship are rarely investigated empirically in real-world ecosystems. Here, we investigate how a potentially important stabilising mechanism, response diversity, the differential response to environmental change among species, stabilises pollination services against land-use change. We measured crop pollination services provided by native bees across land-use gradients in three crop systems. We found that bee species responded differentially to increasing agricultural land cover in all three systems, demonstrating that response diversity occurs. Similarly, we found response diversity in pollination services in two of the systems. However, there was no evidence that response diversity, in general, stabilised ecosystem services. Our results suggest that either response diversity is not the primary stabilising mechanism in our system, or that new measures of response diversity are needed that better capture the stabilising effects it provides. © 2013 John Wiley & Sons Ltd/CNRS.

  9. Challenges Facing Crop Production And (Some) Potential Solutions

    NASA Astrophysics Data System (ADS)

    Schnable, P. S.

    2017-12-01

    To overcome some of the myriad challenges facing sustainable crop production we are seeking to develop statistical models that will predict crop performance in diverse agronomic environments. Crop phenotypes such as yield and drought tolerance are controlled by genotype, environment (considered broadly) and their interaction (GxE). As a consequence of the next generation sequencing revolution genotyping data are now available for a wide diversity of accessions in each of the major crops. The necessary volumes of phenotypic data, however, remain limiting and our understanding of molecular basis of GxE is minimal. To address this limitation, we are collaborating with engineers to construct new sensors and robots to automatically collect large volumes of phenotypic data. Two types of high-throughput, high-resolution, field-based phenotyping systems and new sensors will be described. Some of these technologies will be introduced within the context of the Genomes to Fields Initiative. Progress towards developing predictive models will be briefly summarized. An administrative structure that fosters transdisciplinary collaborations will be briefly described.

  10. Assessment of soil hydrology variability of a new weighing lysimeter facility

    NASA Astrophysics Data System (ADS)

    Brown, S. E.; Wagner-Riddle, C.; Berg, A. A.

    2017-12-01

    Diversifying annual crop rotations is a strategy that mimics natural ecosystems and is postulated to increase agricultural resilience to climate change, soil quality and provision of soil ecosystem services. However, diverse cropping systems could increase soil mineral N levels and lead to greater leaching and/or N2O emissions; which raises the questions: (i) are diverse cropping systems actually beneficial for air and water quality? (ii) what are the trade-offs between soil, water, and air quality upon implementing a diverse cropping rotation? It can be difficult to fully evaluate the interactions between the two N-pollution pathways simultaneously in traditional field studies as drainage is largely unconstrained. Weighing lysimeters solve this issue by providing a closed system to measure N outputs via drainage and soil gas fluxes. A set of 18 weighting lysimeters were installed in Elora, Ontario, Canada in May 2016, to establish a long-term study of N-leaching and greenhouse gas emission from traditional and diverse cropping rotations for two different soil types. Each lysimeter is equipped with an automated chamber for continuous measurement of soil N2O and CO2 fluxes. A full characterization of variations of physical properties that may affect GHG emissions and N-leaching (e.g., soil temperature, moisture, drainage and evapotranspiration rates) amongst the lysimeters is required prior to application and assessment of the management treatments. Novel techniques such as wavelet analysis is required as standard statistical analyses are not applicable to the time series data. A full description of the lysimeters will be presented along with results of the characterization.

  11. Community member and faith leader perspectives on the process of building trusting relationships between communities and researchers.

    PubMed

    Lakes, Kimberley D; Vaughan, Elaine; Pham, Jennifer; Tran, Tuyet; Jones, Marissa; Baker, Dean; Swanson, James M; Olshansky, Ellen

    2014-02-01

    In the first phase of this research, we conducted, audio-recorded, and transcribed seven focus groups with more than 50 English- or Spanish-speaking women of childbearing age. Qualitative analysis revealed the following themes: (1) expectation that participation would involve relationships based on trust that is built over time and impacted by cultural factors; (2) perceived characteristics of research staff that would help facilitate the development of trusting relationships; (3) perceptions about the location of the visits that may affect trust; (4) perceptions of a research study and trust for the institution conducting the study may affect trust; (5) connecting the study to larger communities, including faith communities, could affect trust and willingness to participate. In the second phase of this research, we conducted, recorded, transcribed, and analyzed interviews with leaders from diverse faith communities to explore the potential for research partnerships between researchers and faith communities. In addition to confirming themes identified in focus groups, faith leaders described an openness to research partnerships between the university and faith communities and considerations for the formation of these partnerships. Faith leaders noted the importance of finding common ground with researchers, establishing and maintaining trusting relationships, and committing to open, bidirectional communication. © 2014 Wiley Periodicals, Inc.

  12. Community Member and Faith Leader Perspectives on the Process of Building Trusting Relationships between Communities and Researchers

    PubMed Central

    Vaughan, Elaine; Pham, Jennifer; Tran, Tuyet; Jones, Marissa; Baker, Dean; Swanson, James M.; Olshansky, Ellen

    2014-01-01

    Abstract In the first phase of this research, we conducted, audio‐recorded, and transcribed seven focus groups with more than 50 English‐ or Spanish‐speaking women of childbearing age. Qualitative analysis revealed the following themes: (1) expectation that participation would involve relationships based on trust that is built over time and impacted by cultural factors; (2) perceived characteristics of research staff that would help facilitate the development of trusting relationships; (3) perceptions about the location of the visits that may affect trust; (4) perceptions of a research study and trust for the institution conducting the study may affect trust; (5) connecting the study to larger communities, including faith communities, could affect trust and willingness to participate. In the second phase of this research, we conducted, recorded, transcribed, and analyzed interviews with leaders from diverse faith communities to explore the potential for research partnerships between researchers and faith communities. In addition to confirming themes identified in focus groups, faith leaders described an openness to research partnerships between the university and faith communities and considerations for the formation of these partnerships. Faith leaders noted the importance of finding common ground with researchers, establishing and maintaining trusting relationships, and committing to open, bidirectional communication. PMID:24405695

  13. Public Trust in Health Information Sharing: Implications for Biobanking and Electronic Health Record Systems

    PubMed Central

    Platt, Jodyn; Kardia, Sharon

    2015-01-01

    Biobanks are made all the more valuable when the biological samples they hold can be linked to health information collected in research, electronic health records, or public health practice. Public trust in such systems that share health information for research and health care practice is understudied. Our research examines characteristics of the general public that predict trust in a health system that includes researchers, health care providers, insurance companies and public health departments. We created a 119-item survey of predictors and attributes of system trust and fielded it using Amazon’s MTurk system (n = 447). We found that seeing one’s primary care provider, having a favorable view of data sharing and believing that data sharing will improve the quality of health care, as well as psychosocial factors (altruism and generalized trust) were positively and significantly associated with system trust. As expected, privacy concern, but counterintuitively, knowledge about health information sharing were negatively associated with system trust. We conclude that, in order to assure the public’s trust, policy makers charged with setting best practices for governance of biobanks and access to electronic health records should leverage critical access points to engage a diverse public in joint decision making. PMID:25654300

  14. Farmer's response to changing climate in North East India

    NASA Astrophysics Data System (ADS)

    De, Utpal Kumar

    2015-02-01

    Diversification of land use in the cultivation of various crops provides an alternative way to moderate the climate risk. By choosing alternative crops that are resilient to various weather parameters, farmers can reduce the crop damage and achieve optimum output from their limited land resources. Apart from other adaptation measures, crop diversity can reflect farmers' response towards changing climate uncertainty. This paper tries to examine the changing climatic condition through spatio-temporal variation of two important weather variables (precipitation and temperature) in the largest North-East Indian state, Assam, since 1950. It is examined by the variation in crop diversification index. We have used (1) Herfindahl Index for measuring degree of diversification and (2) locational quotient for measuring the changes in the regional crop concentration. The results show that, in almost all the districts, crop specialization has been taking place slowly and that happened mostly in the last phase of our study. The hilly and backward districts recorded more diversification but towards lower value crops. It goes against the normal feature of crop diversification where farmers diversify in favour of high value crops. Employing ordinary least squares method and/or Fixed Effect model, irrigation is found to have significant impact on crop diversification; while the flood plain zones and hill zones are found to have better progress in this regard, which has been due to the survival necessity of poor farmers living the zone. Thus crop diversity does not reflect very significant response from the farmers' side towards changing weather factors (except rainfall) though they have significant impact on the productivity of various crops, and thus profitability. The study thus suggests the necessity for rapid and suitable diversification as alternative climate change mitigation in the long run.

  15. Trust Matters: Distinction and Diversity in Undergraduate Science Education

    ERIC Educational Resources Information Center

    Ream, Robert K.; Lewis, James L.; Echeverria, Begoña; Page, Reba N.

    2014-01-01

    Background: How do we account for the persistent difficulty the U.S. community of science has in educating larger numbers of talented and diverse undergraduates? We posit that the problem lies in the community's unremitting focus on scientific subject matter knowledge and students' ability to learn, to the neglect of interpersonal social…

  16. Understanding Is Key: An Analysis of Factors Pertaining to Trust in a Real-World Automation System.

    PubMed

    Balfe, Nora; Sharples, Sarah; Wilson, John R

    2018-06-01

    This paper aims to explore the role of factors pertaining to trust in real-world automation systems through the application of observational methods in a case study from the railway sector. Trust in automation is widely acknowledged as an important mediator of automation use, but the majority of the research on automation trust is based on laboratory work. In contrast, this work explored trust in a real-world setting. Experienced rail operators in four signaling centers were observed for 90 min, and their activities were coded into five mutually exclusive categories. Their observed activities were analyzed in relation to their reported trust levels, collected via a questionnaire. The results showed clear differences in activity, even when circumstances on the workstations were very similar, and significant differences in some trust dimensions were found between groups exhibiting different levels of intervention and time not involved with signaling. Although the empirical, lab-based studies in the literature have consistently found that reliability and competence of the automation are the most important aspects of trust development, understanding of the automation emerged as the strongest dimension in this study. The implications are that development and maintenance of trust in real-world, safety-critical automation systems may be distinct from artificial laboratory automation. The findings have important implications for emerging automation concepts in diverse industries including highly automated vehicles and Internet of things.

  17. Gypsum effects on crop yield and chemistry of soil, crop tissue, and vadose zone water: A meta-analysis.

    USDA-ARS?s Scientific Manuscript database

    Gypsum has various potential benefits as a soil amendment, but data are lacking on gypsum effects on crop yields and on environmental impacts across diverse field sites. Gypsum studies were conducted in six states using a common design with three rates each of mined and flue gas desulfurization (FGD...

  18. Inexplicable or Simply Unexplained? The Management of Maize Seed in Mexico

    PubMed Central

    Dyer, George A.; López-Feldman, Alejandro

    2013-01-01

    Farmer management of plant germplasm pre-dates crop domestication, but humans’ role in crop evolution and diversity remains largely undocumented and often contested. Seemingly inexplicable practices observed throughout agricultural history, such as exchanging or replacing seed, continue to structure crop populations across the developing world. Seed management practices can be construed as events in the life history of crops and management data used to model crop demography, but this requires suitable quantitative data. As a prerequisite to addressing the causes and implications of maize seed management, we describe its patterns of variation across Mexico by drawing from the literature and new analysis. We find that rates of seed replacement, introduction and diffusion differ significantly across regions and altitudinal zones, but interactions among explanatory factors can obscure patterns of variation. The type, source, geographic origin and ownership of seed help explain observed rates. Yet, controlling for the characteristics of germplasm barely reduces interregional differences vastly exceeding variation across elevations. With few exceptions, monotonic altitudinal trends are absent. Causal relationships between management practices and the physical environment could determine farmers’ wellbeing and crop conservation in the face of climate change. Scarce and inconsistent data on management nevertheless could prevent an understanding of these relationships. Current conceptions on the management and dynamics of maize diversity are founded on a patchwork of observations in surprisingly few and dissimilar environments. Our estimates of management practices should shed light on differences in maize population dynamics across Mexico. Consistency with previous studies spanning over a decade suggests that common sets of forces are present within large areas, but causal associations remain unknown. The next step in explaining crop diversity should address variation in seed management across space and time simultaneously while identifying farmers’ values and motivations as underlying forces. PMID:23840847

  19. Inexplicable or simply unexplained? The management of maize seed in Mexico.

    PubMed

    Dyer, George A; López-Feldman, Alejandro

    2013-01-01

    Farmer management of plant germplasm pre-dates crop domestication, but humans' role in crop evolution and diversity remains largely undocumented and often contested. Seemingly inexplicable practices observed throughout agricultural history, such as exchanging or replacing seed, continue to structure crop populations across the developing world. Seed management practices can be construed as events in the life history of crops and management data used to model crop demography, but this requires suitable quantitative data. As a prerequisite to addressing the causes and implications of maize seed management, we describe its patterns of variation across Mexico by drawing from the literature and new analysis. We find that rates of seed replacement, introduction and diffusion differ significantly across regions and altitudinal zones, but interactions among explanatory factors can obscure patterns of variation. The type, source, geographic origin and ownership of seed help explain observed rates. Yet, controlling for the characteristics of germplasm barely reduces interregional differences vastly exceeding variation across elevations. With few exceptions, monotonic altitudinal trends are absent. Causal relationships between management practices and the physical environment could determine farmers' wellbeing and crop conservation in the face of climate change. Scarce and inconsistent data on management nevertheless could prevent an understanding of these relationships. Current conceptions on the management and dynamics of maize diversity are founded on a patchwork of observations in surprisingly few and dissimilar environments. Our estimates of management practices should shed light on differences in maize population dynamics across Mexico. Consistency with previous studies spanning over a decade suggests that common sets of forces are present within large areas, but causal associations remain unknown. The next step in explaining crop diversity should address variation in seed management across space and time simultaneously while identifying farmers' values and motivations as underlying forces.

  20. Influence of ethnic traditional cultures on genetic diversity of rice landraces under on-farm conservation in southwest China.

    PubMed

    Wang, Yanjie; Wang, Yanli; Sun, Xiaodong; Caiji, Zhuoma; Yang, Jingbiao; Cui, Di; Cao, Guilan; Ma, Xiaoding; Han, Bing; Xue, Dayuan; Han, Longzhi

    2016-10-27

    Crop genetic resources are important components of biodiversity. However, with the large-scale promotion of mono-cropping, genetic diversity has largely been lost. Ex-situ conservation approaches were widely used to protect traditional crop varieties worldwide. However, this method fails to maintain the dynamic evolutionary processes of crop genetic resources in their original habitats, leading to genetic diversity reduction and even loss of the capacity of resistance to new diseases and pests. Therefore, on-farm conservation has been considered a crucial complement to ex-situ conservation. This study aimed at clarifying the genetic diversity differences between ex-situ conservation and on-farm conservation and to exploring the influence of traditional cultures on genetic diversity of rice landraces under on-farm conservation. The conservation status of rice landrace varieties, including Indica and Japonica, non-glutinous rice (Oryza sativa) and glutinous rice (Oryza sativa var. glutinosa Matsum), was obtained through ethno-biology investigation method in 12 villages of ethnic groups from Guizhou, Yunnan and Guangxi provinces of China. The genetic diversity between 24 pairs of the same rice landraces from different times were compared using simple sequence repeat (SSR) molecular markers technology. The landrace paris studied were collected in 1980 and maintained ex-situ, while 2014 samples were collected on-farm in southwest of China. The results showed that many varieties of rice landraces have been preserved on-farm by local farmers for hundreds or thousands of years. The number of alleles (Na), effective number of alleles (Ne), Nei genetic diversity index (He) and Shannon information index (I) of rice landraces were significantly higher by 12.3-30.4 % under on-farm conservation than under ex-situ conservation. Compared with the ex-situ conservation approach, rice landraces under on-farm conservation programs had more alleles and higher genetic diversity. In every site we investigated, ethnic traditional cultures play a positive influence on rice landrace variety diversity and genetic diversity. Most China's rice landraces were conserved in the ethnic areas of southwest China. On-farm conservation can effectively promote the allelic variation and increase the genetic diversity of rice landraces over the past 35 years. Moreover, ethnic traditional culture practices are a crucial foundation to increase genetic diversity of rice landraces and implement on-farm conservation.

  1. Effects of urban sprawl on arthropod communities in peri-urban farmed landscape in Shenbei New District, Shenyang, Liaoning Province, China.

    PubMed

    Bian, Zhen-Xing; Wang, Shuai; Wang, Qiu-Bing; Yu, Miao; Qian, Feng-Kui

    2018-01-08

    Peri-urban farmland provides a diversity of ecological services. However, it is experiencing increasing pressures from urban sprawl. While the effects of land use associated with farming on arthropod assemblages has received increasing attention, most of this research has been conducted by comparing conventional and organic cropping systems. The present study identifies the effects of urban sprawl and the role of non-cropped habitat in defining arthropod diversity in peri-urban farmed landscapes. Multi-scale arthropod data from 30 sampling plots were used with linear-mixed models to elucidate the effects of distance from urban areas (0-13 km; 13-25 km and >25 km, zones I, II, and III, respectively) on arthropods. Results showed that urban sprawl, disturbed farm landscapes, and disturbance in non-cropped habitats had negative effects on arthropods, the latter requiring arthropods to re-establish annually from surrounding landscapes via dispersal. While arthropod species richness showed no obvious changes, arthropod abundance was lowest in zone II. Generally, patch density (PD), Shannon diversity index (SHDI), and aggregate index (AI) of non-cropped habitat were major drivers of changes in arthropod populations. This study contributes to identifying the effects of urban sprawl on arthropod diversity and documenting the multiple functions of farm landscapes in peri-urban regions.

  2. [Changes of diversity and composition of fungal communities in rhizosphere of Panax ginseng].

    PubMed

    Dong, Lin-Lin; Niu, Wei-Hao; Wang, Rui; Xu, Jiang; Zhang, Lian-Juan; Zhang, Jun; Chen, Shi-Lin

    2017-02-01

    Continuous cropping obstacles resulted in the yield losses of Panax ginseng, and affected the development of ginseng industry. Soil fungal communities participated in the key ecological process, and their changes of diversity and composition were related to the continuous cropping obstacles. We analyzed the changes of fungal diversity and composition in the rhizosphere of ginseng using the high-throughput sequencing method, stated the effects of ginseng cultivation on the micro-ecology, and provided effective strategies for overcoming continuous cropping obstacles. Compared to those of the forest soils, the fungal diversity of ginseng rhizosphere soils was increased, and the increasing trends were declined with an increasing years of ginseng cultivation; the relative abundance of Sordariomycetes, Alatospora, Eurotiomycetes, Leotiomycetes, Saccharomycetes, Mucorales and Pezizomycetes were increased in the rhizosphere of ginseng. Pearson's correlation index indicated that soil chemical perporties affected the relative abundance of fungal communities. pH was significantly related to the relative abundance of Dothideomycetes and Alatospora; the content of available potassium was markedly associated with the relative abundance of Dothideomycetes, Alatospora and Mucorales; the content of total nitrogen was significant correlation with the relative abundance of Sordariomycetes and Mucorales. These results indicated that fertilization was one of pivotal factors affecting the rhizosphere micro-ecology of ginseng, and optimization of fertilization system was an effective method to overcome continuous cropping obstacles. Copyright© by the Chinese Pharmaceutical Association.

  3. Diffusion-based recommendation with trust relations on tripartite graphs

    NASA Astrophysics Data System (ADS)

    Wang, Ximeng; Liu, Yun; Zhang, Guangquan; Xiong, Fei; Lu, Jie

    2017-08-01

    The diffusion-based recommendation approach is a vital branch in recommender systems, which successfully applies physical dynamics to make recommendations for users on bipartite or tripartite graphs. Trust links indicate users’ social relations and can provide the benefit of reducing data sparsity. However, traditional diffusion-based algorithms only consider rating links when making recommendations. In this paper, the complementarity of users’ implicit and explicit trust is exploited, and a novel resource-allocation strategy is proposed, which integrates these two kinds of trust relations on tripartite graphs. Through empirical studies on three benchmark datasets, our proposed method obtains better performance than most of the benchmark algorithms in terms of accuracy, diversity and novelty. According to the experimental results, our method is an effective and reasonable way to integrate additional features into the diffusion-based recommendation approach.

  4. Institutional (mis)trust in colorectal cancer screening: a qualitative study with Greek, Iranian, Anglo-Australian and Indigenous groups.

    PubMed

    Ward, Paul R; Coffey, Cushla; Javanparast, Sara; Wilson, Carlene; Meyer, Samantha B

    2015-12-01

    Colorectal cancer (CRC) has the second highest cancer mortality rate in Australia. The Australian National Bowel Cancer Screening Program (NBCSP) aims to increase early detection of CRC by offering free Faecal Occult Blood Testing (FOBT), although uptake is low for culturally and linguistically diverse (CALD) groups. To present data on trust and mistrust in the NBCSP by population groups with low uptake and thus to highlight areas in need of policy change. A qualitative study was undertaken in South Australia, involving interviews with 94 people from four CALD groups: Greek, Iranian, Anglo-Australian, and Indigenous peoples. Our study highlights the complexities of institutional trust, which involves considerations of trust at interpersonal, local and national levels. In addition, trust and mistrust was found in more abstract systems such as the medical knowledge of doctors to diagnose or treat cancer or the scientific procedures in laboratories to test the FOBTs. The object of institutional (mis)trust differed between cultural groups - Anglo-Australian and Iranian groups indicated a high level of trust in the government, whereas Indigenous participants were much less trusting. The level and nature of trust in the screening process varied between the CALD groups. Addressing program misconceptions, clarifying the FOBT capabilities and involving medical services in collecting and transporting the samples may increase trust in the NBCSP. However, broader and more enduring mistrust in services and institutions may need to be dealt with in order to increase trust and participation. © 2014 John Wiley & Sons Ltd.

  5. What are children's trusts? Early findings from a national survey.

    PubMed

    Bachmann, M O; Reading, R; Husbands, C; O'Brien, M; Thoburn, J; Shemilt, I; Watson, J; Jones, N; Haynes, R; Mugford, M

    2006-03-01

    The Children Act 2004 and National Service Framework for Children, Young People and Maternity Services require fuller integration of health, education and social services for children and young people in England and Wales. The UK government supported the establishment of 35 experimental children's trust pathfinders (henceforth called children's trusts) in England. A questionnaire was completed by managers in all 35 children's trusts a year after their start. Children's trust documents were examined. Census and performance indicators were compared between children's trust areas and the rest of England. Children's trust areas had demographic and social characteristics typical of England. All children's trusts aimed to improve health, education and social services by greater managerial and service integration. All had boards representing the three sectors; other agencies' representation varied. Two-thirds of children's trusts had moved towards pooling budgets in at least some service areas. At this stage in their development, some had prioritized joint procurement or provision of services, with formal managerial structures, while others favoured an informal strategic planning, co-ordination and information sharing approach. The commonest priorities for services development were for disabled children (16 children's trusts), followed by early intervention (11) and mental health services (8). The diverse strategies adopted by these 35 children's trusts during their first year is due to their own characteristics and to the way government strategy developed during this period. Whilst some prioritized organizational development, joint financing and commissioning, and information sharing, others laid more emphasis on mechanisms for bringing front-line professionals closer together. Their experiences are of value to others deciding how best to integrate children's services.

  6. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa.

    PubMed

    Fuchs, Eric J; Meneses Martínez, Allan; Calvo, Amanda; Muñoz, Melania; Arrieta-Espinoza, Griselda

    2016-01-01

    Wild crop relatives are an important source of genetic diversity for crop improvement. Diversity estimates are generally lacking for many wild crop relatives. The objective of the present study was to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated the likelihood of gene flow between wild and commercial rice species because the latter is commonly sympatric with wild rice populations. Introgression may change wild species by incorporating alleles from domesticated species, increasing the risk of losing original variation. Specimens from all known O. glumaepatula populations in Costa Rica were analyzed with 444 AFLP markers to characterize genetic diversity and structure. We also compared genetic diversity estimates between O. glumaepatula specimens and O. sativa commercial rice. Our results showed that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. Despite the restricted distribution of this species in Costa Rica, populations are fairly large, reducing the effects of drift on genetic diversity. We found a dismissible but significant structure (θ = 0.02 ± 0.001) among populations. A Bayesian structure analysis suggested that some individuals share a significant proportion of their genomes with O. sativa. These results suggest that gene flow from cultivated O. sativa populations may have occurred in the recent past. These results expose an important biohazard: recurrent hybridization may reduce the genetic diversity of this wild rice species. Introgression may transfer commercial traits into O. glumaepatula, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica.

  7. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields

    PubMed Central

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  8. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa

    PubMed Central

    Meneses Martínez, Allan; Calvo, Amanda; Muñoz, Melania

    2016-01-01

    Wild crop relatives are an important source of genetic diversity for crop improvement. Diversity estimates are generally lacking for many wild crop relatives. The objective of the present study was to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated the likelihood of gene flow between wild and commercial rice species because the latter is commonly sympatric with wild rice populations. Introgression may change wild species by incorporating alleles from domesticated species, increasing the risk of losing original variation. Specimens from all known O. glumaepatula populations in Costa Rica were analyzed with 444 AFLP markers to characterize genetic diversity and structure. We also compared genetic diversity estimates between O. glumaepatula specimens and O. sativa commercial rice. Our results showed that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. Despite the restricted distribution of this species in Costa Rica, populations are fairly large, reducing the effects of drift on genetic diversity. We found a dismissible but significant structure (θ = 0.02 ± 0.001) among populations. A Bayesian structure analysis suggested that some individuals share a significant proportion of their genomes with O. sativa. These results suggest that gene flow from cultivated O. sativa populations may have occurred in the recent past. These results expose an important biohazard: recurrent hybridization may reduce the genetic diversity of this wild rice species. Introgression may transfer commercial traits into O. glumaepatula, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica. PMID:27077002

  9. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.

    PubMed

    Bohra, Abhishek; Jha, Uday Chand; Kishor, P B Kavi; Pandey, Shailesh; Singh, Narendra P

    2014-12-01

    Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture

    PubMed Central

    Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao

    2018-01-01

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. PMID:29792597

  11. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture.

    PubMed

    Wan, Nian-Feng; Cai, You-Ming; Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Jiang, Jie-Xian; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao; Li, Bo

    2018-05-24

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. © 2018, Wan et al.

  12. Contrasting patterns of variation in weedy traits and unique crop features in divergent populations of US weedy rice (Oryza sativa sp.) in Arkansas and California.

    PubMed

    Kanapeckas, Kimberly L; Tseng, Te-Ming; Vigueira, Cynthia C; Ortiz, Aida; Bridges, William C; Burgos, Nilda R; Fischer, Albert J; Lawton-Rauh, Amy

    2018-06-01

    Weed evolution from crops involves changes in key traits, but it is unclear how genetic and phenotypic variation contribute to weed diversification and productivity. Weedy rice is a conspecific weed of rice (Oryza sativa) worldwide. We used principal component analysis and hierarchical clustering to understand how morphologically and evolutionarily distinct US weedy rice populations persist in rice fields in different locations under contrasting management regimes. Further, we used a representative subset of 15 sequence-tagged site fragments of expressed genes from global Oryza to assess genome-wide sequence variation among populations. Crop hull color and crop-overlapping maturity dates plus awns, seed (panicle) shattering (> 50%), pigmented pericarp and stature variation (30.2% of total phenotypic variance) characterize genetically less diverse California weedy rice. By contrast, wild-like hull color, seed shattering (> 50%) and stature differences (55.8% of total phenotypic variance) typify genetically diverse weedy rice ecotypes in Arkansas. Recent de-domestication of weedy species - such as in California weedy rice - can involve trait combinations indistinguishable from the crop. This underscores the need for strict seed certification with genetic monitoring and proactive field inspection to prevent proliferation of weedy plant types. In established populations, tillage practice may affect weed diversity and persistence over time. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing.

    PubMed

    Ni, Kuikui; Minh, Tang Thuy; Tu, Tran Thi Minh; Tsuruta, Takeshi; Pang, Huili; Nishino, Naoki

    2017-02-01

    The microbiota of pre-ensiled crop and silage were examined using denaturing gradient gel electrophoresis (DGGE) and next-generation sequencing (NGS). Wilted Italian ryegrass (IR), whole crop corn (WC), and wilted alfalfa (AL) silages stored for 2 months were examined. All silages contained lactic acid as a predominant fermentation product. Across the three crop species, DGGE detected 36 and 28 bands, and NGS identified 253 and 259 genera in the pre-ensiled crops and silages, respectively. The NGS demonstrated that, although lactic acid bacteria (LAB) became prevalent in all silages after 2 months of storage, the major groups were different between crops: Leuconostoc spp. and Pediococcus spp. for IR silage, Lactobacillus spp. for WC silage, and Enterococcus spp. for AL silage. The predominant silage LAB genera were also detected by DGGE, but the presence of diverse non-LAB species in pre-ensiled crops was far better detected by NGS. Likewise, good survival of Agrobacterium spp., Methylobacterium spp., and Sphingomonas spp. in IR and AL silages was demonstrated by NGS. The diversity of the microbiota described by principal coordinate analysis was similar between DGGE and NGS. Our finding that analysis of pre-ensiled crop microbiota did not help predict silage microbiota was true for both DGGE and NGS.

  14. Reconciling pesticide reduction with economic and environmental sustainability in arable farming.

    PubMed

    Lechenet, Martin; Bretagnolle, Vincent; Bockstaller, Christian; Boissinot, François; Petit, Marie-Sophie; Petit, Sandrine; Munier-Jolain, Nicolas M

    2014-01-01

    Reducing pesticide use is one of the high-priority targets in the quest for a sustainable agriculture. Until now, most studies dealing with pesticide use reduction have compared a limited number of experimental prototypes. Here we assessed the sustainability of 48 arable cropping systems from two major agricultural regions of France, including conventional, integrated and organic systems, with a wide range of pesticide use intensities and management (crop rotation, soil tillage, cultivars, fertilization, etc.). We assessed cropping system sustainability using a set of economic, environmental and social indicators. We failed to detect any positive correlation between pesticide use intensity and both productivity (when organic farms were excluded) and profitability. In addition, there was no relationship between pesticide use and workload. We found that crop rotation diversity was higher in cropping systems with low pesticide use, which would support the important role of crop rotation diversity in integrated and organic strategies. In comparison to conventional systems, integrated strategies showed a decrease in the use of both pesticides and nitrogen fertilizers, they consumed less energy and were frequently more energy efficient. Integrated systems therefore appeared as the best compromise in sustainability trade-offs. Our results could be used to re-design current cropping systems, by promoting diversified crop rotations and the combination of a wide range of available techniques contributing to pest management.

  15. Reconciling Pesticide Reduction with Economic and Environmental Sustainability in Arable Farming

    PubMed Central

    Lechenet, Martin; Bretagnolle, Vincent; Bockstaller, Christian; Boissinot, François; Petit, Marie-Sophie; Petit, Sandrine; Munier-Jolain, Nicolas M.

    2014-01-01

    Reducing pesticide use is one of the high-priority targets in the quest for a sustainable agriculture. Until now, most studies dealing with pesticide use reduction have compared a limited number of experimental prototypes. Here we assessed the sustainability of 48 arable cropping systems from two major agricultural regions of France, including conventional, integrated and organic systems, with a wide range of pesticide use intensities and management (crop rotation, soil tillage, cultivars, fertilization, etc.). We assessed cropping system sustainability using a set of economic, environmental and social indicators. We failed to detect any positive correlation between pesticide use intensity and both productivity (when organic farms were excluded) and profitability. In addition, there was no relationship between pesticide use and workload. We found that crop rotation diversity was higher in cropping systems with low pesticide use, which would support the important role of crop rotation diversity in integrated and organic strategies. In comparison to conventional systems, integrated strategies showed a decrease in the use of both pesticides and nitrogen fertilizers, they consumed less energy and were frequently more energy efficient. Integrated systems therefore appeared as the best compromise in sustainability trade-offs. Our results could be used to re-design current cropping systems, by promoting diversified crop rotations and the combination of a wide range of available techniques contributing to pest management. PMID:24887494

  16. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    PubMed

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  17. The Value of Native Plants and Local Production in an Era of Global Agriculture.

