Sample records for crop model parameters

  1. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    PubMed Central

    Archontoulis, S. V.; Yin, X.; Vos, J.; Danalatos, N. G.; Struik, P. C.

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C3 leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO2 at the stomatal cavity (An–Ci), the model was parameterized by analysing the photosynthesis response to incident light intensity (An–Iinc). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from An–Ci or from An–Iinc data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored An–Iinc data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. PMID:22021569

  2. Estimating winter wheat phenological parameters: Implications for crop modeling

    USDA-ARS?s Scientific Manuscript database

    Crop parameters, such as the timing of developmental events, are critical for accurate simulation results in crop simulation models, yet uncertainty often exists in determining the parameters. Factors contributing to the uncertainty include: a) sources of variation within a plant (i.e., within diffe...

  3. Use of Satellite-based Remote Sensing to inform Evapotranspiration parameters in Cropping System Models

    NASA Astrophysics Data System (ADS)

    Dhungel, S.; Barber, M. E.

    2016-12-01

    The objectives of this paper are to use an automated satellite-based remote sensing evapotranspiration (ET) model to assist in parameterization of a cropping system model (CropSyst) and to examine the variability of consumptive water use of various crops across the watershed. The remote sensing model is a modified version of the Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC™) energy balance model. We present the application of an automated python-based implementation of METRIC to estimate ET as consumptive water use for agricultural areas in three watersheds in Eastern Washington - Walla Walla, Lower Yakima and Okanogan. We used these ET maps with USDA crop data to identify the variability of crop growth and water use for the major crops in these three watersheds. Some crops, such as grapes and alfalfa, showed high variability in water use in the watershed while others, such as corn, had comparatively less variability. The results helped us to estimate the range and variability of various crop parameters that are used in CropSyst. The paper also presents a systematic approach to estimate parameters of CropSyst for a crop in a watershed using METRIC results. Our initial application of this approach was used to estimate irrigation application rate for CropSyst for a selected farm in Walla Walla and was validated by comparing crop growth (as Leaf Area Index - LAI) and consumptive water use (ET) from METRIC and CropSyst. This coupling of METRIC with CropSyst will allow for more robust parameters in CropSyst and will enable accurate predictions of changes in irrigation practices and crop rotation, which are a challenge in many cropping system models.

  4. Crop parameters for modeling sugarcane under rainfed conditions in Mexico

    USDA-ARS?s Scientific Manuscript database

    Crop models with well-tested parameters can improve sugarcane productivity for food and biofuel generation. This study aimed to (i) calibrate the light extinction coefficient (k) and other crop parameters for the sugarcane cultivar CP 72-2086, an early-maturing cultivar grown in Mexico and many oth...

  5. Farmland Drought Evaluation Based on the Assimilation of Multi-Temporal Multi-Source Remote Sensing Data into AquaCrop Model

    NASA Astrophysics Data System (ADS)

    Yang, Guijun; Yang, Hao; Jin, Xiuliang; Pignatti, Stefano; Casa, Faffaele; Silverstro, Paolo Cosmo

    2016-08-01

    Drought is the most costly natural disasters in China and all over the world. It is very important to evaluate the drought-induced crop yield losses and further improve water use efficiency at regional scale. Firstly, crop biomass was estimated by the combined use of Synthetic Aperture Radar (SAR) and optical remote sensing data. Then the estimated biophysical variable was assimilated into crop growth model (FAO AquaCrop) by the Particle Swarm Optimization (PSO) method from farmland scale to regional scale.At farmland scale, the most important crop parameters of AquaCrop model were determined to reduce the used parameters in assimilation procedure. The Extended Fourier Amplitude Sensitivity Test (EFAST) method was used for assessing the contribution of different crop parameters to model output. Moreover, the AquaCrop model was calibrated using the experiment data in Xiaotangshan, Beijing.At regional scale, spatial application of our methods were carried out and validated in the rural area of Yangling, Shaanxi Province, in 2014. This study will provide guideline to make irrigation decision of balancing of water consumption and yield loss.

  6. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments.

    PubMed

    Tao, Fulu; Rötter, Reimund P; Palosuo, Taru; Gregorio Hernández Díaz-Ambrona, Carlos; Mínguez, M Inés; Semenov, Mikhail A; Kersebaum, Kurt Christian; Nendel, Claas; Specka, Xenia; Hoffmann, Holger; Ewert, Frank; Dambreville, Anaelle; Martre, Pierre; Rodríguez, Lucía; Ruiz-Ramos, Margarita; Gaiser, Thomas; Höhn, Jukka G; Salo, Tapio; Ferrise, Roberto; Bindi, Marco; Cammarano, Davide; Schulman, Alan H

    2018-03-01

    Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources. © 2017 John Wiley & Sons Ltd.

  7. The review of dynamic monitoring technology for crop growth

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong

    2010-10-01

    In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.

  8. Benefits of seasonal forecasts of crop yields

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  9. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth

    PubMed Central

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production. PMID:28848565

  10. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.

    PubMed

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production.

  11. Crop physiology calibration in the CLM

    DOE PAGES

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  12. Crop physiology calibration in the CLM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  13. Simulating large-scale crop yield by using perturbed-parameter ensemble method

    NASA Astrophysics Data System (ADS)

    Iizumi, T.; Yokozawa, M.; Sakurai, G.; Nishimori, M.

    2010-12-01

    Toshichika Iizumi, Masayuki Yokozawa, Gen Sakurai, Motoki Nishimori Agro-Meteorology Division, National Institute for Agro-Environmental Sciences, Japan Abstract One of concerning issues of food security under changing climate is to predict the inter-annual variation of crop production induced by climate extremes and modulated climate. To secure food supply for growing world population, methodology that can accurately predict crop yield on a large scale is needed. However, for developing a process-based large-scale crop model with a scale of general circulation models (GCMs), 100 km in latitude and longitude, researchers encounter the difficulties in spatial heterogeneity of available information on crop production such as cultivated cultivars and management. This study proposed an ensemble-based simulation method that uses a process-based crop model and systematic parameter perturbation procedure, taking maize in U.S., China, and Brazil as examples. The crop model was developed modifying the fundamental structure of the Soil and Water Assessment Tool (SWAT) to incorporate the effect of heat stress on yield. We called the new model PRYSBI: the Process-based Regional-scale Yield Simulator with Bayesian Inference. The posterior probability density function (PDF) of 17 parameters, which represents the crop- and grid-specific features of the crop and its uncertainty under given data, was estimated by the Bayesian inversion analysis. We then take 1500 ensemble members of simulated yield values based on the parameter sets sampled from the posterior PDF to describe yearly changes of the yield, i.e. perturbed-parameter ensemble method. The ensemble median for 27 years (1980-2006) was compared with the data aggregated from the county yield. On a country scale, the ensemble median of the simulated yield showed a good correspondence with the reported yield: the Pearson’s correlation coefficient is over 0.6 for all countries. In contrast, on a grid scale, the correspondence is still high in most grids regardless of the countries. However, the model showed comparatively low reproducibility in the slope areas, such as around the Rocky Mountains in South Dakota, around the Great Xing'anling Mountains in Heilongjiang, and around the Brazilian Plateau. As there is a wide-ranging local climate conditions in the complex terrain, such as the slope of mountain, the GCM grid-scale weather inputs is likely one of major sources of error. The results of this study highlight the benefits of the perturbed-parameter ensemble method in simulating crop yield on a GCM grid scale: (1) the posterior PDF of parameter could quantify the uncertainty of parameter value of the crop model associated with the local crop production aspects; (2) the method can explicitly account for the uncertainty of parameter value in the crop model simulations; (3) the method achieve a Monte Carlo approximation of probability of sub-grid scale yield, accounting for the nonlinear response of crop yield to weather and management; (4) the method is therefore appropriate to aggregate the simulated sub-grid scale yields to a grid-scale yield and it may be a reason for high performance of the model in capturing inter-annual variation of yield.

  14. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining

    2017-11-01

    Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.

  15. National Variation in Crop Yield Production Functions

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Rising, J. A.

    2017-12-01

    A new multilevel model for yield prediction at the county scale using regional climate covariates is presented in this paper. A new crop specific water deficit index, growing degree days, extreme degree days, and time-trend as an approximation of technology improvements are used as predictors to estimate annual crop yields for each county from 1949 to 2009. Every county in the United States is allowed to have unique parameters describing how these weather predictors are related to yield outcomes. County-specific parameters are further modeled as varying according to climatic characteristics, allowing the prediction of parameters in regions where crops are not currently grown and into the future. The structural relationships between crop yield and regional climate as well as trends are estimated simultaneously. All counties are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. The model captures up to 60% of the variability in crop yields after removing the effect of technology, does well in out of sample predictions and is useful in relating the climate responses to local bioclimatic factors. We apply the predicted growing models in a cost-benefit analysis to identify the most economically productive crop in each county.

  16. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress

    PubMed Central

    Gu, Junfei; Yin, Xinyou; Zhang, Chengwei; Wang, Huaqi; Struik, Paul C.

    2014-01-01

    Background and Aims Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress. Methods Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions. Key Results To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait ‘total crop nitrogen uptake’ (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10–36 % more yield than those based on markers for yield per se. Conclusions This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The approach can provide more markers for selection programmes for specific environments whilst also allowing for prioritization. Crop modelling is thus a powerful tool for marker design for improved rice yields and for ideotyping under contrasting conditions. PMID:24984712

  17. Evaluating high temporal and spatial resolution vegetation index for crop yield prediction

    USDA-ARS?s Scientific Manuscript database

    Remote sensing data have been widely used in estimating crop yield. Remote sensing derived parameters such as Vegetation Index (VI) were used either directly in building empirical models or by assimilating with crop growth models to predict crop yield. The abilities of remote sensing VI in crop yiel...

  18. Soybean Physiology Calibration in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B. A.; Bilionis, I.; Constantinescu, E. M.

    2014-12-01

    With the large influence of agricultural land use on biophysical and biogeochemical cycles, integrating cultivation into Earth System Models (ESMs) is increasingly important. The Community Land Model (CLM) was augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. However, the strong nonlinearity of ESMs makes parameter fitting a difficult task. In this study, our goal is to calibrate ten of the CLM-Crop parameters for one crop type, soybean, in order to improve model projection of plant development and carbon fluxes. We used measurements of gross primary productivity, net ecosystem exchange, and plant biomass from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). Our scheme can perform model calibration using very few evaluations and, by exploiting parallelism, at a fraction of the time required by plain vanilla Markov Chain Monte Carlo (MCMC). We present the results from a twin experiment (self-validation) and calibration results and validation using real observations from an AmeriFlux tower site in the Midwestern United States, for the soybean crop type. The improved model will help researchers understand how climate affects crop production and resulting carbon fluxes, and additionally, how cultivation impacts climate.

  19. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress.

    PubMed

    Gu, Junfei; Yin, Xinyou; Zhang, Chengwei; Wang, Huaqi; Struik, Paul C

    2014-09-01

    Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress. Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions. To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait 'total crop nitrogen uptake' (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10-36 % more yield than those based on markers for yield per se. This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The approach can provide more markers for selection programmes for specific environments whilst also allowing for prioritization. Crop modelling is thus a powerful tool for marker design for improved rice yields and for ideotyping under contrasting conditions. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. A model-data fusion analysis for examining the response of carbon exchange to environmental variation in crop field

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Sakurai, G.; Ono, K.; Mano, M.; Miyata, A.

    2011-12-01

    Agricultural activities, cultivating crops, managing soil, harvesting and post-harvest treatments, are not only affected from the surrounding environment but also change the environment reversely. The changes in environment, temperature, radiation and precipitation, brings changes in crop productivity. On the other hand, the status of crops, i.e. the growth and phenological stage, change the exchange of energy, H2O and CO2 between crop vegetation surface and atmosphere. Conducting the stable agricultural harvests, reducing the Greenhouse Effect Gas (GHG) emission and enhancing carbon sequestration in soil are preferable as a win-win activity. We conducted model-data fusion analysis for examining the response of cropland-atmosphere carbon exchange to environmental variation. The used model consists of two sub models, paddy rice growth sub-model and soil decomposition sub-model. The crop growth sub-model mimics the rice plant growth processes including formation of reproductive organs as well as leaf expansion. The soil decomposition sub-model simulates the decomposition process of soil organic carbon. Assimilating the data on the time changes in CO2 flux measured by eddy covariance method, rice plant biomass, LAI and the final yield with the model, the parameters were calibrated using a stochastic optimization algorithm with a particle filter. The particle filter, which is one of Monte Carlo filters, enable us to evaluating time changes in parameters based on the observed data until the time and to make prediction of the system. Iterative filtering and prediction with changing parameters and/or boundary condition enable us to obtain time changes in parameters governing the crop production as well as carbon exchange. In this paper, we applied the model-data fusion analysis to the two datasets on paddy rice field sites in Japan: only a single rice cultivation, and a single rice and wheat cultivation. We focused on the parameters related to crop production as well as soil carbon storage. As a result, the calibrated model with estimated parameters could accurately predict the NEE flux in the subsequent years (Fig.1). The temperature sensitivity, Q10s in the decomposition rate of soil organic carbon (SOC) were obtained as 1.4 for no cultivation period and 2.9 for cultivation period (submerged soil condition).

  1. Quantitative estimation of the fluorescent parameters for crop leaves with the Bayesian inversion

    USDA-ARS?s Scientific Manuscript database

    In this study, the fluorescent parameters of crop leaves were retrieved from the leaf hyperspectral measurements by inverting the FluorMODleaf model, which is a leaf-level fluorescence model that is based on the widely used and validated PROSPECT (leaf optical properties) model and can simulate the ...

  2. A probabilistic model framework for evaluating year-to-year variation in crop productivity

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Iizumi, T.; Tao, F.

    2008-12-01

    Most models describing the relation between crop productivity and weather condition have so far been focused on mean changes of crop yield. For keeping stable food supply against abnormal weather as well as climate change, evaluating the year-to-year variations in crop productivity rather than the mean changes is more essential. We here propose a new framework of probabilistic model based on Bayesian inference and Monte Carlo simulation. As an example, we firstly introduce a model on paddy rice production in Japan. It is called PRYSBI (Process- based Regional rice Yield Simulator with Bayesian Inference; Iizumi et al., 2008). The model structure is the same as that of SIMRIW, which was developed and used widely in Japan. The model includes three sub- models describing phenological development, biomass accumulation and maturing of rice crop. These processes are formulated to include response nature of rice plant to weather condition. This model inherently was developed to predict rice growth and yield at plot paddy scale. We applied it to evaluate the large scale rice production with keeping the same model structure. Alternatively, we assumed the parameters as stochastic variables. In order to let the model catch up actual yield at larger scale, model parameters were determined based on agricultural statistical data of each prefecture of Japan together with weather data averaged over the region. The posterior probability distribution functions (PDFs) of parameters included in the model were obtained using Bayesian inference. The MCMC (Markov Chain Monte Carlo) algorithm was conducted to numerically solve the Bayesian theorem. For evaluating the year-to-year changes in rice growth/yield under this framework, we firstly iterate simulations with set of parameter values sampled from the estimated posterior PDF of each parameter and then take the ensemble mean weighted with the posterior PDFs. We will also present another example for maize productivity in China. The framework proposed here provides us information on uncertainties, possibilities and limitations on future improvements in crop model as well.

  3. Winter wheat yield estimation of remote sensing research based on WOFOST crop model and leaf area index assimilation

    NASA Astrophysics Data System (ADS)

    Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei

    2017-04-01

    Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed to evaluate the influence of each parameter mentioned above on the winter wheat yield formation. Finally, six parameters that sensitivity index more than 0.1 as sensitivity factors were chose, which are TSUM1, SLATB1, SLATB2, SPAN, EFFTB3 and TMPF4. To other parameters, we confirmed them via practical measurement and calculation, available literature or WOFOST default. Eventually, we completed the regulation of WOFOST parameters. (3) Look-up table algorithm was used to realize single-point yield estimation through the assimilation of the WOFOST model and the retrieval LAI. This simulation achieved a high accuracy which perfectly meet the purpose of assimilation (R2=0.941 and RMSE=194.58kg/hm2). In this paper, the optimum value of sensitivity parameters were confirmed and the estimation of single-point yield were finished. Key words: yield estimation of winter wheat, LAI, WOFOST crop growth model, assimilation

  4. Parameterization models for pesticide exposure via crop consumption.

    PubMed

    Fantke, Peter; Wieland, Peter; Juraske, Ronnie; Shaddick, Gavin; Itoiz, Eva Sevigné; Friedrich, Rainer; Jolliet, Olivier

    2012-12-04

    An approach for estimating human exposure to pesticides via consumption of six important food crops is presented that can be used to extend multimedia models applied in health risk and life cycle impact assessment. We first assessed the variation of model output (pesticide residues per kg applied) as a function of model input variables (substance, crop, and environmental properties) including their possible correlations using matrix algebra. We identified five key parameters responsible for between 80% and 93% of the variation in pesticide residues, namely time between substance application and crop harvest, degradation half-lives in crops and on crop surfaces, overall residence times in soil, and substance molecular weight. Partition coefficients also play an important role for fruit trees and tomato (Kow), potato (Koc), and lettuce (Kaw, Kow). Focusing on these parameters, we develop crop-specific models by parametrizing a complex fate and exposure assessment framework. The parametric models thereby reflect the framework's physical and chemical mechanisms and predict pesticide residues in harvest using linear combinations of crop, crop surface, and soil compartments. Parametric model results correspond well with results from the complex framework for 1540 substance-crop combinations with total deviations between a factor 4 (potato) and a factor 66 (lettuce). Predicted residues also correspond well with experimental data previously used to evaluate the complex framework. Pesticide mass in harvest can finally be combined with reduction factors accounting for food processing to estimate human exposure from crop consumption. All parametric models can be easily implemented into existing assessment frameworks.

  5. Assimilating Leaf Area Index Estimates from Remote Sensing into the Simulations of a Cropping Systems Model

    USDA-ARS?s Scientific Manuscript database

    Spatial extrapolation of cropping systems models for regional crop growth and water use assessment and farm-level precision management has been limited by the vast model input requirements and the model sensitivity to parameter uncertainty. Remote sensing has been proposed as a viable source of spat...

  6. Crop Damage by Primates: Quantifying the Key Parameters of Crop-Raiding Events

    PubMed Central

    Wallace, Graham E.; Hill, Catherine M.

    2012-01-01

    Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species. PMID:23056378

  7. Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA

    USGS Publications Warehouse

    Groff, Shannon C.; Loftin, Cynthia S.; Drummond, Frank; Bushmann, Sara; McGill, Brian J.

    2016-01-01

    Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.

  8. Future possible crop yield scenarios under multiple SSP and RCP scenarios.

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Yokozawa, M.; Nishimori, M.; Okada, M.

    2016-12-01

    Understanding the effect of future climate change on global crop yields is one of the most important tasks for global food security. Future crop yields would be influenced by climatic factors such as the changes of temperature, precipitation and atmospheric carbon dioxide concentration. On the other hand, the effect of the changes of agricultural technologies such as crop varieties, pesticide and fertilizer input on crop yields have large uncertainty. However, not much is available on the contribution ratio of each factor under the future climate change scenario. We estimated the future global yields of four major crops (maize, soybean, rice and wheat) under three Shared Socio Economic Pathways (SSPs) and four Representative Concentration Pathways (RCPs). For this purpose, firstly, we estimated a parameter of a process based model (PRYSBI2) using a Bayesian method for each 1.125 degree spatial grid. The model parameter is relevant to the agricultural technology (we call "technological parameter" here after). Then, we analyzed the relationship between the values of technological parameter and GDP values. We found that the estimated values of the technological parameter were positively correlated with the GDP. Using the estimated relationship, we predicted future crop yield during 2020 and 2100 under SSP1, SSP2 and SSP3 scenarios and RCP 2.6, 4.5, 6.0 and 8.5. The estimated crop yields were different among SSP scenarios. However, we found that the yield difference attributable to SSPs were smaller than those attributable to CO2 fertilization effects and climate change. Particularly, the estimated effect of the change of atmospheric carbon dioxide concentration on global yields was more than four times larger than that of GDP for C3 crops.

  9. Improved Satellite-based Crop Yield Mapping by Spatially Explicit Parameterization of Crop Phenology

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Azzari, G.; Lobell, D. B.

    2016-12-01

    Field-scale mapping of crop yields with satellite data often relies on the use of crop simulation models. However, these approaches can be hampered by inaccuracies in the simulation of crop phenology. Here we present and test an approach to use dense time series of Landsat 7 and 8 acquisitions data to calibrate various parameters related to crop phenology simulation, such as leaf number and leaf appearance rates. These parameters are then mapped across the Midwestern United States for maize and soybean, and for two different simulation models. We then implement our recently developed Scalable satellite-based Crop Yield Mapper (SCYM) with simulations reflecting the improved phenology parameterizations, and compare to prior estimates based on default phenology routines. Our preliminary results show that the proposed method can effectively alleviate the underestimation of early-season LAI by the default Agricultural Production Systems sIMulator (APSIM), and that spatially explicit parameterization for the phenology model substantially improves the SCYM performance in capturing the spatiotemporal variation in maize and soybean yield. The scheme presented in our study thus preserves the scalability of SCYM, while significantly reducing its uncertainty.

  10. Early detection of crop injury from herbicide glyphosate by leaf biochemical parameter inversion

    USDA-ARS?s Scientific Manuscript database

    Early detection of crop injury from glyphosate is of significant importance in crop management. In this paper, we attempt to detect glyphosate-induced crop injury by PROSPECT (leaf optical PROperty SPECTra model) inversion through leaf hyperspectral reflectance measurements for non-Glyphosate-Resist...

  11. Modelling irrigated maize with a combination of coupled-model simulation and uncertainty analysis, in the northwest of China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kinzelbach, W.; Zhou, J.; Cheng, G. D.; Li, X.

    2012-05-01

    The hydrologic model HYDRUS-1-D and the crop growth model WOFOST are coupled to efficiently manage water resources in agriculture and improve the prediction of crop production. The results of the coupled model are validated by experimental studies of irrigated-maize done in the middle reaches of northwest China's Heihe River, a semi-arid to arid region. Good agreement is achieved between the simulated evapotranspiration, soil moisture and crop production and their respective field measurements made under current maize irrigation and fertilization. Based on the calibrated model, the scenario analysis reveals that the most optimal amount of irrigation is 500-600 mm in this region. However, for regions without detailed observation, the results of the numerical simulation can be unreliable for irrigation decision making owing to the shortage of calibrated model boundary conditions and parameters. So, we develop a method of combining model ensemble simulations and uncertainty/sensitivity analysis to speculate the probability of crop production. In our studies, the uncertainty analysis is used to reveal the risk of facing a loss of crop production as irrigation decreases. The global sensitivity analysis is used to test the coupled model and further quantitatively analyse the impact of the uncertainty of coupled model parameters and environmental scenarios on crop production. This method can be used for estimation in regions with no or reduced data availability.

  12. Potato Production as Affected by Crop Parameters and Meteoro Logical Elements

    NASA Astrophysics Data System (ADS)

    Pereira, André B.; Villa Nova, Nilson A.; Pereira, Antonio R.

    Meteorological elements directly influence crop potential productivity, regulating its transpiration, photosynthesis, and respiration processes in such a way as to control the growth and development of the plants throughout their physiological mechanisms at a given site. The interaction of the meteorological factors with crop responses is complex and has been the target of attention of many researchers from all over the world. There is currently a great deal of interest in estimating crop productivity as a function of climate by means of different crop weather models in order to help growers choose planting locations and timing to produce high yields with good tuber quality under site-specific atmospheric conditions. In this manuscript an agrometeorological model based on maximum carbon dioxide assimilation rates for C3 plants, fraction of photosynthetically active radiation, air temperature, photoperiod duration, and crop parameters is assessed as to its performance under tropical conditions. Crop parameters include leaf areaand harvest indexes, dry matter content of potato tubers, and crop cycles to estimate potato potential yields. Productivity obtained with the cultivar Itararé, grown with adequate soil water supply conditions at four different sites in the State of São Paulo (Itararé, Piracicaba, TatuÍ, and São Manuel), Brazil, were used to test the model. The results showed thatthe agrometeorological model tested under the climatic conditions of the State of São Paulo in general underestimated irrigated potato yield by less than 10%.This justifies the recommendation to test the performance of the model in study in other climaticregions for different crops and genotypes under optimal irrigationconditions in further scientific investigations. We reached the conclusion that the agrometeorological model taking into account information on leaf area index, photoperiod duration, photosynthetically active radiation and air temperature is feasible to estimate potential tuber yield at a commercial scale. The performance test shows that it can then be used to forecast harvest time, and also as an effective tool to predict the suitability of potential regions to the cultivation of potato crop, cultivar Itararé, at the State of São Paulo, Brazil.

  13. Optimizing LED lighting for space plant growth unit: Joint effects of photon flux density, red to white ratios and intermittent light pulses

    NASA Astrophysics Data System (ADS)

    Avercheva, O. V.; Berkovich, Yu. A.; Konovalova, I. O.; Radchenko, S. G.; Lapach, S. N.; Bassarskaya, E. M.; Kochetova, G. V.; Zhigalova, T. V.; Yakovleva, O. S.; Tarakanov, I. G.

    2016-11-01

    The aim of this work were to choose a quantitative optimality criterion for estimating the quality of plant LED lighting regimes inside space greenhouses and to construct regression models of crop productivity and the optimality criterion depending on the level of photosynthetic photon flux density (PPFD), the proportion of the red component in the light spectrum and the duration of the duty cycle (Chinese cabbage Brassica chinensis L. as an example). The properties of the obtained models were described in the context of predicting crop dry weight and the optimality criterion behavior when varying plant lighting parameters. Results of the fractional 3-factor experiment demonstrated the share of the PPFD level participation in the crop dry weight accumulation was 84.4% at almost any combination of other lighting parameters, but when PPFD value increased up to 500 μmol m-2 s-1 the pulse light and supplemental light from red LEDs could additionally increase crop productivity. Analysis of the optimality criterion response to variation of lighting parameters showed that the maximum coordinates were the following: PPFD = 500 μmol m-2 s-1, about 70%-proportion of the red component of the light spectrum (PPFDLEDred/PPFDLEDwhite = 1.5) and the duty cycle with a period of 501 μs. Thus, LED crop lighting with these parameters was optimal for achieving high crop productivity and for efficient use of energy in the given range of lighting parameter values.

  14. From field to region yield predictions in response to pedo-climatic variations in Eastern Canada

    NASA Astrophysics Data System (ADS)

    JÉGO, G.; Pattey, E.; Liu, J.

    2013-12-01

    The increase in global population coupled with new pressures to produce energy and bioproducts from agricultural land requires an increase in crop productivity. However, the influence of climate and soil variations on crop production and environmental performance is not fully understood and accounted for to define more sustainable and economical management strategies. Regional crop modeling can be a great tool for understanding the impact of climate variations on crop production, for planning grain handling and for assessing the impact of agriculture on the environment, but it is often limited by the availability of input data. The STICS ("Simulateur mulTIdisciplinaire pour les Cultures Standard") crop model, developed by INRA (France) is a functional crop model which has a built-in module to optimize several input parameters by minimizing the difference between calculated and measured output variables, such as Leaf Area Index (LAI). STICS crop model was adapted to the short growing season of the Mixedwood Plains Ecozone using field experiments results, to predict biomass and yield of soybean, spring wheat and corn. To minimize the numbers of inference required for regional applications, 'generic' cultivars rather than specific ones have been calibrated in STICS. After the calibration of several model parameters, the root mean square error (RMSE) of yield and biomass predictions ranged from 10% to 30% for the three crops. A bit more scattering was obtained for LAI (20%

  15. Mathematical and statistical models for determining the crop load in grapevine

    NASA Astrophysics Data System (ADS)

    Alina, Dobrei; Alin, Dobrei; Eleonora, Nistor; Teodor, Cristea; Marius, Boldea; Florin, Sala

    2016-06-01

    Ensuring a balance between vine crop load and vine vegetative growth is a dynamic process, so it is necessary to develop models for describing this relationship. This study analyzed the interrelationship between the crop load and growing specific parameters (viable buds - VB, dead (frost-injured) buds - DB, total shoots growth-TSG, one-year-old wood - MSG), in two vine grapes varieties: Muscat Ottonel cultivar for wine and Victoria cultivar for fresh grapes. In both varieties interrelationship between the buds number and vegetative growth parameters were described by polynomial functions statistically assured. Using regression analysis it was possible to develop predictive models for one-year-old wood (MSG), an important parameter for the yield and quality of wine grape production, with statistical significance results (R2 = 0.884, p <0.001, F = 45.957 in Muscat Ottonel cultivar and R2 = 0.893, p = 0.001, F = 49.886 in Victoria cultivar).

  16. Uncertainty and sensitivity assessments of an agricultural-hydrological model (RZWQM2) using the GLUE method

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zhang, Xiaolin; Huo, Zailin; Feng, Shaoyuan; Huang, Guanhua; Mao, Xiaomin

    2016-03-01

    Quantitatively ascertaining and analyzing the effects of model uncertainty on model reliability is a focal point for agricultural-hydrological models due to more uncertainties of inputs and processes. In this study, the generalized likelihood uncertainty estimation (GLUE) method with Latin hypercube sampling (LHS) was used to evaluate the uncertainty of the RZWQM-DSSAT (RZWQM2) model outputs responses and the sensitivity of 25 parameters related to soil properties, nutrient transport and crop genetics. To avoid the one-sided risk of model prediction caused by using a single calibration criterion, the combined likelihood (CL) function integrated information concerning water, nitrogen, and crop production was introduced in GLUE analysis for the predictions of the following four model output responses: the total amount of water content (T-SWC) and the nitrate nitrogen (T-NIT) within the 1-m soil profile, the seed yields of waxy maize (Y-Maize) and winter wheat (Y-Wheat). In the process of evaluating RZWQM2, measurements and meteorological data were obtained from a field experiment that involved a winter wheat and waxy maize crop rotation system conducted from 2003 to 2004 in southern Beijing. The calibration and validation results indicated that RZWQM2 model can be used to simulate the crop growth and water-nitrogen migration and transformation in wheat-maize crop rotation planting system. The results of uncertainty analysis using of GLUE method showed T-NIT was sensitive to parameters relative to nitrification coefficient, maize growth characteristics on seedling period, wheat vernalization period, and wheat photoperiod. Parameters on soil saturated hydraulic conductivity, nitrogen nitrification and denitrification, and urea hydrolysis played an important role in crop yield component. The prediction errors for RZWQM2 outputs with CL function were relatively lower and uniform compared with other likelihood functions composed of individual calibration criterion. This new and successful application of the GLUE method for determining the uncertainty and sensitivity of the RZWQM2 could provide a reference for the optimization of model parameters with different emphases according to research interests.

  17. A global sensitivity analysis of crop virtual water content

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for other crops. The sensitivity to the reference evapotranspiration is highly variable with the considered crop and ranges from positive values (for soybean), to negative values (for rice and maize) and near-zero values for wheat. This variability reflects the different yield response factors of crops, which expresses their tolerance to water stress.

  18. Applying a particle filtering technique for canola crop growth stage estimation in Canada

    NASA Astrophysics Data System (ADS)

    Sinha, Abhijit; Tan, Weikai; Li, Yifeng; McNairn, Heather; Jiao, Xianfeng; Hosseini, Mehdi

    2017-10-01

    Accurate crop growth stage estimation is important in precision agriculture as it facilitates improved crop management, pest and disease mitigation and resource planning. Earth observation imagery, specifically Synthetic Aperture Radar (SAR) data, can provide field level growth estimates while covering regional scales. In this paper, RADARSAT-2 quad polarization and TerraSAR-X dual polarization SAR data and ground truth growth stage data are used to model the influence of canola growth stages on SAR imagery extracted parameters. The details of the growth stage modeling work are provided, including a) the development of a new crop growth stage indicator that is continuous and suitable as the state variable in the dynamic estimation procedure; b) a selection procedure for SAR polarimetric parameters that is sensitive to both linear and nonlinear dependency between variables; and c) procedures for compensation of SAR polarimetric parameters for different beam modes. The data was collected over three crop growth seasons in Manitoba, Canada, and the growth model provides the foundation of a novel dynamic filtering framework for real-time estimation of canola growth stages using the multi-sensor and multi-mode SAR data. A description of the dynamic filtering framework that uses particle filter as the estimator is also provided in this paper.

  19. Optimizing LED lighting for space plant growth unit: Joint effects of photon flux density, red to white ratios and intermittent light pulses.

    PubMed

    Avercheva, O V; Berkovich, Yu A; Konovalova, I O; Radchenko, S G; Lapach, S N; Bassarskaya, E M; Kochetova, G V; Zhigalova, T V; Yakovleva, O S; Tarakanov, I G

    2016-11-01

    The aim of this work were to choose a quantitative optimality criterion for estimating the quality of plant LED lighting regimes inside space greenhouses and to construct regression models of crop productivity and the optimality criterion depending on the level of photosynthetic photon flux density (PPFD), the proportion of the red component in the light spectrum and the duration of the duty cycle (Chinese cabbage Brassica сhinensis L. as an example). The properties of the obtained models were described in the context of predicting crop dry weight and the optimality criterion behavior when varying plant lighting parameters. Results of the fractional 3-factor experiment demonstrated the share of the PPFD level participation in the crop dry weight accumulation was 84.4% at almost any combination of other lighting parameters, but when PPFD value increased up to 500µmol m -2 s -1 the pulse light and supplemental light from red LEDs could additionally increase crop productivity. Analysis of the optimality criterion response to variation of lighting parameters showed that the maximum coordinates were the following: PPFD = 500µmol m -2 s -1 , about 70%-proportion of the red component of the light spectrum (PPFD LEDred /PPFD LEDwhite = 1.5) and the duty cycle with a period of 501µs. Thus, LED crop lighting with these parameters was optimal for achieving high crop productivity and for efficient use of energy in the given range of lighting parameter values. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  20. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.

    2013-03-01

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy,more » rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Balkovic, Juraj; van der Velde, M.

    Crop models are increasingly used to assess impacts of climate change/variability and management practices on productivity and environmental performance of alternative cropping systems. Calibration is an important procedure to improve reliability of model simulations, especially for large area applications. However, global-scale crop model calibration has rarely been exercised due to limited data availability and expensive computing cost. Here we present a simple approach to calibrate Environmental Policy Integrated Climate (EPIC) model for a global implementation of rice. We identify four parameters (potential heat unit – PHU, planting density – PD, harvest index – HI, and biomass energy ratio – BER)more » and calibrate them regionally to capture the spatial pattern of reported rice yield in 2000. Model performance is assessed by comparing simulated outputs with independent FAO national data. The comparison demonstrates that the global calibration scheme performs satisfactorily in reproducing the spatial pattern of rice yield, particularly in main rice production areas. Spatial agreement increases substantially when more parameters are selected and calibrated, but with varying efficiencies. Among the parameters, PHU and HI exhibit the highest efficiencies in increasing the spatial agreement. Simulations with different calibration strategies generate a pronounced discrepancy of 5–35% in mean yields across latitude bands, and a small to moderate difference in estimated yield variability and yield changing trend for the period of 1981–2000. Present calibration has little effects in improving simulated yield variability and trends at both regional and global levels, suggesting further works are needed to reproduce temporal variability of reported yields. This study highlights the importance of crop models’ calibration, and presents the possibility of a transparent and consistent up scaling approach for global crop simulations given current availability of global databases of weather, soil, crop calendar, fertilizer and irrigation management information, and reported yield.« less

  2. Effects of input uncertainty on cross-scale crop modeling

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input data from very little to very detailed information, and compare the models' abilities to represent the spatial variability and temporal variability in crop yields. We display the uncertainty in crop yield simulations from different input data and crop models in Taylor diagrams which are a graphical summary of the similarity between simulations and observations (Taylor, 2001). The observed spatial variability can be represented well from both models (R=0.6-0.8) but APSIM predicts higher spatial variability than LPJmL due to its sensitivity to soil parameters. Simulations with the same crop model, climate and sowing dates have similar statistics and therefore similar skill to reproduce the observed spatial variability. Soil data is less important for the skill of a crop model to reproduce the observed spatial variability. However, the uncertainty in simulated spatial variability from the two crop models is larger than from input data settings and APSIM is more sensitive to input data then LPJmL. Even with a detailed, point-scale crop model and detailed input data it is difficult to capture the complexity and diversity in maize cropping systems.

  3. Towards systematic evaluation of crop model outputs for global land-use models

    NASA Astrophysics Data System (ADS)

    Leclere, David; Azevedo, Ligia B.; Skalský, Rastislav; Balkovič, Juraj; Havlík, Petr

    2016-04-01

    Land provides vital socioeconomic resources to the society, however at the cost of large environmental degradations. Global integrated models combining high resolution global gridded crop models (GGCMs) and global economic models (GEMs) are increasingly being used to inform sustainable solution for agricultural land-use. However, little effort has yet been done to evaluate and compare the accuracy of GGCM outputs. In addition, GGCM datasets require a large amount of parameters whose values and their variability across space are weakly constrained: increasing the accuracy of such dataset has a very high computing cost. Innovative evaluation methods are required both to ground credibility to the global integrated models, and to allow efficient parameter specification of GGCMs. We propose an evaluation strategy for GGCM datasets in the perspective of use in GEMs, illustrated with preliminary results from a novel dataset (the Hypercube) generated by the EPIC GGCM and used in the GLOBIOM land use GEM to inform on present-day crop yield, water and nutrient input needs for 16 crops x 15 management intensities, at a spatial resolution of 5 arc-minutes. We adopt the following principle: evaluation should provide a transparent diagnosis of model adequacy for its intended use. We briefly describe how the Hypercube data is generated and how it articulates with GLOBIOM in order to transparently identify the performances to be evaluated, as well as the main assumptions and data processing involved. Expected performances include adequately representing the sub-national heterogeneity in crop yield and input needs: i) in space, ii) across crop species, and iii) across management intensities. We will present and discuss measures of these expected performances and weight the relative contribution of crop model, input data and data processing steps in performances. We will also compare obtained yield gaps and main yield-limiting factors against the M3 dataset. Next steps include iterative improvement of parameter assumptions and evaluation of implications of GGCM performances for intended use in the IIASA EPIC-GLOBIOM model cluster. Our approach helps targeting future efforts at improving GGCM accuracy and would achieve highest efficiency if combined with traditional field-scale evaluation and sensitivity analysis.

  4. The impacts of data constraints on the predictive performance of a general process-based crop model (PeakN-crop v1.0)

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Purves, Drew W.; Smith, Matthew J.

    2017-04-01

    Improving international food security under a changing climate and increasing human population will be greatly aided by improving our ability to modify, understand and predict crop growth. What we predominantly have at our disposal are either process-based models of crop physiology or statistical analyses of yield datasets, both of which suffer from various sources of error. In this paper, we present a generic process-based crop model (PeakN-crop v1.0) which we parametrise using a Bayesian model-fitting algorithm to three different sources: data-space-based vegetation indices, eddy covariance productivity measurements and regional crop yields. We show that the model parametrised without data, based on prior knowledge of the parameters, can largely capture the observed behaviour but the data-constrained model greatly improves both the model fit and reduces prediction uncertainty. We investigate the extent to which each dataset contributes to the model performance and show that while all data improve on the prior model fit, the satellite-based data and crop yield estimates are particularly important for reducing model error and uncertainty. Despite these improvements, we conclude that there are still significant knowledge gaps, in terms of available data for model parametrisation, but our study can help indicate the necessary data collection to improve our predictions of crop yields and crop responses to environmental changes.

  5. Critique and sensitivity analysis of the compensation function used in the LMS Hudson River striped bass models. Environmental Sciences Division publication No. 944

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Winkle, W.; Christensen, S.W.; Kauffman, G.

    1976-12-01

    The description and justification for the compensation function developed and used by Lawler, Matusky and Skelly Engineers (LMS) (under contract to Consolidated Edison Company of New York) in their Hudson River striped bass models are presented. A sensitivity analysis of this compensation function is reported, based on computer runs with a modified version of the LMS completely mixed (spatially homogeneous) model. Two types of sensitivity analysis were performed: a parametric study involving at least five levels for each of the three parameters in the compensation function, and a study of the form of the compensation function itself, involving comparison ofmore » the LMS function with functions having no compensation at standing crops either less than or greater than the equilibrium standing crops. For the range of parameter values used in this study, estimates of percent reduction are least sensitive to changes in YS, the equilibrium standing crop, and most sensitive to changes in KXO, the minimum mortality rate coefficient. Eliminating compensation at standing crops either less than or greater than the equilibrium standing crops results in higher estimates of percent reduction. For all values of KXO and for values of YS and KX at and above the baseline values, eliminating compensation at standing crops less than the equilibrium standing crops results in a greater increase in percent reduction than eliminating compensation at standing crops greater than the equilibrium standing crops.« less

  6. Simultaneous state-parameter estimation supports the evaluation of data assimilation performance and measurement design for soil-water-atmosphere-plant system

    NASA Astrophysics Data System (ADS)

    Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin

    2017-12-01

    Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.

  7. Agricultural Policy Environmental eXtender simulation of three adjacent row-crop watersheds in the claypan region

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy Environmental Extender (APEX) model can simulate crop yields, and pollutant loadings in whole farms or small watersheds with variety of management practices. The study objectives were to identify sensitive parameters and parameterize, calibrate and validate the APEX model fo...

  8. Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices

    USDA-ARS?s Scientific Manuscript database

    Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...

  9. Integrated modelling of crop production and nitrate leaching with the Daisy model.

    PubMed

    Manevski, Kiril; Børgesen, Christen D; Li, Xiaoxin; Andersen, Mathias N; Abrahamsen, Per; Hu, Chunsheng; Hansen, Søren

    2016-01-01

    An integrated modelling strategy was designed and applied to the Soil-Vegetation-Atmosphere Transfer model Daisy for simulation of crop production and nitrate leaching under pedo-climatic and agronomic environment different than that of model original parameterisation. The points of significance and caution in the strategy are: •Model preparation should include field data in detail due to the high complexity of the soil and the crop processes simulated with process-based model, and should reflect the study objectives. Inclusion of interactions between parameters in a sensitivity analysis results in better account for impacts on outputs of measured variables.•Model evaluation on several independent data sets increases robustness, at least on coarser time scales such as month or year. It produces a valuable platform for adaptation of the model to new crops or for the improvement of the existing parameters set. On daily time scale, validation for highly dynamic variables such as soil water transport remains challenging. •Model application is demonstrated with relevance for scientists and regional managers. The integrated modelling strategy is applicable for other process-based models similar to Daisy. It is envisaged that the strategy establishes model capability as a useful research/decision-making, and it increases knowledge transferability, reproducibility and traceability.

  10. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis

    PubMed Central

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483

  11. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    PubMed

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.

  12. Quantification of the impact of hydrology on agricultural production as a result of too dry, too wet or too saline conditions

    NASA Astrophysics Data System (ADS)

    Hack-ten Broeke, Mirjam J. D.; Kroes, Joop G.; Bartholomeus, Ruud P.; van Dam, Jos C.; de Wit, Allard J. W.; Supit, Iwan; Walvoort, Dennis J. J.; van Bakel, P. Jan T.; Ruijtenberg, Rob

    2016-08-01

    For calculating the effects of hydrological measures on agricultural production in the Netherlands a new comprehensive and climate proof method is being developed: WaterVision Agriculture (in Dutch: Waterwijzer Landbouw). End users have asked for a method that considers current and future climate, that can quantify the differences between years and also the effects of extreme weather events. Furthermore they would like a method that considers current farm management and that can distinguish three different causes of crop yield reduction: drought, saline conditions or too wet conditions causing oxygen shortage in the root zone. WaterVision Agriculture is based on the hydrological simulation model SWAP and the crop growth model WOFOST. SWAP simulates water transport in the unsaturated zone using meteorological data, boundary conditions (like groundwater level or drainage) and soil parameters. WOFOST simulates crop growth as a function of meteorological conditions and crop parameters. Using the combination of these process-based models we have derived a meta-model, i.e. a set of easily applicable simplified relations for assessing crop growth as a function of soil type and groundwater level. These relations are based on multiple model runs for at least 72 soil units and the possible groundwater regimes in the Netherlands. So far, we parameterized the model for the crops silage maize and grassland. For the assessment, the soil characteristics (soil water retention and hydraulic conductivity) are very important input parameters for all soil layers of these 72 soil units. These 72 soil units cover all soils in the Netherlands. This paper describes (i) the setup and examples of application of the process-based model SWAP-WOFOST, (ii) the development of the simplified relations based on this model and (iii) how WaterVision Agriculture can be used by farmers, regional government, water boards and others to assess crop yield reduction as a function of groundwater characteristics or as a function of the salt concentration in the root zone for the various soil types.

  13. Mapping of Biophysical Parameters of Rice Agriculture System from Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Moharana, Shreedevi; Duta, Subashisa

    2017-04-01

    Chlorophyll, nitrogen and leaf water content are the most essential parameters for paddy crop growth. Ground hyperspectral observations were collected at canopy level during critical growth period of rice by using hand held Spectroradiometer. Chemical analysis was carried out to quantify the total chlorophyll, nitrogen and leaf water content. By exploiting the in-situ hyperspectral measurements, regression models were established between each of the crop growth parameters and the spectral indices specifically designed for chlorophyll, nitrogen and water stress. Narrow band vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the modified simple ratio (SR) and leaf nitrogen concentration (LNC) predictive index models, which followed a linear and nonlinear relationship respectively, produced satisfactory results in predicting rice nitrogen content from hyperspectral imagery. The presently developed model was compared with other models proposed by researchers. It was ascertained that, nitrogen content varied widely from 1-4 percentage and only 2-3 percentage for paddy crop using present modified index models and well-known predicted Tian et al. (2011) model respectively. The modified present LNC index model performed better than the established Tian et al. (2011) model as far as the estimated nitrogen content from Hyperion imagery was concerned. Moreover, within the observed chlorophyll range attained from the rice genotypes cultivated in the studied rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) accomplished satisfactory results in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content widely varied from 1.77-5.81 mg/g (LNC), 3.0-13 mg/g (OASVI) and 2.90-5.40 mg/g (MTCI). Following the similar guideline, it was found that normalized difference water index (NDWI) and normalized difference infrared index (NDII) predictive models demonstrated the spatial variability of leaf water content from 40 percentage to 90 percentage in the same rice agriculture system which has a good agreement with observed in-situ leaf water measurements. The spatial information of these parameters will be useful for crop nutrient management and yield forecasting, and will serve as inputs to various crop-forecasting models for developing a precision rice agriculture system. Key words: Rice agriculture system, nitrogen, chlorophyll, leaf water content, vegetation index

  14. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    NASA Astrophysics Data System (ADS)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  15. Optimization of multi-environment trials for genomic selection based on crop models.

    PubMed

    Rincent, R; Kuhn, E; Monod, H; Oury, F-X; Rousset, M; Allard, V; Le Gouis, J

    2017-08-01

    We propose a statistical criterion to optimize multi-environment trials to predict genotype × environment interactions more efficiently, by combining crop growth models and genomic selection models. Genotype × environment interactions (GEI) are common in plant multi-environment trials (METs). In this context, models developed for genomic selection (GS) that refers to the use of genome-wide information for predicting breeding values of selection candidates need to be adapted. One promising way to increase prediction accuracy in various environments is to combine ecophysiological and genetic modelling thanks to crop growth models (CGM) incorporating genetic parameters. The efficiency of this approach relies on the quality of the parameter estimates, which depends on the environments composing this MET used for calibration. The objective of this study was to determine a method to optimize the set of environments composing the MET for estimating genetic parameters in this context. A criterion called OptiMET was defined to this aim, and was evaluated on simulated and real data, with the example of wheat phenology. The MET defined with OptiMET allowed estimating the genetic parameters with lower error, leading to higher QTL detection power and higher prediction accuracies. MET defined with OptiMET was on average more efficient than random MET composed of twice as many environments, in terms of quality of the parameter estimates. OptiMET is thus a valuable tool to determine optimal experimental conditions to best exploit MET and the phenotyping tools that are currently developed.

  16. Calibration of Daycent biogeochemical model for rice paddies in three agro-ecological zones in Peninsular India to optimize cropping practices and predict GHG emissions

    NASA Astrophysics Data System (ADS)

    Rajan, S.; Kritee, K.; Keough, C.; Parton, W. J.; Ogle, S. M.

    2014-12-01

    Rice is a staple for nearly half of the world population with irrigated and rainfed lowland rice accounting for about 80% of the worldwide harvested rice area. Increased atmospheric CO2 and rising temperatures are expected to adversely affect rice yields by the end of the 21st century. In addition, different crop management practices affect methane and nitrous oxide emissions from rice paddies antagonistically warranting a review of crop management practices such that farmers can adapt to the changing climate and also help mitigate climate change. The Daily DayCent is a biogeochemical model that operates on a daily time step, driven by four ecological drivers, i.e. climate, soil, vegetation, and management practices. The model is widely used to simulate daily fluxes of various gases, plant productivity, nutrient availability, and other ecosystem parameters in response to changes in land management and climate. We employed the DayCent model as a tool to optimize rice cropping practices in Peninsular India so as to develop a set of farming recommendations to ensure a triple win (i.e. higher yield, higher profit and lower GHG emissions). We applied the model to simulate both N2O and CH4 emissions, and crop yields from four rice paddies in three different agro-ecological zones under different management practices, and compared them with measured GHG and yield data from these plots. We found that, like all process based models, the biggest constraint in using the model was input data acquisition. Lack of accurate documentation of historic land use and management practices, missing historical daily weather data, and difficulty in obtaining digital records of soil and crop/vegetation parameters related to our experimental plots came in the way of our execution of this model. We will discuss utilization of estimates based on available literature, or knowledge-based values in lieu of missing measured parameters in our simulations with DayCent which could prove to be a solution to overcome data limitations in modeling with DayCent and other process based models for developing regions of the world.

  17. Quasi 3D modelling of water flow in the sandy soil

    NASA Astrophysics Data System (ADS)

    Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim

    2016-04-01

    Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic parameters showed that changes in soil water content are mainly affected by the soil saturated hydraulic conductivity Ks in a two-layered soil. Results demonstrated the large spatial variability of Ks (CV = 86.21%). A significant negative correlation was found between ln Ks and ECa (r = 0.83; P≤0.01). This site-specific relation between ln Ks and ECa was used to predict Ks for the whole field after validation using an independent dataset of measured Ks. Result showed that this approach can accurately determine the field scale irrigation requirements, taking into account variations in boundary conditions and spatial variations of model parameters across the field. We found that uniform distribution of water using standard gun sprinkler irrigation is not an efficient approach since at locations with shallow groundwater, the amount of water applied will be excessive as compared to the crop requirements, while in locations with a deeper groundwater table, the crop irrigation requirements will not be met during crop water stress. Numerical results showed that optimal irrigation scheduling using the aforementioned water stress calculations can save up to ~25% irrigation water as compared to the current irrigation regime. This resulted in a yield increase of ~7%, simulated by the crop growth model.

  18. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some results of analyzing water stress during growing season of 2012 and yielded biomass of crops three types of crops alfalfa, corn and soya irrigated by sprinkling machines at left bank of Volga River at Saratov Region of Russia are presented and analyzed. For that a combination of data received from satellite, local meteorological station and farmers as well as SWAP model was used. Analyze of data sets of monitored water deficit of each crop averaged for irrigation period was done by linear regression with yielded biomass values. Following analyze of effectiveness of irrigation water application was done by SWAP agrohydrological model.

  19. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    USGS Publications Warehouse

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently, in the response of agricultural systems.

  20. Distribution Development for STORM Ingestion Input Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John

    The Sandia-developed Transport of Radioactive Materials (STORM) code suite is used as part of the Radioisotope Power System Launch Safety (RPSLS) program to perform statistical modeling of the consequences due to release of radioactive material given a launch accident. As part of this modeling, STORM samples input parameters from probability distributions with some parameters treated as constants. This report described the work done to convert four of these constant inputs (Consumption Rate, Average Crop Yield, Cropland to Landuse Database Ratio, and Crop Uptake Factor) to sampled values. Consumption rate changed from a constant value of 557.68 kg / yr tomore » a normal distribution with a mean of 102.96 kg / yr and a standard deviation of 2.65 kg / yr. Meanwhile, Average Crop Yield changed from a constant value of 3.783 kg edible / m 2 to a normal distribution with a mean of 3.23 kg edible / m 2 and a standard deviation of 0.442 kg edible / m 2 . The Cropland to Landuse Database ratio changed from a constant value of 0.0996 (9.96%) to a normal distribution with a mean value of 0.0312 (3.12%) and a standard deviation of 0.00292 (0.29%). Finally the crop uptake factor changed from a constant value of 6.37e -4 (Bq crop /kg)/(Bq soil /kg) to a lognormal distribution with a geometric mean value of 3.38e -4 (Bq crop /kg)/(Bq soil /kg) and a standard deviation value of 3.33 (Bq crop /kg)/(Bq soil /kg)« less

  1. OVoG Inversion for the Retrieval of Agricultural Crop Structure by Means of Multi-Baseline Polarimetric SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Pichierri, Manuele; Hajnsek, Irena

    2015-04-01

    In this work, the potential of multi-baseline Pol-InSAR for crop parameter estimation (e.g. crop height and extinction coefficients) is explored. For this reason, a novel Oriented Volume over Ground (OVoG) inversion scheme is developed, which makes use of multi-baseline observables to estimate the whole stack of model parameters. The proposed algorithm has been initially validated on a set of randomly-generated OVoG scenarios, to assess its stability over crop structure changes and its robustness against volume decorrelation and other decorrelation sources. Then, it has been applied to a collection of multi-baseline repeat-pass SAR data, acquired over a rural area in Germany by DLR's F-SAR.

  2. Early warning and crop condition assessment research

    NASA Technical Reports Server (NTRS)

    Boatwright, G. O.; Whitehead, V. S.

    1986-01-01

    The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.

  3. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng

    2007-10-01

    Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.

  4. Identifying traits for genotypic adaptation using crop models.

    PubMed

    Ramirez-Villegas, Julian; Watson, James; Challinor, Andrew J

    2015-06-01

    Genotypic adaptation involves the incorporation of novel traits in crop varieties so as to enhance food productivity and stability and is expected to be one of the most important adaptation strategies to future climate change. Simulation modelling can provide the basis for evaluating the biophysical potential of crop traits for genotypic adaptation. This review focuses on the use of models for assessing the potential benefits of genotypic adaptation as a response strategy to projected climate change impacts. Some key crop responses to the environment, as well as the role of models and model ensembles for assessing impacts and adaptation, are first reviewed. Next, the review describes crop-climate models can help focus the development of future-adapted crop germplasm in breeding programmes. While recently published modelling studies have demonstrated the potential of genotypic adaptation strategies and ideotype design, it is argued that, for model-based studies of genotypic adaptation to be used in crop breeding, it is critical that modelled traits are better grounded in genetic and physiological knowledge. To this aim, two main goals need to be pursued in future studies: (i) a better understanding of plant processes that limit productivity under future climate change; and (ii) a coupling between genetic and crop growth models-perhaps at the expense of the number of traits analysed. Importantly, the latter may imply additional complexity (and likely uncertainty) in crop modelling studies. Hence, appropriately constraining processes and parameters in models and a shift from simply quantifying uncertainty to actually quantifying robustness towards modelling choices are two key aspects that need to be included into future crop model-based analyses of genotypic adaptation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Root zone water quality model (RZWQM2): Model use, calibration and validation

    USGS Publications Warehouse

    Ma, Liwang; Ahuja, Lajpat; Nolan, B.T.; Malone, Robert; Trout, Thomas; Qi, Z.

    2012-01-01

    The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model, it has many desirable features for the modeling community. This article outlines the principles of calibrating the model component by component with one or more datasets and validating the model with independent datasets. Users should consult the RZWQM2 user manual distributed along with the model and a more detailed protocol on how to calibrate RZWQM2 provided in a book chapter. Two case studies (or examples) are included in this article. One is from an irrigated maize study in Colorado to illustrate the use of field and laboratory measured soil hydraulic properties on simulated soil water and crop production. It also demonstrates the interaction between soil and plant parameters in simulated plant responses to water stresses. The other is from a maize-soybean rotation study in Iowa to show a manual calibration of the model for crop yield, soil water, and N leaching in tile-drained soils. Although the commonly used trial-and-error calibration method works well for experienced users, as shown in the second example, an automated calibration procedure is more objective, as shown in the first example. Furthermore, the incorporation of the Parameter Estimation Software (PEST) into RZWQM2 made the calibration of the model more efficient than a grid (ordered) search of model parameters. In addition, PEST provides sensitivity and uncertainty analyses that should help users in selecting the right parameters to calibrate.

  6. Uncertainty in simulating wheat yields under climate change

    NASA Astrophysics Data System (ADS)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P. J.; Rötter, R. P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P. K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Osborne, T. M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J. W.; Williams, J. R.; Wolf, J.

    2013-09-01

    Projections of climate change impacts on crop yields are inherently uncertain. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.

  7. An experimental test of plant canopy reflectance models on cotton

    NASA Technical Reports Server (NTRS)

    Lemaster, E. W.

    1974-01-01

    Extensive data on the plant parameters necessary to evaluate any model are presented for a cotton crop. The variation of the bidirectional reflectance function with observer altitude, observer azimuth, and sun altitude angle is presented for a high density cotton crop having leaf index of 19. A comparison with the quantitative behavior obtained from the Suits model is accomplished in the wavelength region from 400 nm to 1050 nm.

  8. Growing C4 perennial grass for bioenergy using a new Agro-BGC ecosystem model

    NASA Astrophysics Data System (ADS)

    di Vittorio, A. V.; Anderson, R. S.; Miller, N. L.; Running, S. W.

    2009-12-01

    Accurate, spatially gridded estimates of bioenergy crop yields require 1) biophysically accurate crop growth models and 2) careful parameterization of unavailable inputs to these models. To meet the first requirement we have added the capacity to simulate C4 perennial grass as a bioenergy crop to the Biome-BGC ecosystem model. This new model, hereafter referred to as Agro-BGC, includes enzyme driven C4 photosynthesis, individual live and dead leaf, stem, and root carbon/nitrogen pools, separate senescence and litter fall processes, fruit growth, optional annual seeding, flood irrigation, a growing degree day phenology with a killing frost option, and a disturbance handler that effectively simulates fertilization, harvest, fire, and incremental irrigation. There are four Agro-BGC vegetation parameters that are unavailable for Panicum virgatum (switchgrass), and to meet the second requirement we have optimized the model across multiple calibration sites to obtain representative values for these parameters. We have verified simulated switchgrass yields against observations at three non-calibration sites in IL. Agro-BGC simulates switchgrass growth and yield at harvest very well at a single site. Our results suggest that a multi-site optimization scheme would be adequate for producing regional-scale estimates of bioenergy crop yields on high spatial resolution grids.

  9. A data-oriented semi-process model for evaluating the yields of major crops at global scale (PRYSBI-2)

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2013-12-01

    Demand for major cereal crops will double by 2050 compared to the amount in 2005 due to the population growth, dietary change, and increase in biofuel use. This requires substantial efforts to increase crop yields under changing climate, water resources, and land use. In order to explore possible paths to meet the supply target, global crop modeling is a useful approach. To that end, we developed a process-based large-area crop model (called PRYSBIE-2) for major crops, including soybean. This model consisted of the enzyme kinetics model for photosynthetic carbon assimilation and soil water balance model from SWAT. The parameter values on water stress, nitrogen stress were calibrated over global croplands from one grid cell to another (1.125° in latitude and longitude) using Markov Chain Monte Carlo (MCMC) methods. The historical yield data collected from major crop-producing countries on a state, county, or prefecture scale were used as the calibration data. Then we obtained the model parameter sets that can give high correlation coefficients between the historical and estimated yield time series for the period 1980-2006. We analyzed the impacts on soybean yields in the three top soybean-producing countries (the USA, China, and Brazil) associated with the changes in climate and CO2 during the period 1980-2006, using the model. We found that, given the simulated yields and reported harvested areas, the estimated average net benefit from the CO2 fertilization effect (with one standard deviation) in the USA, Brazil, and China in the years was 42.70×32.52 Mt, 35.30×28.55 Mt, and 12.52×15.11 Mt, respectively. Results suggest that the CO2-induced increases in soybean yields in the USA and China likely offset a part of the negative impacts on yields due to the historical temperature rise. In contrast, the net effect of the past change in climate and CO2 in Brazil appeared to be positive. This study demonstrates a quantitative estimation of the impacts of the changes in climate and CO2 during the past few decades using a new global crop model.

  10. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated hydrologic simulation provides a valuable addition for hydrologic modelling as well as for crop modelling.

  11. An Intelligent Crop Planning Tool for Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Laura O.; Leon, Jorge

    1996-01-01

    This paper describes a crop planning tool developed for the Controlled Ecological Life Support Systems (CELSS) project which is in the research phases at various NASA facilities. The Crop Planning Tool was developed to assist in the understanding of the long term applications of a CELSS environment. The tool consists of a crop schedule generator as well as a crop schedule simulator. The importance of crop planning tools such as the one developed is discussed. The simulator is outlined in detail while the schedule generator is touched upon briefly. The simulator consists of data inputs, plant and human models, and various other CELSS activity models such as food consumption and waste regeneration. The program inputs such as crew data and crop states are discussed. References are included for all nominal parameters used. Activities including harvesting, planting, plant respiration, and human respiration are discussed using mathematical models. Plans provided to the simulator by the plan generator are evaluated for their 'fitness' to the CELSS environment with an objective function based upon daily reservoir levels. Sample runs of the Crop Planning Tool and future needs for the tool are detailed.

  12. An Empirical Bayes Approach to Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Morris, C. N.; Kostal, H.

    1983-01-01

    Multi-channel LANDSAT data are collected in several passes over agricultural areas during the growing season. How empirical Bayes modeling can be used to develop crop identification and discrimination techniques that account for spatial correlation in such data is considered. The approach models the unobservable parameters and the data separately, hoping to take advantage of the fact that the bulk of spatial correlation lies in the parameter process. The problem is then framed in terms of estimating posterior probabilities of crop types for each spatial area. Some empirical Bayes spatial estimation methods are used to estimate the logits of these probabilities.

  13. Modelling and Evaluation of Non-Linear Rootwater Uptake for Winter Cropping of Wheat and Berseem

    NASA Astrophysics Data System (ADS)

    GS, K.; Prasad, K. S. H.

    2017-12-01

    The plant water uptake is significant for study to monitor the irrigation supplied to the plant. The Richards equation has been the key governing equation to quantify the root water uptake in the vadose zone and it takes all the sources and sink terms into consideration. The β parameter or the non linearity parameter is used in this modeling to bring the non linearity in the plant root water uptake. The soil parameters are obtained by experimentation and are employed in the Van-Genuchten equation for soil moisture study. Field experiments were carried out at Civil Engineering Department IIT Roorkee, Uttarakhand, India, during the winter season of 2013 and 2014 for berseem and 2016 for wheat as per the local cropping practices. Drainage type lysimeters were installed to study the soil water balance. Soil moisture was monitored using profile probe. Precipitation and all meteorological data were obtained from the nearby gauges located at the National Institute of Hydrology, Roorkee.The moisture data and the deep percolation data were collected on a daily basis and the irrigation supply was controlled and monitored to satisfy the moisture requirements of the crops respectively.In order to study the effect of water scarcity on the crops, the plot was divided and deficited irrigation was applied for the second cropping season for Berseem.The yields for both the seasons was also measured. The solution of Richards equation as applied to the moisture movement in the root zone was modeled. For estimation of root water uptake, the governing equation is the one-dimensional mixed form of Richards' equation is employed (Ji et al., 2007; Shankar et al., 2012).The sink term in the model accounts for the root water uptake, which is utilized by the plant for transpiration. Smaxor the maximum root water uptake for the root zone on a given day must be equal to the maximum transpiration on the corresponding day The model computed moisture content and pressure head is calibrated with the measured soil water content in the crop root zone. The Model output is compared with the output of the HYDRUS 1D software package. The complete calibrated model is now employed to determine the irrigation requirement of crops for a known initial moisture content and available precipitation and can be useful for economical agriculture in the semi-arid regions of India.

