Sample records for crop phenotypic plasticity

  1. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity

    PubMed Central

    Murren, C J; Auld, J R; Callahan, H; Ghalambor, C K; Handelsman, C A; Heskel, M A; Kingsolver, J G; Maclean, H J; Masel, J; Maughan, H; Pfennig, D W; Relyea, R A; Seiter, S; Snell-Rood, E; Steiner, U K; Schlichting, C D

    2015-01-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits. PMID:25690179

  2. The effect of artificial selection on phenotypic plasticity in maize.

    PubMed

    Gage, Joseph L; Jarquin, Diego; Romay, Cinta; Lorenz, Aaron; Buckler, Edward S; Kaeppler, Shawn; Alkhalifah, Naser; Bohn, Martin; Campbell, Darwin A; Edwards, Jode; Ertl, David; Flint-Garcia, Sherry; Gardiner, Jack; Good, Byron; Hirsch, Candice N; Holland, Jim; Hooker, David C; Knoll, Joseph; Kolkman, Judith; Kruger, Greg; Lauter, Nick; Lawrence-Dill, Carolyn J; Lee, Elizabeth; Lynch, Jonathan; Murray, Seth C; Nelson, Rebecca; Petzoldt, Jane; Rocheford, Torbert; Schnable, James; Schnable, Patrick S; Scully, Brian; Smith, Margaret; Springer, Nathan M; Srinivasan, Srikant; Walton, Renee; Weldekidan, Teclemariam; Wisser, Randall J; Xu, Wenwei; Yu, Jianming; de Leon, Natalia

    2017-11-07

    Remarkable productivity has been achieved in crop species through artificial selection and adaptation to modern agronomic practices. Whether intensive selection has changed the ability of improved cultivars to maintain high productivity across variable environments is unknown. Understanding the genetic control of phenotypic plasticity and genotype by environment (G × E) interaction will enhance crop performance predictions across diverse environments. Here we use data generated from the Genomes to Fields (G2F) Maize G × E project to assess the effect of selection on G × E variation and characterize polymorphisms associated with plasticity. Genomic regions putatively selected during modern temperate maize breeding explain less variability for yield G × E than unselected regions, indicating that improvement by breeding may have reduced G × E of modern temperate cultivars. Trends in genomic position of variants associated with stability reveal fewer genic associations and enrichment of variants 0-5000 base pairs upstream of genes, hypothetically due to control of plasticity by short-range regulatory elements.

  3. Phenotypic plasticity in a population of odonates.

    PubMed

    Bowman, Randi M; Schmidt, Sharol; Weeks, Chelsea; Clark, Hunter; Brown, Christopher; Latta, Leigh C; Edgehouse, Michael

    2018-05-31

    The maintenance of phenotypic plasticity within a species ensures survival through environmental flux. Plastic strategies are increasingly important given the number and magnitude of modern anthropogenic threats to the environment. We tested for phenotypic plasticity in the odonate Argia vivida in response to resource limitation. By limiting food availability, effectively inducing hunger, we were able to quantify shifts in agonistic behavior during intraspecific interactions. Scoring behavior in one-on-one combat trials after 1 and 4 days without food revealed phenotypic plasticity. Three classes of genotypes were identified, genotypes exhibiting either increased aggression, decreased aggression, or no phenotypic plasticity, in response to resource limitation. The variable plastic strategies in this population of odonates likely aids in maintaining fitness in fluctuating environments.

  4. The integrated phenotype and plasticity of Cuphea PSR23: A semi-domesticated oilseed crop

    USDA-ARS?s Scientific Manuscript database

    Cuphea PSR23, a semi-domesticated potential oilseed crop, is a selection from an interspecific cross between the wild species Cuphea lanceolata and C. viscosissima. Understanding the extent to which its phenotype is integrated, by studying complex trait interactions and interdependencies, is critica...

  5. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    PubMed

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2018-03-01

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  6. Mutational robustness accelerates the origin of novel RNA phenotypes through phenotypic plasticity.

    PubMed

    Wagner, Andreas

    2014-02-18

    Novel phenotypes can originate either through mutations in existing genotypes or through phenotypic plasticity, the ability of one genotype to form multiple phenotypes. From molecules to organisms, plasticity is a ubiquitous feature of life, and a potential source of exaptations, adaptive traits that originated for nonadaptive reasons. Another ubiquitous feature is robustness to mutations, although it is unknown whether such robustness helps or hinders the origin of new phenotypes through plasticity. RNA is ideal to address this question, because it shows extensive plasticity in its secondary structure phenotypes, a consequence of their continual folding and unfolding, and these phenotypes have important biological functions. Moreover, RNA is to some extent robust to mutations. This robustness structures RNA genotype space into myriad connected networks of genotypes with the same phenotype, and it influences the dynamics of evolving populations on a genotype network. In this study I show that both effects help accelerate the exploration of novel phenotypes through plasticity. My observations are based on many RNA molecules sampled at random from RNA sequence space, and on 30 biological RNA molecules. They are thus not only a generic feature of RNA sequence space but are relevant for the molecular evolution of biological RNA. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Sustainable harvest: managing plasticity for resilient crops

    PubMed Central

    Bloomfield, Justin A; Rose, Terry J; King, Graham J

    2014-01-01

    Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding. PMID:24891039

  8. Endocrine regulation of predator-induced phenotypic plasticity.

    PubMed

    Dennis, Stuart R; LeBlanc, Gerald A; Beckerman, Andrew P

    2014-11-01

    Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator).

  9. Regulatory mechanisms link phenotypic plasticity to evolvability

    PubMed Central

    van Gestel, Jordi; Weissing, Franz J.

    2016-01-01

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticity tend to adopt a phenomenological reaction norm (RN) approach, which neglects the mechanisms underlying plasticity. Focusing on a concrete question – the optimal timing of bacterial sporulation – we here also consider a mechanistic approach, the evolution of a gene regulatory network (GRN) underlying plasticity. Using individual-based simulations, we compare the RN and GRN approach and find a number of striking differences. Most importantly, the GRN model results in a much higher diversity of responsive strategies than the RN model. We show that each of the evolved strategies is pre-adapted to a unique set of unseen environmental conditions. The regulatory mechanisms that control plasticity therefore critically link phenotypic plasticity to the adaptive potential of biological populations. PMID:27087393

  10. Phenotypic plasticity with instantaneous but delayed switches.

    PubMed

    Utz, Margarete; Jeschke, Jonathan M; Loeschcke, Volker; Gabriel, Wilfried

    2014-01-07

    Phenotypic plasticity is a widespread phenomenon, allowing organisms to better adapt to changing environments. Most empirical and theoretical studies are restricted to irreversible plasticity where the expression of a specific phenotype is mostly determined during development. However, reversible plasticity is not uncommon; here, organisms are able to switch back and forth between phenotypes. We present two optimization models for the fitness of (i) non-plastic, (ii) irreversibly plastic, and (iii) reversibly plastic genotypes in a fluctuating environment. In one model, the fitness values of an organism during different life phases act together multiplicatively (so as to consider traits that are related to survival). The other model additionally considers additive effects (corresponding to traits related to fecundity). Both models yield qualitatively similar results. If the only costs of reversible plasticity are due to temporal maladaptation while switching between phenotypes, reversibility is virtually always advantageous over irreversibility, especially for slow environmental fluctuations. If reversibility implies an overall decreased fitness, then irreversibility is advantageous if the environment fluctuates quickly or if stress events last relatively short. Our results are supported by observations from different types of organisms and have implications for many basic and applied research questions, e.g., on invasive alien species. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects.

    PubMed

    Otte, Tobias; Hilker, Monika; Geiselhardt, Sven

    2018-03-01

    The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and "understand" a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.

  12. Developmental mechanisms underlying variable, invariant and plastic phenotypes

    PubMed Central

    Abley, Katie; Locke, James C. W.; Leyser, H. M. Ottoline

    2016-01-01

    Background Discussions of phenotypic robustness often consider scenarios where invariant phenotypes are optimal and assume that developmental mechanisms have evolved to buffer the phenotypes of specific traits against stochastic and environmental perturbations. However, plastic plant phenotypes that vary between environments or variable phenotypes that vary stochastically within an environment may also be advantageous in some scenarios. Scope Here the conditions under which invariant, plastic and variable phenotypes of specific traits may confer a selective advantage in plants are examined. Drawing on work from microbes and multicellular organisms, the mechanisms that may give rise to each type of phenotype are discussed. Conclusion In contrast to the view of robustness as being the ability of a genotype to produce a single, invariant phenotype, changes in a phenotype in response to the environment, or phenotypic variability within an environment, may also be delivered consistently (i.e. robustly). Thus, for some plant traits, mechanisms have probably evolved to produce plasticity or variability in a reliable manner. PMID:27072645

  13. Automated phenotyping of permanent crops

    NASA Astrophysics Data System (ADS)

    McPeek, K. Thomas; Steddom, Karl; Zamudio, Joseph; Pant, Paras; Mullenbach, Tyler

    2017-05-01

    AGERpoint is defining a new technology space for the growers' industry by introducing novel applications for sensor technology and data analysis to growers of permanent crops. Serving data to a state-of-the-art analytics engine from a cutting edge sensor platform, a new paradigm in precision agriculture is being developed that allows growers to understand the unique needs of each tree, bush or vine in their operation. Autonomous aerial and terrestrial vehicles equipped with multiple varieties of remote sensing technologies give AGERpoint the ability to measure key morphological and spectral features of permanent crops. This work demonstrates how such phenotypic measurements combined with machine learning algorithms can be used to determine the variety of crops (e.g., almond and pecan trees). This phenotypic and varietal information represents the first step in enabling growers with the ability to tailor their management practices to individual plants and maximize their economic productivity.

  14. Hormone signaling and phenotypic plasticity in nematode development and evolution.

    PubMed

    Sommer, Ralf J; Ogawa, Akira

    2011-09-27

    Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years.

    PubMed

    Berlin, Sofia; Hallingbäck, Henrik R; Beyer, Friderike; Nordh, Nils-Erik; Weih, Martin; Rönnberg-Wästljung, Ann-Christin

    2017-07-01

    Phenotypic plasticity can affect the geographical distribution of taxa and greatly impact the productivity of crops across contrasting and variable environments. The main objectives of this study were to identify genotype-phenotype associations in key biomass and phenology traits and the strength of phenotypic plasticity of these traits in a short-rotation coppice willow population across multiple years and contrasting environments to facilitate marker-assisted selection for these traits. A hybrid Salix viminalis  × ( S. viminalis × Salix schwerinii ) population with 463 individuals was clonally propagated and planted in three common garden experiments comprising one climatic contrast between Sweden and Italy and one water availability contrast in Italy. Several key phenotypic traits were measured and phenotypic plasticity was estimated as the trait value difference between experiments. Quantitative trait locus (QTL) mapping analyses were conducted using a dense linkage map and phenotypic effects of S. schwerinii haplotypes derived from detected QTL were assessed. Across the climatic contrast, clone predictor correlations for biomass traits were low and few common biomass QTL were detected. This indicates that the genetic regulation of biomass traits was sensitive to environmental variation. Biomass QTL were, however, frequently shared across years and across the water availability contrast. Phenology QTL were generally shared between all experiments. Substantial phenotypic plasticity was found among the hybrid offspring, that to a large extent had a genetic origin. Individuals carrying influential S. schwerinii haplotypes generally performed well in Sweden but less well in Italy in terms of biomass production. The results indicate that specific genetic elements of S. schwerinii are more suited to Swedish conditions than to those of Italy. Therefore, selection should preferably be conducted separately for such environments in order to maximize biomass

  16. FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila

    PubMed Central

    Tang, Hui Yuan; Smith-Caldas, Martha S. B.; Driscoll, Michael V.; Salhadar, Samy; Shingleton, Alexander W.

    2011-01-01

    Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in

  17. Bio-based and biodegradable plastics for use in crop production.

    PubMed

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production.

  18. Relaxed selection is a precursor to the evolution of phenotypic plasticity.

    PubMed

    Hunt, Brendan G; Ometto, Lino; Wurm, Yannick; Shoemaker, DeWayne; Yi, Soojin V; Keller, Laurent; Goodisman, Michael A D

    2011-09-20

    Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on protein-coding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity.

  19. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies.

    PubMed

    Dion, Emilie; Monteiro, Antónia; Yew, Joanne Y

    2016-12-14

    Phenotypic plasticity refers to the environmental control of phenotypes. Cues experienced during development (developmental plasticity) or during adulthood (acclimatization) can both affect adult phenotypes. Phenotypic plasticity has been described in many traits but examples of developmental plasticity in physiological traits, in particular, remain scarce. We examined developmental plasticity and acclimatization in pheromone production in the butterfly Bicyclus anynana in response to rearing temperature. B. anynana lives in the African tropics where warm rearing temperatures of the wet season produce active males that court and females that choose, whereas cooler temperatures of the dry season lead to choosy less active males and courting females. We hypothesized that if male pheromone production is costly, it should be reduced in the dry season form. After describing the ultrastructure of pheromone producing cells, we showed that dry season males produced significantly less sex pheromones than wet season males, partly due to acclimatization and partly due to developmental plasticity. Variation in levels of one of the compounds is associated with differential regulation of a pheromone biosynthetic enzyme gene. This plasticity might be an adaptation to minimize pheromone production costs during the stressful dry season.

  20. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies

    PubMed Central

    Dion, Emilie; Monteiro, Antónia; Yew, Joanne Y.

    2016-01-01

    Phenotypic plasticity refers to the environmental control of phenotypes. Cues experienced during development (developmental plasticity) or during adulthood (acclimatization) can both affect adult phenotypes. Phenotypic plasticity has been described in many traits but examples of developmental plasticity in physiological traits, in particular, remain scarce. We examined developmental plasticity and acclimatization in pheromone production in the butterfly Bicyclus anynana in response to rearing temperature. B. anynana lives in the African tropics where warm rearing temperatures of the wet season produce active males that court and females that choose, whereas cooler temperatures of the dry season lead to choosy less active males and courting females. We hypothesized that if male pheromone production is costly, it should be reduced in the dry season form. After describing the ultrastructure of pheromone producing cells, we showed that dry season males produced significantly less sex pheromones than wet season males, partly due to acclimatization and partly due to developmental plasticity. Variation in levels of one of the compounds is associated with differential regulation of a pheromone biosynthetic enzyme gene. This plasticity might be an adaptation to minimize pheromone production costs during the stressful dry season. PMID:27966579

  1. Amphibious fishes: evolution and phenotypic plasticity.

    PubMed

    Wright, Patricia A; Turko, Andy J

    2016-08-01

    Amphibious fishes spend part of their life in terrestrial habitats. The ability to tolerate life on land has evolved independently many times, with more than 200 extant species of amphibious fishes spanning 17 orders now reported. Many adaptations for life out of water have been described in the literature, and adaptive phenotypic plasticity may play an equally important role in promoting favourable matches between the terrestrial habitat and behavioural, physiological, biochemical and morphological characteristics. Amphibious fishes living at the interface of two very different environments must respond to issues relating to buoyancy/gravity, hydration/desiccation, low/high O2 availability, low/high CO2 accumulation and high/low NH3 solubility each time they traverse the air-water interface. Here, we review the literature for examples of plastic traits associated with the response to each of these challenges. Because there is evidence that phenotypic plasticity can facilitate the evolution of fixed traits in general, we summarize the types of investigations needed to more fully determine whether plasticity in extant amphibious fishes can provide indications of the strategies used during the evolution of terrestriality in tetrapods. © 2016. Published by The Company of Biologists Ltd.

  2. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.

    PubMed

    Lande, Russell

    2009-07-01

    Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.

  3. Molecular mechanisms of phenotypic plasticity in social insects

    USDA-ARS?s Scientific Manuscript database

    Polyphenism in insects, whereby a single genome expresses different phenotypes in response to environmental cues, is a fascinating biological phenomenon. Social insects are especially intriguing examples of phenotypic plasticity because division of labor results in the development of extreme morphol...

  4. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies.

    PubMed

    Patalano, Solenn; Vlasova, Anna; Wyatt, Chris; Ewels, Philip; Camara, Francisco; Ferreira, Pedro G; Asher, Claire L; Jurkowski, Tomasz P; Segonds-Pichon, Anne; Bachman, Martin; González-Navarrete, Irene; Minoche, André E; Krueger, Felix; Lowy, Ernesto; Marcet-Houben, Marina; Rodriguez-Ales, Jose Luis; Nascimento, Fabio S; Balasubramanian, Shankar; Gabaldon, Toni; Tarver, James E; Andrews, Simon; Himmelbauer, Heinz; Hughes, William O H; Guigó, Roderic; Reik, Wolf; Sumner, Seirian

    2015-11-10

    Phenotypic plasticity is important in adaptation and shapes the evolution of organisms. However, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and nonreproductives (workers). The greatest plasticity is found in the simple eusocial insect societies in which individuals retain the ability to switch between reproductive and nonreproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here, we sequenced genomes, microRNAs (miRNAs), and multiple transcriptomes and methylomes from individual brains in a wasp (Polistes canadensis) and an ant (Dinoponera quadriceps) that live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or miRNAs. Instead, phenotypic differentiation was defined more subtly by nonrandom transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define previously unidentified hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity.

  5. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies

    PubMed Central

    Patalano, Solenn; Vlasova, Anna; Wyatt, Chris; Ewels, Philip; Camara, Francisco; Ferreira, Pedro G.; Asher, Claire L.; Jurkowski, Tomasz P.; Segonds-Pichon, Anne; Bachman, Martin; González-Navarrete, Irene; Minoche, André E.; Krueger, Felix; Lowy, Ernesto; Marcet-Houben, Marina; Rodriguez-Ales, Jose Luis; Nascimento, Fabio S.; Balasubramanian, Shankar; Gabaldon, Toni; Tarver, James E.; Andrews, Simon; Himmelbauer, Heinz; Hughes, William O. H.; Guigó, Roderic; Reik, Wolf; Sumner, Seirian

    2015-01-01

    Phenotypic plasticity is important in adaptation and shapes the evolution of organisms. However, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and nonreproductives (workers). The greatest plasticity is found in the simple eusocial insect societies in which individuals retain the ability to switch between reproductive and nonreproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here, we sequenced genomes, microRNAs (miRNAs), and multiple transcriptomes and methylomes from individual brains in a wasp (Polistes canadensis) and an ant (Dinoponera quadriceps) that live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or miRNAs. Instead, phenotypic differentiation was defined more subtly by nonrandom transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define previously unidentified hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity. PMID:26483466

  6. Evidence of selection on phenotypic plasticity and cost of plasticity in response to host-feeding sources in the major Chagas disease vector Triatoma infestans.

    PubMed

    Nattero, Julieta; Leonhard, Gustavo; Gürtler, Ricardo E; Crocco, Liliana B

    2015-12-01

    Phenotypic plasticity is the ability of a genotype to display alternative phenotypes in different environments. Understanding how plasticity evolves and the factors that favor and constrain its evolution have attracted great interest. We investigated whether selection on phenotypic plasticity and costs of plasticity affect head and wing morphology in response to host-feeding sources in the major Chagas disease vector Triatoma infestans. Full-sib families were assigned to blood-feeding on either live pigeons or guinea pigs throughout their lives. We measured diet-induced phenotypic plasticity on wing and head size and shape; characterized selection on phenotypic plasticity for female and male fecundity rates, and evaluated costs of plasticity. Wing size and shape variables exhibited significant differences in phenotypic plasticity associated with host-feeding source in female and male bugs. Evidence of selection on phenotypic plasticity was detected in head size and shape for guinea pig-fed females. A lower female fecundity rate was detected in more plastic families for traits that showed selection on plasticity. These results provide insights into the morphological phenotypic plasticity of T. infestans, documenting fitness advantages of head size and shape for females fed on guinea pigs. This vector species showed measurable benefits of responding plastically to environmental variation rather than adopting a fixed development plan. The presence of cost of plasticity suggests constraints on the evolution of plasticity. Our study indicates that females fed on guinea pigs (and perhaps on other suitable mammalian hosts) have greater chances of evolving under selection on phenotypic plasticity subject to some constraints. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Ocean acidification challenges copepod phenotypic plasticity

    NASA Astrophysics Data System (ADS)

    Vehmaa, Anu; Almén, Anna-Karin; Brutemark, Andreas; Paul, Allanah; Riebesell, Ulf; Furuhagen, Sara; Engström-Öst, Jonna

    2016-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ˜ 365-1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  8. Phenotypic plasticity and specialization in clonal versus non-clonal plants: A data synthesis

    NASA Astrophysics Data System (ADS)

    Fazlioglu, Fatih; Bonser, Stephen P.

    2016-11-01

    Reproductive strategies can be associated with ecological specialization and generalization. Clonal plants produce lineages adapted to the maternal habitat that can lead to specialization. However, clonal plants frequently display high phenotypic plasticity (e.g. clonal foraging for resources), factors linked to ecological generalization. Alternately, sexual reproduction can be associated with generalization via increasing genetic variation or specialization through rapid adaptive evolution. Moreover, specializing to high or low quality habitats can determine how phenotypic plasticity is expressed in plants. The specialization hypothesis predicts that specialization to good environments results in high performance trait plasticity and specialization to bad environments results in low performance trait plasticity. The interplay between reproductive strategies, phenotypic plasticity, and ecological specialization is important for understanding how plants adapt to variable environments. However, we currently have a poor understanding of these relationships. In this study, we addressed following questions: 1) Is there a relationship between phenotypic plasticity, specialization, and reproductive strategies in plants? 2) Do good habitat specialists express greater performance trait plasticity than bad habitat specialists? We searched the literature for studies examining plasticity for performance traits and functional traits in clonal and non-clonal plant species from different habitat types. We found that non-clonal (obligate sexual) plants expressed greater performance trait plasticity and functional trait plasticity than clonal plants. That is, non-clonal plants exhibited a specialist strategy where they perform well only in a limited range of habitats. Clonal plants expressed less performance loss across habitats and a more generalist strategy. In addition, specialization to good habitats did not result in greater performance trait plasticity. This result was

  9. Global change and the evolution of phenotypic plasticity in plants.

    PubMed

    Matesanz, Silvia; Gianoli, Ernesto; Valladares, Fernando

    2010-09-01

    Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments. © 2010 New York Academy of Sciences.

  10. UAV-based high-throughput phenotyping in legume crops

    NASA Astrophysics Data System (ADS)

    Sankaran, Sindhuja; Khot, Lav R.; Quirós, Juan; Vandemark, George J.; McGee, Rebecca J.

    2016-05-01

    In plant breeding, one of the biggest obstacles in genetic improvement is the lack of proven rapid methods for measuring plant responses in field conditions. Therefore, the major objective of this research was to evaluate the feasibility of utilizing high-throughput remote sensing technology for rapid measurement of phenotyping traits in legume crops. The plant responses of several chickpea and peas varieties to the environment were assessed with an unmanned aerial vehicle (UAV) integrated with multispectral imaging sensors. Our preliminary assessment showed that the vegetation indices are strongly correlated (p<0.05) with seed yield of legume crops. Results endorse the potential of UAS-based sensing technology to rapidly measure those phenotyping traits.

  11. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives.

    PubMed

    Yang, Guijun; Liu, Jiangang; Zhao, Chunjiang; Li, Zhenhong; Huang, Yanbo; Yu, Haiyang; Xu, Bo; Yang, Xiaodong; Zhu, Dongmei; Zhang, Xiaoyan; Zhang, Ruyang; Feng, Haikuan; Zhao, Xiaoqing; Li, Zhenhai; Li, Heli; Yang, Hao

    2017-01-01

    Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs) equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.