    PubMed

    Shelef, Oren; Weisberg, Peter J; Provenza, Frederick D

    2017-01-01

    For addressing potential food shortages, a fundamental tradeoff exists between investing more resources to increasing productivity of existing crops, as opposed to increasing crop diversity by incorporating more species. We explore ways to use local plants as food resources and the potential to promote food diversity and agricultural resilience. We discuss how use of local plants and the practice of local agriculture can contribute to ongoing adaptability in times of global change. Most food crops are now produced, transported, and consumed long distances from their homelands of origin. At the same time, research and practices are directed primarily at improving the productivity of a small number of existing crops that form the cornerstone of a global food economy, rather than to increasing crop diversity. The result is a loss of agro-biodiversity, leading to a food industry that is more susceptible to abiotic and biotic stressors, and more at risk of catastrophic losses. Humans cultivate only about 150 of an estimated 30,000 edible plant species worldwide, with only 30 plant species comprising the vast majority of our diets. To some extent, these practices explain the food disparity among human populations, where nearly 1 billion people suffer insufficient nutrition and 2 billion people are obese or overweight. Commercial uses of new crops and wild plants of local origin have the potential to diversify global food production and better enable local adaptation to the diverse environments humans inhabit. We discuss the advantages, obstacles, and risks of using local plants. We also describe a case study-the missed opportunity to produce pine nuts commercially in the Western United States. We discuss the potential consequences of using local pine nuts rather than importing them overseas. Finally, we provide a list of edible native plants, and synthesize the state of research concerning the potential and challenges in using them for food production. The goal of our synthesis is to support more local food production using native plants in an ecologically sustainable manner.

  18. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil

    PubMed Central

    Mitchell, Jeffrey; Scow, Kate

    2018-01-01

    Reducing tillage and growing cover crops, widely recommended practices for boosting soil health, have major impacts on soil communities. Surprisingly little is known about their impacts on soil microbial functional diversity, and especially so in irrigated Mediterranean ecosystems. In long-term experimental plots at the West Side Research and Extension Center in California’s Central Valley, we characterized soil microbial communities in the presence or absence of physical disturbance due to tillage, in the presence or absence of cover crops, and at three depths: 0–5, 5–15 and 15–30 cm. This characterization included qPCR for bacterial and archaeal abundances, DNA sequencing of the 16S rRNA gene, and phylogenetic estimation of two ecologically important microbial traits (rRNA gene copy number and genome size). Total (bacterial + archaeal) diversity was higher in no-till than standard till; diversity increased with depth in no-till but decreased with depth in standard till. Total bacterial numbers were higher in cover cropped plots at all depths, while no-till treatments showed higher numbers in 0–5 cm but lower numbers at lower depths compared to standard tillage. Trait estimates suggested that different farming practices and depths favored distinctly different microbial life strategies. Tillage in the absence of cover crops shifted microbial communities towards fast growing competitors, while no-till shifted them toward slow growing stress tolerators. Across all treatment combinations, increasing depth resulted in a shift towards stress tolerators. Cover crops shifted the communities towards ruderals–organisms with wider metabolic capacities and moderate rates of growth. Overall, our results are consistent with decreasing nutrient availability with soil depth and under no-till treatments, bursts of nutrient availability and niche homogenization under standard tillage, and increases in C supply and variety provided by cover crops. Understanding how agricultural practices shift microbial abundance, diversity and life strategies, such as presented here, can assist with designing farming systems that can support high yields, while enhancing C sequestration and increasing resilience to climate change. PMID:29447262

  19. A diversified no-till crop rotation reduces nitrous oxide emissions, increases soybean yields, and promotes soil C accrual

    USDA-ARS?s Scientific Manuscript database

    We evaluated the impact of crop rotational diversity on greenhouse gas (GHG) emissions, global warming potential (GWP), and crop yields. Under no-till, rain-fed conditions, a two-yr (corn (Zea mays L.)-soybean (Glycine max (L.) Merr.)) rotation and a four-yr (corn-field peas (Pisum sativum L.)-winte...

  20. Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens.

    PubMed

    Martínez-Cruz, Jesús; Romero, Diego; de Vicente, Antonio; Pérez-García, Alejandro

    2017-03-01

    The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants.

    PubMed

    Grosse-Holz, Friederike M; van der Hoorn, Renier A L

    2016-05-01

    Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit.

    PubMed

    Thomas, C L; Alcock, T D; Graham, N S; Hayden, R; Matterson, S; Wilson, L; Young, S D; Dupuy, L X; White, P J; Hammond, J P; Danku, J M C; Salt, D E; Sweeney, A; Bancroft, I; Broadley, M R

    2016-10-04

    Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a 'pouch and wick' system (n = ~24 replicates per genotype). The mineral composition of 3-6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits.

  3. Neither bridging nor bonding: A test of socialization effects by ethnically diverse voluntary associations on participants' inter-ethnic tolerance, inter-ethnic trust and intra-ethnic belonging.

    PubMed

    van der Meer, Tom

    2016-01-01

    The distinction between bridging and bonding associations is a cornerstone of social capital research. Nevertheless, this study is the first to provide a direct test of the socialization mechanism that supposedly causes ethnically mixed (bridging) associations to generate interethnic tolerance and trust, and homogenous (bonding) associations to cement self-affirming identities. This multilevel analysis of the Citizenship, Involvement & Democracy (CID) 1999/2000 survey data on Mannheim (Germany), Enschede (the Netherlands), and Aberdeen (Scotland) covers 3166 active participants in 645 associations. The CID includes objective, exogenous measures of each association's composition and aim. Socialization and self-selection effects are pulled apart through interactions with detailed measures of associational involvement. The results display no evidence for (diverse and homogenous) associations as socializing agents. Although inter-ethnic tolerance is higher in ethnically diverse associations, this should be attributed to self-selection effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons

    PubMed Central

    Laloi, G.; Montarry, J.; Guibert, M.; Andrivon, D.; Michot, D.

    2016-01-01

    ABSTRACT Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. IMPORTANCE Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. PMID:27208102

  5. Genomic diversity and macroecology of the crop wild relatives of domesticated pea.

    PubMed

    Smýkal, Petr; Hradilová, Iveta; Trněný, Oldřich; Brus, Jan; Rathore, Abhishek; Bariotakis, Michael; Das, Roma Rani; Bhattacharyya, Debjyoti; Richards, Christopher; Coyne, Clarice J; Pirintsos, Stergios

    2017-12-12

    There is growing interest in the conservation and utilization of crop wild relatives (CWR) in international food security policy and research. Legumes play an important role in human health, sustainable food production, global food security, and the resilience of current agricultural systems. Pea belongs to the ancient set of cultivated plants of the Near East domestication center and remains an important crop today. Based on genome-wide analysis, P. fulvum was identified as a well-supported species, while the diversity of wild P. sativum subsp. elatius was structured into 5 partly geographically positioned clusters. We explored the spatial and environmental patterns of two progenitor species of domesticated pea in the Mediterranean Basin and in the Fertile Crescent in relation to the past and current climate. This study revealed that isolation by distance does not explain the genetic structure of P. sativum subsp. elatius in its westward expansion from its center of origin. The genetic diversity of wild pea may be driven by Miocene-Pliocene events, while the phylogenetic diversity centers may reflect Pleisto-Holocene climatic changes. These findings help set research and discussion priorities and provide geographical and ecological information for germplasm-collecting missions, as well as for the preservation of extant diversity in ex-situ collections.

  6. Patient-physician trust: an exploratory study.

    PubMed

    Thom, D H; Campbell, B

    1997-02-01

    Patients' trust in their physicians has recently become a focus of concern, largely owing to the rise of managed care, yet the subject remains largely unstudied. We undertook a qualitative research study of patients' self-reported experiences with trust in a physician to gain further understanding of the components of trust in the context of the patient-physician relationship. Twenty-nine patients participants, aged 26 to 72, were recruited from three diverse practice sites. Four focus groups, each lasting 1.5 to 2 hours, were conducted to explore patients' experiences with trust. Focus groups were audio-recorded, transcribed, and coded by four readers, using principles of grounded theory. The resulting consensus codes were grouped into seven categories of physician behavior, two of which related primarily to technical competence (thoroughness in evaluation and providing appropriate and effective treatment) and five of which were interpersonal (understanding patient's individual experience, expressing caring, communicating clearly and completely, building partnership/sharing power and honesty/respect for patient). Two additional categories were predisposing factors and structural/staffing factors. Each major category had multiple subcategories. Specific examples from each major category are provided. These nine categories of physician behavior encompassed the trust experiences related by the 29 patients. These categories and the specific examples provided by patients provide insights into the process of trust formation and suggest ways in which physicians could be more effective in building and maintaining trust.

  7. Understanding Is Key: An Analysis of Factors Pertaining to Trust in a Real-World Automation System

    PubMed Central

    Balfe, Nora; Sharples, Sarah; Wilson, John R.

    2018-01-01

    Objective: This paper aims to explore the role of factors pertaining to trust in real-world automation systems through the application of observational methods in a case study from the railway sector. Background: Trust in automation is widely acknowledged as an important mediator of automation use, but the majority of the research on automation trust is based on laboratory work. In contrast, this work explored trust in a real-world setting. Method: Experienced rail operators in four signaling centers were observed for 90 min, and their activities were coded into five mutually exclusive categories. Their observed activities were analyzed in relation to their reported trust levels, collected via a questionnaire. Results: The results showed clear differences in activity, even when circumstances on the workstations were very similar, and significant differences in some trust dimensions were found between groups exhibiting different levels of intervention and time not involved with signaling. Conclusion: Although the empirical, lab-based studies in the literature have consistently found that reliability and competence of the automation are the most important aspects of trust development, understanding of the automation emerged as the strongest dimension in this study. The implications are that development and maintenance of trust in real-world, safety-critical automation systems may be distinct from artificial laboratory automation. Application: The findings have important implications for emerging automation concepts in diverse industries including highly automated vehicles and Internet of things. PMID:29613815

  8. Dynamic Succession of Soil Bacterial Community during Continuous Cropping of Peanut (Arachis hypogaea L.)

    PubMed Central

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    Plant health and soil fertility are affected by plant–microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales, Burkholderiales, Bdellovibrionales, and so on, also were affected by plant age. PMID:25010658

  9. Arbuscular mycorrhizal fungal communities in the rhizosphere of a continuous cropping soybean system at the seedling stage.

    PubMed

    Cui, Jiaqi; Bai, Li; Liu, Xiaorui; Jie, Weiguang; Cai, Baiyan

    Arbuscular mycorrhizae (AM) fungi play a crucial role in the growth of soybean; however, the planting system employed is thought to have an effect on AM fungal communities in the rhizosphere. This study was performed to explore the influence of continuous soybean cropping on the diversity of Arbuscular mycorrhizal (AM) fungi, and to identify the dominant AM fungus during the seedling stage. Three soybean cultivars were planted under two and three years continuous cropping, respectively. The diversity of AM fungi in the rhizosphere soil at the seedling stage was subsequently analyzed using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). The results showed that an increase in cropping years improved the colonization rate of AM in all three soybean cultivars. Moreover, the dominant species were found to be Funneliformis mosseae and Glomus species. The results of cluster analysis further confirmed that the number of years of continuous cropping significantly affected the composition of rhizospheric AM fungal communities in different soybean cultivars. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Genome engineering and plant breeding: impact on trait discovery and development.

    PubMed

    Nogué, Fabien; Mara, Kostlend; Collonnier, Cécile; Casacuberta, Josep M

    2016-07-01

    New tools for the precise modification of crops genes are now available for the engineering of new ideotypes. A future challenge in this emerging field of genome engineering is to develop efficient methods for allele mining. Genome engineering tools are now available in plants, including major crops, to modify in a predictable manner a given gene. These new techniques have a tremendous potential for a spectacular acceleration of the plant breeding process. Here, we discuss how genetic diversity has always been the raw material for breeders and how they have always taken advantage of the best available science to use, and when possible, increase, this genetic diversity. We will present why the advent of these new techniques gives to the breeders extremely powerful tools for crop breeding, but also why this will require the breeders and researchers to characterize the genes underlying this genetic diversity more precisely. Tackling these challenges should permit the engineering of optimized alleles assortments in an unprecedented and controlled way.

  11. Interactive effects of agricultural management and topography on soil carbon sequestration

    NASA Astrophysics Data System (ADS)

    Ladoni, M.; Kravchenko, S.; Munoz, J.; Erickson, M.

    2012-12-01

    Proper agricultural management scenarios such as no-tillage, cover cropping, agroforestry, have demonstrated potential to increase the amount of carbon sequestered in soil and to mitigate atmospheric carbon levels. The knowledge about positive effects of cover cropping comes mostly from small uniform experimental plots, but whether these positive effects will exists in large scale fields with diverse topography and what would be the magnitude of these effects on a field scale remains to be seen. Our objective is to compare performance of different agricultural managements including those with cover crops in their influences on SOC across diverse topographical landscape in large agricultural fields. The three studied agricultural practices are Conventionally tilled and fertilized management without cover crops (T1), Low-input management with reduced chemical inputs (T3) and Organic (T4) management, the latter two have rye and red clover cover crops as part of their rotations. Within each field 1- 4 transects with three topographical positions of "depression", "slope" and "summit" were identified. The first soil sampling was done in spring 2010 and the second set of soil samples were collected from topographical positions during growing season of 2011. Samples were analyzed for total SOC and also particulate organic carbon (POC) content to show the changes in active pools of SOC. The results showed that topography has a significant influence in performance of cover crops. Agricultural managements with cover crops increased the POC in soil and the magnitude of this increase was different across space. Cover crops built the highest POC in depressions followed by summit and then slope. The conventional agricultural management increased POC in depression but decreased it on slopes. Low-input agricultural management when coupled with cover cropping has a potential to produce the highest increase in active pools of SOC across topographically diverse fields. The ratio of particulate organic carbon (POC) to total organic carbon (TOC) in each of agricultural managements (T1: conventional, T3: low-input, T4: organic), topographical position (DE: depression, SL: slope, SU: summit) and depth of soil (cm).

  12. Assessing gaps in irrigated agricultural productivity through satellite earth observations-A case study of the Fergana Valley, Central Asia

    NASA Astrophysics Data System (ADS)

    Löw, Fabian; Biradar, Chandrashekhar; Fliemann, Elisabeth; Lamers, John P. A.; Conrad, Christopher

    2017-07-01

    Improving crop area and/or crop yields in agricultural regions is one of the foremost scientific challenges for the next decades. This is especially true in irrigated areas because sustainable intensification of irrigated crop production is virtually the sole means to enhance food supply and contribute to meeting food demands of a growing population. Yet, irrigated crop production worldwide is suffering from soil degradation and salinity, reduced soil fertility, and water scarcity rendering the performance of irrigation schemes often below potential. On the other hand, the scope for improving irrigated agricultural productivity remains obscure also due to the lack of spatial data on agricultural production (e.g. crop acreage and yield). To fill this gap, satellite earth observations and a replicable methodology were used to estimate crop yields at the field level for the period 2010/2014 in the Fergana Valley, Central Asia, to understand the response of agricultural productivity to factors related to the irrigation and drainage infrastructure and environment. The results showed that cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and spatial diversity of crops had the most persistent effects on crop yields across observation years suggesting the need for introducing sustainable cropping systems. On the other hand, areas with a lower crop diversity or abundance of crop rotation tended to have lower crop yields, with differences of partly more than one t/ha yield. It is argued that factors related to the infrastructure, for example, the distance of farms to the next settlement or the density of roads, had a persistent effect on crop yield dynamics over time. The improvement potential of cotton and wheat yields were estimated at 5%, compared to crop yields of farms in the direct vicinity of settlements or roads. In this study it is highlighted how remotely sensed estimates of crop production in combination with geospatial technologies provide a unique perspective that, when combined with field surveys, can support planners to identify management priorities for improving regional production and/or reducing environmental impacts.

  13. Relevance of Crop Biology for Environmental Risk Assessment of Genetically Modified Crops in Africa.

    PubMed

    Akinbo, Olalekan; Hancock, James F; Makinde, Diran

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERAs). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for ERA include growth habit, center of origin, center of genetic diversity, proximity of wild relatives, inter-fertility, mode of pollen dispersal, length of pollen viability, mating system, invasiveness, weediness, mode of propagation, mode of seed dispersal, and length of seed dormancy. In this paper, we discuss the crops being genetic engineered in Africa and describe the crop biology of those with native relatives.

  14. Conspecific Crop-Weed Introgression Influences Evolution of Weedy Rice (Oryza sativa f. spontanea) across a Geographical Range

    PubMed Central

    Xia, Han-Bing; Wang, Wei; Xia, Hui; Zhao, Wei; Lu, Bao-Rong

    2011-01-01

    Background Introgression plays an important role in evolution of plant species via its influences on genetic diversity and differentiation. Outcrossing determines the level of introgression but little is known about the relationships of outcrossing rates, genetic diversity, and differentiation particularly in a weedy taxon that coexists with its conspecific crop. Methodology/Principal Findings Eleven weedy rice (Oryza sativa f. spontanea) populations from China were analyzed using microsatellite (SSR) fingerprints to study outcrossing rate and its relationship with genetic variability and differentiation. To estimate outcrossing, six highly polymorphic SSR loci were used to analyze >5500 progeny from 216 weedy rice families, applying a mixed mating model; to estimate genetic diversity and differentiation, 22 SSR loci were analyzed based on 301 weedy individuals. Additionally, four weed-crop shared SSR loci were used to estimate the influence of introgression from rice cultivars on weedy rice differentiation. Outcrossing rates varied significantly (0.4∼11.7%) among weedy rice populations showing relatively high overall Nei's genetic diversity (0.635). The observed heterozygosity was significantly correlated with outcrossing rates among populations (r2 = 0.783; P<0.001) although no obvious correlation between outcrossing rates and genetic diversity parameters was observed. Allelic introgression from rice cultivars to their coexisting weedy rice was detected. Weedy rice populations demonstrated considerable genetic differentiation that was correlated with their spatial distribution (r2 = 0.734; P<0.001), and possibly also influenced by the introgression from rice cultivars. Conclusions/Significance Outcrossing rates can significantly affect heterozygosity of populations, which may shape the evolutionary potential of weedy rice. Introgression from the conspecific crop rice can influence the genetic differentiation and possibly evolution of its coexisting weedy rice populations. PMID:21249201

  15. Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia.

    PubMed

    Knoth, Jenny L; Kim, Soo-Hyung; Ettl, Gregory J; Doty, Sharon L

    2014-01-01

    Sustainable production of biomass for bioenergy relies on low-input crop production. Inoculation of bioenergy crops with plant growth-promoting endophytes has the potential to reduce fertilizer inputs through the enhancement of biological nitrogen fixation (BNF). Endophytes isolated from native poplar growing in nutrient-poor conditions were selected for a series of glasshouse and field trials designed to test the overall hypothesis that naturally occurring diazotrophic endophytes impart growth promotion of the host plants. Endophyte inoculations contributed to increased biomass over uninoculated control plants. This growth promotion was more pronounced with multi-strain consortia than with single-strain inocula. Biological nitrogen fixation was estimated through (15)N isotope dilution to be 65% nitrogen derived from air (Ndfa). Phenotypic plasticity in biomass allocation and branch production observed as a result of endophyte inoculations may be useful in bioenergy crop breeding and engineering programs. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. A Phenomenological Study of Culturally Diverse Baccalaureate Nursing Students' Persistence to Graduation

    ERIC Educational Resources Information Center

    Sweet, Laritha Hill

    2012-01-01

    Approximately 36% of people living in America today belong to a minority group. Despite the increase in diverse population of the United States, less than 17% of registered nurses in 2008 belonged to a minority group. This is a concern because people from minority backgrounds are more apt to seek ACmedical care, trust information received, and…

  17. Southwesterners’ views of threatened and endangered species management: does ethnic/racial diversity make a difference?

    Treesearch

    Patricia L. Winter; George T. Cvetkovich

    2008-01-01

    This paper presents an examination of trust in the Forest Service to manage threatened and endangered species as measured through a survey of residents of four Southwestern States. Of particular interest were variations by ethnic/racial group, gender, concern about threatened and endangered species, and self-assessed knowledge. Increasing diversity in the United States...

  18. Evaluating an ensemble classification approach for crop diversity verification in Danish greening subsidy control

    NASA Astrophysics Data System (ADS)

    Chellasamy, Menaka; Ferré, Ty Paul Andrew; Greve, Mogens Humlekrog

    2016-07-01

    Beginning in 2015, Danish farmers are obliged to meet specific crop diversification rules based on total land area and number of crops cultivated to be eligible for new greening subsidies. Hence, there is a need for the Danish government to extend their subsidy control system to verify farmers' declarations to warrant greening payments under the new crop diversification rules. Remote Sensing (RS) technology has been used since 1992 to control farmers' subsidies in Denmark. However, a proper RS-based approach is yet to be finalised to validate new crop diversity requirements designed for assessing compliance under the recent subsidy scheme (2014-2020); This study uses an ensemble classification approach (proposed by the authors in previous studies) for validating the crop diversity requirements of the new rules. The approach uses a neural network ensemble classification system with bi-temporal (spring and early summer) WorldView-2 imagery (WV2) and includes the following steps: (1) automatic computation of pixel-based prediction probabilities using multiple neural networks; (2) quantification of the classification uncertainty using Endorsement Theory (ET); (3) discrimination of crop pixels and validation of the crop diversification rules at farm level; and (4) identification of farmers who are violating the requirements for greening subsidies. The prediction probabilities are computed by a neural network ensemble supplied with training samples selected automatically using farmers declared parcels (field vectors containing crop information and the field boundary of each crop). Crop discrimination is performed by considering a set of conclusions derived from individual neural networks based on ET. Verification of the diversification rules is performed by incorporating pixel-based classification uncertainty or confidence intervals with the class labels at the farmer level. The proposed approach was tested with WV2 imagery acquired in 2011 for a study area in Vennebjerg, Denmark, containing 132 farmers, 1258 fields, and 18 crops. The classification results obtained show an overall accuracy of 90.2%. The RS-based results suggest that 36 farmers did not follow the crop diversification rules that would qualify for the greening subsidies. When compared to the farmers' reported crop mixes, irrespective of the rule, the RS results indicate that false crop declarations were made by 8 farmers, covering 15 fields. If the farmers' reports had been submitted for the new greening subsidies, 3 farmers would have made a false claim; while remaining 5 farmers obey the rules of required crop proportion even though they have submitted the false crop code due to their small holding size. The RS results would have supported 96 farmers for greening subsidy claims, with no instances of suggesting a greening subsidy for a holding that the farmer did not report as meeting the required conditions. These results suggest that the proposed RS based method shows great promise for validating the new greening subsidies in Denmark.

  19. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon.

    PubMed

    Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E

    2017-10-01

    Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Sustainable intensification by managing microbial communities and processes in agroecosystems

    USDA-ARS?s Scientific Manuscript database

    By focusing on soil biology and biochemistry, agroecosystem management strategies are implemented which include reduced soil disturbance, diverse and adaptable crop rotations, retention of residue, and incorporation of livestock, cover crops, or both This systems approach is required to sustainably ...

  1. Plant-parasitic nematodes in Hawaiian agriculture

    USDA-ARS?s Scientific Manuscript database

    Hawaii’s diverse and mild climate allows for the cultivation of many crops. The introduction of each crop plant brought along its associated nematode pests. These plant-parasitic nematodes became established and are now endemic to the islands. Plantation agriculture determined the major nematode ...

  2. Future generation energy crops

    USDA-ARS?s Scientific Manuscript database

    Although cropping systems in the Midwest that emphasize corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum) are some of the most highly productive in the US, the growing lack of agricultural diversity in this region threatens to jeopardize long-term sustainability. Added to this co...

  3. Pollen resources for pollinators in specialty oilseed crops

    USDA-ARS?s Scientific Manuscript database

    Simplified agroecosystems have depleted habitats for beneficial insects throughout the Midwest and Northern Great Plains of the USA. Beneficial insects include pollinators and natural enemies of crop pests, and both rely heavily on floral resources and habitat diversity to maintain healthy populatio...

  4. Quantifying the linkages among soil health, organic farming, and food

    USDA-ARS?s Scientific Manuscript database

    Organic farming systems utilize organic amendments, diverse crop rotations and cover crops to promote soil fertility and enhance soil health. These practices increase biologically available forms of soil organic matter, and increase the activities of beneficial soil microbes and invertebrates. Physi...

  5. Evaluation of carbon saturation across gradients of cropping systems diversity and soil depth

    NASA Astrophysics Data System (ADS)

    Castellano, Michael; Poffenbarger, Hanna; Cambardella, Cindy; Liebman, Matt; Mallarino, Antonio; Olk, Dan; Russell, Ann; Six, Johan

    2017-04-01

    Growing evidence indicates arable soils in the US Maize Belt are effectively carbon-saturated. We hypothesized that: 1) surface soil mineral-associated soil organic carbon (SOC) stocks in these systems are effectively carbon-saturated and 2) diverse cropping systems with greater belowground C inputs would increase subsoil SOC stocks because subsoils have large C saturation deficit. Using three long-term field trials in Iowa (study durations of 60, 35, and 12 years), we examined the effects of cropping system diversity (maize-soybean-oat/alfalfa-alfalfa or corn-corn-oat/alfalfa-alfalfa vs. maize-soybean rotation) on SOC content at different depths (0-100 cm) throughout the soil profile. Average annual C inputs were similar for both cropping systems, but the proportion of C delivered belowground was approximately twice as great in the extended rotations. Within and across cropping systems and the three field trial locations, there was a positive linear relationship between total SOC and the concentration of SOC in the mineral-associated fraction, indicating mineral-associated SOC stocks are not saturated. Organic C accumulation was observed at depth (15-100 cm) but not at the surface (0-15 cm) across all sites and rotations. These data suggest surface SOC stocks may have reached equilibrium rather than effective C saturation. In the absence of experiments that manipulate C inputs, the relationship between total SOC and the concentration of SOC in the mineral-associated fraction is frequently used as a proxy for C-saturation, and this relationship should be further explored.

  6. Biosocial Conservation: Integrating Biological and Ethnographic Methods to Study Human-Primate Interactions.

    PubMed

    Setchell, Joanna M; Fairet, Emilie; Shutt, Kathryn; Waters, Siân; Bell, Sandra

    2017-01-01

    Biodiversity conservation is one of the grand challenges facing society. Many people interested in biodiversity conservation have a background in wildlife biology. However, the diverse social, cultural, political, and historical factors that influence the lives of people and wildlife can be investigated fully only by incorporating social science methods, ideally within an interdisciplinary framework. Cultural hierarchies of knowledge and the hegemony of the natural sciences create a barrier to interdisciplinary understandings. Here, we review three different projects that confront this difficulty, integrating biological and ethnographic methods to study conservation problems. The first project involved wildlife foraging on crops around a newly established national park in Gabon. Biological methods revealed the extent of crop loss, the species responsible, and an effect of field isolation, while ethnography revealed institutional and social vulnerability to foraging wildlife. The second project concerned great ape tourism in the Central African Republic. Biological methods revealed that gorilla tourism poses risks to gorillas, while ethnography revealed why people seek close proximity to gorillas. The third project focused on humans and other primates living alongside one another in Morocco. Incorporating shepherds in the coproduction of ecological knowledge about primates built trust and altered attitudes to the primates. These three case studies demonstrate how the integration of biological and social methods can help us to understand the sustainability of human-wildlife interactions, and thus promote coexistence. In each case, an integrated biosocial approach incorporating ethnographic data produced results that would not otherwise have come to light. Research that transcends conventional academic boundaries requires the openness and flexibility to move beyond one's comfort zone to understand and acknowledge the legitimacy of "other" kinds of knowledge. It is challenging but crucial if we are to address conservation problems effectively.

  7. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons.

    PubMed

    Laloi, G; Montarry, J; Guibert, M; Andrivon, D; Michot, D; Le May, C

    2016-07-15

    Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Bacterial diversity in the rhizosphere of cucumbers grown in soils covering a wide range of cucumber cropping histories and environmental conditions.

    PubMed

    Tian, Yongqiang; Gao, Lihong

    2014-11-01

    Rhizosphere microorganisms in soils are important for plant growth. However, the importance of rhizosphere microorganisms is still underestimated since many microorganisms associated with plant roots cannot be cultured and since the microbial diversity in the rhizosphere can be influenced by several factors, such as the cropping history, biogeography, and agricultural practice. Here, we characterized the rhizosphere bacterial diversity of cucumber plants grown in soils covering a wide range of cucumber cropping histories and environmental conditions by using pyrosequencing of bacterial 16S rRNA genes. We also tested the effects of compost addition and/or bacterial inoculation on the bacterial diversity in the rhizosphere. We identified an average of approximately 8,883 reads per sample, corresponding to around 4,993 molecular operational taxonomic units per sample. The Proteobacteria was the most abundant phylum in almost all soils. The abundances of the phyla Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, and Verrucomicrobia varied among the samples, and together with Proteobacteria, these phyla were the six most abundant phyla in almost all analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Flavobacterium, Ohtaekwangia, Opitutus, Gp6, Steroidobacter, and Acidovorax. Overall, compost and microbial amendments increased shoot biomass when compared to untreated soils. However, compost addition decreased the bacterial α-diversity in most soils (but for three soils compost increased diversity), and no statistical effect of microbial amendment on the bacterial α-diversity was found. Moreover, soil amendments did not significantly influence the bacterial β-diversity. Soil organic content appeared more important than compost and microbial amendments in shaping the structure of bacterial communities in the rhizosphere of cucumber.

  9. Water law - Public Trust Doctrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, E.S.

    In a case involving California's Mono Lake, the State Supreme Court held that infringement of the values protected by the Public Trust Doctrine is a separate ground for challenging water appropriations, and that the continuing nature of the state's duty as trustee prevents the acquisition of a vested right to appropriations that injure navigation, commerce, and fisheries. The author summarizes the history and the competing claims of the Doctrine and the California Appropriative Water Rights System. The National Audubon suit now makes it possible for any member of the public to challenge any surface water diversion as injurious to themore » public trust, but it also offers the California courts an opportunity to redirect the state's water policies. 130 references.« less

  10. A Trusted Platform for Transportation Data Sharing & Stakeholder Engagement

    DOT National Transportation Integrated Search

    2018-03-01

    Information sharing to support critical transportation systems presents numerous challenges given the diversity of information sources and visual representations typically used to portray system performance and characteristics12. This research projec...

  11. 12 CFR 308.156 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., who has been convicted of any criminal offense involving dishonesty or a breach of trust or money laundering or who has agreed to enter into a pretrial diversion or similar program in connection with the...

  12. Public Acceptance of Plant Biotechnology and GM Crops

    PubMed Central

    Lucht, Jan M.

    2015-01-01

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer’s attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion—including calls for labeling of GM food—in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers’ concerns with transgenic crops, but it is not clear yet how consumers’ attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values. PMID:26264020

  13. Industrial oilseeds bolster "hub" crop yields when used in rotation

    USDA-ARS?s Scientific Manuscript database

    Lack of agroecosystem diversity across the U.S. agricultural landscape is linked to several environmental issues associated with air, water, and soil quality and biodiversity. Several new industrial oilseed crops with commercial potential, offer farmers new economic opportunities and a portfolio of ...

  14. Methodologies for simulating impacts of climate change on crop production

    USDA-ARS?s Scientific Manuscript database

    Ecophysiological models of crop growth have seen wide use in IPCC and related assessments. However, the diversity of modeling approaches constrains cross-study syntheses and increases potential for bias. We reviewed 139 peer-reviewed papers dealing with climate change and agriculture, considering si...

  15. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    USDA-ARS?s Scientific Manuscript database

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  16. Using nectar-related traits to enhance crop-pollinator interactions

    USDA-ARS?s Scientific Manuscript database

    Floral nectar and other rewards facilitate crop pollination, and in so doing, increase the amount and breadth of food available for humans. Though pollinator abundance and diversity (particularly bees) have declined over the past several decades, a concomitant increase in reliance on pollinators pre...