  14. Automatic corn-soybean classification using Landsat MSS data. I - Near-harvest crop proportion estimation. II - Early season crop proportion estimation

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1984-01-01

    The techniques used initially for the identification of cultivated crops from Landsat imagery depended greatly on the iterpretation of film products by a human analyst. This approach was not very effective and objective. Since 1978, new methods for crop identification are being developed. Badhwar et al. (1982) showed that multitemporal-multispectral data could be reduced to a simple feature space of alpha and beta and that these features would separate corn and soybean very well. However, there are disadvantages related to the use of alpha and beta parameters. The present investigation is concerned with a suitable method for extracting the required features. Attention is given to a profile model for crop discrimination, corn-soybean separation using profile parameters, and an automatic labeling (target recognition) method. The developed technique is extended to obtain a procedure which makes it possible to estimate the crop proportion of corn and soybean from Landsat data early in the growing season.

  15. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    NASA Astrophysics Data System (ADS)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop functional types in JULES are necessary. The model will thus contribute to a complete understanding of the impacts of climate change on food production. JULES will be later coupled with the Unified Model to quantify the impact of tropospheric O3 on crops productivity including feedbacks between the land-surface, atmospheric chemistry and climate change.

  16. Global Sensitivity Analysis for Large-scale Socio-hydrological Models using the Cloud

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Garcia-Cabrejo, O.; Cai, X.; Valocchi, A. J.; Dupont, B.

    2014-12-01

    In the context of coupled human and natural system (CHNS), incorporating human factors into water resource management provides us with the opportunity to understand the interactions between human and environmental systems. A multi-agent system (MAS) model is designed to couple with the physically-based Republican River Compact Administration (RRCA) groundwater model, in an attempt to understand the declining water table and base flow in the heavily irrigated Republican River basin. For MAS modelling, we defined five behavioral parameters (κ_pr, ν_pr, κ_prep, ν_prep and λ) to characterize the agent's pumping behavior given the uncertainties of the future crop prices and precipitation. κ and ν describe agent's beliefs in their prior knowledge of the mean and variance of crop prices (κ_pr, ν_pr) and precipitation (κ_prep, ν_prep), and λ is used to describe the agent's attitude towards the fluctuation of crop profits. Notice that these human behavioral parameters as inputs to the MAS model are highly uncertain and even not measurable. Thus, we estimate the influences of these behavioral parameters on the coupled models using Global Sensitivity Analysis (GSA). In this paper, we address two main challenges arising from GSA with such a large-scale socio-hydrological model by using Hadoop-based Cloud Computing techniques and Polynomial Chaos Expansion (PCE) based variance decomposition approach. As a result, 1,000 scenarios of the coupled models are completed within two hours with the Hadoop framework, rather than about 28days if we run those scenarios sequentially. Based on the model results, GSA using PCE is able to measure the impacts of the spatial and temporal variations of these behavioral parameters on crop profits and water table, and thus identifies two influential parameters, κ_pr and λ. The major contribution of this work is a methodological framework for the application of GSA in large-scale socio-hydrological models. This framework attempts to find a balance between the heavy computational burden regarding model execution and the number of model evaluations required in the GSA analysis, particularly through an organic combination of Hadoop-based Cloud Computing to efficiently evaluate the socio-hydrological model and PCE where the sensitivity indices are efficiently estimated from its coefficients.

  17. Estimating crop net primary production using inventory data and MODIS-derived parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois inmore » years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.« less

  18. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Moharana, Shreedevi; Dutta, Subashisa

    2016-12-01

    Chlorophyll and nitrogen are the most essential parameters for paddy crop growth. Spectroradiometric measurements were collected at canopy level during critical growth period of rice. Chemical analysis was performed to quantify the total leaf content. By exploiting the ground based measurements, regression models were established for chlorophyll and nitrogen aimed indices with their corresponding crop growth variables. Vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the present Simple Ratio (SR) and Leaf Nitrogen Concentration (LNC) indices, which followed a linear and nonlinear relationship respectively, were completely different from published Tian et al. (2011). The nitrogen content varied widely from 1 to 4% and only 2 to 3% for paddy crop using present modified index models and Tian et al. (2011) respectively. The modified LNC index model performed better than the established Tian et al. (2011) model as far as estimated nitrogen content from Hyperion imagery was concerned. Furthermore, within the observed chlorophyll range obtained from the studied rice varieties grown in the rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) performed well in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content varied widely from 1.77 to 5.81 mg/g (LNC), 3.0 to 13 mg/g (OASVI), 0.5 to 10.43 mg/g (Gitelson), 2.18 to 10.61 mg/g (mSR) and 2.90 to 5.40 mg/g (MTCI). The spatial information of these parameters will help in proper nutrient management, yield forecasting, and will serve as inputs for crop growth and forecasting models for a precision rice agriculture system.

  19. Large Area Crop Inventory Experiment (LACIE). Feasibility of assessing crop condition and yield from LANDSAT data

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. Yield modelling for crop production estimation derived a means of predicting the within-a-year yield and the year-to-year variability of yield over some fixed or randomly located unit of area. Preliminary studies indicated that the requirements for interpreting LANDSAT data for yield may be sufficiently similar to those of signature extension that it is feasible to investigate the automated estimation of production. The concept of an advanced yield model consisting of both spectral and meteorological components was endorsed. Rationale for using meteorological parameters originated from known between season and near harvest dynamics in crop environmental-condition-yield relationships.

  20. Parameter-induced uncertainty quantification of crop yields, soil N2O and CO2 emission for 8 arable sites across Europe using the LandscapeDNDC model

    NASA Astrophysics Data System (ADS)

    Santabarbara, Ignacio; Haas, Edwin; Kraus, David; Herrera, Saul; Klatt, Steffen; Kiese, Ralf

    2014-05-01

    When using biogeochemical models to estimate greenhouse gas emissions at site to regional/national levels, the assessment and quantification of the uncertainties of simulation results are of significant importance. The uncertainties in simulation results of process-based ecosystem models may result from uncertainties of the process parameters that describe the processes of the model, model structure inadequacy as well as uncertainties in the observations. Data for development and testing of uncertainty analisys were corp yield observations, measurements of soil fluxes of nitrous oxide (N2O) and carbon dioxide (CO2) from 8 arable sites across Europe. Using the process-based biogeochemical model LandscapeDNDC for simulating crop yields, N2O and CO2 emissions, our aim is to assess the simulation uncertainty by setting up a Bayesian framework based on Metropolis-Hastings algorithm. Using Gelman statistics convergence criteria and parallel computing techniques, enable multi Markov Chains to run independently in parallel and create a random walk to estimate the joint model parameter distribution. Through means distribution we limit the parameter space, get probabilities of parameter values and find the complex dependencies among them. With this parameter distribution that determines soil-atmosphere C and N exchange, we are able to obtain the parameter-induced uncertainty of simulation results and compare them with the measurements data.

  1. Crop biomass and evapotranspiration estimation using SPOT and Formosat-2 Data

    NASA Astrophysics Data System (ADS)

    Veloso, Amanda; Demarez, Valérie; Ceschia, Eric; Claverie, Martin

    2013-04-01

    The use of crop models allows simulating plant development, growth and yield under different environmental and management conditions. When combined with high spatial and temporal resolution remote sensing data, these models provide new perspectives for crop monitoring at regional scale. We propose here an approach to estimate time courses of dry aboveground biomass, yield and evapotranspiration (ETR) for summer (maize, sunflower) and winter crops (wheat) by assimilating Green Area Index (GAI) data, obtained from satellite observations, into a simple crop model. Only high spatial resolution and gap-free satellite time series can provide enough information for efficient crop monitoring applications. The potential of remote sensing data is often limited by cloud cover and/or gaps in observation. Data from different sensor systems need then to be combined. For this work, we employed a unique set of Formosat-2 and SPOT images (164 images) and in-situ measurements, acquired from 2006 to 2010 in southwest France. Among the several land surface biophysical variables accessible from satellite observations, the GAI is the one that has a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Many methods have been developed to relate GAI to optical remote sensing signal. Here, seasonal dynamics of remotely sensed GAI were estimated by applying a method based on the inversion of a radiative transfer model using artificial neural networks. The modelling approach is based on the Simple Algorithm for Yield and Evapotranspiration estimate (SAFYE) model, which couples the FAO-56 model with an agro-meteorological model, based on Monteith's light-use efficiency theory. The SAFYE model is a daily time step crop model that simulates time series of GAI, dry aboveground biomass, grain yield and ETR. Crop and soil model parameters were determined using both in-situ measurements and values found in the literature. Phenological parameters were calibrated by the assimilation of the remotely sensed GAI time series. The calibration process led to accurate spatial estimates of GAI, ETR as well as of biomass and yield over the study area (24 km x 24 km window). The results highlight the interest of using a combined approach (crop model coupled with high spatial and temporal resolution remote sensing data) for the estimation of agronomical variables. At local scale, the model reproduced correctly the biomass production and ETR for summer crops (with relative RMSE of 29% and 35%, respectively). At regional scale, estimated yield and water requirement for irrigation were compared to regional statistics of yield and irrigation inventories provided by the local water agency. Results showed good agreements for inter-annual dynamics of yield estimates. Differences between water requirement for irrigation and actual supply were lower than 10% and inter-annual variability was well represented as well. The work, initially focused on summer crops, is being adapted to winter crops.

  2. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    USGS Publications Warehouse

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  3. Uncertainty in Simulating Wheat Yields Under Climate Change

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.; hide

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

  4. Assessment of Climate Suitability of Maize in South Korea

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Choi, D.; Seo, B.

    2017-12-01

    Assessing suitable areas for crops would be useful to design alternate cropping systems as an adaptation option to climate change adaptation. Although suitable areas could be identified by using a crop growth model, it would require a number of input parameters including cultivar and soil. Instead, a simple climate suitability model, e.g., EcoCrop model, could be used for an assessment of climate suitability for a major grain crop. The objective of this study was to assess of climate suitability for maize using the EcoCrop model under climate change conditions in Korea. A long term climate data from 2000 - 2100 were compiled from weather data source. The EcoCrop model implemented in R was used to determine climate suitability index at each grid cell. Overall, the EcoCrop model tended to identify suitable areas for maize production near the coastal areas whereas the actual major production areas located in inland areas. It is likely that the discrepancy between assessed and actual crop production areas would result from the socioeconomic aspects of maize production. Because the price of maize is considerably low, maize has been grown in an area where moisture and temperature conditions would be less than optimum. In part, a simple algorithm to predict climate suitability for maize would caused a relatively large error in climate suitability assessment under the present climate conditions. In 2050s, the climate suitability for maize increased in a large areas in southern and western part of Korea. In particular, the plain areas near the coastal region had considerably greater suitability index in the future compared with mountainous areas. The expansion of suitable areas for maize would help crop production policy making such as the allocation of rice production area for other crops due to considerably less demand for the rice in Korea.

  5. CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: estimates from flux tower measurements

    USGS Publications Warehouse

    Gilmanov, Tagir; Wylie, Bruce; Tieszen, Larry; Meyers, Tilden P.; Baron, Vern S.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Fischer, Marc L.; Glenn, Aaron J.; Hanan, Niall P.; Hatfield, Jerry L.; Heuer, Mark W.; Hollinger, Steven E.; Howard, Daniel M.; Matamala, Roser; Prueger, John H.; Tenuta, Mario; Young, David G.

    2013-01-01

    We analyzed net CO2 exchange data from 13 flux tower sites with 27 site-years of measurements over maize and wheat fields across midcontinent North America. A numerically robust “light-soil temperature-VPD”-based method was used to partition the data into photosynthetic assimilation and ecosystem respiration components. Year-round ecosystem-scale ecophysiological parameters of apparent quantum yield, photosynthetic capacity, convexity of the light response, respiration rate parameters, ecological light-use efficiency, and the curvature of the VPD-response of photosynthesis for maize and wheat crops were numerically identified and interpolated/extrapolated. This allowed us to gap-fill CO2 exchange components and calculate annual totals and budgets. VPD-limitation of photosynthesis was systematically observed in grain crops of the region (occurring from 20 to 120 days during the growing season, depending on site and year), determined by the VPD regime and the numerical value of the curvature parameter of the photosynthesis-VPD-response, σVPD. In 78% of the 27 site-years of observations, annual gross photosynthesis in these crops significantly exceeded ecosystem respiration, resulting in a net ecosystem production of up to 2100 g CO2 m−2 year−1. The measurement-based photosynthesis, respiration, and net ecosystem production data, as well as the estimates of the ecophysiological parameters, provide an empirical basis for parameterization and validation of mechanistic models of grain crop production in this economically and ecologically important region of North America.

  6. Trade-off between disease resistance and crop yield: a landscape-scale mathematical modelling perspective.

    PubMed

    Vyska, Martin; Cunniffe, Nik; Gilligan, Christopher

    2016-10-01

    The deployment of crop varieties that are partially resistant to plant pathogens is an important method of disease control. However, a trade-off may occur between the benefits of planting the resistant variety and a yield penalty, whereby the standard susceptible variety outyields the resistant one in the absence of disease. This presents a dilemma: deploying the resistant variety is advisable only if the disease occurs and is sufficient for the resistant variety to outyield the infected standard variety. Additionally, planting the resistant variety carries with it a further advantage in that the resistant variety reduces the probability of disease invading. Therefore, viewed from the perspective of a grower community, there is likely to be an optimal trade-off and thus an optimal cropping density for the resistant variety. We introduce a simple stochastic, epidemiological model to investigate the trade-off and the consequences for crop yield. Focusing on susceptible-infected-removed epidemic dynamics, we use the final size equation to calculate the surviving host population in order to analyse the yield, an approach suitable for rapid epidemics in agricultural crops. We identify a single compound parameter, which we call the efficacy of resistance and which incorporates the changes in susceptibility, infectivity and durability of the resistant variety. We use the compound parameter to inform policy plots that can be used to identify the optimal strategy for given parameter values when an outbreak is certain. When the outbreak is uncertain, we show that for some parameter values planting the resistant variety is optimal even when it would not be during the outbreak. This is because the resistant variety reduces the probability of an outbreak occurring. © 2016 The Author(s).

  7. Simulating the fate of water in field soil crop environment

    NASA Astrophysics Data System (ADS)

    Cameira, M. R.; Fernando, R. M.; Ahuja, L.; Pereira, L.

    2005-12-01

    This paper presents an evaluation of the Root Zone Water Quality Model(RZWQM) for assessing the fate of water in the soil-crop environment at the field scale under the particular conditions of a Mediterranean region. The RZWQM model is a one-dimensional dual porosity model that allows flow in macropores. It integrates the physical, biological and chemical processes occurring in the root zone, allowing the simulation of a wide spectrum of agricultural management practices. This study involved the evaluation of the soil, hydrologic and crop development sub-models within the RZWQM for two distinct agricultural systems, one consisting of a grain corn planted in a silty loam soil, irrigated by level basins and the other a forage corn planted in a sandy soil, irrigated by sprinklers. Evaluation was performed at two distinct levels. At the first level the model capability to fit the measured data was analyzed (calibration). At the second level the model's capability to extrapolate and predict the system behavior for conditions different than those used when fitting the model was assessed (validation). In a subsequent paper the same type of evaluation is presented for the nitrogen transformation and transport model. At the first level a change in the crop evapotranspiration (ETc) formulation was introduced, based upon the definition of the effective leaf area, resulting in a 51% decrease in the root mean square error of the ETc simulations. As a result the simulation of the root water uptake was greatly improved. A new bottom boundary condition was implemented to account for the presence of a shallow water table. This improved the simulation of the water table depths and consequently the soil water evolution within the root zone. The soil hydraulic parameters and the crop variety specific parameters were calibrated in order to minimize the simulation errors of soil water and crop development. At the second level crop yield was predicted with an error of 1.1 and 2.8% for grain and forage corn, respectively. Soil water was predicted with an efficiency ranging from 50 to 95% for the silty loam soil and between 56 and 72% for the sandy soil. The purposed calibration procedure allowed the model to predict crop development, yield and the water balance terms, with accuracy that is acceptable in practical applications for complex and spatially variable field conditions. An iterative method was required to account for the strong interaction between the different model components, based upon detailed experimental data on soils and crops.

  8. Climate Change for Agriculture, Forest Cover and 3d Urban Models

    NASA Astrophysics Data System (ADS)

    Kapoor, M.; Bassir, D.

    2014-11-01

    This research demonstrates the important role of the remote sensing in finding out the different parameters behind the agricultural crop change, forest cover and urban 3D models. Standalone software is developed to view and analysis the different factors effecting the change in crop productions. Open-source libraries from the Open Source Geospatial Foundation have been used for the development of the shape-file viewer. Software can be used to get the attribute information, scale, zoom in/out and pan the shapefiles. Environmental changes due to pollution and population that are increasing the urbanisation and decreasing the forest cover on the earth. Satellite imagery such as Landsat 5(1984) to Landsat TRIS/8 (2014), Landsat Data Continuity Mission (LDCM) and NDVI are used to analyse the different parameters that are effecting the agricultural crop production change and forest change. It is advisable for the development of good quality of NDVI and forest cover maps to use data collected from the same processing methods for the complete region. Management practices have been developed from the analysed data for the betterment of the crop and saving the forest cover

  9. Spatial estimation from remotely sensed data via empirical Bayes models

    NASA Technical Reports Server (NTRS)

    Hill, J. R.; Hinkley, D. V.; Kostal, H.; Morris, C. N.

    1984-01-01

    Multichannel satellite image data, available as LANDSAT imagery, are recorded as a multivariate time series (four channels, multiple passovers) in two spatial dimensions. The application of parametric empirical Bayes theory to classification of, and estimating the probability of, each crop type at each of a large number of pixels is considered. This theory involves both the probability distribution of imagery data, conditional on crop types, and the prior spatial distribution of crop types. For the latter Markov models indexed by estimable parameters are used. A broad outline of the general theory reveals several questions for further research. Some detailed results are given for the special case of two crop types when only a line transect is analyzed. Finally, the estimation of an underlying continuous process on the lattice is discussed which would be applicable to such quantities as crop yield.

  10. Dependence of spectral characteristics on parameters describing CO2 exchange between crop species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Uździcka, Bogna; Stróżecki, Marcin; Urbaniak, Marek; Juszczak, Radosław

    2017-07-01

    The aim of this paper is to demonstrate that spectral vegetation indices are good indicators of parameters describing the intensity of CO2 exchange between crops and the atmosphere. Measurements were conducted over 2011-2013 on plots of an experimental arable station on winter wheat, winter rye, spring barley, and potatoes. CO2 fluxes were measured using the dynamic closed chamber system, while spectral vegetation indices were determined using SKYE multispectral sensors. Based on spectral data collected in 2011 and 2013, various models to estimate net ecosystem productivity and gross ecosystem productivity were developed. These models were then verified based on data collected in 2012. The R2 for the best model based on spectral data ranged from 0.71 to 0.83 and from 0.78 to 0.92, for net ecosystem productivity and gross ecosystem productivity, respectively. Such high R2 values indicate the utility of spectral vegetation indices in estimating CO2 fluxes of crops. The effects of the soil background turned out to be an important factor decreasing the accuracy of the tested models.

  11. Using Bayesian methods to predict climate impacts on groundwater availability and agricultural production in Punjab, India

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Devineni, N.; Lall, U.

    2015-12-01

    Lasting success of the Green Revolution in Punjab, India relies on continued availability of local water resources. Supplying primarily rice and wheat for the rest of India, Punjab supports crop irrigation with a canal system and groundwater, which is vastly over-exploited. The detailed data required to physically model future impacts on water supplies agricultural production is not readily available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements for an under-constrained mass balance model. Using measured values of historical precipitation, total canal water delivery, crop yield, and water table elevation, we present a method using a Markov chain Monte Carlo (MCMC) algorithm to solve for a distribution of values for each unknown parameter in a conceptual mass balance model. Due to heterogeneity across the state, and the resolution of input data, we estimate model parameters at the district-scale using spatial pooling. The resulting model is used to predict the impact of precipitation change scenarios on groundwater availability under multiple cropping options. Predicted groundwater declines vary across the state, suggesting that crop selection and water management strategies should be determined at a local scale. This computational method can be applied in data-scarce regions across the world, where water resource management is required to resolve competition between food security and available resources in a changing climate.

  12. Estimating parametric phenotypes that determine anthesis date in zea mays: Challenges in combining ecophysiological models with genetics

    USDA-ARS?s Scientific Manuscript database

    Ecophysiological crop models encode intra-species behaviors using parameters that are presumed to summarize genotypic properties of individual lines or cultivars. These genotype-specific parameters (GSP’s) can be interpreted as quantitative traits that can be mapped or otherwise analyzed, as are mor...

  13. MY SIRR: Minimalist agro-hYdrological model for Sustainable IRRigation management-Soil moisture and crop dynamics

    NASA Astrophysics Data System (ADS)

    Albano, Raffaele; Manfreda, Salvatore; Celano, Giuseppe

    The paper introduces a minimalist water-driven crop model for sustainable irrigation management using an eco-hydrological approach. Such model, called MY SIRR, uses a relatively small number of parameters and attempts to balance simplicity, accuracy, and robustness. MY SIRR is a quantitative tool to assess water requirements and agricultural production across different climates, soil types, crops, and irrigation strategies. The MY SIRR source code is published under copyleft license. The FOSS approach could lower the financial barriers of smallholders, especially in developing countries, in the utilization of tools for better decision-making on the strategies for short- and long-term water resource management.

  14. Nitrous oxide emissions from cropland: a procedure for calibrating the DayCent biogeochemical model using inverse modelling

    USGS Publications Warehouse

    Rafique, Rashad; Fienen, Michael N.; Parkin, Timothy B.; Anex, Robert P.

    2013-01-01

    DayCent is a biogeochemical model of intermediate complexity widely used to simulate greenhouse gases (GHG), soil organic carbon and nutrients in crop, grassland, forest and savannah ecosystems. Although this model has been applied to a wide range of ecosystems, it is still typically parameterized through a traditional “trial and error” approach and has not been calibrated using statistical inverse modelling (i.e. algorithmic parameter estimation). The aim of this study is to establish and demonstrate a procedure for calibration of DayCent to improve estimation of GHG emissions. We coupled DayCent with the parameter estimation (PEST) software for inverse modelling. The PEST software can be used for calibration through regularized inversion as well as model sensitivity and uncertainty analysis. The DayCent model was analysed and calibrated using N2O flux data collected over 2 years at the Iowa State University Agronomy and Agricultural Engineering Research Farms, Boone, IA. Crop year 2003 data were used for model calibration and 2004 data were used for validation. The optimization of DayCent model parameters using PEST significantly reduced model residuals relative to the default DayCent parameter values. Parameter estimation improved the model performance by reducing the sum of weighted squared residual difference between measured and modelled outputs by up to 67 %. For the calibration period, simulation with the default model parameter values underestimated mean daily N2O flux by 98 %. After parameter estimation, the model underestimated the mean daily fluxes by 35 %. During the validation period, the calibrated model reduced sum of weighted squared residuals by 20 % relative to the default simulation. Sensitivity analysis performed provides important insights into the model structure providing guidance for model improvement.

  15. Crop Yield Simulations Using Multiple Regional Climate Models in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D.; Kafatos, M.; Kim, S.; Kim, J.; Walko, R. L.

    2013-12-01

    Agricultural productivity (described by crop yield) is strongly dependent on climate conditions determined by meteorological parameters (e.g., temperature, rainfall, and solar radiation). California is the largest producer of agricultural products in the United States, but crops in associated arid and semi-arid regions live near their physiological limits (e.g., in hot summer conditions with little precipitation). Thus, accurate climate data are essential in assessing the impact of climate variability on agricultural productivity in the Southwestern United States and other arid regions. To address this issue, we produced simulated climate datasets and used them as input for the crop production model. For climate data, we employed two different regional climate models (WRF and OLAM) using a fine-resolution (8km) grid. Performances of the two different models are evaluated in a fine-resolution regional climate hindcast experiment for 10 years from 2001 to 2010 by comparing them to the North American Regional Reanalysis (NARR) dataset. Based on this comparison, multi-model ensembles with variable weighting are used to alleviate model bias and improve the accuracy of crop model productivity over large geographic regions (county and state). Finally, by using a specific crop-yield simulation model (APSIM) in conjunction with meteorological forcings from the multi-regional climate model ensemble, we demonstrate the degree to which maize yields are sensitive to the regional climate in the Southwestern United States.

  16. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    NASA Astrophysics Data System (ADS)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of climate change on crop productivity in a watershed. The first was carried out by the large-scale crop model alone. The second was carried out by the integrated model of the large-scale crop model and the H08 model. The former projected that changes in temperature and precipitation due to future climate change would give rise to increasing the water stress in crops. Nevertheless, the latter projected that the increasing amount of agricultural water resources in the watershed would supply sufficient amount of water for irrigation, consequently reduce the water stress. The integrated model demonstrated the importance of taking into account the water circulation in watershed when predicting the regional crop production.

  17. Modeling the growth dynamics of four candidate crops for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1987-01-01

    The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.

  18. Estimation of Rice Crop Yields Using Random Forests in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.

    2017-12-01

    Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2.9%, respectively. Although there are several uncertainties attributed to the data quality of input layers, our study demonstrates the promising application of random forests for estimating rice crop yields at the national level in Taiwan. This approach could be transferable to other regions of the world for improving large-scale estimation of rice crop yields.

  19. Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model

    PubMed Central

    Yin, Yunxing; Jiang, Sanyuan; Pers, Charlotta; Yang, Xiaoying; Liu, Qun; Yuan, Jin; Yao, Mingxing; He, Yi; Luo, Xingzhang; Zheng, Zheng

    2016-01-01

    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006–2008) and validation (2009–2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands. PMID:26999184

  20. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Battisti, R.; Sentelhas, P. C.; Boote, K. J.

    2017-12-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha-1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.

  1. Modeling salt movement and halophytic crop growth on marginal lands with the APEX model

    NASA Astrophysics Data System (ADS)

    Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.

    2016-12-01

    Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.

  2. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Battisti, R.; Sentelhas, P. C.; Boote, K. J.

    2018-05-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha-1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.

  3. Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Mearns, Linda O.; Ruane, Alexander C.; Roetter, Reimund P.; Asseng, Senthold

    2016-01-01

    Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.

  4. Probabilistic graphlet transfer for photo cropping.

    PubMed

    Zhang, Luming; Song, Mingli; Zhao, Qi; Liu, Xiao; Bu, Jiajun; Chen, Chun

    2013-02-01

    As one of the most basic photo manipulation processes, photo cropping is widely used in the printing, graphic design, and photography industries. In this paper, we introduce graphlets (i.e., small connected subgraphs) to represent a photo's aesthetic features, and propose a probabilistic model to transfer aesthetic features from the training photo onto the cropped photo. In particular, by segmenting each photo into a set of regions, we construct a region adjacency graph (RAG) to represent the global aesthetic feature of each photo. Graphlets are then extracted from the RAGs, and these graphlets capture the local aesthetic features of the photos. Finally, we cast photo cropping as a candidate-searching procedure on the basis of a probabilistic model, and infer the parameters of the cropped photos using Gibbs sampling. The proposed method is fully automatic. Subjective evaluations have shown that it is preferred over a number of existing approaches.

  5. Exploring the effects of spatial autocorrelation when identifying key drivers of wildlife crop-raiding.

    PubMed

    Songhurst, Anna; Coulson, Tim

    2014-03-01

    Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.

  6. Crop effect to soil moisture retrieval at different microwave frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongjun; Luan, Jinzhe

    2006-12-01

    In soil moisture retrieval by microwave remote sensing technology, vegetation effect is important, due to its emission upward as well as masking the soil surface contribution. Because of good penetration characteristics through crop at low frequencies, L-band is often used, where crop is treated as a uniform layer, and 0 th-order Brightness Temperature model is used. Higher frequencies upper than L-band, the frequencies both on NASA AQUA AMSR-E and FY-3 to be launched next year in CHINA, may be more informative in SM retrieval. The multiple-scattering effects inside crop and that between crop layer and soil surface will be increasing when frequencies go higher from L-band. In this paper, a Matrix-Doubling model that account for multiple-scattering based on ray tracing technique is used to simulate the microwave emission of vegetated-surface at C- and X-band. The orientation and size of crop element such as leaves and cylinders are accounted for in crop layer, and AIEM is used for calculation of ground surface scattering. Simulation results from this model for corn and SGP99 experiment data are in good agreement. Since complicated theoretical model as used in this paper involves too many parameters, to make SM retrieval more directly, corresponding terms from the developed model are matched with 0 th-order,so as to derive effective single scattering albedo and vegetation opacity at C- and X-band.

  7. Examining responses of ecosystem carbon exchange to environmental changes using particle filtering mathod

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.

    2017-12-01

    Attention has been paid to the agricultural field that could regulate ecosystem carbon exchange by water management and residual treatments. However, there have been less known about the dynamic responses of the ecosystem to environmental changes. In this study, focussing on paddy field, where CO2 emissions due to microbial decomposition of organic matter are suppressed and alternatively CH4 emitted under flooding condition during rice growth season and subsequently CO2 emission following the fallow season after harvest, the responses of ecosystem carbon exchange were examined. We conducted model data fusion analysis for examining the response of cropland-atmosphere carbon exchange to environmental variation. The used model consists of two sub models, paddy rice growth sub-model and soil decomposition sub-model. The crop growth sub-model mimics the rice plant growth processes including formation of reproductive organs as well as leaf expansion. The soil decomposition sub-model simulates the decomposition process of soil organic carbon. Assimilating the data on the time changes in CO2 flux measured by eddy covariance method, rice plant biomass, LAI and the final yield with the model, the parameters were calibrated using a stochastic optimization algorithm with a particle filter method. The particle filter method, which is one of the Monte Carlo filters, enable us to evaluating time changes in parameters based on the observed data until the time and to make prediction of the system. Iterative filtering and prediction with changing parameters and/or boundary condition enable us to obtain time changes in parameters governing the crop production as well as carbon exchange. In this study, we focused on the parameters related to crop production as well as soil carbon storage. As the results, the calibrated model with estimated parameters could accurately predict the NEE flux in the subsequent years. The temperature sensitivity, denoted by Q10s in the decomposition rate of soil organic carbon (SOC) were obtained as 1.4 for no cultivation period and 2.9 for cultivation period (submerged soil condition in flooding season). It suggests that the response of ecosystem carbon exchange differs due to SOC decomposition process which is sensitive to environmental variation during paddy rice cultivation period.

  8. Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: an important first step for assessing impact of future climate.

    PubMed

    Dixit, Prakash N; Telleria, Roberto

    2015-04-01

    Inter-annual and seasonal variability in climatic parameters, most importantly rainfall, have potential to cause climate-induced risk in long-term crop production. Short-term field studies do not capture the full nature of such risk and the extent to which modifications to crop, soil and water management recommendations may be made to mitigate the extent of such risk. Crop modeling studies driven by long-term daily weather data can predict the impact of climate-induced risk on crop growth and yield however, the availability of long-term daily weather data can present serious constraints to the use of crop models. To tackle this constraint, two weather generators namely, LARS-WG and MarkSim, were evaluated in order to assess their capabilities of reproducing frequency distributions, means, variances, dry spell and wet chains of observed daily precipitation, maximum and minimum temperature, and solar radiation for the eight locations across cropping areas of Northern Syria and Lebanon. Further, the application of generated long-term daily weather data, with both weather generators, in simulating barley growth and yield was also evaluated. We found that overall LARS-WG performed better than MarkSim in generating daily weather parameters and in 50 years continuous simulation of barley growth and yield. Our findings suggest that LARS-WG does not necessarily require long-term e.g., >30 years observed weather data for calibration as generated results proved to be satisfactory with >10 years of observed data except in area with higher altitude. Evaluating these weather generators and the ability of generated weather data to perform long-term simulation of crop growth and yield is an important first step to assess the impact of future climate on yields, and to identify promising technologies to make agricultural systems more resilient in the given region. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Optical modeling of agricultural fields and rough-textured rock and mineral surfaces

    NASA Technical Reports Server (NTRS)

    Suits, G. H.; Vincent, R. K.; Horwitz, H. M.; Erickson, J. D.

    1973-01-01

    Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces.

  10. Detecting Crop Functional Response to a Heat Wave using Airborne Reflectance and Sun-induced Chlorophyll Fluorescence Measurements

    NASA Astrophysics Data System (ADS)

    Yang, P.; Van der Tol, C.; Rascher, U.; Damm, A.; Schickling, A.; Verhoef, W.

    2016-12-01

    This study presents an analysis of airborne measured reflectance (R) and solar-induced chlorophyll fluorescence (SIF) as indicators of high temperature stress in agricultural crops. We used atmospherically corrected R and retrievals of SIF in the O2-A band as obtained from HyPlant data over C3 crops (rapeseed, wheat and barley) and a C4 crop (corn) in Germany before (30th June) and during (2nd July) a heat wave in 2015. The availability of airborne data during this heat wave allowed us to detect fluorescence emission efficiency changes as an indicator of crop photosynthetic performance in response to temperature fluctuations. We found that SIF is affected relatively stronger by heat stress than R. This is according to expectation, because the R spectrum is determined by leaf properties and canopy structure, whereas top-of-canopy (TOC) SIF is also affected by the temperature dependent efficiencies of photochemical and non-photochemical quenching of fluorescence. With the model 'Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE), we differentiated leaf optical parameters and canopy structure from the fluorescence quantum emission efficiency (FQE), i.e. the ratio of fluorescence production to light absorption of photosystems. The leaf optical and canopy structure parameters were retrieved from R by inversion of the radiative transfer module 'RTMo' of SCOPE. The retrieved parameters were further used to estimate the FQE from SIF measurements. It appeared that both the leaf water content CW and the FQE responded to the heat wave, but the responses were different for C3 and C4 crops. A slight reduction of CW occurred in C3 crops between the two days, but not in the C4 crop. The reduction of FQE was only significant in C3 crops, and ranged from 18% to 31% for various C3 species. These findings agree with the general knowledge that C4 plants are better adapted to high temperature than C3 plants, and comply with simulations from a biochemical model for C3 and C4 crops in SCOPE. It is concluded that the combination of hyperspectral R and SIF enables the differentiation of long-term and short term responses to heat stress.

  11. Progress and Challenges in Predicting Crop Responses to Atmospheric [CO2

    NASA Astrophysics Data System (ADS)

    Kent, J.; Paustian, K.

    2017-12-01

    Increasing atmospheric [CO2] directly accelerates photosynthesis in C3 crops, and indirectly promotes yields by reducing stomatal conductance and associated water losses in C3 and C4 crops. Several decades of experiments have exposed crops to eCO2 in greenhouses and other enclosures and observed yield increases on the order of 33%. FACE systems were developed in the early 1990s to better replicate open-field growing conditions. Some authors contend that FACE results indicate lower crop yield responses than enclosure studies, while others maintain no significant difference or attribute differences to various methodological factors. The crop CO2 response processes in many crop models were developed using results from enclosure experiments. This work tested the ability of one such model, DayCent, to reproduce crop responses to CO2 enrichment from several FACE experiments. DayCent performed well at simulating yield and transpiration responses in C4 crops, but significantly overestimated yield responses in C3 crops. After adjustment of CO2-response parameters, DayCent was able to reproduce mean yield responses for specific crops. However, crop yield responses from FACE experiments vary widely across years and sites, and likely reflect complex interactions between conditions such as weather, soils, cultivars, and biotic stressors. Further experimental work is needed to identify the secondary variables that explain this variability so that models can more reliably forecast crop yields under climate change. Likewise, CO2 impacts on crop outcomes such as belowground biomass allocation and grain N content have implications for agricultural C fluxes and human nutrition, respectively, but are poorly understood and thus difficult to simulate with confidence.

  12. Meteorological risks are drivers of environmental innovation in agro-ecosystem management

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Van de Vijver, Hans; Vanwindekens, Frédéric; de Frutos Cachorro, Julia; Verspecht, Ann; Planchon, Viviane; Buyse, Jeroen

    2017-04-01

    Agricultural crop production is to a great extent determined by weather conditions. The research hypothesis is that meteorological risks act as drivers of environmental innovation in agro-ecosystem management. The methodology comprised five major parts: the hazard, its impact on different agro-ecosystems, vulnerability, risk management and risk communication. Generalized Extreme Value (GEV) theory was used to model annual maxima of meteorological variables based on a location-, scale- and shape-parameter that determine the center of the distribution, the deviation of the location-parameter and the upper tail decay, respectively. Spatial interpolation of GEV-derived return levels resulted in spatial temperature extremes, precipitation deficits and wet periods. The temporal overlap between extreme weather conditions and sensitive periods in the agro-ecosystem was realised using a bio-physically based modelling framework that couples phenology, a soil water balance and crop growth. 20-year return values for drought and waterlogging during different crop stages were related to arable yields. The method helped quantify agricultural production risks and rate both weather and crop-based agricultural insurance. The spatial extent of vulnerability is developed on different layers of geo-information to include meteorology, soil-landscapes, crop cover and management. Vulnerability of agroecosystems was mapped based on rules set by experts' knowledge and implemented by Fuzzy Inference System modelling and Geographical Information System tools. The approach was applied for cropland vulnerability to heavy rain and grassland vulnerability to drought. The level of vulnerability and resilience of an agro-ecosystem was also determined by risk management which differed across sectors and farm types. A calibrated agro-economic model demonstrated a marked influence of climate adapted land allocation and crop management on individual utility. The "chain of risk" approach allowed for investigating the hypothesis that meteorological risks act as drivers for agricultural innovation. Risk types were quantified in terms of probability and distribution, and further distinguished according to production type. Examples of strategies and options were provided at field, farm and policy level using different modelling methods.

  13. How model and input uncertainty impact maize yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli

    2015-02-01

    Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.

  14. [Estimation model for daily transpiration of greenhouse muskmelon in its vegetative growth period].

    PubMed

    Zhang, Da-Long; Li, Jian-Ming; Wu, Pu-Te; Li, Wei-Li; Zhao, Zhi-Hua; Xu, Fei; Li, Jun

    2013-07-01

    For developing an estimation method of muskmelon transpiration in greenhouse, an estimation model for the daily transpiration of greenhouse muskmelon in its vegetative growth period was established, based on the greenhouse environmental parameters, muskmelon growth and development parameters, and soil moisture parameters. According to the specific environment in greenhouse, the item of aerodynamics in Penman-Monteith equation was modified, and the greenhouse environmental sub-model suitable for calculating the reference crop evapotranspiration in greenhouse was deduced. The crop factor sub-model was established with the leaf area index as independent variable, and the form of the model was linear function. The soil moisture sub-model was established with the soil relative effective moisture content as independent variable, and the form of the model was logarithmic function. With interval sowing, the model parameters were estimated and analyzed, according to the measurement data of different sowing dates in a year. The prediction accuracy of the model for sufficient irrigation and water-saving irrigation was verified, according to measurement data when the relative soil moisture content was 80%, 70%, and 60%, and the mean relative error was 11.5%, 16.2% , and 16.9% respectively. The model was a beneficial exploration for the application of Penman-Monteith equation under greenhouse environment and water-saving irrigation, having good application foreground and popularization value.

  15. Biophysical parameters in a wheat producer region in southern Brazil

    NASA Astrophysics Data System (ADS)

    Leivas, Janice F.; de C. Teixeira, Antonio Heriberto; Andrade, Ricardo G.; de C. Victoria, Daniel; Bolfe, Edson L.; Cruz, Caroline R.

    2014-10-01

    Wheat (Triticum aestivum) is the second most produced cereal in the world, and has major importance in the global agricultural economy. Brazil is a large producer of wheat, especially the Rio Grande do Sul state, located in the south of the country. The purpose of this study was to analyze the estimation of biophysical parameters - evapotranspiration (ET), biomass (BIO) and water productivity (WP) - from satellite images of the municipalities with large areas planted with wheat in Rio Grande do Sul (RS). The evapotranspiration rate was obtained using the SAFER Model (Simple Algorithm for Retrieving Evapotranspiration) on MODIS (Moderate Resolution Imaging Spectroradiometer) images taken in the agricultural year 2012. In order to obtain biomass and water productivity rates we applied the Monteith model and the ratio between BIO and ET. In the beginning of the cycle (the planting period) we observed low values for ET, BIO and WP. During the development period, we observed an increase in the values of the parameters and decline at the end of the cycle, for the period of the wheat harvest. The SAFER model proved effective for estimating the biophysical parameters evapotranspiration, biomass production and water productivity in areas planted with wheat in Brazilian Southern. The methodology can be used for monitoring the crops' water conditions and biomass using satellite images, assisting in estimates of productivity and crop yield. The results may assist the understanding of biophysical properties of important agro-ecosystems, like wheat crop, and are important to improve the rational use of water resources.

  16. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil.

    PubMed

    Battisti, R; Sentelhas, P C; Boote, K J

    2018-05-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO 2 ] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha -1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO 2 ] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO 2 .

  17. Perennial rhizomatous grasses as bioenergy feedstock in SWAT: parameter development and model improvement

    DOE PAGES

    Trybula, Elizabeth M.; Cibin, Raj; Burks, Jennifer L.; ...

    2014-06-13

    The Soil and Water Assessment Tool (SWAT) is increasingly used to quantify hydrologic and water quality impacts of bioenergy production, but crop-growth parameters for candidate perennial rhizomatous grasses (PRG) Miscanthus × giganteus and upland ecotypes of Panicum virgatum (switchgrass) are limited by the availability of field data. Crop-growth parameter ranges and suggested values were developed in this study using agronomic and weather data collected at the Purdue University Water Quality Field Station in northwestern Indiana. During the process of parameterization, the comparison of measured data with conceptual representation of PRG growth in the model led to three changes in themore » SWAT 2009 code: the harvest algorithm was modified to maintain belowground biomass over winter, plant respiration was extended via modified-DLAI to better reflect maturity and leaf senescence, and nutrient uptake algorithms were revised to respond to temperature, water, and nutrient stress. Parameter values and changes to the model resulted in simulated biomass yield and leaf area index consistent with reported values for the region. Code changes in the SWAT model improved nutrient storage during dormancy period and nitrogen and phosphorus uptake by both switchgrass and Miscanthus.« less

  18. Impacts of Different Assimilation Methodologies on Crop Yield Estimates Using Active and Passive Microwave Dataset at L-Band

    NASA Astrophysics Data System (ADS)

    Liu, P.; Bongiovanni, T. E.; Monsivais-Huertero, A.; Bindlish, R.; Judge, J.

    2013-12-01

    Accurate estimates of crop yield are important for managing agricultural production and food security. Although the crop growth models, such as the Decision Support System Agrotechnology Transfer (DSSAT), have been used to simulate crop growth and development, the crop yield estimates still diverge from the reality due to different sources of errors in the models and computation. Auxiliary observations may be incorporated into such dynamic models to improve predictions using data assimilation. Active and passive (AP) microwave observations at L-band (1-2 GHz) are sensitive to dielectric and geometric properties of soil and vegetation, including soil moisture (SM), vegetation water content (VWC), surface roughness, and vegetation structure. Because SM and VWC are one of the governing factors in estimating crop yield, microwave observations may be used to improve crop yield estimates. Current studies have shown that active observations are more sensitive to the surface roughness of soil and vegetation structure during the growing season, while the passive observations are more sensitive to the SM. Backscatter and emission models linked with the DSSAT model (DSSAT-A-P) allow assimilation of microwave observations of backscattering coefficient (σ0) and brightness temperature (TB) may provide biophysically realistic estimates of model states and parameters. The present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, and the NASA/CNDAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. In 2014, the planned NASA Soil Moisture Active Passive mission will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days. The goal of this study is to understand the impacts of assimilation of asynchronous and synchronous AP observations on crop yield estimates. An Ensemble Kalman Filter-based methodology is implemented to incorporate σ0 and TB from Aquarius and SMOS in the DSSAT-A-P model to improve crop yield for two growing seasons of soybean -a normal and a drought affected season- in the rain-fed region of the Brazilian La Plata Basin, South America. Different scenarios of assimilation, including active only, passive only, and combined AP observations were considered. The elements of the state vector included both model states and parameters related to soil and vegetation. The number of elements included in the state vector changed depending upon different scenarios of assimilation and also upon the growth stages. Crop yield estimates were compared for different scenarios during the two seasons. A synthetic experiment conducted previously showed an improvement of crop estimates in the RMSD by 90 kg/ha using combined AP compared to the openloop and active only assimilation over the region.

  19. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control

    NASA Astrophysics Data System (ADS)

    Chun, C.; Mitchell, C. A.

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO_2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  20. Satellite image simulations for model-supervised, dynamic retrieval of crop type and land use intensity

    NASA Astrophysics Data System (ADS)

    Bach, H.; Klug, P.; Ruf, T.; Migdall, S.; Schlenz, F.; Hank, T.; Mauser, W.

    2015-04-01

    To support food security, information products about the actual cropping area per crop type, the current status of agricultural production and estimated yields, as well as the sustainability of the agricultural management are necessary. Based on this information, well-targeted land management decisions can be made. Remote sensing is in a unique position to contribute to this task as it is globally available and provides a plethora of information about current crop status. M4Land is a comprehensive system in which a crop growth model (PROMET) and a reflectance model (SLC) are coupled in order to provide these information products by analyzing multi-temporal satellite images. SLC uses modelled surface state parameters from PROMET, such as leaf area index or phenology of different crops to simulate spatially distributed surface reflectance spectra. This is the basis for generating artificial satellite images considering sensor specific configurations (spectral bands, solar and observation geometries). Ensembles of model runs are used to represent different crop types, fertilization status, soil colour and soil moisture. By multi-temporal comparisons of simulated and real satellite images, the land cover/crop type can be classified in a dynamically, model-supervised way and without in-situ training data. The method is demonstrated in an agricultural test-site in Bavaria. Its transferability is studied by analysing PROMET model results for the rest of Germany. Especially the simulated phenological development can be verified on this scale in order to understand whether PROMET is able to adequately simulate spatial, as well as temporal (intra- and inter-season) crop growth conditions, a prerequisite for the model-supervised approach. This sophisticated new technology allows monitoring of management decisions on the field-level using high resolution optical data (presently RapidEye and Landsat). The M4Land analysis system is designed to integrate multi-mission data and is well suited for the use of Sentinel-2's continuous and manifold data stream.

  1. Estimating parametric phenotypes that determine anthesis date in Zea mays: Challenges in combining ecophysiological models with genetics

    PubMed Central

    Welch, Stephen M.; White, Jeffrey W.; Thorp, Kelly R.; Bello, Nora M.

    2018-01-01

    Ecophysiological crop models encode intra-species behaviors using parameters that are presumed to summarize genotypic properties of individual lines or cultivars. These genotype-specific parameters (GSP’s) can be interpreted as quantitative traits that can be mapped or otherwise analyzed, as are more conventional traits. The goal of this study was to investigate the estimation of parameters controlling maize anthesis date with the CERES-Maize model, based on 5,266 maize lines from 11 plantings at locations across the eastern United States. High performance computing was used to develop a database of 356 million simulated anthesis dates in response to four CERES-Maize model parameters. Although the resulting estimates showed high predictive value (R2 = 0.94), three issues presented serious challenges for use of GSP’s as traits. First (expressivity), the model was unable to express the observed data for 168 to 3,339 lines (depending on the combination of site-years), many of which ended up sharing the same parameter value irrespective of genetics. Second, for 2,254 lines, the model reproduced the data, but multiple parameter sets were equally effective (equifinality). Third, parameter values were highly dependent (p<10−6919) on the sets of environments used to estimate them (instability), calling in to question the assumption that they represent fundamental genetic traits. The issues of expressivity, equifinality and instability must be addressed before the genetic mapping of GSP’s becomes a robust means to help solve the genotype-to-phenotype problem in crops. PMID:29672629

  2. Impact of spatial and temporal aggregation of input parameters on the assessment of irrigation scheme performance

    NASA Astrophysics Data System (ADS)

    Lorite, I. J.; Mateos, L.; Fereres, E.

    2005-01-01

    SummaryThe simulations of dynamic, spatially distributed non-linear models are impacted by the degree of spatial and temporal aggregation of their input parameters and variables. This paper deals with the impact of these aggregations on the assessment of irrigation scheme performance by simulating water use and crop yield. The analysis was carried out on a 7000 ha irrigation scheme located in Southern Spain. Four irrigation seasons differing in rainfall patterns were simulated (from 1996/1997 to 1999/2000) with the actual soil parameters and with hypothetical soil parameters representing wider ranges of soil variability. Three spatial aggregation levels were considered: (I) individual parcels (about 800), (II) command areas (83) and (III) the whole irrigation scheme. Equally, five temporal aggregation levels were defined: daily, weekly, monthly, quarterly and annually. The results showed little impact of spatial aggregation in the predictions of irrigation requirements and of crop yield for the scheme. The impact of aggregation was greater in rainy years, for deep-rooted crops (sunflower) and in scenarios with heterogeneous soils. The highest impact on irrigation requirement estimations was in the scenario of most heterogeneous soil and in 1999/2000, a year with frequent rainfall during the irrigation season: difference of 7% between aggregation levels I and III was found. Equally, it was found that temporal aggregation had only significant impact on irrigation requirements predictions for time steps longer than 4 months. In general, simulated annual irrigation requirements decreased as the time step increased. The impact was greater in rainy years (specially with abundant and concentrated rain events) and in crops which cycles coincide in part with the rainy season (garlic, winter cereals and olive). It is concluded that in this case, average, representative values for the main inputs of the model (crop, soil properties and sowing dates) can generate results within 1% of those obtained by providing spatially specific values for about 800 parcels.

  3. Performance assessment and parameterization of the SWAP-WOFOST model for peat soil under agricultural use in northern Europe.

    NASA Astrophysics Data System (ADS)

    Bertram, Sascha; Bechtold, Michel; Hendriks, Rob; Piayda, Arndt; Regina, Kristiina; Myllys, Merja; Tiemeyer, Bärbel

    2017-04-01

    Peat soils form a major share of soil suitable for agriculture in northern Europe. Successful agricultural production depends on hydrological and pedological conditions, local climate and agricultural management. Climate change impact assessment on food production and development of mitigation and adaptation strategies require reliable yield forecasts under given emission scenarios. Coupled soil hydrology - crop growth models, driven by regionalized future climate scenarios are a valuable tool and widely used for this purpose. Parameterization on local peat soil conditions and crop breed or grassland specie performance, however, remains a major challenge. The subject of this study is to evaluate the performance and sensitivity of the SWAP-WOFOST coupled soil hydrology and plant growth model with respect to the application on peat soils under different regional conditions across northern Europe. Further, the parameterization of region-specific crop and grass species is discussed. First results of the model application and parameterization at deep peat sites in southern Finland are presented. The model performed very well in reproducing two years of observed, daily ground water level data on four hydrologically contrasting sites. Naturally dry and wet sites could be modelled with the same performance as sites with active water table management by regulated drains in order to improve peat conservation. A simultaneous multi-site calibration scheme was used to estimate plant growth parameters of the local oat breed. Cross-site validation of the modelled yields against two years of observations proved the robustness of the chosen parameter set and gave no indication of possible overparameterization. This study proves the suitability of the coupled SWAP-WOFOST model for the prediction of crop yields and water table dynamics of peat soils in agricultural use under given climate conditions.

  4. Model-data integration for developing the Cropland Carbon Monitoring System (CCMS)

    NASA Astrophysics Data System (ADS)

    Jones, C. D.; Bandaru, V.; Pnvr, K.; Jin, H.; Reddy, A.; Sahajpal, R.; Sedano, F.; Skakun, S.; Wagle, P.; Gowda, P. H.; Hurtt, G. C.; Izaurralde, R. C.

    2017-12-01

    The Cropland Carbon Monitoring System (CCMS) has been initiated to improve regional estimates of carbon fluxes from croplands in the conterminous United States through integration of terrestrial ecosystem modeling, use of remote-sensing products and publically available datasets, and development of improved landscape and management databases. In order to develop these improved carbon flux estimates, experimental datasets are essential for evaluating the skill of estimates, characterizing the uncertainty of these estimates, characterizing parameter sensitivities, and calibrating specific modeling components. Experiments were sought that included flux tower measurement of CO2 fluxes under production of major agronomic crops. Currently data has been collected from 17 experiments comprising 117 site-years from 12 unique locations. Calibration of terrestrial ecosystem model parameters using available crop productivity and net ecosystem exchange (NEE) measurements resulted in improvements in RMSE of NEE predictions of between 3.78% to 7.67%, while improvements in RMSE for yield ranged from -1.85% to 14.79%. Model sensitivities were dominated by parameters related to leaf area index (LAI) and spring growth, demonstrating considerable capacity for model improvement through development and integration of remote-sensing products. Subsequent analyses will assess the impact of such integrated approaches on skill of cropland carbon flux estimates.

  5. An image based method for crop yield prediction using remotely sensed and crop canopy data: the case of Paphos district, western Cyprus

    NASA Astrophysics Data System (ADS)

    Papadavid, G.; Hadjimitsis, D.

    2014-08-01

    Remote sensing techniques development have provided the opportunity for optimizing yields in the agricultural procedure and moreover to predict the forthcoming yield. Yield prediction plays a vital role in Agricultural Policy and provides useful data to policy makers. In this context, crop and soil parameters along with NDVI index which are valuable sources of information have been elaborated statistically to test if a) Durum wheat yield can be predicted and b) when is the actual time-window to predict the yield in the district of Paphos, where Durum wheat is the basic cultivation and supports the rural economy of the area. 15 plots cultivated with Durum wheat from the Agricultural Research Institute of Cyprus for research purposes, in the area of interest, have been under observation for three years to derive the necessary data. Statistical and remote sensing techniques were then applied to derive and map a model that can predict yield of Durum wheat in this area. Indeed the semi-empirical model developed for this purpose, with very high correlation coefficient R2=0.886, has shown in practice that can predict yields very good. Students T test has revealed that predicted values and real values of yield have no statistically significant difference. The developed model can and will be further elaborated with more parameters and applied for other crops in the near future.

  6. Multi-Data Approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany

    NASA Astrophysics Data System (ADS)

    Waldhoff, Guido; Lussem, Ulrike; Bareth, Georg

    2017-09-01

    Spatial land use information is one of the key input parameters for regional agro-ecosystem modeling. Furthermore, to assess the crop-specific management in a spatio-temporal context accurately, parcel-related crop rotation information is additionally needed. Such data is scarcely available for a regional scale, so that only modeled crop rotations can be incorporated instead. However, the spectrum of the occurring multiannual land use patterns on arable land remains unknown. Thus, this contribution focuses on the mapping of the actually practiced crop rotations in the Rur catchment, located in the western part of Germany. We addressed this by combining multitemporal multispectral remote sensing data, ancillary information and expert-knowledge on crop phenology in a GIS-based Multi-Data Approach (MDA). At first, a methodology for the enhanced differentiation of the major crop types on an annual basis was developed. Key aspects are (i) the usage of physical block data to separate arable land from other land use types, (ii) the classification of remote sensing scenes of specific time periods, which are most favorable for the differentiation of certain crop types, and (iii) the combination of the multitemporal classification results in a sequential analysis strategy. Annual crop maps of eight consecutive years (2008-2015) were combined to a crop sequence dataset to have a profound data basis for the mapping of crop rotations. In most years, the remote sensing data basis was highly fragmented. Nevertheless, our method enabled satisfying crop mapping results. As an example for the annual crop mapping workflow, the procedure and the result of 2015 are illustrated. For the generation of the crop sequence dataset, the eight annual crop maps were geometrically smoothened and integrated into a single vector data layer. The resulting dataset informs about the occurring crop sequence for individual areas on arable land, so that crop rotation schemes can be derived. The resulting dataset reveals that the spectrum of the practiced crop rotations is extremely heterogeneous and contains a large amount of crop sequences, which strongly diverge from model crop rotations. Consequently, the integration of remote sensing-based crop rotation data can considerably reduce uncertainties regarding the management in regional agro-ecosystem modeling. Finally, the developed methods and the results are discussed in detail.

  7. Multiyear high-resolution carbon exchange over European croplands from the integration of observed crop yields into CarbonTracker Europe

    NASA Astrophysics Data System (ADS)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; de Wit, Allard; Peters, Wouter

    2016-04-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily-to-seasonal time scales. Not only do crops occupy one fourth of the European land area, but their photosynthesis and respiration are large and affect CO2 mole fractions at nearly every atmospheric CO2 monitoring site. A better description of this crop carbon exchange in our CarbonTracker Europe data assimilation system - which currently treats crops as unmanaged grasslands - could strongly improve its ability to constrain terrestrial carbon fluxes. Available long-term observations of crop yield, harvest, and cultivated area allow such improvements, when combined with the new crop-modeling framework we present. This framework can model the carbon fluxes of 10 major European crops at high spatial and temporal resolution, on a 12x12 km grid and 3-hourly time-step. The development of this framework is threefold: firstly, we optimize crop growth using the process-based WOrld FOod STudies (WOFOST) agricultural crop growth model. Simulated yields are downscaled to match regional crop yield observations from the Statistical Office of the European Union (EUROSTAT) by estimating a yearly regional parameter for each crop species: the yield gap factor. This step allows us to better represent crop phenology, to reproduce the observed multiannual European crop yields, and to construct realistic time series of the crop carbon fluxes (gross primary production, GPP, and autotrophic respiration, Raut) on a fine spatial and temporal resolution. Secondly, we combine these GPP and Raut fluxes with a simple soil respiration model to obtain the total ecosystem respiration (TER) and net ecosystem exchange (NEE). And thirdly, we represent the horizontal transport of carbon that follows crop harvest and its back-respiration into the atmosphere during harvest consumption. We distribute this carbon using observations of the density of human and ruminant populations from EUROSTAT. We assess the model's ability to represent the seasonal GPP, TER and NEE fluxes using observations at 6 European FluxNet winter wheat and grain maize sites and compare it with the fluxes of the current terrestrial carbon cycle model of CarbonTracker Europe: the Simple Biosphere - Carnegie-Ames-Stanford Approach (SiBCASA) model. We find that the new model framework provides a detailed, realistic, and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal, and serve as a new cropland component in CarbonTracker Europe flux estimates.

  8. Agricultural Policy Environmental eXtender Simulation of Three Adjacent Row-Crop Watersheds in the Claypan Region.

    PubMed

    Anomaa Senaviratne, G M M M; Udawatta, Ranjith P; Baffaut, Claire; Anderson, Stephen H

    2013-01-01

    The Agricultural Policy Environmental Extender (APEX) model is used to evaluate best management practices on pollutant loading in whole farms or small watersheds. The objectives of this study were to conduct a sensitivity analysis to determine the effect of model parameters on APEX output and use the parameterized, calibrated, and validated model to evaluate long-term benefits of grass waterways. The APEX model was used to model three (East, Center, and West) adjacent field-size watersheds with claypan soils under a no-till corn ( L.)/soybean [ (L.) Merr.] rotation. Twenty-seven parameters were sensitive for crop yield, runoff, sediment, nitrogen (dissolved and total), and phosphorous (dissolved and total) simulations. The model was calibrated using measured event-based data from the Center watershed from 1993 to 1997 and validated with data from the West and East watersheds. Simulated crop yields were within ±13% of the measured yield. The model performance for event-based runoff was excellent, with calibration and validation > 0.9 and Nash-Sutcliffe coefficients (NSC) > 0.8, respectively. Sediment and total nitrogen calibration results were satisfactory for larger rainfall events (>50 mm), with > 0.5 and NSC > 0.4, but validation results remained poor, with NSC between 0.18 and 0.3. Total phosphorous was well calibrated and validated, with > 0.8 and NSC > 0.7, respectively. The presence of grass waterways reduced annual total phosphorus loadings by 13 to 25%. The replicated study indicates that APEX provides a convenient and efficient tool to evaluate long-term benefits of conservation practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Adaptation of SUBSTOR for controlled-environment potato production with elevated carbon dioxide

    NASA Technical Reports Server (NTRS)

    Fleisher, D. H.; Cavazzoni, J.; Giacomelli, G. A.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2003-01-01

    The SUBSTOR crop growth model was adapted for controlled-environment hydroponic production of potato (Solanum tuberosum L. cv. Norland) under elevated atmospheric carbon dioxide concentration. Adaptations included adjustment of input files to account for cultural differences between the field and controlled environments, calibration of genetic coefficients, and adjustment of crop parameters including radiation use efficiency. Source code modifications were also performed to account for the absorption of light reflected from the surface below the crop canopy, an increased leaf senescence rate, a carbon (mass) balance to the model, and to modify the response of crop growth rate to elevated atmospheric carbon dioxide concentration. Adaptations were primarily based on growth and phenological data obtained from growth chamber experiments at Rutgers University (New Brunswick, N.J.) and from the modeling literature. Modified-SUBSTOR predictions were compared with data from Kennedy Space Center's Biomass Production Chamber for verification. Results show that, with further development, modified-SUBSTOR will be a useful tool for analysis and optimization of potato growth in controlled environments.

  10. Development and deployment of a water-crop-nutrient simulation model embedded in a web application

    NASA Astrophysics Data System (ADS)

    Langella, Giuliano; Basile, Angelo; Coppola, Antonio; Manna, Piero; Orefice, Nadia; Terribile, Fabio

    2016-04-01

    It is long time by now that scientific research on environmental and agricultural issues spent large effort in the development and application of models for prediction and simulation in spatial and temporal domains. This is fulfilled by studying and observing natural processes (e.g. rainfall, water and chemicals transport in soils, crop growth) whose spatiotemporal behavior can be reproduced for instance to predict irrigation and fertilizer requirements and yield quantities/qualities. In this work a mechanistic model to simulate water flow and solute transport in the soil-plant-atmosphere continuum is presented. This desktop computer program was written according to the specific requirement of developing web applications. The model is capable to solve the following issues all together: (a) water balance and (b) solute transport; (c) crop modelling; (d) GIS-interoperability; (e) embedability in web-based geospatial Decision Support Systems (DSS); (f) adaptability at different scales of application; and (g) ease of code modification. We maintained the desktop characteristic in order to further develop (e.g. integrate novel features) and run the key program modules for testing and validation purporses, but we also developed a middleware component to allow the model run the simulations directly over the web, without software to be installed. The GIS capabilities allows the web application to make simulations in a user-defined region of interest (delimited over a geographical map) without the need to specify the proper combination of model parameters. It is possible since the geospatial database collects information on pedology, climate, crop parameters and soil hydraulic characteristics. Pedological attributes include the spatial distribution of key soil data such as soil profile horizons and texture. Further, hydrological parameters are selected according to the knowledge about the spatial distribution of soils. The availability and definition in the geospatial domain of these attributes allow the simulation outputs at a different spatial scale. Two different applications were implemented using the same framework but with different configurations of the software pieces making the physically based modelling chain: an irrigation tool simulating water requirements and their dates and a fertilization tool for optimizing in particular mineral nitrogen adds.

  11. Dust Quantization and Effects on Agriculture Over Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    Dust plays a very important role in the atmosphere and the biosphere. In this communication, the effect of atmospheric dust on the yields of certain crops grown in Uttar Pradesh, India is assessed. Coherent physical and thermodynamic fingerprints of dust parameters such as from Satellite data- KALPANA-1, MODIS, OMI, CALIPSO; Model data- DREAM, HYSPLIT, ECMWF; have been considered to run the APSIM model to derive the impacts. This paper assesses dust as a physical atmospheric phenomenon including its Long Range Transport (LRT) and dispersion along with considerable variations of Aerosol Optical Depths (AODs) over the subcontinent of India. While AODs significantly increase by more dust concentration, the local dispersion of pollutants is a major concern with deposition of atmospheric dust such as sulphates and other chemical constituents that affect agricultural land. An approach in atmospheric physics is also taken to parameterize the model outputs. This communication indicates dust to be a positive factor for the cultivation of certain crops such as wheat, maize in the experimental location. Initial results suggest that LRT dust is a viable counterpart to decrease the concentration of soil acidity and related parameters thus enhancing the vitality of crops.

  12. Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan

    2015-04-01

    Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the photosynthesis process owing to a better estimation of the Rubisco enzyme kinematics. Finally, to evaluate the effects of the crop-specific parameterizations on the ABL dynamics, we perform a series of semi-idealized land-atmosphere coupled simulations by hypothesizing three cropland configurations. These numerical experiments reveal different heat and moisture budgets of the ABL that clearly impact the evolution of the boundary layer when using the crop-specific physiological properties.

  13. Detecting crop growth stages of maize and soybeans by using time-series MODIS data

    NASA Astrophysics Data System (ADS)

    Sakamoto, T.; Wardlow, B. D.; Gitelson, A. A.; Verma, S. B.; Suyker, A. E.; Arkebauer, T. J.