  12. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives

    PubMed Central

    Yang, Guijun; Liu, Jiangang; Zhao, Chunjiang; Li, Zhenhong; Huang, Yanbo; Yu, Haiyang; Xu, Bo; Yang, Xiaodong; Zhu, Dongmei; Zhang, Xiaoyan; Zhang, Ruyang; Feng, Haikuan; Zhao, Xiaoqing; Li, Zhenhai; Li, Heli; Yang, Hao

    2017-01-01

    Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs) equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping. PMID:28713402

  13. Plant Stress Responses and Phenotypic Plasticity in the Epigenomics Era: Perspectives on the Grapevine Scenario, a Model for Perennial Crop Plants

    PubMed Central

    Fortes, Ana M.; Gallusci, Philippe

    2017-01-01

    Epigenetic marks include Histone Post-Translational Modifications and DNA methylation which are known to participate in the programming of gene expression in plants and animals. These epigenetic marks may be subjected to dynamic changes in response to endogenous and/or external stimuli and can have an impact on phenotypic plasticity. Studying how plant genomes can be epigenetically shaped under stressed conditions has become an essential issue in order to better understand the molecular mechanisms underlying plant stress responses and enabling epigenetic in addition to genetic factors to be considered when breeding crop plants. In this perspective, we discuss the contribution of epigenetic mechanisms to our understanding of plant responses to biotic and abiotic stresses. This regulation of gene expression in response to environment raises important biological questions for perennial species such as grapevine which is asexually propagated and grown worldwide in contrasting terroirs and environmental conditions. However, most species used for epigenomic studies are annual herbaceous plants, and epigenome dynamics has been poorly investigated in perennial woody plants, including grapevine. In this context, we propose grape as an essential model for epigenetic and epigenomic studies in perennial woody plants of agricultural importance. PMID:28220131

  14. Developmental phenotypic plasticity helps bridge stochastic weather events associated with climate change.

    PubMed

    Burggren, Warren

    2018-05-10

    The slow, inexorable rise in annual average global temperatures and acidification of the oceans are often advanced as consequences of global change. However, many environmental changes, especially those involving weather (as opposed to climate), are often stochastic, variable and extreme, particularly in temperate terrestrial or freshwater habitats. Moreover, few studies of animal and plant phenotypic plasticity employ realistic (i.e. short-term, stochastic) environmental change in their protocols. Here, I posit that the frequently abrupt environmental changes (days, weeks, months) accompanying much longer-term general climate change (e.g. global warming over decades or centuries) require consideration of the true nature of environmental change (as opposed to statistical means) coupled with an expansion of focus to consider developmental phenotypic plasticity. Such plasticity can be in multiple forms - obligatory/facultative, beneficial/deleterious - depending upon the degree and rate of environmental variability at specific points in organismal development. Essentially, adult phenotypic plasticity, as important as it is, will be irrelevant if developing offspring lack sufficient plasticity to create modified phenotypes necessary for survival. © 2018. Published by The Company of Biologists Ltd.

  15. The evolution of phenotypic plasticity in fish swimming

    PubMed Central

    Oufiero, Christopher E.; Whitlow, Katrina R.

    2016-01-01

    Abstract Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. PMID:29491937

  16. The ecology and evolution of animal medication: genetically fixed response versus phenotypic plasticity.

    PubMed

    Choisy, Marc; de Roode, Jacobus C

    2014-08-01

    Animal medication against parasites can occur either as a genetically fixed (constitutive) or phenotypically plastic (induced) behavior. Taking the tritrophic interaction between the monarch butterfly Danaus plexippus, its protozoan parasite Ophryocystis elektroscirrha, and its food plant Asclepias spp. as a test case, we develop a game-theory model to identify the epidemiological (parasite prevalence and virulence) and environmental (plant toxicity and abundance) conditions that predict the evolution of genetically fixed versus phenotypically plastic forms of medication. Our model shows that the relative benefits (the antiparasitic properties of medicinal food) and costs (side effects of medicine, the costs of searching for medicine, and the costs of plasticity itself) crucially determine whether medication is genetically fixed or phenotypically plastic. Our model suggests that animals evolve phenotypic plasticity when parasite risk (a combination of virulence and prevalence and thus a measure of the strength of parasite-mediated selection) is relatively low to moderately high and genetically fixed medication when parasite risk becomes very high. The latter occurs because at high parasite risk, the costs of plasticity are outweighed by the benefits of medication. Our model provides a simple and general framework to study the conditions that drive the evolution of alternative forms of animal medication.

  17. Drought tolerance in cacao is mediated by root phenotypic plasticity

    USDA-ARS?s Scientific Manuscript database

    This study aimed to evaluate phenotypic relationships and their direct and indirect effects through path analysis, and evaluate the use of the phenotypic plasticity index as criteria for the estimation of the basic and explanatory variables used to analysis several cacao progenies subjected to soil ...

  18. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.

    PubMed

    Storz, Jay F; Scott, Graham R; Cheviron, Zachary A

    2010-12-15

    High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change.

  19. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates

    PubMed Central

    Storz, Jay F.; Scott, Graham R.; Cheviron, Zachary A.

    2010-01-01

    High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change. PMID:21112992

  20. Molecular Ecological Basis of Grasshopper (Oedaleus asiaticus) Phenotypic Plasticity under Environmental Selection

    PubMed Central

    Qin, Xinghu; Hao, Kun; Ma, Jingchuan; Huang, Xunbing; Tu, Xiongbing; Ali, Md. Panna; Pittendrigh, Barry R.; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W.; Zhang, Zehua

    2017-01-01

    While ecological adaptation in insects can be reflected by plasticity of phenotype, determining the causes and molecular mechanisms for phenotypic plasticity (PP) remains a crucial and still difficult question in ecology, especially where control of insect pests is involved. Oedaleus asiaticus is one of the most dominant pests in the Inner Mongolia steppe and represents an excellent system to study phenotypic plasticity. To better understand ecological factors affecting grasshopper phenotypic plasticity and its molecular control, we conducted a full transcriptional screening of O. asiaticus grasshoppers reared in four different grassland patches in Inner Mongolia. Grasshoppers showed different degrees of PP associated with unique gene expressions and different habitat plant community compositions. Grasshopper performance variables were susceptible to habitat environment conditions and closely associated with plant architectures. Intriguingly, eco-transcriptome analysis revealed five potential candidate genes playing important roles in grasshopper performance, with gene expression closely relating to PP and plant community factors. By linking the grasshopper performances to gene profiles and ecological factors using canonical regression, we first demonstrated the eco-transcriptomic architecture (ETA) of grasshopper phenotypic traits (ETAGPTs). ETAGPTs revealed plant food type, plant density, coverage, and height were the main ecological factors influencing PP, while insect cuticle protein (ICP), negative elongation factor A (NELFA), and lactase-phlorizin hydrolase (LCT) were the key genes associated with PP. Our study gives a clear picture of gene-environment interaction in the formation and maintenance of PP and enriches our understanding of the transcriptional events underlying molecular control of rapid phenotypic plasticity associated with environmental variability. The findings of this study may also provide new targets for pest control and highlight the

  1. Regulatory gene networks that shape the development of adaptive phenotypic plasticity in a cichlid fish.

    PubMed

    Schneider, Ralf F; Li, Yuanhao; Meyer, Axel; Gunter, Helen M

    2014-09-01

    Phenotypic plasticity is the ability of organisms with a given genotype to develop different phenotypes according to environmental stimuli, resulting in individuals that are better adapted to local conditions. In spite of their ecological importance, the developmental regulatory networks underlying plastic phenotypes often remain uncharacterized. We examined the regulatory basis of diet-induced plasticity in the lower pharyngeal jaw (LPJ) of the cichlid fish Astatoreochromis alluaudi, a model species in the study of adaptive plasticity. Through raising juvenile A. alluaudi on either a hard or soft diet (hard-shelled or pulverized snails) for between 1 and 8 months, we gained insight into the temporal regulation of 19 previously identified candidate genes during the early stages of plasticity development. Plasticity in LPJ morphology was first detected between 3 and 5 months of diet treatment. The candidate genes, belonging to various functional categories, displayed dynamic expression patterns that consistently preceded the onset of morphological divergence and putatively contribute to the initiation of the plastic phenotypes. Within functional categories, we observed striking co-expression, and transcription factor binding site analysis was used to examine the prospective basis of their coregulation. We propose a regulatory network of LPJ plasticity in cichlids, presenting evidence for regulatory crosstalk between bone and muscle tissues, which putatively facilitates the development of this highly integrated trait. Through incorporating a developmental time-course into a phenotypic plasticity study, we have identified an interconnected, environmentally responsive regulatory network that shapes the development of plasticity in a key innovation of East African cichlids. © 2014 John Wiley & Sons Ltd.

  2. Phenotypic plasticity and longevity in plants and animals: cause and effect?

    PubMed

    Borges, Renee M

    2009-10-01

    Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experienced by plants. How density-dependent phenomena affecting the establishment of juveniles in these immobile organisms can influence the evolution of senescence, and consequently longevity, is reviewed and discussed. Whether climate change scenarios will favour long-lived or short-lived organisms, with their attendant levels of plasticity, is also presented.

  3. Phenotyping for drought tolerance of crops in the genomics era

    PubMed Central

    Tuberosa, Roberto

    2012-01-01

    Improving crops yield under water-limited conditions is the most daunting challenge faced by breeders. To this end, accurate, relevant phenotyping plays an increasingly pivotal role for the selection of drought-resilient genotypes and, more in general, for a meaningful dissection of the quantitative genetic landscape that underscores the adaptive response of crops to drought. A major and universally recognized obstacle to a more effective translation of the results produced by drought-related studies into improved cultivars is the difficulty in properly phenotyping in a high-throughput fashion in order to identify the quantitative trait loci that govern yield and related traits across different water regimes. This review provides basic principles and a broad set of references useful for the management of phenotyping practices for the study and genetic dissection of drought tolerance and, ultimately, for the release of drought-tolerant cultivars. PMID:23049510

  4. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton

    PubMed Central

    Yampolsky, Lev Y.; Schaer, Tobias M. M.; Ebert, Dieter

    2014-01-01

    Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, Timm) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased Timm, testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones’ sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold–warm gradient. PMID:24352948

  5. Phenotypic plasticity of winter wheat heading date and grain yield across the U.S. Great Plains

    USDA-ARS?s Scientific Manuscript database

    Phenotypic plasticity describes the range of phenotypes produced by a single genotype under varying environmental conditions. We evaluated the extent of phenotypic variation and plasticity in thermal time to heading and grain yield in 299 hard winter wheat (Triticum aestivum L.) genotypes representa...

  6. What can aquatic gastropods tell us about phenotypic plasticity? A review and meta-analysis

    PubMed Central

    Bourdeau, P E; Butlin, R K; Brönmark, C; Edgell, T C; Hoverman, J T; Hollander, J

    2015-01-01

    There have been few attempts to synthesise the growing body of literature on phenotypic plasticity to reveal patterns and generalities about the extent and magnitude of plastic responses. Here, we conduct a review and meta-analysis of published literature on phenotypic plasticity in aquatic (marine and freshwater) gastropods, a common system for studying plasticity. We identified 96 studies, using pre-determined search terms, published between 1985 and November 2013. The literature was dominated by studies of predator-induced shell form, snail growth rates and life history parameters of a few model taxa, accounting for 67% of all studies reviewed. Meta-analyses indicated average plastic responses in shell thickness, shell shape, and growth and fecundity of freshwater species was at least three times larger than in marine species. Within marine gastropods, species with planktonic development had similar average plastic responses to species with benthic development. We discuss these findings in the context of the role of costs and limits of phenotypic plasticity and environmental heterogeneity as important constraints on the evolution of plasticity. We also consider potential publication biases and discuss areas for future research, indicating well-studied areas and important knowledge gaps. PMID:26219231

  7. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster

    PubMed Central

    Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique

    2016-01-01

    Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to

  8. Williams' paradox and the role of phenotypic plasticity in sexual systems.

    PubMed

    Leonard, Janet L

    2013-10-01

    As George Williams pointed out in 1975, although evolutionary explanations, based on selection acting on individuals, have been developed for the advantages of simultaneous hermaphroditism, sequential hermaphroditism and gonochorism, none of these evolutionary explanations adequately explains the current distribution of these sexual systems within the Metazoa (Williams' Paradox). As Williams further pointed out, the current distribution of sexual systems is explained largely by phylogeny. Since 1975, we have made a great deal of empirical and theoretical progress in understanding sexual systems. However, we still lack a theory that explains the current distribution of sexual systems in animals and we do not understand the evolutionary transitions between hermaphroditism and gonochorism. Empirical data, collected over the past 40 years, demonstrate that gender may have more phenotypic plasticity than was previously realized. We know that not only sequential hermaphrodites, but also simultaneous hermaphrodites have phenotypic plasticity that alters sex allocation in response to social and environmental conditions. A focus on phenotypic plasticity suggests that one sees a continuum in animals between genetically determined gonochorism on the one hand and simultaneous hermaphroditism on the other, with various types of sequential hermaphroditism and environmental sex determination as points along the spectrum. Here I suggest that perhaps the reason we have been unable to resolve Williams' Paradox is because the problem was not correctly framed. First, because, for example, simultaneous hermaphroditism provides reproductive assurance or dioecy ensures outcrossing does not mean that there are no other evolutionary paths that can provide adaptive responses to those selective pressures. Second, perhaps the question we need to ask is: What selective forces favor increased versus reduced phenotypic plasticity in gender expression? It is time to begin to look at the question

  9. Phenotypic plasticity as an adaptation to a functional trade-off

    PubMed Central

    Yi, Xiao; Dean, Antony M

    2016-01-01

    We report the evolution of a phenotypically plastic behavior that circumvents the hardwired trade-off that exists when resources are partitioned between growth and motility in Escherichia coli. We propagated cultures in a cyclical environment, alternating between growth up to carrying capacity and selection for chemotaxis. Initial adaptations boosted overall swimming speed at the expense of growth. The effect of the trade-off was subsequently eased through a change in behavior; while individual cells reduced motility during exponential growth, the faction of the population that was motile increased as the carrying capacity was approached. This plastic behavior was produced by a single amino acid replacement in FliA, a regulatory protein central to the chemotaxis network. Our results illustrate how phenotypic plasticity potentiates evolvability by opening up new regions of the adaptive landscape. DOI: http://dx.doi.org/10.7554/eLife.19307.001 PMID:27692064

  10. Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata).

    PubMed

    Torres-Dowdall, Julián; Handelsman, Corey A; Reznick, David N; Ghalambor, Cameron K

    2012-11-01

    Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator-induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high- and low-predation environments. We reared full-siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high-predation ecotype. However, when reared in the absence of predator cues, guppies from high- and low-predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high- versus low-predation environments. Thus, divergence in plasticity is due to phenotypic differences between high- and low-predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by-product of adaptation to the derived environment. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  11. Phenotypic and genomic plasticity of alternative male reproductive tactics in sailfin mollies.

    PubMed

    Fraser, Bonnie A; Janowitz, Ilana; Thairu, Margaret; Travis, Joseph; Hughes, Kimberly A

    2014-04-22

    A major goal of modern evolutionary biology is to understand the causes and consequences of phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes in response to variable environments. While ecological and quantitative genetic studies have evaluated models of the evolution of adaptive plasticity, some long-standing questions about plasticity require more mechanistic approaches. Here, we address two of those questions: does plasticity facilitate adaptive evolution? And do physiological costs place limits on plasticity? We examine these questions by comparing genetically and plastically regulated behavioural variation in sailfin mollies (Poecilia latipinna), which exhibit striking variation in plasticity for male mating behaviour. In this species, some genotypes respond plastically to a change in the social environment by switching between primarily courting and primarily sneaking behaviour. In contrast, other genotypes have fixed mating strategies (either courting or sneaking) and do not display plasticity. We found that genetic and plastic variation in behaviour were accompanied by partially, but not completely overlapping changes in brain gene expression, in partial support of models that predict that plasticity can facilitate adaptive evolution. We also found that behavioural plasticity was accompanied by broader and more robust changes in brain gene expression, suggesting a substantial physiological cost to plasticity. We also observed that sneaking behaviour, but not courting, was associated with upregulation of genes involved in learning and memory, suggesting that sneaking is more cognitively demanding than courtship.

  12. Low level of polyandry constrains phenotypic plasticity of male body size in mites.

    PubMed

    Schausberger, Peter; Walzer, Andreas; Murata, Yasumasa; Osakabe, Masahiro

    2017-01-01

    Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female) is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis). We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i) the effects of male body size on spermatophore transfer in singly mating females and (ii) the effects of mate sequence (switching the order of standard-sized and small males) on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized males was

  13. Low level of polyandry constrains phenotypic plasticity of male body size in mites

    PubMed Central

    Walzer, Andreas; Murata, Yasumasa; Osakabe, Masahiro

    2017-01-01

    Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female) is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis). We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i) the effects of male body size on spermatophore transfer in singly mating females and (ii) the effects of mate sequence (switching the order of standard-sized and small males) on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized males was

  14. Phenotypic plasticity in the scaling of avian basal metabolic rate

    PubMed Central

    McKechnie, Andrew E; Freckleton, Robert P; Jetz, Walter

    2006-01-01

    Many birds exhibit short-term, reversible adjustments in basal metabolic rate (BMR), but the overall contribution of phenotypic plasticity to avian metabolic diversity remains unclear. The available BMR data include estimates from birds living in natural environments and captive-raised birds in more homogenous, artificial environments. All previous analyses of interspecific variation in BMR have pooled these data. We hypothesized that phenotypic plasticity is an important contributor to interspecific variation in avian BMR, and that captive-raised populations exhibit general differences in BMR compared to wild-caught populations. We tested this hypothesis by fitting general linear models to BMR data for 231 bird species, using the generalized least-squares approach to correct for phylogenetic relatedness when necessary. The scaling exponent relating BMR to body mass in captive-raised birds (0.670) was significantly shallower than in wild-caught birds (0.744). The differences in metabolic scaling between captive-raised and wild-caught birds persisted when migratory tendency and habitat aridity were controlled for. Our results reveal that phenotypic plasticity is a major contributor to avian interspecific metabolic variation. The finding that metabolic scaling in birds is partly determined by environmental factors provides further support for models that predict variation in scaling exponents, such as the allometric cascade model. PMID:16627278

  15. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?

    Treesearch

    Bryce A. Richardson; Linsay Chaney; Nancy L. Shaw; Shannon M. Still

    2016-01-01

    Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In...

  16. Genetic architecture and phenotypic plasticity of thermally-regulated traits in an eruptive species, Dendroctonus ponderosae

    Treesearch

    Barbara J. Bentz; Ryan B. Bracewell; Karen E. Mock; Michael E. Pfrender

    2011-01-01

    Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic...

  17. Epigenetic Potential as a Mechanism of Phenotypic Plasticity in Vertebrate Range Expansions.

    PubMed

    Kilvitis, Holly J; Hanson, Haley; Schrey, Aaron W; Martin, Lynn B

    2017-08-01

    During range expansions, organisms are often exposed to multiple pressures, including novel enemies (i.e., predators, competitors and/or parasites) and unfamiliar or limited resources. Additionally, small propagule sizes at range edges can result in genetic founder effects and bottlenecks, which can affect phenotypic diversity and thus selection. Despite these obstacles, individuals in expanding populations often thrive at the periphery of a range, and this success may be mediated by phenotypic plasticity. Increasing evidence suggests that epigenetic mechanisms may underlie such plasticity because they allow for more rapid phenotypic responses to novel environments than are possible via the accumulation of genetic variation. Here, we review how molecular epigenetic mechanisms could facilitate plasticity in range-expanding organisms, emphasizing the roles of DNA methylation and other epigenetic marks in the physiological regulatory networks that drive whole-organism performance. We focus on the hypothalamic-pituitary-adrenal (HPA) axis, arguing that epigenetically-mediated plasticity in the regulation of glucocorticoids in particular might strongly impact range expansions. We hypothesize that novel environments release and/or select for epigenetic potential in HPA variation and hence organismal performance and ultimately fitness. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. Differential Expression of Ecdysone Receptor Leads to Variation in Phenotypic Plasticity across Serial Homologs

    PubMed Central

    Tong, Xiaoling; Bear, Ashley; Liew, Seng Fatt; Bhardwaj, Shivam; Wasik, Bethany R.; Dinwiddie, April; Bastianelli, Carole; Cheong, Wei Fun; Wenk, Markus R.; Cao, Hui

    2015-01-01

    Bodies are often made of repeated units, or serial homologs, that develop using the same core gene regulatory network. Local inputs and modifications to this network allow serial homologs to evolve different morphologies, but currently we do not understand which modifications allow these repeated traits to evolve different levels of phenotypic plasticity. Here we describe variation in phenotypic plasticity across serial homologous eyespots of the butterfly Bicyclus anynana, hypothesized to be under selection for similar or different functions in the wet and dry seasonal forms. Specifically, we document the presence of eyespot size and scale brightness plasticity in hindwing eyespots hypothesized to vary in function across seasons, and reduced size plasticity and absence of brightness plasticity in forewing eyespots hypothesized to have the same function across seasons. By exploring the molecular and physiological causes of this variation in plasticity across fore and hindwing serial homologs we discover that: 1) temperature experienced during the wandering stages of larval development alters titers of an ecdysteroid hormone, 20-hydroxyecdysone (20E), in the hemolymph of wet and dry seasonal forms at that stage; 2) the 20E receptor (EcR) is differentially expressed in the forewing and hindwing eyespot centers of both seasonal forms during this critical developmental stage; and 3) manipulations of EcR signaling disproportionately affected hindwing eyespots relative to forewing eyespots. We propose that differential EcR expression across forewing and hindwing eyespots at a critical stage of development explains the variation in levels of phenotypic plasticity across these serial homologues. This finding provides a novel signaling pathway, 20E, and a novel molecular candidate, EcR, for the regulation of levels of phenotypic plasticity across body parts or serial homologs. PMID:26405828

  19. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?

    PubMed

    Richardson, Bryce A; Chaney, Lindsay; Shaw, Nancy L; Still, Shannon M

    2017-06-01

    Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R 2  = 0.79, marginal R 2  = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree-days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13-day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower-latitude populations have greater plasticity (+16 days) compared to higher-latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change. Published 2016. This article is a U.S. Government work and is in the

  20. Fire coral clones demonstrate phenotypic plasticity among reef habitats.

    PubMed

    Dubé, Caroline E; Boissin, Emilie; Maynard, Jeffrey A; Planes, Serge

    2017-08-01

    Clonal populations are often characterized by reduced levels of genotypic diversity, which can translate into lower numbers of functional phenotypes, both of which impede adaptation. Study of partially clonal animals enables examination of the environmental settings under which clonal reproduction is favoured. Here, we gathered genotypic and phenotypic information from 3,651 georeferenced colonies of the fire coral Millepora platyphylla in five habitats with different hydrodynamic regimes in Moorea, French Polynesia. In the upper slope where waves break, most colonies grew as vertical sheets ("sheet tree") making them more vulnerable to fragmentation. Nearly all fire corals in the other habitats are encrusting or massive. The M. platyphylla population is highly clonal (80% of the colonies are clones), while characterized by the highest genotype diversity ever documented for terrestrial or marine populations (1,064 genotypes). The proportion of clones varies greatly among habitats (≥58%-97%) and clones (328 clonal lineages) are distributed perpendicularly from the reef crest, perfectly aligned with wave energy. There are six clonal lineages with clones dispersed in at least two adjacent habitats that strongly demonstrate phenotypic plasticity. Eighty per cent of the colonies in these lineages are "sheet tree" on the upper slope, while 80%-100% are encrusting or massive on the mid slope and back reef. This is a unique example of phenotypic plasticity among reef-building coral clones as corals typically have wave-tolerant growth forms in high-energy reef areas. © 2017 John Wiley & Sons Ltd.

  1. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection.

    PubMed

    Lind, Martin I; Yarlett, Kylie; Reger, Julia; Carter, Mauricio J; Beckerman, Andrew P

    2015-10-07

    Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments. © 2015 The Authors.

  2. No phenotypic plasticity in nest-site selection in response to extreme flooding events.

    PubMed

    Bailey, Liam D; Ens, Bruno J; Both, Christiaan; Heg, Dik; Oosterbeek, Kees; van de Pol, Martijn

    2017-06-19

    Phenotypic plasticity is a crucial mechanism for responding to changes in climatic means, yet we know little about its role in responding to extreme climatic events (ECEs). ECEs may lack the reliable cues necessary for phenotypic plasticity to evolve; however, this has not been empirically tested. We investigated whether behavioural plasticity in nest-site selection allows a long-lived shorebird ( Haematopus ostralegus ) to respond to flooding. We collected longitudinal nest elevation data on individuals over two decades, during which time flooding events have become increasingly frequent. We found no evidence that individuals learn from flooding experiences, showing nest elevation change consistent with random nest-site selection. There was also no evidence of phenotypic plasticity in response to potential environmental cues (lunar nodal cycle and water height). A small number of individuals, those nesting near an artificial sea wall, did show an increase in nest elevation over time; however, there is no conclusive evidence this occurred in response to ECEs. Our study population showed no behavioural plasticity in response to changing ECE patterns. More research is needed to determine whether this pattern is consistent across species and types of ECEs. If so, ECEs may pose a major challenge to the resilience of wild populations.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  3. Phenotypic plasticity despite source-sink population dynamics in a long-lived perennial plant.