  17. Characterization of genetic diversity of high temperature tolerance in sorghum

    USDA-ARS?s Scientific Manuscript database

    As global warming becomes inevitable, the sustainability of agricultural production in US and worldwide faces serious threat from extreme weather conditions, such as drought and elevated extreme temperatures (heat waves). Among cereal crops, sorghum is considered a versatile crop for semiarid area a...

  18. Carotenoid metabolism and regulation in horticultural crops

    USDA-ARS?s Scientific Manuscript database

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors in many horticultural crops attribute to overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegeta...

  19. Genetic diversity for wheat improvement as a conduit to food security

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity is paramount for any crops genetic improvement and this resides in three gene pools of the Triticeae for wheat. Access to the diversity and its exploitation is based upon genetic distance of the species relatives from the wheat genomes. Apart from the conventional genetic base fo...

  20. Diversity of garlic (Allium sativum L.) using SSR, EST and AFLP markers

    USDA-ARS?s Scientific Manuscript database

    Germplasm from the center of origin/diversity is important for the breeding and fingerprinting crop plants. In this study we utilized both dominant and co-dominant markers for the characterization of garlic samples from diverse geographic origins to assess the relative utility of these markers to id...

  1. Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones

    USDA-ARS?s Scientific Manuscript database

    Assessment of genetic diversity and population structure of germplasm collections plays a critical role in supporting conservation and crop genetic enhancement strategies. We used a cultivated lentil (Lens culinaris Medik.) collection consisting of 352 accessions originating from 54 diverse countrie...

  2. Grapevine pruning systems and cultivars influence the diversity of wood-colonizing fungi

    USDA-ARS?s Scientific Manuscript database

    Grapevines host diverse fungal species, including pruning-wound pathogens and wood decomposers, with detrimental effects on crop productivity. This study aims at comparing the effects of two pruning systems, minimal (min-) or spur-pruning, on the sanitary status of vine trunks and the diversity of w...

  3. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation.

    PubMed

    von Wettberg, Eric J B; Chang, Peter L; Başdemir, Fatma; Carrasquila-Garcia, Noelia; Korbu, Lijalem Balcha; Moenga, Susan M; Bedada, Gashaw; Greenlon, Alex; Moriuchi, Ken S; Singh, Vasantika; Cordeiro, Matilde A; Noujdina, Nina V; Dinegde, Kassaye Negash; Shah Sani, Syed Gul Abbas; Getahun, Tsegaye; Vance, Lisa; Bergmann, Emily; Lindsay, Donna; Mamo, Bullo Erena; Warschefsky, Emily J; Dacosta-Calheiros, Emmanuel; Marques, Edward; Yilmaz, Mustafa Abdullah; Cakmak, Ahmet; Rose, Janna; Migneault, Andrew; Krieg, Christopher P; Saylak, Sevgi; Temel, Hamdi; Friesen, Maren L; Siler, Eleanor; Akhmetov, Zhaslan; Ozcelik, Huseyin; Kholova, Jana; Can, Canan; Gaur, Pooran; Yildirim, Mehmet; Sharma, Hari; Vadez, Vincent; Tesfaye, Kassahun; Woldemedhin, Asnake Fikre; Tar'an, Bunyamin; Aydogan, Abdulkadir; Bukun, Bekir; Penmetsa, R Varma; Berger, Jens; Kahraman, Abdullah; Nuzhdin, Sergey V; Cook, Douglas R

    2018-02-13

    Domesticated species are impacted in unintended ways during domestication and breeding. Changes in the nature and intensity of selection impart genetic drift, reduce diversity, and increase the frequency of deleterious alleles. Such outcomes constrain our ability to expand the cultivation of crops into environments that differ from those under which domestication occurred. We address this need in chickpea, an important pulse legume, by harnessing the diversity of wild crop relatives. We document an extreme domestication-related genetic bottleneck and decipher the genetic history of wild populations. We provide evidence of ancestral adaptations for seed coat color crypsis, estimate the impact of environment on genetic structure and trait values, and demonstrate variation between wild and cultivated accessions for agronomic properties. A resource of genotyped, association mapping progeny functionally links the wild and cultivated gene pools and is an essential resource chickpea for improvement, while our methods inform collection of other wild crop progenitor species.

  4. New aspects of grassland recovery in old-fields revealed by trait-based analyses of perennial-crop-mediated succession.

    PubMed

    Kelemen, András; Tóthmérész, Béla; Valkó, Orsolya; Miglécz, Tamás; Deák, Balázs; Török, Péter

    2017-04-01

    Classical old-field succession studies focused on vegetation changes after the abandonment of annual croplands or on succession after the elimination of cultivated crops. Perennial-crop-mediated succession, where fields are initially covered by perennial crops, reveals alternative aspects of old-field succession theories. We tested the validity of classical theories of old-field succession for perennial-crop-mediated succession. We formulated the following hypotheses: (1) functional diversity increases with increasing field age; (2) resource acquisition versus conservation trade-off shifts toward conservation at community level during the succession; (3) the importance of spatial and temporal seed dispersal decreases during the succession; and (4) competitiveness and stress-tolerance increases and ruderality decreases at community level during the succession. We studied functional diversity, trait distributions and plant strategies in differently aged old-fields using chronosequence method. We found increasing functional richness and functional divergence, but also unchanged or decreasing functional evenness. We detected a shift from resource acquisition to resource conservation strategy of communities during the succession. The role of spatial and temporal seed dispersal was found to be important not only at the initial but also at latter successional stages. We found an increasing stress-tolerance and a decreasing ruderality during succession, while the competitiveness remained unchanged at the community level. Despite the markedly different starting conditions, we found that classical and perennial-crop-mediated old-field successions have some similarities regarding the changes of functional diversity, resource acquisition versus conservation trade-off, and seed dispersal strategies. However, we revealed also the subsequent differences. The competitive character of communities remained stable during the succession; hence, the initial stages of perennial-crop-mediated succession can be similar to the middle stages of classical old-field succession. Moreover, the occupied functional niche space and differentiation were larger in the older stages, but resources were not effectively utilized within this space, suggesting that the stabilization of the vegetation requires more time.

  5. Abundance and diversity of soybean-nodulating rhizobia in black soil are impacted by land use and crop management.

    PubMed

    Yan, Jun; Han, Xiao Zeng; Ji, Zhao Jun; Li, Yan; Wang, En Tao; Xie, Zhi Hong; Chen, Wen Feng

    2014-09-01

    To investigate the effects of land use and crop management on soybean rhizobial communities, 280 nodule isolates were trapped from 7 fields with different land use and culture histories. Besides the known Bradyrhizobium japonicum, three novel genospecies were isolated from these fields. Grassland (GL) maintained a higher diversity of soybean bradyrhizobia than the other cultivation systems. Two genospecies (Bradyrhizobium spp. I and III) were distributed widely in all treatments, while Bradyrhizobium sp. II was found only in GL treatment. Cultivation with soybeans increased the rhizobial abundance and diversity, except for the soybean monoculture (S-S) treatment. In monoculture systems, soybeans favored Bradyrhizobium sp. I, while maize and wheat favored Bradyrhizobium sp. III. Fertilization decreased the rhizobial diversity indexes but did not change the species composition. The organic carbon (OC) and available phosphorus (AP) contents and pH were the main soil parameters positively correlated with the distribution of Bradyrhizobium spp. I and II and Bradyrhizobium japonicum and negatively correlated with Bradyrhizobium sp. III. These results revealed that different land uses and crop management could not only alter the diversity and abundance of soybean rhizobia, but also change interactions between rhizobia and legume or nonlegume plants, which offered novel information about the biogeography of rhizobia. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. A paradigm for understanding trust and mistrust in medical research: The Community VOICES study.

    PubMed

    Smirnoff, M; Wilets, I; Ragin, D F; Adams, R; Holohan, J; Rhodes, R; Winkel, G; Ricci, E M; Clesca, C; Richardson, L D

    2018-01-01

    To promote justice in research practice and rectify health disparities, greater diversity in research participation is needed. Lack of trust in medical research is one of the most significant obstacles to research participation. Multiple variables have been identified as factors associated with research participant trust/mistrust. A conceptual model that provides meaningful insight into the interplay of factors impacting trust may promote more ethical research practice and provide an enhanced, actionable understanding of participant mistrust. A structured survey was developed to capture attitudes toward research conducted in emergency situations; this article focuses on items designed to assess respondents' level of trust or mistrust in medical research in general. Community-based interviews were conducted in English or Spanish with 355 New York City residents (white 42%, African American 29%, Latino 22%). Generally favorable attitudes toward research were expressed by a majority (85.3%), but many respondents expressed mistrust. Factor analysis yielded four specific domains of trust/mistrust, each of which was associated with different demographic variables: general trustworthiness (older age, not disabled); perceptions of discrimination (African American, Latino, Spanish language preference); perceptions of deception (prior research experience, African American); and perceptions of exploitation (less education). The four domains identified in the analysis provide a framework for understanding specific areas of research trust/mistrust among disparate study populations. This model offers a conceptual basis for the design of tailored interventions that target specific groups to promote trust of individual researchers and research institutions as well as to facilitate broader research participation.

  7. Strengthening Agricultural Decisions in Countries at Risk of Food Insecurity: The GEOGLAM Crop Monitor for Early Warning

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Barker, B.; McGaughey, K.; Humber, M. L.; Sanchez, A.; Justice, C. O.; Rembold, F.; Verdin, J. P.

    2016-12-01

    Timely, reliable information on crop conditions, and prospects at the subnational scale, is critical for making informed policy and agricultural decisions for ensuring food security, particularly for the most vulnerable countries. However, such information is often incomplete or lacking. As such, the Crop Monitor for Early Warning (CM for EW) was developed with the goal to reduce uncertainty and strengthen decision support by providing actionable information on a monthly basis to national, regional and global food security agencies through timely consensus assessments of crop conditions. This information is especially critical in recent years, given the extreme weather conditions impacting food supplies including the most recent El Nino event. This initiative brings together the main international food security monitoring agencies and organizations to develop monthly crop assessments based on satellite observations, meteorological information, field observations and ground reports, which reflect an international consensus. This activity grew out of the successful Crop Monitor for the G20 Agricultural Market Information System (AMIS), which provides operational monthly crop assessments of the main producing countries of the world. The CM for EW was launched in February 2016 and has already become a trusted source of information internationally and regionally. Its assessments have been featured in a large number of news articles, reports, and press releases, including a joint statement by the USAID's FEWS NET, UN World Food Program, European Commission Joint Research Center, and the UN Food and Agriculture Organziation, on the devastating impacts of the southern African drought due to El Nino. One of the main priorities for this activity going forward is to expand its partnership with regional and national monitoring agencies, and strengthen capacity for national crop condition assessments.

  8. In God We Trust: Qualitative Findings on Finances, Family, and Faith from a Diverse Sample of U.S. Families

    ERIC Educational Resources Information Center

    Marks, Loren D.; Dollahite, David C.; Baumgartner, Jennifer

    2010-01-01

    Employing qualitative interviews with a diverse national sample of 184 religious families (N = 445 individuals), we present an in-depth look at how participants (a) view and frame their faith-based financial giving, (b) how they contribute to and receive from their faith communities, and (c) how the blending of faith and finances influences their…

  9. Diverse phytoplasmas associated with diseases in various crops in Russia - pathogens and vectors

    USDA-ARS?s Scientific Manuscript database

    Over a long-term survey (2006-2014), we detected that at least 22 species of cultivated crops from 10 families (Amaranthaceae, Apiaceae, Asteraceae, Brassicaceae, Cucurbitaceae, Fabaceae, Vitaceae, Poaceae, Rosaceae, Solanaceae) were infected with phytoplasma. Most of the plant species are herbaceou...

  10. Genetic and phenotypic diversity in camelina germplasm

    USDA-ARS?s Scientific Manuscript database

    Camelina is a new crop targeted for agronomic systems across the Midwest. Camelina is a promising bioenergy crop fitting the requirements for the biodiesel industry, especially for production of JP-5 fuel used in the aircraft industry. Moreover, its fatty acid profile satisfies the standards for nut...

  11. Solanum tuberosum (Potato)

    USDA-ARS?s Scientific Manuscript database

    Potato is the fourth most important food crop worldwide, with high value as a balanced and nutritious food. It is one of the world’s most productive crops. Wild potatoes are native from the southwestern United States to south-central Chile, with centers of species diversity in central Mexico and in ...

  12. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    USDA-ARS?s Scientific Manuscript database

    Ecosystem-service models are increasingly implemented in diverse decision-making contexts, from land-use planning to corporate risk management. Though widely valued, biological control of crop pests is rarely considered in such decisions in part because suitable pest-control models do not exist. Her...

  13. Fungal Genetics and Functional Diversity of Microbial Communities in the Soil under Long-Term Monoculture of Maize Using Different Cultivation Techniques

    PubMed Central

    Gałązka, Anna; Grządziel, Jarosław

    2018-01-01

    Fungal diversity in the soil may be limited under natural conditions by inappropriate environmental factors such as: nutrient resources, biotic and abiotic factors, tillage system and microbial interactions that prevent the occurrence or survival of the species in the environment. The aim of this paper was to determine fungal genetic diversity and community level physiological profiling of microbial communities in the soil under long-term maize monoculture. The experimental scheme involved four cultivation techniques: direct sowing (DS), reduced tillage (RT), full tillage (FT), and crop rotation (CR). Soil samples were taken in two stages: before sowing of maize (DSBS-direct sowing, RTBS-reduced tillage, FTBS-full tillage, CRBS-crop rotation) and the flowering stage of maize growth (DSF-direct sowing, RTF-reduced tillage, FTF-full tillage, CRF-crop rotation). The following plants were used in the crop rotation: spring barley, winter wheat and maize. The study included fungal genetic diversity assessment by ITS-1 next generation sequencing (NGS) analyses as well as the characterization of the catabolic potential of microbial communities (Biolog EcoPlates) in the soil under long-term monoculture of maize using different cultivation techniques. The results obtained from the ITS-1 NGS technique enabled to classify and correlate the fungi species or genus to the soil metabolome. The research methods used in this paper have contributed to a better understanding of genetic diversity and composition of the population of fungi in the soil under the influence of the changes that have occurred in the soil under long-term maize cultivation. In all cultivation techniques, the season had a great influence on the fungal genetic structure in the soil. Significant differences were found on the family level (P = 0.032, F = 3.895), genus level (P = 0.026, F = 3.313) and on the species level (P = 0.033, F = 2.718). This study has shown that: (1) fungal diversity was changed under the influence different cultivation techniques; (2) techniques of maize cultivation and season were an important factors that can influence the biochemical activity of soil. Maize cultivated in direct sowing did not cause negative changes in the fungal structure, even making it more stable during seasonal changes; (3) full tillage and crop rotation may change fungal community and soil function. PMID:29441054

  14. SOIL ECOLOGY AS KEY TO SUSTAINABLE CROP PRODUCTION.

    PubMed

    De Deyn, G B

    2015-01-01

    Sustainable production of food, feed and fiberwarrants sustainable soil management and crop protection. The tools available to achieve this are both in the realm of the plants and of the soil, with a key role for plant-soil interactions. At the plant level we have vast knowledge of variation within plant species with respect to pests and diseases, based on which we can breed for resistance. However, given that systems evolve this resistance is bound to be temporarily, hence also other strategies are needed. Here I plea for an integrative approach for sustainable production using ecological principles. Ecology, the study of how organisms interact with their environment, teaches us that diversity promotes productivity and yield stability. These effects are thought to be governed through resource use complementarity and reduced build-up of pests and diseases both above- and belowground. In recent years especially the role of soil biotic interactions has revealed new insights in how plant diversity and productivity are related to soil biodiversity and the functions soil biota govern. In our grassland biodiversity studies we found that root feeders can promote plant diversity and succession without reducing plant community productivity, this illustrates the role of diversity to maintain productivity. Also diversity within species offers scope for sustainable production, for example through awareness of differences between plant genotypes in chemical defense compounds that can attract natural enemies of pests aboveground- and belowground thereby providing plant protection. Plant breeding can also benefit from using complementarity between plant species in the selection for new varieties, as our work demonstrated that when growing in species mixtures plant species adapt to each other over time such that their resource acquisition traits become more complementing. Finally, in a recent meta-analysis we show that earthworms can stimulate crop yield with on average 25%, but also that the effect size is conditional on fertilizer management and crop type. Together these examples illustrate the role of soil ecology in plant growth and the potential of its use for sustainable crop productivity through judicious management of plant-soil interactions.

  15. The Value of Native Plants and Local Production in an Era of Global Agriculture

    PubMed Central

    Shelef, Oren; Weisberg, Peter J.; Provenza, Frederick D.

    2017-01-01

    For addressing potential food shortages, a fundamental tradeoff exists between investing more resources to increasing productivity of existing crops, as opposed to increasing crop diversity by incorporating more species. We explore ways to use local plants as food resources and the potential to promote food diversity and agricultural resilience. We discuss how use of local plants and the practice of local agriculture can contribute to ongoing adaptability in times of global change. Most food crops are now produced, transported, and consumed long distances from their homelands of origin. At the same time, research and practices are directed primarily at improving the productivity of a small number of existing crops that form the cornerstone of a global food economy, rather than to increasing crop diversity. The result is a loss of agro-biodiversity, leading to a food industry that is more susceptible to abiotic and biotic stressors, and more at risk of catastrophic losses. Humans cultivate only about 150 of an estimated 30,000 edible plant species worldwide, with only 30 plant species comprising the vast majority of our diets. To some extent, these practices explain the food disparity among human populations, where nearly 1 billion people suffer insufficient nutrition and 2 billion people are obese or overweight. Commercial uses of new crops and wild plants of local origin have the potential to diversify global food production and better enable local adaptation to the diverse environments humans inhabit. We discuss the advantages, obstacles, and risks of using local plants. We also describe a case study—the missed opportunity to produce pine nuts commercially in the Western United States. We discuss the potential consequences of using local pine nuts rather than importing them overseas. Finally, we provide a list of edible native plants, and synthesize the state of research concerning the potential and challenges in using them for food production. The goal of our synthesis is to support more local food production using native plants in an ecologically sustainable manner. PMID:29259614

  16. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer.

    PubMed

    Ling, Ning; Deng, Kaiying; Song, Yang; Wu, Yunchen; Zhao, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2014-01-01

    The application method for a novel bioorganic fertilizer (BIO) was developed to improve its biocontrol efficacy of Fusarium wilt (Ling et al. 2010). However, its efficacy on controlling Fusarium wilt and the variations of microbial community after long-term application for watermelon production had not been elucidated. To clarify, a 4-years pot experiment of mono-cropping watermelon was conducted. The results revealed that though the disease incidences were increased in all treatments with the increase of continuous cropping years, the treatment of BIO application both in nursery and pot soil always maintained the lowest disease incidence. The real-time PCR results showed that the population of Paenibacillus polymyxa was decreased with continuous cropping years, but in all seasons, the treatment with BIO application both in nursery and pot soil had a highest population of P. polymyxa than the other treatments. On the other hand, the abundance of the pathogen FON was increased with the increase of continuous cropping years and the lowest rate of increase was found by BIO application in both nursery and pot soil. DGGE patterns showed that the bacterial diversity was weakened after mono-cropping of watermelon for 4 years, but the consecutive applications of BIO at nursery and transplanting stage resulted in the minimal change of bacterial diversity. More detailed differences on bacterial diversity between control and double application of BIO treatment after 4-years monoculture were analyzed by 454 pyrosequencing, which showed the dominant phyla found in both samples were Firmicutes, Proteobacteria and Actinobacteria, and the consecutive applications of BIO recruited more beneficial bacteria than control, such as Bacillus, Paenibacillus, Haliangium, Streptomyces. Overall, these results, to a certain extent, approved that the consecutive applications of BIO at nursery and transplanting stage could effectively suppress watermelon Fusarium wilt by regulating the rhizosphere bacterial diversity. These results could give some clues that how to regulate the soil microbial community to an appropriate level which can keep the plant healthy and thus control the soil-borne diseases. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Advocating a need for suitable breeding approaches to boost integrated pest management: a European perspective.

    PubMed

    Lamichhane, Jay Ram; Arseniuk, Edward; Boonekamp, Piet; Czembor, Jerzy; Decroocq, Veronique; Enjalbert, Jérome; Finckh, Maria R; Korbin, Małgorzata; Koppel, Mati; Kudsk, Per; Mesterhazy, Akos; Sosnowska, Danuta; Zimnoch-Guzowska, Ewa; Messéan, Antoine

    2018-06-01

    Currently, European farmers do not have access to sufficient numbers and diversity of crop species/varieties. This prevents them from designing cropping systems more resilient to abiotic and biotic stresses. Crop diversification is a key lever to reduce pest (pathogens, animal pests and weeds) pressures at all spatial levels from fields to landscapes. In this context, plant breeding should consist of: (1) increased efforts in the development of new or minor crop varieties to foster diversity in cropping systems, and (2) focus on more resilient varieties showing local adaptation. This new breeding paradigm, called here 'breeding for integrated pest management (IPM)', may boost IPM through the development of cultivars with tolerance or resistance to key pests, with the goal of reducing reliance on conventional pesticides. At the same time, this paradigm has legal and practical implications for future breeding programs, including those targeting sustainable agricultural systems. By putting these issues into the context, this article presents the key outcomes of a questionnaire survey and experts' views expressed during an EU workshop entitled 'Breeding for IPM in sustainable agricultural systems'. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Vegetation structure of plantain-based agrosystems determines numerical dominance in community of ground-dwelling ants

    PubMed Central

    Dassou, Anicet Gbéblonoudo; Tixier, Philippe; Dépigny, Sylvain

    2017-01-01

    In tropics, ants can represent an important part of animal biomass and are known to be involved in ecosystem services, such as pest regulation. Understanding the mechanisms underlying the structuring of local ant communities is therefore important in agroecology. In the humid tropics of Africa, plantains are cropped in association with many other annual and perennial crops. Such agrosystems differ greatly in vegetation diversity and structure and are well-suited for studying how habitat-related factors affect the ant community. We analysed abundance data for the six numerically dominant ant taxa in 500 subplots located in 20 diversified, plantain-based fields. We found that the density of crops with foliage at intermediate and high canopy strata determined the numerical dominance of species. We found no relationship between the numerical dominance of each ant taxon with the crop diversity. Our results indicate that the manipulation of the densities of crops with leaves in the intermediate and high strata may help maintain the coexistence of ant species by providing different habitat patches. Further research in such agrosystems should be performed to assess if the effect of vegetation structure on ant abundance could result in efficient pest regulation. PMID:29152414

  19. Vegetation structure of plantain-based agrosystems determines numerical dominance in community of ground-dwelling ants.

    PubMed

    Dassou, Anicet Gbéblonoudo; Tixier, Philippe; Dépigny, Sylvain; Carval, Dominique

    2017-01-01

    In tropics, ants can represent an important part of animal biomass and are known to be involved in ecosystem services, such as pest regulation. Understanding the mechanisms underlying the structuring of local ant communities is therefore important in agroecology. In the humid tropics of Africa, plantains are cropped in association with many other annual and perennial crops. Such agrosystems differ greatly in vegetation diversity and structure and are well-suited for studying how habitat-related factors affect the ant community. We analysed abundance data for the six numerically dominant ant taxa in 500 subplots located in 20 diversified, plantain-based fields. We found that the density of crops with foliage at intermediate and high canopy strata determined the numerical dominance of species. We found no relationship between the numerical dominance of each ant taxon with the crop diversity. Our results indicate that the manipulation of the densities of crops with leaves in the intermediate and high strata may help maintain the coexistence of ant species by providing different habitat patches. Further research in such agrosystems should be performed to assess if the effect of vegetation structure on ant abundance could result in efficient pest regulation.

  20. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    PubMed Central

    Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.

    2016-01-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312

  1. Maize diversity associated with social origin and environmental variation in Southern Mexico.

    PubMed

    Orozco-Ramírez, Q; Ross-Ibarra, J; Santacruz-Varela, A; Brush, S

    2016-05-01

    While prevailing theories of crop evolution suggest that crop diversity and cultural diversity should be linked, empirical evidence for such a link remains inconclusive. In particular, few studies have investigated such patterns on a local scale. Here, we address this issue by examining the determinants of maize diversity in a local region of high cultural and biological richness in Southern Mexico. We collected maize samples from villages at low and middle elevations in two adjacent municipalities of differing ethnicity: Mixtec or Chatino. Although morphological traits show few patterns of population structure, we see clear genetic differentiation among villages, with municipality explaining a larger proportion of the differentiation than altitude. Consistent with an important role of social origin in patterning seed exchange, metapopulation model-based estimates of differentiation match the genetic data within village and ethnically distinct municipalities, but underestimate differentiation when all four villages are taken together. Our research provides insights about the importance of social origin in structuring maize diversity at the local scale.

  2. Maize diversity associated with social origin and environmental variation in Southern Mexico

    PubMed Central

    Orozco-Ramírez, Q; Ross-Ibarra, J; Santacruz-Varela, A; Brush, S

    2016-01-01

    While prevailing theories of crop evolution suggest that crop diversity and cultural diversity should be linked, empirical evidence for such a link remains inconclusive. In particular, few studies have investigated such patterns on a local scale. Here, we address this issue by examining the determinants of maize diversity in a local region of high cultural and biological richness in Southern Mexico. We collected maize samples from villages at low and middle elevations in two adjacent municipalities of differing ethnicity: Mixtec or Chatino. Although morphological traits show few patterns of population structure, we see clear genetic differentiation among villages, with municipality explaining a larger proportion of the differentiation than altitude. Consistent with an important role of social origin in patterning seed exchange, metapopulation model-based estimates of differentiation match the genetic data within village and ethnically distinct municipalities, but underestimate differentiation when all four villages are taken together. Our research provides insights about the importance of social origin in structuring maize diversity at the local scale. PMID:26905463

  3. Utilization of Molecular, Phenotypic, and Geographical Diversity to Develop Compact Composite Core Collection in the Oilseed Crop, Safflower (Carthamus tinctorius L.) through Maximization Strategy

    PubMed Central

    Kumar, Shivendra; Ambreen, Heena; Variath, Murali T.; Rao, Atmakuri R.; Agarwal, Manu; Kumar, Amar; Goel, Shailendra; Jagannath, Arun

    2016-01-01

    Safflower (Carthamus tinctorius L.) is a dryland oilseed crop yielding high quality edible oil. Previous studies have described significant phenotypic variability in the crop and used geographical distribution and phenotypic trait values to develop core collections. However, the molecular diversity component was lacking in the earlier collections thereby limiting their utility in breeding programs. The present study evaluated the phenotypic variability for 12 agronomically important traits during two growing seasons (2011–12 and 2012–13) in a global reference collection of 531 safflower accessions, assessed earlier by our group for genetic diversity and population structure using AFLP markers. Significant phenotypic variation was observed for all the agronomic traits in the representative collection. Cluster analysis of phenotypic data grouped the accessions into five major clusters. Accessions from the Indian Subcontinent and America harbored maximal phenotypic variability with unique characters for a few traits. MANOVA analysis indicated significant interaction between genotypes and environment for both the seasons. Initially, six independent core collections (CC1–CC6) were developed using molecular marker and phenotypic data for two seasons through POWERCORE and MSTRAT. These collections captured the entire range of trait variability but failed to include complete genetic diversity represented in 19 clusters reported earlier through Bayesian analysis of population structure (BAPS). Therefore, we merged the three POWERCORE core collections (CC1–CC3) to generate a composite core collection, CartC1 and three MSTRAT core collections (CC4–CC6) to generate another composite core collection, CartC2. The mean difference percentage, variance difference percentage, variable rate of coefficient of variance percentage, coincidence rate of range percentage, Shannon's diversity index, and Nei's gene diversity for CartC1 were 11.2, 43.7, 132.4, 93.4, 0.47, and 0.306, respectively while the corresponding values for CartC2 were 9.3, 58.8, 124.6, 95.8, 0.46, and 0.301. Each composite core collection represented the complete range of phenotypic and genetic variability of the crop including 19 BAPS clusters. This is the first report describing development of core collections in safflower using molecular marker data with phenotypic values and geographical distribution. These core collections will facilitate identification of genetic determinants of trait variability and effective utilization of the prevalent diversity in crop improvement programs. PMID:27807441

  4. Evaluating environmental and economic consequences of alternative pest management strategies: results of modeling workshops

    USGS Publications Warehouse

    Johnson, Richard L.; Andrews, Austin K.; Auble, Gregor T.L.; Ellison, Richard A.; Hamilton, David B.; Roelle, James E.; McNamee, Peter J.

    1983-01-01

    The model conceptualized at the first workshop simulates the effect of corn agrecosystem decisions on crop production, economic returns, and environmental indicators. The model is composed of five interacting submodels: 1) a Production Strategies submodel which makes decisions concerning tillage, planting, fertilizer and pesticide applications, and harvest; 2) a Hydrology/Chemical Transport submodel which represents soil hydrology, erosion, and concentrations of fertilizers and pesticides in the soil, runoff, surface waters, and percolation; 3) a Vegetation submodel which simulates growth of agricultural crops (corns and soybeans) and weeds; 4) a Pests submodel which calculates pest population levels and resulting crop damage; and 5) an Environmental Effects submodel which calculates indicators of potential fish kills, human health effects, and wildlife habitat. The most persistent data gaps encountered in quantifying the model were coefficients to relate environmental consequences to alternative pest management strategies. While the model developed in the project is not yet accurate enough to be used for real-world decisions about the use of pesticides on corn, it does contain the basic structure upon which such a model could be built. More importantly at this stage of development, the project has shown that very complex systems can be modeled in short periods of time and that the process of building such models increases understanding among disciplinary specialists and between diverse institutional interests. This process can be useful to EPA as the agency cooperates with other institutions to meet its responsibilities in less costly ways. Activities at the second 2 1/2-day workshop included a review of the model, incorporation of necessary corrections, simulation of policy scenarios, and examination of techniques to address remaining institutional conflicts. Participants were divided into three groups representing environmental, production or industry, and regulatory interests. Each group developed scenarios that would be most appealing to their particular interest and the scenarios were simulated by the agroecosystem computer model. Negotiators from each of the interest groups decided whether a hypothetical herbicide should be relabeled and if certain restrictions should be imposed on its use. Other participants functioned as experts and consultants on caucus teams. A solution to the hypothetical problem was successfully negotiated. Workshop participants and project staff agreed that the model and processes developed during the project should be used in training students, extension specialists, farmers, researchers, and chemical producers in collaborative problem solving methods. More productive research can be planned, and more realistic models of complex systems can be built in this way. More importantly, greater trust of decisionmakers in computer models, better understanding by technical experts about disciplines other than their own, and improved cooperation between institutional interests can be achieved. This trust, understanding, and cooperation are critical ingredients in solving problems that are too complex to be resolved by independent disciplinary activity and unilateral decision authority.

  5. Identifying and breeding drought tolerant cottons (gossypium spp.) treated with ems-mutant agent on the texas high plains

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium spp.), like many crop species worldwide, suffers from low levels of natural genetic diversity. Ethyl MethaneSulfonate (EMS) causes random mutations and has been used as a tool to increase genetic diversity. Therefore, this novel genetic diversity was used for identifying drought to...

  6. Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production system

    USDA-ARS?s Scientific Manuscript database

    One of the primary goals of organic agriculture is increasing soil quality through the enhancement of soil biological diversity and activity. Greater soil microbial activity and diversity increase soil organic matter turnover and contribute to soil fertility, one of the main challenges associated wi...

  7. Pyrosequencing analysis for characterization of bacterial diversity in a soil as affected by integrated livestock-cotton production systems

    USDA-ARS?s Scientific Manuscript database

    Impacts of integrated livestock-crop production systems compared to specialized systems on soil bacterial diversity have not been well documented. We used a bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) method to evaluate bacterial diversity of a clay loam soil (Fine, mixed, thermic To...

  8. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data.

    PubMed

    Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing

    2017-10-01

    Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.