    2009-12-01

    The crop phenological stages are one of essential parameters for evaluating crop productivity based on a crop simulation model. In this study, we improved a method named the Wavelet-based Filter for detecting Crop Phenology (WFCP) for detecting the specific phenological dates of maize and soybeans. The improved method was applied to MODIS-derived Wide Dynamic Range Vegetation Index (WDRVI) over a 6-year period (2003 to 2008) for three experimental fields planted to either maize or soybeans as part of the Carbon Sequestration Program (CSP) at the University of Nebraska-Lincoln (UNL). Using the ground-based crop growth stage observations collected by the CSP, it was confirmed that the improved method can estimate the specific phenological dates of maize (V2.5, R1, R5 and R6) and soybeans (V1, R5, R6 and R7) with reasonable accuracy.

  14. Parametric sensitivity analysis of an agro-economic model of management of irrigation water

    NASA Astrophysics Data System (ADS)

    El Ouadi, Ihssan; Ouazar, Driss; El Menyari, Younesse

    2015-04-01

    The current work aims to build an analysis and decision support tool for policy options concerning the optimal allocation of water resources, while allowing a better reflection on the issue of valuation of water by the agricultural sector in particular. Thus, a model disaggregated by farm type was developed for the rural town of Ait Ben Yacoub located in the east Morocco. This model integrates economic, agronomic and hydraulic data and simulates agricultural gross margin across in this area taking into consideration changes in public policy and climatic conditions, taking into account the competition for collective resources. To identify the model input parameters that influence over the results of the model, a parametric sensitivity analysis is performed by the "One-Factor-At-A-Time" approach within the "Screening Designs" method. Preliminary results of this analysis show that among the 10 parameters analyzed, 6 parameters affect significantly the objective function of the model, it is in order of influence: i) Coefficient of crop yield response to water, ii) Average daily gain in weight of livestock, iii) Exchange of livestock reproduction, iv) maximum yield of crops, v) Supply of irrigation water and vi) precipitation. These 6 parameters register sensitivity indexes ranging between 0.22 and 1.28. Those results show high uncertainties on these parameters that can dramatically skew the results of the model or the need to pay particular attention to their estimates. Keywords: water, agriculture, modeling, optimal allocation, parametric sensitivity analysis, Screening Designs, One-Factor-At-A-Time, agricultural policy, climate change.

  15. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a good soil or from capillary rise. With good supply of moisture, the dynamic model simulates up to 10% less actual evapotranspiration than the static one in the example. This can lead to cases where the dynamic model predicts a slight increase of the recharge in a climate scenario, where the static model predicts a decrease. The use of a dynamic model also affects the simulated demand for surface water from external sources; especially the timing is affected. The proposed modelling approach uses postulated relationships that require validation with controlled field trials. In the Netherlands there is a lack of experimental facilities for performing such validations.

  16. Nitrous oxide emissions from cropland: A procedure for calibrating the DayCent biogeochemical model using inverse modelling

    USDA-ARS?s Scientific Manuscript database

    DayCent is a biogeochemical model of intermediate complexity widely used to simulate greenhouse gases (GHG), soil organic carbon (SOC) and nutrients in crop, grassland, forest and savannah ecosystems. Although this model has been applied to a wide range of ecosystems, it is still typically parameter...

  17. Regional-scale yield simulations using crop and climate models: assessing uncertainties, sensitivity to temperature and adaptation options

    NASA Astrophysics Data System (ADS)

    Challinor, A. J.

    2010-12-01

    Recent progress in assessing the impacts of climate variability and change on crops using multiple regional-scale simulations of crop and climate (i.e. ensembles) is presented. Simulations for India and China used perturbed responses to elevated carbon dioxide constrained using observations from FACE studies and controlled environments. Simulations with crop parameter sets representing existing and potential future adapted varieties were also carried out. The results for India are compared to sensitivity tests on two other crop models. For China, a parallel approach used socio-economic data to account for autonomous farmer adaptation. Results for the USA analysed cardinal temperatures under a range of local warming scenarios for 2711 varieties of spring wheat. The results are as follows: 1. Quantifying and reducing uncertainty. The relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes is examined. The observational constraints from FACE and controlled environment studies are shown to be the likely critical factor in maintaining relatively low crop parameter uncertainty. Without these constraints, crop simulation uncertainty in a doubled CO2 environment would likely be greater than uncertainty in simulating climate. However, consensus across crop models in India varied across different biophysical processes. 2. The response of yield to changes in local mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. 3. Implications for adaptation. China. The simulations of spring wheat in China show the relative importance of tolerance to water and heat stress in avoiding future crop failures. The greatest potential for reducing the number of harvests less than one standard deviation below the baseline mean yield value comes from alleviating water stress; the greatest potential for reducing harvests less than two standard deviations below the mean comes from alleviation of heat stress. The socio-economic analysis suggests that adaptation is also possible through measures such as greater investment. India. The simulations of groundnut in India identified regions where heat stress will play an increasing role in limiting crop yields, and other regions where crops with greater thermal time requirement will be needed. The simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. USA. Analysis of spring wheat in the USA showed that at +2oC of local warming, 87% of the 2711 varieties examined, and all of the five most common varieties, could be used to maintain the crop duration of the current climate (i.e. successful adaptation to mean warming). At +4o this fell to 54% of all varieties, and two of the top five. 4. Future research. The results, and the limitations of the study, suggest directions for research to link climate and crop models, socio-economic analyses and crop variety trial data in order to prioritise adaptation options such as capacity building, plant breeding and biotechnology.

  18. Illustration of year-to-year variation in wheat spectral profile crop growth curves. [Kansas, Oklahoma, North Dakota and South Dakota

    NASA Technical Reports Server (NTRS)

    Gonzalez, P.; Jones, C. (Principal Investigator)

    1980-01-01

    Data previously compiled on the year to year variability of spectral profile crop growth parameters for spring and winter wheat in Kansas, Oklahoma, and the Dakotas were used with a profile model to develop graphs illustrating spectral profile crop growth curves for a number of years and a number of spring and winter wheat segments. These curves show the apparent variability in spectral profiles for wheat from one year to another within the same segment and from one segment to another within the same year.

  19. Representation of micrometeorological and physiological parameters with numerical models influencing the vineyard ecosystem: the case of Piemonte (Italy).

    NASA Astrophysics Data System (ADS)

    Andreoli, Valentina; Cassardo, Claudio; Cavalletto, Silvia; Ferrarese, Silvia; Guidoni, Silvia; Mania, Elena; Spanna, Federico

    2017-04-01

    Grapevine represents worldwide key economic activities, with Europe representing the largest vineyard area in the world (38%). This is also true both for Italy and for its Piemonte region, in which famous and renowned wines (such as Barolo and Barbaresco) are produced. Grapevine productivity depends on several factors including soil fertility, management practices, climate and meteorology. In particular, concerning the latter, there is a need for a reliable assessment of the effects of a changing climate on its yield and quality. However, in this respect, it is essential to understand how and how much climate and meteorology affect grape productivity and quality, since only few studies related to few regions in the world have been produced. In this context, crop models are essential tools for investigating the effects of climate change on crop development and growth via the integration of existing knowledge of crop physiology relating to changing environmental conditions. Nevertheless, crop models were developed and applied mainly for studying the responses to climate change of annual crops (e.g. cereals); whilst appropriate crop models and application of these are still limited for tree crops such as grapevine. The rationale of the study, included in the MACSUR2 JPI FACCE project, is to use the third generation land surface model UTOPIA (University of TOrino model of land Process Interaction with Atmosphere) [1], in order to evaluate all components of hydrological and energy budget, as well as soil and canopy parameters, on a specific subset of land use, the vineyards. A preliminary step of this work has been to compare the datasets resulted from the calculations made by the UTOPIA and some experimental datasets acquired within vineyards by our team in the past experiments. The reason for such control is to ensure that UTOPIA outputs could be considered as sufficiently representative of the climatology of vineyards. Thus, some Piedmontese vineyards were selected, each one characterized by same climatic but different microclimatic conditions, in which measurements of a wide number of variables were performed in the vegetative seasons (such as in the experiment MASGRAPE). Subsequently, in this study, the results of additional simulations performed using the freely available global database GLDAS (Global Land Data Assimilation System) were compared with those of the simulations driven by observations, in order to check if the model was still able to reproduce the microclimatic characteristics of the vineyards. This preliminary part of the study gave satisfactory results; thus, we could pass to the phase two of the project. In this phase, using GLDAS database, long term simulations will be carried out with the UTOPIA in order to have output data available on a period of climatic interest (30 years or more). This database could be used in order to perform climatic statistics and assess possible trends in some parameters, eventually to be correlated with grape production. In the talk, the preliminary aspects of this work will be illustrated.

  20. Volatilisation of pesticides under field conditions: inverse modelling and pesticide fate models.

    PubMed

    Houbraken, Michael; van den Berg, Frederik; Butler Ellis, Clare M; Dekeyser, Donald; Nuyttens, David; De Schampheleire, Mieke; Spanoghe, Pieter

    2016-07-01

    A substantial fraction of the applied crop protection products on crops is lost to the atmosphere. Models describing the prediction of volatility and potential fate of these substances in the environment have become an important tool in the pesticide authorisation procedure at the EU level. The main topic of this research is to assess the rate and extent of volatilisation of ten pesticides after application on field crops. For eight of the ten pesticides, the volatilisation rates modelled with PEARL (Pesticide Emission Assessment at Regional and Local scales) corresponded well to the calculated rates modelled with ADMS (Atmospheric Dispersion Modelling System). For the other pesticides, large differences were found between the models. Formulation might affect the volatilisation potential of pesticides. Increased leaf wetness increased the volatilisation of propyzamide and trifloxystrobin at the end of the field trial. The reliability of pesticide input parameters, in particular the vapour pressure, is discussed. Volatilisation of propyzamide, pyrimethanil, chlorothalonil, diflufenican, tolylfluanid, cyprodinil and E- and Z-dimethomorph from crops under realistic environmental conditions can be modelled with the PEARL model, as corroborated against field observations. Suggested improvements to the volatilisation component in PEARL should include formulation attributes and leaf wetness at the time of pesticide application. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Analysis of MODIS 250 m Time Series Product for LULC Classification and Retrieval of Crop Biophysical Parameter

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Garg, P. K.; Prasad, K. S. H.; Dadhwal, V. K.

    2016-12-01

    Agriculture is a backbone of Indian economy, providing livelihood to about 70% of the population. The primary objective of this research is to investigate the general applicability of time-series MODIS 250m Normalized difference vegetation index (NDVI) and Enhanced vegetation index (EVI) data for various Land use/Land cover (LULC) classification. The other objective is the retrieval of crop biophysical parameter using MODIS 250m resolution data. The Uttar Pradesh state of India is selected for this research work. A field study of 38 farms was conducted during entire crop season of the year 2015 to evaluate the applicability of MODIS 8-day, 250m resolution composite images for assessment of crop condition. The spectroradiometer is used for ground reflectance and the AccuPAR LP-80 Ceptometer is used to measure the agricultural crops Leaf Area Index (LAI). The AccuPAR measures Photosynthetically Active Radiation (PAR) and can invert these readings to give LAI for plant canopy. Ground-based canopy reflectance and LAI were used to calibrate a radiative transfer model to create look-up table (LUT) that was used to simulate LAI. The seasonal trend of MODIS-derived LAI was used to find crop parameter by adjusting the LAI simulated from climate-based crop yield model. Cloud free MODIS images of 250m resolution (16 day composite period) were downloaded using LP-DAAC website over a period of 12 months (Jan to Dec 2015). MODIS both the VI products were found to have sufficient spectral, spatial and temporal resolution to detect unique signatures for each class (water, fallow land, urban, dense vegetation, orchard, sugarcane and other crops). Ground truth data were collected using JUNO GPS. Multi-temporal VI signatures for vegetation classes were consistent with its general phenological characteristic and were spectrally separable at some point during the growing season. The MODIS NDVI and EVI multi-temporal images tracked similar seasonal responses for all croplands and were highly correlated across the growing season. The confusion matrix method is used for accuracy assessment and reference data which has been taken during the field visit. Total 520 pixels have been selected for various classes to determine the accuracy. The classification accuracy and kappa coefficient is found to be 79.76% and 0.78 respectively.

  2. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    NASA Astrophysics Data System (ADS)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  3. Development of a generic auto-calibration package for regional ecological modeling and application in the Central Plains of the United States

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Li, Zhengpeng; Dahal, Devendra; Young, Claudia J.; Schmidt, Gail L.; Liu, Jinxun; Davis, Brian; Sohl, Terry L.; Werner, Jeremy M.; Oeding, Jennifer

    2014-01-01

    Process-oriented ecological models are frequently used for predicting potential impacts of global changes such as climate and land-cover changes, which can be useful for policy making. It is critical but challenging to automatically derive optimal parameter values at different scales, especially at regional scale, and validate the model performance. In this study, we developed an automatic calibration (auto-calibration) function for a well-established biogeochemical model—the General Ensemble Biogeochemical Modeling System (GEMS)-Erosion Deposition Carbon Model (EDCM)—using data assimilation technique: the Shuffled Complex Evolution algorithm and a model-inversion R package—Flexible Modeling Environment (FME). The new functionality can support multi-parameter and multi-objective auto-calibration of EDCM at the both pixel and regional levels. We also developed a post-processing procedure for GEMS to provide options to save the pixel-based or aggregated county-land cover specific parameter values for subsequent simulations. In our case study, we successfully applied the updated model (EDCM-Auto) for a single crop pixel with a corn–wheat rotation and a large ecological region (Level II)—Central USA Plains. The evaluation results indicate that EDCM-Auto is applicable at multiple scales and is capable to handle land cover changes (e.g., crop rotations). The model also performs well in capturing the spatial pattern of grain yield production for crops and net primary production (NPP) for other ecosystems across the region, which is a good example for implementing calibration and validation of ecological models with readily available survey data (grain yield) and remote sensing data (NPP) at regional and national levels. The developed platform for auto-calibration can be readily expanded to incorporate other model inversion algorithms and potential R packages, and also be applied to other ecological models.

  4. Reduced uncertainty of regional scale CLM predictions of net carbon fluxes and leaf area indices with estimated plant-specific parameters

    NASA Astrophysics Data System (ADS)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2016-04-01

    Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in spring. In order to obtain a more comprehensive estimate of the model uncertainty, a second CLM ensemble was set up, where initial conditions and atmospheric forcings were perturbed in addition to the parameter estimates. This resulted in very high standard deviations (STD) of the modeled annual NEE sums for C3-grass and C3-crop PFTs, ranging between 24.1 and 225.9 gC m-2 y-1, compared to STD = 0.1 - 3.4 gC m-2 y-1 (effect of parameter uncertainty only, without additional perturbation of initial states and atmospheric forcings). The higher spread of modeled NEE for the C3-crop and C3-grass indicated that the model uncertainty was notably higher for those PFTs compared to the forest-PFTs. Our findings highlight the potential of parameter and uncertainty estimation to support the understanding and further development of land surface models such as CLM.

  5. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  6. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution products from the Sentinel-2 satellite mission for improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  7. A Theoretical Approach to Analyze the Parametric Influence on Spatial Patterns of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) Populations.

    PubMed

    Garcia, A G; Godoy, W A C

    2017-06-01

    Studies of the influence of biological parameters on the spatial distribution of lepidopteran insects can provide useful information for managing agricultural pests, since the larvae of many species cause serious impacts on crops. Computational models to simulate the spatial dynamics of insect populations are increasingly used, because of their efficiency in representing insect movement. In this study, we used a cellular automata model to explore different patterns of population distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), when the values of two biological parameters that are able to influence the spatial pattern (larval viability and adult longevity) are varied. We mapped the spatial patterns observed as the parameters varied. Additionally, by using population data for S. frugiperda obtained in different hosts under laboratory conditions, we were able to describe the expected spatial patterns occurring in corn, cotton, millet, and soybean crops based on the parameters varied. The results are discussed from the perspective of insect ecology and pest management. We concluded that computational approaches can be important tools to study the relationship between the biological parameters and spatial distributions of lepidopteran insect pests.

  8. Sensitivity analysis of the Aquacrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale applications.

    PubMed

    Silvestro, Paolo Cosmo; Pignatti, Stefano; Yang, Hao; Yang, Guijun; Pascucci, Simone; Castaldi, Fabio; Casa, Raffaele

    2017-01-01

    Process-based models can be usefully employed for the assessment of field and regional-scale impact of drought on crop yields. However, in many instances, especially when they are used at the regional scale, it is necessary to identify the parameters and input variables that most influence the outputs and to assess how their influence varies when climatic and environmental conditions change. In this work, two different crop models, able to represent yield response to water, Aquacrop and SAFYE, were compared, with the aim to quantify their complexity and plasticity through Global Sensitivity Analysis (GSA), using Morris and EFAST (Extended Fourier Amplitude Sensitivity Test) techniques, for moderate to strong water limited climate scenarios. Although the rankings of the sensitivity indices was influenced by the scenarios used, the correlation among the rankings, higher for SAFYE than for Aquacrop, assessed by the top-down correlation coefficient (TDCC), revealed clear patterns. Parameters and input variables related to phenology and to water stress physiological processes were found to be the most influential for Aquacrop. For SAFYE, it was found that the water stress could be inferred indirectly from the processes regulating leaf growth, described in the original SAFY model. SAFYE has a lower complexity and plasticity than Aquacrop, making it more suitable to less data demanding regional scale applications, in case the only objective is the assessment of crop yield and no detailed information is sought on the mechanisms of the stress factors affecting its limitations.

  9. Sensitivity analysis of the Aquacrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale applications

    PubMed Central

    Pignatti, Stefano; Yang, Hao; Yang, Guijun; Pascucci, Simone; Castaldi, Fabio

    2017-01-01

    Process-based models can be usefully employed for the assessment of field and regional-scale impact of drought on crop yields. However, in many instances, especially when they are used at the regional scale, it is necessary to identify the parameters and input variables that most influence the outputs and to assess how their influence varies when climatic and environmental conditions change. In this work, two different crop models, able to represent yield response to water, Aquacrop and SAFYE, were compared, with the aim to quantify their complexity and plasticity through Global Sensitivity Analysis (GSA), using Morris and EFAST (Extended Fourier Amplitude Sensitivity Test) techniques, for moderate to strong water limited climate scenarios. Although the rankings of the sensitivity indices was influenced by the scenarios used, the correlation among the rankings, higher for SAFYE than for Aquacrop, assessed by the top-down correlation coefficient (TDCC), revealed clear patterns. Parameters and input variables related to phenology and to water stress physiological processes were found to be the most influential for Aquacrop. For SAFYE, it was found that the water stress could be inferred indirectly from the processes regulating leaf growth, described in the original SAFY model. SAFYE has a lower complexity and plasticity than Aquacrop, making it more suitable to less data demanding regional scale applications, in case the only objective is the assessment of crop yield and no detailed information is sought on the mechanisms of the stress factors affecting its limitations. PMID:29107963

  10. Uncertainty in BMP evaluation and optimization for watershed management

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Cibin, R.; Sudheer, K.; Her, Y.

    2012-12-01

    Use of computer simulation models have increased substantially to make watershed management decisions and to develop strategies for water quality improvements. These models are often used to evaluate potential benefits of various best management practices (BMPs) for reducing losses of pollutants from sources areas into receiving waterbodies. Similarly, use of simulation models in optimizing selection and placement of best management practices under single (maximization of crop production or minimization of pollutant transport) and multiple objective functions has increased recently. One of the limitations of the currently available assessment and optimization approaches is that the BMP strategies are considered deterministic. Uncertainties in input data (e.g. precipitation, streamflow, sediment, nutrient and pesticide losses measured, land use) and model parameters may result in considerable uncertainty in watershed response under various BMP options. We have developed and evaluated options to include uncertainty in BMP evaluation and optimization for watershed management. We have also applied these methods to evaluate uncertainty in ecosystem services from mixed land use watersheds. In this presentation, we will discuss methods to to quantify uncertainties in BMP assessment and optimization solutions due to uncertainties in model inputs and parameters. We have used a watershed model (Soil and Water Assessment Tool or SWAT) to simulate the hydrology and water quality in mixed land use watershed located in Midwest USA. The SWAT model was also used to represent various BMPs in the watershed needed to improve water quality. SWAT model parameters, land use change parameters, and climate change parameters were considered uncertain. It was observed that model parameters, land use and climate changes resulted in considerable uncertainties in BMP performance in reducing P, N, and sediment loads. In addition, climate change scenarios also affected uncertainties in SWAT simulated crop yields. Considerable uncertainties in the net cost and the water quality improvements resulted due to uncertainties in land use, climate change, and model parameter values.

  11. GPP/RE Partitioning of Long-term Network Flux Data as a Tool for Estimating Ecosystem-scale Ecophysiological Parameters of Grasslands and Croplands

    NASA Astrophysics Data System (ADS)

    Gilmanov, T. G.; Wylie, B. K.; Gu, Y.; Howard, D. M.; Zhang, L.

    2013-12-01

    The physiologically based model of canopy CO2 exchange by Thornly and Johnson (2000) modified to incorporate vapor pressure deficit (VPD) limitation of photosynthesis is a robust tool for partitioning tower network net CO2 exchange data into gross photosynthesis (GPP) and ecosystem respiration (RE) (Gilmanov et al. 2013a, b). In addition to 30-min and daily photosynthesis and respiration values, the procedure generates daily estimates and uncertainties of essential ecosystem-scale parameters such as apparent quantum yield ALPHA, photosynthetic capacity AMAX, convexity of light response THETA, gross ecological light-use efficiency LUE, daytime ecosystem respiration rate RDAY, and nighttime ecosystem respiration rate RNIGHT. These ecosystem-scale parameters are highly demanded by the modeling community and open opportunities for comparison with the rich data of leaf-level estimates of corresponding parameters available from physiological studies of previous decades. Based on the data for 70+ site-years of flux tower measurements at the non-forest sites of the Ameriflux network and the non-affiliated sites, we present results of the comparative analysis and multi-site synthesis of the magnitudes, uncertainties, patterns of seasonal and yearly dynamics, and spatiotemporal distribution of these parameters for grasslands and croplands of the conterminous United States (CONUS). Combining this site-level parameter data set with the rich spatiotemporal data sets of a remotely sensed vegetation index, weather and climate conditions, and site biophysical and geophysical features (phenology, photosynthetically active radiation, and soil water holding capacity) using methods of multivariate analysis (e.g., Cubist regression tree) offers new opportunities for predictive modeling and scaling-up of ecosystem-scale parameters of carbon cycling in grassland and agricultural ecosystems of CONUS (Zhang et al. 2011; Gu et al. 2012). REFERENCES Gilmanov TG, Baker JM, Bernacchi CJ, Billesbach DP, Burba GG, et al. (2013a). Productivity and CO2 exchange of the leguminous crops: Estimates from flux tower measurements. Agronomy J (submitted). Gilmanov TG, Wylie BK, Tieszen LL, Meyers TP, Baron VS, et al. (2013b). CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: Estimates from flux tower measurements. Agric Ecosyst Environm 164: 162-175 Gu Y, Howard DM, Wylie BK, and Zhang L (2012). Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains: Landscape Ecology, 27: 319-326. Thornley JHM., Johnson IR (2000). Plant and crop modelling. A mathematical approach to plant and crop physiology. The Blackburn Press, Caldwell, New Jersey. Zhang L, Wylie BK, Ji L, Gilmanov TG, Tieszen LL, Howard DM (2011). Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources. J Geophys Res G: Biogeosciences 116: G00J3

  12. Simulation of pesticide dissipation in soil at the catchment scale over 23 years

    NASA Astrophysics Data System (ADS)

    Queyrel, Wilfried; Florence, Habets; Hélène, Blanchoud; Céline, Schott; Laurine, Nicola

    2014-05-01

    Pesticide applications lead to contamination risks of environmental compartments causing harmful effects on water resource used for drinking water. Pesticide fate modeling is assumed to be a relevant approach to study pesticide dissipation at the catchment scale. Simulations of five herbicides (atrazine, simazine, isoproturon, chlortoluron, metolachor) and one metabolite (DEA) were carried out with the crop model STICS over a 23-year period (1990-2012). The model application was performed using real agricultural practices over a small rural catchment (104 km²) located at 60km east from Paris (France). Model applications were established for two crops: wheat and maize. The objectives of the study were i) to highlight the main processes implied in pesticide fate and transfer at long-term; ii) to assess the influence of dynamics of the remaining mass of pesticide in soil on transfer; iii) to determine the most sensitive parameters related to pesticide losses by leaching over a 23-year period. The simulated data related to crop yield, water transfer, nitrates and pesticide concentrations were first compared to observations over the 23-year period, when measurements were available at the catchment scale. Then, the evaluation of the main processes related to pesticide fate and transfer was performed using long-term simulations at a yearly time step and monthly average variations. Analyses of the monthly average variations were oriented on the impact of pesticide application, water transfer and pesticide transformation on pesticide leaching. The evolution of the remaining mass of pesticide in soil, including the mobile phase (the liquid phase) and non-mobile (adsorbed at equilibrium and non-equilibrium), was studied to evaluate the impact of pesticide stored in soil on the fraction available for leaching. Finally, a sensitivity test was performed to evaluate the more sensitive parameters regarding the remaining mass of pesticide in soil and leaching. The findings of the study show that the dynamic of the remaining mass of pesticide in soil is a relevant issue to understand pesticide dissipation at long term. Attention must be paid on parameters influencing sorption and availability of the pesticide for leaching. To conclude, the significant discrepancies in the simulated pesticide leaching for the two types of crops (maize and wheat) highlight the interest of using a crop model to simulate the fate of pesticides at the catchment scale.

  13. Biophysical and Economic Uncertainty in the Analysis of Poverty Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Lobell, D. B.; Verma, M.

    2011-12-01

    This paper seeks to understand the main sources of uncertainty in assessing the impacts of climate change on agricultural output, international trade, and poverty. We incorporate biophysical uncertainty by sampling from a distribution of global climate model predictions for temperature and precipitation for 2050. The implications of these realizations for crop yields around the globe are estimated using the recently published statistical crop yield functions provided by Lobell, Schlenker and Costa-Roberts (2011). By comparing these yields to those predicted under current climate, we obtain the likely change in crop yields owing to climate change. The economic uncertainty in our analysis relates to the response of the global economic system to these biophysical shocks. We use a modified version of the GTAP model to elicit the impact of the biophysical shocks on global patterns of production, consumption, trade and poverty. Uncertainty in these responses is reflected in the econometrically estimated parameters governing the responsiveness of international trade, consumption, production (and hence the intensive margin of supply response), and factor supplies (which govern the extensive margin of supply response). We sample from the distributions of these parameters as specified by Hertel et al. (2007) and Keeney and Hertel (2009). We find that, even though it is difficult to predict where in the world agricultural crops will be favorably affected by climate change, the responses of economic variables, including output and exports can be far more robust (Table 1). This is due to the fact that supply and demand decisions depend on relative prices, and relative prices depend on productivity changes relative to other crops in a given region, or relative to similar crops in other parts of the world. We also find that uncertainty in poverty impacts of climate change appears to be almost entirely driven by biophysical uncertainty.

  14. Biophysical and spectral modeling for crop identification and assessment

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Principal Investigator)

    1984-01-01

    The development of a technique for estimating all canopy parameters occurring in a canopy reflectance model from the measured canopy reflectance data is summarized. The Suits and the SAIL model for a uniform and homogeneous crop canopy were used to determine if the leaf area index and the leaf angle distribution could be estimated. Optimal solar/view angles for measuring CR were also investigated. The use of CR in many wavelengths or spectral bands and of linear and nonlinear transforms of CRs for various solar/view angles and various spectral bands is discussed as well as the inversion of rediance data inside the canopy, angle transforms for filtering out terrain slope effects, and modification of one dimensional models.

  15. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment

    NASA Astrophysics Data System (ADS)

    Burns, A.; Peschel, J.

    2015-12-01

    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  16. Quantifying the thermal heat requirement of Brassica in assessing biophysical parameters under semi-arid microenvironments

    NASA Astrophysics Data System (ADS)

    Adak, Tarun; Chakravarty, N. V. K.

    2010-07-01

    Evaluation of the thermal heat requirement of Brassica spp. across agro-ecological regions is required in order to understand the further effects of climate change. Spatio-temporal changes in hydrothermal regimes are likely to affect the physiological growth pattern of the crop, which in turn will affect economic yields and crop quality. Such information is helpful in developing crop simulation models to describe the differential thermal regimes that prevail at different phenophases of the crop. Thus, the current lack of quantitative information on the thermal heat requirement of Brassica crops under debranched microenvironments prompted the present study, which set out to examine the response of biophysical parameters [leaf area index (LAI), dry biomass production, seed yield and oil content] to modified microenvironments. Following 2 years of field experiments on Typic Ustocrepts soils under semi-arid climatic conditions, it was concluded that the Brassica crop is significantly responsive to microenvironment modification. A highly significant and curvilinear relationship was observed between LAI and dry biomass production with accumulated heat units, with thermal accumulation explaining ≥80% of the variation in LAI and dry biomass production. It was further observed that the economic seed yield and oil content, which are a function of the prevailing weather conditions, were significantly responsive to the heat units accumulated from sowing to 50% physiological maturity. Linear regression analysis showed that growing degree days (GDD) could indicate 60-70% variation in seed yield and oil content, probably because of the significant response to differential thermal microenvironments. The present study illustrates the statistically strong and significant response of biophysical parameters of Brassica spp. to microenvironment modification in semi-arid regions of northern India.

  17. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  18. Old Dog New Tricks: Use of Point-based Crop Models in Grid-based Regional Assessment of Crop Management Technologies Impact on Future Food Security

    NASA Astrophysics Data System (ADS)

    Koo, J.; Wood, S.; Cenacchi, N.; Fisher, M.; Cox, C.

    2012-12-01

    HarvestChoice (harvestchoice.org) generates knowledge products to guide strategic investments to improve the productivity and profitability of smallholder farming systems in sub-Saharan Africa (SSA). A keynote component of the HarvestChoice analytical framework is a grid-based overlay of SSA - a cropping simulation platform powered by process-based, crop models. Calibrated around the best available representation of cropping production systems in SSA, the simulation platform engages the DSSAT Crop Systems Model with the CENTURY Soil Organic Matter model (DSSAT-CENTURY) and provides a virtual experimentation module with which to explore the impact of a range of technological, managerial and environmental metrics on future crop productivity and profitability, as well as input use. For each of 5 (or 30) arc-minute grid cells in SSA, a stack of model input underlies it: datasets that cover soil properties and fertility, historic and future climate scenarios and farmers' management practices; all compiled from analyses of existing global and regional databases and consultations with other CGIAR centers. Running a simulation model is not always straightforward, especially when certain cropping systems or management practices are not even practiced by resource-poor farmers yet (e.g., precision agriculture) or they were never included in the existing simulation framework (e.g., water harvesting). In such cases, we used DSSAT-CENTURY as a function to iteratively estimate relative responses of cropping systems to technology-driven changes in water and nutrient balances compared to zero-adoption by farmers, while adjusting model input parameters to best mimic farmers' implementation of technologies in the field. We then fed the results of the simulation into to the economic and food trade model framework, IMPACT, to assess the potential implications on future food security. The outputs of the overall simulation analyses are packaged as a web-accessible database and published on the web with an interface that allows users to explore the simulation results in each country with user-defined baseline and what-if scenarios. The results are dynamically presented on maps, charts, and tables. This paper discusses the development of the simulation platform and its underlying data layers, a case study that assessed the role of potential crop management technology development, and the development of a web-based application that visualizes the simulation results.

  19. Potential for Woody Bioenergy Crops Grown on Marginal Lands in the US Midwest to Reduce Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.; Hurtt, G. C.; Fisk, J. P.; Izaurralde, R. C.; Zhang, X.

    2012-12-01

    While cellulosic biofuels are widely considered to be a low carbon energy source for the future, a comprehensive assessment of the environmental sustainability of existing and future biofuel systems is needed to assess their utility in meeting US energy and food needs without exacerbating environmental harm. To assess the carbon emission reduction potential of cellulosic biofuels, we need to identify lands that are initially not storing large quantities of carbon in soil and vegetation but are capable of producing abundant biomass with limited management inputs, and accurately model forest production rates and associated input requirements. Here we present modeled results for carbon emission reduction potential and cellulosic ethanol production of woody bioenergy crops replacing existing native prairie vegetation grown on marginal lands in the US Midwest. Marginal lands are selected based on soil properties describing use limitation, and are extracted from the SSURGO (Soil Survey Geographic) database. Yield estimates for existing native prairie vegetation on marginal lands modeled using the process-based field-scale model EPIC (Environmental Policy Integrated Climate) amount to ~ 6.7±2.0 Mg ha-1. To model woody bioenergy crops, the individual-based terrestrial ecosystem model ED (Ecosystem Demography) is initialized with the soil organic carbon stocks estimated at the end of the EPIC simulation. Four woody bioenergy crops: willow, southern pine, eucalyptus and poplar are parameterized in ED. Sensitivity analysis of model parameters and drivers is conducted to explore the range of carbon emission reduction possible with variation in woody bioenergy crop types, spatial and temporal resolution. We hypothesize that growing cellulosic crops on these marginal lands can provide significant water quality, biodiversity and GHG emissions mitigation benefits, without accruing additional carbon costs from the displacement of food and feed production.

  20. Hydrological and sedimentation implications of landscape changes in a Himalayan catchment due to bioenergy cropping

    NASA Astrophysics Data System (ADS)

    Remesan, Renji; Holman, Ian; Janes, Victoria

    2015-04-01

    There is a global effort to focus on the development of bioenergy and energy cropping, due to the generally increasing demand for crude oil, high oil price volatility and climate change mitigation challenges. Second generation energy cropping is expected to increase greatly in India as the Government of India has recently approved a national policy of 20 % biofuel blending by 2017; furthermore, the country's biomass based power generation potential is estimated as around ~24GW and large investments are expected in coming years to increase installed capacity. In this study, we have modelled the environmental influences (e.g.: hydrology and sediment) of scenarios of increased biodiesel cropping (Jatropha curcas) using the Soil and Water Assessment Tool (SWAT) in a northern Indian river basin. SWAT has been applied to the River Beas basin, using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and NCEP Climate Forecast System Reanalysis (CFSR) meteorological data to simulate the river regime and crop yields. We have applied Sequential Uncertainty Fitting Ver. 2 (SUFI-2) to quantify the parameter uncertainty of the stream flow modelling. The model evaluation statistics for daily river flows at the Jwalamukhi and Pong gauges show good agreement with measured flows (Nash Sutcliffe efficiency of 0.70 and PBIAS of 7.54 %). The study has applied two land use change scenarios of (1) increased bioenergy cropping in marginal (grazing) lands in the lower and middle regions of catchment (2) increased bioenergy cropping in low yielding areas of row crops in the lower and middle regions of the catchment. The presentation will describe the improved understanding of the hydrological, erosion and sediment delivery and food production impacts arising from the introduction of a new cropping variety to a marginal area; and illustrate the potential prospects of bioenergy production in Himalayan valleys.

  1. Environmental impacts of different crop rotations in terms of soil compaction.

    PubMed

    Götze, Philipp; Rücknagel, Jan; Jacobs, Anna; Märländer, Bernward; Koch, Heinz-Josef; Christen, Olaf

    2016-10-01

    Avoiding soil compaction caused by agricultural management is a key aim of sustainable land management, and the soil compaction risk should be considered when assessing the environmental impacts of land use systems. Therefore this project compares different crop rotations in terms of soil structure and the soil compaction risk. It is based on a field trial in Germany, in which the crop rotations (i) silage maize (SM) monoculture, (ii) catch crop mustard (Mu)_sugar beet (SB)-winter wheat (WW)-WW, (iii) Mu_SM-WW-WW and (iv) SB-WW-Mu_SM are established since 2010. Based on the cultivation dates, the operation specific soil compaction risks and the soil compaction risk of the entire crop rotations are modelled at two soil depths (20 and 35 cm). To this end, based on assumptions of the equipment currently used in practice by a model farm, two scenarios are modelled (100 and 50% hopper load for SB and WW harvest). In addition, after one complete rotation, in 2013 and in 2014, the physical soil parameters saturated hydraulic conductivity (kS) and air capacity (AC) were determined at soil depths 2-8, 12-18, 22-28 and 32-38 cm in order to quantify the soil structure. At both soil depths, the modelled soil compaction risks for the crop rotations including SB (Mu_SB-WW-WW, SB-WW-Mu_SM) are higher (20 cm: medium to very high risks; 35 cm: no to medium risks) than for those without SB (SM monoculture, Mu_SM-WW-WW; 20 cm: medium risks; 35 cm: no to low risks). This increased soil compaction risk is largely influenced by the SB harvest in years where soil water content is high. Halving the hopper load and adjusting the tyre inflation pressure reduces the soil compaction risk for the crop rotation as a whole. Under these conditions, there are no to low soil compaction risks for all variants in the subsoil (soil depth 35 cm). Soil structure is mainly influenced in the topsoil (2-8 cm) related to the cultivation of Mu as a catch crop and WW as a preceding crop. Concerning kS, Mu_SB-WW-WW (240 cm d(-1)) and Mu_SM-WW-WW (196 cm d(-1)) displayed significantly higher values than the SM monoculture (67 cm d(-1)), indicating better structural stability and infiltration capacity. At other soil depths, and for the parameter AC, there are no systematic differences in soil structure between the variants. Under the circumstances described, all crop rotations investigated are not associated with environmental impacts caused by soil compaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Biological mode of action of a nitrophenolates-based biostimulant: case study

    PubMed Central

    Przybysz, Arkadiusz; Gawrońska, Helena; Gajc-Wolska, Janina

    2014-01-01

    The challenges facing modern plant production involve (i) responding to the demand for food and resources of plant origin from the world's rapidly growing population, (ii) coping with the negative impact of stressful conditions mainly due to anthropopressure, and (iii) meeting consumers' new requirements and preferences for food that is high in nutritive value, natural, and free from harmful chemical additives. Despite employing the most modern plant cultivation technologies and the progress that has been made in breeding programs, the genetically-determined crop potential is still far from being fully exploited. Consequently yield and quality are often reduced, making production less, both profitable and attractive. There is an increasing desire to reduce the chemical input in agriculture and there has been a change toward integrated plant management and sustainable, environmentally-friendly systems. Biostimulants are a category of relatively new products of diverse formulations that positively affect a plant's vital processes and whose impact is usually more evident under stressful conditions. In this paper, information is provided on the mode of action of a nitrophenolates-based biostimulant, Atonik, in model species and economically important crops grown under both field and controlled conditions in a growth chamber. The effects of Atonik on plant morphology, physiology, biochemistry (crops and model plant) and yield and yield parameters (crops) is demonstrated. Effects of other biostimulants on studied in this work processes/parameters are also presented in discussion. PMID:25566287

  3. Biological mode of action of a nitrophenolates-based biostimulant: case study.

    PubMed

    Przybysz, Arkadiusz; Gawrońska, Helena; Gajc-Wolska, Janina

    2014-01-01

    The challenges facing modern plant production involve (i) responding to the demand for food and resources of plant origin from the world's rapidly growing population, (ii) coping with the negative impact of stressful conditions mainly due to anthropopressure, and (iii) meeting consumers' new requirements and preferences for food that is high in nutritive value, natural, and free from harmful chemical additives. Despite employing the most modern plant cultivation technologies and the progress that has been made in breeding programs, the genetically-determined crop potential is still far from being fully exploited. Consequently yield and quality are often reduced, making production less, both profitable and attractive. There is an increasing desire to reduce the chemical input in agriculture and there has been a change toward integrated plant management and sustainable, environmentally-friendly systems. Biostimulants are a category of relatively new products of diverse formulations that positively affect a plant's vital processes and whose impact is usually more evident under stressful conditions. In this paper, information is provided on the mode of action of a nitrophenolates-based biostimulant, Atonik, in model species and economically important crops grown under both field and controlled conditions in a growth chamber. The effects of Atonik on plant morphology, physiology, biochemistry (crops and model plant) and yield and yield parameters (crops) is demonstrated. Effects of other biostimulants on studied in this work processes/parameters are also presented in discussion.

  4. More grain per drop of water: Screening rice genotype for physiological parameters of drought tolerance

    NASA Astrophysics Data System (ADS)

    Massanelli, J.; Meadows-McDonnell, M.; Konzelman, C.; Moon, J. B.; Kumar, A.; Thomas, J.; Pereira, A.; Naithani, K. J.

    2016-12-01

    Meeting agricultural water demands is becoming progressively difficult due to population growth and changes in climate. Breeding stress-resilient crops is a viable solution, as information about genetic variation and their role in stress tolerance is becoming available due to advancement in technology. In this study we screened eight diverse rice genotypes for photosynthetic capacity under greenhouse conditions. These include the Asian rice (Oryza sativa) genotypes, drought sensitive Nipponbare, and a transgenic line overexpressing the HYR gene in Nipponbare; six genotypes (Vandana, Bengal, Nagina-22, Glaberrima, Kaybonnet, Ai Chueh Ta Pai Ku) and an African rice O. glaberrima, all selected for varying levels of drought tolerance. We collected CO2 and light response curve data under well-watered and simulated drought conditions in greenhouse. From these curves we estimated photosynthesis model parameters, such as the maximum carboxylation rate (Vcmax), the maximum electron transport rate (Jmax), the maximum gross photosynthesis rate, daytime respiration (Rd), and quantum yield (f). Our results suggest that O. glaberrima and Nipponbare were the most sensitive to drought because Vcmax and Pgmax declined under drought conditions; other drought tolerant genotypes did not show significant changes in these model parameters. Our integrated approach, combining genetic information and photosynthesis modeling, shows promise to quantify drought response parameters and improve crop yield under drought stress conditions.

  5. Combining Remote Sensing imagery of both fine and coarse spatial resolution to Estimate Crop Evapotranspiration and quantifying its Influence on Crop Growth Monitoring.

    NASA Astrophysics Data System (ADS)

    Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre

    2010-05-01

    This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize the type of vegetation and its state of development in a more accurate way than using the ECOCLIMAP database. Finally, the CASA method was applied using the evapotranspiration images with FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) images from LSA-SAF to obtain Dry Matter Productivity (DMP) and crop yield. The potential of using evapotranspiration obtained from remote sensing in crop growth modeling is studied and discussed. Results of comparing the evapotranspiration obtained with ground truth data are shown as well as the influence of using high resolution information to characterize the vegetation in the evapotranspiration estimation. The values of DMP and yield obtained with the CASA method are compared with those obtained using crop growth modeling and field data, showing the potential of using this simplified remote sensing method for crop monitoring and yield forecasting. This methodology could be applied in an operative way to the entire MSG disk, allowing the continuous crop growth monitoring.

  6. Uncertainties in Integrated Climate Change Impact Assessments by Sub-setting GCMs Based on Annual as well as Crop Growing Period under Rice Based Farming System of Indo-Gangetic Plains of India

    NASA Astrophysics Data System (ADS)

    Pillai, S. N.; Singh, H.; Panwar, A. S.; Meena, M. S.; Singh, S. V.; Singh, B.; Paudel, G. P.; Baigorria, G. A.; Ruane, A. C.; McDermid, S.; Boote, K. J.; Porter, C.; Valdivia, R. O.

    2016-12-01

    Integrated assessment of climate change impact on agricultural productivity is a challenge to the scientific community due to uncertainties of input data, particularly the climate, soil, crop calibration and socio-economic dataset. However, the uncertainty due to selection of GCMs is the major source due to complex underlying processes involved in initial as well as the boundary conditions dealt in solving the air-sea interactions. Under Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Indo-Gangetic Plains Regional Research Team investigated the uncertainties caused due to selection of GCMs through sub-setting based on annual as well as crop-growth period of rice-wheat systems in AgMIP Integrated Assessment methodology. The AgMIP Phase II protocols were used to study the linking of climate-crop-economic models for two study sites Meerut and Karnal to analyse the sensitivity of current production systems to climate change. Climate Change Projections were made using 29 CMIP5 GCMs under RCP4.5 and RCP 8.5 during mid-century period (2040-2069). Two crop models (APSIM & DSSAT) were used. TOA-MD economic model was used for integrated assessment. Based on RAPs (Representative Agricultural Pathways), some of the parameters, which are not possible to get through modeling, derived from literature and interactions with stakeholders incorporated into the TOA-MD model for integrated assessment.

  7. Model of Yield Response of Corn to Plant Population and Absorption of Solar Energy

    PubMed Central

    Overman, Allen R.; Scholtz, Richard V.

    2011-01-01

    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha−1 and g plant−1) on plant population (plants m−2). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Ym (Mg ha−1) for maximum yield at high plant population and c (m2 plant−1) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, xc = 1/c (plants m−2). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of xc were very similar for the three field studies with the same crop species. PMID:21297960

  8. Use-Exposure Relationships of Pesticides for Aquatic Risk Assessment

    PubMed Central

    Luo, Yuzhou; Spurlock, Frank; Deng, Xin; Gill, Sheryl; Goh, Kean

    2011-01-01

    Field-scale environmental models have been widely used in aquatic exposure assessments of pesticides. Those models usually require a large set of input parameters and separate simulations for each pesticide in evaluation. In this study, a simple use-exposure relationship is developed based on regression analysis of stochastic simulation results generated from the Pesticide Root-Zone Model (PRZM). The developed mathematical relationship estimates edge-of-field peak concentrations of pesticides from aerobic soil metabolism half-life (AERO), organic carbon-normalized soil sorption coefficient (KOC), and application rate (RATE). In a case study of California crop scenarios, the relationships explained 90–95% of the variances in the peak concentrations of dissolved pesticides as predicted by PRZM simulations for a 30-year period. KOC was identified as the governing parameter in determining the relative magnitudes of pesticide exposures in a given crop scenario. The results of model application also indicated that the effects of chemical fate processes such as partitioning and degradation on pesticide exposure were similar among crop scenarios, while the cross-scenario variations were mainly associated with the landscape characteristics, such as organic carbon contents and curve numbers. With a minimum set of input data, the use-exposure relationships proposed in this study could be used in screening procedures for potential water quality impacts from the off-site movement of pesticides. PMID:21483772

  9. Crop Identification Using Time Series of Landsat-8 and Radarsat-2 Images: Application in a Groundwater Irrigated Region, South India

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Hubert-Moy, L.; Betbederet, J.; Ruiz, L.; Sekhar, M.; Corgne, S.

    2016-08-01

    Monitoring land use and land cover and more particularly irrigated cropland dynamics is of great importance for water resources management and land use planning. The objective of this study was to evaluate the combined use of multi-temporal optical and radar data with a high spatial resolution in order to improve the precision of irrigated crop identification by taking into account information on crop phenological stages. SAR and optical parameters were derived from time- series of seven quad-pol RADARSAT-2 and four Landsat-8 images which were acquired on the Berambadi catchment, South India, during the monsoon crop season at the growth stages of turmeric crop. To select the best parameter to discriminate turmeric crops, an analysis of covariance (ANCOVA) was applied on all the time-series parameters and the most discriminant ones were classified using the Support Vector Machine (SVM) technique. Results show that in absence of optical images, polarimetric parameters derived from SAR time-series can be used for the turmeric area estimates and that the combined use of SAR and optical parameters can improve the classification accuracy to identify turmeric.

  10. Determination of Winter Wheat Phenology in Bavaria- A Contribution to Regional Crop Health Monitoring from Space

    NASA Astrophysics Data System (ADS)

    Bruggemann, Lena; Bach, Heike; Ruf, Tobias; Appel, Florian; Migdall, Silke; Hank, Tobias; Mauser, Wolfram; Eiblmeier, Peter

    2016-08-01

    The central topic of this study is the monitoring of winter wheat phenology and the detection of anthesis (flowering) using remotely sensed data as well as crop growth modeling. It is not possible to directly observe the flowering of wheat with optical satellite sensors. Thus, an approach that combines crop growth modeling with remote sensing data covering optical and microwave spectral ranges was developed. This was done in three steps: The hydro-agroecological land surface model PROMET was first run in a stand-alone version for selected sites distributed throughout Bavaria using only static input parameters (e.g. soil map) and current meteorological data as driving factors. Thus, multitemporal information from optical remote sensing data was assimilated into the model runs in a second step to improve the accuracy of the results. Finally, the use of radar data for anthesis detection in winter wheat was tested using Sentinel-1 data of 2015 in dual polarization mode (VV+VH).

  11. Calibration-induced uncertainty of the EPIC model to estimate climate change impact on global maize yield

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Skalský, Rastislav; Porter, Cheryl H.; Balkovič, Juraj; Jones, James W.; Yang, Di

    2016-09-01

    Understanding the interactions between agricultural production and climate is necessary for sound decision-making in climate policy. Gridded and high-resolution crop simulation has emerged as a useful tool for building this understanding. Large uncertainty exists in this utilization, obstructing its capacity as a tool to devise adaptation strategies. Increasing focus has been given to sources of uncertainties for climate scenarios, input-data, and model, but uncertainties due to model parameter or calibration are still unknown. Here, we use publicly available geographical data sets as input to the Environmental Policy Integrated Climate model (EPIC) for simulating global-gridded maize yield. Impacts of climate change are assessed up to the year 2099 under a climate scenario generated by HadEM2-ES under RCP 8.5. We apply five strategies by shifting one specific parameter in each simulation to calibrate the model and understand the effects of calibration. Regionalizing crop phenology or harvest index appears effective to calibrate the model for the globe, but using various values of phenology generates pronounced difference in estimated climate impact. However, projected impacts of climate change on global maize production are consistently negative regardless of the parameter being adjusted. Different values of model parameter result in a modest uncertainty at global level, with difference of the global yield change less than 30% by the 2080s. The uncertainty subjects to decrease if applying model calibration or input data quality control. Calibration has a larger effect at local scales, implying the possible types and locations for adaptation.

  12. Using Remote Sensing to Estimate Crop Water Use to Improve Irrigation Water Management

    NASA Astrophysics Data System (ADS)

    Reyes-Gonzalez, Arturo

    Irrigation water is scarce. Hence, accurate estimation of crop water use is necessary for proper irrigation managements and water conservation. Satellite-based remote sensing is a tool that can estimate crop water use efficiently. Several models have been developed to estimate crop water requirement or actual evapotranspiration (ETa) using remote sensing. One of them is the Mapping EvapoTranspiration at High Resolution using Internalized Calibration (METRIC) model. This model has been compared with other methods for ET estimations including weighing lysimeters, pan evaporation, Bowen Ratio Energy Balance System (BREBS), Eddy Covariance (EC), and sap flow. However, comparison of METRIC model outputs to an atmometer for ETa estimation has not yet been attempted in eastern South Dakota. The results showed a good relationship between ETa estimated by the METRIC model and estimated with atmometer (r2 = 0.87 and RMSE = 0.65 mm day-1). However, ETa values from atmometer were consistently lower than ET a values from METRIC. The verification of remotely sensed estimates of surface variables is essential for any remote-sensing study. The relationships between LAI, Ts, and ETa estimated using the remote sensing-based METRIC model and in-situ measurements were established. The results showed good agreement between the variables measured in situ and estimated by the METRIC model. LAI showed r2 = 0.76, and RMSE = 0.59 m2 m -2, Ts had r2 = 0.87 and RMSE 1.24 °C and ETa presented r2= 0.89 and RMSE = 0.71 mm day -1. Estimation of ETa using energy balance method can be challenging and time consuming. Thus, there is a need to develop a simple and fast method to estimate ETa using minimum input parameters. Two methods were used, namely 1) an energy balance method (EB method) that used input parameters of the Landsat image, weather data, a digital elevation map, and a land cover map and 2) a Kc-NDVI method that use two input parameters: the Landsat image and weather data. A strong relationship was found between the two methods with r2 of 0.97 and RMSE of 0.37 mm day -1. Hence, the Kc-NDVI method performed well for ET a estimations, indicating that Kc-NDVI method can be a robust and reliable method to estimate ETa in a short period of time. Estimation of crop evapotranspiration (ETc) using satellite remote sensing-based vegetation index such as the Normalized Difference Vegetation Index (NDVI). The NDVI was calculated using near-infrared and red wavebands. The relationship between NDVI and tabulated Kc's was used to generate Kc maps. ETc maps were developed as an output of Kc maps multiplied by reference evapotranspiration (ETr). Daily ETc maps helped to explain the variability of crop water use during the growing season. Based on the results we can conclude that ETc maps developed from remotely sensed multispectral vegetation indices are a useful tool for quantifying crop water use at regional and field scales.

  13. Do all leaf photosynthesis parameters of rice acclimate to elevated CO2 , elevated temperature, and their combination, in FACE environments?

    PubMed

    Cai, Chuang; Li, Gang; Yang, Hailong; Yang, Jiaheng; Liu, Hong; Struik, Paul C; Luo, Weihong; Yin, Xinyou; Di, Lijun; Guo, Xuanhe; Jiang, Wenyu; Si, Chuanfei; Pan, Genxing; Zhu, Jianguo

    2018-04-01

    Leaf photosynthesis of crops acclimates to elevated CO 2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO 2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free-air CO 2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO 2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0-2.0°C). Parameters of the C 3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (g s ) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO 2 , elevated temperature, and their combination. The combination of elevated CO 2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The g s model significantly underestimated g s under the combination of elevated CO 2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled g s -FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of g s hardly improved prediction of leaf photosynthesis under the four combinations of CO 2 and temperature. Therefore, the typical procedure that crop models using the FvCB and g s models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change. © 2017 John Wiley & Sons Ltd.

  14. Soil- and crop-dependent variation in correlation lag between precipitation and agricultural drought indices as predicted by the SWAP model

    NASA Astrophysics Data System (ADS)

    Wright, Azin; Cloke, Hannah; Verhoef, Anne

    2017-04-01

    Droughts have a devastating impact on agriculture and economy. The risk of more frequent and more severe droughts is increasing due to global warming and certain anthropogenic activities. At the same time, the global population continues to rise and the need for sustainable food production is becoming more and more pressing. In light of this, drought prediction can be of great value; in the context of early warning, preparedness and mitigation of drought impacts. Prediction of meteorological drought is associated with uncertainties around precipitation variability. As meteorological drought propagates, it can transform into agricultural drought. Determination of the maximum correlation lag between precipitation and agricultural drought indices can be useful for prediction of agricultural drought. However, the influence of soil and crop type on the lag needs to be considered, which we explored using a 1-D Soil-Vegetation-Atmosphere-Transfer model (SWAP (http://www.swap.alterra.nl/), with the following configurations, all forced with ERA-Interim weather data (1979 to 2014): i) different crop types in the UK; ii) three generic soil types (clay, loam and sand) were considered. A Sobol sensitivity analysis was carried out (perturbing the SWAP model van Genuchten soil hydraulic parameters) to study the effect of soil type uncertainty on the water balance variables. Based on the sensitivity analysis results, a few variations of each soil type were selected. Agricultural drought indices including Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) were calculated. The maximum correlation lag between precipitation and these drought indices was calculated, and analysed in the context of crop and soil model parameters. The findings of this research can be useful to UK farming, by guiding government bodies such as the Environment Agency when issuing drought warnings and implementing drought measures.

  15. The components of crop productivity: measuring and modeling plant metabolism

    NASA Technical Reports Server (NTRS)

    Bugbee, B.

    1995-01-01

    Several investigators in the CELSS program have demonstrated that crop plants can be remarkably productive in optimal environments where plants are limited only by incident radiation. Radiation use efficiencies of 0.4 to 0.7 g biomass per mol of incident photons have been measured for crops in several laboratories. Some early published values for radiation use efficiency (1 g mol-1) were inflated due to the effect of side lighting. Sealed chambers are the basic research module for crop studies for space. Such chambers allow the measurement of radiation and CO2 fluxes, thus providing values for three determinants of plant growth: radiation absorption, photosynthetic efficiency (quantum yield), and respiration efficiency (carbon use efficiency). Continuous measurement of each of these parameters over the plant life cycle has provided a blueprint for daily growth rates, and is the basis for modeling crop productivity based on component metabolic processes. Much of what has been interpreted as low photosynthetic efficiency is really the result of reduced leaf expansion and poor radiation absorption. Measurements and models of short-term (minutes to hours) and long-term (days to weeks) plant metabolic rates have enormously improved our understanding of plant environment interactions in ground-based growth chambers and are critical to understanding plant responses to the space environment.

  16. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua

    2009-09-01

    With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.

  17. [Simplification of crop shortage water index and its application in drought remote sensing monitoring].

    PubMed

    Liu, Anlin; Li, Xingmin; He, Yanbo; Deng, Fengdong

    2004-02-01

    Based on the principle of energy balance, the method for calculating latent evaporation was simplified, and hence, the construction of the drought remote sensing monitoring model of crop water shortage index was also simplified. Since the modified model involved fewer parameters and reduced computing times, it was more suitable for the operation running in the routine services. After collecting the concerned meteorological elements and the NOAA/AVHRR image data, the new model was applied to monitor the spring drought in Guanzhong, Shanxi Province. The results showed that the monitoring results from the new model, which also took more considerations of the effects of the ground coverage conditions and meteorological elements such as wind speed and the water pressure, were much better than the results from the model of vegetation water supply index. From the view of the computing times, service effects and monitoring results, the simplified crop water shortage index model was more suitable for practical use. In addition, the reasons of the abnormal results of CWSI > 1 in some regions in the case studies were also discussed in this paper.

  18. Development of estimation method for crop yield using MODIS satellite imagery data and process-based model for corn and soybean in US Corn-Belt region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.

    2012-12-01

    Crop productivity is associated with the food security and hence, several models have been developed to estimate crop yield by combining remote sensing data with carbon cycle processes. In present study, we attempted to estimate crop GPP and NPP using algorithm based on the LUE model and a simplified respiration model. The state of Iowa and Illinois was chosen as the study site for estimating the crop yield for a period covering the 5 years (2006-2010), as it is the main Corn-Belt area in US. Present study focuses on developing crop-specific parameters for corn and soybean to estimate crop productivity and yield mapping using satellite remote sensing data. We utilized a 10 km spatial resolution daily meteorological data from WRF to provide cloudy-day meteorological variables but in clear-say days, MODIS-based meteorological data were utilized to estimate daily GPP, NPP, and biomass. County-level statistics on yield, area harvested, and productions were used to test model predicted crop yield. The estimated input meteorological variables from MODIS and WRF showed with good agreements with the ground observations from 6 Ameriflux tower sites in 2006. For examples, correlation coefficients ranged from 0.93 to 0.98 for Tmin and Tavg ; from 0.68 to 0.85 for daytime mean VPD; from 0.85 to 0.96 for daily shortwave radiation, respectively. We developed county-specific crop conversion coefficient, i.e. ratio of yield to biomass on 260 DOY and then, validated the estimated county-level crop yield with the statistical yield data. The estimated corn and soybean yields at the county level ranged from 671 gm-2 y-1 to 1393 gm-2 y-1 and from 213 gm-2 y-1 to 421 gm-2 y-1, respectively. The county-specific yield estimation mostly showed errors less than 10%. Furthermore, we estimated crop yields at the state level which were validated against the statistics data and showed errors less than 1%. Further analysis for crop conversion coefficient was conducted for 200 DOY and 280 DOY. For the case of 280 DOY, Crop yield estimation showed better accuracy for soybean at county level. Though the case of 200 DOY resulted in less accuracy (i.e. 20% mean bias), it provides a useful tool for early forecasting of crop yield. We improved the spatial accuracy of estimated crop yield at county level by developing county-specific crop conversion coefficient. Our results indicate that the aboveground crop biomass can be estimated successfully with the simple LUE and respiration models combined with MODIS data and then, county-specific conversion coefficient can be different with each other across different counties. Hence, applying region-specific conversion coefficient is necessary to estimate crop yield with better accuracy.

  19. Proximity to crops and residential to agricultural herbicides in Iowa

    USGS Publications Warehouse

    Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R.

    2006-01-01

    Rural residents can be exposed to agricultural pesticides through the proximity of their homes to crop fields. Previously, we developed a method to create historical crop maps using a geographic information system. The aim of the present study was to determine whether crop maps are useful for predicting levels of crop herbicides in carpet dust samples from residences. From homes of participants in a case-control study of non-Hodgkin lymphoma in Iowa (1998-2000), we collected vacuum cleaner dust and measured 14 herbicides with high use on corn and soybeans in Iowa. Of 112 homes, 58% of residences had crops within 500 m of their home, an intermediate distance for primary drift from aerial and ground applications. Detection rates for herbicides ranged from 0% for metribuzin and cyanazine to 95% for 2,4-dichlorophenoxyacetic acid. Six herbicides used almost exclusively in agriculture were detected in 28% of homes. Detections and concentrations were highest in homes with an active farmer. Increasing acreage of corn and soybean fields within 750 m of homes was associated with significantly elevated odds of detecting agricultural herbicides compared with homes with no crops within 750 m (adjusted odds ratio per 10 acres = 1.06; 95% confidence interval, 1.02-1.11). Herbicide concentrations also increased significantly with increasing acreage within 750 m. We evaluated the distance of crop fields from the home at < 100, 101-250, 251-500, and 501-750 m. Including the crop buffer distance parameters in the model did not significantly improve the fit compared with a model with total acres within 750 m. Our results indicate that crop maps may be a useful method for estimating levels of herbicides in homes from nearby crop fields.

  20. [Crop-soil nitrogen cycling and soil organic carbon balance in black soil zone of Jilin Province based on DSSAT model].

    PubMed

    Yang, Jing-min; Dou, Sen; Yang, Jing-yi; Hoogenboom, Gerrit; Jiang, Xu; Zhang, Zhong-qing; Jiang, Hong-wei; Jia, Li-hui

    2011-08-01

    By using the CERES-Maize crop model and Century soil model in Decision Support System of Agrotechnology Transfer (DSSAT) model, this paper studied the effects of crop management parameters, fertilizer N application rate, soil initial N supply, and crop residue application on the maize growth, crop-soil N cycling, and soil organic C and N ecological balance in black soil (Mollisol) zone of Jilin Province, Northeast China. Taking 12,000-15,000 kg x hm(-2) as the target yield of maize, the optimum N application rate was 200-240 kg N x hm(-2). Under this fertilization, the aboveground part N uptake was 250-290 kg N x hm(-2), among which, 120-140 kg N x hm(-2) came from soil, and 130-150 kg N x hm(-2) came from fertilizer. Increasing the N application rate (250-420 kg N x hm(-2)) induced an obvious increase of soil residual N (63-183 kg x hm(-2)); delaying the N topdressing date also induced the increase of the residual N. When the crop residue application exceeded 6000 kg x hm(-2), the soil active organic C and N could maintain the supply/demand balance during maize growth season. To achieve the target maize yield and maintain the ecological balance of soil organic C and N in black soil zone of Jilin Province, the chemical N application rate would be controlled in the range of 200-240 kg N x hm(-2), topdressing N should be at proper date, and the application amount of crop residue would be up to 6000 kg x hm(-2).

  1. Assessment of winter wheat loss risk impacted by climate change from 1982 to 2011

    NASA Astrophysics Data System (ADS)

    Du, Xin

    2017-04-01

    The world's farmers will face increasing pressure to grow more food on less land in succeeding few decades, because it seems that the continuous population growth and agricultural products turning to biofuels would extend several decades into the future. Therefore, the increased demand for food supply worldwide calls for improved accuracy of crop productivity estimation and assessment of grain production loss risk. Extensive studies have been launched to evaluate the impacts of climate change on crop production based on various crop models drove with global or regional climate model (GCM/RCM) output. However, assessment of climate change impacts on agriculture productivity is plagued with uncertainties of the future climate change scenarios and complexity of crop model. Therefore, given uncertain climate conditions and a lack of model parameters, these methods are strictly limited in application. In this study, an empirical assessment approach for crop loss risk impacted by water stress has been established and used to evaluate the risk of winter wheat loss in China, United States, Germany, France and United Kingdom. The average value of winter wheat loss risk impacted by water stress for the three countries of Europe is about -931kg/ha, which is obviously higher in contrast with that in China (-570kg/ha) and in United States (-367kg/ha). Our study has important implications for further application of operational assessment of crop loss risk at a country or region scale. Future studies should focus on using higher spatial resolution remote sensing data, combining actual evapo-transpiration to estimate water stress, improving the method for downscaling of statistic crop yield data, and establishing much more rational and elaborate zoning method.

  2. Estimating cropland NPP using national crop inventory and MODIS derived crop specific parameters

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; West, T. O.; Ricciuto, D. M.