    PubMed

    Anderson, Jill T; Sparks, Jed P; Geber, Monica A

    2010-11-01

    • Species that exhibit adaptive plasticity alter their phenotypes in response to environmental conditions, thereby maximizing fitness in heterogeneous landscapes. However, under demographic source-sink dynamics, selection should favor traits that enhance fitness in the source habitat at the expense of fitness in the marginal habitat. Consistent with source-sink dynamics, the perennial blueberry, Vaccinium elliottii (Ericaceae), shows substantially higher fitness and population sizes in dry upland forests than in flood-prone bottomland forests, and asymmetrical gene flow occurs from upland populations into bottomland populations. Here, we examined whether this species expresses plasticity to these distinct environments despite source-sink dynamics. • We assessed phenotypic responses to a complex environmental gradient in the field and to water stress in the glasshouse. • Contrary to expectations, V. elliottii exhibited a high degree of plasticity in foliar and root traits (specific leaf area, carbon isotope ratios, foliar nitrogen content, root : shoot ratio, root porosity and root architecture). • We propose that plasticity can be maintained in source-sink systems if it is favored within the source habitat and/or a phylogenetic artifact that is not costly. Additionally, plasticity could be advantageous if habitat-based differences in fitness result from incipient niche expansion. Our results illuminate the importance of evaluating phenotypic traits and fitness components across heterogeneous landscapes. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  4. Independent genetic control of maize (Zea mays L.) kernel weight determination and its phenotypic plasticity.

    PubMed

    Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas

    2014-08-01

    Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha

    PubMed Central

    2010-01-01

    Background Many butterfly species have been experiencing the northward range expansion and physiological adaptation, probably due to climate warming. Here, we document an extraordinary field case of a species of lycaenid butterfly, Zizeeria maha, for which plastic phenotypes of wing color-patterns were revealed at the population level in the course of range expansion. Furthermore, we examined whether this outbreak of phenotypic changes was able to be reproduced in a laboratory. Results In the recently expanded northern range margins of this species, more than 10% of the Z. maha population exhibited characteristic color-pattern modifications on the ventral wings for three years. We physiologically reproduced similar phenotypes by an artificial cold-shock treatment of a normal southern population, and furthermore, we genetically reproduced a similar phenotype after selective breeding of a normal population for ten generations, demonstrating that the cold-shock-induced phenotype was heritable and partially assimilated genetically in the breeding line. Similar genetic process might have occurred in the previous and recent range-margin populations as well. Relatively minor modifications expressed in the tenth generation of the breeding line together with other data suggest a role of founder effect in this field case. Conclusions Our results support the notion that the outbreak of the modified phenotypes in the recent range-margin population was primed by the revelation of plastic phenotypes in response to temperature stress and by the subsequent genetic process in the previous range-margin population, followed by migration and temporal establishment of genetically unstable founders in the recent range margins. This case presents not only an evolutionary role of phenotypic plasticity in the field but also a novel evolutionary aspect of range expansion at the species level. PMID:20718993

  6. Phenotypic plasticity of life-history traits of a calanoid copepod in a tropical lake: Is the magnitude of thermal plasticity related to thermal variability?

    PubMed

    Ortega-Mayagoitia, Elizabeth; Hernández-Martínez, Osvaldo; Ciros-Pérez, Jorge

    2018-01-01

    According to the Climatic Variability Hypothesis [CVH], thermal plasticity should be wider in organisms from temperate environments, but is unlikely to occur in tropical latitudes where temperature fluctuations are narrow. In copepods, food availability has been suggested as the main driver of phenotypic variability in adult size if the range of temperature change is less than 14°C. Leptodiaptomus garciai is a calanoid copepod inhabiting Lake Alchichica, a monomictic, tropical lake in Mexico that experiences regular, narrow temperature fluctuations but wide changes in phytoplankton availability. We investigated whether the seasonal fluctuations of temperature and food produce phenotypic variation in the life-history traits of this tropical species. We sampled L. garciai throughout a year and measured female size, egg size and number, and hatching success, along with temperature and phytoplankton biomass. The amplitude of the plastic responses was estimated with the Phenotypic Plasticity Index. This index was also computed for a published dataset of 84 copepod populations to look if there is a relationship between the amplitude of the phenotypic plasticity of adult size and seasonal change in temperature. The temperature annual range in Lake Alchichica was 3.2°C, whereas phytoplankton abundance varied 17-fold. A strong pattern of thermal plasticity in egg size and adult female size followed the inverse relationship with temperature commonly observed in temperate environments, although its adaptive value was not demonstrated. Egg number, relative reproductive effort and number of nauplii per female were clearly plastic to food availability, allowing organisms to increase their fitness. When comparing copepod species from different latitudes, we found that the magnitude of thermal plasticity of adult size is not related to the range of temperature variation; furthermore, thermal plasticity exists even in environments of limited temperature variation, where the

  7. Phenotypic plasticity of life-history traits of a calanoid copepod in a tropical lake: Is the magnitude of thermal plasticity related to thermal variability?

    PubMed Central

    Hernández-Martínez, Osvaldo; Ciros-Pérez, Jorge

    2018-01-01

    According to the Climatic Variability Hypothesis [CVH], thermal plasticity should be wider in organisms from temperate environments, but is unlikely to occur in tropical latitudes where temperature fluctuations are narrow. In copepods, food availability has been suggested as the main driver of phenotypic variability in adult size if the range of temperature change is less than 14°C. Leptodiaptomus garciai is a calanoid copepod inhabiting Lake Alchichica, a monomictic, tropical lake in Mexico that experiences regular, narrow temperature fluctuations but wide changes in phytoplankton availability. We investigated whether the seasonal fluctuations of temperature and food produce phenotypic variation in the life-history traits of this tropical species. We sampled L. garciai throughout a year and measured female size, egg size and number, and hatching success, along with temperature and phytoplankton biomass. The amplitude of the plastic responses was estimated with the Phenotypic Plasticity Index. This index was also computed for a published dataset of 84 copepod populations to look if there is a relationship between the amplitude of the phenotypic plasticity of adult size and seasonal change in temperature. The temperature annual range in Lake Alchichica was 3.2°C, whereas phytoplankton abundance varied 17-fold. A strong pattern of thermal plasticity in egg size and adult female size followed the inverse relationship with temperature commonly observed in temperate environments, although its adaptive value was not demonstrated. Egg number, relative reproductive effort and number of nauplii per female were clearly plastic to food availability, allowing organisms to increase their fitness. When comparing copepod species from different latitudes, we found that the magnitude of thermal plasticity of adult size is not related to the range of temperature variation; furthermore, thermal plasticity exists even in environments of limited temperature variation, where the

  8. Induced responses to competition and herbivory: natural selection on multi-trait phenotypic plasticity.

    PubMed

    Boege, Karina

    2010-09-01

    Herbivory and competition are two of the most common biotic stressors for plants. When occurring simultaneously, responses to one interaction can constrain the induction of responses to the other interaction due to resource limitation and other interactive effects. Thus, to maximize fitness when interacting with competitors and herbivores, plants are likely to express particular combinations of plastic responses. This study reports the interactive effects of herbivory and competition on responses induced in Tithonia tubaeformis plants and describes how natural selection acts on particular plastic responses and on their different combinations. Competition induced a stem elongation response, expressed through an increase in height and mean internode length, together with a decrease in basal diameter. Interestingly, realized resistance increased in both competition and herbivory treatments, suggesting a plastic response in both constitutive and induced resistance traits. Particular combinations of plastic responses defined three plant phenotypes: vigorous, elongated, and resistant plants. The ecological context in which plants grew modified the traits and the particular combinations of plastic responses that were favored by selection. Vigorous plants were favored by selection in all environments, except when they were damaged by herbivores in the absence of neighbors. The combination of responses defining an elongated plant phenotype was favored by selection in crowded conditions. Resistance was negatively selected in the absence of competition and herbivory but favored in the presence of both interactions. In addition, contextual analyses detected that population structure in heterogeneous environments can also influence the outcomes of selection. These findings suggest that natural selection can act on particular combinations of plastic responses, which may allow plants to adjust their phenotypes to those that promote greater fitness under particular ecological

  9. Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment.

    PubMed

    Lande, R

    2014-05-01

    Quantitative genetic models of evolution of phenotypic plasticity are used to derive environmental tolerance curves for a population in a changing environment, providing a theoretical foundation for integrating physiological and community ecology with evolutionary genetics of plasticity and norms of reaction. Plasticity is modelled for a labile quantitative character undergoing continuous reversible development and selection in a fluctuating environment. If there is no cost of plasticity, a labile character evolves expected plasticity equalling the slope of the optimal phenotype as a function of the environment. This contrasts with previous theory for plasticity influenced by the environment at a critical stage of early development determining a constant adult phenotype on which selection acts, for which the expected plasticity is reduced by the environmental predictability over the discrete time lag between development and selection. With a cost of plasticity in a labile character, the expected plasticity depends on the cost and on the environmental variance and predictability averaged over the continuous developmental time lag. Environmental tolerance curves derived from this model confirm traditional assumptions in physiological ecology and provide new insights. Tolerance curve width increases with larger environmental variance, but can only evolve within a limited range. The strength of the trade-off between tolerance curve height and width depends on the cost of plasticity. Asymmetric tolerance curves caused by male sterility at high temperature are illustrated. A simple condition is given for a large transient increase in plasticity and tolerance curve width following a sudden change in average environment. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  10. Quantitative assessment of the importance of phenotypic plasticity in adaptation to climate change in wild bird populations.

    PubMed

    Vedder, Oscar; Bouwhuis, Sandra; Sheldon, Ben C

    2013-07-01

    Predictions about the fate of species or populations under climate change scenarios typically neglect adaptive evolution and phenotypic plasticity, the two major mechanisms by which organisms can adapt to changing local conditions. As a consequence, we have little understanding of the scope for organisms to track changing environments by in situ adaptation. Here, we use a detailed individual-specific long-term population study of great tits (Parus major) breeding in Wytham Woods, Oxford, UK to parameterise a mechanistic model and thus directly estimate the rate of environmental change to which in situ adaptation is possible. Using the effect of changes in early spring temperature on temporal synchrony between birds and a critical food resource, we focus in particular on the contribution of phenotypic plasticity to population persistence. Despite using conservative estimates for evolutionary and reproductive potential, our results suggest little risk of population extinction under projected local temperature change; however, this conclusion relies heavily on the extent to which phenotypic plasticity tracks the changing environment. Extrapolating the model to a broad range of life histories in birds suggests that the importance of phenotypic plasticity for adjustment to projected rates of temperature change increases with slower life histories, owing to lower evolutionary potential. Understanding the determinants and constraints on phenotypic plasticity in natural populations is thus crucial for characterising the risks that rapidly changing environments pose for the persistence of such populations.

  11. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation

    PubMed Central

    2011-01-01

    Background Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. Results We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. Conclusions The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated - among other traits - between

  12. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation.

    PubMed

    Muschick, Moritz; Barluenga, Marta; Salzburger, Walter; Meyer, Axel

    2011-04-30

    Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated--among other traits--between Midas Cichlid species, its plasticity

  13. Genetic Determinism vs. Phenotypic Plasticity in Protist Morphology.

    PubMed

    Mulot, Matthieu; Marcisz, Katarzyna; Grandgirard, Lara; Lara, Enrique; Kosakyan, Anush; Robroek, Bjorn J M; Lamentowicz, Mariusz; Payne, Richard J; Mitchell, Edward A D

    2017-11-01

    Untangling the relationships between morphology and phylogeny is key to building a reliable taxonomy, but is especially challenging for protists, where the existence of cryptic or pseudocryptic species makes finding relevant discriminant traits difficult. Here we use Hyalosphenia papilio (a testate amoeba) as a model species to investigate the contribution of phylogeny and phenotypic plasticity in its morphology. We study the response of H. papilio morphology (shape and pores number) to environmental variables in (i) a manipulative experiment with controlled conditions (water level), (ii) an observational study of a within-site natural ecological gradient (water level), and (iii) an observational study across 37 European peatlands (climate). We showed that H. papilio morphology is correlated to environmental conditions (climate and water depth) as well as geography, while no relationship between morphology and phylogeny was brought to light. The relative contribution of genetic inheritance and phenotypic plasticity in shaping morphology varies depending on the taxonomic group and the trait under consideration. Thus, our data call for a reassessment of taxonomy based on morphology alone. This clearly calls for a substantial increase in taxonomic research on these globally still under-studied organisms leading to a reassessment of estimates of global microbial eukaryotic diversity. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  14. Phenotypic plasticity and epithelial-to-mesenchymal transition in the behaviour and therapeutic response of oral squamous cell carcinoma.

    PubMed

    Vig, Navin; Mackenzie, Ian C; Biddle, Adrian

    2015-10-01

    It is increasingly recognised that phenotypic plasticity, apparently driven by epigenetic mechanisms, plays a key role in tumour behaviour and markedly influences the important processes of therapeutic survival and metastasis. An important source of plasticity in malignancy is epithelial-to-mesenchymal transition (EMT), a common epigenetically controlled event that results in transition of malignant cells between different phenotypic states that confer motility and enhance survival. In this review, we discuss the importance of phenotypic plasticity and its contribution to cellular heterogeneity in oral squamous cell carcinoma with emphasis on aspects of drug resistance and EMT. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum

    PubMed Central

    Royer, Dana L.; Meyerson, Laura A.; Robertson, Kevin M.; Adams, Jonathan M.

    2009-01-01

    Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables. PMID:19893620

  16. A case of modular phenotypic plasticity in the depth gradient for the gorgonian coral Antillogorgia bipinnata (Cnidaria: Octocorallia).

    PubMed

    Calixto-Botía, Iván; Sánchez, Juan A

    2017-02-17

    Phenotypic plasticity, as a phenotypic response induced by the environment, has been proposed as a key factor in the evolutionary history of corals. A significant number of octocoral species show high phenotypic variation, exhibiting a strong overlap in intra- and inter-specific morphologic variation. This is the case of the gorgonian octocoral Antillogorgia bipinnata (Verrill 1864), which shows three polyphyletic morphotypes along a bathymetric gradient. This research tested the phenotypic plasticity of modular traits in A. bipinnata with a reciprocal transplant experiment involving 256 explants from two morphotypes in two locations and at two depths. Vertical and horizontal length and number of new branches were compared 13 weeks following transplant. The data were analysed with a linear mixed-effects model and a graphic approach by reaction norms. At the end of the experiment, 91.8% of explants survived. Lower vertical and horizontal growth rates and lower branch promotion were found for deep environments compared to shallow environments. The overall variation behaved similarly to the performance of native transplants. In particular, promotion of new branches showed variance mainly due to a phenotypic plastic effect. Globally, environmental and genotypic effects explain the variation of the assessed traits. Survival rates besides plastic responses suggest an intermediate scenario between adaptive plasticity and local adaptation that may drive a potential process of adaptive divergence along depth cline in A. bipinnata.

  17. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa.

    PubMed

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-09-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.

  18. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    PubMed

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  19. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants

    PubMed Central

    Reusch, Thorsten B H

    2014-01-01

    I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe–host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches. PMID:24454551

  20. Glucose deprivation elicits phenotypic plasticity via ZEB1-mediated expression of NNMT

    PubMed Central

    Kanska, Justyna; Aspuria, Paul-Joseph P.; Taylor-Harding, Barbie; Spurka, Lindsay; Funari, Vincent; Orsulic, Sandra; Karlan, Beth Y.; Wiedemeyer, W. Ruprecht

    2017-01-01

    Glucose is considered the primary energy source for all cells, and some cancers are addicted to glucose. Here, we investigated the functional consequences of chronic glucose deprivation in serous ovarian cancer cells. We found that cells resistant to glucose starvation (glucose-restricted cells) demonstrated increased metabolic plasticity that was dependent on NNMT (Nicotinamide N-methyltransferase) expression. We further show that ZEB1 induced NNMT, rendered cells resistant to glucose deprivation and recapitulated metabolic adaptations and mesenchymal gene expression observed in glucose-restricted cells. NNMT depletion reversed metabolic plasticity in glucose-restricted cells and prevented de novo formation of glucose-restricted colonies. In addition to its role in glucose independence, we found that NNMT was required for other ZEB1-induced phenotypes, such as increased migration. NNMT protein levels were also elevated in metastatic and recurrent tumors compared to matched primary carcinomas, while normal ovary and fallopian tube tissue had no detectable NNMT expression. Our studies define a novel ZEB1/NNMT signaling axis, which elicits mesenchymal gene expression, as well as phenotypic and metabolic plasticity in ovarian cancer cells upon chronic glucose starvation. Understanding the causes of cancer cell plasticity is crucial for the development of therapeutic strategies to counter intratumoral heterogeneity, acquired drug resistance and recurrence in high-grade serous ovarian cancer (HGSC). PMID:28412735

  1. Reproductive allocation and nutrient relationships in Cuphea: A semi-domesticated oilseed crop

    USDA-ARS?s Scientific Manuscript database

    No information is available on allometric variations in C, N, and P in structural, reproductive and metabolic tissues and their ratios in Cuphea germplasm line PSR23, a semi-domesticated indeterminate and phenotypically plastic oilseed crop. The objectives of this study were to quantify the impact o...

  2. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory.

    PubMed

    Jia, Dongya; Jolly, Mohit Kumar; Kulkarni, Prakash; Levine, Herbert

    2017-06-22

    Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a

  3. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory

    PubMed Central

    Kulkarni, Prakash; Levine, Herbert

    2017-01-01

    Waddington’s epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of “landscape” in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an “attractor” that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of “cancer attractors”—hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes “recanalization”, i.e., the exit from “cancer attractors” and re-entry into “normal attractors”, is more likely to

  4. Plasticity as Phenotype: G x E Interaction in a Freshwater Snail

    NASA Astrophysics Data System (ADS)

    Brunkow, P. E.; Calloway, S. A.

    2005-05-01

    Plasticity in morphological development allows species to accommodate environmental variation experienced during growth; however, genetic variation for phenotypic plasticity per se has been relatively under-studied. We utilized the well-documented plastic response of shell development to predator cues in a freshwater snail to quantify genetic variation for plasticity in growth rate and shell shape. Field-caught pairs of snails reproduced in the laboratory to create families of full siblings, which were then divided and allowed to grow in control and predator cue treatments. Predator (crayfish) cues had significant effects on both size-corrected growth rate and shell shape; family identity also significantly affected both final shell shape and growth rate. The interaction between predator treatment and family identity significantly affected snail growth rate but not final shell shape, suggesting genetic variation in the plastic response to predator cues for a physiological variable (growth rate) but not for a variable known to mechanically reduce the risk of predation (shell shape), at least in this population of snails. The possibility that risk of multiple modes of predation (i.e., both fish and crayfish) in some populations might maintain genetic variation in morphological plasticity is discussed.

  5. Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes.

    PubMed

    Machado-Schiaffino, Gonzalo; Henning, Frederico; Meyer, Axel

    2014-07-01

    The spectacular species richness of cichlids and their diversity in morphology, coloration, and behavior have made them an ideal model for the study of speciation and adaptive evolution. Hypertrophic lips evolved repeatedly and independently in African and Neotropical cichlid radiations. Cichlids with hypertrophic lips forage predominantly in rocky crevices and it has been hypothesized that mechanical stress caused by friction could result in larger lips through phenotypic plasticity. To test the influence of the environment on the size and development of lips, we conducted a series of breeding and feeding experiments on Midas cichlids. Full-sibs of Amphilophus labiatus (thick-lipped) and Amphilophus citrinellus (thin-lipped) each were split into a control group which was fed food from the water column and a treatment group whose food was fixed to substrates. We found strong evidence for phenotypic plasticity on lip area in the thick-lipped species, but not in the thin-lipped species. Intermediate phenotypic values were observed in hybrids from thick- and thin-lipped species reared under "control" conditions. Thus, both a genetic, but also a phenotypic plastic component is involved in the development of hypertrophic lips in Neotropical cichlids. Moreover, species-specific adaptive phenotypic plasticity was found, suggesting that plasticity is selected for in recent thick-lipped species. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  6. Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm.

    PubMed

    Janicke, T; Sandner, P; Ramm, S A; Vizoso, D B; Schärer, L

    2016-09-01

    Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male-biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  7. Morphological change and phenotypic plasticity in native and non-native pumpkinseed sunfish in response to competition.

    PubMed

    Yavno, Stan; Rooke, Anna C; Fox, Michael G

    2014-06-01

    Non-indigenous species are oftentimes exposed to ecosystems with unfamiliar species, and organisms that exhibit a high degree of phenotypic plasticity may be better able to contend with the novel competitors that they may encounter during range expansion. In this study, differences in morphological plasticity were investigated using young-of-year pumpkinseed sunfish (Lepomis gibbosus) from native North American and non-native European populations. Two Canadian populations, isolated from bluegill sunfish (L. macrochirus) since the last glaciation, and two Spanish populations, isolated from bluegill since their introduction in Europe, were reared in a common environment using artificial enclosures. Fish were subjected to allopatric (without bluegill) or sympatric (with bluegill) conditions, and differences in plasticity were tested through a MANOVA of discriminant function scores. All pumpkinseed populations exhibited dietary shifts towards more benthivorous prey when held with bluegill. Differences between North American and European populations were observed in body dimensions, gill raker length and pelvic fin position. Sympatric treatments induced an increase in body width and a decrease in caudal peduncle length in native fish; non-native fish exhibited longer caudal peduncle lengths when held in sympatry with bluegill. Overall, phenotypic plasticity influenced morphological divergence less than genetic factors, regardless of population. Contrary to predictions, pumpkinseeds from Europe exhibited lower levels of phenotypic plasticity than Canadian populations, suggesting that European pumpkinseeds are more canalized than their North American counterparts.

  8. Morphological change and phenotypic plasticity in native and non-native pumpkinseed sunfish in response to competition

    NASA Astrophysics Data System (ADS)

    Yavno, Stan; Rooke, Anna C.; Fox, Michael G.

    2014-06-01

    Non-indigenous species are oftentimes exposed to ecosystems with unfamiliar species, and organisms that exhibit a high degree of phenotypic plasticity may be better able to contend with the novel competitors that they may encounter during range expansion. In this study, differences in morphological plasticity were investigated using young-of-year pumpkinseed sunfish ( Lepomis gibbosus) from native North American and non-native European populations. Two Canadian populations, isolated from bluegill sunfish ( L. macrochirus) since the last glaciation, and two Spanish populations, isolated from bluegill since their introduction in Europe, were reared in a common environment using artificial enclosures. Fish were subjected to allopatric (without bluegill) or sympatric (with bluegill) conditions, and differences in plasticity were tested through a MANOVA of discriminant function scores. All pumpkinseed populations exhibited dietary shifts towards more benthivorous prey when held with bluegill. Differences between North American and European populations were observed in body dimensions, gill raker length and pelvic fin position. Sympatric treatments induced an increase in body width and a decrease in caudal peduncle length in native fish; non-native fish exhibited longer caudal peduncle lengths when held in sympatry with bluegill. Overall, phenotypic plasticity influenced morphological divergence less than genetic factors, regardless of population. Contrary to predictions, pumpkinseeds from Europe exhibited lower levels of phenotypic plasticity than Canadian populations, suggesting that European pumpkinseeds are more canalized than their North American counterparts.

  9. Phenotypic Plasticity Determines Cancer Stem Cell Therapeutic Resistance in Oral Squamous Cell Carcinoma.

    PubMed

    Biddle, Adrian; Gammon, Luke; Liang, Xiao; Costea, Daniela Elena; Mackenzie, Ian C

    2016-02-01

    Cancer stem cells (CSCs) drive tumour spread and therapeutic resistance, and can undergo epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) to switch between epithelial and post-EMT sub-populations. Examining oral squamous cell carcinoma (OSCC), we now show that increased phenotypic plasticity, the ability to undergo EMT/MET, underlies increased CSC therapeutic resistance within both the epithelial and post-EMT sub-populations. The post-EMT CSCs that possess plasticity exhibit particularly enhanced therapeutic resistance and are defined by a CD44(high)EpCAM(low/-) CD24(+) cell surface marker profile. Treatment with TGFβ and retinoic acid (RA) enabled enrichment of this sub-population for therapeutic testing, through which the endoplasmic reticulum (ER) stressor and autophagy inhibitor Thapsigargin was shown to selectively target these cells. Demonstration of the link between phenotypic plasticity and therapeutic resistance, and development of an in vitro method for enrichment of a highly resistant CSC sub-population, provides an opportunity for the development of improved chemotherapeutic agents that can eliminate CSCs.