  9. Extending RosBREED in the Pacific Northwest for strawberry processing traits: year 1

    USDA-ARS?s Scientific Manuscript database

    In an effort to implement marker-assisted breeding in Rosaceae, many traits need to be characterized in diverse germplasm. The USDA-NIFA Specialty Crop Research Initiative-funded RosBREED project includes breeding programs of four Rosaceae crops (apple, peach, cherry, and strawberry). Phenotyping ea...

  10. Sampling wild species to conserve genetic diversity

    USDA-ARS?s Scientific Manuscript database

    Sampling seed from natural populations of crop wild relatives requires choice of the locations to sample from and the amount of seed to sample. While this may seem like a simple choice, in fact careful planning of a collector’s sampling strategy is needed to ensure that a crop wild collection will ...

  11. Genetic diversity and population structure of collard landraces

    USDA-ARS?s Scientific Manuscript database

    A common vegetable grown in the southeastern U.S. is the leafy green cole crop known as collard (Brassica oleracea L. covar. Acephala var. viridis). Predominantly a fall and winter crop, collard is one of the few vegetables found in the garden during cool seasons in the Southeast. Historically, th...

  12. The Tropical Fruit Research Program of the USDA-ARS Tropical Agriculture Research Station

    USDA-ARS?s Scientific Manuscript database

    Tropical and subtropical fruit crops are of major importance in commercial and subsistence agriculture. The globalization of the economy and the increased demand for healthy and more diverse food products have opened a large market for many of these fruit crops. Despite this fact, increased produc...

  13. Long-term rotation history and previous crop effects on corn seedling health

    USDA-ARS?s Scientific Manuscript database

    Diverse rotations provide benefits to agroecosystems through changes in the soil environment. A long term experiment was established to study four different four-year rotation sequences in which the crop phase prior to corn was sampled. Soils from rotations ending with soybean, sunflower, corn and p...

  14. Social assessment for the Colville National Forest CROP program.

    Treesearch

    Angela J. Findley; Matthew S. Carroll; Keith A. Blatner

    2000-01-01

    A qualitative social assessment targeted salient issues connected to the Colville National Forest creating opportunities (CROP) research program that examines forest management alternatives for small-diameter stands in northeastern Washington. Research spanned various communities in three counties and investigated the diversity of fundamental values people attach to...

  15. Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers.

    PubMed

    Maneesha; Upadhyaya, Kailash C

    2017-09-01

    Pigeon pea (Cajanus cajan), an important legume crop is predominantly cultivated in tropical and subtropical regions of Asia and Africa. It is normally considered to have a low degree of genetic diversity, an impediment in undertaking crop improvement programmes.We have analysed genetic polymorphism of domesticated pigeon pea germplasm (47 accessions) across the world using earlier characterized panzee retrotransposon-based molecularmarkers. Itwas conjectured that since retrotransposons are interspersed throughout the genome, retroelements-based markers would be able to uncover polymorphism possibly inherent in the diversity of retroelement sequences. Two PCR-based techniques, sequence-specific amplified polymorphism (SSAP) and retrotransposon microsatellite amplified polymorphism (REMAP) were utilized for the analyses.We show that a considerable degree of polymorphism could be detected using these techniques. Three primer combinations in SSAP generated 297 amplified products across 47 accessions with an average of 99 amplicons per assay. Degree of polymorphism varied from 84-95%. In the REMAP assays, the number of amplicons was much less but up to 73% polymorphism could be detected. On the basis of similarity coefficients, dendrograms were constructed. The results demonstrate that the retrotransposon-based markers could serve as a better alternative for the assessment of genetic diversity in crops with apparent low genetic base.

  16. Genetic Diversity of Namibian Pennisetum glaucum (L.) R. BR. (Pearl Millet) Landraces Analyzed by SSR and Morphological Markers.

    PubMed

    McBenedict, Billy; Chimwamurombe, Percy; Kwembeya, Ezekeil; Maggs-Kölling, Gillian

    2016-01-01

    Current Pennisetum glaucum (L.) R. BR. cultivars in Namibia have overall poor performance posing a threat to the nation's food security because this crop is staple for over 70% of the Namibian population. The crop suffers from undesirable production traits such as susceptibility to diseases, low yield, and prolonged reproductive cycle. This study aimed to understand the genetic diversity of the crop in Namibia by simple sequence repeats (SSRs) and morphology analysis. A total of 1441 genotypes were collected from the National Gene Bank representing all the Namibian landraces. A sample of 96 genotypes was further analyzed by SSR using Shannon-Wiener diversity index and revealed a value of 0.45 indicating low genetic diversity. Ordination using Principal Coordinate Analysis (PCoA) on SSR data confirmed clusters generated by UPGMA for the 96 P. glaucum accessions. UPGMA phenograms of 29 morphological characterized genotypes were generated for SSR and morphology data and the two trees revealed 78% resemblance. Lodging susceptibility, tillering attitude, spike density, fodder yield potential, early vigour, and spike shape were the phenotypic characters upon which some clusters were based in both datasets. It is recommended that efforts should be made to widen the current gene pool in Namibia.

  17. Genetic Diversity of Namibian Pennisetum glaucum (L.) R. BR. (Pearl Millet) Landraces Analyzed by SSR and Morphological Markers

    PubMed Central

    McBenedict, Billy; Chimwamurombe, Percy; Kwembeya, Ezekeil; Maggs-Kölling, Gillian

    2016-01-01

    Current Pennisetum glaucum (L.) R. BR. cultivars in Namibia have overall poor performance posing a threat to the nation's food security because this crop is staple for over 70% of the Namibian population. The crop suffers from undesirable production traits such as susceptibility to diseases, low yield, and prolonged reproductive cycle. This study aimed to understand the genetic diversity of the crop in Namibia by simple sequence repeats (SSRs) and morphology analysis. A total of 1441 genotypes were collected from the National Gene Bank representing all the Namibian landraces. A sample of 96 genotypes was further analyzed by SSR using Shannon-Wiener diversity index and revealed a value of 0.45 indicating low genetic diversity. Ordination using Principal Coordinate Analysis (PCoA) on SSR data confirmed clusters generated by UPGMA for the 96 P. glaucum accessions. UPGMA phenograms of 29 morphological characterized genotypes were generated for SSR and morphology data and the two trees revealed 78% resemblance. Lodging susceptibility, tillering attitude, spike density, fodder yield potential, early vigour, and spike shape were the phenotypic characters upon which some clusters were based in both datasets. It is recommended that efforts should be made to widen the current gene pool in Namibia. PMID:27433479

  18. Genetic Diversity of Cowpea (Vigna unguiculata (L.) Walp.) Accession in Kenya Gene Bank Based on Simple Sequence Repeat Markers.

    PubMed

    Wamalwa, Emily N; Muoma, John; Wekesa, Clabe

    2016-01-01

    Increased agricultural production is an urgent issue. Projected global population is 9 million people by mid of this century. Estimation projects death of 1 million people for lack of food quality (micronutrient deficit) and quantity (protein deficit). Majority of these people will be living in developing countries. Other global challenges include shrinking cultivable lands, salinity, and flooding due to climate changes, new emerging pathogens, and pests. These affect crop production. Furthermore, they are major threats to crop genetic resources and food security. Genetic diversity in cultivated crops indicates gene pool richness. It is the greatest resource for plant breeders to select lines that enhance food security. This study was conducted by Masinde Muliro University to evaluate genetic diversity in 19 cowpea accessions from Kenya national gene bank. Accessions clustered into two major groups. High divergence was observed between accessions from Ethiopia and Australia and those from Western Kenya. Upper Volta accessions were closely related to those from Western Kenya. Low variation was observed between accessions from Eastern and Rift Valley than those from Western and Coastal regions of Kenya. Diversity obtained in this study can further be exploited for the improvement of cowpea in Kenya as a measure of food security.

  19. Impact of GM crops on biodiversity.

    PubMed

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  20. Biology and management of Avena fatua and Avena ludoviciana: two noxious weed species of agro-ecosystems.

    PubMed

    Bajwa, Ali Ahsan; Akhter, Muhammad Javaid; Iqbal, Nadeem; Peerzada, Arslan Masood; Hanif, Zarka; Manalil, Sudheesh; Hashim, Saima; Ali, Hafiz Haider; Kebaso, Lynda; Frimpong, David; Namubiru, Halima; Chauhan, Bhagirath Singh

    2017-08-01

    Avena fatua and Avena ludoviciana are closely related grass weed species infesting a large number of crops around the world. These species are widely distributed in diverse agro-ecosystems from temperate to sub-tropical regions due to their unique seed traits, successful germination ecology, high competitive ability, and allelopathic potential. A. fatua is more widespread, adaptable, and problematic than A. ludoviciana. Both these species infest major winter and spring crops, including wheat, oat, barley, canola, maize, alfalfa, and sunflower, causing up to 70% yield losses depending on crop species and weed density. Chemical control has been challenged by large-scale herbicide resistance evolution in these weed species. A. fatua is the most widespread herbicide-resistant weed in the world, infesting about 5 million hectares in 13 countries. The use of alternative herbicides with different modes of action has proved effective. Several cultural practices, including diverse crop rotations, cover crops, improved crop competition (using competitive cultivars, high seed rates, narrow row spacing, altered crop geometry), and allelopathic suppression, have shown promise for controlling A. fatua and A. ludoviciana. The integrated use of these cultural methods can reduce the herbicide dose required, and lower dependency on herbicides to control these grasses. Moreover, integrated management may successfully control herbicide-resistant populations of these weed species. The use of integrated approaches based on the knowledge of biology and ecology of A. fatua and A. ludoviciana may help to manage them sustainably in the future.

  1. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world.

    PubMed

    Yang, Xiaohan; Cushman, John C; Borland, Anne M; Edwards, Erika J; Wullschleger, Stan D; Tuskan, Gerald A; Owen, Nick A; Griffiths, Howard; Smith, J Andrew C; De Paoli, Henrique C; Weston, David J; Cottingham, Robert; Hartwell, James; Davis, Sarah C; Silvera, Katia; Ming, Ray; Schlauch, Karen; Abraham, Paul; Stewart, J Ryan; Guo, Hao-Bo; Albion, Rebecca; Ha, Jungmin; Lim, Sung Don; Wone, Bernard W M; Yim, Won Cheol; Garcia, Travis; Mayer, Jesse A; Petereit, Juli; Nair, Sujithkumar S; Casey, Erin; Hettich, Robert L; Ceusters, Johan; Ranjan, Priya; Palla, Kaitlin J; Yin, Hengfu; Reyes-García, Casandra; Andrade, José Luis; Freschi, Luciano; Beltrán, Juan D; Dever, Louisa V; Boxall, Susanna F; Waller, Jade; Davies, Jack; Bupphada, Phaitun; Kadu, Nirja; Winter, Klaus; Sage, Rowan F; Aguilar, Cristobal N; Schmutz, Jeremy; Jenkins, Jerry; Holtum, Joseph A M

    2015-08-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management. © 2015 ORNL/UT-Battelle New Phytologist © 2015 New Phytologist Trust.

  2. A framework for standardized calculation of weather indices in Germany

    NASA Astrophysics Data System (ADS)

    Möller, Markus; Doms, Juliane; Gerstmann, Henning; Feike, Til

    2018-05-01

    Climate change has been recognized as a main driver in the increasing occurrence of extreme weather. Weather indices (WIs) are used to assess extreme weather conditions regarding its impact on crop yields. Designing WIs is challenging, since complex and dynamic crop-climate relationships have to be considered. As a consequence, geodata for WI calculations have to represent both the spatio-temporal dynamic of crop development and corresponding weather conditions. In this study, we introduce a WI design framework for Germany, which is based on public and open raster data of long-term spatio-temporal availability. The operational process chain enables the dynamic and automatic definition of relevant phenological phases for the main cultivated crops in Germany. Within the temporal bounds, WIs can be calculated for any year and test site in Germany in a reproducible and transparent manner. The workflow is demonstrated on the example of a simple cumulative rainfall index for the phenological phase shooting of winter wheat using 16 test sites and the period between 1994 and 2014. Compared to station-based approaches, the major advantage of our approach is the possibility to design spatial WIs based on raster data characterized by accuracy metrics. Raster data and WIs, which fulfill data quality standards, can contribute to an increased acceptance and farmers' trust in WI products for crop yield modeling or weather index-based insurances (WIIs).

  3. TRIBE: Trust Revision for Information Based on Evidence

    DTIC Science & Technology

    2013-07-01

    the 15th Bled Electronic Commerce Conference e -Reality: Constructing the e -Economy, pages 48–64, 2002. [7] A. Jøsang, R. Ismail, and C. Boyd. A survey...expectation value can be computed using Equation 3 [5]. E (w, a) = b(w) + a× u(w) = r(w) + a× 2 r(w) + s(w) + 2 (3) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8...evidence. III. TRUST-BASED FUSION OF OPINIONS In sensing applications, an information consumer may receive many different opinions from diverse

  4. Trust Species and Habitat Branch: using the innovative approaches of today to conserve biodiversity for tomorrow

    USGS Publications Warehouse

    Stevens, Patricia; Walters, Katie D.

    2015-01-01

    The Trust Species and Habitats Branch of the Fort Collins Science Center includes a diverse group of scientists encompassing both traditional and specialized expertise in wildlife biology, ecosystem ecology, quantitative ecology, disease ecology, molecular genetics, and stable isotope geochemistry. Using our expertise and collaborating with others around the world, our goal is to provide the information, tools, and technologies that our partners need to support conservation, management, and restoration of terrestrial vertebrate populations, habitats, and ecosystem function in a changing world.

  5. The effectiveness of habitat modification schemes for enhancing beneficial insects: Assessing the importance of trap cropping management approach

    NASA Astrophysics Data System (ADS)

    Trisnawati, Indah; Azis, Abdul

    2017-06-01

    Many farms in regions of intensive crop production lack the habitats that historically provided resources to beneficial insects, and this lack has compromised the ability of farmers to rely on natural enemies for pest control. One of the strategies to boost populations of existing or naturally occurring beneficial insects is to supply them with appropriate habitat and alternative food sources, such as diversifying trap crop systems and plant populations in or around fields include perennials and flowering plants. Trap cropping using insectary plant that attracts beneficial insects as natural enemies, especially flowering plants, made for provision of habitat for predators or parasitoids that are useful for biological control. Perimeter trap cropping (PTC) is a method of integrated pest management in which the main crop is surrounded with a perimeter trap crop that is more attractive to pests. We observed PTC habitat modification and conventionaly-managed tobacco farms in Purwosari Village, Pasuruan (East Java) to evaluate the effectiveness of habitat modification management prescription (perimeter trap crop using flowering plant Crotalaria juncea) on agroecosystem natural enemies. Field tests were conducted in natural enemies (predator and parasitoid) abundance dynamic and diversity on tobacco field in Purwoasri, Pasuruan. Yellow pan trap, sweep net and hand collecting methods were applied in each 10 days during tobacco growth stage (vegetative, generative until reproductive/harvesting. The results showed that application perimeter trap crop with C. juncea in tobacco fields able to help arthropod conservation of natural enemies on all tobacco growth stages. These results were evidenced the increase in abundance of predators and parasitoids and the increased value of the Diversity Index (H') and Evenness Index (EH) in all tobacco growth phases. Composition of predator and parasitoid in the habitat modification field were more diverse than in the conventional field. Three specific predator species were found on habitat modification field, i.e.: Crocothemis servilia, Orthetrum sabina and Paratrechina sp., as well as specific parasitoid species, i.e.: Polistes sp. (vegetative stage), Chloromyia sp., Theronia sp., Sarcophaga sp. and Cletus sp (generative stage), Condylodtylus sp., Trichogramma sp. (reproductive stage). Trends in predator abundance toward parasitoid insects were indicated a positive linear trend, with the abundance of predator on habitat modification field has an influence on the level of 67.1% parasitoid.

  6. Measurement invariance of the Short Wake Forest Physician Trust Scale and of the Health Empowerment Scale in German and French women.

    PubMed

    Petrocchi, Serena; Labrie, Nanon H M; Schulz, Peter J

    2017-08-01

    Measurement invariance is a crucial prerequisite to carry out cross-cultural research and to provide knowledge that enables culturally diverse patients to feel comfortable with their health providers. Although trust in doctors and health empowerment are widely studied, no previous research has examined their measurement invariance. The Short Wake Forest Physician Trust scale and the Health Empowerment scale were administered online. Participants were 217 German-speaking women ( M = 39.07, standard deviation = 5.71) and 217 French-speaking women ( M = 39.11, standard deviation = 5.82). Demonstration of partial scalar invariance was met and reasons for non-invariant items are discussed. The study was evaluated applying COnsensus-based Standards for the selection of health status Measurement INstruments checklist.

  7. Helping yourself helps others: Linking children's emotion regulation to prosocial behavior through sympathy and trust.

    PubMed

    Song, Ju-Hyun; Colasante, Tyler; Malti, Tina

    2018-06-01

    Although emotionally well-regulated children are more likely to behave prosocially, the psychological processes that connect their emotion regulation abilities and prosocial behavior are less clear. We tested if other-oriented sympathy and trust mediated the links between emotion regulation capacities (i.e., resting respiratory sinus arrhythmia [RSA], negative emotional intensity, and sadness regulation) and prosocial behavior in an ethnically diverse sample of 4- and 8-year-olds (N = 131; 49% girls). Resting RSA was calculated from children's electrocardiogram data in response to a nondescript video. Sympathy was child and caregiver reported, whereas negative emotional intensity, sadness regulation, trust, and prosocial behavior were caregiver reported. Regardless of age, higher resting RSA was linked to higher sympathy, which was associated with higher prosocial behavior. The positive link between sadness regulation and prosocial behavior was mediated by higher sympathy and trust. Children's other-oriented psychological processes may play important roles in translating certain emotion regulation capacities into prosocial behavior. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Shifting Patterns of Agricultural Diversity

    USDA-ARS?s Scientific Manuscript database

    Although monocultural cropping systems can provide the greatest yield efficiency in the short term, more diverse agricultural landscapes may contribute multiple ecosystem benefits. The USDA's Cropland Data Layer provides a yearly map of the agricultural lands of the continental United States broken ...

  9. Self-rated health, generalized trust, and the Affordable Care Act: A US panel study, 2006-2014.

    PubMed

    Mewes, Jan; Giordano, Giuseppe Nicola

    2017-10-01

    Previous research shows that generalized trust, the belief that most people can be trusted, is conducive to people's health. However, only recently have longitudinal studies suggested an additional reciprocal pathway from health back to trust. Drawing on a diverse body of literature that shows how egalitarian social policy contributes to the promotion of generalized trust, we hypothesize that this other 'reverse' pathway could be sensitive to health insurance context. Drawing on nationally representative US panel data from the General Social Survey, we examine whether the Affordable Care Act of 2010 could have had influence on the deteriorating impact of worsening self-rated health (SRH) on generalized trust. Firstly, using two-wave panel data (2008-2010, N = 1403) and employing random effects regression models, we show that a lack of health insurance coverage negatively determines generalized trust in the United States. However, this association is attenuated when additionally controlling for (perceived) income inequality. Secondly, utilizing data from two separate three-wave panel studies from the US General Social Survey (2006-10; N = 1652; 2010-2014; N = 1187), we employ fixed-effects linear regression analyses to control for unobserved heterogeneity from time-invariant factors. We demonstrate that worsening SRH was a stronger predictor for a decrease in generalized trust prior (2006-2010) to the implementation of the Affordable Care Act. Further, the negative effect of fair/poor SRH seen in the 2006-2010 data becomes attenuated in the 2010-2014 panel data. We thus find evidence for a substantial weakening of the previously established negative impact of decreasing SRH on generalized trust, coinciding with the most significant US healthcare reforms in decades. Social policy and healthcare policy implications are discussed. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Agrobiodiversity and in situ conservation in ethnic minority communities of Xishuangbanna in Yunnan Province, Southwest China.

    PubMed

    Shen, Shicai; Xu, Gaofeng; Li, Diyu; Clements, David Roy; Zhang, Fudou; Jin, Guimei; Wu, Jianyong; Wei, Pingfang; Lin, Song; Xue, Dayuan

    2017-05-15

    Xishuangbanna of Yunnan Province, southwest of China belongs to a global biodiversity and cultural hotspot. Agrobiodiversity plays an essential role in local livelihoods and traditional culture in the region. However, preliminary studies suggest that diversity of crop plants and livestock species is declining. We hypothesized that agrobiodiversity and traditional means of preserving agrobiodiversity are threatened because of changes in government policy in favor of commercial plantations, land use change and changes in traditional agricultural practices. We investigated whether or not agrobiodiversity was declining, the specific causes, and signs of active biodiversity conservation practices in ethnic minority communities of Xishuangbanna which could form the basis for extensive in situ conservation programmes. A series of field studies to document trends in agrobiodiversity were conducted in different ethnic minority communities in Menghai County, Mengla County and Jinghong City of Xishuangbanna of Yunnan Province, southwest of China between July 2015 and February 2016. Data was obtained through the use of semi-structured questionnaires, field observation and participatory rural appraisal (PRA) tools. A total of 360 ethnic households provided information on current status, functions, characteristics, changes, and threatened factors of farming crop and livestock resources. Some measures for in situ conservation of agricultural biological resources were also researched using PRA methods. Two hundred twenty-six crop varieties belonging to 31 families, 71 genera and 101 species were identified in Xishuangbanna, which included 83 vegetable crops, 77 food crops, 24 spice crops, 22 fruit crops, 13 cash crops, 6 oil crops, and 1 cloth crop, respectively. There were 15 livestock varieties, belonging to 6 major species: cattle, pigs, goats, chickens, ducks, and geese. Different crop and livestock resources had their own characteristics, functions and threatened factors. Since 2002, agroecosystem, crop diversity and livestock diversity have declined greatly over the Xishuangbanna region as a whole under implementation of the Sloping Land Conversion Program (SLCP). Swidden agriculture was completely eliminated under this program and gradually replaced by large land areas devoted to rubber, tea and banana plantations. Villager numbers engaging in farming production and population of crops and livestock were greatly decreased, particularly in terms of production of local traditional varieties. However, some in situ conservation measures such as seeds preservation, planting of traditional crops and raising livestock have played an important role in local agrobiodiversity conservation. Abundant agricultural resources and agrobiodiversity are critical to the local livelihood and maintenance of traditional culture in Xishuangbanna. However, agrobiodiversity and related traditional culture have been greatly impacted by implementation of the SLCP since 2002. Therefore, in future conservation of agrobiodiversity, incorporating some sustainable protection measures based in local communities such as convening seed exchange fairs, conserving traditional varieties in permanent plots, making a visual documentary of indigenous cultivation, and providing traditional agricultural products to tourists should be carefully considered and adopted.

  11. Reducing Freshwater Toxicity while Maintaining Weed Control, Profits, And Productivity: Effects of Increased Crop Rotation Diversity and Reduced Herbicide Usage.

    PubMed

    Hunt, Natalie D; Hill, Jason D; Liebman, Matt

    2017-02-07

    Increasing crop rotation diversity while reducing herbicide applications may maintain effective weed control while reducing freshwater toxicity. To test this hypothesis, we applied the model USEtox 2.0 to data from a long-term Iowa field experiment that included three crop rotation systems: a 2-year corn-soybean sequence, a 3-year corn-soybean-oat/red clover sequence, and 4-year corn-soybean-oat/alfalfa-alfalfa sequence. Corn and soybean in each rotation were managed with conventional or low-herbicide regimes. Oat, red clover, and alfalfa were not treated with herbicides. Data from 2008-2015 showed that use of the low-herbicide regime reduced freshwater toxicity loads by 81-96%, and that use of the more diverse rotations reduced toxicity and system dependence on herbicides by 25-51%. Mean weed biomass in corn and soybean was <25 kg ha -1 in all rotation × herbicide combinations except the low-herbicide 3-year rotation, which contained ∼110 kg ha -1 of weed biomass. Corn and soybean yields and net returns were as high or higher for the 3- and 4-year rotations managed with the low-herbicide regime as for the conventional-herbicide 2-year rotation. These results indicate that certain forms of cropping system diversification and alternative weed management strategies can maintain yield, profit, and weed suppression while delivering enhanced environmental performance.

  12. Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement.

    PubMed

    Bohra, Abhishek; Singh, Narendra P

    2015-08-01

    Unprecedented developments in legume genomics over the last decade have resulted in the acquisition of a wide range of modern genomic resources to underpin genetic improvement of grain legumes. The genome enabled insights direct investigators in various ways that primarily include unearthing novel structural variations, retrieving the lost genetic diversity, introducing novel/exotic alleles from wider gene pools, finely resolving the complex quantitative traits and so forth. To this end, ready availability of cost-efficient and high-density genotyping assays allows genome wide prediction to be increasingly recognized as the key selection criterion in crop breeding. Further, the high-dimensional measurements of agronomically significant phenotypes obtained by using new-generation screening techniques will empower reference based resequencing as well as allele mining and trait mapping methods to comprehensively associate genome diversity with the phenome scale variation. Besides stimulating the forward genetic systems, accessibility to precisely delineated genomic segments reveals novel candidates for reverse genetic techniques like targeted genome editing. The shifting paradigm in plant genomics in turn necessitates optimization of crop breeding strategies to enable the most efficient integration of advanced omics knowledge and tools. We anticipate that the crop improvement schemes will be bolstered remarkably with rational deployment of these genome-guided approaches, ultimately resulting in expanded plant breeding capacities and improved crop performance.

  13. Genetic diversity and population structure of an important wild berry crop

    PubMed Central

    Zoratti, Laura; Palmieri, Luisa; Jaakola, Laura; Häggman, Hely

    2015-01-01

    The success of plant breeding in the coming years will be associated with access to new sources of variation, which will include landraces and wild relatives of crop species. In order to access the reservoir of favourable alleles within wild germplasm, knowledge about the genetic diversity and the population structure of wild species is needed. Bilberry (Vaccinium myrtillus) is one of the most important wild crops growing in the forests of Northern European countries, noted for its nutritional properties and its beneficial effects on human health. Assessment of the genetic diversity of wild bilberry germplasm is needed for efforts such as in situ conservation, on-farm management and development of plant breeding programmes. However, to date, only a few local (small-scale) genetic studies of this species have been performed. We therefore conducted a study of genetic variability within 32 individual samples collected from different locations in Iceland, Norway, Sweden, Finland and Germany, and analysed genetic diversity among geographic groups. Four selected inter-simple sequence repeat primers allowed the amplification of 127 polymorphic loci which, based on analysis of variance, made it possible to identify 85 % of the genetic diversity within studied bilberry populations, being in agreement with the mixed-mating system of bilberry. Significant correlations were obtained between geographic and genetic distances for the entire set of samples. The analyses also highlighted the presence of a north–south genetic gradient, which is in accordance with recent findings on phenotypic traits of bilberry. PMID:26483325

  14. Geography and end use drive the diversification of worldwide winter rye populations.

    PubMed

    Parat, Florence; Schwertfirm, Grit; Rudolph, Ulrike; Miedaner, Thomas; Korzun, Viktor; Bauer, Eva; Schön, Chris-Carolin; Tellier, Aurélien

    2016-01-01

    To meet the current challenges in human food production, improved understanding of the genetic diversity of crop species that maximizes the selection efficacy in breeding programs is needed. The present study offers new insights into the diversity, genetic structure and demographic history of cultivated rye (Secale cereale L.). We genotyped 620 individuals from 14 global rye populations with a different end use (grain or forage) at 32 genome-wide simple sequence repeat markers. We reveal the relationships among these populations, their sizes and the timing of domestication events using population genetics and model-based inference with approximate Bayesian computation. Our main results demonstrate (i) a high within-population variation and genetic diversity, (ii) an unexpected absence of reduction in diversity with an increasing improvement level and (iii) patterns suggestive of multiple domestication events. We suggest that the main drivers of diversification of winter rye are the end use of rye in two early regions of cultivation: rye forage in the Mediterranean area and grain in northeast Europe. The lower diversity and stronger differentiation of eastern European populations were most likely due to more intensive cultivation and breeding of rye in this region, in contrast to the Mediterranean region where it was considered a secondary crop or even a weed. We discuss the relevance of our results for the management of gene bank resources and the pitfalls of inference methods applied to crop domestication due to violation of model assumptions and model complexity. © 2015 John Wiley & Sons Ltd.

  15. Earth benefits of interdisciplinary CELSS-related research by the NSCORT in Bioregenerative Life Support

    NASA Technical Reports Server (NTRS)

    Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.

    1996-01-01

    Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.

  16. Earth benefits of interdisciplinary celss-related research by the NSCORT in Bioregenerative Life Support

    NASA Astrophysics Data System (ADS)

    Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.

    Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO_2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainability of a CELSS that will enable management of diverse complex systems on Earth.

  17. Earth benefits of interdisciplinary CELSS-related research by the NSCORT in Bioregenerative Life Support.

    PubMed

    Mitchell, C; Sherman, L; Nielsen, S; Nelson, P; Trumbo, P; Hodges, T; Hasegawa, P; Bressan, R; Ladisch, M; Auslander, D

    1996-01-01

    Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.

  18. The Fallacy of Intimacy: Sexual Risk Behaviour and Beliefs about Trust and Condom Use among Men Who Have Sex with Men in South Africa

    PubMed Central

    Knox, Justin; Yi, Huso; Reddy, Vasu; Maimane, Senkhu; Sandfort, Theo

    2010-01-01

    The objective of this study is to assess (1) whether beliefs about trust and condom use affect sexual risk behaviour, and (2) if beliefs about trust and condom use impact sexual risk behaviour directly or if this relationship is mediated by other determinants. The Information-Motivation-Behavioural Skills model was used as a framework for the mediation analysis. A diverse cohort of three hundred 18–40 year old men who have sex with men (MSM) residing in Pretoria, South Africa, were recruited and surveyed for this project. Findings indicate that men who report a high frequency of past unprotected anal intercourse are more likely to believe that it is not necessary to use condoms with a trusted or steady partner regardless of their current partnership status. This fallacy of intimacy appears to affect sexual risk behaviour through intentions and attitudes regarding safer sex practices. Based on these findings, we recommend that more attention be given to gaining a better understanding of how beliefs about trust and condom use are formed and how they can be changed among MSM in South Africa. PMID:21154019

  19. Benefits of increasing plant diversity in sustainable agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Recent studies have revealed many potential benefits of increasing plant diversity in agroecosystems and production forests, including enhancing yields of crops, forage, and wood; stabilizing yields across time and space; enhancing pollinators and pollination; suppressing weeds and other pests; and ...

  20. Genetic diversity trend in Indian rice varieties: an analysis using SSR markers.

    PubMed

    Singh, Nivedita; Choudhury, Debjani Roy; Tiwari, Gunjan; Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R K; Sharma, A D; Singh, N K; Singh, Rakesh

    2016-09-05

    The knowledge of the extent and pattern of diversity in the crop species is a prerequisite for any crop improvement as it helps breeders in deciding suitable breeding strategies for their future improvement. Rice is the main staple crop in India with the large number of varieties released every year. Studies based on the small set of rice genotypes have reported a loss in genetic diversity especially after green revolution. However, a detailed study of the trend of diversity in Indian rice varieties is lacking. SSR markers have proven to be a marker of choice for studying the genetic diversity. Therefore, the present study was undertaken with the aim to characterize and assess trends of genetic diversity in a large set of Indian rice varieties (released between 1940-2013), conserved in the National Gene Bank of India using SSR markers. A set of 729 Indian rice varieties were genotyped using 36 HvSSR markers to assess the genetic diversity and genetic relationship. A total of 112 alleles was amplified with an average of 3.11 alleles per locus with mean Polymorphic Information Content (PIC) value of 0.29. Cluster analysis grouped these varieties into two clusters whereas the model based population structure divided them into three populations. AMOVA study based on hierarchical cluster and model based approach showed 3 % and 11 % variation between the populations, respectively. Decadal analysis for gene diversity and PIC showed increasing trend from 1940 to 2005, thereafter values for both the parameters showed decreasing trend between years 2006-2013. In contrast to this, allele number demonstrated increasing trend in these varieties released and notified between1940 to 1985, it remained nearly constant during 1986 to 2005 and again showed an increasing trend. Our results demonstrated that the Indian rice varieties harbors huge amount of genetic diversity. However, the trait based improvement program in the last decades forced breeders to rely on few parents, which resulted in loss of gene diversity during 2006 to 2013. The present study indicates the need for broadening the genetic base of Indian rice varieties through the use of diverse parents in the current breeding program.