    2011-12-01

    Estimates of cropland net primary production (NPP) are needed as input for estimates of carbon flux and carbon stock changes. Cropland NPP is currently estimated using terrestrial ecosystem models, satellite remote sensing, or inventory data. All three of these methods have benefits and problems. Terrestrial ecosystem models are often better suited for prognostic estimates rather than diagnostic estimates. Satellite-based NPP estimates often underestimate productivity on intensely managed croplands and are also limited to a few broad crop categories. Inventory-based estimates are consistent with nationally collected data on crop yields, but they lack sub-county spatial resolution. Integrating these methods will allow for spatial resolution consistent with current land cover and land use, while also maintaining total biomass quantities recorded in national inventory data. The main objective of this study was to improve cropland NPP estimates by using a modification of the CASA NPP model with individual crop biophysical parameters partly derived from inventory data and MODIS 8day 250m EVI product. The study was conducted for corn and soybean crops in Iowa and Illinois for years 2006 and 2007. We used EVI as a linear function for fPAR, and used crop land cover data (56m spatial resolution) to extract individual crop EVI pixels. First, we separated mixed pixels of both corn and soybean that occur when MODIS 250m pixel contains more than one crop. Second, we substituted mixed EVI pixels with nearest pure pixel values of the same crop within 1km radius. To get more accurate photosynthetic active radiation (PAR), we applied the Mountain Climate Simulator (MTCLIM) algorithm with the use of temperature and precipitation data from the North American Land Data Assimilation System (NLDAS-2) to generate shortwave radiation data. Finally, county specific light use efficiency (LUE) values of each crop for years 2006 to 2007 were determined by application of mean county inventory NPP and EVI-derived APAR into the Monteith equation. Results indicate spatial variability in LUE values across Iowa and Illinois. Northern regions of both Iowa and Illinois have higher LUE values than southern regions. This trend is reflected in NPP estimates. Results also show that corn has higher LUE values than soybean, resulting in higher NPP for corn than for soybean. Current NPP estimates were compared with NPP estimates from MOD17A3 product and with county inventory-based NPP estimates. Results indicate that current NPP estimates closely agree with inventory-based estimates, and that current NPP estimates are higher than those of the MOD17A3 product. It was also found that when mixed pixels were substituted with nearest pure pixels, revised NPP estimates were improved showing better agreement with inventory-based estimates.

  3. Evaluation of Crop-Water Consumption Simulation to Support Agricultural Water Resource Management using Satellite-based Water Cycle Observations

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2016-12-01

    Water scarcity is one of the main factors limiting agricultural development. Numerical models integrated with remote sensing datasets are increasingly being used operationally as inputs for crop water balance models and agricultural forecasting due to increasing availability of high temporal and spatial resolution datasets. However, the model accuracy in simulating soil water content is affected by the accuracy of the soil hydraulic parameters used in the model, which are used in the governing equations. However, soil databases are known to have a high uncertainty across scales. Also, for agricultural sites, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally. The present study utilizes effective soil hydraulic parameters obtained using a 1-km downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E) using the genetic algorithm inverse method within the Catchment Land Surface Model (CLSM). Secondly, to provide realistic irrigation estimates for agricultural sites, an irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches the threshold, 50% with respect to the maximum available water capacity obtained from the effective soil hydraulic parameters. An additional important criterion utilized is the estimation of crop water consumption based on dynamic root growth and uptake in root zone layer. Model performance is evaluated using MODIS land surface temperature (LST) product. The soil moisture estimates for the root zone are also validated with the in situ field data, for three sites (2- irrigated and 1- rainfed) located at the University of Nebraska Agricultural Research and Development Center near Mead, NE and monitored by three AmeriFlux installations (Verma et al., 2005).

  4. Satellite-guided hydro-economic analysis for integrated management and prediction of the impact of droughts on agricultural regions

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Howitt, R.; Kimball, J. S.

    2013-12-01

    Agricultural activity can exacerbate or buffer the impact of climate variability, especially droughts, on the hydrologic and socioeconomic conditions of rural areas. Potential negative regional impacts of droughts include impoverishment of agricultural regions, deterioration or overuse of water resources, risk of monoculture, and regional dependence on external food markets. Policies that encourage adequate management practices in the face of adverse climatic events are critical to preserve rural livelihoods and to ensure a sustainable future for agriculture. Diagnosing and managing drought effects on agricultural production, on the social and natural environment, and on limited water resources, is highly complex and interdisciplinary. The challenges that decision-makers face to mitigate the impact of water shortage are social, agronomic, economic and environmental in nature and therefore must be approached from an integrated multidisciplinary point of view. Existing observation technologies, in conjunction with models and assimilation methods open the opportunity for novel interdisciplinary analysis tools to support policy and decision making. We present an integrated modeling and observation framework driven by satellite remote sensing and other ancillary information from regional monitoring networks to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, management decisions and socioeconomic policy. The core of this framework is a hydroeconomic model of agricultural production that assimilates remote sensing inputs to quantify the amount of land, water, fertilizer and labor farmers allocate for each crop they choose to grow on a seasonal basis in response to changing climatic conditions, including drought. A regional hydroclimatologic model provides biophysical constraints to an economic model of agricultural production based on a class of models referred to as positive mathematical programming (PMP). A recursive Bayesian update method is used to adjust the model parameters by assimilating information on crop acreage, production, and crop evapotranspiration estimated from high-spatial resolution satellite remote sensing. We are developing new land parameter records adapted for agricultural application by merging relatively fine scale, calibrated spectral reflectance time series with similar spectral information from coarser scale and more temporally continuous global satellite data records. These new products will be used to generate field scale estimates of LAI and FPAR, which will be used with regional surface meteorology and biophysical data to estimate crop production including C4 crop types. This integrated framework provides an operational means to monitor and forecast what crops will be grown and how farmers will allocate land, water and other agricultural resources under expected adverse conditions, and the resulting consequences for other water users. It will also permit evaluation of impacts of water policy and changes in food prices on rural community livelihoods. The Bayesian update framework constitutes an efficient method for the identification of the production function parameters and provides valuable information on the associated uncertainty of the forecasts.

  5. An Integrated Biogeochemical and Biophysical Analysis of Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Liang, M.; Song, Y.; Barman, R.; Jain, A. K.

    2010-12-01

    Bioenergy crops are becoming increasingly important with growing concerns about the energy demand and climate change and the need to replace fossil fuels with carbon-neutral renewable sources of energy. The transition to a biofuel-based energy supply raises many questions such as: how and where to grow energy crops, what will be the impacts of growing large scale biofuel crops on climate system, the hydrological cycle and soil biogeochemistry. We are developing and applying an integrated system modeling framework to investigate the biophysical, physiological, and biogeochemical systems governing important processes that regulate crop growth such as water, energy and nutrient cycles. The framework has a two-big-leaf canopy scheme for photosynthesis, stomatal conductance, leaf temperature and energy fluxes. The soil/snow hydrology consists of 10 layers for soil and up to 5 layers for snow. The biogeochemistry component explicitly accounts for coupled carbon and nitrogen dynamics. The feedstocks currently considered include corn stover, Miscanthus and switchgrass. The parameters used for simulation of each crop have been calibrated using field experimental data from the US. The use of this modeling capability will be demonstrated through its applications to study the environmental effects (through changes in albedo and evapotranspiration) of biofuel production as well as the effective management practice in the United States.

  6. Assimilation of remote sensing data into a process-based ecosystem model for monitoring changes of soil water content in croplands

    NASA Astrophysics Data System (ADS)

    Ju, Weimin; Gao, Ping; Wang, Jun; Li, Xianfeng; Chen, Shu

    2008-10-01

    Soil water content (SWC) is an important factor affecting photosynthesis, growth, and final yields of crops. The information on SWC is of importance for mitigating the reduction of crop yields caused by drought through proper agricultural water management. A variety of methodologies have been developed to estimate SWC at local and regional scales, including field sampling, remote sensing monitoring and model simulations. The reliability of regional SWC simulation depends largely on the accuracy of spatial input datasets, including vegetation parameters, soil and meteorological data. Remote sensing has been proved to be an effective technique for controlling uncertainties in vegetation parameters. In this study, the vegetation parameters (leaf area index and land cover type) derived from the Moderate Resolution Imaging Spectrometer (MODIS) were assimilated into a process-based ecosystem model BEPS for simulating the variations of SWC in croplands of Jiangsu province, China. Validation shows that the BEPS model is able to capture 81% and 83% of across-site variations of SWC at 10 and 20 cm depths during the period from September to December, 2006 when a serous autumn drought occurred. The simulated SWC responded the events of rainfall well at regional scale, demonstrating the usefulness of our methodology for SWC and practical agricultural water management at large scales.

  7. Evaluation of the DayCent model to predict carbon fluxes in French crop sites

    NASA Astrophysics Data System (ADS)

    Fujisaki, Kenji; Martin, Manuel P.; Zhang, Yao; Bernoux, Martial; Chapuis-Lardy, Lydie

    2017-04-01

    Croplands in temperate regions are an important component of the carbon balance and can act as a sink or a source of carbon, depending on pedoclimatic conditions and management practices. Therefore the evaluation of carbon fluxes in croplands by modelling approach is relevant in the context of global change. This study was part of the Comete-Global project funded by the multi-Partner call FACCE JPI. Carbon fluxes, net ecosystem exchange (NEE), leaf area index (LAI), biomass, and grain production were simulated at the site level in three French crop experiments from the CarboEurope project. Several crops were studied, like winter wheat, rapeseed, barley, maize, and sunflower. Daily NEE was measured with eddy covariance and could be partitioned between gross primary production (GPP) and total ecosystem respiration (TER). Measurements were compared to DayCent simulations, a process-based model predicting plant production and soil organic matter turnover at daily time step. We compared two versions of the model: the original one with a simplified plant module and a newer version that simulates LAI. Input data for modelling were soil properties, climate, and management practices. Simulations of grain yields and biomass production were acceptable when using optimized crop parameters. Simulation of NEE was also acceptable. GPP predictions were improved with the newer version of the model, eliminating temporal shifts that could be observed with the original model. TER was underestimated by the model. Predicted NEE was more sensitive to soil tillage and nitrogen applications than measured NEE. DayCent was therefore a relevant tool to predict carbon fluxes in French crops at the site level. The introduction of LAI in the model improved its performance.

  8. The use of seasonal forecasts in a crop failure early warning system for West Africa

    NASA Astrophysics Data System (ADS)

    Nicklin, K. J.; Challinor, A.; Tompkins, A.

    2011-12-01

    Seasonal rainfall in semi-arid West Africa is highly variable. Farming systems in the region are heavily dependent on the monsoon rains leading to large variability in crop yields and a population that is vulnerable to drought. The existing crop yield forecasting system uses observed weather to calculate a water satisfaction index, which is then related to expected crop yield (Traore et al, 2006). Seasonal climate forecasts may be able to increase the lead-time of yield forecasts and reduce the humanitarian impact of drought. This study assesses the potential for a crop failure early warning system, which uses dynamic seasonal forecasts and a process-based crop model. Two sets of simulations are presented. In the first, the crop model is driven with observed weather as a control run. Observed rainfall is provided by the GPCP 1DD data set, whilst observed temperature and solar radiation data are given by the ERA-Interim reanalysis. The crop model used is the groundnut version of the General Large Area Model for annual crops (GLAM), which has been designed to operate on the grids used by seasonal weather forecasts (Challinor et al, 2004). GLAM is modified for use in West Africa by allowing multiple planting dates each season, replanting failed crops and producing parameter sets for Spanish- and Virginia- type West African groundnut. Crop yields are simulated for three different assumptions concerning the distribution and relative abundance of Spanish- and Virginia- type groundnut. Model performance varies with location, but overall shows positive skill in reproducing observed crop failure. The results for the three assumptions are similar, suggesting that the performance of the system is limited by something other than information on the type of groundnut grown. In the second set of simulations the crop model is driven with observed weather up to the forecast date, followed by ECMWF system 3 seasonal forecasts until harvest. The variation of skill with forecast date is assessed along with the extent to which forecasts can be improved by bias correction of the rainfall data. Two forms of bias correction are applied: a novel method of spatially bias correcting daily data, and statistical bias correction of the frequency and intensity distribution. Results are presented using both observed yields and the control run as the reference for verification. The potential for current dynamic seasonal forecasts to form part of an operational system giving timely and accurate warnings of crop failure is discussed. Traore S.B. et al., 2006. A Review of Agrometeorological Monitoring Tools and Methods Used in the West African Sahel. In: Motha R.P. et al., Strengthening Operational Agrometeorological Services at the National Level. Technical Bulletin WAOB-2006-1 and AGM-9, WMO/TD No. 1277. Pages 209-220. www.wamis.org/agm/pubs/agm9/WMO-TD1277.pdf Challinor A.J. et al., 2004. Design and optimisation of a large-area process based model for annual crops. Agric. For. Meteorol. 124, 99-120.

  9. Model-based surface soil moisture (SSM) retrieval algorithm using multi-temporal RISAT-1 C-band SAR data

    NASA Astrophysics Data System (ADS)

    Pandey, Dharmendra K.; Maity, Saroj; Bhattacharya, Bimal; Misra, Arundhati

    2016-05-01

    Accurate measurement of surface soil moisture of bare and vegetation covered soil over agricultural field and monitoring the changes in surface soil moisture is vital for estimation for managing and mitigating risk to agricultural crop, which requires information and knowledge to assess risk potential and implement risk reduction strategies and deliver essential responses. The empirical and semi-empirical model-based soil moisture inversion approach developed in the past are either sensor or region specific, vegetation type specific or have limited validity range, and have limited scope to explain physical scattering processes. Hence, there is need for more robust, physical polarimetric radar backscatter model-based retrieval methods, which are sensor and location independent and have wide range of validity over soil properties. In the present study, Integral Equation Model (IEM) and Vector Radiative Transfer (VRT) model were used to simulate averaged backscatter coefficients in various soil moisture (dry, moist and wet soil), soil roughness (smooth to very rough) and crop conditions (low to high vegetation water contents) over selected regions of Gujarat state of India and the results were compared with multi-temporal Radar Imaging Satellite-1 (RISAT-1) C-band Synthetic Aperture Radar (SAR) data in σ°HH and σ°HV polarizations, in sync with on field measured soil and crop conditions. High correlations were observed between RISAT-1 HH and HV with model simulated σ°HH & σ°HV based on field measured soil with the coefficient of determination R2 varying from 0.84 to 0.77 and RMSE varying from 0.94 dB to 2.1 dB for bare soil. Whereas in case of winter wheat crop, coefficient of determination R2 varying from 0.84 to 0.79 and RMSE varying from 0.87 dB to 1.34 dB, corresponding to with vegetation water content values up to 3.4 kg/m2. Artificial Neural Network (ANN) methods were adopted for model-based soil moisture inversion. The training datasets for the NNs were obtained from theoretical forward-scattering models with controlled parameters, thus allowing the control of wide range of soil and crop parameters with which the network was trained. A preliminary performance analysis showed good results with estimation of soil moisture with RMSE better than 6%.

  10. New Microwave-Based Missions Applications for Rainfed Crops Characterization

    NASA Astrophysics Data System (ADS)

    Sánchez, N.; Lopez-Sanchez, J. M.; Arias-Pérez, B.; Valcarce-Diñeiro, R.; Martínez-Fernández, J.; Calvo-Heras, J. M.; Camps, A.; González-Zamora, A.; Vicente-Guijalba, F.

    2016-06-01

    A multi-temporal/multi-sensor field experiment was conducted within the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS) in Spain, in order to retrieve useful information from satellite Synthetic Aperture Radar (SAR) and upcoming Global Navigation Satellite Systems Reflectometry (GNSS-R) missions. The objective of the experiment was first to identify which radar observables are most sensitive to the development of crops, and then to define which crop parameters the most affect the radar signal. A wide set of radar variables (backscattering coefficients and polarimetric indicators) acquired by Radarsat-2 were analyzed and then exploited to determine variables characterizing the crops. Field measurements were fortnightly taken at seven cereals plots between February and July, 2015. This work also tried to optimize the crop characterization through Landsat-8 estimations, testing and validating parameters such as the leaf area index, the fraction of vegetation cover and the vegetation water content, among others. Some of these parameters showed significant and relevant correlation with the Landsat-derived Normalized Difference Vegetation Index (R>0.60). Regarding the radar observables, the parameters the best characterized were biomass and height, which may be explored for inversion using SAR data as an input. Moreover, the differences in the correlations found for the different crops under study types suggested a way to a feasible classification of crops.

  11. Evaluation of the ADAPT model for simulating nitrogen dynamics in a tile-drained agricultural watershed in central Illinois.

    PubMed

    Sogbedji, Jean M; McIsaac, Gregory F

    2006-01-01

    Assessing the accuracy of agronomic and water quality simulation models in different soils, land-use systems, and environments provides a basis for using and improving these models. We evaluated the performance of the ADAPT model for simulating riverine nitrate-nitrogen (NO3-N) export from a 1500-km2 watershed in central Illinois, where approximately 85% of the land is used for maize-soybean production and tile drainage is common. Soil chemical properties, crop nitrogen (N) uptake coefficient, dry matter ratio, and a denitrification reduction coefficient were used as calibration parameters to optimize the fit between measured and simulated NO3-N load from the watershed for the 1989 to 1993 period. The applicability of the calibrated parameter values was tested by using these values for simulating the 1994 to 1997 period on the same watershed. Willmott's index of agreement ranged from 0.91 to 0.97 for daily, weekly, monthly, and annual comparisons of riverine nitrate N loads. Simulation accuracy generally decreased as the time interval decreased. Willmott's index for simulated crop yields ranged from 0.91 to 0.99; however, observed crop yields were used as input to the model. The partial N budget results suggested that 52 to 72 kg N ha(-1) yr(-1) accumulated in the soil, but simulated biological N fixation associated with soybeans was considerably greater than literature values for the region. Improvement of the N fixation algorithms and incorporation of mechanisms that describe soybean yield in response to environmental conditions appear to be needed to improve the performance of the model.

  12. Understanding the Day Cent model: Calibration, sensitivity, and identifiability through inverse modeling

    USGS Publications Warehouse

    Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.

    2015-01-01

    The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.

  13. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Zhao; Tao, Fulu

    2018-05-01

    A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice) in China during 2106-2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop-Weather relationship over a Large Area (MCWLA) family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6), +4.1 (+9.4) and +0.2 % (-1.7 %), respectively, in a warming scenario of 1.5 °C (2.0 °C). In general, the warming scenarios would bring more opportunities than risks for crop development and food security in China. Moreover, although the variability of crop yield would increase from 1.5 °C warming to 2.0 °C warming, the probability of a crop yield decrease would decrease. Our findings highlight that the 2.0 °C warming scenario would be more suitable for crop production in China, but more attention should be paid to the expected increase in extreme event impacts.

  14. Selection of Hyperspectral Narrowbands (HNBs) and Composition of Hyperspectral Twoband Vegetation Indices (HVIs) for Biophysical Characterization and Discrimination of Crop Types Using Field Reflectance and Hyperion-EO-1 Data

    NASA Technical Reports Server (NTRS)

    Thenkabail, Prasad S.; Mariotto, Isabella; Gumma, Murali Krishna; Middleton, Elizabeth M.; Landis, David R.; Huemmrich, K. Fred

    2013-01-01

    The overarching goal of this study was to establish optimal hyperspectral vegetation indices (HVIs) and hyperspectral narrowbands (HNBs) that best characterize, classify, model, and map the world's main agricultural crops. The primary objectives were: (1) crop biophysical modeling through HNBs and HVIs, (2) accuracy assessment of crop type discrimination using Wilks' Lambda through a discriminant model, and (3) meta-analysis to select optimal HNBs and HVIs for applications related to agriculture. The study was conducted using two Earth Observing One (EO-1) Hyperion scenes and other surface hyperspectral data for the eight leading worldwide crops (wheat, corn, rice, barley, soybeans, pulses, cotton, and alfalfa) that occupy approx. 70% of all cropland areas globally. This study integrated data collected from multiple study areas in various agroecosystems of Africa, the Middle East, Central Asia, and India. Data were collected for the eight crop types in six distinct growth stages. These included (a) field spectroradiometer measurements (350-2500 nm) sampled at 1-nm discrete bandwidths, and (b) field biophysical variables (e.g., biomass, leaf area index) acquired to correspond with spectroradiometer measurements. The eight crops were described and classified using approx. 20 HNBs. The accuracy of classifying these 8 crops using HNBs was around 95%, which was approx. 25% better than the multi-spectral results possible from Landsat-7's Enhanced Thematic Mapper+ or EO-1's Advanced Land Imager. Further, based on this research and meta-analysis involving over 100 papers, the study established 33 optimal HNBs and an equal number of specific two-band normalized difference HVIs to best model and study specific biophysical and biochemical quantities of major agricultural crops of the world. Redundant bands identified in this study will help overcome the Hughes Phenomenon (or "the curse of high dimensionality") in hyperspectral data for a particular application (e.g., biophysical characterization of crops). The findings of this study will make a significant contribution to future hyperspectral missions such as NASA's HyspIRI. Index Terms-Hyperion, field reflectance, imaging spectroscopy, HyspIRI, biophysical parameters, hyperspectral vegetation indices, hyperspectral narrowbands, broadbands.

  15. Development of groundwater pesticide exposure modeling scenarios for vulnerable spring and winter wheat-growing areas.

    PubMed

    Padilla, Lauren; Winchell, Michael; Peranginangin, Natalia; Grant, Shanique

    2017-11-01

    Wheat crops and the major wheat-growing regions of the United States are not included in the 6 crop- and region-specific scenarios developed by the US Environmental Protection Agency (USEPA) for exposure modeling with the Pesticide Root Zone Model conceptualized for groundwater (PRZM-GW). The present work augments the current scenarios by defining appropriately vulnerable PRZM-GW scenarios for high-producing spring and winter wheat-growing regions that are appropriate for use in refined pesticide exposure assessments. Initial screening-level modeling was conducted for all wheat areas across the conterminous United States as defined by multiple years of the Cropland Data Layer land-use data set. Soil, weather, groundwater temperature, evaporation depth, and crop growth and management practices were characterized for each wheat area from publicly and nationally available data sets and converted to input parameters for PRZM. Approximately 150 000 unique combinations of weather, soil, and input parameters were simulated with PRZM for an herbicide applied for postemergence weed control in wheat. The resulting postbreakthrough average herbicide concentrations in a theoretical shallow aquifer were ranked to identify states with the largest regions of relatively vulnerable wheat areas. For these states, input parameters resulting in near 90 th percentile postbreakthrough average concentrations corresponding to significant wheat areas with shallow depth to groundwater formed the basis for 4 new spring wheat scenarios and 4 new winter wheat scenarios to be used in PRZM-GW simulations. Spring wheat scenarios were identified in North Dakota, Montana, Washington, and Texas. Winter wheat scenarios were identified in Oklahoma, Texas, Kansas, and Colorado. Compared to the USEPA's original 6 scenarios, postbreakthrough average herbicide concentrations in the new scenarios were lower than all but Florida Potato and Georgia Coastal Peanuts of the original scenarios and better represented regions dominated by wheat crops. Integr Environ Assess Manag 2017;13:992-1006. © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  16. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  17. Impact Assessment of Salinization Affected Soil on Greenhouse Crops using SALTMED

    NASA Astrophysics Data System (ADS)

    Pappa, Polyxeni; Daliakopoulos, Ioannis; Tsanis, Ioannis; Varouchakis, Emmanouil

    2015-04-01

    Here we assess the effects of soil salinization on greenhouse crops and the potential benefits of rainwater harvesting as a soil amelioration technology. The study deals with the following scenarios: (a) variation of irrigation water salinity from 3,000 μS/cm to 500 μS/cm through mixing with rainwater, (b) crop substitution for increased tolerance and (c) climatic variability to account for the impact of climate change. In order to draw meaningful conclusions, a model that takes into account vegetation interaction, soil, irrigation water and climate variables is required. The SALTMED model is a reliable and tested physical process model that simulates evapotranspiration, plant water uptake, water and solute transport to estimate crop yield and biomass production under all irrigation systems. SALTMED is tested with the above scenarios in the RECARE FP7 Project Case Study of Timpaki, in the Island of Crete, Greece. Simulations are conducted for typical cultivations of Solanum lycopersicum, Capsicum anuumm and Solanum melongena. Preliminary results indicate the optimal combination from a set of solutions concerning the soil and water parameters can be beneficial against the salinization threat. Future research includes the validation of the results with field experiments. Keywords: salinization, greenhouse, tomato, SALTMED, rainwater, RECARE

  18. The influence of sugarcane crop development on rainfall interception losses

    NASA Astrophysics Data System (ADS)

    Fernandes, Rafael Pires; Silva, Robson Willians da Costa; Salemi, Luiz Felippe; Andrade, Tatiana Morgan Berteli de; Moraes, Jorge Marcos de; Dijk, Albert I. J. M. Van; Martinelli, Luiz Antonio

    2017-08-01

    The expansion of sugarcane plantations in Brazil has raised concerns regarding its hydrological impacts. One of these impacts is related to rainfall interception, which can be expected to vary in response to substantial changes in canopy structure throughout the cropping cycle. We collected field measurements to determine interception losses and interpreted the observations using an adapted Gash model during different stages of a sugarcane ratoon cropping cycle. Cumulative gross rainfall (PG), throughfall (TF) and stemflow (SF) were measured biweekly, along with vegetation structure measurements of leaf area index (LAI) and plant height. For the first 300 days after the first harvest, the cumulative PG of 1095 mm was partitioned into 635 mm TF (58%) and 263 mm SF (24%). The inferred interception loss (IL) was 263 mm (24%). There was a gradual and clear increase in IL from 3% to 46% while partitioning between TF and SF also changed during ratoon regrowth. After model parameter optimisation, observed IL was simulated satisfactorily. Model estimates suggested that evaporation from the saturated canopy is the main IL pathway, followed by evaporation after storms. Plant architecture, LAI and meteorological conditions during the cropping cycle appeared the main factors determining IL.

  19. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations.

    PubMed

    Halty, Virginia; Valdés, Matías; Tejera, Mauricio; Picasso, Valentín; Fort, Hugo

    2017-12-01

    The contribution of plant species richness to productivity and ecosystem functioning is a longstanding issue in ecology, with relevant implications for both conservation and agriculture. Both experiments and quantitative modeling are fundamental to the design of sustainable agroecosystems and the optimization of crop production. We modeled communities of perennial crop mixtures by using a generalized Lotka-Volterra model, i.e., a model such that the interspecific interactions are more general than purely competitive. We estimated model parameters -carrying capacities and interaction coefficients- from, respectively, the observed biomass of monocultures and bicultures measured in a large diversity experiment of seven perennial forage species in Iowa, United States. The sign and absolute value of the interaction coefficients showed that the biological interactions between species pairs included amensalism, competition, and parasitism (asymmetric positive-negative interaction), with various degrees of intensity. We tested the model fit by simulating the combinations of more than two species and comparing them with the polycultures experimental data. Overall, theoretical predictions are in good agreement with the experiments. Using this model, we also simulated species combinations that were not sown. From all possible mixtures (sown and not sown) we identified which are the most productive species combinations. Our results demonstrate that a combination of experiments and modeling can contribute to the design of sustainable agricultural systems in general and to the optimization of crop production in particular. © 2017 by the Ecological Society of America.

  20. Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis[W][OPEN

    PubMed Central

    Chen, Dijun; Neumann, Kerstin; Friedel, Swetlana; Kilian, Benjamin; Chen, Ming; Altmann, Thomas; Klukas, Christian

    2014-01-01

    Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues. PMID:25501589

  1. Improving the S-Shape Solar Radiation Estimation Method for Supporting Crop Models

    PubMed Central

    Fodor, Nándor

    2012-01-01

    In line with the critical comments formulated in relation to the S-shape global solar radiation estimation method, the original formula was improved via a 5-step procedure. The improved method was compared to four-reference methods on a large North-American database. According to the investigated error indicators, the final 7-parameter S-shape method has the same or even better estimation efficiency than the original formula. The improved formula is able to provide radiation estimates with a particularly low error pattern index (PIdoy) which is especially important concerning the usability of the estimated radiation values in crop models. Using site-specific calibration, the radiation estimates of the improved S-shape method caused an average of 2.72 ± 1.02 (α = 0.05) relative error in the calculated biomass. Using only readily available site specific metadata the radiation estimates caused less than 5% relative error in the crop model calculations when they were used for locations in the middle, plain territories of the USA. PMID:22645451

  2. Multi-year assessment of soil-vegetation-atmosphere transfer (SVAT) modeling uncertainties over a Mediterranean agricultural site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Calvet, J.-C.; Lafont, S.; Martin, E.; Chanzy, A.; Marloie, O.; Bertrand, N.; Desfonds, V.; Renard, D.

    2012-04-01

    Vegetation productivity and water balance of Mediterranean regions will be particularly affected by climate and land-use changes. In order to analyze and predict these changes through land surface models, a critical step is to quantify the uncertainties associated with these models (processes, parameters) and their implementation over a long period of time. Besides, uncertainties attached to the data used to force these models (atmospheric forcing, vegetation and soil characteristics, crop management practices...) which are generally available at coarse spatial resolution (>1-10 km) and for a limited number of plant functional types, need to be evaluated. This paper aims at assessing the uncertainties in water (evapotranspiration) and energy fluxes estimated from a Soil Vegetation Atmosphere Transfer (SVAT) model over a Mediterranean agricultural site. While similar past studies focused on particular crop types and limited period of time, the originality of this paper consists in implementing the SVAT model and assessing its uncertainties over a long period of time (10 years), encompassing several cycles of distinct crops (wheat, sorghum, sunflower, peas). The impacts on the SVAT simulations of the following sources of uncertainties are characterized: - Uncertainties in atmospheric forcing are assessed comparing simulations forced with local meteorological measurements and simulations forced with re-analysis atmospheric dataset (SAFRAN database). - Uncertainties in key surface characteristics (soil, vegetation, crop management practises) are tested comparing simulations feeded with standard values from global database (e.g. ECOCLIMAP) and simulations based on in situ or site-calibrated values. - Uncertainties dues to the implementation of the SVAT model over a long period of time are analyzed with regards to crop rotation. The SVAT model being analyzed in this paper is ISBA in its a-gs version which simulates the photosynthesis and its coupling with the stomata conductance, as well as the time course of the plant biomass and the Leaf Area Index (LAI). The experiment was conducted at the INRA-Avignon (France) crop site (ICOS associated site), for which 10 years of energy and water eddy fluxes, soil moisture profiles, vegetation measurements, agricultural practises are available for distinct crop types. The uncertainties in evapotranspiration and energy flux estimates are quantified from both 10-year trend analysis and selected daily cycles spanning a range of atmospheric conditions and phenological stages. While the net radiation flux is correctly simulated, the cumulated latent heat flux is under-estimated. Daily plots indicate i) an overestimation of evapotranspiration over bare soil probably due to an overestimation of the soil water reservoir available for evaporation and ii) an under-estimation of transpiration for developed canopy. Uncertainties attached to the re-analysis atmospheric data show little influence on the cumulated values of evapotranspiration. Better performances are reached using in situ soil depths and site-calibrated photosynthesis parameters compared to the simulations based on the ECOCLIMAP standard values. Finally, this paper highlights the impact of the temporal succession of vegetation cover and bare soil on the simulation of soil moisture and evapotranspiration over a long period of time. Thus, solutions to account for crop rotation in the implementation of SVAT models are discussed.

  3. Development of a Land Use Mapping and Monitoring Protocol for the High Plains Region: A Multitemporal Remote Sensing Application

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.; Nellis, M. Duane

    1996-01-01

    The purpose of this project was to develop a practical protocol that employs multitemporal remotely sensed imagery, integrated with environmental parameters to model and monitor agricultural and natural resources in the High Plains Region of the United States. The value of this project would be extended throughout the region via workshops targeted at carefully selected audiences and designed to transfer remote sensing technology and the methods and applications developed. Implementation of such a protocol using remotely sensed satellite imagery is critical for addressing many issues of regional importance, including: (1) Prediction of rural land use/land cover (LULC) categories within a region; (2) Use of rural LULC maps for successive years to monitor change; (3) Crop types derived from LULC maps as important inputs to water consumption models; (4) Early prediction of crop yields; (5) Multi-date maps of crop types to monitor patterns related to crop change; (6) Knowledge of crop types to monitor condition and improve prediction of crop yield; (7) More precise models of crop types and conditions to improve agricultural economic forecasts; (8;) Prediction of biomass for estimating vegetation production, soil protection from erosion forces, nonpoint source pollution, wildlife habitat quality and other related factors; (9) Crop type and condition information to more accurately predict production of biogeochemicals such as CO2, CH4, and other greenhouse gases that are inputs to global climate models; (10) Provide information regarding limiting factors (i.e., economic constraints of pumping, fertilizing, etc.) used in conjunction with other factors, such as changes in climate for predicting changes in rural LULC; (11) Accurate prediction of rural LULC used to assess the effectiveness of government programs such as the U.S. Soil Conservation Service (SCS) Conservation Reserve Program; and (12) Prediction of water demand based on rural LULC that can be related to rates of draw-down of underground water supplies.

  4. Evaluation of weather-based rice yield models in India.

    PubMed

    Sudharsan, D; Adinarayana, J; Reddy, D Raji; Sreenivas, G; Ninomiya, S; Hirafuji, M; Kiura, T; Tanaka, K; Desai, U B; Merchant, S N

    2013-01-01

    The objective of this study was to compare two different rice simulation models--standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])--with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.

  5. A stochastic ensemble-based model to predict crop water requirements from numerical weather forecasts and VIS-NIR high resolution satellite images in Southern Italy

    NASA Astrophysics Data System (ADS)

    Pelosi, Anna; Falanga Bolognesi, Salvatore; De Michele, Carlo; Medina Gonzalez, Hanoi; Villani, Paolo; D'Urso, Guido; Battista Chirico, Giovanni

    2015-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Ensemble numerical weather predictions can be valuable data for developing operational advisory irrigation services. We propose a stochastic ensemble-based model providing spatial and temporal estimates of crop water requirements, implemented within an advisory service offering detailed maps of irrigation water requirements and crop water consumption estimates, to be used by water irrigation managers and farmers. The stochastic model combines estimates of crop potential evapotranspiration retrieved from ensemble numerical weather forecasts (COSMO-LEPS, 16 members, 7 km resolution) and canopy parameters (LAI, albedo, fractional vegetation cover) derived from high resolution satellite images in the visible and near infrared wavelengths. The service provides users with daily estimates of crop water requirements for lead times up to five days. The temporal evolution of the crop potential evapotranspiration is simulated with autoregressive models. An ensemble Kalman filter is employed for updating model states by assimilating both ground based meteorological variables (where available) and numerical weather forecasts. The model has been applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. This work presents the results of the system performance for one year of experimental service. The results suggest that the proposed model can be an effective support for a sustainable use and management of irrigation water, under conditions of water scarcity and drought. Since the evapotranspiration term represents a staple component in the water balance of a catchment, as outstanding future development, the model could also offer an advanced support for water resources management decisions at catchment scale.

  6. Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models

    PubMed Central

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-01-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding. PMID:21776208

  7. Effect of manure vs. fertilizer inputs on productivity of forage crop models.

    PubMed

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-06-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha(-1), respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha(-1) of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha(-1) under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  8. An epidemiological model for externally sourced vector-borne viruses applied to Bean yellow mosaic virus in lupin crops in a Mediterranean-type environment.

    PubMed

    Maling, T; Diggle, A J; Thackray, D J; Siddique, K H M; Jones, R A C

    2008-12-01

    A hybrid mechanistic/statistical model was developed to predict vector activity and epidemics of vector-borne viruses spreading from external virus sources to an adjacent crop. The pathosystem tested was Bean yellow mosaic virus (BYMV) spreading from annually self-regenerating, legume-based pastures to adjacent crops of narrow-leafed lupin (Lupinus angustifolius) in the winter-spring growing season in a region with a Mediterranean-type environment where the virus persists over summer within dormant seed of annual clovers. The model uses a combination of daily rainfall and mean temperature during late summer and early fall to drive aphid population increase, migration of aphids from pasture to lupin crops, and the spread of BYMV. The model predicted time of arrival of aphid vectors and resulting BYMV spread successfully for seven of eight datasets from 2 years of field observations at four sites representing different rainfall and geographic zones of the southwestern Australian grainbelt. Sensitivity analysis was performed to determine the relative importance of the main parameters that describe the pathosystem. The hybrid mechanistic/statistical approach used created a flexible analytical tool for vector-mediated plant pathosystems that made useful predictions even when field data were not available for some components of the system.

  9. Crops Models for Varying Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Cavazzoni, James; Keas, Paul

    2001-01-01

    New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.

  10. The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use

    NASA Astrophysics Data System (ADS)

    Souty, F.; Brunelle, T.; Dumas, P.; Dorin, B.; Ciais, P.; Crassous, R.; Müller, C.; Bondeau, A.

    2012-10-01

    Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms within agricultural lands. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i) a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii) a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii) a spatially explicit distribution of potential (maximal) crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL). The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. In contrast to the other land-use models linking economy and biophysics, crops are aggregated as a representative product in calories and intensification for the representative crop is a non-linear function of chemical inputs. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.

  11. Optimal allocation in annual plants and its implications for drought response

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Smith, Matthew; Purves, Drew

    2015-04-01

    The concept of plant optimality refers to the plastic behaviour of plants that results in lifetime and offspring fitness. Optimality concepts have been used in vegetation models for a variety of processes, including stomatal conductance, leaf phenology and biomass allocation. Including optimality in vegetation models has the advantages of creating process based models with a relatively low complexity in terms of parameter numbers but which are capable of reproducing complex plant behaviour. We present a general model of plant growth for annual plants based on the hypothesis that plants allocate biomass to aboveground and belowground vegetative organs in order to maintain an optimal C:N ratio. The model also represents reproductive growth through a second optimality criteria, which states that plants flower when they reach peak nitrogen uptake. We apply this model to wheat and maize crops at 15 locations corresponding to FLUXNET cropland sites. The model parameters are data constrained using a Bayesian fitting algorithm to eddy covariance data, satellite derived vegetation indices, specifically the MODIS fAPAR product and field level crop yield data. We use the model to simulate the plant drought response under the assumption of plant optimality and show that the plants maintain unstressed total biomass levels under drought for a reduction in precipitation of up to 40%. Beyond that level plant response stops being plastic and growth decreases sharply. This behaviour results simply from the optimal allocation criteria as the model includes no explicit drought sensitivity component. Models that use plant optimality concepts are a useful tool for simulation plant response to stress without the addition of artificial thresholds and parameters.

  12. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency.

    PubMed

    Orr, Douglas J; Alcântara, André; Kapralov, Maxim V; Andralojc, P John; Carmo-Silva, Elizabete; Parry, Martin A J

    2016-10-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally "better" compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize.

    PubMed

    Chenu, Karine; Chapman, Scott C; Hammer, Graeme L; McLean, Greg; Salah, Halim Ben Haj; Tardieu, François

    2008-03-01

    Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.

  14. Validated environmental and physiological data from the CELSS Breadboard Projects Biomass Production Chamber. BWT931 (Wheat cv. Yecora Rojo)

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Mackowiak, C. L.; Markwell, G. A.; Wheeler, R. M.; Sager, J. C.

    1993-01-01

    This KSC database is being made available to the scientific research community to facilitate the development of crop development models, to test monitoring and control strategies, and to identify environmental limitations in crop production systems. The KSC validated dataset consists of 17 parameters necessary to maintain bioregenerative life support functions: water purification, CO2 removal, O2 production, and biomass production. The data are available on disk as either a DATABASE SUBSET (one week of 5-minute data) or DATABASE SUMMARY (daily averages of parameters). Online access to the VALIDATED DATABASE will be made available to institutions with specific programmatic requirements. Availability and access to the KSC validated database are subject to approval and limitations implicit in KSC computer security policies.

  15. A comparison of numerical and machine-learning modeling of soil water content with limited input data

    NASA Astrophysics Data System (ADS)

    Karandish, Fatemeh; Šimůnek, Jiří

    2016-12-01

    Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a better choice for predicting SWCs with lower uncertainties when required data are available, and thus for designing water saving strategies for agriculture and for other environmental applications requiring estimates of SWCs.

  16. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping

    2018-01-01

    An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.

  17. Identification of Suitable Water Harvesting Zones Based on Geomorphic Resources for Drought Areas: A Case Study of Una District, Himachal Pradesh, India.

    NASA Astrophysics Data System (ADS)

    Prakasam, D. C., Jr.; Zaman, B.

    2014-12-01

    Water is one of the most vital natural resource and its availability and quality determine ecosystem productivity, both for agricultural and natural systems. Una district is one of the major potential agricultural districts in Himachal Pradesh, India. More than 70% of the population of this district is engaged in agriculture and allied sectors and major crops grown are maize, wheat, rice, sugarcane, pulses and vegetables. The region faces drought every year and about 90 per cent of the area is water stressed. This has resulted in crop loss and shortage of food and fodder. The sources of drinking water, small ponds and bowlies dry-up during summer season resulting in scarcity of drinking water. Una district receives rainfall during monsoons from June to September and also during non-monsoon period (winter). The annual average rainfall in the area is about 1040 mm with 55 average rainy days. But due to heavy surface run-off the farmers not able to cultivate the crops more than once in a year. Past research indicate that the geomorphology of the Una district might be responsible for such droughts as it controls the surface as well as ground water resources. The research proposes to develop a water stress model for Una district using the geomorphic parameters, water resource and land use land cover data of the study area. Using Survey of India topographical maps (1:50000), the geomorphic parameters are extracted. The spatial layers of these parameters i.e. drainage density, slope, relative relief, ruggedness index, surface water body's frequency are created in GIS. A time series of normalized remotely sensed data of the study area is used for land use land cover classification and analyses. Based on the results from the water stress model, the drought/water stress areas and water harvesting zones are identified and documented. The results of this research will help the general population in resolving the drinking water problem to a certain extent and also the cultivators to water the crops more than twice per year which might increase the crop yield in Una district.

  18. Predicting Nitrogen in Streams: A Comparison of Two Estimates of Fertilizer Application

    NASA Astrophysics Data System (ADS)

    Mehaffey, M.; Neale, A.

    2011-12-01

    Decision makers frequently rely on water and air quality models to develop nutrient management strategies. Obviously, the results of these models (e.g., SWAT, SPARROW, CMAQ) are only as good as the nutrient source input data and recently the Nutrient Innovations Task Group has called for a better accounting of nonpoint nutrient sources. Currently, modelers frequently rely on county level fertilizer sales records combined with acreage of crops to estimate nitrogen sources from fertilizer for counties or watersheds. However, since fertilizer sales data are based on reported amounts they do not necessarily reflect actual use on the fields. In addition the reported sales data quality varies by state resulting in differing accuracy between states. In this study we examine an alternative method potentially providing a more uniform, spatially explicit, estimate of fertilizer use. Our nitrogen application data is estimated at a 30m pixel resolution which allows for scalable inputs for use in water and air quality models. To develop this dataset we combined raster data from the National Cropland data layer (CDL) data with the National Land Cover Data (NLCD). This process expanded the NLCD's 'cultivated crops' classes to included major grains, cover crops, and vegetable and fruits. The Agriculture Resource Management Survey chemical fertilizer application rate data were summarized by crop type and year for each state, encompassing the corn, soybean, spring wheat, and winter wheat crop types (ARMS, 2002-2005). The chemical fertilizer application rate data were then used to estimate annual application parameters for nitrogen, phosphate, potash, herbicide, pesticide, and total pesticide, all expressed on a mass-per-unit-crop-area basis for each state for each crop type. By linking crop types to nitrogen application rates, we can better estimate where applied fertilizer would likely be in excess of the amounts used by crops or where conservation practices may improve retention and uptake helping offset the impacts to water. To test the accuracy of our finer resolution nitrogen application data, we compare its ability to predict nitrogen concentrations in streams with the ability of the county sales data to do the same.

  19. Estimation of available water capacity components of two-layered soils using crop model inversion: Effect of crop type and water regime

    NASA Astrophysics Data System (ADS)

    Sreelash, K.; Buis, Samuel; Sekhar, M.; Ruiz, Laurent; Kumar Tomer, Sat; Guérif, Martine

    2017-03-01

    Characterization of the soil water reservoir is critical for understanding the interactions between crops and their environment and the impacts of land use and environmental changes on the hydrology of agricultural catchments especially in tropical context. Recent studies have shown that inversion of crop models is a powerful tool for retrieving information on root zone properties. Increasing availability of remotely sensed soil and vegetation observations makes it well suited for large scale applications. The potential of this methodology has however never been properly evaluated on extensive experimental datasets and previous studies suggested that the quality of estimation of soil hydraulic properties may vary depending on agro-environmental situations. The objective of this study was to evaluate this approach on an extensive field experiment. The dataset covered four crops (sunflower, sorghum, turmeric, maize) grown on different soils and several years in South India. The components of AWC (available water capacity) namely soil water content at field capacity and wilting point, and soil depth of two-layered soils were estimated by inversion of the crop model STICS with the GLUE (generalized likelihood uncertainty estimation) approach using observations of surface soil moisture (SSM; typically from 0 to 10 cm deep) and leaf area index (LAI), which are attainable from radar remote sensing in tropical regions with frequent cloudy conditions. The results showed that the quality of parameter estimation largely depends on the hydric regime and its interaction with crop type. A mean relative absolute error of 5% for field capacity of surface layer, 10% for field capacity of root zone, 15% for wilting point of surface layer and root zone, and 20% for soil depth can be obtained in favorable conditions. A few observations of SSM (during wet and dry soil moisture periods) and LAI (within water stress periods) were sufficient to significantly improve the estimation of AWC components. These results show the potential of crop model inversion for estimating the AWC components of two-layered soils and may guide the sampling of representative years and fields to use this technique for mapping soil properties that are relevant for distributed hydrological modelling.

  20. Intercepted photosynthetically active radiation in wheat canopies estimated by spectral reflectance. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.

    1982-01-01

    The interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS 7-5/7+5) for five planting dates of wheat for 1978-79 and 1979-80 in Phoenix. Intercepted PAR was calculated from a model driven by leaf area index and stage of growth. Linear relationships were found between greenness and normalized difference with a separate model representing growth and senescence of the crop. Normalized difference was a significantly better model and would be easier to apply than the empirically derived greenness parameter. For the leaf area growth portion of the season the model between PAR interception and normalized difference was the same over years, however, for the leaf senescence the models showed more variability due to the lack of data on measured interception in sparse canopies. Normalized difference could be used to estimate PAR interception directly for crop growth models.

  1. Quantifying model-structure- and parameter-driven uncertainties in spring wheat phenology prediction with Bayesian analysis

    DOE PAGES

    Alderman, Phillip D.; Stanfill, Bryan

    2016-10-06

    Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less

  2. Agricultural Productivity Forecasts for Improved Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh; McNider, Richard; Moss, Donald; Alhamdan, Mohammad

    2010-01-01

    Water stresses on agricultural crops during critical phases of crop phenology (such as grain filling) has higher impact on the eventual yield than at other times of crop growth. Therefore farmers are more concerned about water stresses in the context of crop phenology than the meteorological droughts. However the drought estimates currently produced do not account for the crop phenology. US Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) have developed a drought monitoring decision support tool: The U.S. Drought Monitor, which currently uses meteorological droughts to delineate and categorize drought severity. Output from the Drought Monitor is used by the States to make disaster declarations. More importantly, USDA uses the Drought Monitor to make estimates of crop yield to help the commodities market. Accurate estimation of corn yield is especially critical given the recent trend towards diversion of corn to produce ethanol. Ethanol is fast becoming a standard 10% ethanol additive to petroleum products, the largest traded commodity. Thus the impact of large-scale drought will have dramatic impact on the petroleum prices as well as on food prices. USDA's World Agricultural Outlook Board (WAOB) serves as a focal point for economic intelligence and the commodity outlook for U.S. WAOB depends on Drought Monitor and has emphatically stated that accurate and timely data are needed in operational agrometeorological services to generate reliable projections for agricultural decision makers. Thus, improvements in the prediction of drought will reflect in early and accurate assessment of crop yields, which in turn will improve commodity projections. We have developed a drought assessment tool, which accounts for the water stress in the context of crop phenology. The crop modeling component is done using various crop modules within Decision Support System for Agrotechnology Transfer (DSSAT). DSSAT is an agricultural crop simulation system, which integrates the effects of soil, crop phenotype, weather, and management options. It has been in use for more than 15 years by researchers, growers and has become a de-facto standard in crop modeling communities spanning over 100 countries. The meteorological forcings to DSSAT are provided by NASA s National Land Data Assimilation System (NLDAS) datasets. NLDAS is a framework that incorporates atmospheric forcing and land parameter values along with land surface models to diagnose and predict the state of the land surface.

  3. Drought Dynamics and Food Security in Ukraine

    NASA Astrophysics Data System (ADS)

    Kussul, N. M.; Kogan, F.; Adamenko, T. I.; Skakun, S. V.; Kravchenko, O. M.; Kryvobok, O. A.; Shelestov, A. Y.; Kolotii, A. V.; Kussul, O. M.; Lavrenyuk, A. M.

    2012-12-01

    In recent years food security became a problem of great importance at global, national and regional scale. Ukraine is one of the most developed agriculture countries and one of the biggest crop producers in the world. According to the 2011 statistics provided by the USDA FAS, Ukraine was the 8th largest exporter and 10th largest producer of wheat in the world. Therefore, identifying current and projecting future trends in climate and agriculture parameters is a key element in providing support to policy makers in food security. This paper combines remote sensing, meteorological, and modeling data to investigate dynamics of extreme events, such as droughts, and its impact on agriculture production in Ukraine. Two main problems have been considered in the study: investigation of drought dynamics in Ukraine and its impact on crop production; and investigation of crop growth models for yield and production forecasting and its comparison with empirical models that use as a predictor satellite-derived parameters and meteorological observations. Large-scale weather disasters in Ukraine such as drought were assessed using vegetation health index (VHI) derived from satellite data. The method is based on estimation of green canopy stress/no stress from indices, characterizing moisture and thermal conditions of vegetation canopy. These conditions are derived from the reflectance/emission in the red, near infrared and infrared parts of solar spectrum measured by the AVHRR flown on the NOAA afternoon polar-orbiting satellites since 1981. Droughts were categorized into exceptional, extreme, severe and moderate. Drought area (DA, in % from total Ukrainian area) was calculated for each category. It was found that maximum DA over past 20 years was 10% for exceptional droughts, 20% for extreme droughts, 50% for severe droughts, and 80% for moderate droughts. Also, it was shown that in general the drought intensity and area did not increase considerably over past 10 years. Analysis of interrelation between DA of different categories at oblast level with agriculture production will be discussed as well. A comparative study was carried out to assess three approaches to forecast winter wheat yield in Ukraine at oblast level: (i) empirical regression-based model that uses as a predictor 16-day NDVI composites derived from MODIS at the 250 m resolution, (ii) empirical regression-based model that uses as predictors meteorological parameters, and (iii) adapted for Ukraine Crop Growth Monitoring System (CGMS) that is based on WOFOST crop growth simulation model and meteorological parameters. These three approaches were calibrated for 2000-2009 and 2000-2010 data, and compared while performing forecasts on independent data for 2010 and 2011. For 2010, the best results in terms of root mean square error (RMSE, by oblast, deviation of predicted values from official statistics) were achieved using CGMS models: 0.3 t/ha. For NDVI and meteorological models RMSE values were 0.79 and 0.77 t/ha, respectively. When forecasting winter wheat yield for 2011, the following RMSE values were obtained: 0.58 t/ha for CGMS, 0.56 t/ha for meteorological model, and 0.62 t/ha for NDVI. In this case performance of all three approaches was relatively the same. Acknowledgements. This work was supported by the U.S. CRDF Grant "Analysis of climate change & food security based on remote sensing & in situ data sets" (UKB2-2972-KV-09).

  4. A hotspot model for leaf canopies

    NASA Technical Reports Server (NTRS)

    Jupp, David L. B.; Strahler, Alan H.

    1991-01-01

    The hotspot effect, which provides important information about canopy structure, is modeled using general principles of environmental physics as driven by parameters of interest in remote sensing, such as leaf size, leaf shape, leaf area index, and leaf angle distribution. Specific examples are derived for canopies of horizontal leaves. The hotspot effect is implemented within the framework of the model developed by Suits (1972) for a canopy of leaves to illustrate what might occur in an agricultural crop. Because the hotspot effect arises from very basic geometrical principles and is scale-free, it occurs similarly in woodlands, forests, crops, rough soil surfaces, and clouds. The scaling principles advanced are also significant factors in the production of image spatial and angular variance and covariance which can be used to assess land cover structure through remote sensing.

  5. Incorporating Sentinel-2-like remote sensing products in the hydrometeorological modelling over an agricultural area in south west France

    NASA Astrophysics Data System (ADS)

    Rivalland, Vincent; Gascoin, Simon; Etchanchu, Jordi; Coustau, Mathieu; Cros, Jérôme; Tallec, Tiphaine

    2016-04-01

    The Sentinel-2 mission will enable to monitor the land cover and the vegetation phenology at high-resolution (HR) every 5 days. However, current Land Surface Models (LSM) typically use land cover and vegetation parameters derived from previous low to mid resolution satellite missions. Here we studied the effect of introducing Sentinel-2-like data in the simulation of the land surface energy and water fluxes in a region dominated by cropland. Simulations were performed with the ISBA-SURFEX LSM, which is used in the operational hydrometeorological chain of Meteo-France for hydrological forecasts and drought monitoring. By default, SURFEX vegetation land surface parameters and temporal evolution are from the ECOCLIMAP II European database mostly derived from MODIS products at 1 km resolution. The model was applied to an experimental area of 30 km by 30 km in south west France. In this area the resolution of ECOCLIMAP is coarser than the typical size of a crop field. This means that several crop types can be mixed in a pixel. In addition ECOCLIMAP provides a climatology of the vegetation phenology and thus does not account for the interannual effects of the climate and land management on the crop growth. In this work, we used a series of 26 Formosat-2 images at 8-m resolution acquired in 2006. From this dataset, we derived a land cover map and a leaf area index map (LAI) at each date, which were substituted to the ECOCLIMAP land cover map and the LAI maps. The model output water and energy fluxes were compared to a standard simulation using ECOCLIMAP only and to in situ measurements of soil moisture, latent and sensible heat fluxes. The results show that the introduction of the HR products improved the timing of the evapotranspiration. The impact was the most visible on the crops having a growing season in summer (maize, sunflower), because the growth period is more sensitive to the climate.

  6. Satellite Based Cropland Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Jones, C. D.; Sedano, F.; Sahajpal, R.; Jin, H.; Skakun, S.; Pnvr, K.; Kommareddy, A.; Reddy, A.; Hurtt, G. C.; Izaurralde, R. C.

    2017-12-01

    Agricultural croplands act as both sources and sinks of atmospheric carbon dioxide (CO2); absorbing CO2 through photosynthesis, releasing CO2 through autotrophic and heterotrophic respiration, and sequestering CO2 in vegetation and soils. Part of the carbon captured in vegetation can be transported and utilized elsewhere through the activities of food, fiber, and energy production. As well, a portion of carbon in soils can be exported somewhere else by wind, water, and tillage erosion. Thus, it is important to quantify how land use and land management practices affect the net carbon balance of croplands. To monitor the impacts of various agricultural activities on carbon balance and to develop management strategies to make croplands to behave as net carbon sinks, it is of paramount importance to develop consistent and high resolution cropland carbon flux estimates. Croplands are typically characterized by fine scale heterogeneity; therefore, for accurate carbon flux estimates, it is necessary to account for the contribution of each crop type and their spatial distribution. As part of NASA CMS funded project, a satellite based Cropland Carbon Monitoring System (CCMS) was developed to estimate spatially resolved crop specific carbon fluxes over large regions. This modeling framework uses remote sensing version of Environmental Policy Integrated Climate Model and satellite derived crop parameters (e.g. leaf area index (LAI)) to determine vertical and lateral carbon fluxes. The crop type LAI product was developed based on the inversion of PRO-SAIL radiative transfer model and downscaled MODIS reflectance. The crop emergence and harvesting dates were estimated based on MODIS NDVI and crop growing degree days. To evaluate the performance of CCMS framework, it was implemented over croplands of Nebraska, and estimated carbon fluxes for major crops (i.e. corn, soybean, winter wheat, grain sorghum, alfalfa) grown in 2015. Key findings of the CCMS framework will be presented and discussed some of which include 1) comparison of remote sensing based crop type LAI and crop phenology estimates with observed field scale data 2) comparison of carbon flux estimates from CCMS framework with measured fluxes at flux tower sites 3) regional scale differences in carbon fluxes among various crops in Nebraska.

  7. Synergetic Use of Sentinel-1 and 2 to Improve Agro-Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Ferrant, Sylvain; Kerr, Yann; Al-Bitar, Ahmad; Le Page, Michel; Selles, Adrien; Mermoz, Stephane; Bouvet, Alexandre; Marechal, Jean-Christophe; Tomer, Sat; Sekhar, Muddu; Dedieu, Gerard; Le Toan, Thuy; Bustillo, Vincent

    2016-08-01

    In the context of global changes and population growth, agricultural activities are a growing factor influencing water resources availability in term of quantity and quality. Water management strategies have to be analyzed at a regional catchment scales. Yet, agricultural practices, crop water and nutrient consumption that drive the main water and nutrient fluxes at the catchment scale have to be monitored at a high spatial (crop extension) and temporal resolution (crop growth period). This proceeding describes some advances in the framework of a co-funded ESA Living Planet Fellowship project, called ―agro-hydrology from space‖, which aims at demonstrating the improvement brought by synergetic observations of Sentinel-1 (S1) and Sentinel-2 (S2) satellite mission in agro- hydrological studies. Geo-information time-series of vegetation and water index with multi-spectral optical detection S2 together with surface roughness time series with C-band radar detection S1 are used to re-set soil water holding capacity parameters (depth, porosity) and agricultural practices (sowing date, irrigated area extent) of a crop model coupled with a hydrological model in two contrasted water management issues: stream water nitrate pollution in Gascogne region in south-west of France and groundwater depletion and shortages for irrigation in Deccan Plateau, in south-India.

  8. Stochastic modeling of economic injury levels with respect to yearly trends in price commodity.

    PubMed

    Damos, Petros

    2014-05-01

    The economic injury level (EIL) concept integrates economics and biology and uses chemical applications in crop protection only when economic loss by pests is anticipated. The EIL is defined by five primary variables: the cost of management tactic per production unit, the price of commodity, the injury units per pest, the damage per unit injury, and the proportionate reduction of injury averted by the application of a tactic. The above variables are related according to the formula EIL = C/VIDK. The observable dynamic alteration of the EIL due to its different parameters is a major characteristic of its concept. In this study, the yearly effect of the economic variables is assessed, and in particular the influence of the parameter commodity value on the shape of the EIL function. In addition, to predict the effects of the economic variables on the EIL level, yearly commodity values were incorporated in the EIL formula and the generated outcomes were further modelled with stochastic linear autoregressive models having different orders. According to the AR(1) model, forecasts for the five-year period of 2010-2015 ranged from 2.33 to 2.41 specimens per sampling unit. These values represent a threshold that is in reasonable limits to justify future control actions. Management actions as related to productivity and price commodity significantly affect costs of crop production and thus define the adoption of IPM and sustainable crop production systems at local and international levels. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  9. Modelling the Effect of Fruit Growth on Surface Conductance to Water Vapour Diffusion

    PubMed Central

    GIBERT, CAROLINE; LESCOURRET, FRANÇOISE; GÉNARD, MICHEL; VERCAMBRE, GILLES; PÉREZ PASTOR, ALEJANDRO

    2005-01-01

    • Background and Aims A model of fruit surface conductance to water vapour diffusion driven by fruit growth is proposed. It computes the total fruit conductance by integrating each of its components: stomata, cuticle and cracks. • Methods The stomatal conductance is computed from the stomatal density per fruit and the specific stomatal conductance. The cuticular component is equal to the proportion of cuticle per fruit multiplied by its specific conductance. Cracks are assumed to be generated when pulp expansion rate exceeds cuticle expansion rate. A constant percentage of cracks is assumed to heal each day. The proportion of cracks to total fruit surface area multiplied by the specific crack conductance accounts for the crack component. The model was applied to peach fruit (Prunus persica) and its parameters were estimated from field experiments with various crop load and irrigation regimes. • Key Results The predictions were in good agreement with the experimental measurements and for the different conditions (irrigation and crop load). Total fruit surface conductance decreased during early growth as stomatal density, and hence the contribution of the stomatal conductance, decreased from 80 to 20 % with fruit expansion. Cracks were generated for fruits exhibiting high growth rates during late growth and the crack component could account for up to 60 % of the total conductance during the rapid fruit growth. The cuticular contribution was slightly variable (around 20 %). Sensitivity analysis revealed that simulated conductance was highly affected by stomatal parameters during the early period of growth and by both crack and stomatal parameters during the late period. Large fruit growth rate leads to earlier and greater increase of conductance due to higher crack occurrence. Conversely, low fruit growth rate accounts for a delayed and lower increase of conductance. • Conclusions By predicting crack occurrence during fruit growth, this model could be helpful in managing cropping practices for integrated plant protection. PMID:15655107

  10. A Multi-sensor Approach to Identify Crop Sensitivity Related to Climate Variability in Central India

    NASA Astrophysics Data System (ADS)

    Mondal, P.; DeFries, R. S.; Jain, M.; Robertson, A. W.; Galford, G. L.; Small, C.

    2012-12-01

    Agriculture is a primary source of livelihood for over 70% of India's population, with staple crops (e.g. winter wheat) playing a pivotal role in satisfying an ever-increasing food-demand of a growing population. Agricultural yield in India has been reported to be highly correlated with the timing and total amount of monsoon rainfall and/or temperature depending on crop type. With expected change in future climate (temperature and precipitation), significant fluctuations in crop yields are projected for near future. To date, little work has identified the sensitivity of cropping intensity, or the number of crops planted in a given year, to climate variability. The objective of this study is to shed light on relative importance of different climate parameters through a statistical analysis of inter-annual variations in cropping intensity at a regional scale, which may help identify adaptive strategies in response to future climate anomalies. Our study focuses on a highly human-modified landscape in central India, and uses a multi-sensor approach to determine the sensitivity of agriculture to climate variability. First, we assembled the 16-day time-series of 250m Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), and applied a spline function-based smoothing algorithm to develop maps of monsoon and winter crops in Central India for a decadal time-span. A hierarchical model involving moderate resolution Landsat (30m) data was used to estimate the heterogeneity of the spectral signature within the MODIS dataset (250m). We then compared the season-specific cropping patterns with spatio-temporal variability in climate parameters derived from the Tropical Rainfall Measuring Mission (TRMM) data. Initial data indicates that the existence of a monsoon crop has moderate to strong correlation with wet season end date (ρ = .522), wet season length (ρ = .522), and the number of rainy days during wet season (ρ = .829). Existence of a winter crop, however, has a moderately strong correlation with wet season start date (ρ = .577). In addition, winter crop yield (ton/ha) has a moderate correlation with wet season end date (ρ = .624), number of rainy days during the wet season (ρ = .492), and during the dry season (ρ = .410). Future work will assess which other factors influence cropping intensity (e.g. access to irrigation among many other), since a complex interplay of bio-physical and socio-economic factors governs the decision-making at the farm-level, ultimately leading to inter-annual variability in cropping intensity and/or yield.

  11. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  12. Two-year growth cycle sugarcane crop parameter attributes and their application in modeling

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum officinarum L.) production in Hawaii has declined since the 1970s due to a number of factors that include low prices, high labor costs, competition from artificial sweeteners and low-cost production from such countries as Mexico, Brazil, India, and China. Recently, competition ...

  13. Ambient and elevated carbon dioxide on growth, physiological and nutrient uptake parameters of perennial leguminous cover crops under low light intensities

    USDA-ARS?s Scientific Manuscript database

    Adaptability and optimum growth of cover crops in plantation crops is affected by the inherent nature of the cover crop species and the light intensity at canopy levels. Globally concentrations of atmospheric CO2 are increasing and this creates higher photosynthesis and nutrient demand by crops as l...

  14. The theoretical relationship between foliage temperature and canopy resistance in sparse crops

    NASA Technical Reports Server (NTRS)

    Shuttleworth, W. James; Gurney, Robert J.

    1990-01-01

    One-dimensional, sparse-crop interaction theory is reformulated to allow calculation of the canopy resistance from measurements of foliage temperature. A submodel is introduced to describe eddy diffusion within the canopy which provides a simple, empirical simulation of the reported behavior obtained from a second-order closure model. The sensitivity of the calculated canopy resistance to the parameters and formulas assumed in the model is investigated. The calculation is shown to exhibit a significant but acceptable sensitivity to extreme changes in canopy aerodynamics, and to changes in the surface resistance of the substrate beneath the canopy at high and intermediate values of leaf area index. In very sparse crops changes in the surface resistance of the substrate are shown to contaminate the calculated canopy resistance, tending to amplify the apparent response to changes in water availability. The theory is developed to allow the use of a measurement of substrate temperature as an option to mitigate this contamination.