  10. Phenotypic Plasticity Determines Cancer Stem Cell Therapeutic Resistance in Oral Squamous Cell Carcinoma

    PubMed Central

    Biddle, Adrian; Gammon, Luke; Liang, Xiao; Costea, Daniela Elena; Mackenzie, Ian C.

    2016-01-01

    Cancer stem cells (CSCs) drive tumour spread and therapeutic resistance, and can undergo epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) to switch between epithelial and post-EMT sub-populations. Examining oral squamous cell carcinoma (OSCC), we now show that increased phenotypic plasticity, the ability to undergo EMT/MET, underlies increased CSC therapeutic resistance within both the epithelial and post-EMT sub-populations. The post-EMT CSCs that possess plasticity exhibit particularly enhanced therapeutic resistance and are defined by a CD44highEpCAMlow/− CD24+ cell surface marker profile. Treatment with TGFβ and retinoic acid (RA) enabled enrichment of this sub-population for therapeutic testing, through which the endoplasmic reticulum (ER) stressor and autophagy inhibitor Thapsigargin was shown to selectively target these cells. Demonstration of the link between phenotypic plasticity and therapeutic resistance, and development of an in vitro method for enrichment of a highly resistant CSC sub-population, provides an opportunity for the development of improved chemotherapeutic agents that can eliminate CSCs. PMID:26981578

  11. Complex small-molecule architectures regulate phenotypic plasticity in a nematode.

    PubMed

    Bose, Neelanjan; Ogawa, Akira; von Reuss, Stephan H; Yim, Joshua J; Ragsdale, Erik J; Sommer, Ralf J; Schroeder, Frank C

    2012-12-07

    Chemistry the worm's way: The nematode Pristionchus pacificus constructs elaborate small molecules from modified building blocks of primary metabolism, including an unusual xylopyranose-based nucleoside (see scheme). These compounds act as signaling molecules to control adult phenotypic plasticity and dauer development and provide examples of modular generation of structural diversity in metazoans. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells.

    PubMed

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M; Wells, Alan

    2016-07-07

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due

  13. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa

    PubMed Central

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-01-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted “mountain refugia hypothesis” states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity. PMID:24223262

  14. Phenotypic plasticity in Drosophila cactophilic species: the effect of competition, density, and breeding sites.

    PubMed

    Fanara, Juan Jose; Werenkraut, Victoria

    2017-08-01

    Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size-related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  15. Predator-induced phenotypic plasticity of shape and behavior: parallel and unique patterns across sexes and species

    PubMed Central

    Kinnison, Michael T.

    2017-01-01

    Abstract Phenotypic plasticity is often an adaptation of organisms to cope with temporally or spatially heterogenous landscapes. Like other adaptations, one would predict that different species, populations, or sexes might thus show some degree of parallel evolution of plasticity, in the form of parallel reaction norms, when exposed to analogous environmental gradients. Indeed, one might even expect parallelism of plasticity to repeatedly evolve in multiple traits responding to the same gradient, resulting in integrated parallelism of plasticity. In this study, we experimentally tested for parallel patterns of predator-mediated plasticity of size, shape, and behavior of 2 species and sexes of mosquitofish. Examination of behavioral trials indicated that the 2 species showed unique patterns of behavioral plasticity, whereas the 2 sexes in each species showed parallel responses. Fish shape showed parallel patterns of plasticity for both sexes and species, albeit males showed evidence of unique plasticity related to reproductive anatomy. Moreover, patterns of shape plasticity due to predator exposure were broadly parallel to what has been depicted for predator-mediated population divergence in other studies (slender bodies, expanded caudal regions, ventrally located eyes, and reduced male gonopodia). We did not find evidence of phenotypic plasticity in fish size for either species or sex. Hence, our findings support broadly integrated parallelism of plasticity for sexes within species and less integrated parallelism for species. We interpret these findings with respect to their potential broader implications for the interacting roles of adaptation and constraint in the evolutionary origins of parallelism of plasticity in general. PMID:29491997

  16. Phenotypic plasticity in blood–oxygen transport in highland and lowland deer mice

    PubMed Central

    Tufts, Danielle M.; Revsbech, Inge G.; Cheviron, Zachary A.; Weber, Roy E.; Fago, Angela; Storz, Jay F.

    2013-01-01

    SUMMARY In vertebrates living at high altitude, arterial hypoxemia may be ameliorated by reversible changes in the oxygen-carrying capacity of the blood (regulated by erythropoiesis) and/or changes in blood–oxygen affinity (regulated by allosteric effectors of hemoglobin function). These hematological traits often differ between taxa that are native to different elevational zones, but it is often unknown whether the observed physiological differences reflect fixed, genetically based differences or environmentally induced acclimatization responses (phenotypic plasticity). Here, we report measurements of hematological traits related to blood–O2 transport in populations of deer mice (Peromyscus maniculatus) that are native to high- and low-altitude environments. We conducted a common-garden breeding experiment to assess whether altitude-related physiological differences were attributable to developmental plasticity and/or physiological plasticity during adulthood. Under conditions prevailing in their native habitats, high-altitude deer mice from the Rocky Mountains exhibited a number of pronounced hematological differences relative to low-altitude conspecifics from the Great Plains: higher hemoglobin concentrations, higher hematocrits, higher erythrocytic concentrations of 2,3-diphosphoglycerate (an allosteric regulator of hemoglobin–oxygen affinity), lower mean corpuscular hemoglobin concentrations and smaller red blood cells. However, these differences disappeared after 6 weeks of acclimation to normoxia at low altitude. The measured traits were also indistinguishable between the F1 progeny of highland and lowland mice, indicating that there were no persistent differences in phenotype that could be attributed to developmental plasticity. These results indicate that the naturally occurring hematological differences between highland and lowland mice are environmentally induced and are largely attributable to physiological plasticity during adulthood. PMID

  17. Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis[W][OPEN

    PubMed Central

    Chen, Dijun; Neumann, Kerstin; Friedel, Swetlana; Kilian, Benjamin; Chen, Ming; Altmann, Thomas; Klukas, Christian

    2014-01-01

    Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues. PMID:25501589

  18. Towards a gene regulatory network perspective on phenotypic plasticity, genetic accommodation and genetic assimilation

    PubMed Central

    Pfennig, David W.; Ehrenreich, Ian M.

    2014-01-01

    Many organisms can produce alternative phenotypes in direct response to different environmental conditions, a phenomenon known as phenotypic plasticity. The environmentally sensitive gene regulatory networks (GRNs) that mediate such developmental flexibility are largely unknown. Yet, characterizing these GRNs is important not only for elucidating plasticity’s molecular basis, but also for shedding light onto whether and how plasticity might impact evolution. In this issue of Molecular Ecology, Schneider et al.) describe one of the first efforts to determine the GRN underlying a plastic trait. They focus on diet-induced plasticity in the cichlid fish, Astatoreochromis alluaudi. Depending on whether soft food (e.g. insects) or hard food (e.g. molluscs) is consumed, this species forms a lower pharyngeal jaw (LPJ) with many fine teeth or with fewer molar-like teeth, respectively (Fig. 1). The authors previously identified genes that are differentially expressed between LPJ morphs during early development. In the present study, they examine the expression of 19 of these genes across development and diet. By analysing these transcriptional data in combination with information on putative transcription factor binding sites, they construct a GRN that explains observed gene expression patterns and is likely to control LPJ morphology. This work advances our understanding of how plasticity can arise as a consequence of environmentally sensitive GRNs and promises to help illuminate how changes in such GRNs could facilitate evolution. PMID:25208504

  19. Phenotypic Plasticity Influences the Size, Shape and Dynamics of the Geographic Distribution of an Invasive Plant

    PubMed Central

    Pichancourt, Jean-Baptiste; van Klinken, Rieks D.

    2012-01-01

    Phenotypic plasticity has long been suspected to allow invasive species to expand their geographic range across large-scale environmental gradients. We tested this possibility in Australia using a continental scale survey of the invasive tree Parkinsonia aculeata (Fabaceae) in twenty-three sites distributed across four climate regions and three habitat types. Using tree-level responses, we detected a trade-off between seed mass and seed number across the moisture gradient. Individual trees plastically and reversibly produced many small seeds at dry sites or years, and few big seeds at wet sites and years. Bigger seeds were positively correlated with higher seed and seedling survival rates. The trade-off, the relation between seed mass, seed and seedling survival, and other fitness components of the plant life-cycle were integrated within a matrix population model. The model confirms that the plastic response resulted in average fitness benefits across the life-cycle. Plasticity resulted in average fitness being positively maintained at the wet and dry range margins where extinction risks would otherwise have been high (“Jack-of-all-Trades” strategy JT), and fitness being maximized at the species range centre where extinction risks were already low (“Master-of-Some” strategy MS). The resulting hybrid “Jack-and-Master” strategy (JM) broadened the geographic range and amplified average fitness in the range centre. Our study provides the first empirical evidence for a JM species. It also confirms mechanistically the importance of phenotypic plasticity in determining the size, the shape and the dynamic of a species distribution. The JM allows rapid and reversible phenotypic responses to new or changing moisture conditions at different scales, providing the species with definite advantages over genetic adaptation when invading diverse and variable environments. Furthermore, natural selection pressure acting on phenotypic plasticity is predicted to result in

  20. Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?

    NASA Astrophysics Data System (ADS)

    Oms, Cristela Sánchez; Cerdá, Xim; Boulay, Raphaël

    2017-06-01

    Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.

  1. Life history traits and phenotypic selection among sunflower crop-wild hybrids and their wild counterpart: implications for crop allele introgression.

    PubMed

    Kost, Matthew A; Alexander, Helen M; Jason Emry, D; Mercer, Kristin L

    2015-06-01

    Hybridization produces strong evolutionary forces. In hybrid zones, selection can differentially occur on traits and selection intensities may differ among hybrid generations. Understanding these dynamics in crop-wild hybrid zones can clarify crop-like traits likely to introgress into wild populations and the particular hybrid generations through which introgression proceeds. In a field experiment with four crop-wild hybrid Helianthus annuus (sunflower) cross types, we measured growth and life history traits and performed phenotypic selection analysis on early season traits to ascertain the likelihood, and routes, of crop allele introgression into wild sunflower populations. All cross types overwintered, emerged in the spring, and survived until flowering, indicating no early life history barriers to crop allele introgression. While selection indirectly favored earlier seedling emergence and taller early season seedlings, direct selection only favored greater early season leaf length. Further, there was cross type variation in the intensity of selection operating on leaf length. Thus, introgression of multiple early season crop-like traits, due to direct selection for greater early season leaf length, should not be impeded by any cross type and may proceed at different rates among generations. In sum, alleles underlying early season sunflower crop-like traits are likely to introgress into wild sunflower populations.

  2. HSP90 Inhibition and Cellular Stress Elicits Phenotypic Plasticity in Hematopoietic Differentiation

    PubMed Central

    Lawag, Abdalla A.; Napper, Jennifer M.; Hunter, Caroline A.; Bacon, Nickolas A.; Deskins, Seth; El-hamdani, Manaf; Govender, Sarah-Leigh; Koc, Emine C.

    2017-01-01

    Abstract Cancer cells exist in a state of Darwinian selection using mechanisms that produce changes in gene expression through genetic and epigenetic alteration to facilitate their survival. Cellular plasticity, or the ability to alter cellular phenotype, can assist in survival of premalignant cells as they progress to full malignancy by providing another mechanism of adaptation. The connection between cellular stress and the progression of cancer has been established, although the details of the mechanisms have yet to be fully elucidated. The molecular chaperone HSP90 is often upregulated in cancers as they progress, presumably to allow cancer cells to deal with misfolded proteins and cellular stress associated with transformation. The objective of this work is to test the hypothesis that inhibition of HSP90 results in increased cell plasticity in mammalian systems that can confer a greater adaptability to selective pressures. The approach used is a murine in vitro model system of hematopoietic differentiation that utilizes a murine hematopoietic stem cell line, erythroid myeloid lymphoid (EML) clone 1, during their maturation from stem cells to granulocytic progenitors. During the differentiation protocol, 80%–90% of the cells die when placed in medium where the major growth factor is granulocyte–macrophage-colony stimulating factor. Using this selection point model, EML cells exhibit increases in cellular plasticity when they are better able to adapt to this medium and survive. Increases in cellular plasticity were found to occur upon exposure to geldanamycin to inhibit HSP90, when subjected to various forms of cellular stress, or inhibition of histone acetylation. Furthermore, we provide evidence that the cellular plasticity associated with inhibition of HSP90 in this model involves epigenetic mechanisms and is dependent upon high levels of stem cell factor signaling. This work provides evidence for a role of HSP90 and cellular stress in inducing phenotypic

  3. HSP90 Inhibition and Cellular Stress Elicits Phenotypic Plasticity in Hematopoietic Differentiation.

    PubMed

    Lawag, Abdalla A; Napper, Jennifer M; Hunter, Caroline A; Bacon, Nickolas A; Deskins, Seth; El-Hamdani, Manaf; Govender, Sarah-Leigh; Koc, Emine C; Sollars, Vincent E

    2017-10-01

    Cancer cells exist in a state of Darwinian selection using mechanisms that produce changes in gene expression through genetic and epigenetic alteration to facilitate their survival. Cellular plasticity, or the ability to alter cellular phenotype, can assist in survival of premalignant cells as they progress to full malignancy by providing another mechanism of adaptation. The connection between cellular stress and the progression of cancer has been established, although the details of the mechanisms have yet to be fully elucidated. The molecular chaperone HSP90 is often upregulated in cancers as they progress, presumably to allow cancer cells to deal with misfolded proteins and cellular stress associated with transformation. The objective of this work is to test the hypothesis that inhibition of HSP90 results in increased cell plasticity in mammalian systems that can confer a greater adaptability to selective pressures. The approach used is a murine in vitro model system of hematopoietic differentiation that utilizes a murine hematopoietic stem cell line, erythroid myeloid lymphoid (EML) clone 1, during their maturation from stem cells to granulocytic progenitors. During the differentiation protocol, 80%-90% of the cells die when placed in medium where the major growth factor is granulocyte-macrophage-colony stimulating factor. Using this selection point model, EML cells exhibit increases in cellular plasticity when they are better able to adapt to this medium and survive. Increases in cellular plasticity were found to occur upon exposure to geldanamycin to inhibit HSP90, when subjected to various forms of cellular stress, or inhibition of histone acetylation. Furthermore, we provide evidence that the cellular plasticity associated with inhibition of HSP90 in this model involves epigenetic mechanisms and is dependent upon high levels of stem cell factor signaling. This work provides evidence for a role of HSP90 and cellular stress in inducing phenotypic plasticity

  4. Neuroendocrine control of life histories: what do we need to know to understand the evolution of phenotypic plasticity?

    PubMed

    Lessells, C Kate M

    2008-05-12

    Almost all life histories are phenotypically plastic: that is, life-history traits such as timing of breeding, family size or the investment in individual offspring vary with some aspect of the environment, such as temperature or food availability. One approach to understanding this phenotypic plasticity from an evolutionary point of view is to extend the optimality approach to the range of environments experienced by the organism. This approach attempts to understand the value of particular traits in terms of the selection pressures that act on them either directly or owing to trade-offs due to resource allocation and other factors such as predation risk. Because these selection pressures will between environments, the predicted optimal phenotype will too. The relationship expressing the optimal phenotype for different environments is the optimal reaction norm and describes the optimal phenotypic plasticity. However, this view of phenotypic plasticity ignores the fact that the reaction norm must be underlain by some sort of control system: cues about the environment must be collected by sense organs, integrated into a decision about the appropriate life history, and a message sent to the relevant organs to implement that decision. In multicellular animals, this control mechanism is the neuroendocrine system. The central question that this paper addresses is whether the control system affects the reaction norm that evolves. This might happen in two different ways: first, the control system will create constraints on the evolution of reaction norms if it cannot be configured to produce the optimal reaction norm and second, the control system will create additional selection pressures on reaction norms if the neuroendocrine system is costly. If either of these happens, a full understanding of the way in which selection shapes reaction norms must include details of the neuroendocrine control system. This paper presents the conceptual framework needed to explain what

  5. Phenotypically plastic neophobia: a response to variable predation risk

    PubMed Central

    Brown, Grant E.; Ferrari, Maud C. O.; Elvidge, Chris K.; Ramnarine, Indar; Chivers, Douglas P.

    2013-01-01

    Prey species possess a variety of morphological, life history and behavioural adaptations to evade predators. While specific evolutionary conditions have led to the expression of permanent, non-plastic anti-predator traits, the vast majority of prey species rely on experience to express adaptive anti-predator defences. While ecologists have identified highly sophisticated means through which naive prey can deal with predation threats, the potential for death upon the first encounter with a predator is still a remarkably important unresolved issue. Here, we used both laboratory and field studies to provide the first evidence for risk-induced neophobia in two taxa (fish and amphibians), and argue that phenotypically plastic neophobia acts as an adaptive anti-predator strategy for vulnerable prey dealing with spatial and temporal variation in predation risk. Our study also illustrates how risk-free maintenance conditions used in laboratory studies may blind researchers to adaptive anti-predator strategies that are only expressed in high-risk conditions. PMID:23390103

  6. Phenotypically plastic neophobia: a response to variable predation risk.

    PubMed

    Brown, Grant E; Ferrari, Maud C O; Elvidge, Chris K; Ramnarine, Indar; Chivers, Douglas P

    2013-04-07

    Prey species possess a variety of morphological, life history and behavioural adaptations to evade predators. While specific evolutionary conditions have led to the expression of permanent, non-plastic anti-predator traits, the vast majority of prey species rely on experience to express adaptive anti-predator defences. While ecologists have identified highly sophisticated means through which naive prey can deal with predation threats, the potential for death upon the first encounter with a predator is still a remarkably important unresolved issue. Here, we used both laboratory and field studies to provide the first evidence for risk-induced neophobia in two taxa (fish and amphibians), and argue that phenotypically plastic neophobia acts as an adaptive anti-predator strategy for vulnerable prey dealing with spatial and temporal variation in predation risk. Our study also illustrates how risk-free maintenance conditions used in laboratory studies may blind researchers to adaptive anti-predator strategies that are only expressed in high-risk conditions.

  7. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage

    USGS Publications Warehouse

    Zimova, Marketa; Mills, L. Scott; Lukacs, Paul M.; Mitchell, Michael S.

    2014-01-01

    As duration of snow cover decreases owing to climate change, species undergoing seasonal colour moults can become colour mismatched with their background. The immediate adaptive solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or in behaviours that reduce mismatch or its consequences. We observed nearly 200 snowshoe hares across a wide range of snow conditions and two study sites in Montana, USA, and found minimal plasticity in response to mismatch between coat colour and background. We found that moult phenology varied between study sites, likely due to differences in photoperiod and climate, but was largely fixed within study sites with only minimal plasticity to snow conditions during the spring white-to-brown moult. We also found no evidence that hares modify their behaviour in response to colour mismatch. Hiding and fleeing behaviours and resting spot preference of hares were more affected by variables related to season, site and concealment by vegetation, than by colour mismatch. We conclude that plasticity in moult phenology and behaviours in snowshoe hares is insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate change will require natural selection on moult phenology or behaviour.

  8. The application of flexible unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives

    USDA-ARS?s Scientific Manuscript database

    Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypi...

  9. Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?

    PubMed

    Oms, Cristela Sánchez; Cerdá, Xim; Boulay, Raphaël

    2017-06-01

    Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.

  10. How fluctuating competition and phenotypic plasticity mediate species divergence.

    PubMed

    Pfennig, David W; Murphy, Peter J

    2002-06-01

    Causal evidence linking resource competition to species divergence is scarce. In this study, we coupled field observations with experiments to ask if the degree of character displacement reflects the intensity of competition between two closely related spadefoot toads (Spea bombifrons and S. multiplicata). Tadpoles of both species develop into either a small-headed omnivorous morph, which feeds mostly on detritus, or a large-headed carnivorous morph, which specializes on and whose phenotype is induced by fairy shrimp. Previously, we found that S. multiplicata are inferior competitors for fairy shrimp and are less likely to develop into carnivores in sympatry with S. bombifrons. We compared four key trophic characters in S. multiplicata across natural ponds where the frequency of S. bombifrons varied. We found that S. multiplicata became increasingly more omnivore-like as the relative abundance of S. bombifrons increased. Moreover, in controlled laboratory populations, S. multiplicata became increasingly more omnivore-like and S. bombifrons became increasingly more carnivore-like as we increased the relative abundance of the other species. Phenotypic plasticity helped mediate this divergence: S. multiplicata became increasingly less likely to eat shrimp and develop into carnivores in the presence of S. bombifrons, a superior predator on shrimp. However, divergence also reflected differences in canalized traits: When reared under common conditions, S. multiplicata tadpoles became increasingly less likely to produce carnivores as their natal pond decreased in elevation. Presumably, this pattern reflected selection against carnivores in lower-elevation ponds, because S. bombifrons became increasingly more common with decreasing elevation. Local genetic adaptation to the presence of S. bombifrons was remarkably fine grained, with differences in carnivore production detected between populations a few kilometers apart. Our results suggest that the degree of character

  11. Evolutionary response of landraces to climate change in centers of crop diversity

    PubMed Central

    Mercer, Kristin L; Perales, Hugo R

    2010-01-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource. PMID:25567941

  12. Evolutionary response of landraces to climate change in centers of crop diversity.

    PubMed

    Mercer, Kristin L; Perales, Hugo R

    2010-09-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.

  13. Phenotypic plasticity in opsin expression in a butterfly compound eye complements sex role reversal

    PubMed Central

    2012-01-01

    Background Animals often display phenotypic plasticity in morphologies and behaviors that result in distinct adaptations to fluctuating seasonal environments. The butterfly Bicyclus anynana has two seasonal forms, wet and dry, that vary in wing ornament brightness and in the identity of the sex that performs the most courting and choosing. Rearing temperature is the cue for producing these alternative seasonal forms. We hypothesized that, barring any developmental constraints, vision should be enhanced in the choosy individuals but diminished in the non-choosy individuals due to physiological costs. As a proxy of visual performance we measured eye size, facet lens size, and sensitivity to light, e.g., the expression levels of all opsins, in males and females of both seasonal forms. Results We found that B. anynana eyes displayed significant sexual dimorphism and phenotypic plasticity for both morphology and opsin expression levels, but not all results conformed to our prediction. Males had larger eyes than females across rearing temperatures, and increases in temperature produced larger eyes in both sexes, mostly via increases in facet number. Ommatidia were larger in the choosy dry season (DS) males and transcript levels for all three opsins were significantly lower in the less choosy DS females. Conclusions Opsin level plasticity in females, and ommatidia size plasticity in males supported our visual plasticity hypothesis but males appear to maintain high visual function across both seasons. We discuss our results in the context of distinct sexual and natural selection pressures that may be facing each sex in the wild in each season. PMID:23194112

  14. The evolution of human phenotypic plasticity: age and nutritional status at maturity.

    PubMed

    Gage, Timothy B

    2003-08-01

    Several evolutionary optimal models of human plasticity in age and nutritional status at reproductive maturation are proposed and their dynamics examined. These models differ from previously published models because fertility is not assumed to be a function of body size or nutritional status. Further, the models are based on explicitly human demographic patterns, that is, model human life-tables, model human fertility tables, and, a nutrient flow-based model of maternal nutritional status. Infant survival (instead of fertility as in previous models) is assumed to be a function of maternal nutritional status. Two basic models are examined. In the first the cost of reproduction is assumed to be a constant proportion of total nutrient flow. In the second the cost of reproduction is constant for each birth. The constant proportion model predicts a negative slope of age and nutritional status at maturation. The constant cost per birth model predicts a positive slope of age and nutritional status at maturation. Either model can account for the secular decline in menarche observed over the last several centuries in Europe. A search of the growth literature failed to find definitive empirical documentation of human phenotypic plasticity in age and nutritional status at maturation. Most research strategies confound genetics with phenotypic plasticity. The one study that reports secular trends suggests a marginally insignificant, but positive slope. This view tends to support the constant cost per birth model.

  15. Predator-induced phenotypic plasticity within- and across-generations: a challenge for theory?

    PubMed Central

    Walsh, Matthew R.; Cooley, Frank; Biles, Kelsey; Munch, Stephan B.