  1. Identification of novel genomic loci associated with soybean shoot tissue macro- and micro-nutrient concentrations

    USDA-ARS?s Scientific Manuscript database

    The mineral composition of crops is important for animal and human health. The natural diversity that exists within crop species can be utilized to investigate mechanisms that define plant mineral composition and to identify genomic loci important for these processes. The objective of this study was...

  2. Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is the major producer of carcinogenic aflatoxins (AFs) in crops worldwide. Recent efforts to reduce AF concentrations in crops have focused on the use of two non-aflatoxigenic A. flavus strains, AF36 and NRRL 21882 (Afla-Guard), as biological control agents. These products are a...

  3. Genomic diversity and macroecology of the crop wild relatives of domesticated pea

    USDA-ARS?s Scientific Manuscript database

    There is growing interest in conservation and utilization of crop wild relatives (CWR) in international food security policy and research. Pea is an emblematic plant, as it is linked to Mendel’s discovery of the laws of inheritance, belongs to the ancient set of cultivated plants of the Near East do...

  4. Molecular genetic characterization of lasquerella new industrial crop using DArTseq markers

    USDA-ARS?s Scientific Manuscript database

    DArTseq, a new SNP-based marker platform, was developed and used to analyze the genetic diversity of the US germplasm collection of lesquerella. Lesquerella is a new oilseed crop in the Brassica family found native in the American Southwest. The potential of the species as a domestic source of indu...

  5. Diazotroph community structure and abundance in wheat-fallow and wheat-pea crop rotations

    USDA-ARS?s Scientific Manuscript database

    Biological input of nitrogen (N) from the atmosphere either through free-living diazotrophs or legume-associated rhizobia can help alleviate fertilizer use in agricultural systems. In this study, we investigated the effect of N fertilizer and winter pea (Pisum sativum L.) crop on the diversity and a...

  6. Characterization of soybean storage and allergen protein affected by environmental and genetic factors

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the impact of genetic variability and diverse environments on the protein composition of crop seed is of value for the comparative safety assessments in the development of genetically engineered (GMO) crops. The objective of this study was to determine the role of genotype (G), environ...

  7. Alleles conferring improved fiber quality from EMS mutagenesis of elite cotton genotypes

    USDA-ARS?s Scientific Manuscript database

    The elite gene pool of cotton (Gossypium spp.) has less diversity than those of most other major crops, making identification of novel alleles important to ongoing crop improvement. A total of 3,164 M5 lines resulting from ethyl methanesulfonate mutagenesis of two G. hirsutum breeding lines, TAM 94L...

  8. Integrating diverse forage sources reduces feed gaps on mixed crop-livestock farms.

    PubMed

    Bell, L W; Moore, A D; Thomas, D T

    2017-12-04

    Highly variable climates induce large variability in the supply of forage for livestock and so farmers must manage their livestock systems to reduce the risk of feed gaps (i.e. periods when livestock feed demand exceeds forage supply). However, mixed crop-livestock farmers can utilise a range of feed sources on their farms to help mitigate these risks. This paper reports on the development and application of a simple whole-farm feed-energy balance calculator which is used to evaluate the frequency and magnitude of feed gaps. The calculator matches long-term simulations of variation in forage and metabolisable energy supply from diverse sources against energy demand for different livestock enterprises. Scenarios of increasing the diversity of forage sources in livestock systems is investigated for six locations selected to span Australia's crop-livestock zone. We found that systems relying on only one feed source were prone to higher risk of feed gaps, and hence, would often have to reduce stocking rates to mitigate these risks or use supplementary feed. At all sites, by adding more feed sources to the farm feedbase the continuity of supply of both fresh and carry-over forage was improved, reducing the frequency and magnitude of feed deficits. However, there were diminishing returns from making the feedbase more complex, with combinations of two to three feed sources typically achieving the maximum benefits in terms of reducing the risk of feed gaps. Higher stocking rates could be maintained while limiting risk when combinations of other feed sources were introduced into the feedbase. For the same level of risk, a feedbase relying on a diversity of forage sources could support stocking rates 1.4 to 3 times higher than if they were using a single pasture source. This suggests that there is significant capacity to mitigate both risk of feed gaps at the same time as increasing 'safe' stocking rates through better integration of feed sources on mixed crop-livestock farms across diverse regions and climates.

  9. Increased Productivity of a Cover Crop Mixture Is Not Associated with Enhanced Agroecosystem Services

    PubMed Central

    Smith, Richard G.; Atwood, Lesley W.; Warren, Nicholas D.

    2014-01-01

    Cover crops provide a variety of important agroecological services within cropping systems. Typically these crops are grown as monocultures or simple graminoid-legume bicultures; however, ecological theory and empirical evidence suggest that agroecosystem services could be enhanced by growing cover crops in species-rich mixtures. We examined cover crop productivity, weed suppression, stability, and carryover effects to a subsequent cash crop in an experiment involving a five-species annual cover crop mixture and the component species grown as monocultures in SE New Hampshire, USA in 2011 and 2012. The mean land equivalent ratio (LER) for the mixture exceeded 1.0 in both years, indicating that the mixture over-yielded relative to the monocultures. Despite the apparent over-yielding in the mixture, we observed no enhancement in weed suppression, biomass stability, or productivity of a subsequent oat (Avena sativa L.) cash crop when compared to the best monoculture component crop. These data are some of the first to include application of the LER to an analysis of a cover crop mixture and contribute to the growing literature on the agroecological effects of cover crop diversity in cropping systems. PMID:24847902

  10. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.

    PubMed

    Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P

    2017-01-01

    In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool to equip modern crops with environment-tailored characteristics.

  11. Managing for Multifunctionality in Perennial Grain Crops

    PubMed Central

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  12. A Bayesian approach to infer nitrogen loading rates from crop and land-use types surrounding private wells in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Ransom, Katherine M.; Bell, Andrew M.; Barber, Quinn E.; Kourakos, George; Harter, Thomas

    2018-05-01

    This study is focused on nitrogen loading from a wide variety of crop and land-use types in the Central Valley, California, USA, an intensively farmed region with high agricultural crop diversity. Nitrogen loading rates for several crop types have been measured based on field-scale experiments, and recent research has calculated nitrogen loading rates for crops throughout the Central Valley based on a mass balance approach. However, research is lacking to infer nitrogen loading rates for the broad diversity of crop and land-use types directly from groundwater nitrate measurements. Relating groundwater nitrate measurements to specific crops must account for the uncertainty about and multiplicity in contributing crops (and other land uses) to individual well measurements, and for the variability of nitrogen loading within farms and from farm to farm for the same crop type. In this study, we developed a Bayesian regression model that allowed us to estimate land-use-specific groundwater nitrogen loading rate probability distributions for 15 crop and land-use groups based on a database of recent nitrate measurements from 2149 private wells in the Central Valley. The water and natural, rice, and alfalfa and pasture groups had the lowest median estimated nitrogen loading rates, each with a median estimate below 5 kg N ha-1 yr-1. Confined animal feeding operations (dairies) and citrus and subtropical crops had the greatest median estimated nitrogen loading rates at approximately 269 and 65 kg N ha-1 yr-1, respectively. In general, our probability-based estimates compare favorably with previous direct measurements and with mass-balance-based estimates of nitrogen loading. Nitrogen mass-balance-based estimates are larger than our groundwater nitrate derived estimates for manured and nonmanured forage, nuts, cotton, tree fruit, and rice crops. These discrepancies are thought to be due to groundwater age mixing, dilution from infiltrating river water, or denitrification between the time when nitrogen leaves the root zone (point of reference for mass-balance-derived loading) and the time and location of groundwater measurement.

  13. Consumer acceptance of food crops developed by genome editing.

    PubMed

    Ishii, Tetsuya; Araki, Motoko

    2016-07-01

    One of the major problems regarding consumer acceptance of genetically modified organisms (GMOs) is the possibility that their transgenes could have adverse effects on the environment and/or human health. Genome editing, represented by the CRISPR/Cas9 system, can efficiently achieve transgene-free gene modifications and is anticipated to generate a wide spectrum of plants. However, the public attitude against GMOs suggests that people will initially be unlikely to accept these plants. We herein explored the bottlenecks of consumer acceptance of transgene-free food crops developed by genome editing and made some recommendations. People should not pursue a zero-risk bias regarding such crops. Developers are encouraged to produce cultivars with a trait that would satisfy consumer needs. Moreover, they should carefully investigate off-target mutations in resultant plants and initially refrain from agricultural use of multiplex genome editing for better risk-benefit communication. The government must consider their regulatory status and establish appropriate regulations if necessary. The government also should foster communication between the public and developers. If people are informed of the benefits of genome editing-mediated plant breeding and trust in the relevant regulations, and if careful risk-benefit communication and sincere considerations for the right to know approach are guaranteed, then such transgene-free crops could gradually be integrated into society.

  14. Functional diversity of home gardens and their agrobiodiversity conservation benefits in Benin, West Africa.

    PubMed

    Gbedomon, Rodrigue Castro; Salako, Valère Kolawolé; Fandohan, Adandé Belarmain; Idohou, Alix Frank Rodrigue; Glèlè Kakaї, Romain; Assogbadjo, Achille Ephrem

    2017-11-25

    Understanding the functional diversity of home gardens and their socio-ecological determinants is essential for mainstreaming these agroforestry practices into agrobiodiversity conservation strategies. This paper analyzed functional diversity of home gardens, identified the socio-ecological drivers of functions assigned to them, and assessed the agrobiodiversity benefits of home gardens functions. Using data on occurring species in home garden (HG) and functions assigned to each species by the gardeners, the study combined clustering and discriminant canonical analyses to explore the functional diversity of 360 home gardens in Benin, West Africa. Next, multinomial logistic models and chi-square tests were used to analyze the effect of socio-demographic characteristics of gardeners (age, gender, and education level), agro-ecological zones (humid, sub-humid, and semi-arid), and management regime (single and multiple managers) on the possession of a functional type of home gardens. Generalized linear models were used to assess the effect of the functions of home gardens and the determinant factor on their potential in conserving agrobiodiversity. Seven functional groups of home gardens, four with specific functions (food, medicinal, or both food and medicinal) and three with multiple functions (more than two main functions), were found. Women owned most of home gardens with primarily food plant production purpose while men owned most of home gardens with primarily medicinal plant production purposes. Finding also showed that multifunctional home gardens had higher plant species diversity. Specifically, crops and crop wild relatives occurred mainly in home gardens with food function while wild plant species were mostly found in home gardens with mainly medicinal function. Home gardening is driven by functions beyond food production. These functions are mostly related to direct and extractive values of home gardens. Functions of home gardens were gendered, with women mostly involved in home food gardens, and contribute to maintenance of crops and crop wild relatives while men were mostly home medicinal gardeners and contribute to the maintenance of wild plant species in home gardens. Although multiple functional home gardens were related to higher plant diversity, there was no guarantee for long-term maintenance of plant species in home gardens.

  15. Mind the Roots: Phenotyping Below-Ground Crop Diversity and Its Influence on Final Yield

    NASA Astrophysics Data System (ADS)

    Nieters, C.; Guadagno, C. R.; Lemli, S.; Hosseini, A.; Ewers, B. E.

    2017-12-01

    Changes in global climate patterns and water regimes are having profound impacts on worldwide crop production. An ever-growing population paired with increasing temperatures and unpredictable periods of severe drought call for accurate modeling of future crop yield. Although novel approaches are being developed in high-throughput, above-ground image phenotyping, the below-ground plant system is still poorly phenotyped. Collection of plant root morphology and hydraulics are needed to inform mathematical models to reliably estimate yields of crops grown in sub-optimal conditions. We used Brassica rapa to inform our model as it is a globally cultivated crop with several functionally diverse cultivars. Specifically, we use 7 different accessions from oilseed (R500 and Yellow Sarson), leafy type (Pac choi and Chinese cabbage), a vegetable turnip, and two Wisconsin Fast Plants (Imb211 and Fast Plant self-compatible), which have shorter life cycles and potentially large differences in allocation to roots. Bi-weekly, we harvested above and below-ground biomass to compare the varieties in terms of carbon allocation throughout their life cycle. Using WinRhizo software, we analyzed root system length and surface area to compare and contrast root morphology among cultivars. Our results confirm that root structural characteristics are crucial to explain plant water use and carbon allocation. The root:shoot ratio reveals a significant (p < 0.01) difference among crop accession. To validate the procedure across different varieties and life stages we also compared surface area results from the image-based technology to dry biomass finding a strong linear relationship (R2= 0.85). To assess the influence of a diverse above-ground morphology on the root system we also measured above-ground anatomical and physiological traits such as gas exchange, chlorophyll content, and chlorophyll a fluorescence. A thorough analysis of the root system will clarify carbon dynamics and hydraulics at the whole-plant level, improving final yield predictions.

  16. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    PubMed

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Economic and physical determinants of the global distributions of crop pests and pathogens

    PubMed Central

    Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J

    2014-01-01

    Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. PMID:24517626

  18. Extensive genetic diversity present within North American switchgrass germplasm

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a perennial, native North American grass currently grown for ecological restoration and forage purposes that has potential as a biofuel feedstock crop. Understanding the genetic diversity of switchgrass can provide insight into allelic variants important in devel...

  19. Estimation of genetic diversity using SSR markers in sunflower

    USDA-ARS?s Scientific Manuscript database

    Sunflower is a major oilseed crop in central Asia, but little is known of the molecular diversity among collections of sunflower from Pakistan region. This paper described inherent genetic relationships among sunflower collections using Simple Sequence Repeat molecular markers. Results should help...

  20. Factors shaping interactions among community health workers in rural Ethiopia: rethinking workplace trust and teamwork.

    PubMed

    Dynes, Michelle M; Stephenson, Rob; Hadley, Craig; Sibley, Lynn M

    2014-01-01

    Worldwide, a shortage of skilled health workers has prompted a shift toward community-based health workers taking on greater responsibility in the provision of select maternal and newborn health services. Research in mid- and high-income settings suggests that coworker collaboration increases productivity and performance. A major gap in this research, however, is the exploration of factors that influence teamwork among diverse community health worker cadres in rural, low-resource settings. The purpose of this study is to examine how sociodemographic and structural factors shape teamwork among community-based maternal and newborn health workers in Ethiopia. A cross-sectional survey was conducted with health extension workers, community health development agents, and traditional birth attendants in 3 districts of the West Gojam Zone in the Amhara region of Ethiopia. Communities were randomly selected from Maternal and Newborn Health in Ethiopia Partnership (MaNHEP) sites; health worker participants were recruited using a snowball sampling strategy. Fractional logit modeling and average marginal effects analyses were carried out to identify the influential factors for frequency of work interactions with each cadre. One hundred and ninety-four health workers participated in the study. A core set of factors-trust in coworkers, gender, and cadre-were influential for teamwork across groups. Greater geographic distance and perception of self-interested motivations were barriers to interactions with health extension workers, while greater food insecurity (a proxy for wealth) was associated with increased interactions with traditional birth attendants. Interventions that promote trust and gender sensitivity and improve perceptions of health worker motivations may help bridge the gap in health services delivery between low- and high-resource settings. Inter-cadre training may be one mechanism to increase trust and respect among diverse health workers, thereby increasing collaboration. Large-scale, longitudinal research is needed to understand how changes in trust, gender norms, and perceptions of motivations influence teamwork over time. © 2014 by the American College of Nurse-Midwives.

  1. Reconsidering Tree Fruit as Candidate Crops Through the Use of Rapid Cycle Crop Breeding Technologies

    NASA Technical Reports Server (NTRS)

    Graham, Gary Thomas

    2014-01-01

    Tree fruit, although desirable from a crew nutrition and menu diversity perspective, have long been dismissed as candidate crops based on their long juvenile phase, large architecture, low short-term harvest index, and dormancy requirements. Recent developments in Rapid Cycle Crop Breeding (RCCB) have overcome these historical limitations, opening the door to a new era in candidate crop research. Researchers at the United States Department of Agriculture (USDA) have developed FT-construct (Flowering Locus T) dwarf plum lines that have a very short juvenile phase, vine-like architecture, and no obligate dormancy period. In a collaborative research effort, NASA and the USDA are evaluating the performance of these FT-lines under controlled environment conditions relevant to spaceflight.

  2. The application of genomics and bioinformatics to accelerate crop improvement in a changing climate.

    PubMed

    Batley, Jacqueline; Edwards, David

    2016-04-01

    The changing climate and growing global population will increase pressure on our ability to produce sufficient food. The breeding of novel crops and the adaptation of current crops to the new environment are required to ensure continued food production. Advances in genomics offer the potential to accelerate the genomics based breeding of crop plants. However, relating genomic data to climate related agronomic traits for use in breeding remains a huge challenge, and one which will require coordination of diverse skills and expertise. Bioinformatics, when combined with genomics has the potential to help maintain food security in the face of climate change through the accelerated production of climate ready crops. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Changes in barley (Hordeum vulgare L. subsp. vulgare) genetic diversity and structure in Jordan over a period of 31 years

    USDA-ARS?s Scientific Manuscript database

    In many regions of the world, the cultivation of landraces is still common, in particular in centres of crop diversity. Significant effort has been put into ex situ conservation of landraces but limited data exist on the changes in genetic diversity that occur over time in farmers’ fields. We assess...

  4. Microsatellite markers for the yam bean Pachyrhizus (Fabaceae).

    PubMed

    Delêtre, Marc; Soengas, Beatriz; Utge, José; Lambourdière, Josie; Sørensen, Marten

    2013-07-01

    Microsatellite loci were developed for the understudied root crop yam bean (Pachyrhizus spp.) to investigate intraspecific diversity and interspecific relationships within the genus Pachyrhizus. • Seventeen nuclear simple sequence repeat (SSR) markers with perfect di- and trinucleotide repeats were developed from 454 pyrosequencing of SSR-enriched genomic libraries. Loci were characterized in P. ahipa and wild and cultivated populations of four closely related species. All loci successfully cross-amplified and showed high levels of polymorphism, with number of alleles ranging from three to 12 and expected heterozygosity ranging from 0.095 to 0.831 across the genus. • By enabling rapid assessment of genetic diversity in three native neotropical crops, P. ahipa, P. erosus, and P. tuberosus, and two wild relatives, P. ferrugineus and P. panamensis, these markers will allow exploration of the genetic diversity and evolutionary history of the genus Pachyrhizus.

  5. Photosynthesis: ancient, essential, complex, diverse ... and in need of improvement in a changing world

    USDA-ARS?s Scientific Manuscript database

    A challenge to crop improvement is the fact that the photosynthetic process has been fine tuned by billions of years of natural selection, and is subject to deeply rooted genetic controls shaped in the native environments of the crop ancestors. These may be difficult to change and may not be optima...

  6. Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California

    USDA-ARS?s Scientific Manuscript database

    Diaporthe ampelina, causal agent of Phomopsis cane and leaf spot of grapevine (Vitis vinifera L.), is also frequently isolated from grapevine wood, causing Phomopsis dieback. In California, Diaporthe species cause a wide range of symptoms not only on grape, but also other fruit and nut crops. To bet...

  7. Evidence for the role of an invasive weed in widespread occurrence of phytoplasmal diseases in diverse vegetable crops: implications from lineage-specific molecular markers

    USDA-ARS?s Scientific Manuscript database

    During the period from 2011 to 2013, several plant diseases repeatedly occurred in vegetable crops grown in Yuanmou County, Yunnan Province, China. Affected plants included cowpea, sword bean, string bean, tomato, lettuce, and water spinach. The diseased plants exhibited symptoms of witches’-broom...

  8. Determinants of Acorn Productivity Among Five Species of Oaks in Central Coastal California

    Treesearch

    Walter D. Koenig; William J. Carmen; Mark T. Stanback; Mumme Ronald L.

    1991-01-01

    We measured acorn production of five species of oaks (genus Quercus) over a ten year period (1980-1989) at Hastings Reservation in Monterey County, California. Crop production was highly variable and generally asynchronous between species. Variance in crop size decreased directly with increasing species diversity across sub-areas within the study...

  9. Host-Induced Gene Silencing (HIGS) of aflatoxin synthesis genes in peanut and maize: use of RNA interference and genetic diversity of Aspergillus

    USDA-ARS?s Scientific Manuscript database

    Approximately 4.5 billion people are chronically exposed to aflatoxins, these are powerful carcinogens produced by Aspergillus flavus and A. parasiticus. High levels of aflatoxins in crops result in approximately 100 million metric tons of cereals, ¬nuts, root crops and other agricultural products ...

  10. Total phenolic levels in diverse garlics (Allium sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Garlic (Allium sativum L.) is a specialty crop that is highly responsive to growth environment with respect to bulb size and coloration. Ten genetically diverse garlic cultivars were grown at twelve locations for two consecutive years. Soil characteristics and bulb phenotypic characters including ...

  11. Loss of soil microbial diversity may increase insecticide uptake by crop

    USDA-ARS?s Scientific Manuscript database

    Belowground biodiversity is essential for soil functioning, but the effect of belowground biodiversity loss on food safety is unknown. We investigated the loss of soil microbial diversity on insecticides accumulation in Brassica. We manipulated soil biodiversity using the dilution-to-extinction appr...

  12. Linking habitat management and conservation biocontrol through gut-content analysis

    USDA-ARS?s Scientific Manuscript database

    Increasing the habitat diversity of agricultural fields can lead to more effective biocontrol of arthropod pests. Annual cropping systems are exposed to frequent disturbance and lack habitat diversity; therefore it is important to develop strategies that can improve ecosystem services such as bioco...

  13. Social capital and core network ties: a validation study of individual-level social capital measures and their association with extra- and intra-neighborhood ties, and self-rated health.

    PubMed

    Moore, Spencer; Bockenholt, Ulf; Daniel, Mark; Frohlich, Katherine; Kestens, Yan; Richard, Lucie

    2011-03-01

    Research on social capital and health has assumed that measures of trust, participation, and perceived cohesion capture aspects of people's neighborhood social connections. This study uses data on the personal networks of 2707 Montreal adults in 300 different neighborhoods to examine the association of socio-demographic and social capital variables with the likelihood of having core ties, core neighborhood ties, and high self-rated health (SRH). Persons with higher household income were more likely to have core ties, but less likely to have core neighborhood ties. Persons with greater diversity in extra-neighborhood network capital were more likely to have core ties, and persons with greater diversity in intra-neighborhood network capital were more likely to have core neighborhood ties. Generalized trust, perceived neighborhood cohesion, and extra-neighborhood network diversity were shown associated with high SRH. Conventional measures of social capital may not capture network mechanisms. Findings suggest a critical appraisal of the mechanisms linking social capital and health, and the further delineation of network and psychosocial mechanisms in understanding these links. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  15. Whose Knowledge, Whose Development? Use and Role of Local and External Knowledge in Agroforestry Projects in Bolivia

    NASA Astrophysics Data System (ADS)

    Jacobi, Johanna; Mathez-Stiefel, Sarah-Lan; Gambon, Helen; Rist, Stephan; Altieri, Miguel

    2017-03-01

    Agroforestry often relies on local knowledge, which is gaining recognition in development projects. However, how local knowledge can articulate with external and scientific knowledge is little known. Our study explored the use and integration of local and external knowledge in agroforestry projects in Bolivia. In 42 field visits and 62 interviews with agroforestry farmers, civil society representatives, and policymakers, we found a diverse knowledge base. We examined how local and external knowledge contribute to livelihood assets and tree and crop diversity. Projects based predominantly on external knowledge tended to promote a single combination of tree and crop species and targeted mainly financial capital, whereas projects with a local or mixed knowledge base tended to focus on food security and increased natural capital (e.g., soil restoration) and used a higher diversity of trees and crops than those with an external knowledge base. The integration of different forms of knowledge can enable farmers to better cope with new challenges emerging as a result of climate change, fluctuating market prices for cash crops, and surrounding destructive land use strategies such as uncontrolled fires and aerial fumigation with herbicides. However, many projects still tended to prioritize external knowledge and undervalue local knowledge—a tendency that has long been institutionalized in the formal educational system and in extension services. More dialogue is needed between different forms of knowledge, which can be promoted by strengthening local organizations and their networks, reforming agricultural educational institutions, and working in close interaction with policymakers.

  16. Whose Knowledge, Whose Development? Use and Role of Local and External Knowledge in Agroforestry Projects in Bolivia.

    PubMed

    Jacobi, Johanna; Mathez-Stiefel, Sarah-Lan; Gambon, Helen; Rist, Stephan; Altieri, Miguel

    2017-03-01

    Agroforestry often relies on local knowledge, which is gaining recognition in development projects. However, how local knowledge can articulate with external and scientific knowledge is little known. Our study explored the use and integration of local and external knowledge in agroforestry projects in Bolivia. In 42 field visits and 62 interviews with agroforestry farmers, civil society representatives, and policymakers, we found a diverse knowledge base. We examined how local and external knowledge contribute to livelihood assets and tree and crop diversity. Projects based predominantly on external knowledge tended to promote a single combination of tree and crop species and targeted mainly financial capital, whereas projects with a local or mixed knowledge base tended to focus on food security and increased natural capital (e.g., soil restoration) and used a higher diversity of trees and crops than those with an external knowledge base. The integration of different forms of knowledge can enable farmers to better cope with new challenges emerging as a result of climate change, fluctuating market prices for cash crops, and surrounding destructive land use strategies such as uncontrolled fires and aerial fumigation with herbicides. However, many projects still tended to prioritize external knowledge and undervalue local knowledge-a tendency that has long been institutionalized in the formal educational system and in extension services. More dialogue is needed between different forms of knowledge, which can be promoted by strengthening local organizations and their networks, reforming agricultural educational institutions, and working in close interaction with policymakers.

  17. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape.

    PubMed

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island size, indicating that the creation of quite small but diversified (e.g., differing in vegetation cover) non-crop habitat islands could be the most efficient tool for the maintenance and enhancement of diversity of ground-dwelling carabids and spiders in agricultural landscapes.

  18. Even the Smallest Non-Crop Habitat Islands Could Be Beneficial: Distribution of Carabid Beetles and Spiders in Agricultural Landscape

    PubMed Central

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island size, indicating that the creation of quite small but diversified (e.g., differing in vegetation cover) non-crop habitat islands could be the most efficient tool for the maintenance and enhancement of diversity of ground-dwelling carabids and spiders in agricultural landscapes. PMID:25859850

  19. Contrasting effects of landscape composition on crop yield mediated by specialist herbivores.

    PubMed

    Perez-Alvarez, Ricardo; Nault, Brian A; Poveda, Katja

    2018-04-01

    Landscape composition not only affects a variety of arthropod-mediated ecosystem services, but also disservices, such as herbivory by insect pests that may have negative effects on crop yield. Yet, little is known about how different habitats influence the dynamics of multiple herbivore species, and ultimately their collective impact on crop production. Using cabbage as a model system, we examined how landscape composition influenced the incidence of three specialist cruciferous pests (aphids, flea beetles, and leaf-feeding Lepidoptera), lepidopteran parasitoids, and crop yield across a gradient of landscape composition in New York, USA. We expected that landscapes with a higher proportion of cropland and lower habitat diversity would lead to an increase in pest pressure of the specialist herbivores and a reduction in crop yield. However, results indicated that neither greater cropland area nor lower landscape diversity influenced pest pressure or yield. Rather, pest pressure and yield were best explained by the presence of non-crop habitats (i.e., meadows) in the landscape. Specifically, cabbage was infested with fewer Lepidoptera in landscapes with a higher proportion of meadows likely resulting from increased parasitism. Conversely, cabbage was infested with more flea beetles and aphids as the proportion of meadows in the landscape increased, suggesting that these pests benefit from non-crop habitats. Furthermore, path analysis confirmed that these landscape-mediated effects on pest populations can have either positive or negative cascading effects on crop yield. Our findings illustrate how different pest species within the same cropping system show contrasting responses to landscape composition with respect to both the direction and spatial scale of the relationship. Such tradeoffs resulting from the complex interaction between multiple-pests, natural enemies, and landscape composition must be considered, if we are to manage landscapes for pest suppression benefits. © 2018 by the Ecological Society of America.

  20. Cooperative Adaptive Cruise Control Human Factors Study : Experiment 1 - Workload, Distraction, Arousal, and Trust

    DOT National Transportation Integrated Search

    2016-12-01

    This study set out to examine the following diverse questions regarding cooperative adaptive cruise control (CACC) use: - Does CACC reduce driver workload relative to manual gap control? - Does CACC increase the probability of driver distraction rela...

  1. Cultural competent patient-centered nursing care.

    PubMed

    Darnell, Linda K; Hickson, Shondell V

    2015-03-01

    This article provides a theoretic framework for culturally diverse practice, provides a model for developing cultural competency, and provides best-practice guidelines for conducting a cultural assessment on patients to identify their diverse needs to integrate into a patient-centered plan of care. The role of ethics is discussed to empower mutual respect, equality, and trust building in patients to promote positive health care outcomes. Cultural diversity tool kits from the National League for Nursing and the American Association of Colleges of Nursing are reviewed to provide educational resources to the front line nurse. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Seed fates in crop-wild hybrid sunflower: crop allele and maternal effects.

    PubMed

    Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L

    2015-02-01

    Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank.

  3. Exotic germplasm introgression effect on agronomic and fiber properties of upland cotton

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity is an important breeder’s tool for selection and improvement in crop cultivar development. Any successful breeding program depends on selecting superior quality parents. Lack of genetic diversity limits the potential of the breeder in selecting elite parents. Genetic uniformity pre...

  4. Cryopreservation of native Kazakhstan apricot (Prunus armeniaca L) seeds and embryonic axes

    USDA-ARS?s Scientific Manuscript database

    Preserving the genetic diversity of Central Asia includes conserving wild apricots found in the foothills of several mountain ranges. These plants include primitive and genetically diverse populations with important characteristics for crop improvement. Apricot seeds have a short storage life, so cr...

  5. The effects of crop intensification on the diversity of native pollinator communities

    USDA-ARS?s Scientific Manuscript database

    Recent increases in agricultural conversion are leading to a decline in native grasslands and natural resources critical for beneficial insects. However, little is known regarding how these regional changes are affecting pollinator diversity. Insect pollinators were collected at 12 locations in Broo...

  6. Genomics and evolution of secondary metabolism in Fusarium

    USDA-ARS?s Scientific Manuscript database

    Fusarium is a species-rich genus that causes disease on virtually all plant crops and produces diverse secondary metabolites (SMs), including pigments, plant hormones, and some of the mycotoxins of greatest concern to food and feed safety. To better understand the potential SM diversity in Fusarium ...

  7. Diversity of the breadfruit complex (Artocarpus, Moraceae): Genetic characterization of critical germplasm

    USDA-ARS?s Scientific Manuscript database

    Breadfruit (Artocarpus altilis, Moraceae) is a traditional staple starch crop in Oceania and has been introduced throughout the tropics. This study uses microsatellite markers to characterize the genetic diversity of breadfruit and its wild relatives housed in the USDA National Plant Germplasm Syste...

  8. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes

    PubMed Central

    Dwivedi, Sangam L.; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro

    2017-01-01

    There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and overall genetic gain of multigenic traits. An integrated approach involving multiple stakeholders specializing in management and utilization of genetic resources, crop breeding, molecular biology and genomics, agronomy, stress tolerance, and reproductive/seed biology will help to address the global challenge of ensuring food security in the face of growing resource demands and climate change induced stresses. PMID:28900432

  9. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes.

    PubMed

    Dwivedi, Sangam L; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro

    2017-01-01

    There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and overall genetic gain of multigenic traits. An integrated approach involving multiple stakeholders specializing in management and utilization of genetic resources, crop breeding, molecular biology and genomics, agronomy, stress tolerance, and reproductive/seed biology will help to address the global challenge of ensuring food security in the face of growing resource demands and climate change induced stresses.