  15. Farmer's response to changing climate in North East India

    NASA Astrophysics Data System (ADS)

    De, Utpal Kumar

    2015-02-01

    Diversification of land use in the cultivation of various crops provides an alternative way to moderate the climate risk. By choosing alternative crops that are resilient to various weather parameters, farmers can reduce the crop damage and achieve optimum output from their limited land resources. Apart from other adaptation measures, crop diversity can reflect farmers' response towards changing climate uncertainty. This paper tries to examine the changing climatic condition through spatio-temporal variation of two important weather variables (precipitation and temperature) in the largest North-East Indian state, Assam, since 1950. It is examined by the variation in crop diversification index. We have used (1) Herfindahl Index for measuring degree of diversification and (2) locational quotient for measuring the changes in the regional crop concentration. The results show that, in almost all the districts, crop specialization has been taking place slowly and that happened mostly in the last phase of our study. The hilly and backward districts recorded more diversification but towards lower value crops. It goes against the normal feature of crop diversification where farmers diversify in favour of high value crops. Employing ordinary least squares method and/or Fixed Effect model, irrigation is found to have significant impact on crop diversification; while the flood plain zones and hill zones are found to have better progress in this regard, which has been due to the survival necessity of poor farmers living the zone. Thus crop diversity does not reflect very significant response from the farmers' side towards changing weather factors (except rainfall) though they have significant impact on the productivity of various crops, and thus profitability. The study thus suggests the necessity for rapid and suitable diversification as alternative climate change mitigation in the long run.

  16. A systems approach to identify adaptation strategies for Midwest US cropping systems under increased climate variability and change.

    NASA Astrophysics Data System (ADS)

    Basso, B.; Dumont, B.

    2015-12-01

    A systems approach was implemented to assess the impact of management strategies and climate variability on crop yield, nitrate leaching and soil organic carbon across the the Midwest US at a fine scale spatial resolution. We used the SALUS model which designed to simulated yield and environmental outcomes of continous crop rotations under different agronomic management, soil, weather. We extracted soil parameters from the SSURGO (Soil Survey Geographic) data of nine Midwest states (IA, IL, IN, MI, MN, MO, OH, SD, WI) and weather from NARR (North American Regional Reanalysis). State specific management itineraries were extracted from USDA-NAS. We present the results different cropping systems (continuous corn, corn-soybean and extended rotations) under different management practices (no-tillage, cover crops and residue management). Simulations were conducted under both the baseline (1979-2014) and projected climatic projections (RCP2.5, 6). Results indicated that climate change would likely have a negative impact on corn yields in some areas and positive in others. Soil N, and C losses can be reduced with the adoption of conservation practices.

  17. A mathematical model of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe.

    PubMed

    Perry, J N; Devos, Y; Arpaia, S; Bartsch, D; Gathmann, A; Hails, R S; Kiss, J; Lheureux, K; Manachini, B; Mestdagh, S; Neemann, G; Ortego, F; Schiemann, J; Sweet, J B

    2010-05-07

    Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis (Bt), toxic to lepidopteran target pests such as Ostrinia nubilalis. An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt-containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality-dose relationship was integrated with a dose-distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth.

  18. A mathematical model of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe

    PubMed Central

    Perry, J. N.; Devos, Y.; Arpaia, S.; Bartsch, D.; Gathmann, A.; Hails, R. S.; Kiss, J.; Lheureux, K.; Manachini, B.; Mestdagh, S.; Neemann, G.; Ortego, F.; Schiemann, J.; Sweet, J. B.

    2010-01-01

    Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis (Bt), toxic to lepidopteran target pests such as Ostrinia nubilalis. An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt-containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality–dose relationship was integrated with a dose–distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth. PMID:20053648

  19. Examining the effect of down regulation under high [CO2] on the growth of soybean assimilating a semi process-based model and FACE data

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2011-12-01

    The actual impact of elevated [CO2] with the interaction of the other climatic factors on the crop growth is still debated. In many process-based crop models, the response of photosynthesis per single leaf to environmental factors is basically described using the biochemical model of Farquhar et al. (1980). However, the decline in photosynthetic enhancement known as down regulation has not been taken into account. On the other hand, the mechanisms causing photosynthetic down regulation is still unknown, which makes it difficult to include the effect of down regulation into process-based crop models. The current results of Free-air CO2 enrichment (FACE) experiments have reported the effect of down regulation under actual environments. One of the effective approaches to involve these results into future crop yield prediction is developing a semi process-based crop growth model, which includes the effect of photosynthetic down regulation as a statistical model, and assimilating the data obtained in FACE experiments. In this study, we statistically estimated the parameters of a semi process-based model for soybean growth ('SPM-soybean') using a hierarchical Baysian method with the FACE data on soybeans (Morgan et al. 2005). We also evaluated the effect of down regulation on the soybean yield in future climatic conditions. The model selection analysis showed that the effective correction to the overestimation of the Farquhar's biochemical C3 model was to reduce the maximum rate of carboxylation (Vcmax) under elevated [CO2]. However, interestingly, the difference in the estimated final crop yields between the corrected model and the non-corrected model was very slight (Fig.1a) for future projection under climate change scenario (Miroc-ESM). This was due to that the reduction in Vcmax also brought about the reduction of the base dark respiration rate of leaves. Because the dark respiration rate exponentially increases with temperature, the slight difference in base respiration rate becomes a large difference under high temperature under the future climate scenarios. In other words, if the temperature rise is very small or zero under elevated [CO2] condition, the effect of down regulation significantly appears (Fig.1b). This result suggest that further experimental data that considering high CO2 effect and high temperature effect in field conditions should be important and elaborate the model projection of the future crop yield through data assimilation method.

  20. Optimization of grapevine yield by applying mathematical models to obtain quality wine products

    NASA Astrophysics Data System (ADS)

    Alina, Dobrei; Alin, Dobrei; Eleonora, Nistor; Teodor, Cristea; Marius, Boldea; Florin, Sala

    2016-06-01

    Relationship between the crop load and the grape yield and quality is a dynamic process, specific for wine cultivars and for fresh consumption varieties. Modeling these relations is important for the improvement of technological works. This study evaluated the interrelationship of crop load (B - buds number) and several production parameters (Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric index; AP - alcoholic potential; F - flavorings, WA - wine alcohol; SR - sugar residue, in Muscat Ottonel wine cultivar and Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric Index; CP - commercial production; BS - berries size in the Victoria table grape cultivar). In both varieties have been identified correlations between the independent variable (B - buds number as a result of pruning and training practices) and quality parameters analyzed (r = -0.699 for B vsY relationship; r = 0.961 for the relationship B vs S; r = -0.959 for B vs AP relationship; r = 0.743 for the relationship Y vs S, p <0.01, in the Muscat Ottonel cultivar, respectively r = -0.907 for relationship B vs Y; r = -0.975 for B vs CP relationship; r = -0.971 for relationship B vs BS; r = 0.990 for CP vs BS relationship in the Victoria cultivar. Through regression analysis were obtained models that describe the variation concerning production and quality parameters in relation to the independent variable (B - buds number) with statistical significance results.

  1. Assessment of Food Chain Pathway Parameters in Biosphere Models: Annual Progress Report for Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, Bruce A.; Krupka, Kenneth M.; Fellows, Robert J.

    2004-12-02

    This Annual Progress Report describes the work performed and summarizes some of the key observations to date on the U.S. Nuclear Regulatory Commission’s project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report describes activities undertaken to collect samples of soils from three regions of the United States, the Southeast, Northwest, and Southwest, and perform analyses to characterize their physical and chemical properties. Section 3 summarizes information gathered regardingmore » agricultural practices and common and unusual crops grown in each of these three areas. Section 4 describes progress in studying radionuclide uptake in several representative crops from the three soil types in controlled laboratory conditions. Section 5 describes a range of international coordination activities undertaken by Project staff in order to support the underlying data needs of the Project. Section 6 provides a very brief summary of the status of the GENII Version 2 computer program, which is a “client” of the types of data being generated by the Project, and for which the Project will be providing training to the US NRC staff in the coming Fiscal Year. Several appendices provide additional supporting information.« less

  2. Using biophysical models to manage nitrogen pollution from agricultural sources: Utopic or realistic approach for non-scientist users? Case study of a drinking water catchment area in Lorraine, France.

    PubMed

    Bernard, Pierre-Yves; Benoît, Marc; Roger-Estrade, Jean; Plantureux, Sylvain

    2016-12-01

    The objectives of this comparison of two biophysical models of nitrogen losses were to evaluate first whether results were similar and second whether both were equally practical for use by non-scientist users. Results were obtained with the crop model STICS and the environmental model AGRIFLUX based on nitrogen loss simulations across a small groundwater catchment area (<1 km(2)) located in the Lorraine region in France. Both models simulate the influences of leaching and cropping systems on nitrogen losses in a relevant manner. The authors conclude that limiting the simulations to areas where soils with a greater risk of leaching cover a significant spatial extent would likely yield acceptable results because those soils have more predictable leaching of nitrogen. In addition, the choice of an environmental model such as AGRIFLUX which requires fewer parameters and input variables seems more user-friendly for agro-environmental assessment. The authors then discuss additional challenges for non-scientists such as lack of parameter optimization, which is essential to accurately assessing nitrogen fluxes and indirectly not to limit the diversity of uses of simulated results. Despite current restrictions, with some improvement, biophysical models could become useful environmental assessment tools for non-scientists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-01-01

    Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugar cane cultivation in Australia and Brazil. Ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting climate-mediated different sensitivities of modeled sugar cane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  4. Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-06-01

    Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugarcane cultivation in Australia and Brazil. The ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting different climate-mediated sensitivities of modeled sugarcane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  5. Evaluation of weather-based rice yield models in India

    NASA Astrophysics Data System (ADS)

    Sudharsan, D.; Adinarayana, J.; Reddy, D. Raji; Sreenivas, G.; Ninomiya, S.; Hirafuji, M.; Kiura, T.; Tanaka, K.; Desai, U. B.; Merchant, S. N.

    2013-01-01

    The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.

  6. Soil Carbon and Nitrogen Cycle Modeling

    NASA Astrophysics Data System (ADS)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased temperature. The simulation results obtained in this study show differences in the soil biogeochemistry induced by the different crops analyzed. Considering the spatial scale at which this crops are cultivated this results suggest there could be important implications in the carbon and nitrogen cycle and indirect feedbacks on climate change. This study also helps us understand the future soil mineral cycle, and ensure a sustainable transition to bioenergy crops.

  7. The Derivation of Sink Functions of Wheat Organs using the GREENLAB Model

    PubMed Central

    Kang, Mengzhen; Evers, Jochem B.; Vos, Jan; de Reffye, Philippe

    2008-01-01

    Background and Aims In traditional crop growth models assimilate production and partitioning are described with empirical equations. In the GREENLAB functional–structural model, however, allocation of carbon to different kinds of organs depends on the number and relative sink strengths of growing organs present in the crop architecture. The aim of this study is to generate sink functions of wheat (Triticum aestivum) organs by calibrating the GREENLAB model using a dedicated data set, consisting of time series on the mass of individual organs (the ‘target data’). Methods An experiment was conducted on spring wheat (Triticum aestivum, ‘Minaret’), in a growth chamber from, 2004 to, 2005. Four harvests were made of six plants each to determine the size and mass of individual organs, including the root system, leaf blades, sheaths, internodes and ears of the main stem and different tillers. Leaf status (appearance, expansion, maturity and death) of these 24 plants was recorded. With the structures and mass of organs of four individual sample plants, the GREENLAB model was calibrated using a non-linear least-square-root fitting method, the aim of which was to minimize the difference in mass of the organs between measured data and model output, and to provide the parameter values of the model (the sink strengths of organs of each type, age and tiller order, and two empirical parameters linked to biomass production). Key Results and Conclusions The masses of all measured organs from one plant from each harvest were fitted simultaneously. With estimated parameters for sink and source functions, the model predicted the mass and size of individual organs at each position of the wheat structure in a mechanistic way. In addition, there was close agreement between experimentally observed and simulated values of leaf area index. PMID:18045794

  8. Two applications of the Recently Developed UZF-MT3DMS Model for Evaluating Nonpoint-Source Fluxes (Invited)

    NASA Astrophysics Data System (ADS)

    Morway, E. D.; Niswonger, R. G.; Nishikawa, T.

    2013-12-01

    The solute-transport model MT3DMS was modified to simulate transport in the unsaturated-zone by incorporating the additional flow terms calculated by the Unsaturated-Zone Flow (UZF) package developed for MODFLOW. Referred to as UZF-MT3DMS, the model simulates advection and dispersion of conservative and reactive solutes in unsaturated and saturated porous media. Significant time savings are realized owing to the efficiency of the kinematic -wave approximation used by the UZF1 package relative to Richards' equation-based approaches, facilitating the use of automated parameter-estimation routines wherein thousands of model runs may be required. Currently, UZF-MT3DMS is applied to two real-world applications of existing MODFLOW and MT3DMS models retro-fitted to use the UZF1 package for simulating the unsaturated component of the sub-surface system. In the first application, two regional-scale investigations located in Colorado's Lower Arkansas River Valley (LARV) are developed to evaluate the extent and severity of unsaturated-zone salinization contributing to crop yield loss. Preliminary results indicate root zone concentrations over both regions are at or above salinity-thresholds of most crop types grown in the LARV. Regional-scale modeling investigations of salinization found in the literature commonly use lumped-parameter models rather than physically-based distributed-parameter models. In the second application, located near Joshua Tree, CA, nitrate loading to the underlying unconfined aquifer from domestic septic systems is evaluated. Due to the region's thick unsaturated-zone and correspondingly long unsaturated-zone residence times (multi-decade), UZF-MT3DMS enabled direct simulation of spatially-varying concentration break-through curves at the water table.

  9. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    PubMed

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. © 2016 John Wiley & Sons Ltd.

  10. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport.

    PubMed

    Zhou, Luxi; Baker, Kirk R; Napelenok, Sergey L; Pouliot, George; Elleman, Robert; O'Neill, Susan M; Urbanski, Shawn P; Wong, David C

    2018-06-15

    Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also for forecasting purposes. Ground and airborne measurements from a recent field experiment in the Pacific Northwest focused on cropland residue burning was used to evaluate model performance in capturing surface and aloft impacts from the burning events. The Community Multiscale Air Quality (CMAQ) model was used to simulate multiple crop residue burns with 2 km grid spacing using field-specific information and also more general assumptions traditionally used to support National Emission Inventory based assessments. Field study specific information, which includes area burned, fuel consumption, and combustion completeness, resulted in increased biomass consumption by 123 tons (60% increase) on average compared to consumption estimated with default methods in the National Emission Inventory (NEI) process. Buoyancy heat flux, a key parameter for model predicted fire plume rise, estimated from fuel loading obtained from field measurements can be 30% to 200% more than when estimated using default field information. The increased buoyancy heat flux resulted in higher plume rise by 30% to 80%. This evaluation indicates that the regulatory air quality modeling system can replicate intensity and transport (horizontal and vertical) features for crop residue burning in this region when region-specific information is used to inform emissions and plume rise calculations. Further, previous vertical emissions allocation treatment of putting all cropland residue burning in the surface layer does not compare well with measured plume structure and these types of burns should be modeled more similarly to prescribed fires such that plume rise is based on an estimate of buoyancy. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. As-Built design specification for PARPLT. [program to produce scatter plots of crop greenness profile parameters

    NASA Technical Reports Server (NTRS)

    Tompkins, M. A.; Cheng, D. E. (Principal Investigator)

    1981-01-01

    The design and implementation of the PARPLT program are described. The program produces scatter plots of the greenness profile derived parameters alpha, beta, and t sub o computed by the CLASFYG program (alpha being the approximate greenness rise time; beta, the greenness decay time; and t sub o, the spectral crop emergence date). Statistical information concerning the parameters is also computed.

  12. Agricultural production and water use scenarios in Cyprus under global change

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  13. AgMIP: Next Generation Models and Assessments

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2014-12-01

    Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6 that involves the key modeling groups from around the world including North America, Europe, South America, Sub-Saharan Africa, South Asia, East Asia, and Australia and Oceania. This community process will lead to mutually agreed protocols for coordinated global and regional assessments.

  14. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat.

    PubMed

    Li, Xingyue; Lewis, Edwin E; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-08-10

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing "replant problem" in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community.

  15. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat

    NASA Astrophysics Data System (ADS)

    Li, Xingyue; Lewis, Edwin E.; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-08-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing “replant problem” in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community.

  16. Targeting the right input data to improve crop modeling at global level

    NASA Astrophysics Data System (ADS)

    Adam, M.; Robertson, R.; Gbegbelegbe, S.; Jones, J. W.; Boote, K. J.; Asseng, S.

    2012-12-01

    Designed for location-specific simulations, the use of crop models at a global level raises important questions. Crop models are originally premised on small unit areas where environmental conditions and management practices are considered homogeneous. Specific information describing soils, climate, management, and crop characteristics are used in the calibration process. However, when scaling up for global application, we rely on information derived from geographical information systems and weather generators. To run crop models at broad, we use a modeling platform that assumes a uniformly generated grid cell as a unit area. Specific weather, specific soil and specific management practices for each crop are represented for each of the cell grids. Studies on the impacts of the uncertainties of weather information and climate change on crop yield at a global level have been carried out (Osborne et al, 2007, Nelson et al., 2010, van Bussel et al, 2011). Detailed information on soils and management practices at global level are very scarce but recognized to be of critical importance (Reidsma et al., 2009). Few attempts to assess the impact of their uncertainties on cropping systems performances can be found. The objectives of this study are (i) to determine sensitivities of a crop model to soil and management practices, inputs most relevant to low input rainfed cropping systems, and (ii) to define hotspots of sensitivity according to the input data. We ran DSSAT v4.5 globally (CERES-CROPSIM) to simulate wheat yields at 45arc-minute resolution. Cultivar parameters were calibrated and validated for different mega-environments (results not shown). The model was run for nitrogen-limited production systems. This setting was chosen as the most representative to simulate actual yield (especially for low-input rainfed agricultural systems) and assumes crop growth to be free of any pest and diseases damages. We conducted a sensitivity analysis on contrasting management practices, initial soil conditions, and soil characteristics information. Management practices were represented by planting date and the amount of fertilizer, initial conditions estimates for initial nitrogen, soil water, and stable soil carbon, and soil information is based on a simplified version of the WISE database, characterized by soil organic matter, texture and soil depth. We considered these factors as the most important determinants of nutrient supply to crops during their growing season. Our first global results demonstrate that the model is most sensitive to the initial conditions in terms of soil carbon and nitrogen (CN): wheat yields decreased by 45% when soil CN is null and increase by 15% when twice the soil CN content of the reference run is used. The yields did not appear to be very sensitive to initial soil water conditions, varying from 0% yield increase when initial soil water is set to wilting point to 6% yield increase when it was set to field capacity. They are slightly sensitive to nitrogen application: 8% yield decrease when no N is applied to 9% yield increase when 150 kg.ha-1 is applied. However, with closer examination of results, the model is more sensitive to nitrogen application than to initial soil CN content in Vietnam, Thailand and Japan compared to the rest of the world. More analyses per region and results on the planting dates and soil properties will be presented.

  17. Estimating Soil and Root Parameters of Biofuel Crops using a Hydrogeophysical Inversion

    NASA Astrophysics Data System (ADS)

    Kuhl, A.; Kendall, A. D.; Van Dam, R. L.; Hyndman, D. W.

    2017-12-01

    Transpiration is the dominant pathway for continental water exchange to the atmosphere, and therefore a crucial aspect of modeling water balances at many scales. The root water uptake dynamics that control transpiration are dependent on soil water availability, as well as the root distribution. However, the root distribution is determined by many factors beyond the plant species alone, including climate conditions and soil texture. Despite the significant contribution of transpiration to global water fluxes, modelling the complex critical zone processes that drive root water uptake remains a challenge. Geophysical tools such as electrical resistivity (ER), have been shown to be highly sensitive to water dynamics in the unsaturated zone. ER data can be temporally and spatially robust, covering large areas or long time periods non-invasively, which is an advantage over in-situ methods. Previous studies have shown the value of using hydrogeophysical inversions to estimate soil properties. Others have used hydrological inversions to estimate both soil properties and root distribution parameters. In this study, we combine these two approaches to create a coupled hydrogeophysical inversion that estimates root and retention curve parameters for a HYDRUS model. To test the feasibility of this new approach, we estimated daily water fluxes and root growth for several biofuel crops at a long-term ecological research site in Southwest Michigan, using monthly ER data from 2009 through 2011. Time domain reflectometry data at seven depths was used to validate modeled soil moisture estimates throughout the model period. This hydrogeophysical inversion method shows promise for improving root distribution and transpiration estimates across a wide variety of settings.

  18. Soil-plant water status and wine quality: the case study of Aglianico wine (the ZOViSA project)

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Manna, Piero; Albrizio, Rossella; Basile, Angelo; Agrillo, Antonietta; De Mascellis, Roberto; Caputo, Pellegrina; Delle Cave, Aniello; Gambuti, Angelita; Giorio, Pasquale; Guida, Gianpiero; Minieri, Luciana; Moio, Luigi; Orefice, Nadia; Terribile, Fabio

    2014-05-01

    The terroir analysis, aiming to achieve a better use of environmental features with respect to plant requirement and wine production, needs to be strongly rooted on hydropedology. In fact, the relations between wine quality and soil moisture regime during the cropping season is well established. The ZOViSA Project (Viticultural zoning at farm scale) tests a new physically oriented approach to terroir analysis based on the relations between the soil-plant water status and wine quality. The project is conducted in southern Italy in the farm Quintodecimo of Mirabella Eclano (AV) located in the Campania region, devoted to quality Aglianico red wine production (DOC). The soil spatial distribution of study area (about 3 ha) was recognized by classical soil survey and geophysics scan by EM38DD; then the soil-plant water status was monitored for three years in two experimental plots from two different soils (Cambisol and Calcisol). Daily climate variables (temperature, solar radiation, rainfall, wind), daily soil water variables (through TDR probes and tensiometers), crop development (biometric and physiological parameters), and grape must and wine quality were monitored. The agro-hydrological model SWAP was calibrated and applied in the two experimental plots to estimate soil-plant water status in different crop phenological stages. The effects of crop water status on crop response and wine quality was evaluated in two different pedo-systems, comparing the crop water stress index with both: crop physiological measurements (leaf gas exchange, leaf water potential, chlorophyll content, LAI measurement), grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and wine quality (aromatic response). Finally a "spatial application" of the model was carried out and different terroirs defined.

  19. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    PubMed Central

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  20. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    PubMed

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  1. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.

  2. Identification of drought in Dhalai river watershed using MCDM and ANN models

    NASA Astrophysics Data System (ADS)

    Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  3. Socio-climatic Exposure of an Afghan Poppy Farmer

    NASA Astrophysics Data System (ADS)

    Mankin, J. S.; Diffenbaugh, N. S.

    2011-12-01

    Many posit that climate impacts from anthropogenic greenhouse gas emissions will have consequences for the natural and agricultural systems on which humans rely for food, energy, and livelihoods, and therefore, on stability and human security. However, many of the potential mechanisms of action in climate impacts and human systems response, as well as the differential vulnerabilities of such systems, remain underexplored and unquantified. Here I present two initial steps necessary to characterize and quantify the consequences of climate change for farmer livelihood in Afghanistan, given both climate impacts and farmer vulnerabilities. The first is a conceptual model mapping the potential relationships between Afghanistan's climate, the winter agricultural season, and the country's political economy of violence and instability. The second is a utility-based decision model for assessing farmer response sensitivity to various climate impacts based on crop sensitivities. A farmer's winter planting decision can be modeled roughly as a tradeoff between cultivating the two crops that dominate the winter growing season-opium poppy (a climate tolerant cash crop) and wheat (a climatically vulnerable crop grown for household consumption). Early sensitivity analysis results suggest that wheat yield dominates farmer decision making variability; however, such initial results may dependent on the relative parameter ranges of wheat and poppy yields. Importantly though, the variance in Afghanistan's winter harvest yields of poppy and wheat is tightly linked to household livelihood and thus, is indirectly connected to the wider instability and insecurity within the country. This initial analysis motivates my focused research on the sensitivity of these crops to climate variability in order to project farmer well-being and decision sensitivity in a warmer world.

  4. Correlations between the modelled potato crop yield and the general atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Sepp, Mait; Saue, Triin

    2012-07-01

    Biology-related indicators do not usually depend on just one meteorological element but on a combination of several weather indicators. One way to establish such integral indicators is to classify the general atmospheric circulation into a small number of circulation types. The aim of present study is to analyse connections between general atmospheric circulation and potato crop yield in Estonia. Meteorologically possible yield (MPY), calculated by the model POMOD, is used to characterise potato crop yield. Data of three meteorological stations and the biological parameters of two potato sorts were applied to the model, and 73 different classifications of atmospheric circulation from catalogue 1.2 of COST 733, domain 05 are used to qualify circulation conditions. Correlation analysis showed that there is at least one circulation type in each of the classifications with at least one statistically significant (99%) correlation with potato crop yield, whether in Kuressaare, Tallinn or Tartu. However, no classifications with circulation types correlating with MPY in all three stations at the same time were revealed. Circulation types inducing a decrease in the potato crop yield are more clearly represented. Clear differences occurred between the observed geographical locations as well as between the seasons: derived from the number of significant circulation types, summer and Kuressaare stand out. Of potato varieties, late 'Anti' is more influenced by circulation. Analysis of MSLP maps of circulation types revealed that the seaside stations (Tallinn, Kuressaare) suffer from negative effects of anti-cyclonic conditions (drought), while Tartu suffers from the cyclonic activity (excessive water).

  5. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine

    NASA Astrophysics Data System (ADS)

    Maimaitijiang, Maitiniyazi; Ghulam, Abduwasit; Sidike, Paheding; Hartling, Sean; Maimaitiyiming, Matthew; Peterson, Kyle; Shavers, Ethan; Fishman, Jack; Peterson, Jim; Kadam, Suhas; Burken, Joel; Fritschi, Felix

    2017-12-01

    Estimating crop biophysical and biochemical parameters with high accuracy at low-cost is imperative for high-throughput phenotyping in precision agriculture. Although fusion of data from multiple sensors is a common application in remote sensing, less is known on the contribution of low-cost RGB, multispectral and thermal sensors to rapid crop phenotyping. This is due to the fact that (1) simultaneous collection of multi-sensor data using satellites are rare and (2) multi-sensor data collected during a single flight have not been accessible until recent developments in Unmanned Aerial Systems (UASs) and UAS-friendly sensors that allow efficient information fusion. The objective of this study was to evaluate the power of high spatial resolution RGB, multispectral and thermal data fusion to estimate soybean (Glycine max) biochemical parameters including chlorophyll content and nitrogen concentration, and biophysical parameters including Leaf Area Index (LAI), above ground fresh and dry biomass. Multiple low-cost sensors integrated on UASs were used to collect RGB, multispectral, and thermal images throughout the growing season at a site established near Columbia, Missouri, USA. From these images, vegetation indices were extracted, a Crop Surface Model (CSM) was advanced, and a model to extract the vegetation fraction was developed. Then, spectral indices/features were combined to model and predict crop biophysical and biochemical parameters using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Extreme Learning Machine based Regression (ELR) techniques. Results showed that: (1) For biochemical variable estimation, multispectral and thermal data fusion provided the best estimate for nitrogen concentration and chlorophyll (Chl) a content (RMSE of 9.9% and 17.1%, respectively) and RGB color information based indices and multispectral data fusion exhibited the largest RMSE 22.6%; the highest accuracy for Chl a + b content estimation was obtained by fusion of information from all three sensors with an RMSE of 11.6%. (2) Among the plant biophysical variables, LAI was best predicted by RGB and thermal data fusion while multispectral and thermal data fusion was found to be best for biomass estimation. (3) For estimation of the above mentioned plant traits of soybean from multi-sensor data fusion, ELR yields promising results compared to PLSR and SVR in this study. This research indicates that fusion of low-cost multiple sensor data within a machine learning framework can provide relatively accurate estimation of plant traits and provide valuable insight for high spatial precision in agriculture and plant stress assessment.

  6. System dynamics approach for modeling of sugar beet yield considering the effects of climatic variables.

    PubMed

    Pervin, Lia; Islam, Md Saiful

    2015-02-01

    The aim of this study was to develop a system dynamics model for computation of yields and to investigate the dependency of yields on some major climatic parameters, i.e. temperature and rainfall, for Beta vulgaris subsp. (sugar beet crops) under future climate change scenarios. A system dynamics model was developed which takes account of the effects of rainfall and temperature on sugar beet yields under limited irrigation conditions. A relationship was also developed between the seasonal evapotranspiration and seasonal growing degree days for sugar beet crops. The proposed model was set to run for the present time period of 1993-2012 and for the future period 2013-2040 for Lethbridge region (Alberta, Canada). The model provides sugar beet yields on a yearly basis which are comparable to the present field data. It was found that the future average yield will be increased at about 14% with respect to the present average yield. The proposed model can help to improve the understanding of soil water conditions and irrigation water requirements of an area under certain climatic conditions and can be used for future prediction of yields for any crops in any region (with the required information to be provided). The developed system dynamics model can be used as a supporting tool for decision making, for improvement of agricultural management practice of any region. © 2014 Society of Chemical Industry.

  7. Evaluation of pre-crops and organic fertilization program on the subsequent crop under Mediterranean conditions: case of South of Italy

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Hmid, Amine; Baysal, Damla; Amer, Nasser; Bitar, Lina Al; Aksoy, Uygun

    2013-04-01

    Organic farming systems rely on soil fertility management to enhance the soil chemical properties for the optimization of crop production and increase food quality. Soil fertility-building crops have been reported as a way to reduce inputs of fertilizers, improve soil fertility and increase the subsequent crop yield. A four-year rotation programme was launched by the Mediterranean Agronomic Institute of Bari that aims at identifying the most suitable fertilization strategy in organic farming for Mediterranean countries under the prevailing conditions. The present study was conducted in southern Italy and it consists in evaluating the effects of pre-crops (faba bean, vetch and broccoli) in comparison to a fallow test on the subsequent crop (zucchini, tomato, lettuce and radish) in four consecutive years. Vetch and faba bean were able to satisfy the nutrient requirement of the main crop without any compost application; while commercial compost was applied to broccoli and fallow treatments prior to transplanting the main crop. The main soil chemical parameters: organic carbon, total nitrogen, available phosphorus, and exchangeable potassium were improved over four years experiment. The trend was consistent; all main chemical parameters displayed a significant increase in all treatments, while no significant differences were obtained between treatments. Based on the results obtained in the first two years, the effect of different pre-crops and fertilizers on zucchini and organic tomato qualitative and quantitative parameters were not significant. While the results obtained in the third and forth years showed that pre-crops and fertilizers had significant effects on lettuce and radish yield and quality. Low nitrate contents were found in fallow and broccoli treatments (70 to 80% lower) in comparison to Vetch and Faba bean treatments and the ascorbic acid contents were (20 to 40% higher) after broccoli and fallow treatments. The low nitrate content in broccoli and fallow treatment can be due to the compost application rich in humified organic matter. Humified organic matter breaks down very slowly in the soil releasing gradually nutrients. Whereas, the high amount of fresh organic matter incorporated with vetch and faba bean may break down quickly in comparison to compost, releasing a flush of nutrients for plant growth. Additionally, nutrient accumulation such as nitrate can lead in a decrease in the vitamin C content. These suggest that the pre-crops, especially vetch and faba bean, can improve main crop yields; while compost improves the quality parameters.

  8. Viticulture microzoning: a functional approach aiming to grape and wine qualities

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Agrillo, A.; Albrizio, R.; Basile, A.; Buonomo, R.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Guida, G.; Langella, G.; Manna, P.; Minieri, L.; Moio, L.; Siani, T.; Terribile, F.

    2014-12-01

    This paper aims to test a new physically oriented approach to viticulture zoning at the farm scale, strongly rooted on hydropedology and aiming to achieve a better use of environmental features with respect to plant requirement and wine production. The physics of our approach is defined by the use of soil-plant-atmosphere simulation models which applies physically-based equations to describe the soil hydrological processes and solves soil-plant water status. This study (ZOVISA project) was conducted in a farm devoted to high quality wines production (Aglianico DOC), located in South Italy (Campania region, Mirabella Eclano-AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two Homogenous Zones (HZs) were identified; in each one of those a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional Homogeneous Zones (fHzs). In these last, experimental plots were established and monitored for investigating soil-plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, LAI measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). Eventually this experiment has proved the usefulness of the physical based approach also in the case of mapping viticulture microzoning.

  9. Disaggregated N2O emission factors in China based on cropping parameters create a robust approach to the IPCC Tier 2 methodology

    PubMed Central

    Shepherd, Anita; Yan, Xiaoyuan; Nayak, Dali; Newbold, Jamie; Moran, Dominic; Dhanoa, Mewa Singh; Goulding, Keith; Smith, Pete; Cardenas, Laura M.

    2015-01-01

    China accounts for a third of global nitrogen fertilizer consumption. Under an International Panel on Climate Change (IPCC) Tier 2 assessment, emission factors (EFs) are developed for the major crop types using country-specific data. IPCC advises a separate calculation for the direct nitrous oxide (N2O) emissions of rice cultivation from that of cropland and the consideration of the water regime used for irrigation. In this paper we combine these requirements in two independent analyses, using different data quality acceptance thresholds, to determine the influential parameters on emissions with which to disaggregate and create N2O EFs. Across China, the N2O EF for lowland horticulture was slightly higher (between 0.74% and 1.26% of fertilizer applied) than that for upland crops (values ranging between 0.40% and 1.54%), and significantly higher than for rice (values ranging between 0.29% and 0.66% on temporarily drained soils, and between 0.15% and 0.37% on un-drained soils). Higher EFs for rice were associated with longer periods of drained soil and the use of compound fertilizer; lower emissions were associated with the use of urea or acid soils. Higher EFs for upland crops were associated with clay soil, compound fertilizer or maize crops; lower EFs were associated with sandy soil and the use of urea. Variation in emissions for lowland vegetable crops was closely associated with crop type. The two independent analyses in this study produced consistent disaggregated N2O EFs for rice and mixed crops, showing that the use of influential cropping parameters can produce robust EFs for China. PMID:26865831

  10. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data

    NASA Astrophysics Data System (ADS)

    Jiao, Xianfeng; Kovacs, John M.; Shang, Jiali; McNairn, Heather; Walters, Dan; Ma, Baoluo; Geng, Xiaoyuan

    2014-10-01

    The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude-Pottier and Freeman-Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude-Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman-Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy.

  11. Disaggregated N2O emission factors in China based on cropping parameters create a robust approach to the IPCC Tier 2 methodology

    NASA Astrophysics Data System (ADS)

    Shepherd, Anita; Yan, Xiaoyuan; Nayak, Dali; Newbold, Jamie; Moran, Dominic; Dhanoa, Mewa Singh; Goulding, Keith; Smith, Pete; Cardenas, Laura M.

    2015-12-01

    China accounts for a third of global nitrogen fertilizer consumption. Under an International Panel on Climate Change (IPCC) Tier 2 assessment, emission factors (EFs) are developed for the major crop types using country-specific data. IPCC advises a separate calculation for the direct nitrous oxide (N2O) emissions of rice cultivation from that of cropland and the consideration of the water regime used for irrigation. In this paper we combine these requirements in two independent analyses, using different data quality acceptance thresholds, to determine the influential parameters on emissions with which to disaggregate and create N2O EFs. Across China, the N2O EF for lowland horticulture was slightly higher (between 0.74% and 1.26% of fertilizer applied) than that for upland crops (values ranging between 0.40% and 1.54%), and significantly higher than for rice (values ranging between 0.29% and 0.66% on temporarily drained soils, and between 0.15% and 0.37% on un-drained soils). Higher EFs for rice were associated with longer periods of drained soil and the use of compound fertilizer; lower emissions were associated with the use of urea or acid soils. Higher EFs for upland crops were associated with clay soil, compound fertilizer or maize crops; lower EFs were associated with sandy soil and the use of urea. Variation in emissions for lowland vegetable crops was closely associated with crop type. The two independent analyses in this study produced consistent disaggregated N2O EFs for rice and mixed crops, showing that the use of influential cropping parameters can produce robust EFs for China.

  12. Automated system for generation of soil moisture products for agricultural drought assessment

    NASA Astrophysics Data System (ADS)

    Raja Shekhar, S. S.; Chandrasekar, K.; Sesha Sai, M. V. R.; Diwakar, P. G.; Dadhwal, V. K.

    2014-11-01

    Drought is a frequently occurring disaster affecting lives of millions of people across the world every year. Several parameters, indices and models are being used globally to forecast / early warning of drought and monitoring drought for its prevalence, persistence and severity. Since drought is a complex phenomenon, large number of parameter/index need to be evaluated to sufficiently address the problem. It is a challenge to generate input parameters from different sources like space based data, ground data and collateral data in short intervals of time, where there may be limitation in terms of processing power, availability of domain expertise, specialized models & tools. In this study, effort has been made to automate the derivation of one of the important parameter in the drought studies viz Soil Moisture. Soil water balance bucket model is in vogue to arrive at soil moisture products, which is widely popular for its sensitivity to soil conditions and rainfall parameters. This model has been encoded into "Fish-Bone" architecture using COM technologies and Open Source libraries for best possible automation to fulfill the needs for a standard procedure of preparing input parameters and processing routines. The main aim of the system is to provide operational environment for generation of soil moisture products by facilitating users to concentrate on further enhancements and implementation of these parameters in related areas of research, without re-discovering the established models. Emphasis of the architecture is mainly based on available open source libraries for GIS and Raster IO operations for different file formats to ensure that the products can be widely distributed without the burden of any commercial dependencies. Further the system is automated to the extent of user free operations if required with inbuilt chain processing for every day generation of products at specified intervals. Operational software has inbuilt capabilities to automatically download requisite input parameters like rainfall, Potential Evapotranspiration (PET) from respective servers. It can import file formats like .grd, .hdf, .img, generic binary etc, perform geometric correction and re-project the files to native projection system. The software takes into account the weather, crop and soil parameters to run the designed soil water balance model. The software also has additional features like time compositing of outputs to generate weekly, fortnightly profiles for further analysis. Other tools to generate "Area Favorable for Crop Sowing" using the daily soil moisture with highly customizable parameters interface has been provided. A whole India analysis would now take a mere 20 seconds for generation of soil moisture products which would normally take one hour per day using commercial software.

  13. Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops

    NASA Astrophysics Data System (ADS)

    Sakamoto, Toshihiro

    2018-04-01

    Crop phenological information is a critical variable in evaluating the influence of environmental stress on the final crop yield in spatio-temporal dimensions. Although the MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover Dynamics product (MCD12Q2) is widely used in place of crop phenological information, the definitions of MCD12Q2-derived phenological events (e.g. green-up date, dormancy date) were not completely consistent with those of crop development stages used in statistical surveys (e.g. emerged date, harvested date). It has been necessary to devise an alternative method focused on detecting continental-scale crop developmental stages using a different approach. Therefore, this study aimed to refine the Shape Model Fitting (SMF) method to improve its applicability to multiple major U.S. crops. The newly-refined SMF methods could estimate the timing of 36 crop-development stages of major U.S. crops, including corn, soybeans, winter wheat, spring wheat, barley, sorghum, rice, and cotton. The newly-developed calibration process did not require any long-term field observation data, and could calibrate crop-specific phenological parameters, which were used as coefficients in estimated equation, by using only freely accessible public data. The calibration of phenological parameters was conducted in two steps. In the first step, the national common phenological parameters, referred to as X0[base], were calibrated by using the statistical data of 2008. The SMF method coupled using X0[base] was named the rSMF[base] method. The second step was a further calibration to gain regionally-adjusted phenological parameters for each state, referred to as X0[local], by using additional statistical data of 2015 and 2016. The rSMF method using the X0[local] was named the rSMF[local] method. This second calibration process improved the estimation accuracy for all tested crops. When applying the rSMF[base] method to the validation data set (2009-2014), the root mean square error (RMSE) of the rSMF[base]-derived estimates ranged from 7.1 days (corn) to 15.7 days (winter wheat). When using the rSMF[local] method, the RMSE of the rSMF[local]-derived estimates improved and ranged from 5.6 days (corn) to 12.3 days (winter wheat). The results showed that the second calibration step for the rSMF[local] method could correct the region-dependent bias error between the rSMF[base]-derived estimates and the statistical data. A comparison between the performances of the refined SMF methods and the MCD12Q2 products, indicated that both of the rSMF methods were superior to the MCD12Q2 products in estimating all phenological stages, except for the case of the rSMF[base]-derived barley emerged stages. The phenological stages for which the rSMF[local] showed the best estimation accuracy were the corn silking stage (RMSE = 4.3 days); the soybeans dropping leaves stage (RMSE = 4.9 days); the headed stages of winter wheat (RMSE = 11.1 days), barley (RMSE = 6.1 days), and sorghum (RMSE = 9.5 days); the spring-wheat harvested stage (RMSE = 5.5 days); the rice emerged stage (RMSE = 5.5 days), and the cotton squaring stage (RMSE = 6.6 days). These were more accurate than the results achieved by the MCD12Q2 products. In addition, the rSMF[local]-derived estimates were superior in terms of the reproducibility of the annual variation range, particularly of the late reproductive stages, such as the mature and harvested stages. The crop phenology maps derived from the SMF [local] method were also in good agreement with the relevant maps derived from statistics, and could reveal the characteristic spatial pattern of the key phenological stages at the continental scale with fine spatial resolution. For example, the winter-wheat headed stage clearly became later from south to north. The cotton squaring stage became earlier from the central region towards both coastal regions.

  14. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment--A Comparison with Terrestrial Laser Scanning Data.

    PubMed

    Marx, Sabrina; Hämmerle, Martin; Klonner, Carolin; Höfle, Bernhard

    2016-01-01

    The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS) is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS) results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM) derived from PS and TLS data is 10.45 cm (GPS devices) and 14.69 cm (smartphones). Furthermore, the results indicate that incorporating participants' cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development.

  15. Proper accounting for time increases crop-based biofuels' greenhouse gas deficit versus petroleum

    NASA Astrophysics Data System (ADS)

    O'Hare, M.; Plevin, R. J.; Martin, J. I.; Jones, A. D.; Kendall, A.; Hopson, E.

    2009-04-01

    The global warming intensities of crop-based biofuels and fossil fuels differ not only in amount but also in their discharge patterns over time. Early discharges, for example, from market-mediated land use change, will have created more global warming by any time in the future than later discharges, owing to the slow decay of atmospheric CO2. A spreadsheet model of this process, BTIME, captures this important time pattern effect using the Bern CO2 decay model to allow fuels to be compared for policy decisions on the basis of their real warming effects with a variety of user-supplied parameter values. The model also allows economic discounting of climate effects extended far into the future. Compared to approaches that simply sum greenhouse gas emissions over time, recognizing the physics of atmospheric CO2 decay significantly increases the deficit relative to fossil fuel of any biofuel causing land use change.

  16. Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.

    Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions

  17. Leaf Photosynthetic Parameters Related to Biomass Accumulation in a Global Rice Diversity Survey1[OPEN

    PubMed Central

    Zheng, Guangyong; Hamdani, Saber; Essemine, Jemaa; Song, Qingfeng; Wang, Hongru

    2017-01-01

    Mining natural variations is a major approach to identify new options to improve crop light use efficiency. So far, successes in identifying photosynthetic parameters positively related to crop biomass accumulation through this approach are scarce, possibly due to the earlier emphasis on properties related to leaf instead of canopy photosynthetic efficiency. This study aims to uncover rice (Oryza sativa) natural variations to identify leaf physiological parameters that are highly correlated with biomass accumulation, a surrogate of canopy photosynthesis. To do this, we systematically investigated 14 photosynthetic parameters and four morphological traits in a rice population, which consists of 204 U.S. Department of Agriculture-curated minicore accessions collected globally and 11 elite Chinese rice cultivars in both Beijing and Shanghai. To identify key components responsible for the variance of biomass accumulation, we applied a stepwise feature-selection approach based on linear regression models. Although there are large variations in photosynthetic parameters measured in different environments, we observed that photosynthetic rate under low light (Alow) was highly related to biomass accumulation and also exhibited high genomic inheritability in both environments, suggesting its great potential to be used as a target for future rice breeding programs. Large variations in Alow among modern rice cultivars further suggest the great potential of using this parameter in contemporary rice breeding for the improvement of biomass and, hence, yield potential. PMID:28739819

  18. An online tool for tracking soil nitrogen

    NASA Astrophysics Data System (ADS)

    Wang, J.; Umar, M.; Banger, K.; Pittelkow, C. M.; Nafziger, E. D.

    2016-12-01

    Near real-time crop models can be useful tools for optimizing agricultural management practices. For example, model simulations can potentially provide current estimates of nitrogen availability in soil, helping growers decide whether more nitrogen needs to be applied in a given season. Traditionally, crop models have been used at point locations (i.e. single fields) with homogenous soil, climate and initial conditions. However, nitrogen availability across fields with varied weather and soil conditions at a regional or national level is necessary to guide better management decisions. This study presents the development of a publicly available, online tool that automates the integration of high-spatial-resolution forecast and past weather and soil data in DSSAT to estimate nitrogen availability for individual fields in Illinois. The model has been calibrated with field experiments from past year at six research corn fields across Illinois. These sites were treated with applications of different N fertilizer timings and amounts. The tool requires minimal management information from growers and yet has the capability to simulate nitrogen-water-crop interactions with calibrated parameters that are more appropriate for Illinois. The results from the tool will be combined with incoming field experiment data from 2016 for model validation and further improvement of model's predictive accuracy. The tool has the potential to help guide better nitrogen management practices to maximize economic and environmental benefits.

  19. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users

    PubMed Central

    Calera, Alfonso; Campos, Isidro; Osann, Anna; D’Urso, Guido; Menenti, Massimo

    2017-01-01

    The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools. PMID:28492515

  20. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users.

    PubMed

    Calera, Alfonso; Campos, Isidro; Osann, Anna; D'Urso, Guido; Menenti, Massimo

    2017-05-11

    The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools.

  1. Establishment of a center of excellence for applied mathematical and statistical research

    NASA Technical Reports Server (NTRS)

    Woodward, W. A.; Gray, H. L.

    1983-01-01

    The state of the art was assessed with regards to efforts in support of the crop production estimation problem and alternative generic proportion estimation techniques were investigated. Topics covered include modeling the greeness profile (Badhwarmos model), parameter estimation using mixture models such as CLASSY, and minimum distance estimation as an alternative to maximum likelihood estimation. Approaches to the problem of obtaining proportion estimates when the underlying distributions are asymmetric are examined including the properties of Weibull distribution.

  2. Microwave moisture sensing of seedcotton: Part 1: Seedcotton microwave material properties

    USDA-ARS?s Scientific Manuscript database

    Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as alter the...

  3. Microwave moisture sensing of seedcotton: Part 1: Seedcotton microwave material properties

    USDA-ARS?s Scientific Manuscript database

    Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the...

  4. Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates

    NASA Astrophysics Data System (ADS)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2018-01-01

    Modeling net ecosystem exchange (NEE) at the regional scale with land surface models (LSMs) is relevant for the estimation of regional carbon balances, but studies on it are very limited. Furthermore, it is essential to better understand and quantify the uncertainty of LSMs in order to improve them. An important key variable in this respect is the prognostic leaf area index (LAI), which is very sensitive to forcing data and strongly affects the modeled NEE. We applied the Community Land Model (CLM4.5-BGC) to the Rur catchment in western Germany and compared estimated and default ecological key parameters for modeling carbon fluxes and LAI. The parameter estimates were previously estimated with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) for four of the most widespread plant functional types in the catchment. It was found that the catchment-scale annual NEE was strongly positive with default parameter values but negative (and closer to observations) with the estimated values. Thus, the estimation of CLM parameters with local NEE observations can be highly relevant when determining regional carbon balances. To obtain a more comprehensive picture of model uncertainty, CLM ensembles were set up with perturbed meteorological input and uncertain initial states in addition to uncertain parameters. C3 grass and C3 crops were particularly sensitive to the perturbed meteorological input, which resulted in a strong increase in the standard deviation of the annual NEE sum (σ NEE) for the different ensemble members from ˜ 2 to 3 g C m-2 yr-1 (with uncertain parameters) to ˜ 45 g C m-2 yr-1 (C3 grass) and ˜ 75 g C m-2 yr-1 (C3 crops) with perturbed forcings. This increase in uncertainty is related to the impact of the meteorological forcings on leaf onset and senescence, and enhanced/reduced drought stress related to perturbation of precipitation. The NEE uncertainty for the forest plant functional type (PFT) was considerably lower (σ NEE ˜ 4.0-13.5 g C m-2 yr-1 with perturbed parameters, meteorological forcings and initial states). We conclude that LAI and NEE uncertainty with CLM is clearly underestimated if uncertain meteorological forcings and initial states are not taken into account.

  5. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat

    PubMed Central

    Li, Xingyue; Lewis, Edwin E.; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-01-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing “replant problem” in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community. PMID:27506379

  6. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Calvet, J.-C.; Martin, E.; Moulin, S.; Marloie, O.

    2015-10-01

    Generic land surface models are generally driven by large-scale data sets to describe the climate, the soil properties, the vegetation dynamic and the cropland management (irrigation). This paper investigates the uncertainties in these drivers and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12-year Mediterranean crop succession. We evaluate the forcing data sets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN (Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie) high spatial resolution atmospheric reanalysis, the leaf area index (LAI) time courses derived from the ECOCLIMAP-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional data sets which include the ERA-Interim (ERA-I) low spatial resolution reanalysis, the Global Precipitation Climatology Centre data set (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for ERA-I (2.5 W m-2) compared to the negative biases found for SAFRAN (-10 W m-2) and the MSG satellite (-12 W m-2). Both SAFRAN and ERA-I underestimate downwelling longwave radiations by -12 and -16 W m-2, respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve Mediterranean crop phenology and underestimates the bare soil period which leads to an overall overestimation of LAI over the crop succession. The simulation of irrigation by the model provides an accurate irrigation amount over the crop cycle but the timing of irrigation occurrences is frequently unrealistic. Errors in the soil hydrodynamic parameters and the lack of irrigation in the simulation have the largest influence on ET compared to uncertainties in the large-scale climate reanalysis and the LAI climatology. Among climate variables, the errors in yearly ET are mainly related to the errors in yearly rainfall. The underestimation of the available water capacity and the soil hydraulic diffusivity induce a large underestimation of ET over 12 years. The underestimation of radiations by the reanalyses and the absence of irrigation in the simulation lead to the underestimation of ET while the overall overestimation of LAI by the ECOCLIMAP-II climatology induces an overestimation of ET over 12 years. This work shows that the key challenges to monitor the water balance of cropland at regional scale concern the representation of the spatial distribution of the soil hydrodynamic parameters, the variability of the irrigation practices, the seasonal and inter-annual dynamics of vegetation and the spatiotemporal heterogeneity of rainfall.

  7. An analysis of sensitivity of CLIMEX parameters in mapping species potential distribution and the broad-scale changes observed with minor variations in parameters values: an investigation using open-field Solanum lycopersicum and Neoleucinodes elegantalis as an example

    NASA Astrophysics Data System (ADS)

    da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; Picanço, Marcelo Coutinho

    2018-04-01

    A sensitivity analysis can categorize levels of parameter influence on a model's output. Identifying parameters having the most influence facilitates establishing the best values for parameters of models, providing useful implications in species modelling of crops and associated insect pests. The aim of this study was to quantify the response of species models through a CLIMEX sensitivity analysis. Using open-field Solanum lycopersicum and Neoleucinodes elegantalis distribution records, and 17 fitting parameters, including growth and stress parameters, comparisons were made in model performance by altering one parameter value at a time, in comparison to the best-fit parameter values. Parameters that were found to have a greater effect on the model results are termed "sensitive". Through the use of two species, we show that even when the Ecoclimatic Index has a major change through upward or downward parameter value alterations, the effect on the species is dependent on the selection of suitability categories and regions of modelling. Two parameters were shown to have the greatest sensitivity, dependent on the suitability categories of each species in the study. Results enhance user understanding of which climatic factors had a greater impact on both species distributions in our model, in terms of suitability categories and areas, when parameter values were perturbed by higher or lower values, compared to the best-fit parameter values. Thus, the sensitivity analyses have the potential to provide additional information for end users, in terms of improving management, by identifying the climatic variables that are most sensitive.

  8. Improving Snow Process Modeling with Satellite-Based Estimation of Near-Surface-Air-Temperature Lapse Rate

    NASA Astrophysics Data System (ADS)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2016-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.

  9. An Observing System Simulation Experiment of assimilating leaf area index and soil moisture over cropland

    NASA Astrophysics Data System (ADS)

    Lafont, Sebastien; Barbu, Alina; Calvet, Jean-Christophe

    2013-04-01

    A Land Data Assimilation System (LDAS) is an off-line data assimilation system featuring uncoupled land surface model which is driven by observation-based atmospheric forcing. In this study the experiments were conducted with a surface externalized (SURFEX) modelling platform developed at Météo-France. It encompasses the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The photosynthetic activity depends on the vegetation types. The input soil and vegetation parameters are provided by the ECOCLIMAP II global database which assigns the ecosystem classes in several plant functional types as grassland, crops, deciduous forest and coniferous forest. New versions of the model have been recently developed in order to better describe the agricultural plant functional types. We present a set of observing system simulation experiments (OSSE) which asses leaf area index (LAI) and soil moisture assimilation for improving the land surface estimates in a controlled synthetic environment. Synthetic data were assimilated into ISBA-A-gs using an Extended Kalman Filter (EKF). This allows for an understanding of model responses to an augmentation of the number of crop types and different parameters associated to this modification. In addition, the interactions between uncertainties in the model and in the observations were investigated. This study represents the first step of a process that envisages the extension of LDAS to the new versions of the ISBA-A-gs model in order to assimilate remote sensing observations.

  10. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys

    PubMed Central

    Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui

    2016-01-01

    Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield. PMID:27203697

  11. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys.

    PubMed

    Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui

    2016-01-01

    Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield.

  12. Foregone benefits of important food crop improvements in Sub-Saharan Africa

    PubMed Central

    2017-01-01

    A number of new crops have been developed that address important traits of particular relevance for smallholder farmers in Africa. Scientists, policy makers, and other stakeholders have raised concerns that the approval process for these new crops causes delays that are often scientifically unjustified. This article develops a real option model for the optimal regulation of a risky technology that enhances economic welfare and reduces malnutrition. We consider gradual adoption of the technology and show that delaying approval reduces uncertainty about perceived risks of the technology. Optimal conditions for approval incorporate parameters of the stochastic processes governing the dynamics of risk. The model is applied to three cases of improved crops, which either are, or are expected to be, delayed by the regulatory process. The benefits and costs of the crops are presented in a partial equilibrium that considers changes in adoption over time and the foregone benefits caused by a delay in approval under irreversibility and uncertainty. We derive the equilibrium conditions where the net-benefits of the technology equal the costs that would justify a delay. The sooner information about the safety of the technology arrive, the lower the costs for justifying a delay need to be i.e. it pays more to delay. The costs of a delay can be substantial: e.g. a one year delay in approval of the pod-borer resistant cowpea in Nigeria will cost the country about 33 million USD to 46 million USD and between 100 and 3,000 lives. PMID:28749984

  13. Assessing changes to South African maize production areas in 2055 using empirical and process-based crop models

    NASA Astrophysics Data System (ADS)

    Estes, L.; Bradley, B.; Oppenheimer, M.; Beukes, H.; Schulze, R. E.; Tadross, M.

    2010-12-01

    Rising temperatures and altered precipitation patterns associated with climate change pose a significant threat to crop production, particularly in developing countries. In South Africa, a semi-arid country with a diverse agricultural sector, anthropogenic climate change is likely to affect staple crops and decrease food security. Here, we focus on maize production, South Africa’s most widely grown crop and one with high socio-economic value. We build on previous coarser-scaled studies by working at a finer spatial resolution and by employing two different modeling approaches: the process-based DSSAT Cropping System Model (CSM, version 4.5), and an empirical distribution model (Maxent). For climate projections, we use an ensemble of 10 general circulation models (GCMs) run under both high and low CO2 emissions scenarios (SRES A2 and B1). The models were down-scaled to historical climate records for 5838 quinary-scale catchments covering South Africa (mean area = 164.8 km2), using a technique based on self-organizing maps (SOMs) that generates precipitation patterns more consistent with observed gradients than those produced by the parent GCMs. Soil hydrological and mechanical properties were derived from textural and compositional data linked to a map of 26422 land forms (mean area = 46 km2), while organic carbon from 3377 soil profiles was mapped using regression kriging with 8 spatial predictors. CSM was run using typical management parameters for the several major dryland maize production regions, and with projected CO2 values. The Maxent distribution model was trained using maize locations identified using annual phenology derived from satellite images coupled with airborne crop sampling observations. Temperature and precipitation projections were based on GCM output, with an additional 10% increase in precipitation to simulate higher water-use efficiency under future CO2 concentrations. The two modeling approaches provide spatially explicit projections of gains and losses in maize productivity. We identify several areas-particularly along the southern and eastern boundaries of current production-with potential for increased productivity. However, larger areas, primarily in the more arid western and northern production regions, are likely to experience diminished productivity. The combination of process-based and distribution models for agricultural impacts assessments provides a useful comparison of two different crop modeling frameworks, as well as the finest scale investigation using a spatially-explicit implementation of a process-based model for South Africa. The large GCM ensemble and multiple emissions scenarios provide a broad climate risk assessment for current maize production. SOM downscaling can help improve climate impacts assessments by increasing their resolution, and by circumventing GCM precipitation schemes whose outcomes are highly divergent.

  14. Contribution of multitemporal polarimetric synthetic aperture radar data for monitoring winter wheat and rapeseed crops

    NASA Astrophysics Data System (ADS)

    Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic

    2016-04-01

    This paper aims to evaluate the contribution of multitemporal polarimetric synthetic aperture radar (SAR) data for winter wheat and rapeseed crops parameters [height, leaf area index, and dry biomass (DB)] estimation, during their whole vegetation cycles in comparison to backscattering coefficients and optical data. Angular sensitivities and dynamics of polarimetric indicators were also analyzed following the growth stages of these two common crop types using, in total, 14 radar images (Radarsat-2), 16 optical images (Formosat-2, Spot-4/5), and numerous ground data. The results of this study show the importance of correcting the angular effect on SAR signals especially for copolarized signals and polarimetric indicators associated to single-bounce scattering mechanisms. The analysis of the temporal dynamic of polarimetric indicators has shown their high potential to detect crop growth changes. Moreover, this study shows the high interest of using SAR parameters (backscattering coefficients and polarimetric indicators) for crop parameters estimation during the whole vegetation cycle instead of optical vegetation index. They particularly revealed their high potential for rapeseed height and DB monitoring [i.e., Shannon entropy polarimetry (r2=0.70) and radar vegetation index (r2=0.80), respectively].

  15. Evaluating experimental design for soil-plant model selection using a Bootstrap Filter and Bayesian model averaging

    NASA Astrophysics Data System (ADS)

    Wöhling, T.; Schöniger, A.; Geiges, A.; Nowak, W.; Gayler, S.

    2013-12-01

    The objective selection of appropriate models for realistic simulations of coupled soil-plant processes is a challenging task since the processes are complex, not fully understood at larger scales, and highly non-linear. Also, comprehensive data sets are scarce, and measurements are uncertain. In the past decades, a variety of different models have been developed that exhibit a wide range of complexity regarding their approximation of processes in the coupled model compartments. We present a method for evaluating experimental design for maximum confidence in the model selection task. The method considers uncertainty in parameters, measurements and model structures. Advancing the ideas behind Bayesian Model Averaging (BMA), we analyze the changes in posterior model weights and posterior model choice uncertainty when more data are made available. This allows assessing the power of different data types, data densities and data locations in identifying the best model structure from among a suite of plausible models. The models considered in this study are the crop models CERES, SUCROS, GECROS and SPASS, which are coupled to identical routines for simulating soil processes within the modelling framework Expert-N. The four models considerably differ in the degree of detail at which crop growth and root water uptake are represented. Monte-Carlo simulations were conducted for each of these models considering their uncertainty in soil hydraulic properties and selected crop model parameters. Using a Bootstrap Filter (BF), the models were then conditioned on field measurements of soil moisture, matric potential, leaf-area index, and evapotranspiration rates (from eddy-covariance measurements) during a vegetation period of winter wheat at a field site at the Swabian Alb in Southwestern Germany. Following our new method, we derived model weights when using all data or different subsets thereof. We discuss to which degree the posterior mean outperforms the prior mean and all individual posterior models, how informative the data types were for reducing prediction uncertainty of evapotranspiration and deep drainage, and how well the model structure can be identified based on the different data types and subsets. We further analyze the impact of measurement uncertainty und systematic model errors on the effective sample size of the BF and the resulting model weights.

  16. Performance of STICS model to predict rainfed corn evapotranspiration and biomass evaluated for 6 years between 1995 and 2006 using daily aggregated eddy covariance fluxes and ancillary measurements.

    NASA Astrophysics Data System (ADS)

    Pattey, Elizabeth; Jégo, Guillaume; Bourgeois, Gaétan

    2010-05-01

    Verifying the performance of process-based crop growth models to predict evapotranspiration and crop biomass is a key component of the adaptation of agricultural crop production to climate variations. STICS, developed by INRA, was part of the models selected by Agriculture and Agri-Food Canada to be implemented for environmental assessment studies on climate variations, because of its built-in ability to assimilate biophysical descriptors such as LAI derived from satellite imagery and its open architecture. The model prediction of shoot biomass was calibrated using destructive biomass measurements over one season, by adjusting six cultivar parameters and three generic plant parameters to define two grain corn cultivars adapted to the 1000-km long Mixedwood Plains ecozone. Its performance was then evaluated using a database of 40 years-sites of corn destructive biomass and yield. In this study we evaluate the temporal response of STICS evapotranspiration and biomass accumulation predictions against estimates using daily aggregated eddy covariance fluxes. The flux tower was located in an experimental farm south of Ottawa and measurements carried out over corn fields in 1995, 1996, 1998, 2000, 2002 and 2006. Daytime and nighttime fluxes were QC/QA and gap-filled separately. Soil respiration was partitioned to calculate the corn net daily CO2 uptake, which was converted into dry biomass. Out of the six growing seasons, three (1995, 1998, 2002) had water stress periods during corn grain filling. Year 2000 was cool and wet, while 1996 had heat and rainfall distributed evenly over the season and 2006 had a wet spring. STICS can predict evapotranspiration using either crop coefficients, when wind speed and air moisture are not available, or resistance. The first approach provided higher prediction for all the years than the resistance approach and the flux measurements. The dynamic of evapotranspiration prediction of STICS was very good for the growing seasons without water stress and was overestimated by 12-34% when rainfall deficit occurred. The preliminary comparison with intra-seasonal biomass accumulation showed that the total corn biomass derived from eddy fluxes was closer to the shoot biomass predicted by STICS than to the total biomass. The root to shoot ratio predicted by STICS was higher (30-40%) than the ratio reported in the literature (~20%). Some of the parameters controlling root growth might need a better calibration. The assembled database will help us identify the areas of greater uncertainty requiring improvement.

  17. Using fitness parameters to evaluate three oilseed Brassicaceae species as potential oil crops in two contrasting environments

    USDA-ARS?s Scientific Manuscript database

    Thlaspi arvense and Camelina sativa have gained considerable attention as biofuel crops. But in some areas, these species, including C. microcarpa, are becoming rare weeds because of agriculture intensification. Including them as crops could guarantee their conservation in agricultural systems. The ...

  18. Retrieving water productivity parameters by using Landsat images in the Nilo Coelho irrigation scheme, Brazil

    NASA Astrophysics Data System (ADS)

    de C. Teixeira, Antônio H.; Lopes, Hélio L.; Hernandez, Fernando B. T.; Scherer-Warren, Morris; Andrade, Ricardo G.; Neale, Christopher M. U.