    2015-01-01

    Much work has shown that the environment can induce non-genetic changes in phenotype that span multiple generations. Theory predicts that predictable environmental variation selects for both increased within- and across-generation responses. Yet, to the best of our knowledge, there are no empirical tests of this prediction. We explored the relationship between within- versus across-generation plasticity by evaluating the influence of predator cues on the life-history traits of Daphnia ambigua. We measured the duration of predator-induced transgenerational effects, determined when transgenerational responses are induced, and quantified the cues that activate transgenerational plasticity. We show that predator exposure during embryonic development causes earlier maturation and increased reproductive output. Such effects are detectable two generations removed from predator exposure and are similar in magnitude in response to exposure to cues emitted by injured conspecifics. Moreover, all experimental contexts and traits yielded a negative correlation between within- versus across-generation responses. That is, responses to predator cues within- and across-generations were opposite in sign and magnitude. Although many models address transgenerational plasticity, none of them explain this apparent negative relationship between within- and across-generation plasticities. Our results highlight the need to refine the theory of transgenerational plasticity. PMID:25392477

  16. Phenotypic plasticity in age at first reproduction of female northern sea otters (Enhydra lutris kenyoni)

    USGS Publications Warehouse

    Von Biela, V.R.; Gill, V.A.; Bodkin, James L.; Burns, Jennifer M.

    2009-01-01

    Life-history theory predicts that within a species, reproduction and survival rates will differ among populations that differ in resource availability or predation rates through phenotypic plasticity. When populations are near carrying capacity (K) or when they are declining due to reduced prey resources, the average age at 1st reproduction (average AFR) is predicted to be older than in populations below K. Differences between the trajectories of northern sea otter (Enhydra lutris kenyoni) populations in Alaska provides an opportunity to examine phenotypic plasticity. Using premolar teeth or reproductive tracts, we estimated average AFR from demographically distinct populations of sea otters in Alaska. We obtained samples from 2 populations near K, Prince William Sound (PWS) and the Aleutian Archipelago (archived samples), and from 2populations below K, the Kodiak Archipelago and Sitka. The average AFR was lower in populations below K (3.60 years ??0.16 SD)compared to those near K (4.21 ?? 0.13 years, P <0.001), and differed among all populations, with the Aleutian population possessing the oldest average AFR (4.29 ?? 0.09 years) followed by PWS (4.05 ?? 0.24 years), Sitka (3.80 ?? 0.21 years), and Kodiak (3.19 ?? 0.37 years). The difference in average AFR among populations supports life-history theory and provides evidence of phenotypic plasticity in sea otters. Our findings highlight the value of using average AFR as a tool for monitoring mammalian populations. ?? 2009 American Society of Mammalogists.

  17. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement.

    PubMed

    Cobb, Joshua N; Declerck, Genevieve; Greenberg, Anthony; Clark, Randy; McCouch, Susan

    2013-04-01

    More accurate and precise phenotyping strategies are necessary to empower high-resolution linkage mapping and genome-wide association studies and for training genomic selection models in plant improvement. Within this framework, the objective of modern phenotyping is to increase the accuracy, precision and throughput of phenotypic estimation at all levels of biological organization while reducing costs and minimizing labor through automation, remote sensing, improved data integration and experimental design. Much like the efforts to optimize genotyping during the 1980s and 1990s, designing effective phenotyping initiatives today requires multi-faceted collaborations between biologists, computer scientists, statisticians and engineers. Robust phenotyping systems are needed to characterize the full suite of genetic factors that contribute to quantitative phenotypic variation across cells, organs and tissues, developmental stages, years, environments, species and research programs. Next-generation phenotyping generates significantly more data than previously and requires novel data management, access and storage systems, increased use of ontologies to facilitate data integration, and new statistical tools for enhancing experimental design and extracting biologically meaningful signal from environmental and experimental noise. To ensure relevance, the implementation of efficient and informative phenotyping experiments also requires familiarity with diverse germplasm resources, population structures, and target populations of environments. Today, phenotyping is quickly emerging as the major operational bottleneck limiting the power of genetic analysis and genomic prediction. The challenge for the next generation of quantitative geneticists and plant breeders is not only to understand the genetic basis of complex trait variation, but also to use that knowledge to efficiently synthesize twenty-first century crop varieties.

  18. Phenological shifts in North American red squirrels: disentangling the roles of phenotypic plasticity and microevolution.

    PubMed

    Lane, Jeffrey E; McAdam, Andrew G; McFarlane, S Eryn; Williams, Cory T; Humphries, Murray M; Coltman, David W; Gorrell, Jamieson C; Boutin, Stan

    2018-06-01

    Phenological shifts are the most widely reported ecological responses to climate change, but the requirements to distinguish their causes (i.e. phenotypic plasticity vs. microevolution) are rarely met. To do so, we analysed almost two decades of parturition data from a wild population of North American red squirrels (Tamiasciurus hudsonicus). Although an observed advance in parturition date during the first decade provided putative support for climate change-driven microevolution, a closer look revealed a more complex pattern. Parturition date was heritable [h 2  = 0.14 (0.07-0.21 (HPD interval)] and under phenotypic selection [β = -0.14 ± 0.06 (SE)] across the full study duration. However, the early advance reversed in the second decade. Further, selection did not act on the genetic contribution to variation in parturition date, and observed changes in predicted breeding values did not exceed those expected due to genetic drift. Instead, individuals responded plastically to environmental variation, and high food [white spruce (Picea glauca) seed] production in the first decade appears to have produced a plastic advance. In addition, there was little evidence of climate change affecting the advance, as there was neither a significant influence of spring temperature on parturition date or evidence of a change in spring temperatures across the study duration. Heritable traits not responding to selection in accordance with quantitative genetic predictions have long presented a puzzle to evolutionary ecologists. Our results on red squirrels provide empirical support for one potential solution: phenotypic selection arising from an environmental, as opposed to genetic, covariance between the phenotypic trait and annual fitness. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  19. Transcriptional profiling of predator-induced phenotypic plasticity in Daphnia pulex.

    PubMed

    Rozenberg, Andrey; Parida, Mrutyunjaya; Leese, Florian; Weiss, Linda C; Tollrian, Ralph; Manak, J Robert

    2015-01-01

    Predator-induced defences are a prominent example of phenotypic plasticity found from single-celled organisms to vertebrates. The water flea Daphnia pulex is a very convenient ecological genomic model for studying predator-induced defences as it exhibits substantial morphological changes under predation risk. Most importantly, however, genetically identical clones can be transcriptionally profiled under both control and predation risk conditions and be compared due to the availability of the sequenced reference genome. Earlier gene expression analyses of candidate genes as well as a tiled genomic microarray expression experiment have provided insights into some genes involved in predator-induced phenotypic plasticity. Here we performed the first RNA-Seq analysis to identify genes that were differentially expressed in defended vs. undefended D. pulex specimens in order to explore the genetic mechanisms underlying predator-induced defences at a qualitatively novel level. We report 230 differentially expressed genes (158 up- and 72 down-regulated) identified in at least two of three different assembly approaches. Several of the differentially regulated genes belong to families of paralogous genes. The most prominent classes amongst the up-regulated genes include cuticle genes, zinc-metalloproteinases and vitellogenin genes. Furthermore, several genes from this group code for proteins recruited in chromatin-reorganization or regulation of the cell cycle (cyclins). Down-regulated gene classes include C-type lectins, proteins involved in lipogenesis, and other families, some of which encode proteins with no known molecular function. The RNA-Seq transcriptome data presented in this study provide important insights into gene regulatory patterns underlying predator-induced defences. In particular, we characterized different effector genes and gene families found to be regulated in Daphnia in response to the presence of an invertebrate predator. These effector genes are

  20. Introducing the Brassica Information Portal: Towards integrating genotypic and phenotypic Brassica crop data

    PubMed Central

    Eckes, Annemarie H.; Gubała, Tomasz; Nowakowski, Piotr; Szymczyszyn, Tomasz; Wells, Rachel; Irwin, Judith A.; Horro, Carlos; Hancock, John M.; King, Graham; Dyer, Sarah C.; Jurkowski, Wiktor

    2017-01-01

    The Brassica Information Portal (BIP) is a centralised repository for brassica phenotypic data. The site hosts trait data associated with brassica research and breeding experiments conducted on brassica crops, that are used as oilseeds, vegetables, livestock forage and fodder and for biofuels. A key feature is the explicit management of meta-data describing the provenance and relationships between experimental plant materials, as well as trial design and trait descriptors. BIP is an open access and open source project, built on the schema of CropStoreDB, and as such can provide trait data management strategies for any crop data. A new user interface and programmatic submission/retrieval system helps to simplify data access for researchers, breeders and other end-users. BIP opens up the opportunity to apply integrative, cross-project analyses to data generated by the Brassica Research Community. Here, we present a short description of the current status of the repository. PMID:28529710

  1. Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the Crop Ontology developed by the crop communities of practice

    PubMed Central

    Shrestha, Rosemary; Matteis, Luca; Skofic, Milko; Portugal, Arllet; McLaren, Graham; Hyman, Glenn; Arnaud, Elizabeth

    2012-01-01

    The Crop Ontology (CO) of the Generation Challenge Program (GCP) (http://cropontology.org/) is developed for the Integrated Breeding Platform (IBP) (http://www.integratedbreeding.net/) by several centers of The Consultative Group on International Agricultural Research (CGIAR): bioversity, CIMMYT, CIP, ICRISAT, IITA, and IRRI. Integrated breeding necessitates that breeders access genotypic and phenotypic data related to a given trait. The CO provides validated trait names used by the crop communities of practice (CoP) for harmonizing the annotation of phenotypic and genotypic data and thus supporting data accessibility and discovery through web queries. The trait information is completed by the description of the measurement methods and scales, and images. The trait dictionaries used to produce the Integrated Breeding (IB) fieldbooks are synchronized with the CO terms for an automatic annotation of the phenotypic data measured in the field. The IB fieldbook provides breeders with direct access to the CO to get additional descriptive information on the traits. Ontologies and trait dictionaries are online for cassava, chickpea, common bean, groundnut, maize, Musa, potato, rice, sorghum, and wheat. Online curation and annotation tools facilitate (http://cropontology.org) direct maintenance of the trait information and production of trait dictionaries by the crop communities. An important feature is the cross referencing of CO terms with the Crop database trait ID and with their synonyms in Plant Ontology (PO) and Trait Ontology (TO). Web links between cross referenced terms in CO provide online access to data annotated with similar ontological terms, particularly the genetic data in Gramene (University of Cornell) or the evaluation and climatic data in the Global Repository of evaluation trials of the Climate Change, Agriculture and Food Security programme (CCAFS). Cross-referencing and annotation will be further applied in the IBP. PMID:22934074

  2. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus.

    PubMed

    Brennan, Reid S; Galvez, Fernando; Whitehead, Andrew

    2015-04-15

    The killifish Fundulus heteroclitus is an estuarine species with broad physiological plasticity, enabling acclimation to diverse stressors. Previous work suggests that freshwater populations expanded their physiology to accommodate low salinity environments; however, it is unknown whether this compromises their tolerance to high salinity. We used a comparative approach to investigate the mechanisms of a derived freshwater phenotype and the fate of an ancestral euryhaline phenotype after invasion of a freshwater environment. We compared physiological and transcriptomic responses to high- and low-salinity stress in fresh and brackish water populations and found an enhanced plasticity to low salinity in the freshwater population coupled with a reduced ability to acclimate to high salinity. Transcriptomic data identified genes with a conserved common response, a conserved salinity-dependent response and responses associated with population divergence. Conserved common acclimation responses revealed stress responses and alterations in cell-cycle regulation as important mechanisms in the general osmotic response. Salinity-specific responses included the regulation of genes involved in ion transport, intracellular calcium, energetic processes and cellular remodeling. Genes diverged between populations were primarily those showing salinity-specific expression and included those regulating polyamine homeostasis and the cell cycle. Additionally, when populations were matched with their native salinity, expression patterns were consistent with the concept of 'transcriptomic resilience', suggesting local adaptation. These findings provide insight into the fate of a plastic phenotype after a shift in environmental salinity and help to reveal mechanisms allowing for euryhalinity. © 2015. Published by The Company of Biologists Ltd.

  3. Mind the Roots: Phenotyping Below-Ground Crop Diversity and Its Influence on Final Yield

    NASA Astrophysics Data System (ADS)

    Nieters, C.; Guadagno, C. R.; Lemli, S.; Hosseini, A.; Ewers, B. E.

    2017-12-01

    Changes in global climate patterns and water regimes are having profound impacts on worldwide crop production. An ever-growing population paired with increasing temperatures and unpredictable periods of severe drought call for accurate modeling of future crop yield. Although novel approaches are being developed in high-throughput, above-ground image phenotyping, the below-ground plant system is still poorly phenotyped. Collection of plant root morphology and hydraulics are needed to inform mathematical models to reliably estimate yields of crops grown in sub-optimal conditions. We used Brassica rapa to inform our model as it is a globally cultivated crop with several functionally diverse cultivars. Specifically, we use 7 different accessions from oilseed (R500 and Yellow Sarson), leafy type (Pac choi and Chinese cabbage), a vegetable turnip, and two Wisconsin Fast Plants (Imb211 and Fast Plant self-compatible), which have shorter life cycles and potentially large differences in allocation to roots. Bi-weekly, we harvested above and below-ground biomass to compare the varieties in terms of carbon allocation throughout their life cycle. Using WinRhizo software, we analyzed root system length and surface area to compare and contrast root morphology among cultivars. Our results confirm that root structural characteristics are crucial to explain plant water use and carbon allocation. The root:shoot ratio reveals a significant (p < 0.01) difference among crop accession. To validate the procedure across different varieties and life stages we also compared surface area results from the image-based technology to dry biomass finding a strong linear relationship (R2= 0.85). To assess the influence of a diverse above-ground morphology on the root system we also measured above-ground anatomical and physiological traits such as gas exchange, chlorophyll content, and chlorophyll a fluorescence. A thorough analysis of the root system will clarify carbon dynamics and hydraulics at

  4. Effect of biofumigation with brassica pellets combined with Brassicaceae cover crops and plastic cover on the survival and infectivity of inoculum of Phytophthora nicotianae Breda de Haan.

    PubMed

    Rodríguez-Molina, M Carmen; Serrano-Pérez, Paula; Palo, Carolina

    2016-07-01

    Biofumigation with defatted seed meal of Brassicaceae in the form of pellets has several advantages over the incorporation of fresh Brassicaceae crops to control soil-borne diseases. Two field experiments were established to evaluate the effect of biofumigation with brassica pellets on the survival and infectivity of Phytophthora nicotianae Breda de Haan inoculum introduced before treatments. In the spring experiment the incorporation of additional Brassicaceae cover crop (Brassica nigra L. and Sinapis alba L.) was tested, and in the summer experiment two brassica pellet doses were applied. Biofumigation with brassica pellets in spring (3000 kg ha(-1) with and without plastic) or in summer (3000 kg ha(-1) with or without plastic; 6000 kg ha(-1) without plastic) had no significant effect on the survival of P. nicotianae, regardless of the incorporation of additional Brassicaceae cover crop in spring. Reduction in infectivity in spring was related to the application of plastic, especially when combined with brassica pellets and Brassicaceae crop. In summer, soil temperature was the main factor in the inactivation of the inoculum, especially when plastic was applied, and no additional inactivation was achieved with brassica pellets. In spring and summer, biofumigation with brassica pellets had no effect on the survival of P. nicotianae. Application of plastic in spring may reduce infectivity. Soil temperature is the main factor in the inactivation of inoculum in summer, especially when plastic is applied. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity

    PubMed Central

    2017-01-01

    Understanding how populations adapt to heterogeneous thermal regimes is essential for comprehending how latitudinal gradients in species diversification are formed, and how taxa will respond to ongoing climate change. Adaptation can occur by innate genetic factors, by phenotypic plasticity, or by a combination of both mechanisms. Yet, the relative contribution of such mechanisms to large-scale latitudinal gradients of thermal tolerance across conspecific populations remains unclear. We examine thermal performance in 11 populations of the intertidal copepod Tigriopus californicus, ranging from Baja California Sur (Mexico) to British Columbia (Canada). Common garden experiments show that survivorship to acute heat-stress differs between populations (by up to 3.8°C in LD50 values), reflecting a strong genetic thermal adaptation. Using a split-brood experiment with two rearing temperatures, we also show that developmental phenotypic plasticity is beneficial to thermal tolerance (by up to 1.3°C), and that this effect differs across populations. Although genetic divergence in heat tolerance strongly correlates with latitude and temperature, differences in the plastic response do not. In the context of climate warming, our results confirm the general prediction that low-latitude populations are most susceptible to local extinction because genetic adaptation has placed physiological limits closer to current environmental maxima, but our results also contradict the prediction that phenotypic plasticity is constrained at lower latitudes. PMID:28446698

  6. Contrasting phenotypic plasticity in the photoprotective strategies of the invasive species Carpobrotus edulis and the coexisting native species Crithmum maritimum.

    PubMed

    Fenollosa, Erola; Munné-Bosch, Sergi; Pintó-Marijuan, Marta

    2017-06-01

    Photoprotective strategies vary greatly within the plant kingdom and reflect a plant's physiological status and capacity to cope with environment variations. The plasticity and intensity of these responses may determine plant success. Invasive species are reported to show increased vigor to displace native species. Describing the mechanisms that confer such vigor is essential to understanding the success of invasive species. We performed an experiment whereby two species were monitored: Carpobrotus edulis, an aggressive invasive species in the Mediterranean basin, and Crithmum maritimum, a coexisting native species in the Cap de Creus Natural Park (NE Spain). We analyzed their photoprotective responses to seasonal environmental dynamics by comparing the capacity of the invader to respond to the local environmental stresses throughout the year. Our study analyses ecophysiological markers and photoprotective strategies to gain an insight into the success of invaders. We found that both species showed completely different but effective photoprotective strategies: in summer, C. edulis took special advantage of the xanthophyll cycle, whereas the success of C. maritimum in summer stemmed from morphological changes and alterations on β-carotene content. Winter also presented differences between the species, as the native showed reduced F v /F m ratios. Our experimental design allowed us to introduce a new approach to compare phenotypic plasticity: the integrated phenotypic plasticity index (PP int ), defined as the maximum Euclidian distance between phenotypes, using a combination of different variables to describe them. This index revealed significantly greater phenotypic plasticity in the invasive species compared to the native species. © 2017 Scandinavian Plant Physiology Society.

  7. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change.

    PubMed

    Valladares, Fernando; Matesanz, Silvia; Guilhaumon, François; Araújo, Miguel B; Balaguer, Luis; Benito-Garzón, Marta; Cornwell, Will; Gianoli, Ernesto; van Kleunen, Mark; Naya, Daniel E; Nicotra, Adrienne B; Poorter, Hendrik; Zavala, Miguel A

    2014-11-01

    Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche-modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population-level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  8. Convergent evolution of neuroendocrine control of phenotypic plasticity in pupal colour in butterflies

    PubMed Central

    Starnecker, G.; Hazel, W.

    1999-01-01

    Phenotypic plasticity in pupal colour occurs in three families of butterflies (the Nymphalidae, Papilionidae and Pieridae), typically in species whose pupation sites vary unpredictably in colour. In all species studied to date, larvae ready for pupation respond to environmental cues associated with the colour of their pupation sites and moult into cryptic light (yellow–green) or dark (brown–black) pupae. In nymphalids and pierids, pupal colour is controlled by a neuroendocrine factor, pupal melanization-reducing factor (PMRF), the release of which inhibits the melanization of the pupal cuticle resulting in light pupae. In contrast, the neuroendocrine factor controlling pupal colour in papilionid butterflies results in the production of brown pupae. PMRF was extracted from the ventral nerve chains of the peacock butterfly Inachis io (Nymphalidae) and black swallowtail butterfly Papilio polyxenes (Papilionidae). When injected into pre-pupae, the extracts resulted in yellow pupae in I. io but brown pupae in P. polyxenes. These results suggest that the same neuroendocrine factor controls the plasticity in pupal colour, but that plasticity in pupal colour in these species has evolved independently (convergently).

  9. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival.

    PubMed

    Shearer, Peter W; West, Jessica D; Walton, Vaughn M; Brown, Preston H; Svetec, Nicolas; Chiu, Joanna C

    2016-03-22

    As global climate change and exponential human population growth intensifies pressure on agricultural systems, the need to effectively manage invasive insect pests is becoming increasingly important to global food security. Drosophila suzukii is an invasive pest that drastically expanded its global range in a very short time since 2008, spreading to most areas in North America and many countries in Europe and South America. Preliminary ecological modeling predicted a more restricted distribution and, for this reason, the invasion of D. suzukii to northern temperate regions is especially unexpected. Investigating D. suzukii phenology and seasonal adaptations can lead to a better understanding of the mechanisms through which insects express phenotypic plasticity, which likely enables invasive species to successfully colonize a wide range of environments. We describe seasonal phenotypic plasticity in field populations of D. suzukii. Specifically, we observed a trend of higher proportions of flies with the winter morph phenotype, characterized by darker pigmentation and longer wing length, as summer progresses to winter. A laboratory-simulated winter photoperiod and temperature (12:12 L:D and 10 °C) were sufficient to induce the winter morph phenotype in D. suzukii. This winter morph is associated with increased survival at 1 °C when compared to the summer morph, thus explaining the ability of D. suzukii to survive cold winters. We then used RNA sequencing to identify gene expression differences underlying seasonal differences in D. suzukii physiology. Winter morph gene expression is consistent with known mechanisms of cold-hardening such as adjustments to ion transport and up-regulation of carbohydrate metabolism. In addition, transcripts involved in oogenesis and DNA replication were down-regulated in the winter morph, providing the first molecular evidence of a reproductive diapause in D. suzukii. To date, D. suzukii cold resistance studies suggest that this

  10. Phenotypic plasticity of Vaccinium meridionale (Ericaceae) in wild populations of mountain forests in Colombia.

    PubMed

    Ligarreto, Gustavo A; Patiño, Maria del Pilar; Magnitskiy, Stanislav V

    2011-06-01

    Vaccinium meridionale is a promising crop for the Andean region of South America and is currently available only in the wild. Spontaneous populations of this plant are found across the Colombian mountains, but very few published records on this plant morphology are available. A zonification study of V. meridionale was conducted in four principal areas of a low mountain forest of Colombia (Provinces of Boyacá, Cundinamarca, Santander and Nariño) in 2007. A total of 20 populations and 100 plants of V. meridionale were individually characterized and surveyed, using a list of 26 characters of morphological variables (9 quantitative and 17 qualitative characters). Our results indicated that natural populations of V. meridionale might be found in the tropical forest under a highly heterogeneous climate and microclimate conditions, at different mountain regions between 2 357 and 3 168masl. The shrubs of V. meridionale exhibited a high level of intra-population variation in several quantitative (plant height, stem diameter) and qualitative (growth habit, ramification density, presence of anthocyanins in stems) morphological characters, suggesting an environmentally induced phenotypic plasticity. Plant height, stem diameter and foliar density were the most variable morphological traits, with coefficients of variation higher than 50%. However, several quantitative characters of its reproductive potential, such as berry dimensions, rachis length and number of flowers per inflorescence, resulted with low plasticity with coefficients of variation lower than 30.2%, indicating that these characters were genetically determined. The highest correlation coefficients (p < 0.05) resulted to be between fruit length and fruit width (0.90), leaf length and leaf width (0.78), plant height and stem diameter (0.60), and inflorescence length and flowers number per inflorescence (0.57). The results suggest that an important genetic resource exists for this species in the wild. Low variation

  11. The use of wavelength-selective plastic cladding materials in horticulture: understanding of crop and fungal responses through the assessment of biological spectral weighting functions.

    PubMed

    Paul, Nigel D; Jacobson, Rob J; Taylor, Anna; Wargent, Jason J; Moore, Jason P

    2005-01-01

    Plant responses to light spectral quality can be exploited to deliver a range of agronomically desirable end points in protected crops. This can be achieved using plastics with specific spectral properties as crop covers. We have studied the responses of a range of crops to plastics that have either (a) increased transmission of UV compared with standard horticultural covers, (b) decreased transmission of UV or (c) increased the ratio of red (R) : far-red (FR) radiation. Both the UV-transparent and R : FR increasing films reduced leaf area and biomass, offering potential alternatives to chemical growth regulators. The UV-opaque film increased growth, but while this may be useful in some crops, there were trade-offs with elements of quality, such as pigmentation and taste. UV manipulation may also influence disease control. Increasing UV inhibited not only the pathogenic fungus Botrytis cinerea but also the disease biocontrol agent Trichoderma harzianum. Unlike B. cinerea, T. harzianum was highly sensitive to UV-A radiation. These fungal responses and those for plant growth in the growth room and the field under different plastics are analyzed in terms of alternative biological spectral weighting functions (BSWF). The role of BSWF in assessing general patterns of response to UV modification in horticulture is also discussed.