  10. Establishment of three permanent cover crop seed mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Miglécz, Tamas; Valkó, Orsolya; Donkó, Ádám; Deák, Balázs; Török, Péter; Kelemen, András; Drexler, Dóra; Tóthmérész, Béla

    2015-04-01

    In organic vineyard farming sowing high diversity cover crop seed mixtures offers a great opportunity to overcome high-priority problems mitigating vineyard cultivation, such as gain erosion control, save soil fertility, improve soil microbial activity and control weeds. Furthermore, we can also improve the biodiversity and ecosystem services of vineyards. Mainly non-native or low diversity seed mixtures are used for cover cropping containing some grass, grain or Fabaceae species. We studied vegetation development after sowing native high-diversity seed mixtures in four vineyards in an on farm field trial. We compared the effects of 4 treatments: (i) Biocont-Ecowin mixture (12 species), (ii) Fabaceae mixture (9 species), (iii) Grass-forb mixture (16 species) and control (no seed sowing). Study sites were located in Tokaj wine region, East Hungary. Seed mixtures were sown in March, 2012. After sowing, we recorded the percentage cover of vascular plant species in the end of June 2012, 2013 and 2014 in altogether 80 permanent plots. In the first year the establishment and weed control of Biocont-Ecowin and Legume seed mixture was the best. For the second year in inter-rows sown with Grass-herb and Legume seed mixtures we detected decreasing weed cover scores, while in inter-rows sown with Biocont-Ecowin seed mixture and in control inter-rows we detected higher weed cover scores. In the third year we still detected lower weed cover scores in inter-rows sown with Grass-forb and Legume seed mixtures, however on several sites we also detected decreasing cover of sown species. All sown species were detected in our plots during the time of the study, however some species were present only with low cover scores or only in a few plots. Out of the sown species Lotus corniculatus, Medicago lupulina, Plantago lanceolata, Trifolium repens, T. pratense and Coronilla varia established the most successfully, and had high cover scores on most sites even in the second and third year. Our trial to develop species rich cover crops was successful. According to our findings sowing high-diversity seed mixtures in cover cropping offers a good opportunity to gain weed control.

  11. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    NASA Astrophysics Data System (ADS)

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2017-04-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.

  12. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    NASA Astrophysics Data System (ADS)

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-06-01

    A large-scale cross-sectional study ( N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.

  13. Dietary diversity and nutritional status among children in rural Burkina Faso.

    PubMed

    Sié, Ali; Tapsoba, Charlemagne; Dah, Clarisse; Ouermi, Lucienne; Zabre, Pascal; Bärnighausen, Till; Arzika, Ahmed M; Lebas, Elodie; Snyder, Blake M; Moe, Caitlin; Keenan, Jeremy D; Oldenburg, Catherine E

    2018-05-01

    Burkina Faso has a seasonal malnutrition pattern, with higher malnutrition prevalence during the rainy season when crop yields are low. We investigated the association between dietary diversity and nutritional status among children aged 6-59 mo during the low crop yield season in rural Burkina Faso to assess the role of dietary diversity during the lean season on childhood nutritional status. Caregivers reported the dietary diversity of the past 7 d, consisting of 11 food groups, summed into a scale. Anthropometric measurements were taken from all children. Height-for-age (HAZ), weight-for-height (WHZ) and weight-for-age (WAZ) z-scores were calculated based on 2006 WHO standards. Stunting, wasting and underweight were defined as HAZ, WHZ and WAZ <-2 SD, respectively. Multivariable regression models adjusting for potential confounders including household food insecurity and animal ownership were used to assess the relationship between anthropometric indices and dietary diversity. Of 251 children enrolled in the study, 20.6% were stunted, 10.0% wasted and 13.9% underweight. Greater dietary diversity was associated with greater HAZ (SD 0.14, 95% CI 0.04 to 0.25) among all children. There was no association between dietary diversity and wasting or mid-upper arm circumference in this study. Increasing dietary diversity may be an approach to reduce the burden of stunting and chronic malnutrition among young children in regions with seasonal food insecurity.

  14. Building community participatory research coalitions from the ground up: the Philadelphia area research community coalition.

    PubMed

    Johnson, Jerry C; Hayden, U Tara; Thomas, Nicole; Groce-Martin, Jennine; Henry, Thomas; Guerra, Terry; Walker, Alia; West, William; Barnett, Marina; Kumanyika, Shiriki

    2009-01-01

    A coalition of formal, large organizations and informal, grassroots organizations, recruited through an open process, contrasts with the usual practice of developing a community-based participatory research (CBPR) coalition with a small number of well-developed organizations. This paper describes the process, developmental challenges, and accomplishments of the Philadelphia Area Research Community Coalition (PARCC). The University of Pennsylvania-Cheyney University of Pennsylvania EXPORT Center established the PARCC, an academic-community research partnership of twenty-two diverse organizations of variable size and with variable experience in health research. The EXPORT Center provided the infrastructure and staff support needed to engage in sustained, face-to-face community outreach and to nurture, coordinate, and facilitate the 2.5-year developmental process. The start-up process, governing principles, activities, challenges, and lessons learned are described. Since its inception, PARCC established core work groups, a governance structure, operating principles, research training activities, community health education projects, and several PARCC-affiliated research projects. Organizations across the spectrum of developmental capacity were major contributors to PARCC. The success of PARCC was based on committed and trusted leadership, preexisting relationships, trust among members from the community and academia, research training, extensive time commitment of members to the coalition's work, and rapid development of work group activities. Building a CBPR coalition from the ground up involving organizations of diverse size and at various stages of development presents unique challenges that can be overcome with committed leadership, clear governance principles, and appropriate infrastructure. Engagement in community-based research during the early stages, while still developing trust, structure, and governance procedures can be accomplished as long as training of all partners is conducted and the trust building is not ignored.

  15. Screening Genetic Resources of Capsicum Peppers in Their Primary Center of Diversity in Bolivia and Peru.

    PubMed

    van Zonneveld, Maarten; Ramirez, Marleni; Williams, David E; Petz, Michael; Meckelmann, Sven; Avila, Teresa; Bejarano, Carlos; Ríos, Llermé; Peña, Karla; Jäger, Matthias; Libreros, Dimary; Amaya, Karen; Scheldeman, Xavier

    2015-01-01

    For most crops, like Capsicum, their diversity remains under-researched for traits of interest for food, nutrition and other purposes. A small investment in screening this diversity for a wide range of traits is likely to reveal many traditional varieties with distinguished values. One objective of this study was to demonstrate, with Capsicum as model crop, the application of indicators of phenotypic and geographic diversity as effective criteria for selecting promising genebank accessions for multiple uses from crop centers of diversity. A second objective was to evaluate the expression of biochemical and agromorphological properties of the selected Capsicum accessions in different conditions. Four steps were involved: 1) Develop the necessary diversity by expanding genebank collections in Bolivia and Peru; 2) Establish representative subsets of ~100 accessions for biochemical screening of Capsicum fruits; 3) Select promising accessions for different uses after screening; and 4) Examine how these promising accessions express biochemical and agromorphological properties when grown in different environmental conditions. The Peruvian Capsicum collection now contains 712 accessions encompassing all five domesticated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens). The collection in Bolivia now contains 487 accessions, representing all five domesticates plus four wild taxa (C. baccatum var. baccatum, C. caballeroi, C. cardenasii, and C. eximium). Following the biochemical screening, 44 Bolivian and 39 Peruvian accessions were selected as promising, representing wide variation in levels of antioxidant capacity, capsaicinoids, fat, flavonoids, polyphenols, quercetins, tocopherols, and color. In Peru, 23 promising accessions performed well in different environments, while each of the promising Bolivian accessions only performed well in a certain environment. Differences in Capsicum diversity and local contexts led to distinct outcomes in each country. In Peru, mild landraces with high values in health-related attributes were of interest to entrepreneurs. In Bolivia, wild Capsicum have high commercial demand.

  16. Prunus persica crop management as step toward AMF diversity conservation for the sustainable soil management

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Lozano, Z.; Garcia-Orenes, F.; Roldan, A.

    2012-04-01

    We investigated the diversity of arbuscular mycorrhizal fungi (AMF) in roots of Prunus persica under two fertilization treatments (CF: consisted of application of chicken manure (1400 kg.ha-1), urea (140 kg.ha-1), complex fertilizer 12-12-17/2 (280 kg.ha-1), and potassium sulfate (40 kg.ha-1) and IF: consisted of application of urea (140 kg.ha-1), complex fertilizer 12-12-17/2 (400 kg.ha-1) and potassium sulfate (70 kg.ha-1)) combined with integrated pest management (IM) or chemical pest management (CM), in a tropical agroecosystem in the north of Venezuela. Our goal was to ascertain how different fertilizers/pest management can modify the AMF diversity colonizing P. persica roots as an important step towards sustainable soil use and therefore protection of biodiversity. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty-one different phylotypes were identified, which were grouped in five families: Glomeraceae, Paraglomeraceae, Acaulosporaceae, Gigasporaceae and Archaeosporaceae. Sixteen of these sequence groups belonged to the genus Glomus, two to Paraglomus, one to Acaulospora, one to Scutellospora and one to Archaeospora. A different distribution of the AMF phylotypes as consequence of the difference between treatments was observed. Thus, the AMF communities of tree roots in the (IF+CM) treatment had the lowest diversity (H'=1.78) with the lowest total number of AMF sequence types (9). The trees from both (CF+IM) and (IF+IM) treatments had similar AMF diversity (H'?2.00); while the treatment (CF+CM) yielded the highest number of different AMF sequence types (17) and showed the highest diversity index (H'=2.69). In conclusion, the crop management including combination of organic and inorganic fertilization and chemical pest control appears to be the most suitable strategy with respect to reactivate the AMF diversity in the roots of this crop and thus, the agricultural and environmental sustainability in the agroecosystem.

  17. Screening Genetic Resources of Capsicum Peppers in Their Primary Center of Diversity in Bolivia and Peru

    PubMed Central

    van Zonneveld, Maarten; Ramirez, Marleni; Williams, David E.; Petz, Michael; Meckelmann, Sven; Avila, Teresa; Bejarano, Carlos; Peña, Karla; Jäger, Matthias; Libreros, Dimary; Amaya, Karen; Scheldeman, Xavier

    2015-01-01

    For most crops, like Capsicum, their diversity remains under-researched for traits of interest for food, nutrition and other purposes. A small investment in screening this diversity for a wide range of traits is likely to reveal many traditional varieties with distinguished values. One objective of this study was to demonstrate, with Capsicum as model crop, the application of indicators of phenotypic and geographic diversity as effective criteria for selecting promising genebank accessions for multiple uses from crop centers of diversity. A second objective was to evaluate the expression of biochemical and agromorphological properties of the selected Capsicum accessions in different conditions. Four steps were involved: 1) Develop the necessary diversity by expanding genebank collections in Bolivia and Peru; 2) Establish representative subsets of ~100 accessions for biochemical screening of Capsicum fruits; 3) Select promising accessions for different uses after screening; and 4) Examine how these promising accessions express biochemical and agromorphological properties when grown in different environmental conditions. The Peruvian Capsicum collection now contains 712 accessions encompassing all five domesticated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens). The collection in Bolivia now contains 487 accessions, representing all five domesticates plus four wild taxa (C. baccatum var. baccatum, C. caballeroi, C. cardenasii, and C. eximium). Following the biochemical screening, 44 Bolivian and 39 Peruvian accessions were selected as promising, representing wide variation in levels of antioxidant capacity, capsaicinoids, fat, flavonoids, polyphenols, quercetins, tocopherols, and color. In Peru, 23 promising accessions performed well in different environments, while each of the promising Bolivian accessions only performed well in a certain environment. Differences in Capsicum diversity and local contexts led to distinct outcomes in each country. In Peru, mild landraces with high values in health-related attributes were of interest to entrepreneurs. In Bolivia, wild Capsicum have high commercial demand. PMID:26402618

  18. Carotenoid metabolism and regulation in horticultural crops

    PubMed Central

    Yuan, Hui; Zhang, Junxiang; Nageswaran, Divyashree; Li, Li

    2015-01-01

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegetables. Not only do carotenoids give horticultural crops their visual appeal, they also enhance nutritional value and health benefits for humans. As a result, carotenoid research in horticultural crops has grown exponentially over the last decade. These investigations have advanced our fundamental understanding of carotenoid metabolism and regulation in plants. In this review, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in horticultural crops and highlight recent achievements in our understanding of carotenoid metabolic regulation in vegetables, fruits, and flowers. PMID:26504578

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  20. Increased Risk of Insect Injury to Corn Following Rye Cover Crop.

    PubMed

    Dunbar, Mike W; O'Neal, Matthew E; Gassmann, Aaron J

    2016-08-01

    Decreased pest pressure is sometimes associated with more diverse agroecosystems, including the addition of a rye cover crop (Secale cereale L.). However, not all pests respond similarly to greater vegetational diversity. Polyphagous pests, such as true armyworm (Mythimna unipuncta Haworth), black cutworm (Agrotis ipsilon Hufnagel), and common stalk borer (Papaipema nebris Guenee), whose host range includes rye have the potential to cause injury to crops following a rye cover crop. The objectives of this study were to compare the abundance of early-season insect pests and injury to corn (Zea mays L.) from fields with and without a rye cover crop on commercial farms. Fields were sampled weekly to quantify adult and larval pests and feeding injury to corn plants from mid-April until corn reached V8 stage, during 2014 and 2015. Measurements within fields were collected along transects that extended perpendicularly from field edges into the interior of cornfields. Adult true armyworm and adult black cutworm were captured around all cornfields, but most lepidopteran larvae captured within cornfields were true armyworm and common stalk borer. Cornfields with a rye cover crop had significantly greater abundance of true armyworm and greater proportion of injured corn. Both true armyworm abundance and feeding injury were significantly greater in the interior of cornfields with rye. Common stalk borer abundance did not differ between cornfields with or without rye cover. Farmers planting corn following a rye cover crop should be aware of the potential for increased presence of true armyworm and for greater injury to corn. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    PubMed

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  2. Manifesting Destiny: A Land Education Analysis of Settler Colonialism in Jamestown, Virginia, USA

    ERIC Educational Resources Information Center

    McCoy, Kate

    2014-01-01

    Globally, colonization has been and continues to be enacted in the take-over of Indigenous land and the subsequent conversion of agriculture from diverse food and useful crops to large-scale monoculture and cash crops. This article uses a land education analysis to map the rise of the ideology and practices of Manifest Destiny in Virginia.…

  3. Analysis of molecular variability among the isolated of Verticillium dahliae from diverse host species based on florescene-based amplified fragment length polymorphism.

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae is a soil borne fungus and the primary causal agent of Verticillium wilt, which affects many crops worldwide. Many crops grown in the Salinas Valley (SV) of California, including strawberry and lettuce (Lactuca sativa), are susceptible to V. dahliae and severe outbreaks are comm...

  4. A Mesoamerican origin of cherimoya (Annona cherimola Mill.): Implications for the conservation of plant genetic resources.

    PubMed

    Larranaga, N; Albertazzi, F J; Fontecha, G; Palmieri, M; Rainer, H; van Zonneveld, M; Hormaza, J I

    2017-08-01

    Knowledge on the structure and distribution of genetic diversity is a key aspect to plan and execute an efficient conservation and utilization of the genetic resources of any crop as well as for determining historical demographic inferences. In this work, a large data set of 1,765 accessions of cherimoya (Annona cherimola Mill, Annonaceae), an underutilized fruit tree crop native to the Neotropics and used as a food source by pre-Columbian cultures, was collected from six different countries across the American continent and amplified with nine highly informative microsatellite markers. The structure analyses, fine representation of the genetic diversity and an ABC approach suggest a Mesoamerican origin of the crop, contrary to previous reports, with clear implications for the dispersion of plant germplasm between Central and South America in pre-Columbian times. These results together with the potential distribution of the species in a climatic change context using two different climate models provide new insights for the history and conservation of extant genetic resources of cherimoya that can be applied to other currently underutilized woody perennial crops. © 2017 John Wiley & Sons Ltd.

  5. Managing Communication within Virtual Intercultural Teams.

    ERIC Educational Resources Information Center

    Grosse, Christine Uber

    2002-01-01

    Suggests that business students need to be prepared to manage the communication of intercultural teams. Discusses strategies for success such as: developing a network of good relationships built on trust and understanding; showing respect for other cultures and languages; and understanding how diversity strengthens the team. (SG)

  6. Nitrogen and crop rotation as drivers of the maize-associated soil microbiome

    USDA-ARS?s Scientific Manuscript database

    Microbes inhabit an exciting and interesting array of environments, exhibiting striking amounts of diversity and variation. The soil microbiome is one of the most dynamic and diverse microbial environments, where bacteria, fungi, and plant roots all interact to shape food networks and drive ecosyste...

  7. Soil fungal community and fuctional diversity assessments of agroecosystems in the Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    Soil fungi perform a variety of ecosystem functions that are crucial to maintaining agroecosystem sustainability including aggregate stability and soil carbon storage. The purpose of this study was to compare soil fungal communities and functional diversity in integrated crop and livestock (ICL) sy...

  8. Distribution of mycotoxin biosynthetic genes in 200 Fusarium genomes

    USDA-ARS?s Scientific Manuscript database

    Fusarium is a species-rich genus of fungi that causes disease on most crop plants and produces diverse secondary metabolites (SMs), including some of the mycotoxins of greatest concern to food and feed safety. To determine the potential SM diversity within Fusarium as well as the distribution and ev...

  9. Structure and Composition of the Grain

    USDA-ARS?s Scientific Manuscript database

    As a crop with a wide range of genetic diversity, sorghum grain composition and structure can vary widely. Such variability can be of great benefit in supplying a diversity of uses but can also be a negative when viewed from the standpoint of uniformity. Despite sharing similarities to other cereals...

  10. Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands.

    PubMed

    Schneider, Gudrun; Krauss, Jochen; Boetzl, Fabian A; Fritze, Michael-Andreas; Steffan-Dewenter, Ingolf

    2016-12-01

    Semi-natural grasslands in Europe are insect biodiversity hotspots and important source habitats delivering ecosystem services to adjacent agricultural land by species spillover. However, this spillover might also occur in the opposite direction, affecting the diversity of semi-natural grasslands. This opposite spillover has got little attention in scientific literature even though generalist species penetrating into the grasslands can affect local biotic interactions, community composition and the conservation value of grassland habitats. In this study, we examined spillover effects from two different adjacent habitat types on carabid beetle assemblages in 20 semi-natural calcareous grasslands. The grasslands were either adjacent to a cereal crop field or to a coniferous forest. We found distinct differences in carabid beetle assemblages in calcareous grasslands depending on adjacent habitat type. Species richness and activity density were higher, but the evenness was lower in calcareous grasslands adjacent to crop fields compared with calcareous grasslands adjacent to coniferous forests. Further, we found a strong spillover of carabid beetles from adjacent crop fields after crop harvest, which may result in transiently increased predation pressure and resource competition in calcareous grasslands. Our results highlight that species composition, diversity and presumably ecosystem functions within semi-natural habitats are affected by the type and management of surrounding habitats. This needs to be considered by nature conservation measures, which aim to protect the unique insect communities of semi-natural European grasslands.

  11. Increasing homogeneity in global food supplies and the implications for food security

    PubMed Central

    Khoury, Colin K.; Bjorkman, Anne D.; Dempewolf, Hannes; Ramirez-Villegas, Julian; Guarino, Luigi; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2014-01-01

    The narrowing of diversity in crop species contributing to the world’s food supplies has been considered a potential threat to food security. However, changes in this diversity have not been quantified globally. We assess trends over the past 50 y in the richness, abundance, and composition of crop species in national food supplies worldwide. Over this period, national per capita food supplies expanded in total quantities of food calories, protein, fat, and weight, with increased proportions of those quantities sourcing from energy-dense foods. At the same time the number of measured crop commodities contributing to national food supplies increased, the relative contribution of these commodities within these supplies became more even, and the dominance of the most significant commodities decreased. As a consequence, national food supplies worldwide became more similar in composition, correlated particularly with an increased supply of a number of globally important cereal and oil crops, and a decline of other cereal, oil, and starchy root species. The increase in homogeneity worldwide portends the establishment of a global standard food supply, which is relatively species-rich in regard to measured crops at the national level, but species-poor globally. These changes in food supplies heighten interdependence among countries in regard to availability and access to these food sources and the genetic resources supporting their production, and give further urgency to nutrition development priorities aimed at bolstering food security. PMID:24591623

  12. Enhancing the conservation of crop wild relatives in England.

    PubMed

    Fielder, Hannah; Brotherton, Peter; Hosking, Julian; Hopkins, John J; Ford-Lloyd, Brian; Maxted, Nigel

    2015-01-01

    Humans require resilient, rapidly renewable and sustainable supplies of food and many other plant-derived supplies. However, the combined effects of climate change and population growth compromise the provision of these supplies particularly in respect to global food security. Crop wild relatives (CWR) contain higher genetic diversity than crops and harbour traits that can improve crop resilience and yield through plant breeding. However, in common with most countries, CWR are poorly conserved in England. There is currently no provision for long-term CWR conservation in situ, and comprehensive ex situ collection and storage of CWR is also lacking. However, there is a commitment to achieve their conservation in England's Biodiversity Strategy and the UK has international commitments to do so as part of the Global Plant Conservation Strategy. Here, we identify a series of measures that could enhance the conservation of English CWR, thereby supporting the achievement of these national and international objectives. We provide an inventory of 148 priority English CWR, highlight hotspots of CWR diversity in sites including The Lizard Peninsula, the Dorset coast and Cambridgeshire and suggest appropriate sites for the establishment of a complementary network of genetic reserves. We also identify individual in situ and ex situ priorities for each English CWR. Based on these analyses, we make recommendations whose implementation could provide effective, long-term conservation of English CWR whilst facilitating their use in crop improvement.

  13. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations.

    PubMed

    Dias, Teresa; Dukes, Angela; Antunes, Pedro M

    2015-02-01

    There is an urgent need for novel agronomic improvements capable of boosting crop yields while alleviating environmental impacts. One such approach is the use of optimized crop rotations. However, a set of measurements that can serve as guiding principles for the design of crop rotations is lacking. Crop rotations take advantage of niche complementarity, enabling the optimization of nutrient use and the reduction of pests and specialist pathogen loads. However, despite the recognized importance of plant-soil microbial interactions and feedbacks for crop yield and soil health, this is ignored in the selection and management of crops for rotation systems. We review the literature and propose criteria for the design of crop rotations focusing on the roles of soil biota and feedback on crop productivity and soil health. We consider that identifying specific key organisms or consortia capable of influencing plant productivity is more important as a predictor of soil health and crop productivity than assessing the overall soil microbial diversity per se. As such, we propose that setting up soil feedback studies and applying genetic sequencing tools towards the development of soil biotic community databases has a strong potential to enable the establishment of improved soil health indicators for optimized crop rotations. © 2014 Society of Chemical Industry.

  14. Microsatellite markers for the yam bean Pachyrhizus (Fabaceae)1

    PubMed Central

    Delêtre, Marc; Soengas, Beatriz; Utge, José; Lambourdière, Josie; Sørensen, Marten

    2013-01-01

    • Premise of the study: Microsatellite loci were developed for the understudied root crop yam bean (Pachyrhizus spp.) to investigate intraspecific diversity and interspecific relationships within the genus Pachyrhizus. • Methods and Results: Seventeen nuclear simple sequence repeat (SSR) markers with perfect di- and trinucleotide repeats were developed from 454 pyrosequencing of SSR-enriched genomic libraries. Loci were characterized in P. ahipa and wild and cultivated populations of four closely related species. All loci successfully cross-amplified and showed high levels of polymorphism, with number of alleles ranging from three to 12 and expected heterozygosity ranging from 0.095 to 0.831 across the genus. • Conclusions: By enabling rapid assessment of genetic diversity in three native neotropical crops, P. ahipa, P. erosus, and P. tuberosus, and two wild relatives, P. ferrugineus and P. panamensis, these markers will allow exploration of the genetic diversity and evolutionary history of the genus Pachyrhizus. PMID:25202568

  15. Supporting diverse data providers in the open water data initiative: Communicating water data quality and fitness of use

    USGS Publications Warehouse

    Larsen, Sara; Hamilton, Stuart; Lucido, Jessica M.; Garner, Bradley D.; Young, Dwane

    2016-01-01

    Shared, trusted, timely data are essential elements for the cooperation needed to optimize economic, ecologic, and public safety concerns related to water. The Open Water Data Initiative (OWDI) will provide a fully scalable platform that can support a wide variety of data from many diverse providers. Many of these will be larger, well-established, and trusted agencies with a history of providing well-documented, standardized, and archive-ready products. However, some potential partners may be smaller, distributed, and relatively unknown or untested as data providers. The data these partners will provide are valuable and can be used to fill in many data gaps, but can also be variable in quality or supplied in nonstandardized formats. They may also reflect the smaller partners' variable budgets and missions, be intermittent, or of unknown provenance. A challenge for the OWDI will be to convey the quality and the contextual “fitness” of data from providers other than the most trusted brands. This article reviews past and current methods for documenting data quality. Three case studies are provided that describe processes and pathways for effective data-sharing and publication initiatives. They also illustrate how partners may work together to find a metadata reporting threshold that encourages participation while maintaining high data integrity. And lastly, potential governance is proposed that may assist smaller partners with short- and long-term participation in the OWDI.

  16. Uncertainty Analysis of Coupled Socioeconomic-Cropping Models: Building Confidence in Climate Change Decision-Support Tools for Local Stakeholders

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Rojas, M.; Adamowski, J. F.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    While cropping models represent the biophysical aspects of agricultural systems, system dynamics modelling offers the possibility of representing the socioeconomic (including social and cultural) aspects of these systems. The two types of models can then be coupled in order to include the socioeconomic dimensions of climate change adaptation in the predictions of cropping models.We develop a dynamically coupled socioeconomic-biophysical model of agricultural production and its repercussions on food security in two case studies from Guatemala (a market-based, intensive agricultural system and a low-input, subsistence crop-based system). Through the specification of the climate inputs to the cropping model, the impacts of climate change on the entire system can be analysed, and the participatory nature of the system dynamics model-building process, in which stakeholders from NGOs to local governmental extension workers were included, helps ensure local trust in and use of the model.However, the analysis of climate variability's impacts on agroecosystems includes uncertainty, especially in the case of joint physical-socioeconomic modelling, and the explicit representation of this uncertainty in the participatory development of the models is important to ensure appropriate use of the models by the end users. In addition, standard model calibration, validation, and uncertainty interval estimation techniques used for physically-based models are impractical in the case of socioeconomic modelling. We present a methodology for the calibration and uncertainty analysis of coupled biophysical (cropping) and system dynamics (socioeconomic) agricultural models, using survey data and expert input to calibrate and evaluate the uncertainty of the system dynamics as well as of the overall coupled model. This approach offers an important tool for local decision makers to evaluate the potential impacts of climate change and their feedbacks through the associated socioeconomic system.

  17. Weeds, as ancillary hosts, pose disproportionate risk for virulent pathogen transfer to crops.

    PubMed

    Linde, Celeste C; Smith, Leon M; Peakall, Rod

    2016-05-12

    The outcome of the arms race between hosts and pathogens depends heavily on the interactions between their genetic diversity, population size and transmission ability. Theory predicts that genetically diverse hosts will select for higher virulence and more diverse pathogens than hosts with low genetic diversity. Cultivated hosts typically have lower genetic diversity and thus small effective population sizes, but can potentially harbour large pathogen population sizes. On the other hand, hosts, such as weeds, which are genetically more diverse and thus have larger effective population sizes, usually harbour smaller pathogen population sizes. Large pathogen population sizes may lead to more opportunities for mutation and hence more diverse pathogens. Here we test the predictions that pathogen neutral genetic diversity will increase with large pathogen population sizes and host diversity, whereas diversity under selection will increase with host diversity. We assessed and compared the diversity of a fungal pathogen, Rhynchosporium commune, on weedy barley grass (which have a large effective population size) and cultivated barley (low genetic diversity) using microsatellites, effector locus nip1 diversity and pathogen aggressiveness in order to assess the importance of weeds in the evolution of the neutral and selected diversity of pathogens. The findings indicated that the large barley acreage and low host diversity maintains higher pathogen neutral genetic diversity and lower linkage disequilibrium, while the weed maintains more pathotypes and higher virulence diversity at nip1. Strong evidence for more pathogen migration from barley grass to barley suggests transmission of virulence from barley grass to barley is common. Pathogen census population size is a better predictor for neutral genetic diversity than host diversity. Despite maintaining a smaller pathogen census population size, barley grass acts as an important ancillary host to R. commune, harbouring highly virulent pathogen types capable of transmission to barley. Management of disease on crops must therefore include management of weedy ancillary hosts, which may harbour disproportionate supplies of virulent pathogen strains.

  18. Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates

    USGS Publications Warehouse

    Maloney, K.O.; Munguia, P.; Mitchell, R.M.

    2011-01-01

    Measures of species diversity are valuable tools for assessing ecosystem health. However, most assessments have addressed individual sites or regional taxon pools, with few comparisons of differences in assemblage composition within or among regions. We examined the effects of anthropogenic disturbance on local richness (?? diversity) and species turnover (?? diversity) of benthic macroinvertebrates in small streams within and between 2 ecoregions (Northern Piedmont vs Southeastern Plains ecoregions) of the Patuxent River basin (Maryland, USA). Regional species pools did not differ between ecoregions (Piedmont = 166 taxa, Plains = 162 taxa); however, local richness was lower in the Plains (mean = 17.4 taxa/stream) compared to the Piedmont (mean = 22.2 taxa/stream). When streams were categorized into disturbance classes (low, medium, high), local richness did not differ among categories for either region. However, at the entire Patuxent scale, local richness tended to decrease with % impervious cover in a watershed. Variation in species composition, analyzed with nonmetric multidimensional scaling (nMDS), differed significantly between Piedmont and Plains streams, and Plains streams had higher ?? diversity than Piedmont streams. When partitioned by disturbance category and region, ?? diversity differed only between the low-disturbance sites (Plains > Piedmont). Relationships between ?? diversity and environmental variables varied by region. ?? diversity was weakly negatively related to % row-crop cover in a watershed at the entire Patuxent scale. For the Piedmont region, ?? diversity tended to decrease with % forest, % pasture, and % row-crop cover in a watershed. Such negative relationships between ?? diversity and landuse variables indicate a possible homogenization of the assemblage. The incongruence between diversity measures and composition measures, together with differing effects of anthropogenic land use on ?? diversity in the 2 regions, emphasizes the need to incorporate both ?? and ?? diversity and regional environmental factors in conservation/land management studies. ?? 2011 The North American Benthological Society.

  19. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities

    PubMed Central

    Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695

  20. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    PubMed

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  1. Organic vs. organic - soil arthropods as bioindicators of ecological sustainability in greenhouse system experiment under Mediterranean conditions.

    PubMed

    Madzaric, Suzana; Ceglie, F G; Depalo, L; Al Bitar, L; Mimiola, G; Tittarelli, F; Burgio, G

    2017-11-23

    Organic greenhouse (OGH) production is characterized by different systems and agricultural practices with diverse environmental impact. Soil arthropods are widely used as bioindicators of ecological sustainability in open field studies, while there is a lack of research on organic production for protected systems. This study assessed the soil arthropod abundance and diversity over a 2-year crop rotation in three systems of OGH production in the Mediterranean. The systems under assessment differed in soil fertility management: SUBST - a simplified system of organic production, based on an input substitution approach (use of guano and organic liquid fertilizers), AGROCOM - soil fertility mainly based on compost application and agroecological services crops (ASC) cultivation (tailored use of cover crops) as part of crop rotation, and AGROMAN - animal manure and ASC cultivation as part of crop rotation. Monitoring of soil fauna was performed by using pitfall traps and seven taxa were considered: Carabidae, Staphylinidae, Araneae, Opiliones, Isopoda, Myriapoda, and Collembola. Results demonstrated high potential of ASC cultivation as a technique for beneficial soil arthropod conservation in OGH conditions. SUBST system was dominated by Collembola in all crops, while AGROMAN and AGROCOM had more balanced relative abundance of Isopoda, Staphylinidae, and Aranea. Opiliones and Myriapoda were more affected by season, while Carabidae were poorly represented in the whole monitoring period. Despite the fact that all three production systems are in accordance with the European Union regulation on organic farming, findings of this study displayed significant differences among them and confirmed the suitability of soil arthropods as bioindicators in protected systems of organic farming.