    2013-10-01

    The Nilo Coelho irrigation scheme, located in the semi-arid region of Brazil, is highlighted as an important agricultural irrigated perimeter. Considering the scenario of this fast land use change, the development and application of suitable tools to quantify the trends of the water productivity parameters on a large scale is important. To analyse the effects of land use change within this perimeter, the large-scale values of biomass production (BIO) and actual evapotranspiration (ET) were quantified from 1992 to 2011, under the naturally driest conditions along the year. Monteith's radiation model was applied for estimating the absorbed photosynthetically active radiation (APAR), while the SAFER (Simple Algorithm For Evapotranspiration Retrieving) algorithm was used to retrieve ET. The highest incremental BIO values happened during the years of 1999 and 2005, as a result of the increased agricultural area under production inside the perimeter, when the average differences between irrigated crops and natural vegetation were more than 70 kg ha-1 d-1. Comparing the average ET rates of 1992 (1.6 mm d-1) with those for 2011 (3.1 mm d-1), it was verified that the extra water consumption doubled because of the increments of irrigated areas along the years. More uniformity along the years on both water productivity parameters occurred for natural vegetation, evidenced by the lower values of standard deviation when comparing to irrigated crops. The heterogeneity of ET values under irrigation conditions are due to the different species, crop stages, cultural and water managements.

  19. Modified energy cascade model adapted for a multicrop Lunar greenhouse prototype

    NASA Astrophysics Data System (ADS)

    Boscheri, G.; Kacira, M.; Patterson, L.; Giacomelli, G.; Sadler, P.; Furfaro, R.; Lobascio, C.; Lamantea, M.; Grizzaffi, L.

    2012-10-01

    Models are required to accurately predict mass and energy balances in a bioregenerative life support system. A modified energy cascade model was used to predict outputs of a multi-crop (tomatoes, potatoes, lettuce and strawberries) Lunar greenhouse prototype. The model performance was evaluated against measured data obtained from several system closure experiments. The model predictions corresponded well to those obtained from experimental measurements for the overall system closure test period (five months), especially for biomass produced (0.7% underestimated), water consumption (0.3% overestimated) and condensate production (0.5% overestimated). However, the model was less accurate when the results were compared with data obtained from a shorter experimental time period, with 31%, 48% and 51% error for biomass uptake, water consumption, and condensate production, respectively, which were obtained under more complex crop production patterns (e.g. tall tomato plants covering part of the lettuce production zones). These results, together with a model sensitivity analysis highlighted the necessity of periodic characterization of the environmental parameters (e.g. light levels, air leakage) in the Lunar greenhouse.

  20. Improved Monitoring of Vegetation Productivity using Continuous Assimilation of Radiometric Data

    NASA Astrophysics Data System (ADS)

    Baret, F.; Lauvernet, C.; Weiss, M.; Prevot, L.; Rochdi, N.

    Canopy functioning models describe crop production from meteorological and soil inputs. However, because of the large number of variables and parameters used, and the poor knowledge of the actual values of some of them, the time course of the canopy and thus final production simulated by these models is often not very accurate. Satellite observations sensors allow controlling the simulations through assimilation of the radiometric data within radiative transfer models coupled to canopy functioning models. An assimilation scheme is presented with application to wheat crops. The coupling between radiative transfer models and canopy functioning models is described. The assimilation scheme is then applied to an experiment achieved within the ReSeDA project. Several issues relative to the assimilation process are discussed. They concern the type of canopy functioning model used, the possibility to assimilate biophysical products rather than radiances, and the use of ancillary information. Further, considerations associated to the problems linked to high spatial and temporal resolution data are listed and illustrated by preliminary results acquired within the ADAM project. Further discussion is made on the required temporal sampling for space observations.

  1. Integrated model for predicting rice yield with climate change

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ki; Das, Amrita; Park, Jong-Hwa

    2018-04-01

    Rice is the chief agricultural product and one of the primary food source. For this reason, it is of pivotal importance for worldwide economy and development. Therefore, in a decision-support-system both for the farmers and in the planning and management of the country's economy, forecasting yield is vital. However, crop yield, which is a dependent of the soil-bio-atmospheric system, is difficult to represent in statistical language. This paper describes a novel approach for predicting rice yield using artificial neural network, spatial interpolation, remote sensing and GIS methods. Herein, the variation in the yield is attributed to climatic parameters and crop health, and the normalized difference vegetation index from MODIS is used as an indicator of plant health and growth. Due importance was given to scaling up the input parameters using spatial interpolation and GIS and minimising the sources of error in every step of the modelling. The low percentage error (2.91) and high correlation (0.76) signifies the robust performance of the proposed model. This simple but effective approach is then used to estimate the influence of climate change on South Korean rice production. As proposed in the RCP8.5 scenario, an upswing in temperature may increase the rice yield throughout South Korea.

  2. Functional homogeneous zones (fHZs) in viticultural zoning procedure: an Italian case study on Aglianico vine

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Agrillo, A.; Albrizio, R.; Basile, A.; Buonomo, R.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Guida, G.; Langella, G.; Manna, P.; Minieri, L.; Moio, L.; Siani, T.; Terribile, F.

    2015-06-01

    This paper aims to test a new physically oriented approach to viticulture zoning at farm scale that is strongly rooted in hydropedology and aims to achieve a better use of environmental features with respect to plant requirements and wine production. The physics of our approach are defined by the use of soil-plant-atmosphere simulation models, applying physically based equations to describe the soil hydrological processes and solve soil-plant water status. This study (part of the ZOVISA project) was conducted on a farm devoted to production of high-quality wines (Aglianico DOC), located in southern Italy (Campania region, Mirabella Eclano, AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two homogeneous zones (HZs) were identified; in each one a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional homogeneous zones (fHZs). For the second process, experimental plots were established and monitored for investigating soil-plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, leaf area index (LAI) measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). This experiment proved the usefulness of the physically based approach, also in the case of mapping viticulture microzoning.

  3. An indirect approach to assess the pests on sorghum by remote sensing

    NASA Astrophysics Data System (ADS)

    Singh, D.; Sao, R.

    In today's world of advanced technology various techniques are being used to study ecological parameter and gathering data for agricultural benefits. The major aspects of remote sensing are timely estimates of agriculture crop yield, prediction of pest etc. The damage caused by the pest to crop is well known. Therefore, in this paper, an attempt has to be made to estimate the number of pests on sorghum by remote sensing technique. The studies were made on crop Sorghum (Meethi Sudan) that is a forage variety and the pest observed is a species of grasshopper. The beds of crop sorghum were specially prepared for pests as well as microwave scattering measurements. In first phase of study, dependence of number of pests on sorghum plant parameters (i.e., crop covered moist soil (SM), plant height (PH), leaf area index (LAI), percentage Biomass (BIO), Total chlorophyll (TC)) have been observed by the regression analyses and it was found that pests were more dependent on sorghum chlorophyll than other plant parameters, while climatic conditions were taken as constant. A linear relationship has been obtained between number of pests and TC with quite significant values of coefficient of determination (r^2=0.86). These crop parameters are easily assessable through microwave remote sensing so they can form the basis for prediction of pest remotely. In second phase of study, several observations were carried out for various growth stages of sorghum using bistatic scatterometer for both like polarizations (i.e., HH- and VV-) and different incidence angles at X-band (9.5 GHz). Linear, and multiple regression analysis were carried out to check dependence of scattering coefficient on these crop parameters and it was noticed that scattering coefficient was more dependent on sorghum TC than other plant parameters at X-band. A negative correlation has been obtained between TC and scattering coefficient with quite good values of r^2 (0.82). VV-pol gives better results than HH-pol and incidence angle should be more than 40 degree for both like pols for assessing the sorghum TC at X-band. The TC assessed by the microwave measurements was helpful to estimate the number of pests on sorghum. Combining both phase of study, number of pests was estimated and a quite good agreement (r^2=0.76) was found between observed and estimated pests.

  4. Evaluating the impacts of farmers' behaviors on a hypothetical agricultural water market based on double auction

    NASA Astrophysics Data System (ADS)

    Du, Erhu; Cai, Ximing; Brozović, Nicholas; Minsker, Barbara

    2017-05-01

    Agricultural water markets are considered effective instruments to mitigate the impacts of water scarcity and to increase crop production. However, previous studies have limited understanding of how farmers' behaviors affect the performance of water markets. This study develops an agent-based model to explicitly incorporate farmers' behaviors, namely irrigation behavior (represented by farmers' sensitivity to soil water deficit λ) and bidding behavior (represented by farmers' rent seeking μ and learning rate β), in a hypothetical water market based on a double auction. The model is applied to the Guadalupe River Basin in Texas to simulate a hypothetical agricultural water market under various hydrological conditions. It is found that the joint impacts of the behavioral parameters on the water market are strong and complex. In particular, among the three behavioral parameters, λ affects the water market potential and its impacts on the performance of the water market are significant under most scenarios. The impacts of μ or β on the performance of the water market depend on the other two parameters. The water market could significantly increase crop production only when the following conditions are satisfied: (1) λ is small and (2) μ is small and/or β is large. The first condition requires efficient irrigation scheduling, and the second requires well-developed water market institutions that provide incentives to bid true valuation of water permits.

  5. Base-Case 1% Yield Increase (BC1), All Energy Crops scenario of the 2016 Billion Ton Report

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinkel, Chad [University of Tennessee] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Myers, Aaron (ORCID:0000000320373827)

    2016-07-13

    Scientific reason for data generation: to serve as the base-case scenario for the BT16 volume 1 agricultural scenarios to compare these projections of potential biomass supplies against a reference case (agricultural baseline 10.11578/1337885). The simulation runs from 2015 through 2040; a starting year of 2014 is used but not reported. How each parameter was produced (methods), format, and relationship to other data in the data set: This exogenous price simulations (also referred to as “specified-price” simulations) introduces a farmgate price, and POLYSYS solves for biomass supplies that may be brought to market in response to these prices. In specified-price scenarios, a specified farmgate price is offered constantly in all counties over all years of the simulation. This simulation begins in 2015 with an offered farmgate price for primary crop residues only between 2015 and 2018 and long-term contracts for dedicated crops beginning in 2019. Expected mature energy crop yield grows at a compounding rate of 1% beginning in 2016. The yield growth assumptions are fixed after crops are planted such that yield gains do not apply to crops already planted, but new plantings do take advantage of the gains in expected yield growth. Instruments used: Policy Analysis System –POLYSYS (version POLYS2015_V10_alt_JAN22B), an agricultural policy modeling system of U.S. agriculture (crops and livestock), supplied by the University of Tennessee Institute of Agriculture, Agricultural Policy Analysis Center.

  6. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  7. Effects of cover crops on soil quality: Selected chemical and biological parameters

    USDA-ARS?s Scientific Manuscript database

    Cover crops may improve soil physical, chemical, and biological properties and thus help improve land productivity. The objective of this study was to evaluate short-term changes (6, 9, and 12 weeks) in soil chemical and biological properties as influenced by cover crops for two different soils and...

  8. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment – A Comparison with Terrestrial Laser Scanning Data

    PubMed Central

    Marx, Sabrina; Hämmerle, Martin; Klonner, Carolin; Höfle, Bernhard

    2016-01-01

    The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS) is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS) results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM) derived from PS and TLS data is 10.45 cm (GPS devices) and 14.69 cm (smartphones). Furthermore, the results indicate that incorporating participants’ cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development. PMID:27073917

  9. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.

    PubMed

    Newbery, Fay; Qi, Aiming; Fitt, Bruce Dl

    2016-08-01

    Combining climate change, crop growth and crop disease models to predict impacts of climate change on crop diseases can guide planning of climate change adaptation strategies to ensure future food security. This review summarises recent developments in modelling climate change impacts on crop diseases, emphasises some major challenges and highlights recent trends. The use of multi-model ensembles in climate change modelling and crop modelling is contributing towards measures of uncertainty in climate change impact projections but other aspects of uncertainty remain largely unexplored. Impact assessments are still concentrated on few crops and few diseases but are beginning to investigate arable crop disease dynamics at the landscape level. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Analysis on the application of background parameters on remote sensing classification

    NASA Astrophysics Data System (ADS)

    Qiao, Y.

    Drawing accurate crop cultivation acreage, dynamic monitoring of crops growing and yield forecast are some important applications of remote sensing to agriculture. During the 8th 5-Year Plan period, the task of yield estimation using remote sensing technology for the main crops in major production regions in China once was a subtopic to the national research task titled "Study on Application of Remote sensing Technology". In 21 century in a movement launched by Chinese Ministry of Agriculture to combine high technology to farming production, remote sensing has given full play to farm crops' growth monitoring and yield forecast. And later in 2001 Chinese Ministry of Agriculture entrusted the Northern China Center of Agricultural Remote Sensing to forecast yield of some main crops like wheat, maize and rice in rather short time to supply information for the government decision maker. Present paper is a report for this task. It describes the application of background parameters in image recognition, classification and mapping with focuses on plan of the geo-science's theory, ecological feature and its cartographical objects or scale, the study of phrenology for image optimal time for classification of the ground objects, the analysis of optimal waveband composition and the application of background data base to spatial information recognition ;The research based on the knowledge of background parameters is indispensable for improving the accuracy of image classification and mapping quality and won a secondary reward of tech-science achievement from Chinese Ministry of Agriculture. Keywords: Spatial image; Classification; Background parameter

  11. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.

    PubMed

    Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong

    2016-05-30

    Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.

  12. Assessment of Areal Recharge to the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Bartolino, James R.

    2007-01-01

    A numerical flow model of the Spokane Valley-Rathdrum Prairie aquifer currently (2007) being developed requires the input of values for areally-distributed recharge, a parameter that is often the most uncertain component of water budgets and ground-water flow models because it is virtually impossible to measure over large areas. Data from six active weather stations in and near the study area were used in four recharge-calculation techniques or approaches; the Langbein method, in which recharge is estimated on the basis of empirical data from other basins; a method developed by the U.S. Department of Agriculture (USDA), in which crop consumptive use and effective precipitation are first calculated and then subtracted from actual precipitation to yield an estimate of recharge; an approach developed as part of the Eastern Snake Plain Aquifer Model (ESPAM) Enhancement Project in which recharge is calculated on the basis of precipitation-recharge relations from other basins; and an approach in which reference evapotranspiration is calculated by the Food and Agriculture Organization (FAO) Penman-Monteith equation, crop consumptive use is determined (using a single or dual coefficient approach), and recharge is calculated. Annual recharge calculated by the Langbein method for the six weather stations was 4 percent of annual mean precipitation, yielding the lowest values of the methods discussed in this report, however, the Langbein method can be only applied to annual time periods. Mean monthly recharge calculated by the USDA method ranged from 53 to 73 percent of mean monthly precipitation. Mean annual recharge ranged from 64 to 69 percent of mean annual precipitation. Separate mean monthly recharge calculations were made with the ESPAM method using initial input parameters to represent thin-soil, thick-soil, and lava-rock conditions. The lava-rock parameters yielded the highest recharge values and the thick-soil parameters the lowest. For thin-soil parameters, calculated monthly recharge ranged from 10 to 29 percent of mean monthly precipitation and annual recharge ranged from 16 to 23 percent of mean annual precipitation. For thick-soil parameters, calculated monthly recharge ranged from 1 to 5 percent of mean monthly precipitation and mean annual recharge ranged from 2 to 4 percent of mean annual precipitation. For lava-rock parameters, calculated mean monthly recharge ranged from 37 to 57 percent of mean monthly precipitation and mean annual recharge ranged from 45 to 52 percent of mean annual precipitation. Single-coefficient (crop coefficient) FAO Penman-Monteith mean monthly recharge values were calculated for Spokane Weather Service Office (WSO) Airport, the only station for which the necessary meteorological data were available. Grass-referenced values of mean monthly recharge ranged from 0 to 81 percent of mean monthly precipitation and mean annual recharge was 21 percent of mean annual precipitation; alfalfa-referenced values of mean monthly recharge ranged from 0 to 85 percent of mean monthly precipitation and mean annual recharge was 24 percent of mean annual precipitation. Single-coefficient FAO Penman-Monteith calculations yielded a mean monthly recharge of zero during the eight warmest and driest months of the year (March-October). In order to refine the mean monthly recharge estimates, dual-coefficient (basal crop and soil evaporation coefficients) FAO Penman-Monteith dual-crop evapotranspiration and deep-percolation calculations were applied to daily values from the Spokane WSO Airport for January 1990 through December 2005. The resultant monthly totals display a temporal variability that is absent from the mean monthly values and demonstrate that the daily amount and timing of precipitation dramatically affect calculated recharge. The dual-coefficient FAO Penman-Monteith calculations were made for the remaining five stations using wind-speed values for Spokane WSO Airport and other assumptions regarding

  13. Modeling of soil carbon turnover under different crop management: Calibration of RothC-model for Pannonian climate conditions

    NASA Astrophysics Data System (ADS)

    Rampazzo Todorovic, G.; Stemmer, M.; Tatzber, M.; Katzlberger, C.; Spiegel, H.; Zehetner, F.; Gerzabek, M. H.

    2009-04-01

    Despite our knowledge about soil C dynamics, very few long-term data concerning soil organic C dynamics are available for calibrating and evaluating C models. The long-term 14C turnover field experiment, established in 1967 in Fuchsenbigl, Lower Austria, offers the unique opportunity to investigate the mineralization and stabilization of 14C-labeled wheat straw and farmyard manure under different cropping systems (crop rotation CR, spring wheat SW and bare fallow BF) in a long-term field experiment established by H.-E. Oberländer in 1967 in Fuchsenbigl/Lower Austria. In this work the Roth-C-26.3-model was calibrated for the Pannonian climatic region based on the field experiment results. Decomposition rate constants were modified regarding the possible climatic influence on carbon sequestration in soil C pools. The modeled output based on the calibrated model fitted better to measured values than data obtained with the original Roth-C-26.3-model parameters. The main change was in the decomposition rate constant for the HUM (humified) soil C pool, which is now fitted for different plots from 0.005 to 0.01 y-1 instead of 0.02 y-1 as determined in the original Rothamsted field trial. Moreover, for one plot, in addition to the HUM pool, the decomposition rate constant for RPM (resistant plant material) pool was fitted at 0.7 y-1 instead of 0.3 y-1 as originally in the Roth-C-26.3-model. These changes yielded a higher HUM pool in the calibrated model because of the longer turnover period (100-200 versus 50 years). Compared with CR and SW treatments, the decline of TOC was largest in the BF treatments as expected because no significant carbon input has occurred since 1967. Nonetheless, the decline was still not as fast as calculated with original RothC-26.3-model decomposition rate constants. The specific research question was the long-term effect of residue removal on SOM levels under different crop management, under different soil conditions and different climatic regimes of Fuchsenbigl (Austria), Rothamsted (UK) and Ultuna (Sweden). Modeling results of removing the crop residues showed that this can entail a long-term decline of SOM. However, these impacts are strongly dependent on the crop types, the soil properties, and the climatic conditions at a given location. Modeling results of the removal of crop residues showed that it can entail a long-term decline of SOM. A comparison of modeling results for winter wheat and spring barley for Rothamsted/UK, Fuchsenbigl/Austria and Ultuna/Sweden indicate slight SOC decreases at the Fuchsenbigl site when 100% of the straw was removed and increasing trends when 50% was removed. However, at the Rothamsted and Ultuna sites, 50% straw removal still resulted in declining SOC stocks.

  14. Impacts of Stratospheric Black Carbon on Agriculture

    NASA Astrophysics Data System (ADS)

    Xia, L.; Robock, A.; Elliott, J. W.

    2017-12-01

    A regional nuclear war between India and Pakistan could inject 5 Tg of soot into the stratosphere, which would absorb sunlight, decrease global surface temperature by about 1°C for 5-10 years and have major impacts on precipitation and the amount of solar radiation reaching Earth's surface. Using two global gridded crop models forced by one global climate model simulation, we investigate the impacts on agricultural productivity in various nations. The crop model in the Community Land Model 4.5 (CLM-crop4.5) and the parallel Decision Support System for Agricultural Technology (pDSSAT) in the parallel System for Integrating Impact Models and Sectors are participating in the Global Gridded Crop Model Intercomparison. We force these two crop models with output from the Whole Atmospheric Community Climate Model to characterize the global agricultural impact from climate changes due to a regional nuclear war. Crops in CLM-crop4.5 include maize, rice, soybean, cotton and sugarcane, and crops in pDSSAT include maize, rice, soybean and wheat. Although the two crop models require a different time frequency of weather input, we downscale the climate model output to provide consistent temperature, precipitation and solar radiation inputs. In general, CLM-crop4.5 simulates a larger global average reduction of maize and soybean production relative to pDSSAT. Global rice production shows negligible change with climate anomalies from a regional nuclear war. Cotton and sugarcane benefit from a regional nuclear war from CLM-crop4.5 simulation, and global wheat production would decrease significantly in the pDSSAT simulation. The regional crop yield responses to a regional nuclear conflict are different for each crop, and we present the changes in production on a national basis. These models do not include the crop responses to changes in ozone, ultraviolet radiation, or diffuse radiation, and we would like to encourage more modelers to improve crop models to account for those impacts. We present these results as a demonstration of using different crop models to study this problem, and we invite more global crop modeling groups to use the same climate forcing, which we would be happy to provide, to gain a better understanding of global agricultural responses under different future climate scenarios with stratospheric aerosols.

  15. Impact of parameterization choices on the restitution of ozone deposition over vegetation

    NASA Astrophysics Data System (ADS)

    Le Morvan-Quéméner, Aurélie; Coll, Isabelle; Kammer, Julien; Lamaud, Eric; Loubet, Benjamin; Personne, Erwan; Stella, Patrick

    2018-04-01

    Ozone is a potentially phyto-toxic air pollutant, which can cause leaf damage and drastically alter crop yields, causing serious economic losses around the world. The VULNOZ (VULNerability to OZone in Anthropised Ecosystems) project is a biology and modeling project that aims to understand how plants respond to the stress of high ozone concentrations, then use a set of models to (i) predict the impact of ozone on plant growth, (ii) represent ozone deposition fluxes to vegetation, and finally (iii) estimate the economic consequences of an increasing ozone background the future. In this work, as part of the VULNOZ project, an innovative representation of ozone deposition to vegetation was developed and implemented in the CHIMERE regional chemistry-transport model. This type of model calculates the average amount of ozone deposited on a parcel each hour, as well as the integrated amount of ozone deposited to the surface at the regional or country level. Our new approach was based on a refinement of the representation of crop types in the model and the use of empirical parameters specific to each crop category. The results obtained were compared with a conventional ozone deposition modeling approach, and evaluated against observations from several agricultural areas in France. They showed that a better representation of the distribution between stomatal and non-stomatal ozone fluxes was obtained in the empirical approach, and they allowed us to produce a new estimate of the total amount of ozone deposited on the subtypes of vegetation at the national level.

  16. Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models

    DOE PAGES

    Blanc, Élodie

    2017-01-26

    This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less

  17. Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, Élodie

    This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less

  18. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues.

    PubMed

    Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder

    2016-03-15

    Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed in genetically modified crops. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Retrieval of Winter Wheat Leaf Area Index from Chinese GF-1 Satellite Data Using the PROSAIL Model.

    PubMed

    Li, He; Liu, Gaohuan; Liu, Qingsheng; Chen, Zhongxin; Huang, Chong

    2018-04-06

    Leaf area index (LAI) is one of the key biophysical parameters in crop structure. The accurate quantitative estimation of crop LAI is essential to verify crop growth and health. The PROSAIL radiative transfer model (RTM) is one of the most established methods for estimating crop LAI. In this study, a look-up table (LUT) based on the PROSAIL RTM was first used to estimate winter wheat LAI from GF-1 data, which accounted for some available prior knowledge relating to the distribution of winter wheat characteristics. Next, the effects of 15 LAI-LUT strategies with reflectance bands and 10 LAI-LUT strategies with vegetation indexes on the accuracy of the winter wheat LAI retrieval with different phenological stages were evaluated against in situ LAI measurements. The results showed that the LUT strategies of LAI-GNDVI were optimal and had the highest accuracy with a root mean squared error (RMSE) value of 0.34, and a coefficient of determination (R²) of 0.61 during the elongation stages, and the LUT strategies of LAI-Green were optimal with a RMSE of 0.74, and R² of 0.20 during the grain-filling stages. The results demonstrated that the PROSAIL RTM had great potential in winter wheat LAI inversion with GF-1 satellite data and the performance could be improved by selecting the appropriate LUT inversion strategies in different growth periods.

  20. Ozone risk for crops and pastures in present and future climates

    NASA Astrophysics Data System (ADS)

    Fuhrer, Jürg

    2009-02-01

    Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions most at risk from ozone in a future climate and to set robust effect-based ozone standards.

  1. Coupling MODIS images and agrometeorological data for agricultural water productivity analyses in the Mato Grosso State, Brazil

    NASA Astrophysics Data System (ADS)

    de C. Teixeira, Antônio H.; Victoria, Daniel C.; Andrade, Ricardo G.; Leivas, Janice F.; Bolfe, Edson L.; Cruz, Caroline R.

    2014-10-01

    Mato Grosso state, Central West Brazil, has been highlighted by the grain production, mainly soybean and corn, as first (November-March) and second (April-August) harvest crops, respectively. For water productivity (WP) analyses, MODIS products together with a net of weather stations were used. Evapotranspiration (ET) and biomass production (BIO) were acquired during the year 2012 and WP was considered as the ratio of BIO to ET. The SAFER (Simple Algorithm For Evapotranspiration Retrieving) for ET and the Monteith's radiation model for BIO were applied together, considering a mask which separated the crops from other surface types. In relation to the first harvest crop ET, BIO and WP values above of those for other surface types, happened only from November to January with incremental values reaching to 1.2 mm day-1; 67 kg ha-1 day-1; and 0.7 kg m-3, respectively; and between March and May for the second harvest crops, with incremental values attaining 0.5 mm day-1; 27 kg ha-1 day-1; and 0.3 kg m-3, respectively. In both cases, during the growing seasons, the highest WP parameters in cropped areas corresponded, in general, to the blooming to grain filling transition. Considering corn crop, which nowadays is increasing in terms of cultivated areas in the Brazilian Central West region, and crop water productivity (CWP) the ratio of yield to the amount of water consumed, the main growing regions North, Southeast and Northeast were analyzed. Southeast presented the highest annual pixel averages for ET, BIO and CWP (1.7 mm day-1, 78 kg ha-1 day-1 and 2.2 kg m-3, respectively); while for Northeast they were the lowest ones (1.2 mm day-1, 52 kg ha-1 dia-1 and 1.9 kg m-3). Throughout a soil moisture indicator, the ratio of precipitation (P) to ET, it was indeed noted that rainfall was enough for a good grain yield, with P/ET lower than 1.00 only outside the crop growing seasons. The combination of MODIS images and weather stations proved to be useful for monitoring vegetation and water parameters, which can contribute to the sustainability of the agro-ecosystems exploration in Mato Grosso state, avoiding water scarcity in the near future.

  2. How do current irrigation practices perform? Evaluation of different irrigation scheduling approaches based on experiements and crop model simulations

    NASA Astrophysics Data System (ADS)

    Seidel, Sabine J.; Werisch, Stefan; Barfus, Klemens; Wagner, Michael; Schütze, Niels; Laber, Hermann

    2014-05-01

    The increasing worldwide water scarcity, costs and negative off-site effects of irrigation are leading to the necessity of developing methods of irrigation that increase water productivity. Various approaches are available for irrigation scheduling. Traditionally schedules are calculated based on soil water balance (SWB) calculations using some measure of reference evaporation and empirical crop coeffcients. These crop-specific coefficients are provided by the FAO but are also available for different regions (e.g. Germany). The approach is simple but there are several inaccuracies due to simplifications and limitations such as poor transferability. Crop growth models - which simulate the main physiological plant processes through a set of assumptions and calibration parameter - are widely used to support decision making, but also for yield gap or scenario analyses. One major advantage of mechanistic models compared to empirical approaches is their spatial and temporal transferability. Irrigation scheduling can also be based on measurements of soil water tension which is closely related to plant stress. Advantages of precise and easy measurements are able to be automated but face difficulties of finding the place where to probe especially in heterogenous soils. In this study, a two-year field experiment was used to extensively evaluate the three mentioned irrigation scheduling approaches regarding their efficiency on irrigation water application with the aim to promote better agronomic practices in irrigated horticulture. To evaluate the tested irrigation scheduling approaches, an extensive plant and soil water data collection was used to precisely calibrate the mechanistic crop model Daisy. The experiment was conducted with white cabbage (Brassica oleracea L.) on a sandy loamy field in 2012/13 near Dresden, Germany. Hereby, three irrigation scheduling approaches were tested: (i) two schedules were estimated based on SWB calculations using different crop coefficients, and (ii) one treatment was automatically drip irrigated using tensiometers (irrigation of 15 mm at a soil tension of -250 hPa at 30 cm soil depth). In treatment (iii), the irrigation schedule was estimated (using the same critera as in the tension-based treatment) applying the model Daisy partially calibrated against data of 2012. Moreover, one control treatment was minimally irrigated. Measured yield was highest for the tension-based treatment with a low irrigation water input (8.5 DM t/ha, 120 mm). Both SWB treatments showed lower yields and higher irrigation water input (both 8.3 DM t/ha, 306 and 410 mm). The simulation model based treatment yielded lower (7.5 DM t/ha, 106 mm) mainly due to drought stress caused by inaccurate simulation of the soil water dynamics and thus an overestimation of the soil moisture. The evaluation using the calibrated model estimated heavy deep percolation under both SWB treatments. Targeting the challenge to increase water productivity, soil water tension-based irrigation should be favoured. Irrigation scheduling based on SWB calculation requires accurate estimates of crop coefficients. A robust calibration of mechanistic crop models implies a high effort and can be recommended to farmers only to some extent but enables comprehensive crop growth and site analyses.

  3. Geographic information system applied to the estimation of the plant water status

    NASA Astrophysics Data System (ADS)

    Castillo, Cristina; de la Rosa, Jose Mª; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    The importance of Geographic Information Systems (GIS) at handling managing geospatial data is demonstrated in a large number of scientific and professionals disciplines that have an impact on the territory. Thus, in agriculture, it is a transversal tool that includes the recopilation of: (i) geographic information: soil-plant geolocated sensors in experimental fields, water and fertilizers consumption for each irrigation sector, energy consumption and digital surface models (ii) representation and analysis: obtaining temperature maps, aspect models, solar radiation, run-off and salinity, as well as hardware, software and the people who compose it, results in the optimization of resources (goods, energy and workforce) what it makes the farm more efficient and more beneficial for the environment. In addition, in this project, the use of new technologies, such as satellite imagery or drones with multispectral cameras, allow to obtain other parameters that are not observed with the naked eye, like the state of the crop in spectroradiometric terms (remote sensing), stressed crops through indexes like NDVI, that may lead to take decisions like: (i) irrigation variations (ii) early detection of fillings in droppers (iii) affected areas for a pest, helping to distribute the workforce efficiently (pesticide use in an optimal way). The main objective of GIS use in this project is to establish direct relationships between parameters taken from the soil and plant with image processing in four different crops, orange, peach, apricot trees and table grape. In this way, the leaf area index (LAI) can be calculated, assessing how different irrigation management affects: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  4. Methanol emissions from maize: Ontogenetic dependence to varying light conditions and guttation as an additional factor constraining the flux

    NASA Astrophysics Data System (ADS)

    Mozaffar, A.; Schoon, N.; Digrado, A.; Bachy, A.; Delaplace, P.; du Jardin, P.; Fauconnier, M.-L.; Aubinet, M.; Heinesch, B.; Amelynck, C.

    2017-03-01

    Because of its high abundance and long lifetime compared to other volatile organic compounds in the atmosphere, methanol (CH3OH) plays an important role in atmospheric chemistry. Even though agricultural crops are believed to be a large source of methanol, emission inventories from those crop ecosystems are still scarce and little information is available concerning the driving mechanisms for methanol production and emission at different developmental stages of the plants/leaves. This study focuses on methanol emissions from Zea mays L. (maize), which is vastly cultivated throughout the world. Flux measurements have been performed on young plants, almost fully grown leaves and fully grown leaves, enclosed in dynamic flow-through enclosures in a temperature and light-controlled environmental chamber. Strong differences in the response of methanol emissions to variations in PPFD (Photosynthetic Photon Flux Density) were noticed between the young plants, almost fully grown and fully grown leaves. Moreover, young maize plants showed strong emission peaks following light/dark transitions, for which guttation can be put forward as a hypothetical pathway. Young plants' average daily methanol fluxes exceeded by a factor of 17 those of almost fully grown and fully grown leaves when expressed per leaf area. Absolute flux values were found to be smaller than those reported in the literature, but in fair agreement with recent ecosystem scale flux measurements above a maize field of the same variety as used in this study. The flux measurements in the current study were used to evaluate the dynamic biogenic volatile organic compound (BVOC) emission model of Niinemets and Reichstein. The modelled and measured fluxes from almost fully grown leaves were found to agree best when a temperature and light dependent methanol production function was applied. However, this production function turned out not to be suitable for modelling the observed emissions from the young plants, indicating that production must be influenced by (an) other parameter(s). This study clearly shows that methanol emission from maize is complex, especially for young plants. Additional studies at different developmental stages of other crop species will be required in order to develop accurate methanol emission algorithms for agricultural crops.

  5. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  6. Rapid Crop Cover Mapping for the Conterminous United States.

    PubMed

    Dahal, Devendra; Wylie, Bruce; Howard, Danny

    2018-06-05

    Timely crop cover maps with sufficient resolution are important components to various environmental planning and research applications. Through the modification and use of a previously developed crop classification model (CCM), which was originally developed to generate historical annual crop cover maps, we hypothesized that such crop cover maps could be generated rapidly during the growing season. Through a process of incrementally removing weekly and monthly independent variables from the CCM and implementing a 'two model mapping' approach, we found it viable to generate conterminous United States-wide rapid crop cover maps at a resolution of 250 m for the current year by the month of September. In this approach, we divided the CCM model into one 'crop type model' to handle the classification of nine specific crops and a second, binary model to classify the presence or absence of 'other' crops. Under the two model mapping approach, the training errors were 0.8% and 1.5% for the crop type and binary model, respectively, while test errors were 5.5% and 6.4%, respectively. With spatial mapping accuracies for annual maps reaching upwards of 70%, this approach demonstrated a strong potential for generating rapid crop cover maps by the 1 st of September.

  7. Soil response to biodynamic farming practices in estevia -Stevia Rebaudiana- (Extremadura, Spain)

    NASA Astrophysics Data System (ADS)

    Labrador, Juana; Colmenares, Ricardo; Sánchez, Eduardo; Creus, Juan; García, Nieves; Blázquez, Jaime; Moreno, Marta M.

    2014-05-01

    The first results of the evolution of an organic-biodynamic cultivation of stevia (Stevia rebaudiana) in Extremadura (Spain) are shown here. The organic-biodynamic approach permits experimentally for a more holistic view of the crop development process what means the understanding and quantification of its evolution at different scales. The research methodology applied includes not only quantitative individual parameters of the crop development but also global parameters which make a contribution of very relevant information concerning unbalances between growth and differentiation processes, as well as other aspects linked to the product intrinsic quality. The crop cultivation has been done over a plot of 2.5 has, on acid soils (pH 5.18) and very poor organic matter content (0.5 %). On this first year of cultivation two cuts were given to the plant with an average total yield of 4,500 kg/ha without any supply of solid organic matter, only with the application of the biodynamic preparations. So far results regarding soil improvement and crop productivity, taking into consideration the practices used, let us introduce this pioneer crop in Extremadura, not only as an alternative crop to the current tobacco crop in this area, but also as a development resource for the rural environment of this region. Key words: Agroecology, Organic Biodynamic Agriculture, Stevia Rebaudiana

  8. A comparative modeling study of a dual tracer experiment in a large lysimeter under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Stumpp, C.; Nützmann, G.; Maciejewski, S.; Maloszewski, P.

    2009-09-01

    SummaryIn this paper, five model approaches with different physical and mathematical concepts varying in their model complexity and requirements were applied to identify the transport processes in the unsaturated zone. The applicability of these model approaches were compared and evaluated investigating two tracer breakthrough curves (bromide, deuterium) in a cropped, free-draining lysimeter experiment under natural atmospheric boundary conditions. The data set consisted of time series of water balance, depth resolved water contents, pressure heads and resident concentrations measured during 800 days. The tracer transport parameters were determined using a simple stochastic (stream tube model), three lumped parameter (constant water content model, multi-flow dispersion model, variable flow dispersion model) and a transient model approach. All of them were able to fit the tracer breakthrough curves. The identified transport parameters of each model approach were compared. Despite the differing physical and mathematical concepts the resulting parameters (mean water contents, mean water flux, dispersivities) of the five model approaches were all in the same range. The results indicate that the flow processes are also describable assuming steady state conditions. Homogeneous matrix flow is dominant and a small pore volume with enhanced flow velocities near saturation was identified with variable saturation flow and transport approach. The multi-flow dispersion model also identified preferential flow and additionally suggested a third less mobile flow component. Due to high fitting accuracy and parameter similarity all model approaches indicated reliable results.

  9. Global Phenological Response to Climate Change in Crop Areas using Satellite Remote Sensing of Vegetation, Humidity and Temperature over 26 years

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; de Beurs, K. M.

    2012-12-01

    The recent increase in food prices has revealed that climate, combined with an expanding population and a widespread change in diet, may result in an end to an era of predictable abundance of global cereal crops. The objective of this paper is to estimate changes of agriculturally-relevant growing season parameters, including the start of the season, length of the growing period and the position of the height or peak of the season, in the primary regions with rainfed agriculture during the past 26 years. Our analysis found that globally, 27% of cereal crop areas have experienced changes in the length of the growing season since 1981, the majority of which had seasons that were at least 2.3 days per year longer on average. We also found both negative and positive trends in the start of season globally, with different effects of changing temperature and humidity being isolated depending on the country and region. We investigated the correlation between the peak timing of the growing season and agricultural production statistics for rain fed agriculture. We found that two thirds of the countries investigated had at least 25% of pixels with crop production that behaved differently than expected from the null hypothesis of no correlation. The results show that variations in the peak of the growing season have a strong effect on global food production in these countries. We show that northern hemisphere countries and states appear to have improved model fit when using phenological models based on humidity while southern hemisphere countries and states have improved model fit by phenological models based on accumulated growing degree days, showing the impact of climate variability during the past two and a half decades.

  10. Plan View Pattern Control for Steel Plates through Constrained Locally Weighted Regression

    NASA Astrophysics Data System (ADS)

    Shigemori, Hiroyasu; Nambu, Koji; Nagao, Ryo; Araki, Tadashi; Mizushima, Narihito; Kano, Manabu; Hasebe, Shinji

    A technique for performing parameter identification in a locally weighted regression model using foresight information on the physical properties of the object of interest as constraints was proposed. This method was applied to plan view pattern control of steel plates, and a reduction of shape nonconformity (crop) at the plate head end was confirmed by computer simulation based on real operation data.

  11. Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.

    NASA Technical Reports Server (NTRS)

    Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; hide

    2017-01-01

    Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.

  12. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.

    2014-06-01

    Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t-1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River basin in the period considered. The one-at-a-time method was carried out to analyse the sensitivity of the crop water footprint to fractional changes of seven individual input variables and parameters: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), crop calendar (planting date with constant growing degree days), soil water content at field capacity (Smax), yield response factor (Ky) and maximum yield (Ym). Uncertainties in crop water footprint estimates related to uncertainties in four key input variables: PR, ET0, Kc, and crop calendar were quantified through Monte Carlo simulations. The results show that the sensitivities and uncertainties differ across crop types. In general, the water footprint of crops is most sensitive to ET0 and Kc, followed by the crop calendar. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint is, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0was dominant compared to that of PR. The uncertainties in the total water footprint of a crop as a result of combined key input uncertainties were on average ±30% (at 95% confidence level).

  13. Incorporating agricultural management into an earth system model for the Pacific Northwest region: Interactions between climate, hydrology, agriculture, and economics

    NASA Astrophysics Data System (ADS)

    Chinnayakanahalli, K.; Adam, J. C.; Stockle, C.; Nelson, R.; Brady, M.; Rajagopalan, K.; Barber, M. E.; Dinesh, S.; Malek, K.; Yorgey, G.; Kruger, C.; Marsh, T.; Yoder, J.

    2011-12-01

    For better management and decision making in the face of climate change, earth system models must explicitly account for natural resource and agricultural management activities. Including crop system, water management, and economic models into an earth system modeling framework can help in answering questions related to the impacts of climate change on irrigation water and crop productivity, how agricultural producers can adapt to anticipated climate change, and how agricultural practices can mitigate climate change. Herein we describe the coupling of the Variability Infiltration Capacity (VIC) land surface model, which solves the water and energy balances of the hydrologic cycle at regional scales, with a crop-growth model, CropSyst. This new model, VIC-CropSyst, is the land surface model that will be used in a new regional-scale model development project focused on the Pacific Northwest, termed BioEarth. Here we describe the VIC-CropSyst coupling process and its application over the Columbia River basin (CRB) using agricultural-specific land cover information. The Washington State Department of Agriculture (WSDA) and U. S. Department of Agriculture (USDA) cropland data layers were used to identify agricultural land use patterns, in which both irrigated and dry land crops were simulated. The VIC-CropSyst model was applied over the CRB for the historical period of 1976 - 2006 to establish a baseline for surface water availability, irrigation demand, and crop production. The model was then applied under future (2030s) climate change scenarios derived from statistically-downscaled Global Circulation Models output under two emission scenarios (A1B and B1). Differences between simulated future and historical irrigation demand, irrigation water availability, and crop production were used in an economics model to identify the most economically-viable future cropping pattern. The economics model was run under varying scenarios of regional growth, trade, water pricing, and water capacity providing a spectrum of possible future cropping patterns. The resulting cropping patterns were then used in VIC-CropSyst to quantify the impacts of climate change, economic, and water management scenarios on crop production, and water resources availability. This modeling framework provides opportunities to study the interactions between human activities and complex natural processes and is a valuable tool for inclusion in an earth system model with the goal of informing land use and water management.

  14. The Combination of Uav Survey and Landsat Imagery for Monitoring of Crop Vigor in Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Lukas, V.; Novák, J.; Neudert, L.; Svobodova, I.; Rodriguez-Moreno, F.; Edrees, M.; Kren, J.

    2016-06-01

    Mapping of the with-in field variability of crop vigor has a long tradition with a success rate ranging from medium to high depending on the local conditions of the study. Information about the development of agronomical relevant crop parameters, such as above-ground biomass and crop nutritional status, provides high reliability for yield estimation and recommendation for variable rate application of fertilizers. The aim of this study was to utilize unmanned and satellite multispectral imaging for estimation of basic crop parameters during the growing season. The experimental part of work was carried out in 2014 at the winter wheat field with an area of 69 ha located in the South Moravia region of the Czech Republic. An UAV imaging was done in April 2014 using Sensefly eBee, which was equipped by visible and near infrared (red edge) multispectral cameras. For ground truth calibration the spectral signatures were measured on 20 sites using portable spectroradiometer ASD Handheld 2 and simultaneously plant samples were taken at BBCH 32 (April 2014) and BBCH 59 (Mai 2014) for estimation of above-ground biomass and nitrogen content. The UAV survey was later extended by selected cloud-free Landsat 8 OLI satellite imagery, downloaded from USGS web application Earth Explorer. After standard pre-processing procedures, a set of vegetation indices was calculated from remotely and ground sensed data. As the next step, a correlation analysis was computed among crop vigor parameters and vegetation indices. Both, amount of above-ground biomass and nitrogen content were highly correlated (r > 0.85) with ground spectrometric measurement by ASD Handheld 2 in BBCH 32, especially for narrow band vegetation indices (e.g. Red Edge Inflection Point). UAV and Landsat broadband vegetation indices varied in range of r = 0.5 - 0.7, highest values of the correlation coefficients were obtained for crop biomass by using GNDVI. In all cases results from BBCH 59 vegetation stage showed lower relationship to vegetation indices. Total amount of aboveground biomass was identified as the most important factor influencing the values of vegetation indices. Based on the results can be assumed that UAV and satellite monitoring provide reliable information about crop parameters for site specific crop management. The main difference of their utilization is coming from their specification and technical limits. Satellite survey can be used for periodic monitoring of crops as the indicator of their spatial heterogeneity within fields, but with low resolution (30 m per pixel for OLI). On the other hand UAV represents a special campaign aimed on the mapping of high-detailed spatial inputs for site specific crop management and variable rate application of fertilizers.

  15. US/Canada wheat and barley crop calender exploratory experiment implementation plan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A plan is detailed for a supplemental experiment to evaluate several crop growth stage models and crop starter models. The objective of this experiment is to provide timely information to aid in understanding crop calendars and to provide data that will allow a selection between current crop calendar models.

  16. 3% Yield Increase (HH3), All Energy Crops scenario of the 2016 Billion Ton Report

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinkel, Chad [University of Tennessee] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Myers, Aaron (ORCID:0000000320373827)

    2016-07-13

    Scientific reason for data generation: to serve as an alternate high-yield scenario for the BT16 volume 1 agricultural scenarios to compare these projections of potential biomass supplies against a reference case (agricultural baseline 10.11578/1337885). The simulation runs from 2015 through 2040; a starting year of 2014 is used but not reported. Date the data set was last modified: 02/02/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: This exogenous price simulations (also referred to as “specified-price” simulations) introduces a farmgate price, and POLYSYS solves for biomass supplies that may be brought to market in response to these prices. In specified-price scenarios, a specified farmgate price is offered constantly in all counties over all years of the simulation. This simulation begins in 2015 with an offered farmgate price for primary crop residues only between 2015 and 2018 and long-term contracts for dedicated crops beginning in 2019. Expected mature energy crop yield grows at a compounding rate of 3% beginning in 2016. The yield growth assumptions are fixed after crops are planted such that yield gains do not apply to crops already planted, but new plantings do take advantage of the gains in expected yield growth. Instruments used: Policy Analysis System –POLYSYS (version POLYS2015_V10_alt_JAN22B), an agricultural policy modeling system of U.S. agriculture (crops and livestock), supplied by the University of Tennessee Institute of Agriculture, Agricultural Policy Analysis Center.

  17. 2% Yield Increase (HH2), All Energy Crops scenario of the 2016 Billion Ton Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Maggie R.; Hellwinkel, Chad; Eaton, Laurence

    Scientific reason for data generation: to serve as an alternate high-yield scenario for the BT16 volume 1 agricultural scenarios to compare these projections of potential biomass supplies against a reference case (agricultural baseline 10.11578/1337885). The simulation runs from 2015 through 2040; a starting year of 2014 is used but not reported. Date the data set was last modified: 02/02/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: This exogenous price simulations (also referred to as “specified-price” simulations) introduces a farmgate price, and POLYSYS solves for biomass supplies that may be brought tomore » market in response to these prices. In specified-price scenarios, a specified farmgate price is offered constantly in all counties over all years of the simulation. This simulation begins in 2015 with an offered farmgate price for primary crop residues only between 2015 and 2018 and long-term contracts for dedicated crops beginning in 2019. Expected mature energy crop yield grows at a compounding rate of 2% beginning in 2016. The yield growth assumptions are fixed after crops are planted such that yield gains do not apply to crops already planted, but new plantings do take advantage of the gains in expected yield growth. Instruments used: Policy Analysis System –POLYSYS (version POLYS2015_V10_alt_JAN22B), an agricultural policy modeling system of U.S. agriculture (crops and livestock), supplied by the University of Tennessee Institute of Agriculture, Agricultural Policy Analysis Center.« less

  18. Effects of climate change on crops and weeds: scope for developing cultivars better adapted to both abiotic stress and an ability to suppress weeds

    USDA-ARS?s Scientific Manuscript database

    The challenges of climate change on agricultural production are multifaceted. The parameters most likely to affect the performance of crops and weeds are increased CO2 levels, increases in temperature, and extended periods of drought. It is likely that increased CO2 concentration will benefit crops ...

  19. A satellite-driven, client-server hydro-economic model prototype for agricultural water management

    NASA Astrophysics Data System (ADS)

    Maneta, Marco; Kimball, John; He, Mingzhu; Payton Gardner, W.

    2017-04-01

    Anticipating agricultural water demand, land reallocation, and impact on farm revenues associated with different policy or climate constraints is a challenge for water managers and for policy makers. While current integrated decision support systems based on programming methods provide estimates of farmer reaction to external constraints, they have important shortcomings such as the high cost of data collection surveys necessary to calibrate the model, biases associated with inadequate farm sampling, infrequent model updates and recalibration, model overfitting, or their deterministic nature, among other problems. In addition, the administration of water supplies and the generation of policies that promote sustainable agricultural regions depend on more than one bureau or office. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. To overcome these limitations, we present a client-server, integrated hydro-economic modeling and observation framework driven by satellite remote sensing and other ancillary information from regional monitoring networks. The core of the framework is a stochastic data assimilation system that sequentially ingests remote sensing observations and corrects the parameters of the hydro-economic model at unprecedented spatial and temporal resolutions. An economic model of agricultural production, based on mathematical programming, requires information on crop type and extent, crop yield, crop transpiration and irrigation technology. A regional hydro-climatologic model provides biophysical constraints to an economic model of agricultural production with a level of detail that permits the study of the spatial impact of large- and small-scale water use decisions. Crop type and extent is obtained from the Cropland Data Layer (CDL), which is multi-sensor operational classification of crops maintained by the United States Department of Agriculture. Because this product is only available for the conterminous United States, the framework is currently only applicable in this region. To obtain information on crop phenology, productivity and transpiration at adequate spatial and temporal frequencies we blend high spatial resolution Landsat information with high temporal fidelity MODIS imagery. The result is a 30 m, 8-day fused dataset of crop greenness that is subsequently transformed into productivity and transpiration by adapting existing forest productivity and transpiration algorithms for agricultural applications. To ensure all involved agencies work with identical information and that end-users are sheltered from the computational burden of storing and processing remote sensing data, this modeling framework is integrated in a client-server architecture based on the Hydra platform (www.hydraplatform.org). Assimilation and processing of resource-intensive remote sensing information, as well as hydrologic and other ancillary data, occur on the server side. With this architecture, our decision support system becomes a light weight 'app' that connects to the server to retrieve the latest information regarding water demands, land use, yields and hydrologic information required to run different management scenarios. This architecture ensures that all agencies and teams involved in water management use the same, up-to-date information in their simulations.

  20. Object-Based Land Use Classification of Agricultural Land by Coupling Multi-Temporal Spectral Characteristics and Phenological Events in Germany

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Loew, Fabian; Conrad, Christopher

    2015-04-01

    Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty. The results indicate that uncertainty estimates provide a valuable addition to traditional accuracy assessments and helps the user to allocate error in crop maps.

  1. Modeling Energy and Mass Fluxes Over a Vineyard Using the Acasa Model

    NASA Astrophysics Data System (ADS)

    Marras, S.; Bellucco, V.; Pyles, D.; Falk, M.; Sirca, C.; Duce, P.; Snyder, R. L.; Paw U, K.; Spano, D.

    2012-12-01

    Energy and mass fluxes are widely monitored over natural ecosystems by the Eddy Covariance (EC) towers within the FLUXNET monitoring network. Only a few studies focused on EC measurements over tree crops and vines, and there is a lack of information useful to parameterize crop and flux models over such systems. The aim of this study was to improve our knowledge about the performance of the land surface model ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) in estimating energy, water, and carbon fluxes over a typical Mediterranean vineyard located in Southern Sardinia (Italy). ACASA estimates turbulent fluxes per 20 canopy layers (10 layers within and 10 above the canopy) and 15 soil layers, using third-order closure equations. CO2 fluxes are estimated using a combination of Ball-Berry and Farquhar equations. The model parameters derived from literature, from a previous work conducted in Tuscany (Italy) and from direct measurements collected in the experimental site of this study. An Eddy Covariance measurement tower was installed to continuously monitor sensible and latent heat, and CO2 fluxes, in conjunction with a net radiometer, and soil heat flux plates from June 2009. A meteorological station was also set up for ancillary measurements. Model performance was evaluated by RMSE and linear regression statistics. Results for the energy balance components and CO2 exchanges will be presented. Detailed analysis was devoted to evaluate the model ability in estimating the vineyard evapotranspiration. This term of the energy balance is, in fact, important for farmers since they are mainly interested in quantify crop water requirements for a better irrigation management.

  2. Dynamic drought risk assessment using crop model and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Sun, H.; Su, Z.; Lv, J.; Li, L.; Wang, Y.

    2017-02-01

    Drought risk assessment is of great significance to reduce the loss of agricultural drought and ensure food security. The normally drought risk assessment method is to evaluate its exposure to the hazard and the vulnerability to extended periods of water shortage for a specific region, which is a static evaluation method. The Dynamic Drought Risk Assessment (DDRA) is to estimate the drought risk according to the crop growth and water stress conditions in real time. In this study, a DDRA method using crop model and remote sensing techniques was proposed. The crop model we employed is DeNitrification and DeComposition (DNDC) model. The drought risk was quantified by the yield losses predicted by the crop model in a scenario-based method. The crop model was re-calibrated to improve the performance by the Leaf Area Index (LAI) retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) data. And the in-situ station-based crop model was extended to assess the regional drought risk by integrating crop planted mapping. The crop planted area was extracted with extended CPPI method from MODIS data. This study was implemented and validated on maize crop in Liaoning province, China.

  3. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    NASA Astrophysics Data System (ADS)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to evaluate the tomato crop adaptability to future climate. To this purpose, for several tomato cultivars, threshold values of their yield responses to soil water availability were determined (data from scientific literature). Cultivars' threshold values were evaluated, in all soil units, against the indicators' values, for irrigation levels with different ΔT/I. Less water intensive cultivars and irrigation volumes that optimize transpiration (and yield) could thus be identified in both climate scenarios, and irrigation management scenarios were determined taking into account soils' hydrological properties, crop biodiversity, and efficient use of water resource. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, adaptation, simulation models, deficit irrigation, water resource efficiency, SWAP

  4. Reflectance of vegetation, soil, and water. [effects of measurable plant parameters on multispectral signal variations

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Reflectance of crop residues, that are important in reducing wind and water erosion, was more often different from bare soil in band 4 than in bands 5, 6, or 7. The plant parameters leaf area index, plant population, plant cover, and plant height explained 95.9 percent of the variation in band 7 (reflective infrared) digital counts for cotton and 78.2 percent of the variation in digital counts for the combined crops sorghum and corn; hence, measurable plant parameters explain most of the signal variation recorded for corpland. Leaf area index and plant population are both highly correlated with crop yields; since plant population can be readily measured (or possibly inferred from seeding rates), it is useful measurement for calibrating ERTS-type MSS digital data in terms of yield.

  5. Importance of Soil Temperature for the Growth of Temperate Crops under a Tropical Climate and Functional Role of Soil Microbial Diversity.

    PubMed

    Sabri, Nurul Syazwani Ahmad; Zakaria, Zuriati; Mohamad, Shaza Eva; Jaafar, A Bakar; Hara, Hirofumi

    2018-04-28

    A soil cooling system that prepares soil for temperate soil temperatures for the growth of temperate crops under a tropical climate is described herein. Temperate agriculture has been threatened by the negative impact of temperature increases caused by climate change. Soil temperature closely correlates with the growth of temperate crops, and affects plant processes and soil microbial diversity. The present study focuses on the effects of soil temperatures on lettuce growth and soil microbial diversity that maintains the growth of lettuce at low soil temperatures. A model temperate crop, loose leaf lettuce, was grown on eutrophic soil under soil cooling and a number of parameters, such as fresh weight, height, the number of leaves, and root length, were evaluated upon harvest. Under soil cooling, significant differences were observed in the average fresh weight (P<0.05) and positive development of the roots, shoots, and leaves of lettuce. Janthinobacterium (8.142%), Rhodoplanes (1.991%), Arthrospira (1.138%), Flavobacterium (0.857%), Sphingomonas (0.790%), Mycoplana (0.726%), and Pseudomonas (0.688%) were the dominant bacterial genera present in cooled soil. Key soil fungal communities, including Pseudaleuria (18.307%), Phoma (9.968%), Eocronartium (3.527%), Trichosporon (1.791%), and Pyrenochaeta (0.171%), were also recovered from cooled soil. The present results demonstrate that the growth of temperate crops is dependent on soil temperature, which subsequently affects the abundance and diversity of soil microbial communities that maintain the growth of temperate crops at low soil temperatures.

  6. 4% Yield Increase (HH4), All Energy Crops scenario of the 2016 Billion Ton Report

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinkel, Chad [University of Tennessee] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Langholtz, Matthew H [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Myers, Aaron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000320373827)

    2016-07-13

    Scientific reason for data generation: to serve as an alternate high-yield scenario for the BT16 volume 1 agricultural scenarios to compare these projections of potential biomass supplies against a reference case (agricultural baseline 10.11578/1337885). The simulation runs from 2015 through 2040; a starting year of 2014 is used but not reported. Date the data set was last modified: 02/02/2016. How each parameter was produced (methods), format, and relationship to other data in the data set: This exogenous price simulations (also referred to as “specified-price” simulations) introduces a farmgate price, and POLYSYS solves for biomass supplies that may be brought to market in response to these prices. In specified-price scenarios, a specified farmgate price is offered constantly in all counties over all years of the simulation. This simulation begins in 2015 with an offered farmgate price for primary crop residues only between 2015 and 2018 and long-term contracts for dedicated crops beginning in 2019. Expected mature energy crop yield grows at a compounding rate of 4% beginning in 2016. The yield growth assumptions are fixed after crops are planted such that yield gains do not apply. Instruments used: Policy Analysis System –POLYSYS (version POLYS2015_V10_alt_JAN22B), an agricultural policy modeling system of U.S. agriculture (crops and livestock), supplied by the University of Tennessee Institute of Agriculture, Agricultural Policy Analysis Center.

  7. Geospatial approaches to characterizing agriculture in the Chincoteague Bay subbasin.

    PubMed

    Kutz, Frederick W; Morgan, John M; Monn, Jeremy; Petrey, Chad P

    2012-01-01

    Most agricultural information is reported by government sources on a state or county basis. The purpose of this study was to demonstrate use of geospatial data, the 2002 Agricultural Cropland Data Layer (CDL) for the mid-Atlantic region, to characterize agricultural, environmental, and other scientific parameters for the Chincoteague Bay subbasin using geographic information systems. This study demonstrated that agriculture can be characterized accurately on subbasin and subwatershed bases, thus complimenting various assessment technologies. Approximately 28% of the dry land of the subbasin was cropland. Field corn was the largest crop. Soybeans, either singly or double-cropped with wheat, were the second most predominant crop. Although the subbasin is relatively small, cropping practices in the northern part were different from those in the southern portion. Other crops, such as fresh vegetables and vegetables grown for processing, were less than 10% of the total cropland. A conservative approximation of the total pesticide usage in the subbasin in 2002 was over 277,000 lbs of active ingredients. Herbicides represented the most frequently used pesticides in the subbasin, both in number (17) and in total active ingredients (over 261,000 lbs). Ten insecticides predominated in the watershed, while only small quantities of three fungicides were used. Total pesticide usage and intensity were estimated using the CDL. Nutrient inputs to cropland from animal manure, chemical fertilizer, and atmospheric deposition were modeled at over 30 million pounds of nitrogen and over 7 million pounds of phosphorous. Crops under conservation tillage had the largest input of both nutrients.

  8. Multimodel ensembles of wheat growth: many models are better than one

    USDA-ARS?s Scientific Manuscript database

    Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but suc...

  9. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    NASA Astrophysics Data System (ADS)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral precipitation and ion exchange. The calibrated model was then re-run assuming different evapotranspiration and crop growth regimes, and different seasonally-adjusted applied water compositions, to elucidate possible impacts to salt loading reactive chemistry. The results of the predictive modeling indicate the extent to which salts could be redistributed within the soil column as a consequence of climate change. The degree to which these findings are applicable to process waste land application operations at other sites was explored by varying the soil unsaturated flow parameters as a model sensitivity assessment. Taken together, the model results help to quantify operational changes to land application that may be necessary to avoid future adverse environmental impacts to soil and groundwater.

  10. The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and Protocols

    NASA Technical Reports Server (NTRS)

    Shukla, Sonali P.; Ruane, Alexander Clark

    2014-01-01

    Climate change is expected to alter a multitude of factors important to agricultural systems, including pests, diseases, weeds, extreme climate events, water resources, soil degradation, and socio-economic pressures. Changes to carbon dioxide concentration ([CO2]), temperature, and water (CTW) will be the primary drivers of change in crop growth and agricultural systems. Therefore, establishing the CTW-change sensitivity of crop yields is an urgent research need and warrants diverse methods of investigation. Crop models provide a biophysical, process-based tool to investigate crop responses across varying environmental conditions and farm management techniques, and have been applied in climate impact assessment by using a variety of methods (White et al., 2011, and references therein). However, there is a significant amount of divergence between various crop models' responses to CTW changes (Rotter et al., 2011). While the application of a site-based crop model is relatively simple, the coordination of such agricultural impact assessments on larger scales requires consistent and timely contributions from a large number of crop modelers, each time a new global climate model (GCM) scenario or downscaling technique is created. A coordinated, global effort to rapidly examine CTW sensitivity across multiple crops, crop models, and sites is needed to aid model development and enhance the assessment of climate impacts (Deser et al., 2012). To fulfill this need, the Coordinated Climate-Crop Modeling Project (C3MP) (Ruane et al., 2014) was initiated within the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013). The submitted results from C3MP Phase 1 (February 15, 2013-December 31, 2013) are currently being analyzed. This chapter serves to present and update the C3MP protocols, discuss the initial participation and general findings, comment on needed adjustments, and describe continued and future development. AgMIP aims to improve substantially the climate, crop, and economic simulation tools that are used to characterize the agricultural sector, to assess future world food security under changing climate conditions, and to enhance adaptation capacity both globally and regionally. To understand better and improve the modeled crop responses, AgMIP has conducted detailed crop model intercomparisons at closely observed field sites for wheat (Asseng et al., 2013), rice (Li et al., in review), maize (Bassu et al., 2014), and sugarcane (Singels et al., 2013). A coordinated modeling exercise was one of the original motivations for AgMIP, and C3MP provides rapid estimation of crop responses to CO2, water, and temperature (CTW) changes, adding dimension and insight into the crop model intercomparisons, while facilitating interactions within the global community of modelers. C3MP also contributes a fast-track, multi-model climate sensitivity assessment for the AgMIP climate and crop modeling teams on Research Track 2 (Fig. 1), which seeks to understand the impact of projected climatic changes on crop production and food security (Rosenzweig et al., 2013; Ruane et al., 2014).

  11. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1992-01-01

    The goal of this research is to develop a progressive series of mathematical models for the CELSS hydroponic crops. These models will systematize the experimental findings from the crop researchers in the CELSS Program into a form useful to investigate system-level considerations, for example, dynamic studies of the CELSS Initial Reference Configurations. The crop models will organize data from different crops into a common modeling framework. This is the fifth semiannual report for this project. The following topics are discussed: (1) use of field crop models to explore phasic control of CELSS crops for optimizing yield; (2) seminar presented at Purdue CELSS NSCORT; and (3) paper submitted on analysis of bioprocessing of inedible plant materials.

  12. Integrated approaches to climate-crop modelling: needs and challenges.

    PubMed

    Betts, Richard A

    2005-11-29

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.

  13. Understanding the Impact of Extreme Temperature on Crop Production in Karnataka in India

    NASA Astrophysics Data System (ADS)

    Mahato, S.; Murari, K. K.; Jayaraman, T.

    2017-12-01

    The impact of extreme temperature on crop yield is seldom explored in work around climate change impact on agriculture. Further, these studies are restricted mainly to crops such as wheat and maize. Since different agro-climatic zones bear different crops and cropping patterns, it is important to explore the nature of the impact of changes in climate variables in agricultural systems under differential conditions. The study explores the effects of temperature rise on the major crops paddy, jowar, ragi and tur in the state of Karnataka of southern India. The choice of the unit of study to understand impact of climate variability on crop yields is largely restricted to availability of data for the unit. While, previous studies have dealt with this issue by replacing yield with NDVI at finer resolution, the use of an index in place of yield data has its limitations and may not reflect the true estimates. For this study, the unit considered is taluk, i.e. sub-district level. The crop yield for taluk is obtained between the year the 1995 to 2011 by aggregating point yield data from crop cutting experiments for each year across the taluks. The long term temperature data shows significantly increasing trend that ranges between 0.6 to 0.75 C across Karnataka. Further, the analysis suggests a warming trend in seasonal average temperature for Kharif and Rabi seasons across districts. The study also found that many districts exhibit the tendency of occurrence of extreme temperature days, which is of particular concern in terms of crop yield, since exposure of crops to extreme temperature has negative consequences for crop production and productivity. Using growing degree days GDD, extreme degree days EDD and total season rainfall as predictor variables, the fixed effect model shows that EDD is a more influential parameter as compared to GDD and rainfall. Also it has a statistically significant negative effect in most cases. Further, quantile regression was used to evaluate the robustness of the estimates of EDD in relation to crop yield. This showed the estimates to be robust across quantiles for most of the crops studied. Thus indicating a strong negative influence of exposure to extreme temperature on crop yield in the region.