  12. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow

    NASA Astrophysics Data System (ADS)

    Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan

    2016-12-01

    Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.

  13. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    PubMed Central

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  14. Adaptive developmental plasticity: compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility.

    PubMed

    Mateus, Ana Rita A; Marques-Pita, Manuel; Oostra, Vicencio; Lafuente, Elvira; Brakefield, Paul M; Zwaan, Bas J; Beldade, Patrícia

    2014-11-21

    The environmental regulation of development can result in the production of distinct phenotypes from the same genotype and provide the means for organisms to cope with environmental heterogeneity. The effect of the environment on developmental outcomes is typically mediated by hormonal signals which convey information about external cues to the developing tissues. While such plasticity is a wide-spread property of development, not all developing tissues are equally plastic. To understand how organisms integrate environmental input into coherent adult phenotypes, we must know how different body parts respond, independently or in concert, to external cues and to the corresponding internal signals. We quantified the effect of temperature and ecdysone hormone manipulations on post-growth tissue patterning in an experimental model of adaptive developmental plasticity, the butterfly Bicyclus anynana. Following a suite of traits evolving by natural or sexual selection, we found that different groups of cells within the same tissue have sensitivities and patterns of response that are surprisingly distinct for the external environmental cue and for the internal hormonal signal. All but those wing traits presumably involved in mate choice responded to developmental temperature and, of those, all but the wing traits not exposed to predators responded to hormone manipulations. On the other hand, while patterns of significant response to temperature contrasted traits on autonomously-developing wings, significant response to hormone manipulations contrasted neighboring groups of cells with distinct color fates. We also showed that the spatial compartmentalization of these responses cannot be explained by the spatial or temporal compartmentalization of the hormone receptor protein. Our results unravel the integration of different aspects of the adult phenotype into developmental and functional units which both reflect and impact evolutionary change. Importantly, our findings

  15. Short-term phenotypic plasticity in long-chain cuticular hydrocarbons

    PubMed Central

    Thomas, Melissa L.; Simmons, Leigh W.

    2011-01-01

    Cuticular hydrocarbons provide arthropods with the chemical equivalent of the visually extravagant plumage of birds. Their long chain length, together with the number and variety of positions in which methyl branches and double bonds occur, provide cuticular hydrocarbons with an extraordinary level of information content. Here, we demonstrate phenotypic plasticity in an individual's cuticular hydrocarbon profile. Using solid-phase microextraction, a chemical technique that enables multiple sampling of the same individual, we monitor short-term changes in cuticular hydrocarbon profiles of individual crickets, Teleogryllus oceanicus, in response to a social challenge. We experimentally manipulate the dominance status of males and find that dominant males, on losing fights with other dominant males, change their hydrocarbon profile to more closely resemble that of a subordinate. This result demonstrates that cuticular hydrocarbons can be far more responsive to changes in social dominance than previously realized. PMID:21367785

  16. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles

    PubMed Central

    Middlemis Maher, Jessica; Werner, Earl E.; Denver, Robert J.

    2013-01-01

    Amphibian tadpoles display extensive anti-predator phenotypic plasticity, reducing locomotory activity and, with chronic predator exposure, developing relatively smaller trunks and larger tails. In many vertebrates, predator exposure alters activity of the neuroendocrine stress axis. We investigated predator-induced effects on stress hormone production and the mechanistic link to anti-predator defences in Rana sylvatica tadpoles. Whole-body corticosterone (CORT) content was positively correlated with predator biomass in natural ponds. Exposure to caged predators in mesocosms caused a reduction in CORT by 4 hours, but increased CORT after 4 days. Tadpoles chronically exposed to exogenous CORT developed larger tails relative to their trunks, matching morphological changes induced by predator chemical cue; this predator effect was blocked by the corticosteroid biosynthesis inhibitor metyrapone. Tadpole tail explants treated in vitro with CORT increased tissue weight, suggesting that CORT acts directly on the tail. Short-term treatment of tadpoles with CORT increased predation mortality, likely due to increased locomotory activity. However, long-term CORT treatment enhanced survivorship, likely due to induced morphology. Our findings support the hypothesis that tadpole physiological and behavioural/morphological responses to predation are causally interrelated. Tadpoles initially suppress CORT and behaviour to avoid capture, but increase CORT with longer exposure, inducing adaptive phenotypic changes. PMID:23466985

  17. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer

    PubMed Central

    Klymenko, Yuliya; Kim, Oleg; Stack, M. Sharon

    2017-01-01

    Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC. PMID:28792442

  18. Genetic polymorphism in leaf-cutting ants is phenotypically plastic.

    PubMed

    Hughes, William O H; Boomsma, Jacobus J

    2007-07-07

    Advanced societies owe their success to an efficient division of labour that, in some social insects, is based on specialized worker phenotypes. The system of caste determination in such species is therefore critical. Here, we examine in a leaf-cutting ant (Acromyrmex echinatior) how a recently discovered genetic influence on caste determination interacts with the social environment. By removing most of one phenotype (large workers; LW) from test colonies, we increased the stimulus for larvae to develop into this caste, while for control colonies we removed a representative sample of all workers so that the stimulus was unchanged. We established the relative tendencies of genotypes to develop into LW by genotyping workers before and after the manipulation. In the control colonies, genotypes were similarly represented in the large worker caste before and after worker removal. In the test colonies, however, this relationship was significantly weaker, demonstrating that the change in environmental stimuli had altered the caste propensity of at least some genotypes. The results indicate that the genetic influence on worker caste determination acts via genotypes differing in their response thresholds to environmental cues and can be conceptualized as a set of overlapping reaction norms. A plastic genetic influence on division of labour has thus evolved convergently in two distantly related polyandrous taxa, the leaf-cutting ants and the honeybees, suggesting that it may be a common, potentially adaptive, property of complex, genetically diverse societies.

  19. Testing the role of phenotypic plasticity for local adaptation: growth and development in time-constrained Rana temporaria populations.

    PubMed

    Lind, M I; Johansson, F

    2011-12-01

    Phenotypic plasticity can be important for local adaptation, because it enables individuals to survive in a novel environment until genetic changes have been accumulated by genetic accommodation. By analysing the relationship between development rate and growth rate, it can be determined whether plasticity in life-history traits is caused by changed physiology or behaviour. We extended this to examine whether plasticity had been aiding local adaptation, by investigating whether the plastic response had been fixed in locally adapted populations. Tadpoles from island populations of Rana temporaria, locally adapted to different pool-drying regimes, were monitored in a common garden. Individual differences in development rate were caused by different foraging efficiency. However, developmental plasticity was physiologically mediated by trading off growth against development rate. Surprisingly, plasticity has not aided local adaptation to time-stressed environments, because local adaptation was not caused by genetic assimilation but on selection on the standing genetic variation in development time. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  20. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes.

    PubMed

    Soto-Feliciano, Yadira M; Bartlebaugh, Jordan M E; Liu, Yunpeng; Sánchez-Rivera, Francisco J; Bhutkar, Arjun; Weintraub, Abraham S; Buenrostro, Jason D; Cheng, Christine S; Regev, Aviv; Jacks, Tyler E; Young, Richard A; Hemann, Michael T

    2017-05-15

    Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6 KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition. © 2017 Soto-Feliciano et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Utilization of Molecular, Phenotypic, and Geographical Diversity to Develop Compact Composite Core Collection in the Oilseed Crop, Safflower (Carthamus tinctorius L.) through Maximization Strategy

    PubMed Central

    Kumar, Shivendra; Ambreen, Heena; Variath, Murali T.; Rao, Atmakuri R.; Agarwal, Manu; Kumar, Amar; Goel, Shailendra; Jagannath, Arun

    2016-01-01

    Safflower (Carthamus tinctorius L.) is a dryland oilseed crop yielding high quality edible oil. Previous studies have described significant phenotypic variability in the crop and used geographical distribution and phenotypic trait values to develop core collections. However, the molecular diversity component was lacking in the earlier collections thereby limiting their utility in breeding programs. The present study evaluated the phenotypic variability for 12 agronomically important traits during two growing seasons (2011–12 and 2012–13) in a global reference collection of 531 safflower accessions, assessed earlier by our group for genetic diversity and population structure using AFLP markers. Significant phenotypic variation was observed for all the agronomic traits in the representative collection. Cluster analysis of phenotypic data grouped the accessions into five major clusters. Accessions from the Indian Subcontinent and America harbored maximal phenotypic variability with unique characters for a few traits. MANOVA analysis indicated significant interaction between genotypes and environment for both the seasons. Initially, six independent core collections (CC1–CC6) were developed using molecular marker and phenotypic data for two seasons through POWERCORE and MSTRAT. These collections captured the entire range of trait variability but failed to include complete genetic diversity represented in 19 clusters reported earlier through Bayesian analysis of population structure (BAPS). Therefore, we merged the three POWERCORE core collections (CC1–CC3) to generate a composite core collection, CartC1 and three MSTRAT core collections (CC4–CC6) to generate another composite core collection, CartC2. The mean difference percentage, variance difference percentage, variable rate of coefficient of variance percentage, coincidence rate of range percentage, Shannon's diversity index, and Nei's gene diversity for CartC1 were 11.2, 43.7, 132.4, 93.4, 0.47, and 0

  2. Testing the adaptive plasticity of Iris pumila leaf traits to natural light conditions using phenotypic selection analysis

    NASA Astrophysics Data System (ADS)

    Tucić, Branka; Tomić, Vladimir; Avramov, Stevan; Pemac, Danijela

    1998-12-01

    A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient ( β') for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to

  3. Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO2 concentration on crop productivity

    PubMed Central

    Yin, Xinyou

    2013-01-01

    Background Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2]. Analysis A review of the literature indicates that the quantitative relationships for a number of traits, once expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorporating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models to have small parameterization requirements and yet generate phenotypic plasticity under changing environmental conditions need to capture the carbon–nitrogen interactions during crop growth. Conclusions The performance of the improved models depends little on the type of the experimental facilities used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and other climatic variables on crop productivity. PMID:23388883

  4. Rapid adaptation to a novel light environment: The importance of ontogeny and phenotypic plasticity in shaping the visual system of Nicaraguan Midas cichlid fish (Amphilophus citrinellus spp.).

    PubMed

    Härer, Andreas; Torres-Dowdall, Julián; Meyer, Axel

    2017-10-01

    Colonization of novel habitats is typically challenging to organisms. In the initial stage after colonization, approximation to fitness optima in the new environment can occur by selection acting on standing genetic variation, modification of developmental patterns or phenotypic plasticity. Midas cichlids have recently colonized crater Lake Apoyo from great Lake Nicaragua. The photic environment of crater Lake Apoyo is shifted towards shorter wavelengths compared to great Lake Nicaragua and Midas cichlids from both lakes differ in visual sensitivity. We investigated the contribution of ontogeny and phenotypic plasticity in shaping the visual system of Midas cichlids after colonizing this novel photic environment. To this end, we measured cone opsin expression both during development and after experimental exposure to different light treatments. Midas cichlids from both lakes undergo ontogenetic changes in cone opsin expression, but visual sensitivity is consistently shifted towards shorter wavelengths in crater lake fish, which leads to a paedomorphic retention of their visual phenotype. This shift might be mediated by lower levels of thyroid hormone in crater lake Midas cichlids (measured indirectly as dio2 and dio3 gene expression). Exposing fish to different light treatments revealed that cone opsin expression is phenotypically plastic in both species during early development, with short and long wavelength light slowing or accelerating ontogenetic changes, respectively. Notably, this plastic response was maintained into adulthood only in the derived crater lake Midas cichlids. We conclude that the rapid evolution of Midas cichlids' visual system after colonizing crater Lake Apoyo was mediated by a shift in visual sensitivity during ontogeny and was further aided by phenotypic plasticity during development. © 2017 John Wiley & Sons Ltd.

  5. Envirotyping for deciphering environmental impacts on crop plants.

    PubMed

    Xu, Yunbi

    2016-04-01

    Global climate change imposes increasing impacts on our environments and crop production. To decipher environmental impacts on crop plants, the concept "envirotyping" is proposed, as a third "typing" technology, complementing with genotyping and phenotyping. Environmental factors can be collected through multiple environmental trials, geographic and soil information systems, measurement of soil and canopy properties, and evaluation of companion organisms. Envirotyping contributes to crop modeling and phenotype prediction through its functional components, including genotype-by-environment interaction (GEI), genes responsive to environmental signals, biotic and abiotic stresses, and integrative phenotyping. Envirotyping, driven by information and support systems, has a wide range of applications, including environmental characterization, GEI analysis, phenotype prediction, near-iso-environment construction, agronomic genomics, precision agriculture and breeding, and development of a four-dimensional profile of crop science involving genotype (G), phenotype (P), envirotype (E) and time (T) (developmental stage). In the future, envirotyping needs to zoom into specific experimental plots and individual plants, along with the development of high-throughput and precision envirotyping platforms, to integrate genotypic, phenotypic and envirotypic information for establishing a high-efficient precision breeding and sustainable crop production system based on deciphered environmental impacts.

  6. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae).

    PubMed

    Formiga, A T; Silveira, F A O; Fernandes, G W; Isaias, R M S

    2015-03-01

    Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non-galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap-sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non-galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall-inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non-galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non-galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure. © 2014 German Botanical Society

  7. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon.

    PubMed

    Sparks, Morgan M; Westley, Peter A H; Falke, Jeffrey A; Quinn, Thomas P

    2017-12-01

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and among treatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could facilitate

  8. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Westley, Peter A. H.; Falke, Jeffrey A.; Quinn, Thomas P.

    2017-01-01

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and amongtreatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could

  9. RNAi pathways contribute to developmental history-dependent phenotypic plasticity in C. elegans

    PubMed Central

    Hall, Sarah E.; Chirn, Gung-Wei; Lau, Nelson C.; Sengupta, Piali

    2013-01-01

    Early environmental experiences profoundly influence adult phenotypes through complex mechanisms that are poorly understood. We previously showed that adult Caenorhabditis elegans that transiently passed through the stress-induced dauer larval stage (post-dauer adults) exhibit significant changes in gene expression profiles, chromatin states, and life history traits when compared with adults that bypassed the dauer stage (control adults). These wild-type, isogenic animals of equivalent developmental stages exhibit different signatures of molecular marks that reflect their distinct developmental trajectories. To gain insight into the mechanisms that contribute to these developmental history-dependent phenotypes, we profiled small RNAs from post-dauer and control adults by deep sequencing. RNA interference (RNAi) pathways are known to regulate genome-wide gene expression both at the chromatin and post-transcriptional level. By quantifying changes in endogenous small interfering RNA (endo-siRNA) levels in post-dauer as compared with control animals, our analyses identified a subset of genes that are likely targets of developmental history-dependent reprogramming through a complex RNAi-mediated mechanism. Mutations in specific endo-siRNA pathways affect expected gene expression and chromatin state changes for a subset of genes in post-dauer animals, as well as disrupt their increased brood size phenotype. We also find that both chromatin state and endo-siRNA distribution in dauers are unique, and suggest that remodeling in dauers provides a template for the subsequent establishment of adult post-dauer profiles. Our results indicate a role for endo-siRNA pathways as a contributing mechanism to early experience-dependent phenotypic plasticity in adults, and describe how developmental history can program adult physiology and behavior via epigenetic mechanisms. PMID:23329696

  10. Systems Modeling of Molecular Mechanisms Controlling Cytokine-driven CD4+ T Cell Differentiation and Phenotype Plasticity

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Kronsteiner, Barbara; Viladomiu, Monica; Pedragosa, Mireia; Lu, Pinyi; Philipson, Casandra W.; Hoops, Stefan; Marathe, Madhav; Eubank, Stephen; Bisset, Keith; Wendelsdorf, Katherine; Jarrah, Abdul; Mei, Yongguo; Bassaganya-Riera, Josep

    2013-01-01

    Differentiation of CD4+ T cells into effector or regulatory phenotypes is tightly controlled by the cytokine milieu, complex intracellular signaling networks and numerous transcriptional regulators. We combined experimental approaches and computational modeling to investigate the mechanisms controlling differentiation and plasticity of CD4+ T cells in the gut of mice. Our computational model encompasses the major intracellular pathways involved in CD4+ T cell differentiation into T helper 1 (Th1), Th2, Th17 and induced regulatory T cells (iTreg). Our modeling efforts predicted a critical role for peroxisome proliferator-activated receptor gamma (PPARγ) in modulating plasticity between Th17 and iTreg cells. PPARγ regulates differentiation, activation and cytokine production, thereby controlling the induction of effector and regulatory responses, and is a promising therapeutic target for dysregulated immune responses and inflammation. Our modeling efforts predict that following PPARγ activation, Th17 cells undergo phenotype switch and become iTreg cells. This prediction was validated by results of adoptive transfer studies showing an increase of colonic iTreg and a decrease of Th17 cells in the gut mucosa of mice with colitis following pharmacological activation of PPARγ. Deletion of PPARγ in CD4+ T cells impaired mucosal iTreg and enhanced colitogenic Th17 responses in mice with CD4+ T cell-induced colitis. Thus, for the first time we provide novel molecular evidence in vivo demonstrating that PPARγ in addition to regulating CD4+ T cell differentiation also plays a major role controlling Th17 and iTreg plasticity in the gut mucosa. PMID:23592971

  11. Phenotypic plasticity in sex allocation for a simultaneously hermaphroditic coral reef fish

    NASA Astrophysics Data System (ADS)

    Hart, M. K.; Svoboda, A.; Mancilla Cortez, D.

    2011-06-01

    Phenotypic plasticity can facilitate reproductive strategies that maximize mating success in variable environments and lead to differences in sex allocation among populations. For simultaneous hermaphrodites with sperm competition, including Serranus tortugarum a small coral reef fish, proportional male allocation (testis in total gonad) is often greater where local density or mating group size is higher. We tested whether S. tortugarum reduced male allocation when transplanted from a higher density site to a lower density site. After 4 months, transplants mirrored the sex-allocation patterns of the resident population on their new reef. Transplants had significantly lower male allocation than representatives from their source population, largely as a result of reduced testis mass relative to body size.

  12. Ecotypic differentiation and phenotypic plasticity combine to enhance the invasiveness of the most widespread daisy in Chile, Leontodon saxatilis.

    PubMed

    Martín-Forés, Irene; Avilés, Marta; Acosta-Gallo, Belén; Breed, Martin F; Del Pozo, Alejandro; de Miguel, José M; Sánchez-Jardón, Laura; Castro, Isabel; Ovalle, Carlos; Casado, Miguel A

    2017-05-08

    Dispersal and reproductive traits of successful plant invaders are expected to undergo strong selection during biological invasions. Numerous Asteraceae are invasive and display dimorphic fruits within a single flower head, resulting in differential dispersal pathways - wind-dispersed fruits vs. non-dispersing fruits. We explored ecotypic differentiation and phenotypic plasticity of seed output and fruit dimorphisms in exotic Chilean and native Spanish populations of Leontodon saxatilis subsp. rothii. We collected flower heads from populations in Spain and Chile along a rainfall gradient. Seeds from all populations were planted in reciprocal transplant trials in Spain and Chile to explore their performance in the native and invasive range. We scored plant biomass, reproductive investment and fruit dimorphism. We observed strong plasticity, where plants grown in the invasive range had much greater biomass, flower head size and seed output, with a higher proportion of wind-dispersed fruits, than those grown in the native range. We also observed a significant ecotype effect, where the exotic populations displayed higher proportions of wind-dispersed fruits than native populations. Together, these patterns reflect a combination of phenotypic plasticity and ecotypic differentiation, indicating that Leontodon saxatilis has probably increased propagule pressure and dispersal distances in its invasive range to enhance its invasiveness.

  13. Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage “Switch” Phenotype

    PubMed Central

    Malyshev, Igor; Malyshev, Yuri

    2015-01-01

    Macrophages play a key role in immunity. In this review, we consider the traditional notion of macrophage plasticity, data that do not fit into existing concepts, and a hypothesis for existence of a new switch macrophage phenotype. Depending on the microenvironment, macrophages can reprogram their phenotype toward the proinflammatory M1 phenotype or toward the anti-inflammatory M2 phenotype. Macrophage reprogramming involves well-coordinated changes in activities of signalling and posttranslational mechanisms. Macrophage reprogramming is provided by JNK-, PI3K/Akt-, Notch-, JAK/STAT-, TGF-β-, TLR/NF-κB-, and hypoxia-dependent pathways. Posttranscriptional regulation is based on micro-mRNA. We have hypothesized that, in addition to the M1 and M2 phenotypes, an M3 switch phenotype exists. This switch phenotype responds to proinflammatory stimuli with reprogramming towards the anti-inflammatory M2 phenotype or, contrarily, it responds to anti-inflammatory stimuli with reprogramming towards the proinflammatory M1 phenotype. We have found signs of such a switch phenotype in lung diseases. Understanding the mechanisms of macrophage reprogramming will assist in the selection of new therapeutic targets for correction of impaired immunity. PMID:26366410

  14. Morphometric and genetic analysis of Arcella intermedia and Arcella intermedia laevis (Amoebozoa, Arcellinida) illuminate phenotypic plasticity in microbial eukaryotes.

    PubMed

    Porfírio-Sousa, Alfredo L; Ribeiro, Giulia M; Lahr, Daniel J G

    2017-04-01

    Testate amoebae are eukaryotic microorganisms characterized by the presence of an external shell (test). The shell morphology is used as a diagnostic character, but discordance between morphological and molecular data has been demonstrated in groups of arcellinids (Amoebozoa), one of the principal groups of testate amoebae. Morphology of the test is supposed to differentiate genera and species and it is applied in ecological, monitoring and paleontological studies. However, if phenotype does not reflect genotype, conclusions in these types of studies become severely impaired. The objective of this work is to evaluate the morphometrical and morphological variation of the closely related and morphologically similar taxa Arcella intermedia laevis Tsyganov and Mazei, 2006 and Arcella intermedia (Deflandre 1928) Tsyganov and Mazei, 2006 in nature and in cultured individuals and see how these are correlated with molecular data. Our results demonstrate that phenotypic plasticity in Arcella intermedia make morphological distinctions impossible in both taxa. Arcella intermedia and Arcella intermedia laevis are molecularly identical for SSU rDNA and a mitochondrial molecular marker (NAD9/7). We conclude that morphological techniques alone cannot identify phenotypic plasticity from natural populations. More work is clearly needed to better understand the morphological, morphometric and molecular variability in these organisms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. How flexible is phenotypic plasticity? Developmental windows for trait induction and reversal.

    PubMed

    Hoverman, Jason T; Relyea, Rick A

    2007-03-01

    Inducible defenses allow prey to modulate their phenotypic responses to the level of predation risk in the environment and reduce the cost of constitutive defenses. Inherent in this statement is that prey must alter their phenotypes during development in order to form these defenses. This has lead many ecologists and evolutionary biologists to call for studies that examine developmental plasticity to provide insights into the importance of development in controlling the trajectories of trait formation, the integration of phenotypes over ontogeny, and the establishment of developmental windows for trait formation and reversal. By moving away from studies that focus on a single point in development, we can obtain a more complete understanding of the phenotypic decisions and limitations of prey. We exposed freshwater snails (Helisoma trivolvis) to environments in which predatory water bugs (Belostoma flumineum) were always absent, always present, or added and removed at different points in development. We discovered that snails formed morphological defenses against water bugs. Importantly, after the initial induction of defenses, snails showed similar developmental trajectories as snails reared without predators. Further, the snails possessed wide developmental windows for inducible defenses that extended past sexual maturity. However, being induced later in development appeared to have an associated cost (i.e., decreased shell thickness) that was not found when water bugs were always present. This epiphenotype (i.e., new shell formation as an extension of the current shell) suggests that resource limitation plays an important role in responses to temporal variation in predation risk and may have critical ecological costs that limit the benefits of the inducible defense. Lastly, the ability of snails to completely reverse their defenses was limited to early in ontogeny due to the constraints associated with modular growth of shell material. In sum, we demonstrate that

  16. Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin.