  2. Exploring the Influence of Smallholders' Perceptions Regarding Water Availability on Crop Choice and Water Allocation Through Socio-Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Kuil, L.; Evans, T.; McCord, P. F.; Salinas, J. L.; Blöschl, G.

    2018-04-01

    While it is known that farmers adopt different decision-making behaviors to cope with stresses, it remains challenging to capture this diversity in formal model frameworks that are used to advance theory and inform policy. Guided by cognitive theory and the theory of bounded rationality, this research develops a novel, socio-hydrological model framework that can explore how a farmer's perception of water availability impacts crop choice and water allocation. The model is informed by a rich empirical data set at the household level collected during 2013 in Kenya's Upper Ewaso Ng'iro basin that shows that the crop type cultivated is correlated with water availability. The model is able to simulate this pattern and shows that near-optimal or "satisficing" crop patterns can emerge also when farmers were to make use of simple decision rules and have diverse perceptions on water availability. By focusing on farmer decision making it also captures the rebound effect, i.e., as additional water becomes available through the improvement of crop efficiencies it will be reallocated on the farm instead of flowing downstream, as a farmer will adjust his (her) water allocation and crop pattern to the new water conditions. This study is valuable as it is consistent with the theory of bounded rationality, and thus offers an alternative, descriptive model in addition to normative models. The framework can be used to understand the potential impact of climate change on the socio-hydrological system, to simulate and test various assumptions regarding farmer behavior and to evaluate policy interventions.

  3. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress.

    PubMed

    Khan, Sardar-Ali; Li, Meng-Zhan; Wang, Suo-Min; Yin, Hong-Ju

    2018-05-31

    Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.

  4. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide.

    PubMed

    Wang, Wei; Xia, Hui; Yang, Xiao; Xu, Ting; Si, Hong Jiang; Cai, Xing Xing; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2014-04-01

    Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitness effects of transgenic over-expression of a native 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) gene developed to confer glyphosate resistance in rice. Controlling for genetic background, we examined physiological traits and field performance of crop-weed hybrid lineages that segregated for the presence or absence of this novel epsps transgene. Surprisingly, we found that transgenic F2 crop-weed hybrids produced 48-125% more seeds per plant than nontransgenic controls in monoculture- and mixed-planting designs without glyphosate application. Transgenic plants also had greater EPSPS protein levels, tryptophan concentrations, photosynthetic rates, and per cent seed germination compared with nontransgenic controls. Our findings suggest that over-expression of a native rice epsps gene can lead to fitness advantages, even without exposure to glyphosate. We hypothesize that over-expressed epsps may be useful to breeders and, if deployed, could result in fitness benefits in weedy relatives following transgene introgression. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy.

    PubMed

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert; Branca, Ferdinando; Bagger Jørgensen, Rikke

    2014-12-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed. © 2015 The Authors.

  6. Genetic Diversity and Population Structure of Broomcorn Millet (Panicum miliaceum L.) Cultivars and Landraces in China Based on Microsatellite Markers

    PubMed Central

    Liu, Minxuan; Xu, Yue; He, Jihong; Zhang, Shuang; Wang, Yinyue; Lu, Ping

    2016-01-01

    Broomcorn millet (Panicum miliaceum L.), one of the first domesticated crops, has been grown in Northern China for at least 10,000 years. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, we analyzed the genetic diversity of 88 accessions of broomcorn millet collected from various provinces of China. Amplification with 67 simple sequence repeat (SSR) primers revealed moderate levels of diversity in the investigated accessions. A total of 179 alleles were detected, with an average of 2.7 alleles per locus. Polymorphism information content and expected heterozygosity ranged from 0.043 to 0.729 (mean = 0.376) and 0.045 to 0.771 (mean = 0.445), respectively. Cluster analysis based on the unweighted pair group method of mathematical averages separated the 88 accessions into four groups at a genetic similarity level of 0.633. A genetic structure assay indicated a close correlation between geographical regions and genetic diversity. The uncovered information will be valuable for defining gene pools and developing breeding programs for broomcorn millet. Furthermore, the millet-specific SSR markers developed in this study should serve as useful tools for assessment of genetic diversity and elucidation of population structure in broomcorn millet. PMID:26985894

  7. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives.

    PubMed

    Govindaraj, M; Vetriventhan, M; Srinivasan, M

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The pros and cons of the basic and advanced statistical tools available for measuring genetic diversity are briefly discussed and their source links (mostly) were provided to get easy access; thus, it improves the understanding of tools and its practical applicability to the researchers.

  8. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives

    PubMed Central

    Govindaraj, M.; Vetriventhan, M.; Srinivasan, M.

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The pros and cons of the basic and advanced statistical tools available for measuring genetic diversity are briefly discussed and their source links (mostly) were provided to get easy access; thus, it improves the understanding of tools and its practical applicability to the researchers. PMID:25874132

  9. Diversity pattern in Sesamum mutants selected for a semi-arid cropping system.

    PubMed

    Murty, B R; Oropeza, F

    1989-02-01

    Due to the complex requirements of moisture stress, substantial genetic diversity with a wide array of character combinations and effective simultaneous selection for several variables is necessary for improving the productivity and adaptation of a component crop in order for it to fit into a cropping system under semi-arid tropical conditions. Sesamum indicum L. is grown in Venezuela after rice/sorghum/or maize under such conditions. A mutation breeding program was undertaken using six locally adapted varieties to develop genotypes suitable for the above system. The diversity pattern for nine variables was assessed by multivariate analysis in 301 M4 progenies. Analysis of the characteristic roots and principal components in three methods of selection, i.e., M2 bulks (A), individual plant selection throughout (B), and selection in M3 for single variable (C), revealed differences in the pattern of variation between varieties, selection methods, and varieties x methods interactions. Method B was superior to the others and gave 17 of the 21 best M5 progenies. 'Piritu' and 'CF' varieties yielded the most productive progenies in M5 and M6. Diversity was large and selection was effective for such developmental traits as earliness and synchrony, combined with multiple disease resistance, which could be related to their importance by multivariate analyses. Considerable differences in the variety of character combinations among the high yielding. M5 progenies of 'CF' and 'Piritu' suggested possible further yield improvement. The superior response of 'Piritu' and 'CF' over other varieties in yield and adaptation was due to major changes in plant type and character associations. Multilocation testing of M5 generations revealed that the mutant progenies had a 40%-100% yield superiority over the parents; this was combined with earliness, synchrony, and multiple disease resistance, and was confirmed in the M6 generation grown on a commercial scale. This study showed that multivariate analysis is an effective tool for assessing diversity patterns, choice of appropriate variety, and selection methodology in order to make rapid progress in meeting the complex requirements of semi-arid cropping systems.

  10. Pollinator communities in strawberry crops - variation at multiple spatial scales.

    PubMed

    Ahrenfeldt, E J; Klatt, B K; Arildsen, J; Trandem, N; Andersson, G K S; Tscharntke, T; Smith, H G; Sigsgaard, L

    2015-08-01

    Predicting potential pollination services of wild bees in crops requires knowledge of their spatial distribution within fields. Field margins can serve as nesting and foraging habitats for wild bees and can be a source of pollinators. Regional differences in pollinator community composition may affect this spill-over of bees. We studied how regional and local differences affect the spatial distribution of wild bee species richness, activity-density and body size in crop fields. We sampled bees both from the field centre and at two different types of semi-natural field margins, grass strips and hedges, in 12 strawberry fields. The fields were distributed over four regions in Northern Europe, representing an almost 1100 km long north-south gradient. Even over this gradient, daytime temperatures during sampling did not differ significantly between regions and did therefore probably not impact bee activity. Bee species richness was higher in field margins compared with field centres independent of field size. However, there was no difference between centre and margin in body-size or activity-density. In contrast, bee activity-density increased towards the southern regions, whereas the mean body size increased towards the north. In conclusion, our study revealed a general pattern across European regions of bee diversity, but not activity-density, declining towards the field interior which suggests that the benefits of functional diversity of pollinators may be difficult to achieve through spill-over effects from margins to crop. We also identified dissimilar regional patterns in bee diversity and activity-density, which should be taken into account in conservation management.

  11. Inter- and intra-guild interactions related to aphids in nettle (Urtica dioica L.) strips closed to field crops.

    PubMed

    Alhmedi, A; Haubruge, E; Bodson, B; Francis, F

    2006-01-01

    A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species and the differential pesticide application (treated plot and control). Insects were visually observed every week during all the cultivation season. Two main families of aphidophagous predators were found in all field crops and nettle, the Coccinellidae and Syrphidae. The diversity of the aphidophagous predators was shown to be higher on nettle than in field crops, particularly the Chrysopidae, the Anthocoridae and the Miridae. However, a striking difference of ladybird abundance was observed according to the aphid host plant. In one side, Coccinella septempunctata was much more abundant on Acyrthosiphon pisum infested green pea than on the other host plant species. At the opposite, higher occurrence of Harmonia axyridis was observed on the aphid infested nettle plants than on the crop plants. In particular, none of H. axyridis was found in wheat crop. Also, more than only a significant positive correlation between predator and aphid abundance, specialised relations between particular aphid species and some so-called generalist predators was determined in the fields. Finally, intraguild interactions between the aphidophagous predators was assessed and shown that only a significant negative correlation between Episyrphus balteatus and H. axyridis related to the nettle aphid, Micrlophium carnosum, was observed. The relative distribution of the ladybirds, namely C. septempunctata and H. axyridis according to the host plant, nettle strips and crop plots was discussed in relation to integrated pest management approach.

  12. Synergistic effects of non-Apis bees and honey bees for pollination services

    PubMed Central

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-01-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner. PMID:23303545

  13. Morphological and Genetic Diversity of Rhizobia Nodulating Cowpea (Vigna unguiculata L.) from Agricultural Soils of Lower Eastern Kenya.

    PubMed

    Ondieki, Damaris K; Nyaboga, Evans N; Wagacha, John M; Mwaura, Francis B

    2017-01-01

    Limited nitrogen (N) content in the soil is a major challenge to sustainable and high crop production in many developing countries. The nitrogen fixing symbiosis of legumes with rhizobia plays an important role in supplying sufficient N for legumes and subsequent nonleguminous crops. To identify rhizobia strains which are suitable for bioinoculant production, characterization of rhizobia is a prerequisite. The objective of this study was to assess the morphological and genetic diversity of rhizobia that nodulates cowpea in agricultural soils of lower eastern Kenya. Twenty-eight rhizobia isolates were recovered from soil samples collected from farmers' fields in Machakos, Makueni, and Kitui counties in lower eastern Kenya and characterized based on morphological characteristics. Thirteen representative isolates were selected and characterized using BOX repetitive element PCR fingerprinting. Based on the dendrogram generated from morphological characteristics, the test isolates were distributed into two major clusters at a similarity of 75%. Phylogenetic tree, based on BOX repetitive element PCR, grouped the isolates into two clusters at 90% similarity level. The clustering of the isolates did not show a relationship to the origin of soil samples, although the isolates were genetically diverse. This study is a prerequisite to the selection of suitable cowpea rhizobia to develop bioinoculants for sustainable crop production in Kenya.

  14. Genetic diversity of turmeric germplasm (Curcuma longa; Zingiberaceae) identified by microsatellite markers.

    PubMed

    Sigrist, M S; Pinheiro, J B; Filho, J A Azevedo; Zucchi, M I

    2011-03-09

    Turmeric (Curcuma longa) is a triploid, vegetatively propagated crop introduced early during the colonization of Brazil. Turmeric rhizomes are ground into a powder used as a natural dye in the food industry, although recent research suggests a greater potential for the development of drugs and cosmetics. In Brazil, little is known about the genetic variability available for crop improvement. We examined the genetic diversity among turmeric accessions from a Brazilian germplasm collection comprising 39 accessions collected from the States of Goiás, Mato Grosso do Sul, Minas Gerais, São Paulo, and Pará. For comparison, 18 additional genotypes were analyzed, including samples from India and Puerto Rico. Total DNA was extracted from lyophilized leaf tissue and genetic analysis was performed using 17 microsatellite markers (single-sequence repeats). Shannon-Weiner indexes ranged from 0.017 (Minas Gerais) to 0.316 (São Paulo). Analyses of molecular variance (AMOVA) demonstrated major differences between countries (63.4%) and that most of the genetic diversity in Brazil is found within states (75.3%). Genotypes from São Paulo State were the most divergent and potentially useful for crop improvement. Structure analysis indicated two main groups of accessions. These results can help target future collecting efforts for introduction of new materials needed to develop more productive and better adapted cultivars.

  15. Comparing crop rotations between organic and conventional farming.

    PubMed

    Barbieri, Pietro; Pellerin, Sylvain; Nesme, Thomas

    2017-10-23

    Cropland use activities are major drivers of global environmental changes and of farming system resilience. Rotating crops is a critical land-use driver, and a farmers' key strategy to control environmental stresses and crop performances. Evidence has accumulated that crop rotations have been dramatically simplified over the last 50 years. In contrast, organic farming stands as an alternative production way that promotes crop diversification. However, our understanding of crop rotations is surprisingly limited. In order to understand if organic farming would result in more diversified and multifunctional landscapes, we provide here a novel, systematic comparison of organic-to-conventional crop rotations at the global scale based on a meta-analysis of the scientific literature, paired with an independent analysis of organic-to-conventional land-use. We show that organic farming leads to differences in land-use compared to conventional: overall, crop rotations are 15% longer and result in higher diversity and evener crop species distribution. These changes are driven by a higher abundance of temporary fodders, catch and cover-crops, mostly to the detriment of cereals. We also highlighted differences in organic rotations between Europe and North-America, two leading regions for organic production. This increased complexity of organic crop rotations is likely to enhance ecosystem service provisioning to agroecosystems.

  16. Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger.

    PubMed

    Deu, Monique; Sagnard, F; Chantereau, J; Calatayud, C; Vigouroux, Y; Pham, J L; Mariac, C; Kapran, I; Mamadou, A; Gérard, B; Ndjeunga, J; Bezançon, G

    2010-05-01

    The dynamics of crop genetic diversity need to be assessed to draw up monitoring and conservation priorities. However, few surveys have been conducted in centres of diversity. Sub-Saharan Africa is the centre of origin of sorghum. Most Sahel countries have been faced with major human, environmental and social changes in recent decades, which are suspected to cause genetic erosion. Sorghum is the second staple cereal in Niger, a centre of diversity for this crop. Niger was submitted to recurrent drought period and to major social changes during these last decades. We report here on a spatio-temporal analysis of sorghum genetic diversity, conducted in 71 villages covering the rainfall gradient and range of agro-ecological conditions in Niger's agricultural areas. We used 28 microsatellite markers and applied spatial and genetic clustering methods to investigate change in genetic diversity over a 26-year period (1976-2003). Global genetic differentiation between the two collections was very low (F (st) = 0.0025). Most of the spatial clusters presented no major differentiation, as measured by F (st), and showed stability or an increase in allelic richness, except for two of them located in eastern Niger. The genetic clusters identified by Bayesian analysis did not show a major change between the two collections in the distribution of accessions between them or in their spatial location. These results suggest that farmers' management has globally preserved sorghum genetic diversity in Niger.

  17. Over-expression of FT1 in plum (Prunus domestica) results in phenotypes compatible with spaceflight: a potential new candidate crop for bioregenerative life support systems

    USDA-ARS?s Scientific Manuscript database

    Tree fruits (e.g., apples, plums, cherries) are appealing constituents of a crew menu for long-duration exploration missions (i.e., Mars), both in terms of their nutritive and menu diversity contributions. Although appealing, tree fruit species have long been precluded as candidate crops for use in...

  18. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability.

    PubMed

    Suárez Salazar, Juan Carlos; Ngo Bieng, Marie Ange; Melgarejo, Luz Marina; Di Rienzo, Julio A; Casanoves, Fernando

    2018-01-01

    We present a typology of cacao agroforest systems in Colombian Amazonia. These systems had yet to be described in the literature, especially their potential in terms of biodiversity conservation. The systems studied are located in a post-conflict area, and a deforestation front in Colombian Amazonia. Cacao cropping systems are of key importance in Colombia: cacao plays a prime role in post conflict resolution, as cacao is a legal crop to replace illegal crops; cacao agroforests are expected to be a sustainable practice, promoting forest-friendly land use. We worked in 50 x 2000 m2 agroforest plots, in Colombian Amazonia. A cluster analysis was used to build a typology based on 28 variables characterised in each plot, and related to diversity, composition, spatial structure and light availability for the cacao trees. We included variables related to light availability to evaluate the amount of transmitted radiation to the cacao trees in each type, and its suitability for cacao ecophysiological development. We identified 4 types of cacao agroforests based on differences concerning tree species diversity and the impact of canopy spatial structure on light availability for the cacao trees in the understorey. We found 127 tree species in the dataset, with some exclusive species in each type. We also found that 3 out of the 4 types identified displayed an erosion of tree species diversity. This reduction in shade tree species may have been linked to the desire to reduce shade, but we also found that all the types described were compatible with good ecophysiological development of the cacao trees. Cacao agroforest systems may actually be achieving biodiversity conservation goals in Colombian Amazonia. One challenging prospect will be to monitor and encourage the conservation of tree species diversity in cacao agroforest systems during the development of these cropping systems, as a form of forest-friendly management enhancing sustainable peace building in Colombia.

  19. Patterns of genomic and phenomic diversity in wine and table grapes

    USDA-ARS?s Scientific Manuscript database

    Grapes are one of the most economically and culturally important crops worldwide, and they have been bred for both winemaking and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table and wine grape accessions that belong to one...

  20. Assessing metabolomic and chemical diversity of a soybean lineage representing 35 years of breeding

    USDA-ARS?s Scientific Manuscript database

    Information on crop genotype- and phenotype-metabolite associations can be of value to trait development as well as to food security and safety. The unique study presented here assessed seed metabolomic and ionomic diversity in a soybean lineage representing ~35 years of breeding (launch years 1972-...

  1. Wide Variability in Seed Characteristics, Kernel Quality, and Zein Profiles Among Diverse Maize Inbreds, Landraces, and Teosinte

    USDA-ARS?s Scientific Manuscript database

    All crop species have been domesticated from their wild relatives, and geneticists are just now beginning to understand the genetic consequences of artificial (human) selection on agronomic traits that are relevant today. The major consequence is severe reduction in genetic diversity for genes unde...

  2. The New FARM Program: A Model for Supporting Diverse Emerging Farmers and Early-Career Extension Professionals

    ERIC Educational Resources Information Center

    Sirrine, J. R.; Eschbach, Cheryl L.; Lizotte, Erin; Rothwell, N. L.

    2016-01-01

    As early-career Extension educators challenged by societal, structural, agricultural, and fiscal trends, we designed a multiyear educational program to support the diverse needs of emerging specialty crop producers in northwest Michigan. This article presents outcomes of that program. We explore how Extension professionals can develop impactful…

  3. Diversity Arrays Technology (DArT) platform for genotyping and mapping in carrot (Daucus carota L.)

    USDA-ARS?s Scientific Manuscript database

    Carrot is one of the most important root vegetable crops grown worldwide on more than one million hectares. Its progenitor, wild Daucus carota, is a weed commonly occurring across continents in the temperate climatic zone. Diversity Array Technology (DArT) is a microarray-based molecular marker syst...

  4. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement

    USDA-ARS?s Scientific Manuscript database

    Human selection has reshaped crop genomes. Here we report an apple genome variation map generated through genome sequencing of 117 diverse accessions. A comprehensive model of apple speciation and domestication along the Silk Road was proposed based on evidence from diverse genomic analyses. Cultiva...

  5. Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers

    USDA-ARS?s Scientific Manuscript database

    Knowledge of germplasm diversity and relationships among elite breeding materials is fundamentally important in crop improvement. We genotyped 450 maize lines developed and/or widely used by CIMMYT breeding programs both in Kenya and Zimbabwe using 1065 SNP markers to (i) investigate population stru...

  6. Influence of long-term land application of class B biosolids on soil bacterial diversity

    USDA-ARS?s Scientific Manuscript database

    This project evaluated the influence of annual land applications of Class B biosolids on soil bacterial diversity monitored over a 20 year period. Each annual land application was followed by a cotton crop. The study was initiated in 1986 at the University of Arizona Marana Agricultural Center, 21 m...

  7. Patterns of genomic and phenomic diversity in wine and table grapes

    USDA-ARS?s Scientific Manuscript database

    Grapes are one of the most economically and culturally important crops worldwide and they have been bred for both winemaking and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table and wine grape cultivars that belong to one ...

  8. Utilization of SNP, SSR, and biochemical data to evaluate genetic and phenotypic diversity in the U.S. peanut germplasm collection.

    USDA-ARS?s Scientific Manuscript database

    Peanuts (Arachis hypogaea L.) are nutritious because their seeds typically contain high amounts of oil, protein, phytochemicals such as resveratrol, and antioxidants such as tocopherol and folic acid; therefore, they are an important oil seed crop worldwide. The genetic diversity and population stru...

  9. Short-Term Response of Soil Spiders to Cover-Crop Removal in an Organic Olive Orchard in a Mediterranean Setting

    PubMed Central

    Cárdenas, Manuel; Castro, Juan; Campos, Mercedes

    2012-01-01

    This study shows that disturbance caused by cover-crop removal (CCR) in an organic olive orchard affects ground-spider populations. The effect of CCR on various organic olive-orchard plots was assessed by monitoring the abundance and diversity of ground-dwelling spiders. Covered plots in the organic olive orchard were compared with uncovered plots where the covers had been removed mechanically. CCR positively affected the most abundant spider species Zodarion styliferum (Simon) (Araneae: Zodariidae) as well as other species of running spiders belonging to the families Gnaphosidae and Lycosidae. Over time, the two types of plots did not significantly differ in diversity or dominance. Similarly, no differences were detected between the study plots in terms of the distribution of individuals when a cluster-similarity analysis was performed. This lack of difference in diversity might be due to the spatial scale used in the study or climatology. Because of their general effects, CCR profoundly changed the abundance of spiders in the olive orchard, but with no clear impact on spider diversity. PMID:22938154

  10. Importance of rhizobia in Agriculture: potential of the commercial inoculants and native strains for improving legume yields in different land-use systems

    NASA Astrophysics Data System (ADS)

    Lesueur, D.; Atieno, M.; Mathu, S.; Herrmann, L.

    2012-04-01

    Legumes play an important role in the traditional diets of many regions throughout the world because they provide a multitude of benefits to both the soil and other crops grown in combination with them or following them in several cropping systems. The ability of legumes to fix atmospheric nitrogen in association with rhizobia gives them the capacity to grow in very degraded soils. But do we have to systematically inoculate legumes? For example our results suggested that the systematic inoculation of both cowpea and green gram in Kenya with commercial inoculants to improve yields is not really justified, native strains performing better than inoculated strains. But when native rhizobia nodulating legumes are not naturally present, application of rhizobial inoculants is very commonly used. Our results showed that the utilization of effective good-quality rhizobial inoculants by farmers have a real potential to improve legume yields in unfertile soils requesting high applications of mineral fertilizers. For example an effective soybean commercial inoculants was tested in different locations in Kenya (in about 150 farms in 3 mandate areas presenting different soil characteristics and environmental conditions). Application of the rhizobial inoculant significantly increased the soybean yields in all mandate areas (about 75% of the farms). Nodule occupancy analysis showed that a high number of nodules occupied by the inoculated strain did not obviously lead to an increase of soybean production. Soil factors (pH, P, C, N…) seemed to affect the inoculant efficiency whether the strain is occupying the nodules or not. Our statistic analysis showed that soil pH significantly affected nodulation and yield, though the effect was variable depending on the region. We concluded that the competitiveness of rhizobial strains might not be the main factor explaining the effect (or lack of) of legumes inoculation in the field. Another study was aiming to assess if several factors such as cropping systems, N fertilization and application of crop residues affect the genetic diversity of native strains of rhizobia nodulating soybean in Kenya without any inoculation. Results showed that nodulation was not significantly affected by the different factors except N fertilization, regardless the season. Nodule occupancy revealed only 3 main profiles representing 93.6% and 92.5% of all the RFLP profiles obtained from 2008 and 2009 nodules respectively. This suggested a low diversity of native rhizobial strains capable to nodulate the promiscuous variety. The cropping system, Nitrogen and Residue applications didn't increase the diversity of the rhizobia but results indicated an effect on the distribution of the 3 profiles within the nodules of the plants. Within same treatments, significant differences were found between the two seasons in term of strains occupying the nodules. It could be explained by the shorter rainfall received in 2008 compared to 2009. Results suggest that cropping systems and both N and crop residues applications affect more specifically plant growth and grain yields than the diversity of the native rhizobia nodulating promiscuous soybean variety. Our work shows how diverse are the factors influencing the success of the field rhizobial inoculation of legumes.

  11. Intraspecific genetic diversity and composition modify species-level diversity-productivity relationships.

    PubMed

    Schöb, Christian; Kerle, Sarah; Karley, Alison J; Morcillo, Luna; Pakeman, Robin J; Newton, Adrian C; Brooker, Rob W

    2015-01-01

    Biodiversity regulates ecosystem functions such as productivity, and experimental studies of species mixtures have revealed selection and complementarity effects driving these responses. However, the impacts of intraspecific genotypic diversity in these studies are unknown, despite it forming a substantial part of the biodiversity. In a glasshouse experiment we constructed plant communities with different levels of barley (Hordeum vulgare) genotype and weed species diversity and assessed their relative biodiversity effects through additive partitioning into selection and complementarity effects. Barley genotype diversity had weak positive effects on aboveground biomass through complementarity effects, whereas weed species diversity increased biomass predominantly through selection effects. When combined, increasing genotype diversity of barley tended to dilute the selection effect of weeds. We interpret these different effects of barley genotype and weed species diversity as the consequence of small vs large trait variation associated with intraspecific barley diversity and interspecific weed diversity, respectively. The different effects of intra- vs interspecific diversity highlight the underestimated and overlooked role of genetic diversity for ecosystem functioning. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  12. Higher agrobiodiversity is associated with improved dietary diversity, but not child anthropometric status, of Mayan Achí people of Guatemala.

    PubMed

    Luna-González, Diana V; Sørensen, Marten

    2018-04-03

    Child undernutrition remains one of the greatest challenges for public health nutrition in rural areas in developing countries. Interventions aiming to increase and conserve agrobiodiversity seem to be promising alternatives to improve child nutrition. However, the existing literature on these interventions is not conclusive about their effectiveness in combating child undernutrition. We tested the hypothesis that 'higher agrobiodiversity is associated with greater dietary diversity and better anthropometric status' in rural Guatemala.Design/Setting/SubjectsIn the summer of 2016, we conducted a cross-sectional study with a sample of 154 children (6-60 months). We conducted dietary recalls and structured interviews, measured children's weight and height, and visited food production systems (Milpas, home gardens, coffee plantations). Crop species richness, nutritional functional diversity, dietary diversity scores and anthropometric status were calculated. Higher food self-sufficiency, nutritional functional diversity and dietary diversity scores were positively correlated with higher crop and animal species richness. Contrarily, remoteness to the local market was negatively correlated with dietary diversity scores. However, higher dietary diversity scores were not correlated with better child anthropometric status. Better child anthropometric status was positively correlated with improved sanitary conditions and maternal education; and negatively correlated with large household size and frequent child morbidity. Agricultural diversification could diversify diets, increase nutrient availability and improve child anthropometry. However, these interventions need to be accompanied by sanitation improvements, family planning, nutritional education and women's empowerment to strengthen their positive effect on diet and nutrition.

  13. 26 CFR 1.401-2 - Impossibility of diversion under the trust instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... thereafter before the satisfaction of all liabilities to employees or their beneficiaries covered by the... not solely designed for the proper satisfaction of all liabilities to employees or their beneficiaries... phrase “prior to the satisfaction of all liabilities with respect to employees and their beneficiaries...

  14. A Multiperspective Analysis on Developing and Maintaining Trust in Senior Student Affairs Leadership

    ERIC Educational Resources Information Center

    Ruthkosky, Philip J.

    2013-01-01

    This study examines senior student affairs leadership through the diverse lenses of subordinates, administrative peers, presidents, and senior student affairs officers (SSAOs). Guided by an interpretive paradigm, a qualitative methodology was employed consisting of a six-case comparative analysis and grounded theory approach. The findings provide…

  15. School Leader Relationships: The Need for Explicit Training on Rapport, Trust, and Communication

    ERIC Educational Resources Information Center

    Lasater, Kara

    2016-01-01

    An important aspect of school leadership is relationship development, but developing meaningful relationships as a school leader is challenging. School leader relationships are challenged by diverse stakeholder groups, varied contexts, and difficult situations. The complex nature of school leader relationships necessitates explicit training for…

  16. Using Personal Narratives as a Pedagogical Tool: Empowering Students through Stories.

    ERIC Educational Resources Information Center

    Burk, Nanci M.

    Creating an empowering and positive classroom environment requires focusing on the processes of developing trust in self and others, participation and communication in the classroom. Establishing a classroom that accommodates diverse students who have varied backgrounds, interests, and preferences poses a challenging situation for university…

  17. The Family Liaison Position in High-Poverty, Urban Schools

    ERIC Educational Resources Information Center

    Dretzke, Beverly J.; Rickers, Susan R.

    2016-01-01

    This study examined the roles and responsibilities of family liaisons working in urban schools with enrollments characterized by high poverty, high mobility, and ethnic diversity. Results indicated that the major responsibilities of the liaisons were creating a trusting and welcoming environment, facilitating parent involvement in the school,…

  18. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances.

    PubMed

    Zhou, Xingang; Wang, Zhilin; Jia, Huiting; Li, Li; Wu, Fengzhi

    2018-01-01

    Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA) system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA , nirS , and nirK genes. Results showed that 1-2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity ( P < 0.05). Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile ( P < 0.001). At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria , Planctomycetes , and Cyanobacteria , the first cropping of JA with Actinobacteria , the second cropping of JA with Acidobacteria , Armatimonadetes , Gemmatimonadetes , and Proteobacteria . At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO terms nitrate reductase and nitrite reductase. The abundances of amoA genes decreased while nirK increased in the third cropping of JA, nirS continuously increased in the second and third cropping of JA ( P < 0.05). Redundancy analysis and Mantel test found that soil organic carbon and Olsen phosphorus contents played important roles in shaping soil bacterial communities. Overall, our results revealed that continuous monocropping of JA changed soil bacterial community composition and its functional potentials.

  19. Importance of pollinators in changing landscapes for world crops

    PubMed Central

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2006-01-01

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale. PMID:17164193

  20. Importance of pollinators in changing landscapes for world crops.

    PubMed

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2007-02-07

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

  1. Differentiated transcriptional signatures in the maize landraces of Chiapas, Mexico.

    PubMed

    Kost, Matthew A; Perales, Hugo R; Wijeratne, Saranga; Wijeratne, Asela J; Stockinger, Eric; Mercer, Kristin L

    2017-09-08

    Landrace farmers are the keepers of crops locally adapted to the environments where they are cultivated. Patterns of diversity across the genome can provide signals of past evolution in the face of abiotic and biotic change. Understanding this rich genetic resource is imperative especially since diversity can provide agricultural security as climate continues to shift. Here we employ RNA sequencing (RNA-seq) to understand the role that conditions that vary across a landscape may have played in shaping genetic diversity in the maize landraces of Chiapas, Mexico. We collected landraces from three distinct elevational zones and planted them in a midland common garden. Early season leaf tissue was collected for RNA-seq and we performed weighted gene co-expression network analysis (WGCNA). We then used association analysis between landrace co-expression module expression values and environmental parameters of landrace origin to elucidate genes and gene networks potentially shaped by environmental factors along our study gradient. Elevation of landrace origin affected the transcriptome profiles. Two co-expression modules were highly correlated with temperature parameters of landrace origin and queries into their 'hub' genes suggested that temperature may have led to differentiation among landraces in hormone biosynthesis/signaling and abiotic and biotic stress responses. We identified several 'hub' transcription factors and kinases as candidates for the regulation of these responses. These findings indicate that natural selection may influence the transcriptomes of crop landraces along an elevational gradient in a major diversity center, and provide a foundation for exploring the genetic basis of local adaptation. While we cannot rule out the role of neutral evolutionary forces in the patterns we have identified, combining whole transcriptome sequencing technologies, established bioinformatics techniques, and common garden experimentation can powerfully elucidate structure of adaptive diversity across a varied landscape. Ultimately, gaining such understanding can facilitate the conservation and strategic utilization of crop genetic diversity in a time of climate change.