  14. Rice crop growth monitoring using ENVISAT-1/ASAR AP mode

    NASA Astrophysics Data System (ADS)

    Konishi, Tomohisa; Suga, Yuzo; Omatu, Shigeru; Takeuchi, Shoji; Asonuma, Kazuyoshi

    2007-10-01

    Hiroshima Institute of Technology (HIT) is operating the direct down-links of microwave and optical earth observation satellite data in Japan. This study focuses on the validation for rice crop monitoring using microwave remotely sensed image data acquired by ENIVISAT-1 referring to ground truth data such as height of rice crop, vegetation cover rate and leaf area index in the test sites of Hiroshima district, the western part of Japan. ENVISAT-1/ASAR data has the capabilities for the monitoring of the rice crop growing cycle by using alternating cross polarization mode images. However, ASAR data is influenced by several parameters such as land cover structure, direction and alignment of rice crop fields in the test sites. In this study, the validation was carried out to be combined with microwave image data and ground truth data regarding rice crop fields to investigate the above parameters. Multi-temporal, multi-direction (descending and ascending) and multi-angle ASAR alternating cross polarization mode images were used to investigate during the rice crop growing cycle. On the other hand, LANDSAT-7/ETM+ data were used to detect land cover structure, direction and alignment of rice crop fields corresponding to the backscatter of ASAR. Finally, the extraction of rice planted area was attempted by using multi-temporal ASAR AP mode data such as VV/VH and HH/HV. As the result of this study, it is clear that the estimated rice planted area coincides with the existing statistical data for area of the rice crop field. In addition, HH/HV is more effective than VV/VH in the rice planted area extraction.

  15. Efficient Maize and Sunflower Multi-year Mapping with NDVI Time Series of HJ-1A/1B in Hetao Irrigation District of Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Yu, B.; Shang, S.

    2016-12-01

    Food shortage is one of the major challenges that human beings are facing. It is urgent to improve the monitoring of the plantation and distribution of the main crops to solve the following economic and social issues. Recently, with the extensive use of remote sensing satellite data, it has provided favorable conditions for crop identification in large irrigation district with complex planting structure. Difference of different crop phenology is the main basis for crop identification, and the normalized difference vegetation index (NDVI) time-series could better delineate crop phenology cycle. Therefore, the key of crop identification is to obtain high quality NDVI time-series. MODIS and Landsat TM satellite images are the most frequently used, however, neither of them could guarantee high temporal and spatial resolutions at once. Accordingly, this paper makes use of NDVI time-series extracted from China Environment Satellites data, which has two-day-repeat temporal and 30m spatial resolutions. The NDVI time-series are fitted with an asymmetric logistic curve, the fitting effect is good and the correlation coefficient is greater than 0.9. The phonological parameters are derived from NDVI fitting curves, and crop identification is carried out by different relation ellipses between NDVI and its phonological parameters of different crops. This paper takes Hetao Irrigation District of Inner Mongolia as an example, to identify multi-year maize and sunflower in the district, and the identification result is good. Compared with the official statistics, the relative errors are both lower than 5%. The results show that the NDVI time-series dataset derived from HJ-1A/1B CCD could delineate the crop phenology cycle accurately and demonstrate its application in crop identification in irrigated district.

  16. Simulating crop growth with Expert-N-GECROS under different site conditions in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Poyda, Arne; Ingwersen, Joachim; Demyan, Scott; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    When feedbacks between the land surface and the atmosphere are investigated by Atmosphere-Land surface-Crop-Models (ALCM) it is fundamental to accurately simulate crop growth dynamics as plants directly influence the energy partitioning at the plant-atmosphere interface. To study both the response and the effect of intensive agricultural crop production systems on regional climate change in Southwest Germany, the crop growth model GECROS (YIN & VAN LAAR, 2005) was calibrated based on multi-year field data from typical crop rotations in the Kraichgau and Swabian Alb regions. Additionally, the SOC (soil organic carbon) model DAISY (MÜLLER et al., 1998) was implemented in the Expert-N model tool (ENGEL & PRIESACK, 1993) and combined with GECROS. The model was calibrated based on a set of plant (BBCH, LAI, plant height, aboveground biomass, N content of biomass) and weather data for the years 2010 - 2013 and validated with the data of 2014. As GECROS adjusts the root-shoot partitioning in response to external conditions (water, nitrogen, CO2), it is suitable to simulate crop growth dynamics under changing climate conditions and potentially more frequent stress situations. As C and N pools and turnover rates in soil as well as preceding crop effects were expected to considerably influence crop growth, the model was run in a multi-year, dynamic way. Crop residues and soil mineral N (nitrate, ammonium) available for the subsequent crop were accounted for. The model simulates growth dynamics of winter wheat, winter rape, silage maize and summer barley at the Kraichgau and Swabian Alb sites well. The Expert-N-GECROS model is currently parameterized for crops with potentially increasing shares in future crop rotations. First results will be shown.

  17. Rapid crop cover mapping for the conterminous United States

    USGS Publications Warehouse

    Dahal, Devendra; Wylie, Bruce K.; Howard, Daniel

    2018-01-01

    Timely crop cover maps with sufficient resolution are important components to various environmental planning and research applications. Through the modification and use of a previously developed crop classification model (CCM), which was originally developed to generate historical annual crop cover maps, we hypothesized that such crop cover maps could be generated rapidly during the growing season. Through a process of incrementally removing weekly and monthly independent variables from the CCM and implementing a ‘two model mapping’ approach, we found it viable to generate conterminous United States-wide rapid crop cover maps at a resolution of 250 m for the current year by the month of September. In this approach, we divided the CCM model into one ‘crop type model’ to handle the classification of nine specific crops and a second, binary model to classify the presence or absence of ‘other’ crops. Under the two model mapping approach, the training errors were 0.8% and 1.5% for the crop type and binary model, respectively, while test errors were 5.5% and 6.4%, respectively. With spatial mapping accuracies for annual maps reaching upwards of 70%, this approach demonstrated a strong potential for generating rapid crop cover maps by the 1st of September.

  18. Temporal expansion of annual crop classification layers for the CONUS using the C5 decision tree classifier

    USGS Publications Warehouse

    Friesz, Aaron M.; Wylie, Bruce K.; Howard, Daniel M.

    2017-01-01

    Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The National Agricultural Statistics Service (NASS) Cropland Data Layers (CDL) are a series of commonly used crop cover maps for the conterminous United States (CONUS) that span from 2008 to 2013. In this investigation, we sought to contribute to the availability of consistent CONUS crop cover maps by extending temporal coverage of the NASS CDL archive back eight additional years to 2000 by creating annual NASS CDL-like crop cover maps derived from a classification tree model algorithm. We used over 11 million records to train a classification tree algorithm and develop a crop classification model (CCM). The model was used to create crop cover maps for the CONUS for years 2000–2013 at 250 m spatial resolution. The CCM and the maps for years 2008–2013 were assessed for accuracy relative to resampled NASS CDLs. The CCM performed well against a withheld test data set with a model prediction accuracy of over 90%. The assessment of the crop cover maps indicated that the model performed well spatially, placing crop cover pixels within their known domains; however, the model did show a bias towards the ‘Other’ crop cover class, which caused frequent misclassifications of pixels around the periphery of large crop cover patch clusters and of pixels that form small, sparsely dispersed crop cover patches.

  19. Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO2 concentration on crop productivity

    PubMed Central

    Yin, Xinyou

    2013-01-01

    Background Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2]. Analysis A review of the literature indicates that the quantitative relationships for a number of traits, once expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorporating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models to have small parameterization requirements and yet generate phenotypic plasticity under changing environmental conditions need to capture the carbon–nitrogen interactions during crop growth. Conclusions The performance of the improved models depends little on the type of the experimental facilities used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and other climatic variables on crop productivity. PMID:23388883

  20. Improving Crop Productions Using the Irrigation & Crop Production Model Under Drought

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Lee, T.; Lee, S. H.; Kim, J.; Jang, W.; Park, S.

    2017-12-01

    We aimed to improve crop productions by providing optimal irrigation water amounts (IWAs) for various soils and crops using the Irrigation & Crop Production (ICP) model under various hydro-climatic regions. We selected the Little Washita (LW 13/21) and Bangdong-ri sites in Oklahoma (United States of America) and Chuncheon (Republic of Korea) for the synthetic studies. Our results showed that the ICP model performed well for improving crop productions by providing optimal IWAs during the study period (2000 to 2016). Crop productions were significantly affected by the solar radiation and precipitation, but the maximum and minimum temperature showed less impact on crop productions. When we considerd that the weather variables cannot be adjusted by artifical activities, irrigation might be the only solution for improving crop productions under drought. Also, the presence of shallow ground water (SGW) table depths higlhy influences on crop production. Although certainties exist in the synthetic studies, our results showed the robustness of the ICP model for improving crop productions under the drought condition. Thus, the ICP model can contribute to efficient water management plans under drought in regions at where water availability is limited.

  1. Regression model estimation of early season crop proportions: North Dakota, some preliminary results

    NASA Technical Reports Server (NTRS)

    Lin, K. K. (Principal Investigator)

    1982-01-01

    To estimate crop proportions early in the season, an approach is proposed based on: use of a regression-based prediction equation to obtain an a priori estimate for specific major crop groups; modification of this estimate using current-year LANDSAT and weather data; and a breakdown of the major crop groups into specific crops by regression models. Results from the development and evaluation of appropriate regression models for the first portion of the proposed approach are presented. The results show that the model predicts 1980 crop proportions very well at both county and crop reporting district levels. In terms of planted acreage, the model underpredicted 9.1 percent of the 1980 published data on planted acreage at the county level. It predicted almost exactly the 1980 published data on planted acreage at the crop reporting district level and overpredicted the planted acreage by just 0.92 percent.

  2. A Spatial-Dynamic Agent-based Model of Energy Crop Introduction in Jiangsu province, China

    NASA Astrophysics Data System (ADS)

    Shu, K.; Schneider, U. A.; Scheffran, J.

    2012-12-01

    Bioenergy, as one promising option to replace a fraction of conventional fossil fuels and lower net greenhouse gas emissions, has gained many countries', in particular developing ones' attention. Their focus is mainly on the design of efficient bioenergy utilization pathways which adapt to both local geographic features and economic conditions. The establishment of a biomass production sector would be the first and pivotal component in the whole industrial chain. Several existing studies have estimated the global biomass for energy potential but arrived at very different results. One reason for the large uncertainty of biomass potential may be ascribed to the diverse nature of biomass leading to different estimates in different circumstances. Therefore, specific research at the local level is essential. Following this thought, our research conducted in the Jiangsu province, a representative region in China, will explore the spatial distribution of biomass production. The employed methodology can also be applied to other locations both in China and similar developing countries if model parameters are adequately adjusted. In this study, we analyze the local situation in the Jiangsu province focusing on the selection of new energy crops, since the cultivation of dedicated crop for energy use is still in experimental phase. We also examine the land use conflict which is especially relevant to China with more than 1.3 billion people and a severe burden on food supply. We develop an agent-based model to find the optimal spatial distribution of biomass (SDA-SDB) in Jiangsu province. Compromising data accessibility and heterogeneity of environmental factors across the province, we resolve our model at county level and consider the aggregated farming community in one county as a single agent. The aim of SDA-SDB is to simulate farmers' decision process of allocating land to either food or energy crops facing limited resources and political targets for bioenergy development. Different to previous engineering assessments of biomass potential, SDA-SDB depicts the price of dry matter, the biomass from dedicated energy crop, as an endogenous variable. Thus, the price of dry matter will be decided by the intersection between demand and supply. The demand of biomass is established by the official development plan for bioenergy. Several alternative plans will be assessed. On the supply side, the marginal costs of bioenergy production are controlled by the aggregated behavior of all farmers. In other words, each agent's decision is influenced by other agents' decisions and will influence the final result which will continue to affect other agents' decision in a closed information feedback loop. Furthermore, SDA-SDB introduces coastal mudflat in Jiangsu province as a possible novel resource for energy crop cultivation which is believed to alleviate the conflict between food and bioenergy demand. We also introduce a carbon tax (which is, at the same time, a green-energy subsidy for bioenergy) in our model to specifically explore its effect on the penetration of biomass. Finally, we summarize our findings for efficient bioenergy utilization pathway in Jiangsu province based on our simulation results and a sensitivity analysis over the key parameters.

  3. Using global sensitivity analysis to understand higher order interactions in complex models: an application of GSA on the Revised Universal Soil Loss Equation (RUSLE) to quantify model sensitivity and implications for ecosystem services management in Costa Rica

    NASA Astrophysics Data System (ADS)

    Fremier, A. K.; Estrada Carmona, N.; Harper, E.; DeClerck, F.

    2011-12-01

    Appropriate application of complex models to estimate system behavior requires understanding the influence of model structure and parameter estimates on model output. To date, most researchers perform local sensitivity analyses, rather than global, because of computational time and quantity of data produced. Local sensitivity analyses are limited in quantifying the higher order interactions among parameters, which could lead to incomplete analysis of model behavior. To address this concern, we performed a GSA on a commonly applied equation for soil loss - the Revised Universal Soil Loss Equation. USLE is an empirical model built on plot-scale data from the USA and the Revised version (RUSLE) includes improved equations for wider conditions, with 25 parameters grouped into six factors to estimate long-term plot and watershed scale soil loss. Despite RUSLE's widespread application, a complete sensitivity analysis has yet to be performed. In this research, we applied a GSA to plot and watershed scale data from the US and Costa Rica to parameterize the RUSLE in an effort to understand the relative importance of model factors and parameters across wide environmental space. We analyzed the GSA results using Random Forest, a statistical approach to evaluate parameter importance accounting for the higher order interactions, and used Classification and Regression Trees to show the dominant trends in complex interactions. In all GSA calculations the management of cover crops (C factor) ranks the highest among factors (compared to rain-runoff erosivity, topography, support practices, and soil erodibility). This is counter to previous sensitivity analyses where the topographic factor was determined to be the most important. The GSA finding is consistent across multiple model runs, including data from the US, Costa Rica, and a synthetic dataset of the widest theoretical space. The three most important parameters were: Mass density of live and dead roots found in the upper inch of soil (C factor), slope angle (L and S factor), and percentage of land area covered by surface cover (C factor). Our findings give further support to the importance of vegetation as a vital ecosystem service provider - soil loss reduction. Concurrent, progress is already been made in Costa Rica, where dam managers are moving forward on a Payment for Ecosystem Services scheme to help keep private lands forested and to improve crop management through targeted investments. Use of complex watershed models, such as RUSLE can help managers quantify the effect of specific land use changes. Moreover, effective land management of vegetation has other important benefits, such as bundled ecosystem services (e.g. pollination, habitat connectivity, etc) and improvements of communities' livelihoods.

  4. Soil nitrogen balance under wastewater management: Field measurements and simulation results

    USGS Publications Warehouse

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; KC, A.

    2009-01-01

    The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. Modeling and control for closed environment plant production systems

    NASA Technical Reports Server (NTRS)

    Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.

  6. Modelling nitrous oxide emissions from mown-grass and grain-cropping systems: Testing and sensitivity analysis of DailyDayCent using high frequency measurements.

    PubMed

    Senapati, Nimai; Chabbi, Abad; Giostri, André Faé; Yeluripati, Jagadeesh B; Smith, Pete

    2016-12-01

    The DailyDayCent biogeochemical model was used to simulate nitrous oxide (N 2 O) emissions from two contrasting agro-ecosystems viz. a mown-grassland and a grain-cropping system in France. Model performance was tested using high frequency measurements over three years; additionally a local sensitivity analysis was performed. Annual N 2 O emissions of 1.97 and 1.24kgNha -1 year -1 were simulated from mown-grassland and grain-cropland, respectively. Measured and simulated water filled pore space (r=0.86, ME=-2.5%) and soil temperature (r=0.96, ME=-0.63°C) at 10cm soil depth matched well in mown-grassland. The model predicted cumulative hay and crop production effectively. The model simulated soil mineral nitrogen (N) concentrations, particularly ammonium (NH 4 + ), reasonably, but the model significantly underestimated soil nitrate (NO 3 - ) concentration under both systems. In general, the model effectively simulated the dynamics and the magnitude of daily N 2 O flux over the whole experimental period in grain-cropland (r=0.16, ME=-0.81gNha -1 day -1 ), with reasonable agreement between measured and modelled N 2 O fluxes for the mown-grassland (r=0.63, ME=-0.65gNha -1 day -1 ). Our results indicate that DailyDayCent has potential for use as a tool for predicting overall N 2 O emissions in the study region. However, in-depth analysis shows some systematic discrepancies between measured and simulated N 2 O fluxes on a daily basis. The current exercise suggests that the DailyDayCent may need improvement, particularly the sub-module responsible for N transformations, for better simulating soil mineral N, especially soil NO 3 - concentration, and N 2 O flux on a daily basis. The sensitivity analysis shows that many factors such as climate change, N-fertilizer use, input uncertainty and parameter value could influence the simulation of N 2 O emissions. Sensitivity estimation also helped to identify critical parameters, which need careful estimation or site-specific calibration for successful modelling of N 2 O emissions in the study region. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Increased resiliency and activity of microbial mediated carbon cycling enzymes in diversified bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Upton, R.; Bach, E.; Hofmockel, K. S.

    2017-12-01

    Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system provides increased C cycling activity. Our results showed that diverse cropping systems still benefit from N fertilization to confer resiliency to abiotic stress factors. Long-term studies for microbial mediation of soil C are necessary for modeling the impacts of restoration on SOC to assure inclusion of sustainability and resiliency.

  8. Retrieval of Winter Wheat Leaf Area Index from Chinese GF-1 Satellite Data Using the PROSAIL Model

    PubMed Central

    Li, He; Liu, Gaohuan; Liu, Qingsheng; Chen, Zhongxin; Huang, Chong

    2018-01-01

    Leaf area index (LAI) is one of the key biophysical parameters in crop structure. The accurate quantitative estimation of crop LAI is essential to verify crop growth and health. The PROSAIL radiative transfer model (RTM) is one of the most established methods for estimating crop LAI. In this study, a look-up table (LUT) based on the PROSAIL RTM was first used to estimate winter wheat LAI from GF-1 data, which accounted for some available prior knowledge relating to the distribution of winter wheat characteristics. Next, the effects of 15 LAI-LUT strategies with reflectance bands and 10 LAI-LUT strategies with vegetation indexes on the accuracy of the winter wheat LAI retrieval with different phenological stages were evaluated against in situ LAI measurements. The results showed that the LUT strategies of LAI-GNDVI were optimal and had the highest accuracy with a root mean squared error (RMSE) value of 0.34, and a coefficient of determination (R2) of 0.61 during the elongation stages, and the LUT strategies of LAI-Green were optimal with a RMSE of 0.74, and R2 of 0.20 during the grain-filling stages. The results demonstrated that the PROSAIL RTM had great potential in winter wheat LAI inversion with GF-1 satellite data and the performance could be improved by selecting the appropriate LUT inversion strategies in different growth periods. PMID:29642395

  9. Integrating NASA Satellite Data Into USDA World Agricultural Outlook Board Decision Making Environment To Improve Agricultural Estimates

    NASA Technical Reports Server (NTRS)

    Teng, William; Shannon, Harlan; deJeu, Richard; Kempler, Steve

    2012-01-01

    The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. The goal of the current project is to improve WAOB estimates by integrating NASA satellite precipitation and soil moisture observations into WAOB's decision making environment. Precipitation (Level 3 gridded) is from the TRMM Multi-satellite Precipitation Analysis (TMPA). Soil moisture (Level 2 swath and Level 3 gridded) is generated by the Land Parameter Retrieval Model (LPRM) and operationally produced by the NASA Goddard Earth Sciences Data and Information Services Center (GBS DISC). A root zone soil moisture (RZSM) product is also generated, via assimilation of the Level 3 LPRM data by a land surface model (part of a related project). Data services to be available for these products include GeoTIFF, GDS (GrADS Data Server), WMS (Web Map Service), WCS (Web Coverage Service), and NASA Giovanni. Project benchmarking is based on retrospective analyses of WAOB analog year comparisons. The latter are between a given year and historical years with similar weather patterns and estimated crop yields. An analog index (AI) was developed to introduce a more rigorous, statistical approach for identifying analog years. Results thus far show that crop yield estimates derived from TMPA precipitation data are closer to measured yields than are estimates derived from surface-based precipitation measurements. Work is continuing to include LPRM surface soil moisture data and model-assimilated RZSM.

  10. Potential impacts of climate change and adaptation strategies for sunflower in Pakistan.

    PubMed

    Awais, Muhammad; Wajid, Aftab; Saleem, Muhammad Farrukh; Nasim, Wajid; Ahmad, Ashfaq; Raza, Muhammad Aown Sammar; Bashir, Muhammad Usman; Mubeen, Muhammad; Hammad, Hafiz Mohkum; Habib Ur Rahman, Muhammad; Saeed, Umer; Arshad, Muhammad Naveed; Hussain, Jamshad

    2018-05-01

    Growth, development, and economic yield of agricultural crops rely on moisture, temperature, light, and carbon dioxide concentration. However, the amount of these parameters is varying with time due to climate change. Climate change is factual and ongoing so, first principle of agronomy should be to identify climate change potential impacts and adaptation measures to manage the susceptibilities of agricultural sector. Crop models have ability to predict the crop's yield under changing climatic conditions. We used OILCROP-SUN model to simulate the influence of elevated temperature and CO 2 on crop growth duration, maximum leaf area index (LAI), total dry matter (TDM), and achene yield of sunflower under semi-arid conditions of Pakistan (Faisalabad, Punjab). The model was calibrated and validated with the experimental data of 2012 and 2013, respectively. The simulation results showed that phenological events of sunflower were not changed at higher concentration of CO 2 (430 and 550 ppm). However LAI, achene yield, and TDM increased by 0.24, 2.41, and 4.67% at 430 ppm and by 0.48, 3.09, and 9.87% at 550 ppm, respectively. Increased temperature (1 and 2 °C) reduced the sunflower duration to remain green that finally led to less LAI, achene yield, and TDM as compared to present conditions. However, the drastic effects of increased temperature on sunflower were reduced to some extent at 550 ppm CO 2 concentration. Evaluation of different adaptation options revealed that 21 days earlier (as compared to current sowing date) planting of sunflower crop with increased plant population (83,333 plants ha -1 ) could reduce the yield losses due to climate change. Flowering is the most critical stage of sunflower to water scarcity. We recommended skipping second irrigation or 10% (337.5 mm) less irrigation water application to conserve moisture under possible water scarce conditions of 2025 and 2050.

  11. Analysing and correcting the differences between multi-source and multi-scale spatial remote sensing observations.

    PubMed

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.

  12. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    PubMed Central

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760

  13. Changing Pattern of Crop Fraction in Late Blight Induced Potato Crops in Potato Bowl of West Bengal by using Multi-temporal Time Series AWiFs Data

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Abhisek

    2016-07-01

    Crop fraction is the ratio of crop occupying a unit area in ground pixel, is very important for monitoring crop growth. One of the most important variables in crop growth monitoring is the fraction of available solar radiation intercepted by foliage. Late blight of potato (Solanum tuberosum), caused by the oomycete pathogen Phytophthora infestans, is considered to be the most destructive crop diseases of potato worldwide. Under favourable climatic conditions, and without intervention (i.e. fungicide sprays), the disease can destroy potato crop within few weeks. Therefore it is important to evaluate the crop fraction for monitoring the healthy and late blight affected potato crops. This study was conducted in potato bowl of West Bengal, which consists of districts of Hooghly, Howrah, Burdwan, Bankuara, and Paschim Medinipur. In this study different crop fraction estimation method like linear spectral un-mixing, Normalized difference vegetation index (NDVI) based DPM model (Zhang et al. 2013), Ratio vegetation index based DPM model, improved Pixel Dichotomy Model (Li et al. 2014) ware evaluated using multi-temporal IRS AWiFs data in two successive potato growing season of 2012-13 and 2013-14 over the study area and compared with measured crop fraction. The comparative study based on measured healthy and late blight affected potato crop fraction showed that improved Pixel Dichotomy Model maintain the high coefficient of determination (R2= 0.835) with low root mean square error (RMSE=0.21) whereas the correlation values of NDVI based DPM model and RVI based DPM model is 0.763 and 0.694 respectively. The changing pattern of crop fraction profile of late blight affected potato crop was studied in respect of healthy potato crop fraction which was extracted from the 269 GPS points of potato field. It showed that the healthy potato crop fraction profile maintained the normal phenological trend whereas the late blight affected potato crop fraction profile suddenly fallen after late blight disease affected in potato crops. Therefore, it can be concluded that based on the result of this study the improved Pixel Dichotomy Model is the most convenient method for crop fraction estimation for this region with satisfactory accuracy.

  14. Simulating canopy temperature for modelling heat stress in cereals

    USDA-ARS?s Scientific Manuscript database

    Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...

  15. Dynamic Predictions of Crop Yield and Irrigation in Sub-Saharan Africa Due to Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Foster-Wittig, T.

    2012-12-01

    The highest damages from climate change are predicted to be in the agricultural sector in sub-Saharan Africa. Agriculture is predicted to be especially vulnerable in this region because of its current state of high temperature and low precipitation and because it is usually rain-fed or relies on relatively basic technologies which therefore limit its ability to sustain in increased poor climatic conditions [1]. The goal of this research is to quantify the vulnerability of this ecosystem by projecting future changes in agriculture due to IPCC predicted climate change impacts on precipitation and temperature. This research will provide a better understanding of the relationship between precipitation and rain-fed agriculture in savannas. In order to quantify the effects of climate change on agriculture, the impacts of climate change are modeled through the use of a land surface vegetation dynamics model previously developed combined with a crop model [2,4]. In this project, it will be used to model yield for point cropland locations within sub-Saharan Africa between Kenya and Botswana with a range of annual rainfall. With this model, future projections are developed for what can be anticipated for the crop yield based on two precipitation climate change scenarios; (1) decreased depth and (2) decreased frequency as well as temperature change scenarios; (3) only temperature increased, (4) temperature increase dand decreased precipitation depth, and (5) temperature increased and decreased precipitation frequency. Therefore, this will allow conclusions to be drawn about how mean precipitation and a changing climate effect food security in sub-Saharan Africa. As an additional analysis, irrigation is added to the model as it is thought to be the solution to protect food security by maximizing on the potential of food production. In water-limited areas such as Sub-Saharan Africa, it is important to consider water efficient irrigation techniques such as demand-based micro-irrigation where less water is lost to evaporative demand. Demand-based irrigation is based on two main parameters; a trigger level, to initiate the irrigation, and a target level to calculate the amount of irrigation [3]. In order to understand the impact of these two parameters on amount of irrigated water and yield, irrigation is added to the model with variations of these two parameters considered. This analysis will provide the information needed to understand whether irrigation is a feasible and sustainable solution to the loss of food production due to climate change. Resources: [1]Kurukulasuriya, P., and Mendelsohn, Robert (2008). "A Ricardian analysis of the impact of climate change on African cropland." African Journal Agriculture and Resource Economics 02(1). [2]Raes, D., Steduto, P., Hsiao, T., and Fereres, E. (2011). Chapter 3: Calculation Procedure. . AquaCrop Reference Manual Version 3.1 Plus. [3]Vico, G. and A. Porporato (2011). "From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture." Advances in Water Resources 34(2): 263-271. [4]Williams, C., and Albertson, J. (2005). "Contrasting Short- and Long-Timescale Effects of Vegetation Dynamics on Water and Carbon Fluxes in Water-Limited Ecosystems." Water Resources Research. 41: 1-13

  16. Integrated approaches to climate–crop modelling: needs and challenges

    PubMed Central

    A. Betts, Richard

    2005-01-01

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate–vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (O3) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate–chemistry–crop–hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models. PMID:16433093

  17. Designing Crop Simulation Web Service with Service Oriented Architecture Principle

    NASA Astrophysics Data System (ADS)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.

    2015-12-01

    Crop simulation models are efficient tools for simulating crop growth processes and yield. Running crop models requires data from various sources as well as time-consuming data processing, such as data quality checking and data formatting, before those data can be inputted to the model. It makes the use of crop modeling limited only to crop modelers. We aim to make running crop models convenient for various users so that the utilization of crop models will be expanded, which will directly improve agricultural applications. As the first step, we had developed a prototype that runs DSSAT on Web called as Tomorrow's Rice (v. 1). It predicts rice yields based on a planting date, rice's variety and soil characteristics using DSSAT crop model. A user only needs to select a planting location on the Web GUI then the system queried historical weather data from available sources and expected yield is returned. Currently, we are working on weather data connection via Sensor Observation Service (SOS) interface defined by Open Geospatial Consortium (OGC). Weather data can be automatically connected to a weather generator for generating weather scenarios for running the crop model. In order to expand these services further, we are designing a web service framework consisting of layers of web services to support compositions and executions for running crop simulations. This framework allows a third party application to call and cascade each service as it needs for data preparation and running DSSAT model using a dynamic web service mechanism. The framework has a module to manage data format conversion, which means users do not need to spend their time curating the data inputs. Dynamic linking of data sources and services are implemented using the Service Component Architecture (SCA). This agriculture web service platform demonstrates interoperability of weather data using SOS interface, convenient connections between weather data sources and weather generator, and connecting various services for running crop models for decision support.

  18. Climate driven crop planting date in the ACME Land Model (ALM): Impacts on productivity and yield

    NASA Astrophysics Data System (ADS)

    Drewniak, B.

    2017-12-01

    Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical crops will be explored. Those impacts include discussions on productivity, yield, and influences on carbon and energy fluxes.

  19. Computer modelling as a tool for the exposure assessment of operators using faulty agricultural pesticide spraying equipment.

    PubMed

    Bańkowski, Robert; Wiadrowska, Bozena; Beresińska, Martyna; Ludwicki, Jan K; Noworyta-Głowacka, Justyna; Godyń, Artur; Doruchowski, Grzegorz; Hołownicki, Ryszard

    2013-01-01

    Faulty but still operating agricultural pesticide sprayers may pose an unacceptable health risk for operators. The computerized models designed to calculate exposure and risk for pesticide sprayers used as an aid in the evaluation and further authorisation of plant protection products may be applied also to assess a health risk for operators when faulty sprayers are used. To evaluate the impact of different exposure scenarios on the health risk for the operators using faulty agricultural spraying equipment by means of computer modelling. The exposure modelling was performed for 15 pesticides (5 insecticides, 7 fungicides and 3 herbicides). The critical parameter, i.e. toxicological end-point, on which the risk assessment was based was the no observable adverse effect level (NOAEL). This enabled risk to be estimated under various exposure conditions such as pesticide concentration in the plant protection product and type of the sprayed crop as well as the number of treatments. Computer modelling was based on the UK POEM model including determination of the acceptable operator exposure level (AOEL). Thus the degree of operator exposure could be defined during pesticide treatment whether or not personal protection equipment had been employed by individuals. Data used for computer modelling was obtained from simulated, pesticide substitute treatments using variously damaged knapsack sprayers. These substitute preparations consisted of markers that allowed computer simulations to be made, analogous to real-life exposure situations, in a dose dependent fashion. Exposures were estimated according to operator dosimetry exposure under 'field' conditions for low level, medium and high target field crops. The exposure modelling in the high target field crops demonstrated exceedance of the AOEL in all simulated treatment cases (100%) using damaged sprayers irrespective of the type of damage or if individual protective measures had been adopted or not. For low level and medium field crops exceedances ranged between 40 - 80% cases. The computer modelling may be considered as an practical tool for the hazard assessment when the faulty agricultural sprayers are used. It also may be applied for programming the quality checks and maintenance systems of this equipment.

  20. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups

    PubMed Central

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5–43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3–37.2°C, maximum temperatures at which the species could germinate varied from 27.7–43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop management practices. PMID:27532825

  1. Assessing the impact of climate variability on cropping patterns in Kenya

    NASA Astrophysics Data System (ADS)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2017-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.

  2. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    NASA Astrophysics Data System (ADS)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  3. Decision Support system- DSS- for irrigation management in greenhouses: a case study in Campania Region

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna

    2016-04-01

    In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils, determined volumetric water content (VWC) by measuring the dielectric constant of the soil using frequency domain technology (FDR). The data acquired real time were used to determine water balance with a physically based model Hydrus 1D. The results show how the model is able to identify the optimal irrigation schedule as function of soil proprieties and crop needs. Keywords: irrigation, DSS, rocket, water content

  4. Validation of Soil Water Content Estimation Method on Agricultural Regions in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Kim, M.

    2016-12-01

    The continuous water stress caused by decrease of soil water has a direct influence to the crop growth in a upland crop area. The agricultural drought is occured if water requirement is not supplied timely in crop growh process. It is more important to understand the soil characteristics for high accuracy soil moisture estimation because of the soil water contents largely depends on soil properties. The RDA(Rural Development Administration) has provided real-time soil moisture observations corrected for 71 points in the South Korea. In this study, we developed a soil water content estimation method that considered soil hydraulic parameters for the observation points of soil water content in agricultural regions operated by the RDA. SWAP(Soil-Water-Atmosphere-Plant) model was used in the estimation of soil water contents. The soil hydraulic parameters that is the input data of the SWAP model were estimated using the ROSETTA model developed by the U.S. Department of Agriculture(USDA). Meteorological data observed from AWS(Automatic Weather Station) were used including daily maximum temperature(°), daily minimum temperature(°), relative humidity(%), solar radiation, wind speed and precipitation data. We choosed 56 stations there are no missing of meteorological data and have soil physical properties. For the verification of soil water content estimation method, we used Haenam KoFlux observation data that are observed long-term soil water contents over 2009-2015(2014 missing) years. In the case of 2015, there are good reproducibility between observation of soil water contents and results of SWAP model simulation with R2=0.72, RMSE=0.026 and TCC=0.849. In the case of precipitation event, the simulation results were slightly overestimated more than observation. However there are good reproducibility in the case of soil water reduction due to continuous non-precipitation periods. We have simulated the soil water contents of the 56 stations that being operated in the RDA from 4 January 2015 to 31 October 2015 using the SWAP model. The environmental setting of SWAP modle according to the station applied it equally. The results showed a significant difference to the reproducibility according to the observation station.

  5. Evaluation of the Community Land Model (CLM-Crop) in the United States Corn Belt

    NASA Astrophysics Data System (ADS)

    Chen, M.; Griffis, T.

    2013-12-01

    An accurate representation of crop phenology in land surface models is crucial for predicting the carbon, water and energy budgets of managed ecosystems. Soybean and corn are cultivated in approximately 600,000 km2 in the Corn Belt- an area greater than the entire State of California. Accurate prediction of the radiation, energy, and carbon budgets of this region is especially important for understanding its influence on radiative forcing, the thermodynamic properties of the atmospheric boundary layer, and changes in climate. Recently, key algorithms describing crop biophysics and interactive crop management (planting, fertilization, irrigation, harvesting) have been implemented in the Community Land Model (CLM-Crop). CLM-Crop provides a framework for prognostic simulation of crop phenology and evaluation of human management decisions under future climate scenarios. However, there is an important need to evaluate CLM-Crop against a broad range of agricultural site observations in order to understand its limitations and to help optimize the crop biophysical parameterization. Here we evaluated CLM-Crop version 4.5 at 9 AmeriFlux corn/soybean sites that are located within the United States Corn Belt. The following questions were addressed: 1) How well does CLM perform for the 9 crop sites with different management techniques (e.g., tillage vs. no-till, rainfed vs. irrigated)? 2) What are the model's strengths and weaknesses of simulating crop phenology, energy fluxes and carbon fluxes? 3) What steps are needed in order to improve the reliability of the CLM-Crop simulations? Our preliminary results indicate that CLM-Crop can simulate the radiation, energy, and carbon fluxes with reasonable accuracy during the mid growing season. The model performance degrades substantially during the early and late growing seasons, which we attribute to a bias in crop phenology. For instance, we observed that the simulated corn and soybean phenology (LAI) has an earlier phase than the observations by about 15 days at many sites. Here, we show how the optimization of carbon allocation and crop phenology influences the modeled radiation, energy, and carbon fluxes and discuss other model deficiencies associated with the crop biophysics scheme.

  6. Estimating nitrogen mineralization from cover crop mixtures using the Precision Nitrogen Management model

    USDA-ARS?s Scientific Manuscript database

    Cover crops influence soil nitrogen (N) mineralization-immobilization-turnover cycles (MIT), thus influencing N availability to a subsequent crop. Dynamic simulation models of the soil/crop system, if properly calibrated and tested, can simulate carbon (C) and N dynamics of a terminated cover crop a...

  7. AquaCrop-OS: A tool for resilient management of land and water resources in agriculture

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozovic, Nicholas; Butler, Adrian P.; Neale, Christopher M. U.; Raes, Dirk; Steduto, Pasquale; Fereres, Elias; Hsiao, Theodore C.

    2017-04-01

    Water managers, researchers, and other decision makers worldwide are faced with the challenge of increasing food production under population growth, drought, and rising water scarcity. Crop simulation models are valuable tools in this effort, and, importantly, provide a means of quantifying rapidly crop yield response to water, climate, and field management practices. Here, we introduce a new open-source crop modelling tool called AquaCrop-OS (Foster et al., 2017), which extends the functionality of the globally used FAO AquaCrop model. Through case studies focused on groundwater-fed irrigation in the High Plains and Central Valley of California in the United States, we demonstrate how AquaCrop-OS can be used to understand the local biophysical, behavioural, and institutional drivers of water risks in agricultural production. Furthermore, we also illustrate how AquaCrop-OS can be combined effectively with hydrologic and economic models to support drought risk mitigation and decision-making around water resource management at a range of spatial and temporal scales, and highlight future plans for model development and training. T. Foster, et al. (2017) AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 181: 18-22. http://dx.doi.org/10.1016/j.agwat.2016.11.015.

  8. Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects

    NASA Technical Reports Server (NTRS)

    Makowski, David; Asseng, Senthold; Ewert, Frank; Bassu, Simona; Durand, Jean-Louis; Martre, Pierre; Adam, Myriam; Aggarwal, Pramod K.; Angulo, Carlos; Baron, Chritian; hide

    2015-01-01

    Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex process-based crop models is a rather new idea. We demonstrate herewith that statistical methods can play an important role in analyzing simulated yield data sets obtained from the ensembles of process-based crop models. Formal statistical analysis is helpful to estimate the effects of different climatic variables on yield, and to describe the between-model variability of these effects.

  9. Assessment of climate change impact on yield of major crops in the Banas River Basin, India.

    PubMed

    Dubey, Swatantra Kumar; Sharma, Devesh

    2018-09-01

    Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Estimating the impact of mineral aerosols on crop yields in food insecure regions using statistical crop models

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Forest, C. E.; Kemanian, A.

    2016-12-01

    A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with traditional crop models, but likely at the cost of removing climate information. Our random forest models consistently discover the positive trend without removing any additional data. The application of random forests as a statistical crop model provides insight into understanding the impact of dust on yields in marginal food producing regions.

  11. [Real-time irrigation forecast of cotton mulched with plastic film under drip irrigation based on meteorological date].

    PubMed

    Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei

    2015-02-01

    It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.

  12. Evaluating gridded crop model simulations of evapotranspiration and irrigation using survey and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Lopez Bobeda, J. R.

    2017-12-01

    The increasing use of groundwater for irrigation of crops has exacerbated groundwater sustainability issues faced by water limited regions. Gridded, process-based crop models have the potential to help farmers and policymakers asses the effects water shortages on yield and devise new strategies for sustainable water use. Gridded crop models are typically calibrated and evaluated using county-level survey data of yield, planting dates, and maturity dates. However, little is known about the ability of these models to reproduce observed crop evapotranspiration and water use at regional scales. The aim of this work is to evaluate a gridded version of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model over the continental United States. We evaluated crop seasonal evapotranspiration over 5 arc-minute grids, and irrigation water use at the county level. Evapotranspiration was assessed only for rainfed agriculture to test the model evapotranspiration equations separate from the irrigation algorithm. Model evapotranspiration was evaluated against the Atmospheric Land Exchange Inverse (ALEXI) modeling product. Using a combination of the USDA crop land data layer (CDL) and the USGS Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture Dataset for the United States (MIrAD-US), we selected only grids with more than 60% of their area planted with the simulated crops (corn, cotton, and soybean), and less than 20% of their area irrigated. Irrigation water use was compared against the USGS county level irrigated agriculture water use survey data. Simulated gridded data were aggregated to county level using USDA CDL and USGS MIrAD-US. Only counties where 70% or more of the irrigated land was corn, cotton, or soybean were selected for the evaluation. Our results suggest that gridded crop models can reasonably reproduce crop evapotranspiration at the country scale (RRMSE = 10%).

  13. Time Series Analysis of Remote Sensing Observations for Citrus Crop Growth Stage and Evapotranspiration Estimation

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Chakraborty, M.; Suradhaniwar, S.; Adinarayana, J.; Durbha, S. S.

    2016-06-01

    Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (http://earthexplorer.usgs.gov/). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system observed relevant weather parameters for crop ET estimation. The results show that time series EO based crop growth stage estimates provide better information about geographically separated citrus orchards. Attempts are being made to estimate regional variations in citrus crop water requirement for effective irrigation planning. In future high resolution Sentinel 2 observations from European Space Agency (ESA) will be used to fill the time gaps and to get better understanding about citrus crop canopy parameters.

  14. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Retrospective Analog Year Analyses Using NASA Satellite Precipitation and Soil Moisture Data to Improve USDA's World Agricultural Supply and Demand Estimates

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Shannon, H.

    2010-12-01

    The USDA World Agricultural Outlook Board (WAOB) coordinates the development of the monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Given the significant effect of weather on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments in the Global Agricultural Decision Support Environment (GLADSE). Because the timing of the precipitation is often as important as the amount, in their effects on crop production, WAOB frequently examines precipitation time series to estimate crop productivity. An effective method for such assessment is the use of analog year comparisons, where precipitation time series, based on surface weather stations, from several historical years are compared with the time series from the current year. Once analog years are identified, crop yields can be estimated for the current season based on observed yields from the analog years, because of the similarities in the precipitation patterns. In this study, NASA satellite precipitation and soil moisture time series are used to identify analog years. Given that soil moisture often has a more direct effect than does precipitation on crop water availability, the time series of soil moisture could be more effective than that of precipitation, in identifying those years with similar crop yields. Retrospective analyses of analogs will be conducted to determine any reduction in the level of uncertainty in identifying analog years, and any reduction in false negatives or false positives. The comparison of analog years could potentially be improved by quantifying the selection of analogs, instead of the current visual inspection method. Various approaches to quantifying are currently being evaluated. This study is part of a larger effort to improve WAOB estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE, including (1) the integration of the Land Parameter Retrieval Model (LPRM) soil moisture algorithm for operational production and (2) the assimilation of LPRM soil moisture into the USDA Environmental Policy Integrated Climate (EPIC) crop model.

  16. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin

    USGS Publications Warehouse

    Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z.

    2008-01-01

    SWAT, a physically-based, hydrological model simulates crop growth, soil water and groundwater movement, and transport of sediment and nutrients at both the process and watershed scales. While the different versions of SWAT have been widely used throughout the world for agricultural and water resources applications, little has been done to test the performance, variability, and transferability of the parameters in the crop growth, soil water, and groundwater modules in an integrated way with multiple sets of field experimental data at the process scale. Using an multiple years of field experimental data of winter wheat (Triticum aestivum L.) in the irrigation district of the Yellow River Basin, this paper assesses the performance of the plant-soil-groundwater modules and the variability and transferability of SWAT2000. Comparison of the simulated results by SWAT to the observations showed that SWAT performed quite unsatisfactorily in LAI predictions during the senescence stage, in yield predictions, and in soil-water estimation under dry soil-profile conditions. The unsatisfactory performance in LAI prediction might be attributed to over-simplified senescence modeling; in yield prediction to the improper computation of the harvest index; and in soil water under dry conditions to the exclusion of groundwater evaporation from the soil water balance in SWAT. In this paper, improvements in crop growth, soil water, and groundwater modules in SWAT were implemented. The saturated soil profile was coupled to the oscillating groundwater table. A variable evaporation coefficient taking into account soil water deficit index, groundwater depth, and crop root depth was used to replace the fixed coefficient in computing groundwater evaporation. The soil water balance included the groundwater evaporation. The modifications improved simulations of crop evapotranspiration and biomass as well as soil water dynamics under dry soil-profile conditions. The evaluation shows that the crop growth and soil water components of SWAT could be further refined to better simulate the hydrology of agricultural watersheds. ?? 2008 Elsevier B.V. All rights reserved.

  17. Preliminary evaluation of spectral, normal and meteorological crop stage estimation approaches

    NASA Technical Reports Server (NTRS)

    Cate, R. B.; Artley, J. A.; Doraiswamy, P. C.; Hodges, T.; Kinsler, M. C.; Phinney, D. E.; Sestak, M. L. (Principal Investigator)

    1980-01-01

    Several of the projects in the AgRISTARS program require crop phenology information, including classification, acreage and yield estimation, and detection of episodal events. This study evaluates several crop calendar estimation techniques for their potential use in the program. The techniques, although generic in approach, were developed and tested on spring wheat data collected in 1978. There are three basic approaches to crop stage estimation: historical averages for an area (normal crop calendars), agrometeorological modeling of known crop-weather relationships agrometeorological (agromet) crop calendars, and interpretation of spectral signatures (spectral crop calendars). In all, 10 combinations of planting and biostage estimation models were evaluated. Dates of stage occurrence are estimated with biases between -4 and +4 days while root mean square errors range from 10 to 15 days. Results are inconclusive as to the superiority of any of the models and further evaluation of the models with the 1979 data set is recommended.

  18. Comparison and modeling of effects of normal and reduced precipitation supply in field experiment with spring barley

    NASA Astrophysics Data System (ADS)

    Pohanková, Eva; Orság, Matěj; Fischer, Milan; Hlavinka, Petr

    2015-04-01

    This paper evaluates two-year (2013 and 2014) results of field experiments with spring barley (cultivar Bojos) under reduced precipitation supply. The field experiments were carried out at the experimental station in Domanínek (Czech Republic; 49°31,470'N, 16°14,400'E, altitude 530 m a.s.l.) and conducted by Institute of Agrosystems and bioclimatology at Mendel Univerzity in Brno in cooperation with Global Change Research Centre AS CR. The field experiments consisted of small plots in two variants and three repetitions. The first variant was uncovered the second was partially covered to exclude rain through out the whole vegetation season. For the partial covering of the plot, a material which transmits solar radiation and diverts rainwater away from the percentage coverage of the plots was used. In 2013, the covered area of the experimental plot was 30%, and in 2014, it was 70%. The main aim was to determine whether there are any differences in the spring barley's development, growth and yield in the uncovered and the partially covered plots, and a comparison of the results. Firstly, differences of key parameters (seasonal dynamics of the leaf area index and above ground biomass, soil water content, yield components and yields) compared; secondly, the results of the field experiments served as input data for the crop growth model DAISY. Subsequently, the crop growth model' ability to simulate crop growth and crop development which were affected by the drought stress was explored. The results were assessed using the following statistical indexes: root mean square error (RMSE) and mean bias error (MBE). This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248, NAZV-JPI - project supported by Czech National Agency of Agricultural Research No. QJ1310123 "Crop modelling as a tool for increasing the production potential and food security of the Czech Republic under Climate Change" and project LD13030 supporting ES1106 COST Action.

  19. AgMIP Training in Multiple Crop Models and Tools

    NASA Technical Reports Server (NTRS)

    Boote, Kenneth J.; Porter, Cheryl H.; Hargreaves, John; Hoogenboom, Gerrit; Thornburn, Peter; Mutter, Carolyn

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has the goal of using multiple crop models to evaluate climate impacts on agricultural production and food security in developed and developing countries. There are several major limitations that must be overcome to achieve this goal, including the need to train AgMIP regional research team (RRT) crop modelers to use models other than the ones they are currently familiar with, plus the need to harmonize and interconvert the disparate input file formats used for the various models. Two activities were followed to address these shortcomings among AgMIP RRTs to enable them to use multiple models to evaluate climate impacts on crop production and food security. We designed and conducted courses in which participants trained on two different sets of crop models, with emphasis on the model of least experience. In a second activity, the AgMIP IT group created templates for inputting data on soils, management, weather, and crops into AgMIP harmonized databases, and developed translation tools for converting the harmonized data into files that are ready for multiple crop model simulations. The strategies for creating and conducting the multi-model course and developing entry and translation tools are reviewed in this chapter.

  20. Incorporating a Constrained Optimization Algorithm into Remote- Sensing/Precision Agriculture Methodology

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George; Khatib, Nader; Kim, Byoungsoo

    with information to improve their crop's vigor has been a major topic of interest. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, the efficiency of farming must increase to meet future food requirements and to make farming a sustainable occupation for the farmer. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The goal is to increase farm revenue by increasing crop yield and decreasing applications of costly chemical and water treatments. In addition, this methodology will decrease the environmental costs of farming, i.e., reduce air, soil, and water pollution. Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now available. Commercial satellite systems can image (multi-spectral) the Earth with a resolution of approximately 2.5 m. Variable precision dispensing systems using GPS are available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been formulated. Personal computers and internet access are in place in most farm homes and can provide a mechanism to periodically disseminate, e.g. bi-weekly, advice on what quantities of water and chemicals are needed in individual regions of the field. What is missing is a model that fuses the disparate sources of information on the current states of the crop and soil, and the remaining resource levels available with the decisions farmers are required to make. This must be a product that is easy for the farmer to understand and to implement. A "Constrained Optimization Feed-back Control Model" to fill this void will be presented. The objective function of the model will be used to maximize the farmer's profit by increasing yields while decreasing environmental costs and decreasing application of costly treatments. This model will incorporate information from remote sensing, in-situ weather sources, soil measurements, crop models, and tacit farmer knowledge of the relative productivity of the selected control regions of the farm to provide incremental advice throughout the growing season on water and chemical treatments. Genetic and meta-heuristic algorithms will be used to solve the constrained optimization problem that possesses complex constraints and a non-linear objective function. *

  1. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites

    NASA Astrophysics Data System (ADS)

    Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2017-03-01

    The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.

  2. The development, evaluation, and application of O3 flux and flux-response models for additional agricultural crops

    Treesearch

    L. D. Emberson; W. J. Massman; P. Buker; G. Soja; I. Van De Sand; G. Mills; C. Jacobs

    2006-01-01

    Currently, stomatal O3 flux and flux-response models only exist for wheat and potato (LRTAP Convention, 2004), as such there is a need to extend these models to include additional crop types. The possibility of establishing robust stomatal flux models for five agricultural crops (tomato, grapevine, sugar beet, maize and sunflower) was investigated. These crops were...

  3. The World Grain Economy and Climate Change to the Year 2000: Implications for Policy

    DTIC Science & Technology

    1983-01-01

    THE WORLD GRAIN ECONOMY AND CUMATE CHANGE TO THE YEAR 2000: IMPUCATIONS FOR POUCY REPORT ON THE FINAL PHASE OF A CLIMATE IMPACT ASSESSMENT CONDUCTED...MODEL...................................... 37 APPENDIX B-A SUMMARY OF CROP YIELDS AND CLIMATE CHANGE TOTHE YR00............33 CONTENTS LIST OF FIGURES...114. PROJECTED BASE 2000 YIELDS .................. 1S LIST OF TABLES 1. CLIMATE PARAMETERS BY LATITUDINAL ZONES .. S 2. SOURCES OF CLIMATE CHANGE

  4. MELiSSA Food Characterization general approach and current status

    NASA Astrophysics Data System (ADS)

    Weihreter, Martin; Chaerle, Laury; Secco, Benjamin; Molders, Katrien; van der Straeten, Dominique; Duliere, Eric; Pieters, Serge; Maclean, Heather; Dochain, Denis; Quinet, Muriel; Lutts, Stanley; Graham, Thomas; Stasiak, Michael; Rondeau Vuk, Theresa; Zheng, Youbin; Dixon, Mike; Laniau, Martine; Larreture, Alain; Timsit, Michel; Aronne, Giovanna; Barbieri, Giancarlo; Buonomo, Roberta; Veronica; Paradiso, Roberta; de Pascale, Stafania; Galbiati, Massimo; Troia, A. R.; Nobili, Matteo; Bucchieri, Lorenzo; Page, Valérie; Feller, Urs; Lasseur, Christophe

    Higher plants play an important role in closed ecological life support systems as oxygen pro-ducers, carbon dioxide and water recyclers, and as a food source. For an integration of higher plant chambers into the MELiSSA (Micro Ecological Life Support System Alternative) loop, a detailed characterization and optimization of the full food production and preparation chain is needed. This implies the prediction and control of the nutritional quality of the final products consumed by the crew, the prediction of the wastes quality and quantity produced along the chain for further waste treatment (MELiSSA waste treatment) and the optimization of overall efficiencies. To reach this goal several issues have to be studied in an integrated manner: the physiological responses of crops to a range of environmental parameters, crop yield efficiencies and respective ratio and composition of edible and inedible biomass, the processability and storability of the produced food and last but not least composition of wastes in view of further degradation (fiber content). Within the Food Characterization (FC) project several compar-ative plant growth bench tests were carried out to obtain preliminary data regarding these aspects. Four pre-selected cultivars of each of the four energy-rich crops with worldwide usage -wheat, durum wheat, potato and soybean -were grown under well-characterized environmental conditions. The different cultivars of each species are screened for their performance in view of a closed loop application by parameter ranking. This comprises the characterization of edi-ble/inedible biomass ratio, nutritional quality, processability and overall performance under the specific conditions of hydroponic cultivation and artificial illumination. A second closely linked goal of the FC project is to develop a mechanistic physiological plant model, which will ease the integration of higher plants compartments in the MELiSSA concept by virtue of its predictive abilities. Available MELiSSA closed environment crop growth data were used to develop a first photosynthetic model representing the basic carbon fixation mechanisms. This model will be further elaborated in the course of this study to predict yield, oxygen production and transpi-ration. As an ultimate goal the model is intended to simulate the composition of the different plant organs (root, shoot, fruit/seed or tuber) for each crop under various conditions. For the validation of this model an extensive amount of data sets are needed. Current plant growth bench test setups will provide part of the required data. To gain more precise and detailed datasets, a highly closed plant growth chamber (Plant Characterization Unit, PCU) is under development. The PCU will provide accurate mass balances for carbon, water, oxygen and other elements with statistical reliability. This reliability is achieved through a high degree of closure and environment homogeneity. The PCU will also provide data for the above described plant characterization studies. The general work approach, the current status and future steps will be illustrated.

  5. Effects of Hydrological Parameters on Palm Oil Fresh Fruit Bunch Yield)

    NASA Astrophysics Data System (ADS)

    Nda, M.; Adnan, M. S.; Suhadak, M. A.; Zakaria, M. S.; Lopa, R. T.

    2018-04-01

    Climate change effects and variability have been studied by many researchers in diverse geophysical fields. Malaysia produces large volume of palm oil, the effects of climate change on hydrological parameters (rainfall and precipitation) could have adverse effects on palm oil fresh fruit bunch (FFB) production with implications at both local and international market. It is important to understand the effects of climate change on crop yield to adopt new cultivation techniques and guaranteeing food security globally. Based on this background, the paper’s objective is to investigate the effects of rainfall and temperature pattern on crop yield (FFB) within five years period (2013 - 2017) at Batu Pahat District. The Man - Kendall rank technique (trend test) and statistical analyses (correlation and regression) were applied to the dataset used for the study. The results reveal that there are variabilities in rainfall and temperature from one month to the other and the statistical analysis reveals that the hydrological parameters have an insignificant effect on crop yield.

  6. Wheat growth monitoring with radar vegetation indices

    USDA-ARS?s Scientific Manuscript database

    Microwave remote sensing can help in the monitoring of crop growth. Many experiments have been carried out to investigate the sensitivity of microwave sensors to crop growth parameters. These have clearly shown that canopy structure and water content can greatly affect the measurements. For agricult...

  7. Potential individual versus simultaneous climate change effects on soybean (C 3) and maize (C 4) crops: An agrotechnology model based study

    NASA Astrophysics Data System (ADS)

    Mera, Roberto J.; Niyogi, Dev; Buol, Gregory S.; Wilkerson, Gail G.; Semazzi, Fredrick H. M.

    2006-11-01

    Landuse/landcover change induced effects on regional weather and climate patterns and the associated plant response or agricultural productivity are coupled processes. Some of the basic responses to climate change can be detected via changes in radiation ( R), precipitation ( P), and temperature ( T). Past studies indicate that each of these three variables can affect LCLUC response and the agricultural productivity. This study seeks to address the following question: What is the effect of individual versus simultaneous changes in R, P, and T on plant response such as crop yields in a C 3 and a C 4 plant? This question is addressed by conducting model experiments for soybean (C 3) and maize (C 4) crops using the DSSAT: Decision Support System for Agrotechnology Transfer, CROPGRO (soybean), and CERES-Maize (maize) models. These models were configured over an agricultural experiment station in Clayton, NC [35.65°N, 78.5°W]. Observed weather and field conditions corresponding to 1998 were used as the control. In the first set of experiments, the CROPGRO (soybean) and CERES-Maize (maize) responses to individual changes in R and P (25%, 50%, 75%, 150%) and T (± 1, ± 2 °C) with respect to control were studied. In the second set, R, P, and T were simultaneously changed by 50%, 150%, and ± 2 °C, and the interactions and direct effects of individual versus simultaneous variable changes were analyzed. For the model setting and the prescribed environmental changes, results from the first set of experiments indicate: (i) precipitation changes were most sensitive and directly affected yield and water loss due to evapotranspiration; (ii) radiation changes had a non-linear effect and were not as prominent as precipitation changes; (iii) temperature had a limited impact and the response was non-linear; (iv) soybeans and maize responded differently for R, P, and T, with maize being more sensitive. The results from the second set of experiments indicate that simultaneous change analyses do not necessarily agree with those from individual changes, particularly for temperature changes. Our analysis indicates that for the changing climate, precipitation (hydrological), temperature, and radiative feedbacks show a non-linear effect on yield. Study results also indicate that for studying the feedback between the land surface and the atmospheric changes, (i) there is a need for performing simultaneous parameter changes in the response assessment of cropping patterns and crop yield based on ensembles of projected climate change, and (ii) C 3 crops are generally considered more sensitive than C 4; however, the temperature-radiation related changes shown in this study also effected significant changes in C 4 crops. Future studies assessing LCLUC impacts, including those from agricultural cropping patterns and other LCULC-climate couplings, should advance beyond the sensitivity mode and consider multivariable, ensemble approaches to identify the vulnerability and feedbacks in estimating climate-related impacts.

  8. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2

    NASA Technical Reports Server (NTRS)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.

  9. Bare soil erosion modelling with rainfall simulations: experiments on crop and recently burned areas

    NASA Astrophysics Data System (ADS)

    Catani, F.; Menci, S.; Moretti, S.; Keizer, J.

    2006-12-01

    The use of numerical models is of fundamental importance in the comprehension and prediction of soil erosion. At the very basis of the calibration process of the numerical models are the direct measurements of the governing parameters, carried out during field or laboratory tests. To measure and model soil erosion rainfall simulations can be used, that allow the reproduction of project rainfall having chosen characteristics of intensity and duration. The main parameters that rainfall simulators can measure are hydraulic conductivity, parameters of soil erodibility, rate and features of splash erosion, discharge coefficient and sediment yield. Other important parameters can be estimated during the rainfall simulations through the use of photogrammetric instruments able to memorize high definition stereographic models of the soil plot under analysis at different time steps. In this research rainfall simulator experiments (rse) were conducted to measure and quantify runoff and erosion processes on selected bare soil plots. The selected plots are located in some vineyards, olive groves and crops in central Italy and in some recently burned areas in north-central Portugal, affected by a wildfire during early July 2005 and, at the time, largely covered by commercial eucalypt plantations. On the Italian crops the choice of the rainfall intensities and durations were performed on the basis of the previous knowledge of the selected test areas. The procedure was based on an initial phase of soil wetting and a following phase of 3 erosion cycles. The first should reproduce the effects of a normal rainfall with a return time of 2 years (23 mm/h). The second should represent a serious episode with a return time of 10 years (34 mm/h). The third has the objective to reproduce and understand the effects of an intense precipitation event, with a return time of 50 years (41 mm/h). During vineyards experiments some photogrammetric surveys were carried out as well. In the Portugal burned areas, to measure the influence of rain intensities, two rainfall simulations have been carried out simultaneously, one with an intensity of 45 mm/h and one with 85 mm/h. In both cases, before the experiments, soil and vegetation cover description have been made and soil samples have been taken. During the simulations soil samples leaving the parcels were taken at suitable time intervals to measure the sediment yield and the runoff. The rse data have been thought to provide a sufficient basis for erosion modelling at the small-plot scale and, through upscaling, for predicting erosion rates at the slope scale. For this purpose two soil erosion models, WEPP and MEFIDIS, have been selected and then compared. The comparison has shown a certain degree of uncertainty in numeric erosion prediction, due to the non linearity of the overland erosion processes, and to technical and conceptual difficulties, including the data collection. In the following laboratory phase high resolution (2 by 2 mm) DEMs of the vineyards plot are being produced for each meaningful processing phase. The digital elevation models will then be analysed to asses calibration parameters such as soil roughness (expressed by standard deviation of elevations, fractal dimension and local relief energy), soil and sediment transfer (hypsometric curves, local elevation and volume differences) and rill network evolution (Horton ordering, stream lengths, contributing area, drainage density, Hack's law)

  10. An integrated soil-crop system model for water and nitrogen management in North China

    PubMed Central

    Liang, Hao; Hu, Kelin; Batchelor, William D.; Qi, Zhiming; Li, Baoguo

    2016-01-01

    An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China. PMID:27181364

  11. Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling system

    NASA Astrophysics Data System (ADS)

    Liu, X.; Chen, F.; Barlage, M. J.; Zhou, G.; Niyogi, D.

    2015-12-01

    Croplands are important in land-atmosphere interactions and in modifying local and regional weather and climate. Despite their importance, croplands are poorly represented in the current version of the coupled Weather Research and Forecasting (WRF)/ Noah land-surface modeling system, resulting in significant surface temperature and humidity biases across agriculture- dominated regions of the United States. This study aims to improve the WRF weather forecasting and regional climate simulations during the crop growing season by enhancing the representation of cropland in the Noah-MP land model. We introduced dynamic crop growth parameterization into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at both the field and regional scales with multiple crop biomass datasets, surface fluxes and soil moisture/temperature observations. We also integrated a detailed cropland cover map into WRF, enabling the model to simulate corn and soybean field across the U.S. Great Plains. Results show marked improvement in the Noah-MP-Crop performance in simulating leaf area index (LAI), crop biomass, soil temperature, and surface fluxes. Enhanced cropland representation is not only crucial for improving weather forecasting but can also help assess potential impacts of weather variability on regional hydrometeorology and crop yields. In addition to its applications to WRF, Noah-MP-Crop can be applied in high-spatial-resolution regional crop yield modeling and drought assessments

  12. Seasonal evolution of soil and plant parameters on the agricultural Gebesee test site: a database for the set-up and validation of EO-LDAS and satellite-aided retrieval models

    NASA Astrophysics Data System (ADS)

    Truckenbrodt, Sina C.; Schmullius, Christiane C.

    2018-03-01

    Ground reference data are a prerequisite for the calibration, update, and validation of retrieval models facilitating the monitoring of land parameters based on Earth Observation data. Here, we describe the acquisition of a comprehensive ground reference database which was created to test and validate the recently developed Earth Observation Land Data Assimilation System (EO-LDAS) and products derived from remote sensing observations in the visible and infrared range. In situ data were collected for seven crop types (winter barley, winter wheat, spring wheat, durum, winter rape, potato, and sugar beet) cultivated on the agricultural Gebesee test site, central Germany, in 2013 and 2014. The database contains information on hyperspectral surface reflectance factors, the evolution of biophysical and biochemical plant parameters, phenology, surface conditions, atmospheric states, and a set of ground control points. Ground reference data were gathered at an approximately weekly resolution and on different spatial scales to investigate variations within and between acreages. In situ data collected less than 1 day apart from satellite acquisitions (RapidEye, SPOT 5, Landsat-7 and -8) with a cloud coverage ≤ 25 % are available for 10 and 15 days in 2013 and 2014, respectively. The measurements show that the investigated growing seasons were characterized by distinct meteorological conditions causing interannual variations in the parameter evolution. Here, the experimental design of the field campaigns, and methods employed in the determination of all parameters, are described in detail. Insights into the database are provided and potential fields of application are discussed. The data will contribute to a further development of crop monitoring methods based on remote sensing techniques. The database is freely available at PANGAEA (https://doi.org/10.1594/PANGAEA.874251).