    PubMed

    Kurepin, Leonid V; Pharis, Richard P; Neil Emery, R J; Reid, David M; Chinnappa, C C

    2015-09-01

    Stellaria longipes plant communities (ecotypes) occur in several environmentally distinct habitats along the eastern slopes of southern Alberta's Rocky Mountains. One ecotype occurs in a prairie habitat at ∼1000 m elevation where Stellaria plants grow in an environment in which the light is filtered by taller neighbouring vegetation, i.e. sunlight with a low red to far-red (R/FR) ratio. This ecotype exhibits a high degree of phenotypic plasticity by increasing stem elongation in response to the low R/FR ratio light signal. Another Stellaria ecotype occurs nearby at ∼2400 m elevation in a much cooler alpine habitat, one where plants rarely experience low R/FR ratio shade light. Stem elongation of plants is largely regulated by gibberellins (GAs) and auxin, indole-3-acetic acid (IAA). Shoots of the prairie ecotype plants show increased IAA levels under low R/FR ratio light and they also increase their stem growth in response to applied IAA. The alpine ecotype plants show neither response. Plants from both ecotypes produce high levels of growth-active GA1 under low R/FR ratio light, though they differ appreciably in their catabolism of GA1. The alpine ecotype plants exhibit very high levels of GA8, the inactive product of GA1 metabolism, under both normal and low R/FR ratio light. Alpine origin plants may de-activate GA1 by conversion to GA8 via a constitutively high level of expression of the GA2ox gene, thereby maintaining their dwarf phenotype and exhibiting a reduced phenotypic plasticity in terms of shoot elongation. In contrast, prairie plants exhibit a high degree of phenotypic plasticity, using low R/FR ratio light-mediated changes in GA and IAA concentrations to increase shoot elongation, thereby accessing direct sunlight to optimize photosynthesis. There thus appear to be complex adaptation strategies for the two ecotypes, ones which involve modifications in the homeostasis of endogenous hormones. Copyright © 2015 Elsevier Masson SAS. All rights

  17. Plasticity Regulators Modulate Specific Root Traits in Discrete Nitrogen Environments

    PubMed Central

    Gifford, Miriam L.; Banta, Joshua A.; Katari, Manpreet S.; Hulsmans, Jo; Chen, Lisa; Ristova, Daniela; Tranchina, Daniel; Purugganan, Michael D.; Coruzzi, Gloria M.; Birnbaum, Kenneth D.

    2013-01-01

    Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such “tunability” in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment. PMID:24039603

  18. When three traits make a line: evolution of phenotypic plasticity and genetic assimilation through linear reaction norms in stochastic environments.

    PubMed

    Ergon, T; Ergon, R

    2017-03-01

    Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept-slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three-trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two-trait model, and maximum expected fitness does not occur at the mean trait values in the population. © 2016 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  19. Phenotypic plasticity in reproductive effort: malaria parasites respond to resource availability

    PubMed Central

    Repton, Charlotte; O'Donnell, Aidan J.; Schneider, Petra; Reece, Sarah E.

    2017-01-01

    The trade-off between survival and reproduction is fundamental in the life history of all sexually reproducing organisms. This includes malaria parasites, which rely on asexually replicating stages for within-host survival and on sexually reproducing stages (gametocytes) for between-host transmission. The proportion of asexual stages that form gametocytes (reproductive effort) varies during infections—i.e. is phenotypically plastic—in response to changes in a number of within-host factors, including anaemia. However, how the density and age structure of red blood cell (RBC) resources shape plasticity in reproductive effort and impacts upon parasite fitness is controversial. Here, we examine how and why the rodent malaria parasite Plasmodium chabaudi alters its reproductive effort in response to experimental perturbations of the density and age structure of RBCs. We show that all four of the genotypes studied increase reproductive effort when the proportion of RBCs that are immature is elevated during host anaemia, and that the responses of the genotypes differ. We propose that anaemia (counterintuitively) generates a resource-rich environment in which parasites can afford to allocate more energy to reproduction (i.e. transmission) and that anaemia also exposes genetic variation to selection. From an applied perspective, adaptive plasticity in parasite reproductive effort could explain the maintenance of genetic variation for virulence and why anaemia is often observed as a risk factor for transmission in human infections. PMID:28768894

  20. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time

    PubMed Central

    Neilson, E. H.; Edwards, A. M.; Blomstedt, C. K.; Berger, B.; Møller, B. Lindberg; Gleadow, R. M.

    2015-01-01

    The use of high-throughput phenotyping systems and non-destructive imaging is widely regarded as a key technology allowing scientists and breeders to develop crops with the ability to perform well under diverse environmental conditions. However, many of these phenotyping studies have been optimized using the model plant Arabidopsis thaliana. In this study, The Plant Accelerator® at The University of Adelaide, Australia, was used to investigate the growth and phenotypic response of the important cereal crop, Sorghum bicolor L. Moench and related hybrids to water-limited conditions and different levels of fertilizer. Imaging in different spectral ranges was used to monitor plant composition, chlorophyll, and moisture content. Phenotypic image analysis accurately measured plant biomass. The data set obtained enabled the responses of the different sorghum varieties to the experimental treatments to be differentiated and modelled. Plant architectural instead of architecture elements were determined using imaging and found to correlate with an improved tolerance to stress, for example diurnal leaf curling and leaf area index. Analysis of colour images revealed that leaf ‘greenness’ correlated with foliar nitrogen and chlorophyll, while near infrared reflectance (NIR) analysis was a good predictor of water content and leaf thickness, and correlated with plant moisture content. It is shown that imaging sorghum using a high-throughput system can accurately identify and differentiate between growth and specific phenotypic traits. R scripts for robust, parsimonious models are provided to allow other users of phenomic imaging systems to extract useful data readily, and thus relieve a bottleneck in phenotypic screening of multiple genotypes of key crop plants. PMID:25697789

  1. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    PubMed

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  2. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    PubMed Central

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  3. Phenotypic plasticity in the spawning traits of bigheaded carp (Hypophthalmichthys spp.) in novel ecosystems

    USGS Publications Warehouse

    Coulter, Alison A.; Keller, Doug; Amberg, Jon J.; Bailey, Elizabeth J.; Goforth, Reuben R.

    2013-01-01

    1. Bigheaded carp, including both silver (Hypophthalmichthys molitrix) and bighead (H. nobilis) carp, are successful invasive fishes that threaten global freshwater biodiversity. High phenotypic plasticity probably contributes to their success in novel ecosystems, although evidence of plasticity in several spawning traits has hitherto been largely anecdotal or speculative. 2. We collected drifting eggs from a Midwestern U.S.A. river from June to September 2011 and from April to June 2012 to investigate the spawning traits of bigheaded carp in novel ecosystems. 3. Unlike reports from the native range, the presence of drifting bigheaded carp eggs was not related to changes in hydrological regime or mean daily water temperature. Bigheaded carp also exhibited protracted spawning, since we found drifting eggs throughout the summer and as late as 1 September 2011. Finally, we detected bigheaded carp eggs in a river reach where the channel is c. 30 m wide with a catchment area of 4579 km2, the smallest stream in which spawning has yet been documented. 4. Taken with previous observations of spawning traits that depart from those observed within the native ranges of both bighead and silver carp, our findings provide direct evidence that bigheaded carp exhibit plastic spawning traits in novel ecosystems that may facilitate invasion and establishment in a wider range of river conditions than previously envisaged.

  4. Usefulness of descriptors in phenotyping germplasm collections

    USDA-ARS?s Scientific Manuscript database

    A large number of crop germplasm collections are maintained within the U.S. National Plant Germplasm System (NPGS). For each of these crop collections, Crop Germplasm committees (CGC), crop curators, and collection staff have established extensive lists of descriptors or phenotypic traits by which t...

  5. Population differences in host use by a seed-beetle: local adaptation, phenotypic plasticity and maternal effects.

    PubMed

    Amarillo-Suárez, Angela R; Fox, Charles W

    2006-11-01

    For insects that develop inside discrete hosts, both host size and host quality constrain offspring growth, influencing the evolution of body size and life history traits. Using a two-generation common garden experiment, we quantified the contribution of maternal and rearing hosts to differences in growth and life history traits between populations of the seed-feeding beetle Stator limbatus that use a large-seeded host, Acacia greggii, and a small-seeded host, Pseudosamanea guachapele. Populations differed genetically for all traits when beetles were raised in a common garden. Contrary to expectations from the local adaptation hypothesis, beetles from all populations were larger, developed faster and had higher survivorship when reared on seeds of A. greggii (the larger host), irrespective of their native host. We observed two host plant-mediated maternal effects: offspring matured sooner, regardless of their rearing host, when their mothers were reared on P. guachapele (this was not caused by an effect of rearing host on egg size), and females laid larger eggs on P. guachapele. This is the first study to document plasticity by S. limbatus in response to P. guachapele, suggesting that plasticity is an ancestral trait in S. limbatus that likely plays an important role in diet expansion. Although differences between populations in growth and life history traits are likely adaptations to their host plants, host-associated maternal effects, partly mediated by maternal egg size plasticity, influence growth and life history traits and likely play an important role in the evolution of the breadth of S. limbatus' diet. More generally, phenotypic plasticity mediates the fitness consequences of using novel hosts, likely facilitating colonization of new hosts, but also buffering herbivores from selection post-colonization. Plasticity in response to novel versus normal hosts varied among our study populations such that disentangling the historical role of plasticity in

  6. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems

    PubMed Central

    Junker, Astrid; Muraya, Moses M.; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Klukas, Christian; Melchinger, Albrecht E.; Meyer, Rhonda C.; Riewe, David; Altmann, Thomas

    2015-01-01

    Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time. Compared to small scale plant cultivations, HT systems have much higher demands, from a conceptual and a logistic point of view, on experimental design, as well as the actual plant cultivation conditions, and the image analysis and statistical methods for data evaluation. Furthermore, cultivation conditions need to be designed that elicit plant performance characteristics corresponding to those under natural conditions. This manuscript describes critical steps in the optimization of procedures for HT plant phenotyping systems. Starting with the model plant Arabidopsis, HT-compatible methods were tested, and optimized with regard to growth substrate, soil coverage, watering regime, experimental design (considering environmental inhomogeneities) in automated plant cultivation and imaging systems. As revealed by metabolite profiling, plant movement did not affect the plants' physiological status. Based on these results, procedures for maize HT cultivation and monitoring were established. Variation of maize vegetative growth in the HT phenotyping system did match well with that observed in the field. The presented results outline important issues to be considered in the design of HT phenotyping experiments for model and crop plants. It thereby provides guidelines for the setup of HT experimental procedures, which are required for the generation of reliable and reproducible data of phenotypic variation for a broad range of applications. PMID

  7. Light and Nutrient Dependent Responses in Secondary Metabolites of Plantago lanceolata Offspring Are Due to Phenotypic Plasticity in Experimental Grasslands

    PubMed Central

    Miehe-Steier, Annegret; Roscher, Christiane; Reichelt, Michael; Gershenzon, Jonathan; Unsicker, Sybille B.

    2015-01-01

    A few studies in the past have shown that plant diversity in terms of species richness and functional composition can modify plant defense chemistry. However, it is not yet clear to what extent genetic differentiation of plant chemotypes or phenotypic plasticity in response to diversity-induced variation in growth conditions or a combination of both is responsible for this pattern. We collected seed families of ribwort plantain (Plantago lanceolata) from six-year old experimental grasslands of varying plant diversity (Jena Experiment). The offspring of these seed families was grown under standardized conditions with two levels of light and nutrients. The iridoid glycosides, catalpol and aucubin, and verbascoside, a caffeoyl phenylethanoid glycoside, were measured in roots and shoots. Although offspring of different seed families differed in the tissue concentrations of defensive metabolites, plant diversity in the mothers' environment did not explain the variation in the measured defensive metabolites of P. lanceolata offspring. However secondary metabolite levels in roots and shoots were strongly affected by light and nutrient availability. Highest concentrations of iridoid glycosides and verbascoside were found under high light conditions, and nutrient availability had positive effects on iridoid glycoside concentrations in plants grown under high light conditions. However, verbascoside concentrations decreased under high levels of nutrients irrespective of light. The data from our greenhouse study show that phenotypic plasticity in response to environmental variation rather than genetic differentiation in response to plant community diversity is responsible for variation in secondary metabolite concentrations of P. lanceolata in the six-year old communities of the grassland biodiversity experiment. Due to its large phenotypic plasticity P. lanceolata has the potential for a fast and efficient adjustment to varying environmental conditions in plant communities of

  8. Phenotypic plasticity in the developmental integration of morphological trade-offs and secondary sexual trait compensation.

    PubMed

    Tomkins, Joseph L; Kotiaho, Janne S; Lebas, Natasha R

    2005-03-07

    Trait exaggeration through sexual selection will tale place alongside other changes in phenotype. Exaggerated morphology might be compensated by parallel changes in traits that support, enhance or facilitate exaggeration: 'secondary sexual trait compensation' (SSTC). Alternatively, exaggeration might be realized at the expense of other traits through morphological trade-offs. For the most part, SSTC has only been examined interspecifically. For these phenomena to be important intraspecifically, the sexual trait must be developmentally integrated with the compensatory or competing trait. We studied developmental integration in two species with different development: the holometabolous beetle Onthophagus taurus and the hemimetabolous earwig Forficula auricularia. Male-dimorphic variation in trait exaggeration was exploited to expose both trade-offs and SSTC. We found evidence for morphological trade-offs in O. taurus, but no F. auricularia, supporting the notion that trade-offs are more likely in closed developmetal systems. However, we found these trade-offs were not limited solely to traits growing close together. Developmental integration of structures involved in SSTC were detected in both species. The developmental integration of SSTC was phenotypically plastic, such that the compensation for relatively larger sexual traits was greater in the exasperated male morphs. Evidence of intraspecific SSTC demands studies of the selective, genetic and developmental architecture of phenotypic integration.

  9. Limited plasticity in the phenotypic variance-covariance matrix for male advertisement calls in the black field cricket, Teleogryllus commodus

    PubMed Central

    Pitchers, W. R.; Brooks, R.; Jennions, M. D.; Tregenza, T.; Dworkin, I.; Hunt, J.

    2013-01-01

    Phenotypic integration and plasticity are central to our understanding of how complex phenotypic traits evolve. Evolutionary change in complex quantitative traits can be predicted using the multivariate breeders’ equation, but such predictions are only accurate if the matrices involved are stable over evolutionary time. Recent work, however, suggests that these matrices are temporally plastic, spatially variable and themselves evolvable. The data available on phenotypic variance-covariance matrix (P) stability is sparse, and largely focused on morphological traits. Here we compared P for the structure of the complex sexual advertisement call of six divergent allopatric populations of the Australian black field cricket, Teleogryllus commodus. We measured a subset of calls from wild-caught crickets from each of the populations and then a second subset after rearing crickets under common-garden conditions for three generations. In a second experiment, crickets from each population were reared in the laboratory on high- and low-nutrient diets and their calls recorded. In both experiments, we estimated P for call traits and used multiple methods to compare them statistically (Flury hierarchy, geometric subspace comparisons and random skewers). Despite considerable variation in means and variances of individual call traits, the structure of P was largely conserved among populations, across generations and between our rearing diets. Our finding that P remains largely stable, among populations and between environmental conditions, suggests that selection has preserved the structure of call traits in order that they can function as an integrated unit. PMID:23530814

  10. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    PubMed

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  11. Challenges Facing Crop Production And (Some) Potential Solutions

    NASA Astrophysics Data System (ADS)

    Schnable, P. S.

    2017-12-01

    To overcome some of the myriad challenges facing sustainable crop production we are seeking to develop statistical models that will predict crop performance in diverse agronomic environments. Crop phenotypes such as yield and drought tolerance are controlled by genotype, environment (considered broadly) and their interaction (GxE). As a consequence of the next generation sequencing revolution genotyping data are now available for a wide diversity of accessions in each of the major crops. The necessary volumes of phenotypic data, however, remain limiting and our understanding of molecular basis of GxE is minimal. To address this limitation, we are collaborating with engineers to construct new sensors and robots to automatically collect large volumes of phenotypic data. Two types of high-throughput, high-resolution, field-based phenotyping systems and new sensors will be described. Some of these technologies will be introduced within the context of the Genomes to Fields Initiative. Progress towards developing predictive models will be briefly summarized. An administrative structure that fosters transdisciplinary collaborations will be briefly described.

  12. Can plastic mulching replace irrigation in dryland agriculture?

    NASA Astrophysics Data System (ADS)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Increasing water use efficiency (WUE) is a key strategy to maintaining crops yield without over-exploiting the scarce water resource. Plastic mulching technology for wheat and maize has been commonly used in China, but their effect on yield, soil moisture, evapotranspiration (ET), and WUE has not been compared with traditional irrigation method. Using a meta-analysis approach, we quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in dryland agriculture. Our results showed that plastic mulching technique resulted in yield increase comparable to irrigated crops but used 24% less water. By covering the ridges with plastic and channeling rainwater into a very narrow planting zone (furrow), plastic mulching increased WUE and available soil moisture. Higher WUE in plastic-mulched croplands was likely a result of greater proportion of available water being used for transpiration than evaporation. If problems related to production costs and residual plastic pollution could be managed, plastic mulching technology would become a promising strategy for dryland farming in other regions.

  13. Sperm competition risk generates phenotypic plasticity in ovum fertilizability

    PubMed Central

    Firman, Renée C.; Simmons, Leigh W.

    2013-01-01

    Theory predicts that sperm competition will generate sexual conflict that favours increased ovum defences against polyspermy. A recent study on house mice has shown that ovum resistance to fertilization coevolves in response to increased sperm fertilizing capacity. However, the capacity for the female gamete to adjust its fertilizability as a strategic response to sperm competition risk has never, to our knowledge, been studied. We sourced house mice (Mus domesticus) from natural populations that differ in the level of sperm competition and sperm fertilizing capacity, and manipulated the social experience of females during their sexual development to simulate conditions of either a future ‘risk’ or ‘no risk’ of sperm competition. Consistent with coevolutionary predictions, we found lower fertilization rates in ova produced by females from a high sperm competition population compared with ova from a low sperm competition population, indicating that these populations are divergent in the fertilizability of their ova. More importantly, females exposed to a ‘risk’ of sperm competition produced ova that had greater resistance to fertilization than ova produced by females reared in an environment with ‘no risk’. Consequently, we show that variation in sperm competition risk during development generates phenotypic plasticity in ova fertilizability, which allows females to prepare for prevailing conditions during their reproductive life. PMID:24132308

  14. Sperm competition risk generates phenotypic plasticity in ovum fertilizability.

    PubMed

    Firman, Renée C; Simmons, Leigh W

    2013-12-07

    Theory predicts that sperm competition will generate sexual conflict that favours increased ovum defences against polyspermy. A recent study on house mice has shown that ovum resistance to fertilization coevolves in response to increased sperm fertilizing capacity. However, the capacity for the female gamete to adjust its fertilizability as a strategic response to sperm competition risk has never, to our knowledge, been studied. We sourced house mice (Mus domesticus) from natural populations that differ in the level of sperm competition and sperm fertilizing capacity, and manipulated the social experience of females during their sexual development to simulate conditions of either a future 'risk' or 'no risk' of sperm competition. Consistent with coevolutionary predictions, we found lower fertilization rates in ova produced by females from a high sperm competition population compared with ova from a low sperm competition population, indicating that these populations are divergent in the fertilizability of their ova. More importantly, females exposed to a 'risk' of sperm competition produced ova that had greater resistance to fertilization than ova produced by females reared in an environment with 'no risk'. Consequently, we show that variation in sperm competition risk during development generates phenotypic plasticity in ova fertilizability, which allows females to prepare for prevailing conditions during their reproductive life.

  15. Life history traits and phenotypic selection among sunflower crop–wild hybrids and their wild counterpart: implications for crop allele introgression

    PubMed Central

    Kost, Matthew A; Alexander, Helen M; Jason Emry, D; Mercer, Kristin L

    2015-01-01

    Hybridization produces strong evolutionary forces. In hybrid zones, selection can differentially occur on traits and selection intensities may differ among hybrid generations. Understanding these dynamics in crop–wild hybrid zones can clarify crop-like traits likely to introgress into wild populations and the particular hybrid generations through which introgression proceeds. In a field experiment with four crop–wild hybrid Helianthus annuus (sunflower) cross types, we measured growth and life history traits and performed phenotypic selection analysis on early season traits to ascertain the likelihood, and routes, of crop allele introgression into wild sunflower populations. All cross types overwintered, emerged in the spring, and survived until flowering, indicating no early life history barriers to crop allele introgression. While selection indirectly favored earlier seedling emergence and taller early season seedlings, direct selection only favored greater early season leaf length. Further, there was cross type variation in the intensity of selection operating on leaf length. Thus, introgression of multiple early season crop-like traits, due to direct selection for greater early season leaf length, should not be impeded by any cross type and may proceed at different rates among generations. In sum, alleles underlying early season sunflower crop-like traits are likely to introgress into wild sunflower populations. PMID:26029263

  16. Mobile Phenotyping System Using an Aeromotively Stabilized Cable-Driven Robot

    NASA Astrophysics Data System (ADS)

    Newman, M. B.; Zygielbaum, A. I.

    2017-12-01

    Agricultural researchers are constantly attempting to generate superior agricultural crops. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering with their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of Nebraska - Lincoln (UNL), uses a system of poles, cables, and winches to support and maneuver a sensor platform above the crops at an outdoor phenotyping site. In this work, we improve upon the UNL outdoor phenotyping system presenting the concept design for a mobile, cable-driven phenotyping system as opposed to a permanent phenotyping facility. One major challenge in large-scale, cable-driven robots is stability of the end-effector. As a result, this mobile system seeks to use a novel method of end-effector stabilization using an onboard rotor drive system, herein referred to as the Instrument Platform Aeromotive Stabilization System (IPASS). A prototype system is developed and analyzed to determine the viability of IPASS.

  17. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit.

    PubMed

    Thomas, C L; Alcock, T D; Graham, N S; Hayden, R; Matterson, S; Wilson, L; Young, S D; Dupuy, L X; White, P J; Hammond, J P; Danku, J M C; Salt, D E; Sweeney, A; Bancroft, I; Broadley, M R

    2016-10-04

    Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a 'pouch and wick' system (n = ~24 replicates per genotype). The mineral composition of 3-6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits.

  18. Evolution of plasticity and adaptive responses to climate change along climate gradients.

    PubMed

    Kingsolver, Joel G; Buckley, Lauren B

    2017-08-16

    The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle , along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments. © 2017 The Author(s).

  19. Cardiorespiratory physiological phenotypic plasticity in developing air-breathing anabantid fishes (Betta splendens and Trichopodus trichopterus).

    PubMed

    Mendez-Sanchez, Jose F; Burggren, Warren W

    2017-08-01

    Betta , which inhabits temporary ponds with nocturnal hypoxia. Trichopodus , inhabiting more permanent oxygenated bodies of water, showed few responses to hypoxia, reflecting a lower degree of developmental phenotypic plasticity. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Rapid loss of behavioral plasticity and immunocompetence under intense sexual selection.

    PubMed

    van Lieshout, Emile; McNamara, Kathryn B; Simmons, Leigh W

    2014-09-01

    Phenotypic plasticity allows animals to maximize fitness by conditionally expressing the phenotype best adapted to their environment. Although evidence for such adjustment in reproductive tactics is common, little is known about how phenotypic plasticity evolves in response to sexual selection. We examined the effect of sexual selection intensity on phenotypic plasticity in mating behavior using the beetle Callosobruchus maculatus. Male genital spines harm females during mating and females exhibit copulatory kicking, an apparent resistance trait aimed to dislodge mating males. After exposing individuals from male- and female-biased experimental evolution lines to male- and female-biased sociosexual environments, we examined behavioral plasticity in matings with standard partners. While females from female-biased lines kicked sooner after exposure to male-biased sociosexual contexts, in male-biased lines this plasticity was lost. Ejaculate size did not diverge in response to selection history, but males from both treatments exhibited plasticity consistent with sperm competition intensity models, reducing size as the number of competitors increased. Analysis of immunocompetence revealed reduced immunity in both sexes in male-biased lines, pointing to increased reproductive costs under high sexual selection. These results highlight how male and female reproductive strategies are shaped by interactions between phenotypically plastic and genetic mechanisms of sexual trait expression. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. Extrafloral nectary phenotypic plasticity is damage- and resource-dependent in Vicia faba

    PubMed Central

    Mondor, Edward B; Tremblay, Michelle N; Messing, Russell H

    2006-01-01

    Phenotypic plasticity enables many damaged plants to increase nectar secretion rates from extrafloral nectaries (EFNs), or in the case of broad bean, Vicia faba L., to produce additional EFNs, to attract natural enemies of herbivores. While plants benefit greatly from these defensive mutualisms, the costs of producing EFNs are largely unknown. We hypothesized that if EFN production is costly, then damaged plants with high resource levels would be able to produce more EFNs than plants that are resource-limited. Here, we show that this indirect inducible defence does follow this general pattern. Vicia faba enriched with 6 or 12 g of 14 : 14 : 14 NPK fertilizer increased EFN numbers after leaf damage by 46 and 60%, respectively, compared with nutrient-poor plants. Thus, EFN production is both damage- and resource-dependent. Analogous to direct defences, production of EFNs may limit the overall loss of leaf tissue when risk of herbivory increases. PMID:17148294

  2. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system.