  2. Application of a partitioning procedure based on Rao quadratic entropy index to characterize the temporal evolution of in situ varietal and genetic diversity of bread wheat in France over the period 1981-2006.

    PubMed

    Perronne, Rémi; Goldringer, Isabelle

    2018-04-01

    We present and highlight a partitioning procedure based on the Rao quadratic entropy index to assess temporal in situ inter-annual varietal and genetic changes of crop diversity. For decades, Western-European agroecosystems have undergone profound changes, among which a reduction of crop genetic diversity. These changes have been highlighted in numerous studies, but no unified partitioning procedure has been proposed to compute the inter-annual variability in both varietal and genetic diversity. To fill this gap, we tested, adjusted and applied a partitioning procedure based on the Rao quadratic entropy index that made possible to describe the different components of crop diversity as well as to account for the relative acreages of varieties. To emphasize the relevance of this procedure, we relied on a case study focusing on the temporal evolution of bread wheat diversity in France over the period 1981-2006 at both national and district scales. At the national scale, we highlighted a decrease of the weighted genetic replacement indicating that varieties sown in the most recent years were more genetically similar than older ones. At the district scale, we highlighted sudden changes in weighted genetic replacement in some agricultural regions that could be due to fast shifts of successive leading varieties over time. Other regions presented a relatively continuous increase of genetic similarity over time, potentially due to the coexistence of a larger number of co-leading varieties that got closer genetically. Based on the partitioning procedure, we argue that a tendency of in situ genetic homogenization could be compared to some of its potential causes, such as a decrease in the speed of replacement or an increase in between-variety genetic similarity over time.

  3. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops

    PubMed Central

    Saqib, Hafiz Sohaib Ahmed; You, Minsheng

    2017-01-01

    Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H)—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies. PMID:29085741

  4. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat.

    PubMed

    Li, Xingyue; Lewis, Edwin E; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-08-10

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing "replant problem" in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community.

  5. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat

    NASA Astrophysics Data System (ADS)

    Li, Xingyue; Lewis, Edwin E.; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-08-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing “replant problem” in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community.

  6. Relationships among trust in messages, risk perception, and risk reduction preferences based upon avian influenza in Taiwan.

    PubMed

    Fang, David; Fang, Chen-Ling; Tsai, Bi-Kun; Lan, Li-Chi; Hsu, Wen-Shan

    2012-08-01

    Improvements in communications technology enable consumers to receive information through diverse channels. In the case of avian influenza, information repeated by the mass media socially amplifies the consumer awareness of risks. Facing indeterminate risks, consumers may feel anxious and increase their risk perception. When consumers trust the information published by the media, their uncertainty toward avian influenza may decrease. Consumers might take some actions to reduce risk. Therefore, this study focuses on relationships among trust in messages, risk perception and risk reduction preferences. This study administered 525 random samples and consumer survey questionnaires in different city of Taiwan in 2007. Through statistical analysis, the results demonstrate: (1) the higher the trust consumers have in messages about avian influenza, the lower their risk perceptions are; (2) the higher the consumers' risk perceptions are and, therefore, the higher their desired level of risk reductive, the more likely they are to accept risk reduction strategies; (3) consumer attributes such as age, education level, and marital status correlate with significant differences in risk perception and risk reduction preferences acceptance. Gender has significant differences only in risk reduction preferences and not in risk perception.

  7. Foundation Trusts: economics in the 'postmodern hospital'.

    PubMed

    Newbold, David

    2005-09-01

    Foundation Trust Hospitals are community-controlled health care providers which have increased autonomy about how they produce outcomes for the British National Health Service. Although there is a literature on hospital economics it is unclear how these innovative providers will behave, if they have to compete for scarce resources with other hospitals. This paper reviews some of the earlier theories, such as the neoclassical theory of the firm, and discusses their relevance along with 'newer' economic theories such as the transaction costs and evolutionary theory of the firm, plus organizational and human resources theory, to the performance of Foundation Trusts. Much contemporary health care provision is shaped along modernist lines, using scientific endeavour to maximize the impact on health outcomes and technical and social efficiency. However, there is an increasingly postmodern standpoint--critical of modernity--being taken by both patients and hospital staff, to deconstruct processes in the organizations that serve them. Foundation Trusts are postmodern hospitals insomuch as they (to attract scarce resources in a competitive environment), need to marshal the diverse theories of the firm together in order to provide a mass-customized, quality experience, transparently and at least cost--whilst maintaining a stable organizational culture for staff.

  8. Relationships among Trust in Messages, Risk Perception, and Risk Reduction Preferences Based upon Avian Influenza in Taiwan

    PubMed Central

    Fang, David; Fang, Chen-Ling; Tsai, Bi-Kun; Lan, Li-Chi; Hsu, Wen-Shan

    2012-01-01

    Improvements in communications technology enable consumers to receive information through diverse channels. In the case of avian influenza, information repeated by the mass media socially amplifies the consumer awareness of risks. Facing indeterminate risks, consumers may feel anxious and increase their risk perception. When consumers trust the information published by the media, their uncertainty toward avian influenza may decrease. Consumers might take some actions to reduce risk. Therefore, this study focuses on relationships among trust in messages, risk perception and risk reduction preferences. This study administered 525 random samples and consumer survey questionnaires in different city of Taiwan in 2007. Through statistical analysis, the results demonstrate: (1) the higher the trust consumers have in messages about avian influenza, the lower their risk perceptions are; (2) the higher the consumers’ risk perceptions are and, therefore, the higher their desired level of risk reductive, the more likely they are to accept risk reduction strategies; (3) consumer attributes such as age, education level, and marital status correlate with significant differences in risk perception and risk reduction preferences acceptance. Gender has significant differences only in risk reduction preferences and not in risk perception. PMID:23066394

  9. Plant Volatile Genomics: Recent Developments and Putative Applications in Agriculture.

    PubMed

    Paul, Ishita; Bhadoria, Pratapbhanu Singh; Mitra, Adinpunya

    2016-01-01

    The review of patents reveals that investigation of plant volatiles and their biosynthetic pathways is a relatively new field in plant biochemistry. The diversity of structure and function of these volatiles is gradually being understood. However, the great diversity of volatile biochemicals plants emit through different parts plays numerous roles in stress resistance and other ecological interactions. From an agronomic point of view, regulation volatile production in crop plants may lead to desirable changes in plant defence, pollinator attraction and post-harvest qualities. In several crop species, genetic manipulation or metabolic channelling have led to altered emission I aroma profiles. This short review summarizes some recent cases of artificial manipulation of volatile profile in planta or in transformed microbial systems.

  10. Microsatellite Variations of Elite Setaria Varieties Released during Last Six Decades in China.

    PubMed

    Jia, Guanqing; Liu, Xiaotong; Schnable, James C; Niu, Zhengang; Wang, Chunfang; Li, Yuhui; Wang, Shujun; Wang, Suying; Liu, Jinrong; Guo, Erhu; Zhi, Hui; Diao, Xianmin

    2015-01-01

    Crop improvement is a multifaceted micro-evolutionary process, involving changes in breeding approaches, planting configurations and consumption preferences of human beings. Recent research has started to identify the specific genes or genomic regions correlate to improved agronomic traits, however, an apparent blank between the genetic structure of crop elite varieties and their improving histories in diverse modern breeding programs is still in existence. Foxtail millet (Setaria italica) was one of the earliest cereal crops to be domesticated and served as a staple crop for early civilizations in China, where it is still widely grown today. In the present trial, a panel of foxtail millet elite varieties, which were released in the last sixty years in different geographical regions of China, was characterized using microsatellite markers (SSRs). A clear separation of two subpopulations corresponding to the two eco-geographical regions of foxtail millet production in China was identified by the dataset, which also indicated that in more recently released elite varieties, large quantities of accessions have been transferred from spring-sowing to summer-sowing ecotypes, likely as a result of breeding response to planting configurations. An association mapping study was conducted to identify loci controlling traits of major agronomic interest. Furthermore, selective sweeps involved in improvement of foxtail millet were identified as multi-diverse minor effect loci controlling different agronomic traits during the long-term improvement of elite varieties. Our results highlight the effect of transition of planting configuration and breeding preference on genetic evolvement of crop species.

  11. Microsatellite Variations of Elite Setaria Varieties Released during Last Six Decades in China

    PubMed Central

    Schnable, James C.; Niu, Zhengang; Wang, Chunfang; Li, Yuhui; Wang, Shujun; Wang, Suying; Liu, Jinrong; Guo, Erhu; Zhi, Hui; Diao, Xianmin

    2015-01-01

    Crop improvement is a multifaceted micro-evolutionary process, involving changes in breeding approaches, planting configurations and consumption preferences of human beings. Recent research has started to identify the specific genes or genomic regions correlate to improved agronomic traits, however, an apparent blank between the genetic structure of crop elite varieties and their improving histories in diverse modern breeding programs is still in existence. Foxtail millet (Setaria italica) was one of the earliest cereal crops to be domesticated and served as a staple crop for early civilizations in China, where it is still widely grown today. In the present trial, a panel of foxtail millet elite varieties, which were released in the last sixty years in different geographical regions of China, was characterized using microsatellite markers (SSRs). A clear separation of two subpopulations corresponding to the two eco-geographical regions of foxtail millet production in China was identified by the dataset, which also indicated that in more recently released elite varieties, large quantities of accessions have been transferred from spring-sowing to summer-sowing ecotypes, likely as a result of breeding response to planting configurations. An association mapping study was conducted to identify loci controlling traits of major agronomic interest. Furthermore, selective sweeps involved in improvement of foxtail millet were identified as multi-diverse minor effect loci controlling different agronomic traits during the long-term improvement of elite varieties. Our results highlight the effect of transition of planting configuration and breeding preference on genetic evolvement of crop species. PMID:25932649

  12. Genetic diversity of root system architecture in response to drought stress in grain legumes.

    PubMed

    Ye, Heng; Roorkiwal, Manish; Valliyodan, Babu; Zhou, Lijuan; Chen, Pengyin; Varshney, Rajeev K; Nguyen, Henry T

    2018-06-06

    Climate change has increased the occurrence of extreme weather patterns globally, causing significant reductions in crop production, and hence threatening food security. In order to meet the food demand of the growing world population, a faster rate of genetic gains leading to productivity enhancement for major crops is required. Grain legumes are an essential commodity in optimal human diets and animal feed because of their unique nutritional composition. Currently, limited water is a major constraint in grain legume production. Root system architecture (RSA) is an important developmental and agronomic trait, which plays vital roles in plant adaptation and productivity under water-limited environments. A deep and proliferative root system helps extract sufficient water and nutrients under these stress conditions. The integrated genetics and genomics approach to dissect molecular processes from genome to phenome is key to achieve increased water capture and use efficiency through developing better root systems. Success in crop improvement under drought depends on discovery and utilization of genetic variations existing in the germplasm. In this review, we summarize current progress in the genetic diversity in major legume crops, quantitative trait loci (QTLs) associated with RSA, and the importance and applications of recent discoveries associated with the beneficial root traits towards better RSA for enhanced drought tolerance and yield.

  13. [Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber].

    PubMed

    Li, Min; Wu, Feng-zhi

    2014-12-01

    Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber (Cucumis sativus) were analyzed by conventional chemical method, PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR methods. Pot experiment was carried out in the greenhouse for three consecutive years with cucumber as the main crop, and scallion (Allium fistulosum), wheat (Triticum aestivum) and oilseed rape (Brassica campestri) as catch crops. Results showed that, with the increase of crop planting times, soil urease, neutral phosphatase and invertase activities in the wheat treatment were significantly) higher than in the scallion and oilseed rape treatments, and these enzyme activities in the oilseed rape treatment were significantly higher than in the scallion treatment. PCR-DGGR analysis showed that cucumber rhizosphere bacterial community structures were different among treatments. Scallion and wheat treatments maintained relatively higher diversity indices of bacterial community structure. qPCR results showed that the abundance of soil bacterial community in the wheat treatment was significantly higher than in the scallion and oilseed rape treatments. In conclusion, different catch treatments affected soil enzyme activities and bacteria community and changed the soil environment. Wheat used as summer catch crop could maintain relatively higher soil enzyme activities, bacterial community diversity and abundance.

  14. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice.

    PubMed

    Dai, Lei; Dai, Weimin; Song, Xiaoling; Lu, Baorong; Qiang, Sheng

    2014-01-01

    Competition from weedy rice can cause serious yield losses to cultivated rice. However, key traits that facilitate competitiveness are still not well understood. To explore the mechanisms behind the strong growth and competitive ability, replacement series experiments were established with six genotypes of weedy rice from different regions and one cultivated rice cultivar. (1) Weedy rice from southern China had the greatest impact on growth and yield of cultivated rice throughout the entire growing season. Weedy rice from the northeast was very competitive during the early vegetative stage while the competitive effects of eastern weedy rice were more detrimental at later crop-growth stages. (2) As the proportion of weedy rice increased, plant height, tillers, above-ground biomass, and yield of cultivated rice significantly declined; the crop always being at disadvantage regardless of proportion. (3) Weedy biotypes with greater diversity as estimated by their Shannon indexes were more detrimental to the growth and yield of cultivated rice. Geographic origin (latitude) of weedy rice biotype, its mixture proportion under competition with the crop and its genetic diversity are determinant factors of the outcome of competition and the associated decline in the rice crop yield. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.

  15. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China.

    PubMed

    Zhou, Jing; Jiang, Xin; Wei, Dan; Zhao, Baisuo; Ma, Mingchao; Chen, Sanfeng; Cao, Fengming; Shen, Delong; Guan, Dawei; Li, Jun

    2017-06-12

    Long-term use of inorganic nitrogen (N) fertilization has greatly influenced the bacterial community in black soil of northeast China. It is unclear how N affects the bacterial community in two successive crop seasons in the same field for this soil type. We sampled soils from a long-term fertilizer experimental field in Harbin city with three N gradients. We applied sequencing and quantitative PCR targeting at the 16S rRNA gene to examine shifts in bacterial communities and test consistent shifts and driving-factors bacterial responses to elevated N additions. N addition decreased soil pH and bacterial 16S rDNA copy numbers, and increased soil N and crop yield. N addition consistently decreased bacterial diversity and altered bacterial community composition, by increasing the relative abundance of Proteobacteria, and decreasing that of Acidobacteria and Nitrospirae in both seasons. Consistent changes in the abundant classes and genera, and the structure of the bacterial communities across both seasons were observed. Our results suggest that increases in N inputs had consistent effects on the richness, diversity and composition of soil bacterial communities across the crop seasons in two continuous years, and the N addition and the subsequent edaphic changes were important factors in shaping bacterial community structures.

  16. Characterisation of caecum and crop microbiota of Indian indigenous chicken targeting multiple hypervariable regions within 16S rRNA gene.

    PubMed

    Saxena, S; Saxena, V K; Tomar, S; Sapcota, D; Gonmei, G

    2016-06-01

    A comparative analysis of caecum and crop microbiota of chick, grower and adult stages of Indian indigenous chickens was conducted to investigate the role of the microbiota of the gastrointestinal tract, which play an important role in host performance, health and immunity. High-throughput Illumina sequencing was performed for V3, V4 and V4-V6 hypervariable regions of the 16S rRNA gene. M5RNA and M5NR databases under MG-RAST were used for metagenomic datasets annotation. In the crop, Firmicutes (~78%) and Proteobacteria (~16%) were the predominant phyla whereas in the caecum, Firmicutes (~50%), Bacteroidetes (~29%) and Actinobacteria (~10%) were predominant. The Shannon-Wiener diversity index suggested that sample richness and diversity increased as the chicken aged. For the first time, the presence of Lactobacillus species such as L. frumenti, L. antri, L. mucosae in the chicken crop along with Kineococcus radiotolerans, Desulfohalobium retbaense and L. jensenii in the caecum are reported. Many of these bacterial species have been found to be involved in immune response modulation and disease prevention in pigs and humans. The gut microbiome of the indigenous chicken was enriched with microbes having probiotic potential which might be essential for their adaptability.

  17. From jhum to broom: Agricultural land-use change and food security implications on the Meghalaya Plateau, India.

    PubMed

    Behera, Rabi Narayan; Nayak, Debendra Kumar; Andersen, Peter; Måren, Inger Elisabeth

    2016-02-01

    Human population growth in the developing world drives land-use changes, impacting food security. In India, the dramatic change in demographic dynamics over the past century has reduced traditional agricultural land-use through increasing commercialization. Here, we analyze the magnitude and implications for the farming system by the introduction of cash-cropping, replacing the traditional slash and burn rotations (jhum), of the tribal people on the Meghalaya Plateau, northeast India, by means of agricultural census data and field surveys conducted in seven villages. Land-use change has brought major alterations in hill agricultural practices, enhanced cash-cropping, promoted mono-cropping, changed food consumption patterns, underpinned the emergence of a new food system, and exposed farmers and consumers to the precariousness of the market, all of which have both long- and short-term food security implications. We found dietary diversity to be higher under jhum compared to any of the cash-crop systems, and higher under traditional cash-cropping than under modern cash-cropping.

  18. Pathways to sustainable intensification through crop water management

    NASA Astrophysics Data System (ADS)

    MacDonald, Graham K.; D'Odorico, Paolo; Seekell, David A.

    2016-09-01

    How much could farm water management interventions increase global crop production? This is the central question posed in a global modelling study by Jägermeyr et al (2016 Environ. Res. Lett. 11 025002). They define the biophysical realm of possibility for future gains in crop production related to agricultural water practices—enhancing water availability to crops and expanding irrigation by reducing non-productive water consumption. The findings of Jägermeyr et al offer crucial insight on the potential for crop water management to sustainably intensify agriculture, but they also provide a benchmark to consider the broader role of sustainable intensification targets in the global food system. Here, we reflect on how the global crop water management simulations of Jägermeyr et al could interact with: (1) farm size at more local scales, (2) downstream water users at the river basin scale, as well as (3) food trade and (4) demand-side food system strategies at the global scale. Incorporating such cross-scale linkages in future research could highlight the diverse pathways needed to harness the potential of farm-level crop water management for a more productive and sustainable global food system.

  19. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World

    PubMed Central

    Garg, Monika; Sharma, Natasha; Sharma, Saloni; Kapoor, Payal; Kumar, Aman; Chunduri, Venkatesh; Arora, Priya

    2018-01-01

    Biofortification is an upcoming, promising, cost-effective, and sustainable technique of delivering micronutrients to a population that has limited access to diverse diets and other micronutrient interventions. Unfortunately, major food crops are poor sources of micronutrients required for normal human growth. The manuscript deals in all aspects of crop biofortification which includes—breeding, agronomy, and genetic modification. It tries to summarize all the biofortification research that has been conducted on different crops. Success stories of biofortification include lysine and tryptophan rich quality protein maize (World food prize 2000), Vitamin A rich orange sweet potato (World food prize 2016); generated by crop breeding, oleic acid, and stearidonic acid soybean enrichment; through genetic transformation and selenium, iodine, and zinc supplementation. The biofortified food crops, especially cereals, legumes, vegetables, and fruits, are providing sufficient levels of micronutrients to targeted populations. Although a greater emphasis is being laid on transgenic research, the success rate and acceptability of breeding is much higher. Besides the challenges biofortified crops hold a bright future to address the malnutrition challenge. PMID:29492405

  20. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World.

    PubMed

    Garg, Monika; Sharma, Natasha; Sharma, Saloni; Kapoor, Payal; Kumar, Aman; Chunduri, Venkatesh; Arora, Priya

    2018-01-01

    Biofortification is an upcoming, promising, cost-effective, and sustainable technique of delivering micronutrients to a population that has limited access to diverse diets and other micronutrient interventions. Unfortunately, major food crops are poor sources of micronutrients required for normal human growth. The manuscript deals in all aspects of crop biofortification which includes-breeding, agronomy, and genetic modification. It tries to summarize all the biofortification research that has been conducted on different crops. Success stories of biofortification include lysine and tryptophan rich quality protein maize (World food prize 2000), Vitamin A rich orange sweet potato (World food prize 2016); generated by crop breeding, oleic acid, and stearidonic acid soybean enrichment; through genetic transformation and selenium, iodine, and zinc supplementation. The biofortified food crops, especially cereals, legumes, vegetables, and fruits, are providing sufficient levels of micronutrients to targeted populations. Although a greater emphasis is being laid on transgenic research, the success rate and acceptability of breeding is much higher. Besides the challenges biofortified crops hold a bright future to address the malnutrition challenge.

  1. The Generation Challenge Programme Platform: Semantic Standards and Workbench for Crop Science

    PubMed Central

    Bruskiewich, Richard; Senger, Martin; Davenport, Guy; Ruiz, Manuel; Rouard, Mathieu; Hazekamp, Tom; Takeya, Masaru; Doi, Koji; Satoh, Kouji; Costa, Marcos; Simon, Reinhard; Balaji, Jayashree; Akintunde, Akinnola; Mauleon, Ramil; Wanchana, Samart; Shah, Trushar; Anacleto, Mylah; Portugal, Arllet; Ulat, Victor Jun; Thongjuea, Supat; Braak, Kyle; Ritter, Sebastian; Dereeper, Alexis; Skofic, Milko; Rojas, Edwin; Martins, Natalia; Pappas, Georgios; Alamban, Ryan; Almodiel, Roque; Barboza, Lord Hendrix; Detras, Jeffrey; Manansala, Kevin; Mendoza, Michael Jonathan; Morales, Jeffrey; Peralta, Barry; Valerio, Rowena; Zhang, Yi; Gregorio, Sergio; Hermocilla, Joseph; Echavez, Michael; Yap, Jan Michael; Farmer, Andrew; Schiltz, Gary; Lee, Jennifer; Casstevens, Terry; Jaiswal, Pankaj; Meintjes, Ayton; Wilkinson, Mark; Good, Benjamin; Wagner, James; Morris, Jane; Marshall, David; Collins, Anthony; Kikuchi, Shoshi; Metz, Thomas; McLaren, Graham; van Hintum, Theo

    2008-01-01

    The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A key consortium research activity is the development of a GCP crop bioinformatics platform to support GCP research. This platform includes the following: (i) shared, public platform-independent domain models, ontology, and data formats to enable interoperability of data and analysis flows within the platform; (ii) web service and registry technologies to identify, share, and integrate information across diverse, globally dispersed data sources, as well as to access high-performance computational (HPC) facilities for computationally intensive, high-throughput analyses of project data; (iii) platform-specific middleware reference implementations of the domain model integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity analysis, comparative analysis of crop genomic data, and plant breeding decision making. PMID:18483570

  2. Corn and soybean Landsat MSS classification performance as a function of scene characteristics

    NASA Technical Reports Server (NTRS)

    Batista, G. T.; Hixson, M. M.; Bauer, M. E.

    1982-01-01

    In order to fully utilize remote sensing to inventory crop production, it is important to identify the factors that affect the accuracy of Landsat classifications. The objective of this study was to investigate the effect of scene characteristics involving crop, soil, and weather variables on the accuracy of Landsat classifications of corn and soybeans. Segments sampling the U.S. Corn Belt were classified using a Gaussian maximum likelihood classifier on multitemporally registered data from two key acquisition periods. Field size had a strong effect on classification accuracy with small fields tending to have low accuracies even when the effect of mixed pixels was eliminated. Other scene characteristics accounting for variability in classification accuracy included proportions of corn and soybeans, crop diversity index, proportion of all field crops, soil drainage, slope, soil order, long-term average soybean yield, maximum yield, relative position of the segment in the Corn Belt, weather, and crop development stage.

  3. The potential of C4 grasses for cellulosic biofuel production

    PubMed Central

    van der Weijde, Tim; Alvim Kamei, Claire L.; Torres, Andres F.; Vermerris, Wilfred; Dolstra, Oene; Visser, Richard G. F.; Trindade, Luisa M.

    2013-01-01

    With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops—maize, sugarcane and sorghum—and two undomesticated perennial energy grasses—miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel. PMID:23653628

  4. The pangenome of hexaploid bread wheat.

    PubMed

    Montenegro, Juan D; Golicz, Agnieszka A; Bayer, Philipp E; Hurgobin, Bhavna; Lee, HueyTyng; Chan, Chon-Kit Kenneth; Visendi, Paul; Lai, Kaitao; Doležel, Jaroslav; Batley, Jacqueline; Edwards, David

    2017-06-01

    There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Agro-morphological characterization of diverse sorghum lines for pre-and postflowering drought tolerance

    USDA-ARS?s Scientific Manuscript database

    The impact of drought stress on sorghum yield does not only depend on the intensity and timing of drought, but as well on the developmental stage of the crop. One of the limitations in breeding for pre-and/or postflowering drought stress resistance in sorghum is the fewer availability of diverse gen...

  6. Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the U.S. collection assessed with EST-SSR markers

    USDA-ARS?s Scientific Manuscript database

    Castor is an important oilseed crop and although its oil is inedible, it has multiple industrial and pharmaceutical applications. The entire U.S. castor germplasm collection was previously screened for oil content and fatty acid composition, but its genetic diversity and population structure has not...

  7. A community resource for exploring and utilizing genetic diversity in the USDA Pea Single Plant Plus Collection

    USDA-ARS?s Scientific Manuscript database

    Globally, pea (Pisum sativum L.) is an important temperate legume crop for food, feed, and fodder, and many breeding programs exist to develop cultivars adapted to these end uses. In order to conserve genetic diversity useful to researchers, large pea collections have been constructed by numerous na...

  8. Growing the science of agronomy by growing the profession: a Message from the President of the American Society of Agronomy

    USDA-ARS?s Scientific Manuscript database

    We often refer to the American Society of Agronomy (ASA) as being both a scientific and professional society. Membership within the organization includes a wide range of people from diverse regions and cultures of the world working with complex and diverse cropping systems. Yet members are unified...

  9. Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of new oilseed crop lesquerella and relative species

    USDA-ARS?s Scientific Manuscript database

    The advantages of using molecular markers in modern genebanks are well documented. They are commonly used to understand the distribution of genetic diversity in populations and among species which is crucial for efficient management and effective utilization of the collections. We describe the devel...

  10. Development of SSR markers and assessment of genetic diversity of alzuki bean in the Chinese germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Adzuki bean is an important food legume crop in East Asia. China is ranked as the number one country for its production and consumption. A large number of adzuki bean accessions are maintained in the Chinese national seed genebank. Tapping its genetic diversity may have potential in assisting breedi...

  11. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing

    USDA-ARS?s Scientific Manuscript database

    Spinach (Spinacia oleracea L., 2n=2x=12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and mineral compounds. The objective of this research is to conduct genetic diversity and population structure analysis of w...

  12. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    USDA-ARS?s Scientific Manuscript database

    Brassica napus (L.) is a crop of major economic importance that produces canola oil (seed), vegetables, fodder and animal meal. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this s...

  13. Genetic diversity and population structure of elite foxtail millet [Setaria italica (L.) P. Beauv.] germplasm in China

    USDA-ARS?s Scientific Manuscript database

    China is among the countries that have the most severe water deficiency. Due to its excellent drought tolerance, foxtail millet [Setaria italica (L.) P. Beauv.] has become one of the important cereal crops in China. Information on genetic diversity and population structure of foxtail millet may faci...

  14. Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production

    PubMed Central

    Fita, Ana; Rodríguez-Burruezo, Adrián; Boscaiu, Monica; Prohens, Jaime; Vicente, Oscar

    2015-01-01

    World population is expected to reach 9.2 × 109 people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a ‘saline agriculture’ which will not compete in terms of resources with conventional agriculture. PMID:26617620

  15. Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) eggplants.

    PubMed

    Plazas, Mariola; Prohens, Jaime; Cuñat, Amparo Noelia; Vilanova, Santiago; Gramazio, Pietro; Herraiz, Francisco Javier; Andújar, Isabel

    2014-09-26

    Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties.

  16. Transposon Insertions, Structural Variations, and SNPs Contribute to the Evolution of the Melon Genome.

    PubMed

    Sanseverino, Walter; Hénaff, Elizabeth; Vives, Cristina; Pinosio, Sara; Burgos-Paz, William; Morgante, Michele; Ramos-Onsins, Sebastián E; Garcia-Mas, Jordi; Casacuberta, Josep Maria

    2015-10-01

    The availability of extensive databases of crop genome sequences should allow analysis of crop variability at an unprecedented scale, which should have an important impact in plant breeding. However, up to now the analysis of genetic variability at the whole-genome scale has been mainly restricted to single nucleotide polymorphisms (SNPs). This is a strong limitation as structural variation (SV) and transposon insertion polymorphisms are frequent in plant species and have had an important mutational role in crop domestication and breeding. Here, we present the first comprehensive analysis of melon genetic diversity, which includes a detailed analysis of SNPs, SV, and transposon insertion polymorphisms. The variability found among seven melon varieties representing the species diversity and including wild accessions and highly breed lines, is relatively high due in part to the marked divergence of some lineages. The diversity is distributed nonuniformly across the genome, being lower at the extremes of the chromosomes and higher in the pericentromeric regions, which is compatible with the effect of purifying selection and recombination forces over functional regions. Additionally, this variability is greatly reduced among elite varieties, probably due to selection during breeding. We have found some chromosomal regions showing a high differentiation of the elite varieties versus the rest, which could be considered as strongly selected candidate regions. Our data also suggest that transposons and SV may be at the origin of an important fraction of the variability in melon, which highlights the importance of analyzing all types of genetic variability to understand crop genome evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops

    PubMed Central

    Migicovsky, Zoë; Myles, Sean

    2017-01-01

    Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops. PMID:28421095

  18. Assessing Wild Bee Biodiversity in Cranberry Agroenvironments: Influence of Natural Habitats.

    PubMed

    Gervais, Amélie; Fournier, Valérie; Sheffield, Cory S; Chagnon, Madeleine

    2017-08-01

    The conservation of bee populations for pollination in agricultural landscapes has attracted a lot of recent research interest, especially for crop industries undergoing expansion to meet increased production demands. In Canada, much growth has been occurring with commercial cranberry production, a field crop which is largely dependent on bee pollination. Wild bee pollinators could be negatively impacted by losses of natural habitat surrounding cranberry fields to accommodate increased production, but growers have little insight on how to manage their lands to maximize the presence of wild bees. Here, we described a 2-yr study where bee diversity and species composition were investigated to better understand the dynamic between natural habitat and cranberry fields. Bees were sampled using pan-traps and hand netting both within cranberry fields and in one of the three adjacent natural habitat types once a week during the crop flowering period. We found that bee community composition among cranberry fields did not differ based on the respective adjacent habitat type, but fields bordered by meadows were marginally less diverse than fields bordered by forest. As one would expect, field and natural habitat communities differed in terms of species composition and species richness. There was no evidence that one type of natural habitat was more favorable for the bees than another. Future agrobiodiversity studies should simultaneously examine bee diversity comprised in both crop fields and adjacent natural environments to better understand the species dynamics essential to the preservation of pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants

    PubMed Central

    Plazas, Mariola; Prohens, Jaime; Cuñat, Amparo Noelia; Vilanova, Santiago; Gramazio, Pietro; Herraiz, Francisco Javier; Andújar, Isabel

    2014-01-01

    Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties. PMID:25264739

  20. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    PubMed Central

    French, Katherine E.

    2017-01-01

    Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored and protected to ensure this important agricultural and biotechnological resource for the future. PMID:28785256

Top