  13. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    NASA Technical Reports Server (NTRS)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  14. Consideration in selecting crops for the human-rated life support system: a linear programming model

    NASA Astrophysics Data System (ADS)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  15. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; hide

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.

  16. Extracting sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Wang, Fang; Shen, Luming; Liao, Guiping; Wang, Lin

    2017-03-01

    Spectrum technology has been widely used in crop non-destructive testing diagnosis for crop information acquisition. Since spectrum covers a wide range of bands, it is of critical importance to extract the sensitive bands. In this paper, we propose a methodology to extract the sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis. Our obtained sensitive bands are relatively robust in the range of 534 nm-574 nm. Further, by using the multifractal parameter (Hurst exponent) of the extracted sensitive bands, we propose a prediction model to forecast the Soil and plant analyzer development values ((SPAD), often used as a parameter to indicate the chlorophyll content) and an identification model to distinguish the different planting patterns. Three vegetation indices (VIs) based on previous work are used for comparison. Three evaluation indicators, namely, the root mean square error, the correlation coefficient, and the relative error employed in the SPAD values prediction model all demonstrate that our Hurst exponent has the best performance. Four rapeseed compound planting factors, namely, seeding method, planting density, fertilizer type, and weed control method are considered in the identification model. The Youden indices calculated by the random decision forest method and the K-nearest neighbor method show that our Hurst exponent is superior to other three Vis, and their combination for the factor of seeding method. In addition, there is no significant difference among the five features for other three planting factors. This interesting finding suggests that the transplanting and the direct seeding would make a big difference in the growth of rapeseed.

  17. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1993-01-01

    During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center.

  18. Contribution of Crop Models to Adaptation in Wheat.

    PubMed

    Chenu, Karine; Porter, John Roy; Martre, Pierre; Basso, Bruno; Chapman, Scott Cameron; Ewert, Frank; Bindi, Marco; Asseng, Senthold

    2017-06-01

    With world population growing quickly, agriculture needs to produce more with fewer inputs while being environmentally friendly. In a context of changing environments, crop models are useful tools to simulate crop yields. Wheat (Triticum spp.) crop models have been evolving since the 1960s to translate processes related to crop growth and development into mathematical equations. These have been used over decades for agronomic purposes, and have more recently incorporated advances in the modeling of environmental footprints, biotic constraints, trait and gene effects, climate change impact, and the upscaling of global change impacts. This review outlines the potential and limitations of modern wheat crop models in assisting agronomists, breeders, and policymakers to address the current and future challenges facing agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Satellite passive microwave detection of surface water inundation changes over the pan-Arctic from AMSR

    NASA Astrophysics Data System (ADS)

    Du, J.; Kimball, J. S.; Jones, L. A.; Watts, J. D.

    2016-12-01

    Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical crops will be explored. Those impacts include discussions on productivity, yield, and influences on carbon and energy fluxes.

  20. Impacts of crop rotations on soil organic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore suited for further scenario analysis and impact assessment in order to support agri-environmental policy decisions.

  1. Putting mechanisms into crop production models.

    PubMed

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. © 2013 John Wiley & Sons Ltd.

  2. A Pilot Study Assesing Climate Change Impacts on Cereals

    NASA Astrophysics Data System (ADS)

    Topcu, Sevilay; Sen, Burak; Turkes, Murat

    2010-05-01

    The spatial and temporal impacts of climate change on the growth and yield of major cereals (first and second-crop corn) as well as wheat grown in Cukurova Region in the southern Turkey have been assessed, by combining the outputs from a regional climate model with a crop growth simulation model. With its 1.1 million ha of agricultural land, the Cukurova Region is one of the major agricultural production regions in Turkey. Wheat dominates in rain-fed areas while corn crops are grown in more than 50 % of the irrigated land in the region. Thus, the Region is providing half of the country's total cereal production. Since the region has a typical Mediterranean climate with almost no rain and high temperatures during the summer months, agricultural production is vulnerable to changes in climate in terms of decreasing rainfall and increasing temperatures and consequently shortage of water resources. To predict the future climate for the period 2070-2100, the regional climate model RegCM3 conditions was performed using IPCC's SRESS-A2 scenario, and climatic parameter such as daily mean, maximum and minimum temperatures, radiation as well as total annual precipitation were selected for the simulation study. Data for the period 1961 to 1990 were used as historical reference. The WOFOST model was used to simulate cereal growths and yields for two different water availability senarios: 1) potential production and 2) water-limited production conditions. Potential growth represents the conditions where no limiting factor such as water and nutrients is present, however due to the water-limited production situation, water for irrigation is limited as a consequence of water shortage. The detailed results of previous field experiments carried out with three cereal crops in different locations with different regional soil and climate conditions were used for the verification of the WOFOST model. According to the verification results, the model simulated the yield with less than 5% deviation for all three cereal crops. According to projections of the regional climate model RegCM3, the annual average temperature will likely increase by 3.4 to 4.8 °C, while approximately a 25% decrease in rainfall amounts is expected in the Cukurova Region during the period 2071-2100. Similar results for temperatures were estimated for entire country, however predicted changes in rainfall varies in a wide range for the country. The study showed that with climate change, wheat yield could decrease drastically in rainfed areas, however supplemental irrigation could help to sustain the yield on the current level. Yields of first and second-crop corn are expected to decrease by 58% and 43.4%, respectively, compared to the reference value under water shortages.

  3. Rubisco Catalytic Properties and Temperature Response in Crops1

    PubMed Central

    2016-01-01

    Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. PMID:27329223

  4. Rubisco Catalytic Properties and Temperature Response in Crops.

    PubMed

    Hermida-Carrera, Carmen; Kapralov, Maxim V; Galmés, Jeroni

    2016-08-01

    Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    DOE PAGES

    Christensen, A. J.; Srinivasan, V.; Hart, J. C.; ...

    2018-03-17

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less

  6. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, A. J.; Srinivasan, V.; Hart, J. C.

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less

  7. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security.

    PubMed

    Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy

    2018-05-01

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in "big data" analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.

  8. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    PubMed Central

    Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy

    2018-01-01

    Abstract Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields. PMID:29562368

  9. Impacts of crop growth dynamics on soil quality at the regional scale

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop rotation database both spatial and temporal analysis becomes possible and allows for decision support at both farm and regional level. The framework is therefore suited for further scenario analysis and impact assessment. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  10. Parameter Stability of the Functional–Structural Plant Model GREENLAB as Affected by Variation within Populations, among Seasons and among Growth Stages

    PubMed Central

    Ma, Yuntao; Li, Baoguo; Zhan, Zhigang; Guo, Yan; Luquet, Delphine; de Reffye, Philippe; Dingkuhn, Michael

    2007-01-01

    Background and Aims It is increasingly accepted that crop models, if they are to simulate genotype-specific behaviour accurately, should simulate the morphogenetic process generating plant architecture. A functional–structural plant model, GREENLAB, was previously presented and validated for maize. The model is based on a recursive mathematical process, with parameters whose values cannot be measured directly and need to be optimized statistically. This study aims at evaluating the stability of GREENLAB parameters in response to three types of phenotype variability: (1) among individuals from a common population; (2) among populations subjected to different environments (seasons); and (3) among different development stages of the same plants. Methods Five field experiments were conducted in the course of 4 years on irrigated fields near Beijing, China. Detailed observations were conducted throughout the seasons on the dimensions and fresh biomass of all above-ground plant organs for each metamer. Growth stage-specific target files were assembled from the data for GREENLAB parameter optimization. Optimization was conducted for specific developmental stages or the entire growth cycle, for individual plants (replicates), and for different seasons. Parameter stability was evaluated by comparing their CV with that of phenotype observation for the different sources of variability. A reduced data set was developed for easier model parameterization using one season, and validated for the four other seasons. Key Results and Conclusions The analysis of parameter stability among plants sharing the same environment and among populations grown in different environments indicated that the model explains some of the inter-seasonal variability of phenotype (parameters varied less than the phenotype itself), but not inter-plant variability (parameter and phenotype variability were similar). Parameter variability among developmental stages was small, indicating that parameter values were largely development-stage independent. The authors suggest that the high level of parameter stability observed in GREENLAB can be used to conduct comparisons among genotypes and, ultimately, genetic analyses. PMID:17158141

  11. Simulation of crop yield variability by improved root-soil-interaction modelling

    NASA Astrophysics Data System (ADS)

    Duan, X.; Gayler, S.; Priesack, E.

    2009-04-01

    Understanding the processes and factors that govern the within-field variability in crop yield has attached great importance due to applications in precision agriculture. Crop response to environment at field scale is a complex dynamic process involving the interactions of soil characteristics, weather conditions and crop management. The numerous static factors combined with temporal variations make it very difficult to identify and manage the variability pattern. Therefore, crop simulation models are considered to be useful tools in analyzing separately the effects of change in soil or weather conditions on the spatial variability, in order to identify the cause of yield variability and to quantify the spatial and temporal variation. However, tests showed that usual crop models such as CERES-Wheat and CERES-Maize were not able to quantify the observed within-field yield variability, while their performance on crop growth simulation under more homogeneous and mainly non-limiting conditions was sufficent to simulate average yields at the field-scale. On a study site in South Germany, within-field variability in crop growth has been documented since years. After detailed analysis and classification of the soil patterns, two site specific factors, the plant-available-water and the O2 deficiency, were considered as the main causes of the crop growth variability in this field. Based on our measurement of root distribution in the soil profile, we hypothesize that in our case the insufficiency of the applied crop models to simulate the yield variability can be due to the oversimplification of the involved root models which fail to be sensitive to different soil conditions. In this study, the root growth model described by Jones et al. (1991) was adapted by using data of root distributions in the field and linking the adapted root model to the CERES crop model. The ability of the new root model to increase the sensitivity of the CERES crop models to different enviromental conditions was then evaluated by means of comparison of the simualtion results with measured data and by scenario calculations.

  12. Estimation of Carbon Budgets for Croplands by Combining High Resolution Remote Sensing Data with a Crop Model and Validation Ground Data

    NASA Astrophysics Data System (ADS)

    Mangiarotti, S.; Veloso, A.; Ceschia, E.; Tallec, T.; Dejoux, J. F.

    2015-12-01

    Croplands occupy large areas of Earth's land surface playing a key role in the terrestrial carbon cycle. Hence, it is essential to quantify and analyze the carbon fluxes from those agro-ecosystems, since they contribute to climate change and are impacted by the environmental conditions. In this study we propose a regional modeling approach that combines high spatial and temporal resolutions (HSTR) optical remote sensing data with a crop model and a large set of in-situ measurements for model calibration and validation. The study area is located in southwest France and the model that we evaluate, called SAFY-CO2, is a semi-empirical one based on the Monteith's light-use efficiency theory and adapted for simulating the components of the net ecosystem CO2 fluxes (NEE) and of the annual net ecosystem carbon budgets (NECB) at a daily time step. The approach is based on the assimilation of satellite-derived green area index (GAI) maps for calibrating a number of the SAFY-CO2 parameters linked to crop phenology. HSTR data from the Formosat-2 and SPOT satellites were used to produce the GAI maps. The experimental data set includes eddy covariance measurements of net CO2 fluxes from two experimental sites and partitioned into gross primary production (GPP) and ecosystem respiration (Reco). It also includes measurements of GAI, biomass and yield between 2005 and 2011, focusing on the winter wheat crop. The results showed that the SAFY-CO2 model correctly reproduced the biomass production, its dynamic and the yield (relative errors about 24%) in contrasted climatic, environmental and management conditions. The net CO2 flux components estimated with the model were overall in agreement with the ground data, presenting good correlations (R² about 0.93 for GPP, 0.77 for Reco and 0.86 for NEE). The evaluation of the modelled NECB for the different site-years highlighted the importance of having accurate estimates of each component of the NECB. Future works aim at considering systematically post-harvest events (such as re-growths, weeds and intercrops) on NEE assessment and at assimilating radar remote sensing data for estimating GAI and biomass more accurately. This approach is currently being extended to summer crops and it could be applied to larger scales thanks to the recent satellite missions (Landsat-8, Sentinel-1 and 2…).

  13. Reconciling the Mitscherlich's law of diminishing returns with Liebig's law of the minimum. Some results on crop modeling.

    PubMed

    Ferreira, Iuri E P; Zocchi, Silvio S; Baron, Daniel

    2017-11-01

    Reliable fertilizer recommendations depend on the correctness of the crop production models fitted to the data, but generally the crop models are built empirically, neglecting important physiological aspects related with response to fertilizers, or they are based in laws of plant mineral nutrition seen by many authors as conflicting theories: the Liebig's Law of the Minimum and Mitscherlich's Law of Diminishing Returns. We developed a new approach to modelling the crop response to fertilizers that reconcile these laws. In this study, the Liebig's Law is applied at the cellular level to explain plant production and, as a result, crop models compatible with the Law of Diminishing Returns are derived. Some classical crop models appear here as special cases of our methodology, and a new interpretation for Mitscherlich's Law is also provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Meteorological risks are drivers of environmental innovation in agro-ecosystem management

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Van de Vyver, Hans; Vanwindekens, Frédéric; Planchon, Viviane; Verspecht, Ann; Frutos de Cachorro, Julia; Buysse, Jeroen

    2016-04-01

    Extreme weather events such as droughts, heat waves and rain storms are projected to increase both in frequency and magnitude with climate change. The research hypothesis of the MERINOVA project is that meteorological risks act as drivers of environmental innovation in agro-ecosystem management which is being tested using a chain of risk approach. The project comprises of five major parts that reflect the chain of risks: the hazard, its impact on different agro-ecosystems, vulnerability, risk management and risk communication. Generalized Extreme Value (GEV) theory was used to model annual maxima of meteorological variables based on a location-, scale- and shape-parameter that determine the center of the distribution, the deviation of the location-parameter and the upper tail decay, respectively. Spatial interpolation of GEV-derived return levels has yielded maps of temperature extremes, precipitation deficits and wet periods. The degree of temporal overlap between extreme weather conditions and sensitive periods in the agro-ecosystem was determined using a bio-physically based modelling framework that couples phenological models, a soil water balance, crop growth and environmental models. 20-year return values for frost, heat stress, drought, waterlogging and field access during different crop stages were related to arable yields. The spatial extent of vulnerability is developed on different layers of spatial information that include inter alia meteorology, soil-landscapes, crop cover and management. The level of vulnerability and resilience of an agro-ecosystem is also determined by risk management. The types of agricultural risk and their relative importance differ across sectors and farm types as elucidated by questionnaires and focus groups. Risk types are distinguished according to production, market, institutional, financial and liability risks. A portfolio of potential strategies was identified at farm, market and policy level. In conclusion, MERINOVA provides for a robust and flexible framework by demonstrating its performance across Belgian agro-ecosystems, and by ensuring its relevance to policy makers and practitioners. A strong expert and end-user network is established to help disseminate and exploit project results to meet user needs.

  15. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    NASA Astrophysics Data System (ADS)

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.

  16. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields.

    PubMed

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.

  17. Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize

    USDA-ARS?s Scientific Manuscript database

    Research was conducted in northern Colorado in 2011 to estimate the Crop Water Stress Index (CWSI) and actual water transpiration (Ta) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that ...

  18. Crop water production functions for grain sorghum and winter wheat

    USDA-ARS?s Scientific Manuscript database

    Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. The objective was to develop relationships among weather parameters, water use, and grain productivity to produce functions forecasting grain yields of grain sorghum and w...

  19. Soil quality parameters for row-crop and grazed pasture systems with agroforestry buffers

    USDA-ARS?s Scientific Manuscript database

    Incorporation of trees and establishment of buffers are practices that can improve soil quality. Soil enzyme activities and water stable aggregates are sensitive indices for assessing soil quality by detecting early changes in soil management. However, studies comparing grazed pasture and row crop...

  20. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Charley; Kamboj, Sunita; Wang, Cheng

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook.more » The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.« less

  1. Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Chen, Fei; Barlage, Michael; Zhou, Guangsheng; Niyogi, Dev

    2016-12-01

    Croplands are important in land-atmosphere interactions and in the modification of local and regional weather and climate; however, they are poorly represented in the current version of the coupled Weather Research and Forecasting/Noah with multiparameterization (Noah-MP) land surface modeling system. This study introduced dynamic corn (Zea mays) and soybean (Glycine max) growth simulations and field management (e.g., planting date) into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at field scales using crop biomass data sets, surface heat fluxes, and soil moisture observations. Compared to the generic dynamic vegetation and prescribed-leaf area index (LAI)-driven methods in Noah-MP, the Noah-MP-Crop showed improved performance in simulating leaf area index (LAI) and crop biomass. This model is able to capture the seasonal and annual variability of LAI and to differentiate corn and soybean in peak values of LAI as well as the length of growing seasons. Improved simulations of crop phenology in Noah-MP-Crop led to better surface heat flux simulations, especially in the early period of growing season where current Noah-MP significantly overestimated LAI. The addition of crop yields as model outputs expand the application of Noah-MP-Crop to regional agriculture studies. There are limitations in the use of current growing degree days (GDD) criteria to predict growth stages, and it is necessary to develop a new method that combines GDD with other environmental factors, to more accurately define crop growth stages. The capability introduced in Noah-MP allows further crop-related studies and development.

  2. Mapping cropland GPP in the north temperate region with space measurements of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Huete, A. R.; Zarco-Tejada, P.; Frankenberg, C.; Lee, J.; Berry, J. A.; Moran, S. M.; Ponce-Campos, G.; Beer, C.; Camps-Valls, G.; Buchmann, N. C.; Gianelle, D.; Klumpp, K.; Cescatti, A.; Baker, J. M.; Griffis, T.

    2013-12-01

    Monitoring agricultural productivity is important for optimizing management practices in a world under a continuous increase of food and biofuel demand. We used new space measurements of sun-induced chlorophyll fluorescence (SIF), a vegetation parameter intrinsically linked to photosynthesis, to capture photosynthetic uptake of the crop belts in the north temperate region. The following data streams and procedures have been used in this analysis: (1) SIF retrievals have been derived from measurements of the MetOp-A / GOME-2 instrument in the 2007-2011 time period; (2) ensembles of process-based and data-driven biogeochemistry models have been analyzed in order to assess the capability of global models to represent crop gross primary production (GPP); (3) flux tower-based GPP estimates covering the 2007-2011 time period have been extracted over 18 cropland and grassland sites in the Midwest US and Western Europe from the Ameriflux and the European Fluxes Database networks; (4) large-scale NPP estimates have been derived by the agricultural inventory data sets developed by USDA-NASS and Monfreda et al. The strong linear correlation between the SIF space retrievals and the flux tower-based GPP, found to be significantly higher than that between reflectance-based vegetation indices (EVI, NDVI and MTCI) and GPP, has enabled the direct upscaling of SIF to cropland GPP maps at the synoptic scale. The new crop GPP estimates we derive from the scaling of SIF space retrievals are consistent with both flux tower GPP estimates and agricultural inventory data. These new GPP estimates show that crop productivity in the US Western Corn Belt, and most likely also in the rice production areas in the Indo-Gangetic plain and China, is up to 50-75% higher than estimates by state-of-the-art data-driven and process-oriented biogeochemistry models. From our analysis we conclude that current carbon models have difficulties in reproducing the special conditions of those highly productive crops subject to an intense management. Observational inputs closely linked to physiological condition and the photosynthetic dynamics of the vegetation, such as the fluorescence measurements presented in this study, can be an essential complement to existing models and remotely-sensed observations for the evaluation of global agricultural yields.

  3. Growth/reflectance model interface for wheat and corresponding model

    NASA Technical Reports Server (NTRS)

    Suits, G. H.; Sieron, R.; Odenweller, J.

    1984-01-01

    The use of modeling to explore the possibility of discovering new and useful crop condition indicators which might be available from the Thematic Mapper and to connect these symptoms to the biological causes in the crop is discussed. A crop growth model was used to predict the day to day growth features of the crop as it responds biologically to the various environmental factors. A reflectance model was used to predict the character of the interaction of daylight with the predicted growth features. An atmospheric path radiance was added to the reflected daylight to simulate the radiance appearing at the sensor. Finally, the digitized data sent to a ground station were calculated. The crop under investigation is wheat.

  4. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    PubMed

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd. © 2016 John Wiley & Sons Ltd.

  5. Surfing parameter hyperspaces under climate change scenarios to design future rice ideotypes.

    PubMed

    Paleari, Livia; Movedi, Ermes; Cappelli, Giovanni; Wilson, Lloyd T; Confalonieri, Roberto

    2017-11-01

    Growing food crops to meet global demand and the search for more sustainable cropping systems are increasing the need for new cultivars in key production areas. This study presents the identification of rice traits putatively producing the largest yield benefits in five areas that markedly differ in terms of environmental conditions in the Philippines, India, China, Japan and Italy. The ecophysiological model WARM and sensitivity analysis techniques were used to evaluate phenotypic traits involved with light interception, photosynthetic efficiency, tolerance to abiotic stressors, resistance to fungal pathogens and grain quality. The analysis involved only model parameters that have a close relationship with phenotypic traits breeders are working on, to increase the in vivo feasibility of selected ideotypes. Current climate and future projections were considered, in the light of the resources required by breeding programs and of the role of weather variables in the identification of promising traits. Results suggest that breeding for traits involved with disease resistance, and tolerance to cold- and heat-induced spikelet sterility could provide benefits similar to those obtained from the improvement of traits involved with canopy structure and photosynthetic efficiency. In contrast, potential benefits deriving from improved grain quality traits are restricted by weather variability and markedly affected by G × E interactions. For this reason, district-specific ideotypes were identified using a new index accounting for both their productivity and feasibility. © 2017 John Wiley & Sons Ltd.

  6. A crops and soils data base for scene radiation research

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Bauer, M. E.; Robinson, B. F.; Daughtry, C. S. T.; Silva, L. F.; Pitts, D. E.

    1982-01-01

    Management and planning activities with respect to food production require accurate and timely information on crops and soils on a global basis. The needed information can be obtained with the aid of satellite-borne sensors, if the relations between the spectral properties and the important biological-physical parameters of crops and soils are known. In order to obtain this knowledge, the development of a crops and soils scene radiation research data base was initiated. Work related to the development of this data base is discussed, taking into account details regarding the conducted experiments, the performed measurements, the calibration of spectral data, questions of data base access, and the expansion of the crops and soils scene radiation data base for 1982.

  7. Evaluation of two evapotranspiration approaches simulated with the CSM-CERES-Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions

    USDA-ARS?s Scientific Manuscript database

    Water deficit is the most common adverse environmental condition that can seriously reduce crop productivity. Crop simulation models could assist in determining alternate crop management scenarios to deal with water-limited conditions. However, prior to the application of crop models, the appropriat...

  8. Application of remote sensing in crop growth simulation and an ensembles approach to reduce model uncertainties

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.; Nelson, A.; Ravis, J.; Maunahan, A.; Villano, L.; Li, T.; Bouman, B.

    2012-12-01

    A semi-empirical model derived from the water-cloud model was used to convert synthetic- aperture radar (SAR) backscattering data into LAI. The SAR-based LAI at early rice growth stages were in a close agreement (90%) with LAI derived from MODIS data for the same study location in Nueva Ecija, Philippines. ORYZA2000 simulated rice yield of 4.5 Mg ha-1 for the 2008 wet season in Nueva Ejica, Philippines when using LAI inputs derived from SAR data, which is closer to the observed yield of 3.9 Mg ha-1, whereas simulated yield without SAR-derived LAI inputs was 5.4 Mg ha-1. The dynamic water and nitrogen balances were accounted in these simulations based on site-specific soil properties and actual fertilizer N and water management. The use of remote sensing data was promising for model application to approximate actual growth conditions and to compensate for limitations in the model due to relevant underlining processes absent in model formulations such as detailed tillering, leaf shading effect, etc., and also limiting factors not accounted in the model such as biotic factors and abiotic factors other than water and N shortages. This study also demonstrated the use an ensembles approach for provincial level rice yield estimation in the Philippines. Such ensembles approach involved statistical classifications of agronomic management settings into 25% percentile, median, and 75% levels followed by generation of factorial combinations. For irrigated lowland system, 4 factors were considered that include transplanting date, plant density, fertilizer N rate, and amount of irrigation water. For rainfed lowland system, there were 3 agronomic management factors (transplanting date, plant density, fertilizer N) and 1 soil parameter (depth of ground water table). These 4 management/soil factors and 3 statistical levels resulted in 81 total factorial combinations representing simulation scenarios for each area of interest (province in the Philippines) and water environments (irrigated vs. rainfed). Finally a normal distribution was assumed and applied to the simulations outputs. This ensembles approach provided an efficient and yet effective method of aggregating point-based crop model results into a larger spatial level of interest. Lack of access to accurate model parameters (e.g. depth of ground water table) could be solved with this approach. The use of process-based crop growth model was critical because the ultimate aim of this study was not just to establish a reliable rice yield estimation system but also to allow yield estimation outputs explainable by the underlining agronomic practices such as transplanting date, fertilizer N application, and water management.

  9. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    NASA Astrophysics Data System (ADS)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In particular, canola production resulted in less overall water use but increased farm profits. Most crop substitutions were resource neutral. If future climate is drier, more winter annual crops like canola are likely to be adopted. Crop displacement is also important for determining market-mediated effects of biomass crop production. Correctly estimating crop displacement at the local scale greatly improves upon estimates for indirect land use change derived from the macro-scale PE and CGE models currently used by US EPA and the California Air Resources Board.

  10. Radiometer footprint model to estimate sunlit and shaded components for row crops

    USDA-ARS?s Scientific Manuscript database

    This paper describes a geometric model for computing the relative proportion of sunlit vegetation, shaded vegetation, sunlit soil, and shaded soil appearing in a circular or elliptical radiometer footprint for row crops, where the crop rows were modeled as continuous ellipses. The model was validate...

  11. Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models

    USDA-ARS?s Scientific Manuscript database

    Remote sensing technology can rapidly provide spatial information on crop growth status, which ideally could be used to invert radiative transfer models or ecophysiological models for estimating a variety of crop biophysical properties. However, the outcome of the model inversion procedure will be ...

  12. The Impacts of Various Environments Factors and Adaptive Management Strategies on Food Crops in the 21st Century Based on a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Lin, T. S.; Lawrence, P.; Kheshgi, H. S.

    2017-12-01

    Environmental factors - characterized by increasing levels of CO2, and changes in temperature and precipitation patterns - present potential risks to global food supply. To date, understanding of environmental factors' effects on crop production remains uncertain due to (1) uncertainties in projected trends of these factors and their spatial and temporal variability; (2) uncertainties in the physiological, genetic and molecular basis of crop adaptation to adaptive management practices (e.g. change in planting time, irrigation and N fertilization etc.) and (3) uncertainties in current land surface models to estimate the response of crop production to changes in environmental factors and management strategies. In this study we apply a process-based land surface model, the Integrated Science Assessment model (ISAM), to assess the impact of various environmental factors and management strategies on the production of row crops (corn, soybean and wheat) at regional and global scales. Results are compared to corresponding simulations performed with the crop model in the Community Land Model (CLM4.5). Each model is driven with historical atmospheric forcing data (1901-2005), and projected atmospheric forcing data under RCP 4.5 or RCP 8.5 (2006-2100) from CESM CMIP5 simulations to estimate the effects of different climate change projections on potential productivity of food crops at a global scale. For each set of atmospheric forcing data, production of each crop is simulated with and without inclusion of adaptive management practices (e.g. application of irrigation, N fertilization, change in planting time and crop cultivars etc.) to assess the effect of adaptation on projected crop production over the 21st century. In detail, three questions are addressed: (1) what is the impact of different climate change projections on global crop production; (2) what is the effect of adaptive management practices on projected crop production; and (3) how do differences in model mechanisms in ISAM and CLM4.5 impact projected global crop production and adaptive management practices (irrigation and N fertilizer) over the 21st century. The major outcomes of this study will help to understand the uncertainties in potential productivity of food crops under different environmental conditions and management practices.

  13. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions

    USDA-ARS?s Scientific Manuscript database

    Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evalu...

  14. Economic Benefits of Predictive Models for Pest Control in Agricultural Crops

    USDA-ARS?s Scientific Manuscript database

    Various forms of crop models or decision making tools for managing crops have existed for many years. The potential advantage of all of these decision making tools is that more informed and economically improved crop management or decision making is accomplished. However, examination of some of thes...

  15. Digital Modeling and Testing Research on Digging Mechanism of Deep Rootstalk Crops

    NASA Astrophysics Data System (ADS)

    Yang, Chuanhua; Xu, Ma; Wang, Zhoufei; Yang, Wenwu; Liao, Xinglong

    The digital model of the laboratory bench parts of digging deep rootstalk crops were established through adopting the parametric model technology based on feature. The virtual assembly of the laboratory bench of digging deep rootstalk crops was done and the digital model of the laboratory bench parts of digging deep rootstalk crops was gained. The vibrospade, which is the key part of the laboratory bench of digging deep rootstalk crops was simulated and the movement parametric curves of spear on the vibrospade were obtained. The results show that the spear was accorded with design requirements. It is propitious to the deep rootstalk.

  16. NASA Earth Science Research Results for Improved Regional Crop Yield Prediction

    NASA Astrophysics Data System (ADS)

    Mali, P.; O'Hara, C. G.; Shrestha, B.; Sinclair, T. R.; G de Goncalves, L. G.; Salado Navarro, L. R.

    2007-12-01

    National agencies such as USDA Foreign Agricultural Service (FAS), Production Estimation and Crop Assessment Division (PECAD) work specifically to analyze and generate timely crop yield estimates that help define national as well as global food policies. The USDA/FAS/PECAD utilizes a Decision Support System (DSS) called CADRE (Crop Condition and Data Retrieval Evaluation) mainly through an automated database management system that integrates various meteorological datasets, crop and soil models, and remote sensing data; providing significant contribution to the national and international crop production estimates. The "Sinclair" soybean growth model has been used inside CADRE DSS as one of the crop models. This project uses Sinclair model (a semi-mechanistic crop growth model) for its potential to be effectively used in a geo-processing environment with remote-sensing-based inputs. The main objective of this proposed work is to verify, validate and benchmark current and future NASA earth science research results for the benefit in the operational decision making process of the PECAD/CADRE DSS. For this purpose, the NASA South American Land Data Assimilation System (SALDAS) meteorological dataset is tested for its applicability as a surrogate meteorological input in the Sinclair model meteorological input requirements. Similarly, NASA sensor MODIS products is tested for its applicability in the improvement of the crop yield prediction through improving precision of planting date estimation, plant vigor and growth monitoring. The project also analyzes simulated Visible/Infrared Imager/Radiometer Suite (VIIRS, a future NASA sensor) vegetation product for its applicability in crop growth prediction to accelerate the process of transition of VIIRS research results for the operational use of USDA/FAS/PECAD DSS. The research results will help in providing improved decision making capacity to the USDA/FAS/PECAD DSS through improved vegetation growth monitoring from high spatial and temporal resolution remote sensing datasets; improved time-series meteorological inputs required for crop growth models; and regional prediction capability through geo-processing-based yield modeling.

  17. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    NASA Astrophysics Data System (ADS)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  18. A numerical study of the effect of irrigation on land-atmosphere interactions in a spring wheat cropland in India using a coupled atmosphere-crop growth dynamics model

    NASA Astrophysics Data System (ADS)

    Kumari, S.; Sharma, P.; Srivastava, A.; Rastogi, D.; Sehgal, V. K.; Dhakar, R.; Roy, S. B.

    2017-12-01

    Vegetation dynamics and surface meteorology are tightly coupled through the exchange of momentum, moisture and heat between the land surface and the atmosphere. In this study, we use a recently developed coupled atmosphere-crop growth dynamics model to study these exchanges and their effects in a spring wheat cropland in northern India. In particular, we investigate the role of irrigation in controlling crop growth rates, surface meteorology, and sensible and latent heat fluxes. The model is developed by implementing a crop growth module based on the Simple and Universal Crop growth Simulator (SUCROS) model in the Weather Research Forecasting (WRF) mesoscale atmospheric model. The crop module calculates photosynthesis rates, carbon assimilation, and biomass partitioning as a function of environmental factors and crop development stage. The leaf area index (LAI) and root depth calculated by the crop module is then fed to the Noah-MP land module of WRF to calculate land-atmosphere fluxes. The crop model is calibrated using data from an experimental spring wheat crop site in the Indian Agriculture Research Institute. The coupled model is capable of simulating the observed spring wheat phenology. Irrigation is simulated by changing the soil moisture levels from 50% - 100% of field capacity. Results show that the yield first increases with increasing soil moisture and then starts decreasing as we further increase the soil moisture. Yield attains its maximum value with soil moisture at the level of 60% water of FC. At this level, high LAI values lead to a decrease in the Bowen Ratio because more energy is transferred to the atmosphere as latent heat rather than sensible heat resulting in a cooling effect on near-surface air temperatures. Apart from improving simulation of land-atmosphere interactions, this coupled modeling approach can form the basis for the seamless crop yield and seasonal scale weather outlook prediction system.

  19. Observed and modelled solar radiation components in sugarcane crop grown under tropical conditions

    NASA Astrophysics Data System (ADS)

    Santos, Marcos A. dos; Souza, José L. de; Lyra, Gustavo B.; Teodoro, Iêdo; Ferreira, Ricardo A.; Santos Almeida, Alexsandro C. dos; Lyra, Guilherme B.; Souza, Renan C. de; Lemes, Marco A. Maringolo

    2017-04-01

    The net radiation over vegetated surfaces is one of the major input variables in many models of soil evaporation, evapotranspiration as well as leaf wetness duration. In the literature there are relatively few studies on net radiation over sugarcane crop in tropical climates. The main objective of the present study was to assess the solar radiation components measured and modelled for two crop stages of a sugarcane crop in the region of Rio Largo, Alagoas, North-eastern Brazil. The measurements of the radiation components were made with a net radiometer during the dry and rainy seasons and two models were used to estimate net radiation: the Ortega-Farias model and the Monteith and Unsworth model. The highest values of net radiation were observed at the crop development stage, due mainly to the high indices of incoming solar radiation. The daily average albedos of sugarcane at the crop development and mid-season stages were 0.16 and 0.20, respectively. Both models showed a better fit for the crop development stage than for the mid-season stage. When they were inter-compared, Monteith and Unsworth model was more efficient than Ortega-Farias model, despite the dispersion of their simulated radiation components which was similar.

  20. Spatial Sampling of Weather Data for Regional Crop Yield Simulations

    NASA Technical Reports Server (NTRS)

    Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian; hide

    2016-01-01

    Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.

  1. LACIE performance predictor final operational capability program description, volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The program EPHEMS computes the orbital parameters for up to two vehicles orbiting the earth for up to 549 days. The data represents a continuous swath about the earth, producing tables which can be used to determine when and if certain land segments will be covered. The program GRID processes NASA's climatology tape to obtain the weather indices along with associated latitudes and longitudes. The program LUMP takes substrata historical data and sample segment ID, crop window, crop window error and statistical data, checks for valid input parameters and generates the segment ID file, crop window file and the substrata historical file. Finally, the System Error Executive (SEE) Program checks YES error and truth data, CAMS error data, and signature extension data for validity and missing elements. A message is printed for each error found.

  2. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    NASA Astrophysics Data System (ADS)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally, Bornim sunflower parameters were transferred to Schaefertal catchment for further evaluation. This study proves GANS potential to close the measurement gap between point scale and remote sensing scale; however, its calibration needs to be adapted for vegetation in cropped fields.

  3. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    DOE PAGES

    Blanc, Elodie; Caron, Justin; Fant, Charles; ...

    2017-06-27

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climatemore » change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.« less

  4. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, Elodie; Caron, Justin; Fant, Charles

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climatemore » change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.« less

  5. ALAMEDA, a Structural–Functional Model for Faba Bean Crops: Morphological Parameterization and Verification

    PubMed Central

    RUIZ-RAMOS, MARGARITA; MÍNGUEZ, M. INÉS

    2006-01-01

    • Background Plant structural (i.e. architectural) models explicitly describe plant morphology by providing detailed descriptions of the display of leaf and stem surfaces within heterogeneous canopies and thus provide the opportunity for modelling the functioning of plant organs in their microenvironments. The outcome is a class of structural–functional crop models that combines advantages of current structural and process approaches to crop modelling. ALAMEDA is such a model. • Methods The formalism of Lindenmayer systems (L-systems) was chosen for the development of a structural model of the faba bean canopy, providing both numerical and dynamic graphical outputs. It was parameterized according to the results obtained through detailed morphological and phenological descriptions that capture the detailed geometry and topology of the crop. The analysis distinguishes between relationships of general application for all sowing dates and stem ranks and others valid only for all stems of a single crop cycle. • Results and Conclusions The results reveal that in faba bean, structural parameterization valid for the entire plant may be drawn from a single stem. ALAMEDA was formed by linking the structural model to the growth model ‘Simulation d'Allongement des Feuilles’ (SAF) with the ability to simulate approx. 3500 crop organs and components of a group of nine plants. Model performance was verified for organ length, plant height and leaf area. The L-system formalism was able to capture the complex architecture of canopy leaf area of this indeterminate crop and, with the growth relationships, generate a 3D dynamic crop simulation. Future development and improvement of the model are discussed. PMID:16390842

  6. Phylogeny in Defining Model Plants for Lignocellulosic Ethanol Production: A Comparative Study of Brachypodium distachyon, Wheat, Maize, and Miscanthus x giganteus Leaf and Stem Biomass

    PubMed Central

    Meineke, Till; Manisseri, Chithra; Voigt, Christian A.

    2014-01-01

    The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat) with the C4 grasses Zea mays (maize) and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108–117 mg ethanol·g−1 dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type. PMID:25133818

  7. Strengths and Limitations of Operational Use of 1 Km EO Biophysical Products for Regional Prediction of Grain Yelds in Europe (wheat, barley and maize)

    NASA Astrophysics Data System (ADS)

    Meroni, M.; LEO, O.; Lopez-Lozano, R.; Baruth, B.; Duveiller, G.; Garcia-Condado, S.; Hooker, J.; Seguini, L.

    2014-12-01

    The site-specific relationship between EO indicators and actual crop yields has been explored in many different studies, describing semi-empirical regression models between spatially aggregated biophysical parameters or vegetation indices and observed yields (from field measurements or official statistics). However, when considering larger extensions -from countries to continents- agro-climatic conditions and crop management may differ substantially among regions, and these differences may greatly influence the relationship between biophysical indicators and the observed yields, which may be also driven by limiting factors other than green biomass formation. The present study aims to better assess the contribution of EO indicators within an operational crop yield forecasting system in Europe and neighbouring countries, by evaluating how these above mentioned geographic differences influence the relationship between biophysical indicators and crop yield. We therefore explore, as a first step, the correspondence between fAPAR time-series (1999-2013) and the inter-annual yield variability of wheat, barley and grain maize, at sub-national level across Europe (270-450 Administrative Units, depending on crop). In a second step, we map the agro-climatic contexts in which EO indicators better explain the observed yield inter-annual variability, identify the influence of some meteorological events on the fAPAR -yield relationship and provide some recommendations for further investigation. The results indicate that in water-limited environments (e.g. Mediterranean and Black Sea areas), fAPAR is highly correlated with yields whereas in northern Europe, crop yield appears much less limited by leaf area expansion along the season, and the relationship between yield and EO products becomes more difficult to interpret.

  8. Matching the best viewing angle in depth cameras for biomass estimation based on poplar seedling geometry.

    PubMed

    Andújar, Dionisio; Fernández-Quintanilla, César; Dorado, José

    2015-06-04

    In energy crops for biomass production a proper plant structure is important to optimize wood yields. A precise crop characterization in early stages may contribute to the choice of proper cropping techniques. This study assesses the potential of the Microsoft Kinect for Windows v.1 sensor to determine the best viewing angle of the sensor to estimate the plant biomass based on poplar seedling geometry. Kinect Fusion algorithms were used to generate a 3D point cloud from the depth video stream. The sensor was mounted in different positions facing the tree in order to obtain depth (RGB-D) images from different angles. Individuals of two different ages, e.g., one month and one year old, were scanned. Four different viewing angles were compared: top view (0°), 45° downwards view, front view (90°) and ground upwards view (-45°). The ground-truth used to validate the sensor readings consisted of a destructive sampling in which the height, leaf area and biomass (dry weight basis) were measured in each individual plant. The depth image models agreed well with 45°, 90° and -45° measurements in one-year poplar trees. Good correlations (0.88 to 0.92) between dry biomass and the area measured with the Kinect were found. In addition, plant height was accurately estimated with a few centimeters error. The comparison between different viewing angles revealed that top views showed poorer results due to the fact the top leaves occluded the rest of the tree. However, the other views led to good results. Conversely, small poplars showed better correlations with actual parameters from the top view (0°). Therefore, although the Microsoft Kinect for Windows v.1 sensor provides good opportunities for biomass estimation, the viewing angle must be chosen taking into account the developmental stage of the crop and the desired parameters. The results of this study indicate that Kinect is a promising tool for a rapid canopy characterization, i.e., for estimating crop biomass production, with several important advantages: low cost, low power needs and a high frame rate (frames per second) when dynamic measurements are required.

  9. Estimating Indirect Emissions from Land Use Change Due to Biofuels (Invited)

    NASA Astrophysics Data System (ADS)

    Reilly, J. M.

    2010-12-01

    Interest in biofuels as an alternative fuel has led to the realization that they may not be a viable low greenhouse gas alternative, even if process emissions are low, because expansions of land area in biomass crops may lead to forest destruction and hence carbon emissions.(1,2)If the concern was only direct land use effects—changes in carbon stocks on land directly used for biomass—direct measurement would be an option. However, agricultural economists recognize that if biofuels are produced from crops grown on existing cropland the crops previously grown there will likely be replaced by production elsewhere. Given international markets in agricultural products a diversion of land or part of the corn crop in the US for biofuels would result in higher market prices for corn and other crops, and thus spur land conversion almost anywhere around the world. There have now been a number of estimates of the potential land use emissions, and those estimates vary widely and are sensitive to key parameters of both the economic models used in the analysis and the representation of biophysical processes.(3,4,5)Among the important parameters are those that describe the willingness to convert unmanaged land, the ability to intensify production on existing land, the productivity of new land coming to production compared to existing cropland, demand elasticities for agricultural products, and the representation of carbon and nitrogen cycles and storage.(6,7) 1. J. Fargione, J. et al., Science 319, 1235 (2008). 2. T. Searchinger, T et al., Science 319, 1238 (2008) 3. J.M. Melillo, Science, 326: 1397-1399 (2009) 4. M. Wise et al., Science 324, 1183 (2009). 5. W. E. Tyner, et al., Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis, Department of Agricultural Economics, Purdue University (July 2010). 6. T. W. Hertel, The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making? AAEA Presidential Address , Purdue University 7. Melillo, et al., op cit

  10. Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D; Field, C; Cahill, K

    2006-01-10

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiplemore » climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.« less

  11. Assessing the impact of climate change upon hydrology and agriculture in the Indrawati Basin, Nepal.

    NASA Astrophysics Data System (ADS)

    Palazzoli, Irene; Bocchiola, Daniele; Nana, Ester; Maskey, Shreedhar; Uhlenbrook, Stefan

    2014-05-01

    Agriculture is sensitive to climate change, especially to temperature and precipitation changes. The purpose of this study was to evaluate the climate change impacts upon rain-fed crops production in the Indrawati river basin, Nepal. The Soil and Water Assessment Tool SWAT model was used to model hydrology and cropping systems in the catchment, and to predict the influence of different climate change scenarios therein. Daily weather data collected from about 13 weather stations during 4 decades were used to constrain the SWAT model, and data from two hydrometric stations used to calibrate/validate it. Then management practices (crop calendar) were applied to specific Hydrological Response Units (HRUs) for the main crops of the region, rice, corn and wheat. Manual calibration of crop production was also carried, against values of crop yield in the area from literature. The calibrated and validated model was further applied to assess the impact of three future climate change scenarios (RCPs) upon the crop productivity in the region. Three climate models (GCMs) were adopted, each with three RCPs (2.5, 4.5, 8.5). Hence, impacts of climate change were assessed considering three time windows, namely a baseline period (1995-2004), the middle of century (2045-2054) and the end of century (2085-2094). For each GCM and RCP future hydrology and yield was compared to baseline scenario. The results displayed slightly modified hydrological cycle, and somewhat small variation in crop production, variable with models and RCPs, and for crop type, the largest being for wheat. Keywords: Climate Change, Nepal, hydrological cycle, crop yield.

  12. Progress in modelling agricultural impacts of and adaptations to climate change.

    PubMed

    Rötter, R P; Hoffmann, M P; Koch, M; Müller, C

    2018-06-01

    Modelling is a key tool to explore agricultural impacts of and adaptations to climate change. Here we report recent progress made especially referring to the large project initiatives MACSUR and AgMIP; in particular, in modelling potential crop impacts from field to global using multi-model ensembles. We identify two main fields where further progress is necessary: a more mechanistic understanding of climate impacts and management options for adaptation and mitigation; and focusing on cropping systems and integrative multi-scale assessments instead of single season and crops, especially in complex tropical and neglected but important cropping systems. Stronger linking of experimentation with statistical and eco-physiological crop modelling could facilitate the necessary methodological advances. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Virtual water trade patterns in relation to environmental and socioeconomic factors: A case study for Tunisia.

    PubMed

    Chouchane, Hatem; Krol, Maarten S; Hoekstra, Arjen Y

    2018-02-01

    Growing water demands put increasing pressure on local water resources, especially in water-short countries. Virtual water trade can play a key role in filling the gap between local demand and supply of water-intensive commodities. This study aims to analyse the dynamics in virtual water trade of Tunisia in relation to environmental and socio-economic factors such as GDP, irrigated land, precipitation, population and water scarcity. The water footprint of crop production is estimated using AquaCrop for six crops over the period 1981-2010. Net virtual water import (NVWI) is quantified at yearly basis. Regression models are used to investigate dynamics in NVWI in relation to the selected factors. The results show that NVWI during the study period for the selected crops is not influenced by blue water scarcity. NVWI correlates in two alternative models to either population and precipitation (model I) or to GDP and irrigated area (model II). The models are better in explaining NVWI of staple crops (wheat, barley, potatoes) than NVWI of cash crops (dates, olives, tomatoes). Using model I, we are able to explain both trends and inter-annual variability for rain-fed crops. Model II performs better for irrigated crops and is able to explain trends significantly; no significant relation is found, however, with variables hypothesized to represent inter-annual variability. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Predicting optimum crop designs using crop models and seasonal climate forecasts.

    PubMed

    Rodriguez, D; de Voil, P; Hudson, D; Brown, J N; Hayman, P; Marrou, H; Meinke, H

    2018-02-02

    Expected increases in food demand and the need to limit the incorporation of new lands into agriculture to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, those optimum crop designs should be known, while the main problem is to predict relevant attributes of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test our capacity to inform that "hindsight", by linking a tested crop model (APSIM) with a skillful seasonal climate forecasting system, to answer "What is the value of the skill in seasonal climate forecasting, to inform crop designs?" Results showed that the GCM POAMA-2 was reliable and skillful, and that when linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop designs, increase farmers profits and reduce risks.

  15. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes

    USDA-ARS?s Scientific Manuscript database

    A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to earth system models is relative...

  16. How do various maize crop models vary in their responses to climate change factors?

    USDA-ARS?s Scientific Manuscript database

    Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models give similar grain yield responses to changes in climatic factors, or whether they agr...

  17. Development of a corn and soybean labeling procedure for use with profile parameter classification

    NASA Technical Reports Server (NTRS)

    Magness, E. R. (Principal Investigator)

    1982-01-01

    Some essential processes for the development of a green-number-based logic for identifying (labeling) crops in LANDSAT imagery are documented. The supporting data and subsequent conclusions that resulted from development of a specific labeling logic for corn and soybean crops in the United States are recorded.

  18. Tomato response to legume cover crop and nitrogen: differing enhancement patterns of fruit yield, photosynthesis and gene expression

    USDA-ARS?s Scientific Manuscript database

    Tomatoes responded to soil and residue from a hairy vetch cover crop differently on many levels than tomato response to inorganic nitrogen. Tomato fruit production, plant biomass parameters, and photosynthesis were higher in plants grown in vetch than bare soil. Tomato growth and photosynthesis metr...

  19. Spatial variability in sensitivity of reference crop ET to accuracy of climate data in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    A detailed sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1995 to 2008, fro...

  20. Simulating the effects of climate and agricultural management practices on global crop yield

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Sacks, W. J.; Barford, C. C.; Ramankutty, N.

    2011-06-01

    Climate change is expected to significantly impact global food production, and it is important to understand the potential geographic distribution of yield losses and the means to alleviate them. This study presents a new global crop model, PEGASUS 1.0 (Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat. PEGASUS combines carbon dynamics for crops with a surface energy and soil water balance model. It also benefits from the recent development of a suite of global data sets and analyses that serve as model inputs or as calibration data. These include data on crop planting and harvesting dates, crop-specific irrigated areas, a global analysis of yield gaps, and harvested area and yield of major crops. Model results for present-day climate and farm management compare reasonably well with global data. Simulated planting and harvesting dates are within the range of crop calendar observations in more than 75% of the total crop-harvested areas. Correlation of simulated and observed crop yields indicates a weighted coefficient of determination, with the weighting based on crop-harvested area, of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes in temperature and precipitation as predicted by global climate models for the 2050s lead to a global yield reduction if planting and harvesting dates remain unchanged. However, adapting planting dates and cultivar choices increases yield in temperate regions and avoids 7-18% of global losses.

  1. Quantitative inheritance of crop timing traits in interspecific hybrid Petunia populations and interactions with crop quality parameters.

    PubMed

    Warner, Ryan M; Walworth, Aaron E

    2010-01-01

    The leaf unfolding rate (i.e., development rate) and the number of nodes forming prior to floral initiation are 2 factors determining production times for floriculture crops. Wild relative species of the cultivated petunia (Petunia x hybrida Vilm.) that exhibited faster development rates than modern cultivars and may therefore be useful genetic sources to develop cultivars with decreased production time were identified. Three interspecific F(2) families, Petunia exserta Stehmann x P. axillaris (Lam.) Britton et al., P. x hybrida 'Mitchell' x P. axillaris, and P. axillaris x P. integrifolia (Hook.) Schinz & Thell. all exhibited transgressive segregation for development rate and node number below the first flower. Development rate and time to flower segregated independently in all families. Leaf number below the first flower was positively correlated with leaf unfolding rate in all families except P. axillaris x P. integrifolia. Time to flower was positively correlated with flower bud number in the P. x hybrida 'Mitchell' x P. axillaris and P. axillaris x P. integrifolia families only. Based on these results, wild Petunia germplasm should be useful for developing petunia cultivars with reduced crop production times, but some negative effects on crop quality parameters may need to be overcome.

  2. Putting mechanisms into crop production models

    USDA-ARS?s Scientific Manuscript database

    Crop simulation models dynamically predict processes of carbon, nitrogen, and water balance on daily or hourly time-steps to the point of predicting yield and production at crop maturity. A brief history of these models is reviewed, and their level of mechanism for assimilation and respiration, ran...

  3. Impact of climate change on crop yield and role of model for achieving food security.

    PubMed

    Kumar, Manoj

    2016-08-01

    In recent times, several studies around the globe indicate that climatic changes are likely to impact the food production and poses serious challenge to food security. In the face of climate change, agricultural systems need to adapt measures for not only increasing food supply catering to the growing population worldwide with changing dietary patterns but also to negate the negative environmental impacts on the earth. Crop simulation models are the primary tools available to assess the potential consequences of climate change on crop production and informative adaptive strategies in agriculture risk management. In consideration with the important issue, this is an attempt to provide a review on the relationship between climate change impacts and crop production. It also emphasizes the role of crop simulation models in achieving food security. Significant progress has been made in understanding the potential consequences of environment-related temperature and precipitation effect on agricultural production during the last half century. Increased CO2 fertilization has enhanced the potential impacts of climate change, but its feasibility is still in doubt and debates among researchers. To assess the potential consequences of climate change on agriculture, different crop simulation models have been developed, to provide informative strategies to avoid risks and understand the physical and biological processes. Furthermore, they can help in crop improvement programmes by identifying appropriate future crop management practises and recognizing the traits having the greatest impact on yield. Nonetheless, climate change assessment through model is subjected to a range of uncertainties. The prediction uncertainty can be reduced by using multimodel, incorporating crop modelling with plant physiology, biochemistry and gene-based modelling. For devloping new model, there is a need to generate and compile high-quality field data for model testing. Therefore, assessment of agricultural productivity to sustain food security for generations is essential to maintain a collective knowledge and resources for preventing negative impact as well as managing crop practises.

  4. Relationships among bulk soil physicochemical, biochemical, and microbiological parameters in an organic alfalfa-rice rotation system.

    PubMed

    Lopes, Ana R; Bello, Diana; Prieto-Fernández, Ángeles; Trasar-Cepeda, Carmen; Manaia, Célia M; Nunes, Olga C

    2015-08-01

    The microbial communities of bulk soil of rice paddy fields under an ancient organic agriculture regimen, consisting on an alfalfa-rice rotation system, were characterized. The drained soil of two adjacent paddies at different stages of the rotation was compared before rice seeding and after harvesting. The relationships among the soil microbial, physicochemical, and biochemical parameters were investigated using multivariate analyses. In the first year of rice cropping, aerobic cultivable heterotrophic populations correlated with lineages of presumably aerobic bacteria (e.g., Sphingobacteriales, Sphingomonadales). In the second year of rice cropping, the total C content correlated with presumable anaerobic bacteria (e.g., Anaerolineae). Independently of the year of rice cropping, before rice seeding, proteolytic activity correlated positively with the cultivable aerobic heterotrophic and ammonifier populations, the soil catabolic profile and with presumable aerobes (e.g., Sphingobacteriales, Rhizobiales) and anaerobes (e.g., Bacteroidales, Anaerolineae). After harvesting, strongest correlations were observed between cultivable diazotrophic populations and bacterial groups described as comprising N2 fixing members (e.g., Chloroflexi-Ellin6529, Betaproteobacteria, Alphaproteobacteria). It was demonstrated that chemical parameters and microbial functions were correlated with variations on the total bacterial community composition and structure occurring during rice cropping. A better understanding of these correlations and of their implications on soil productivity may be valid contributors for sustainable agriculture practices, based on ancient processes.

  5. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining meteorological risks and subsequently relating the risk to the cropping calendar will be demonstrated for major arable crops in Belgium. Physically based crop models assist in understanding the links between adverse weather events, sensitive crop stages and crop damage. Financial support was obtained from Belspo under research contract SD/RI/03A.

  6. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  7. Assessing the effects of architectural variations on light partitioning within virtual wheat–pea mixtures

    PubMed Central

    Barillot, Romain; Escobar-Gutiérrez, Abraham J.; Fournier, Christian; Huynh, Pierre; Combes, Didier

    2014-01-01

    Background and Aims Predicting light partitioning in crop mixtures is a critical step in improving the productivity of such complex systems, and light interception has been shown to be closely linked to plant architecture. The aim of the present work was to analyse the relationships between plant architecture and light partitioning within wheat–pea (Triticum aestivum–Pisum sativum) mixtures. An existing model for wheat was utilized and a new model for pea morphogenesis was developed. Both models were then used to assess the effects of architectural variations in light partitioning. Methods First, a deterministic model (L-Pea) was developed in order to obtain dynamic reconstructions of pea architecture. The L-Pea model is based on L-systems formalism and consists of modules for ‘vegetative development’ and ‘organ extension’. A tripartite simulator was then built up from pea and wheat models interfaced with a radiative transfer model. Architectural parameters from both plant models, selected on the basis of their contribution to leaf area index (LAI), height and leaf geometry, were then modified in order to generate contrasting architectures of wheat and pea. Key results By scaling down the analysis to the organ level, it could be shown that the number of branches/tillers and length of internodes significantly determined the partitioning of light within mixtures. Temporal relationships between light partitioning and the LAI and height of the different species showed that light capture was mainly related to the architectural traits involved in plant LAI during the early stages of development, and in plant height during the onset of interspecific competition. Conclusions In silico experiments enabled the study of the intrinsic effects of architectural parameters on the partitioning of light in crop mixtures of wheat and pea. The findings show that plant architecture is an important criterion for the identification/breeding of plant ideotypes, particularly with respect to light partitioning. PMID:24907314

  8. Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study

    USGS Publications Warehouse

    Engelman, Catherine A.; Grant, William E.; Mora, Miguel A.; Woodin, Marc

    2012-01-01

    We describe an ecotoxicological model that simulates the sublethal and lethal effects of chronic, low-level, chemical exposure on birds wintering in agricultural landscapes. Previous models estimating the impact on wildlife of chemicals used in agro-ecosystems typically have not included the variety of pathways, including both dermal and oral, by which individuals are exposed. The present model contains four submodels simulating (1) foraging behavior of individual birds, (2) chemical applications to crops, (3) transfers of chemicals among soil, insects, and small mammals, and (4) transfers of chemicals to birds via ingestion and dermal exposure. We demonstrate use of the model by simulating the impacts of a variety of commonly used herbicides, insecticides, growth regulators, and defoliants on western burrowing owls (Athene cunicularia hypugaea) that winter in agricultural landscapes in southern Texas, United States. The model generated reasonable movement patterns for each chemical through soil, water, insects, and rodents, as well as into the owl via consumption and dermal absorption. Sensitivity analysis suggested model predictions were sensitive to uncertainty associated with estimates of chemical half-lives in birds, soil, and prey, sensitive to parameters associated with estimating dermal exposure, and relatively insensitive to uncertainty associated with details of chemical application procedures (timing of application, amount of drift). Nonetheless, the general trends in chemical accumulations and the relative impacts of the various chemicals were robust to these parameter changes. Simulation results suggested that insecticides posed a greater potential risk to owls of both sublethal and lethal effects than do herbicides, defoliants, and growth regulators under crop scenarios typical of southern Texas, and that use of multiple indicators, or endpoints provided a more accurate assessment of risk due to agricultural chemical exposure. The model should prove useful in helping prioritize the chemicals and transfer pathways targeted in future studies and also, as these new data become available, in assessing the relative danger to other birds of exposure to different types of agricultural chemicals.

  9. Changes in crop yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  10. Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model

    NASA Technical Reports Server (NTRS)

    Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia

    2017-01-01

    Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.

  11. Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.

    2017-12-01

    Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.

  12. Leaf wetness distribution within a potato crop

    NASA Astrophysics Data System (ADS)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  13. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.

    PubMed

    Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K

    2015-04-01

    Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.

  14. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.

    PubMed

    Möller, M; Alchanatis, V; Cohen, Y; Meron, M; Tsipris, J; Naor, A; Ostrovsky, V; Sprintsin, M; Cohen, S

    2007-01-01

    Achieving high quality wine grapes depends on the ability to maintain mild to moderate levels of water stress in the crop during the growing season. This study investigates the use of thermal imaging for monitoring water stress. Experiments were conducted on a wine-grape (Vitis vinifera cv. Merlot) vineyard in northern Israel. Irrigation treatments included mild, moderate, and severe stress. Thermal and visible (RGB) images of the crop were taken on four days at midday with a FLIR thermal imaging system and a digital camera, respectively, both mounted on a truck-crane 15 m above the canopy. Aluminium crosses were used to match visible and thermal images in post-processing and an artificial wet surface was used to estimate the reference wet temperature (T(wet)). Monitored crop parameters included stem water potential (Psi(stem)), leaf conductance (g(L)), and leaf area index (LAI). Meteorological parameters were measured at 2 m height. CWSI was highly correlated with g(L) and moderately correlated with Psi(stem). The CWSI-g(L) relationship was very stable throughout the season, but for that of CWSI-Psi(stem) both intercept and slope varied considerably. The latter presumably reflects the non-direct nature of the physiological relationship between CWSI and Psi(stem). The highest R(2) for the CWSI to g(L) relationship, 0.91 (n=12), was obtained when CWSI was computed using temperatures from the centre of the canopy, T(wet) from the artificial wet surface, and reference dry temperature from air temperature plus 5 degrees C. Using T(wet) calculated from the inverted Penman-Monteith equation and estimated from an artificially wetted part of the canopy also yielded crop water-stress estimates highly correlated with g(L) (R(2)=0.89 and 0.82, respectively), while a crop water-stress index using 'theoretical' reference temperatures computed from climate data showed significant deviations in the late season. Parameter variability and robustness of the different CWSI estimates are discussed. Future research should aim at developing thermal imaging into an irrigation scheduling tool applicable to different crops.

  15. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.

    PubMed

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2018-01-01

    We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.

  16. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    PubMed

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2018-03-01

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  17. Assessing the MODIS crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil.

    PubMed

    Gusso, Anibal; Arvor, Damien; Ducati, Jorge Ricardo; Veronez, Mauricio Roberto; da Silveira, Luiz Gonzaga

    2014-01-01

    Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with R (2) = 0.97 and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state.

  18. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shujiang; Kline, Keith L; Nair, S. Surendran

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulatedmore » a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.« less

  19. Application of time-lapse ERT to Characterize Soil-Water-Disease Interactions of Citrus Orchard - Case Study

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; Suradhaniwar, S.; J, P. A.; R M, G.

    2015-12-01

    Vidarbha region in Maharashtra, India (home for mandarin Orange) experience severe climatic uncertainties resulting in crop failure. Phytopthora are the soil-borne fungal species that accumulate in the presence of moisture, and attack the root / trunk system of Orange trees at any stage. A scientific understanding of soil-moisture-disease relations within the active root zone under different climatic, irrigation, and crop cycle conditions can help in practicing management activities for improved crop yield. In this study, we developed a protocol for performing 3-D time-lapse electrical resistivity tomography (ERT) at micro scale resolution to monitor the changes in resistivity distribution within the root zone of Orange trees. A total of 40 electrodes, forming a grid of 3.5 m x 2 m around each Orange tree were used in ERT survey with gradient and Wenner configurations. A laboratory test on un-disturbed soil samples of the region was performed to plot the variation of electrical conductivity with saturation. Curve fitting techniques were applied to get the modified Archie's model parameters. The calibrated model was further applied to generate the 3-D soil moisture profiles of the study area. The point estimates of soil moisture were validated using TDR probe measurements at 3 different depths (10, 20, and 40 cm) near to the root zone. In order to understand the effect of soil-water relations on plant-disease relations, we performed ERT analysis at two locations, one at healthy and other at Phytopthora affected Orange tree during the crop cycle, under dry and irrigated conditions. The degree to which an Orange tree is affected by Phytopthora under each condition is evaluated using 'grading scale' approach following visual inspection of the canopy features. Spatial-temporal distribution of moisture profiles is co-related with grading scales to comment on the effect of climatic and irrigation scenarios on the degree and intensity of crop disease caused by Phytopthora.

  20. Probabilistic Description of the Hydrologic Risk in Agriculture

    NASA Astrophysics Data System (ADS)

    Vico, G.; Porporato, A. M.

    2011-12-01

    Supplemental irrigation represents one of the main strategies to mitigate the effects of climatic variability on agroecosystems productivity and profitability, at the expenses of increasing water requirements for irrigation purposes. Optimizing water allocation for crop yield preservation and sustainable development needs to account for hydro-climatic variability, which is by far the main source of uncertainty affecting crop yields and irrigation water requirements. In this contribution, a widely applicable probabilistic framework is proposed to quantitatively define the hydrologic risk of yield reduction for both rainfed and irrigated agriculture. The occurrence of rainfall events and irrigation applications are linked probabilistically to crop development during the growing season. Based on these linkages, long-term and real-time yield reduction risk indices are defined as a function of climate, soil and crop parameters, as well as irrigation strategy. The former risk index is suitable for long-term irrigation strategy assessment and investment planning, while the latter risk index provides a rigorous probabilistic quantification of the emergence of drought conditions during a single growing season. This probabilistic framework allows also assessing the impact of limited water availability on crop yield, thus guiding the optimal allocation of water resources for human and environmental needs. Our approach employs relatively few parameters and is thus easily and broadly applicable to different crops and sites, under current and future climate scenarios, thus facilitating the assessment of the impact of increasingly frequent water shortages on agricultural productivity, profitability, and sustainability.

Top