    PubMed

    Boesmans, Werend; Lasrado, Reena; Vanden Berghe, Pieter; Pachnis, Vassilis

    2015-02-01

    Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca(2+) imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co-express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease. © 2014 Wiley Periodicals, Inc.

  3. Modeling continuum of epithelial mesenchymal transition plasticity.

    PubMed

    Mandal, Mousumi; Ghosh, Biswajoy; Anura, Anji; Mitra, Pabitra; Pathak, Tanmaya; Chatterjee, Jyotirmoy

    2016-02-01

    Living systems respond to ambient pathophysiological changes by altering their phenotype, a phenomenon called 'phenotypic plasticity'. This program contains information about adaptive biological dynamism. Epithelial-mesenchymal transition (EMT) is one such process found to be crucial in development, wound healing, and cancer wherein the epithelial cells with restricted migratory potential develop motile functions by acquiring mesenchymal characteristics. In the present study, phase contrast microscopy images of EMT induced HaCaT cells were acquired at 24 h intervals for 96 h. The expression study of relevant pivotal molecules viz. F-actin, vimentin, fibronectin and N-cadherin was carried out to confirm the EMT process. Cells were intuitively categorized into five distinct morphological phenotypes. A population of 500 cells for each temporal point was selected to quantify their frequency of occurrence. The plastic interplay of cell phenotypes from the observations was described as a Markovian process. A model was formulated empirically using simple linear algebra, to depict the possible mechanisms of cellular transformation among the five phenotypes. This work employed qualitative, semi-quantitative and quantitative tools towards illustration and establishment of the EMT continuum. Thus, it provides a newer perspective to understand the embedded plasticity across the EMT spectrum.

  4. Evolution and ecology meet molecular genetics: adaptive phenotypic plasticity in two isolated Negev desert populations of Acacia raddiana at either end of a rainfall gradient

    PubMed Central

    Ward, David; Shrestha, Madan K.; Golan-Goldhirsh, Avi

    2012-01-01

    Background and Aims The ecological, evolutionary and genetic bases of population differentiation in a variable environment are often related to the selection pressures that plants experience. We compared differences in several growth- and defence-related traits in two isolated populations of Acacia raddiana trees from sites at either end of an extreme environmental gradient in the Negev desert. Methods We used random amplified polymorphic DNA (RAPD) to determine the molecular differences between populations. We grew plants under two levels of water, three levels of nutrients and three levels of herbivory to test for phenotypic plasticity and adaptive phenotypic plasticity. Key Results The RAPD analyses showed that these populations are highly genetically differentiated. Phenotypic plasticity in various morphological traits in A. raddiana was related to patterns of population genetic differentiation between the two study sites. Although we did not test for maternal effects in these long-lived trees, significant genotype × environment (G × E) interactions in some of these traits indicated that such plasticity may be adaptive. Conclusions The main selection pressure in this desert environment, perhaps unsurprisingly, is water. Increased water availability resulted in greater growth in the southern population, which normally receives far less rain than the northern population. Even under the conditions that we defined as low water and/or nutrients, the performance of the seedlings from the southern population was significantly better, perhaps reflecting selection for these traits. Consistent with previous studies of this genus, there was no evidence of trade-offs between physical and chemical defences and plant growth parameters in this study. Rather, there appeared to be positive correlations between plant size and defence parameters. The great variation in several traits in both populations may result in a diverse potential for responding to selection pressures in

  5. Phenotypic plasticity facilitates resistance to climate change in a highly variable environment.

    PubMed

    Richter, Sarah; Kipfer, Tabea; Wohlgemuth, Thomas; Calderón Guerrero, Carlos; Ghazoul, Jaboury; Moser, Barbara

    2012-05-01

    Increased summer drought will exacerbate the regeneration of many tree species at their lower latitudinal and altitudinal distribution limits. In vulnerable habitats, introduction of more drought-tolerant provenances or species is currently considered to accelerate tree species migration and facilitate forest persistence. Trade-offs between drought adaptation and growth plasticity might, however, limit the effectiveness of assisted migration, especially if introductions focus on provenances or species from different climatic regions. We tested in a common garden experiment the performance of Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought, and compared seedling emergence, survival and biomass allocation to that of P. sylvestris and closely related Pinus nigra from a Mediterranean seed source. Soil heating had only minor effects on seedling performance but high spring precipitation doubled the number of continental P. sylvestris seedlings present after the summer drought. At the same time, twice as many seedlings of the Mediterranean than the continental P. sylvestris provenance were present, which was due to both higher emergence and lower mortality under dry conditions. Both P. sylvestris provenances allocated similar amounts of biomass to roots when grown under low summer precipitation. Mediterranean seedlings, however, revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years. By contrast, high variability in the response of individual seedlings to summer drought indicates the potential of continental P. sylvestris provenances to adapt to changing environmental conditions.

  6. Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions.

    PubMed

    Hau, Michaela; Goymann, Wolfgang

    2015-01-01

    Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments. In the second part, we discuss types of quantitative

  7. Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities.

    PubMed

    Ramírez-Valiente, Jose Alberto; Sánchez-Gómez, David; Aranda, Ismael; Valladares, Fernando

    2010-05-01

    Plants distributed across a wide range of environmental conditions are submitted to differential selective pressures. Long-term selection can lead to the development of adaptations to the local environment, generating ecotypic differentiation. Additionally, plant species can cope with this environmental variability by phenotypic plasticity. In this study, we examine the importance of both processes in coping with environmental heterogeneity in the Mediterranean sclerophyllous cork oak Quercus suber. For this purpose, we measured growth and key functional traits at the leaf level in 9-year-old plants across 2 years of contrasting precipitation (2005 and 2006) in a common garden. Plants were grown from acorns originated from 13 populations spanning a wide range of climates along the distribution range of the species. The traits measured were: leaf size (LS), specific leaf area (SLA), carbon isotope discrimination (Delta(13)C) and leaf nitrogen content per unit mass (N(mass)). Inter-population differences in LS, SLA and Delta(13)C were found. These differences were associated with rainfall and temperature at the sites of origin, suggesting local adaptation in response to diverging climates. Additionally, SLA and LS exhibited positive responses to the increase in annual rainfall. Year effect explained 28% of the total phenotypic variance in LS and 2.7% in SLA. There was a significant genotype x environment interaction for shoot growth and a phenotypic correlation between the difference in shoot growth among years and the annual mean temperature at origin. This suggests that populations originating from warm sites can benefit more from wet conditions than populations from cool sites. Finally, we investigated the relationships between functional traits and aboveground growth by several regression models. Our results showed that plants with lower SLA presented larger aboveground growth in a dry year and plants with larger leaf sizes displayed larger growth rates in both

  8. Epigenetics and Developmental Plasticity Across Species

    PubMed Central

    Champagne, Frances A.

    2012-01-01

    Plasticity is a typical feature of development and can lead to divergent phenotypes. There is increasing evidence that epigenetic mechanisms, such as DNA methylation, are present across species, are modifiable by the environment, and are involved in developmental plasticity. Thus, in the context of the concept of developmental homology, epigenetic mechanisms may serve to create a process homology between species by providing a common molecular pathway through which environmental experiences shape development, ultimately leading to phenotypic diversity. This article will highlight evidence derived from across-species investigations of epigenetics, development, and plasticity which may contribute to our understanding of the homology that exists between species and between ancestors and descendants. PMID:22711291

  9. Epigenetics and developmental plasticity across species.

    PubMed

    Champagne, Frances A

    2013-01-01

    Plasticity is a typical feature of development and can lead to divergent phenotypes. There is increasing evidence that epigenetic mechanisms, such as DNA methylation, are present across species, are modifiable by the environment, and are involved in developmental plasticity. Thus, in the context of the concept of developmental homology, epigenetic mechanisms may serve to create a process homology between species by providing a common molecular pathway through which environmental experiences shape development, ultimately leading to phenotypic diversity. This article will highlight evidence derived from across-species investigations of epigenetics, development, and plasticity which may contribute to our understanding of the homology that exists between species and between ancestors and descendants. Copyright © 2012 Wiley Periodicals, Inc.

  10. [Simulation of AquaCrop model and management practice optimization for dryland maize production under whole plastic-film mulching on double ridges].

    PubMed

    Zhang, Tao; Sun, Wei; Zhang, Feng Wei; Sun, Bu Gong; Wang, Ting; Wu, Jian Min

    2017-03-18

    In order to study the applicability of AquaCrop model for simulating dryland whole plastic-film mulching in double ridges cultivation mode and to find the best agronomic management measures, the data of nitrogen gradient test in 2014 and 2015 were selected to validate the variety and stress parameters in the model. The change trends of yield were simulated under different mana-gement measures. The results showed that the root mean square error (RMSE), normalized root mean square error (NRMSE) and the compliance index (d) of the measured and simulated production for all treatments were 717 kg·hm -2 , 10.0% and 0.96, respectively, the RMSE, NRMSE and d of the total biomass were 951 kg·hm -2 , 6.5% and 0.98, respectively, which indicated that the cultivation characteristics of the whole plastic-film mulching on double ridges maize in the dryland could be well reflected. The best fitting degree was 270 kg N·hm -2 from dynamic simulation analysis of canopy cover degrees and biomass, and with the increase of N stress, the simulation accuracy gradually declined. The best sowing time of the whole plastic-film mulching on double ridges maize in the middle part of Gansu Province was from late April to early May, the seeding density was 45000-65000 plants·hm -2 , the growth period was 130-145 days, and the nitrogen application rate was 240-280 kg·hm -2 . The results of this study had a certain reference value for the application of AcquaCrop model in arid region of Gansu, and would contribute to the transformation and popularization of agricultural cultivation techniques.

  11. Reprogramming to developmental plasticity in cancer stem cells.

    PubMed

    O'Brien-Ball, Caitlin; Biddle, Adrian

    2017-10-15

    During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China

    NASA Astrophysics Data System (ADS)

    Liu, E. K.; He, W. Q.; Yan, C. R.

    2014-09-01

    Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.

  13. A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop.

    PubMed

    Sardos, Julie; Rouard, Mathieu; Hueber, Yann; Cenci, Alberto; Hyma, Katie E; van den Houwe, Ines; Hribova, Eva; Courtois, Brigitte; Roux, Nicolas

    2016-01-01

    Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement.

  14. A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop

    PubMed Central

    Sardos, Julie; Rouard, Mathieu; Hueber, Yann; Cenci, Alberto; Hyma, Katie E.; van den Houwe, Ines; Hribova, Eva; Courtois, Brigitte; Roux, Nicolas

    2016-01-01

    Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement. PMID:27144345

  15. Plasticity in host utilization by two host-associated populations of Aphis gossypii Glover.

    PubMed

    Barman, A K; Gadhave, K R; Dutta, B; Srinivasan, R

    2018-06-01

    Biological and morphological plasticity in polyphagous insect herbivores allow them to exploit diverse host plant species. Geographical differences in resource availability can lead to preferential host exploitation and result in inconsistent host specialization. Biological and molecular data provide insights into specialization and plasticity of such herbivore populations. In agricultural landscapes, Aphis gossypii encounters several crop and non-crop hosts, which exist in temporal and spatial proximity. We investigated the host-specialization of two A. gossypii host-associated populations (HAPs), which were field collected from cotton and squash (cotton-associated population and melon-associated population), and later maintained separately in the greenhouse. The two aphid populations were exposed to seven plant species (cotton, okra, watermelon, squash, cucumber, pigweed, and morning glory), and evaluated for their host utilization plasticity by estimating aphid's fitness parameters (nymphal period, adult period, fecundity, and intrinsic rate of increase). Four phenotypical characters (body length, head capsule width, hind tibia length and cornicle length) were also measured from the resulting 14 different HAP × host plant combinations. Phylogenetic analysis of mitochondrial COI sequences showed no genetic variation between the two HAPs. Fitness parameters indicated a significant variation between the two aphid populations, and the variation was influenced by host plants. The performance of melon-aphids was poor (up to 89% reduction in fecundity) on malvaceous hosts, cotton and okra. However, cotton-aphids performed better on cucurbitaceous hosts, squash and watermelon (up to 66% increased fecundity) compared with the natal host, cotton. Both HAPs were able to reproduce on two weed hosts. Cotton-aphids were smaller than melon-aphids irrespective of their host plants. Results from this study suggest that the two HAPs in the study area do not have strict host

  16. Ecology and Evolution of Phenotypic Plasticity in the Penis and Cirri of Barnacles.

    PubMed

    Hoch, J Matthew; Schneck, Daniel T; Neufeld, Christopher J

    2016-10-01

    Most barnacles are sessile, simultaneous hermaphrodites that reproduce by copulation. This is achieved through the extension of a muscular penis, famous for being the proportionally largest in the animal kingdom. The penis is a long cylindrical or conical organ, composed of a series of folded rings, allowing it to stretch to great lengths. The penises are covered with chemosensory setae allowing them to seek out receptive neighbors. For many species, the condition of the penis changes seasonally. In the most extreme circumstances, it degenerates and is shed during the first post-mating molt and is re-grown for the next mating season. Barnacle penises have been shown to exhibit phenotypic plasticity in response to many different challenges. When exposed to heavy waves, diameter is increased by thickening both the cuticle and muscles. When mates are far, length increases by adding ringed annulations. Experiments have shown that these plastic traits are modular, capable of changing independently from each other and that they improve mating ability. Alternate strategies to increase reproductive ability by barnacles include the production of dwarf and complemental males, sperm casting and sperm leakage, and aerial copulation. All of these mating strategies may have important implications for the study of reproductive biology, life history, and sex allocation theory. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  17. Modeling the population dynamics and community impacts of Ambystoma tigrinum: A case study of phenotype plasticity.

    PubMed

    McCarthy, Maeve L; Wallace, Dorothy; Whiteman, Howard H; Rheingold, Evan T; Dunham, Ann M; Prosper, Olivia; Chen, Michelle; Hu-Wang, Eileen

    2017-06-01

    Phenotypic plasticity is the ability of an organism to change its phenotype in response to changes in the environment. General mathematical descriptions of the phenomenon rely on an abstract measure of "viability" that, in this study, is instantiated in the case of the Tiger Salamander, Ambystoma tigrinum. This organism has a point in its development when, upon maturing, it may take two very different forms. One is a terrestrial salamander (metamorph)that visits ponds to reproduce and eat, while the other is an aquatic form (paedomorph) that remains in the pond to breed and which consumes a variety of prey including its own offspring. A seven dimensional nonlinear system of ordinary differential equations is developed, incorporating small (Z) and large (B) invertebrates, Ambystoma young of the year (Y), juveniles (J), terrestrial metamorphs (A) and aquatic paedomorphs (P). One parameter in the model controls the proportion of juveniles maturing into A versus P. Solutions are shown to remain non-negative. Every effort was made to justify parameters biologically through studies reported in the literature. A sensitivity analysis and equilibrium analysis of model parameters demonstrate that morphological choice is critical to the overall composition of the Ambystoma population. Various population viability measures were used to select optimal percentages of juveniles maturing into metamorphs, with optimal choices differing considerably depending on the viability measure. The model suggests that the criteria for viability for this organism vary, both from location to location and also in time. Thus, optimal responses change with spatiotemporal variation, which is consistent with other phenotypically plastic systems. Two competing hypotheses for the conditions under which metamorphosis occurs are examined in light of the model and data from an Ambystoma tigrinum population at Mexican Cut, Colorado. The model clearly supports one of these over the other for this data set

  18. Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle.

    PubMed

    Stillwell, R Craig; Wallin, William G; Hitchcock, Lisa J; Fox, Charles W

    2007-08-01

    Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.

  19. Karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops.

    PubMed

    Murat, Florent; Zhang, Rongzhi; Guizard, Sébastien; Gavranović, Haris; Flores, Raphael; Steinbach, Delphine; Quesneville, Hadi; Tannier, Eric; Salse, Jérôme

    2015-01-29

    We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, "DicotSyntenyViewer" (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Root Traits and Phenotyping Strategies for Plant Improvement

    PubMed Central

    Paez-Garcia, Ana; Motes, Christy M.; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B.; Monteros, Maria J.

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  1. Root Traits and Phenotyping Strategies for Plant Improvement.

    PubMed

    Paez-Garcia, Ana; Motes, Christy M; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B; Monteros, Maria J

    2015-06-15

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

  2. Seed fates in crop-wild hybrid sunflower: crop allele and maternal effects.

    PubMed

    Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L

    2015-02-01

    Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank.

  3. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosten, Ilona J.; Spiekstra, Sander W.; Gruijl, Tanja D. de

    After allergen or irritant exposure, Langerhans cells (LC) undergo phenotypic changes and exit the epidermis. In this study we describe the unique ability of MUTZ-3 derived Langerhans cells (MUTZ-LC) to display similar phenotypic plasticity as their primary counterparts when incorporated into a physiologically relevant full-thickness skin equivalent model (SE-LC). We describe differences and similarities in the mechanisms regulating LC migration and plasticity upon allergen or irritant exposure. The skin equivalent consisted of a reconstructed epidermis containing primary differentiated keratinocytes and CD1a{sup +} MUTZ-LC on a primary fibroblast-populated dermis. Skin equivalents were exposed to a panel of allergens and irritants. Topicalmore » exposure to sub-toxic concentrations of allergens (nickel sulfate, resorcinol, cinnamaldehyde) and irritants (Triton X-100, SDS, Tween 80) resulted in LC migration out of the epidermis and into the dermis. Neutralizing antibody to CXCL12 blocked allergen-induced migration, whereas anti-CCL5 blocked irritant-induced migration. In contrast to allergen exposure, irritant exposure resulted in cells within the dermis becoming CD1a{sup −}/CD14{sup +}/CD68{sup +} which is characteristic of a phenotypic switch of MUTZ-LC to a macrophage-like cell in the dermis. This phenotypic switch was blocked with anti-IL-10. Mechanisms previously identified as being involved in LC activation and migration in native human skin could thus be reproduced in the in vitro constructed skin equivalent model containing functional LC. This model therefore provides a unique and relevant research tool to study human LC biology in situ under controlled in vitro conditions, and will provide a powerful tool for hazard identification, testing novel therapeutics and identifying new drug targets. - Highlights: • MUTZ-3 derived Langerhans cells integrated into skin equivalents are fully functional. • Anti-CXCL12 blocks allergen-induced MUTZ-LC migration

  4. Plastic and Heritable Components of Phenotypic Variation in Nucella lapillus: An Assessment Using Reciprocal Transplant and Common Garden Experiments

    PubMed Central

    Pascoal, Sonia; Carvalho, Gary; Creer, Simon; Rock, Jenny; Kawaii, Kei; Mendo, Sonia; Hughes, Roger

    2012-01-01

    Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F2s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F1s than F2s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal. PMID:22299035

  5. Plastic and heritable components of phenotypic variation in Nucella lapillus: an assessment using reciprocal transplant and common garden experiments.

    PubMed

    Pascoal, Sonia; Carvalho, Gary; Creer, Simon; Rock, Jenny; Kawaii, Kei; Mendo, Sonia; Hughes, Roger

    2012-01-01

    Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F(2)s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F(1)s than F(2)s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal.

  6. Climate change and mammals: evolutionary versus plastic responses.

    PubMed

    Boutin, Stan; Lane, Jeffrey E

    2014-01-01

    Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made.

  7. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    PubMed Central

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  8. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    PubMed

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  9. Phenotypic plasticity in clutch size regulation among populations of a potential invasive fruit fly from environments that vary in host heterogeneity and isolation.

    PubMed

    Aluja, M; Birke, A; Díaz-Fleischer, F; Rull, J

    2018-05-21

    Phenotypic plasticity is thought to evolve in response to environmental unpredictability and can shield genotypes from selection. However, selection can also act on plastic traits. Egg-laying behaviour, including clutch size regulation, is a plastic behavioural trait among tephritid fruit flies. We compared plasticity in clutch size regulation among females of Anastrepha ludens populations stemming from environments that differed in the degree of predictability in egg-laying opportunities. Clutch size regulation in response to hosts of different sizes was compared among flies from (a) a wild, highly isolated population, (b) a wild population that switches seasonally from a small wild host fruit that varies greatly in abundance to an abundant large-sized commercial host, and (c) a laboratory population. Flies from all three populations adjusted clutch number and size according to host size. However, flies from the heterogeneous wild environment were more plastic in adjusting clutch size than flies from agricultural settings that also laid fewer eggs; yet both populations were more plastic in adjusting clutch size in line with host size when compared with laboratory females. When wild and orchard females encountered the largest host, clutch size was extremely variable and egg regulation did not follow the same trend. Heterogeneity in host availability in space and time appears to be as important as seasonal variation in host size in maintaining plastic clutch size regulation behaviour. In stable environments, there was a clear reduction in the plasticity of these traits.

  10. A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation.

    PubMed

    Gomez-Mestre, Ivan; Jovani, Roger

    2013-11-22

    An ongoing new synthesis in evolutionary theory is expanding our view of the sources of heritable variation beyond point mutations of fixed phenotypic effects to include environmentally sensitive changes in gene regulation. This expansion of the paradigm is necessary given ample evidence for a heritable ability to alter gene expression in response to environmental cues. In consequence, single genotypes are often capable of adaptively expressing different phenotypes in different environments, i.e. are adaptively plastic. We present an individual-based heuristic model to compare the adaptive dynamics of populations composed of plastic or non-plastic genotypes under a wide range of scenarios where we modify environmental variation, mutation rate and costs of plasticity. The model shows that adaptive plasticity contributes to the maintenance of genetic variation within populations, reduces bottlenecks when facing rapid environmental changes and confers an overall faster rate of adaptation. In fluctuating environments, plasticity is favoured by selection and maintained in the population. However, if the environment stabilizes and costs of plasticity are high, plasticity is reduced by selection, leading to genetic assimilation, which could result in species diversification. More broadly, our model shows that adaptive plasticity is a common consequence of selection under environmental heterogeneity, and hence a potentially common phenomenon in nature. Thus, taking adaptive plasticity into account substantially extends our view of adaptive evolution.

  11. Physiological Plasticity Is Important for Maintaining Sugarcane Growth under Water Deficit

    PubMed Central

    Marchiori, Paulo E. R.; Machado, Eduardo C.; Sales, Cristina R. G.; Espinoza-Núñez, Erick; Magalhães Filho, José R.; Souza, Gustavo M.; Pires, Regina C. M.; Ribeiro, Rafael V.

    2017-01-01

    The water availability at early phenological stages is critical for crop establishment and sugarcane varieties show differential performance under drought. Herein, we evaluated the relative importance of morphological and physiological plasticity of young sugarcane plants grown under water deficit, testing the hypothesis that high phenotypic plasticity is associated with drought tolerance. IACSP95-5000 is a high yielding genotype and IACSP94-2094 has good performance under water limiting environments. Plants were grown in rhizotrons for 35 days under three water availabilities: high (soil water matric potential [Ψm] higher than -20 kPa); intermediate (Ψm reached -65 and -90 kPa at the end of experimental period) and low (Ψm reached values lower than -150 kPa). Our data revealed that morphological and physiological responses of sugarcane to drought are dependent on genotype and intensity of water deficit. In general, IACSP95-5000 showed higher physiological plasticity given by leaf gas exchange and photochemical traits, whereas IACSP94-2094 showed higher morphological plasticity determined by changes in leaf area (LA) and specific LA. As IACSP94-2094 accumulated less biomass than IACSP95-5000 under varying water availability, it is suggested that high morphological plasticity does not always represent an effective advantage to maintain plant growth under water deficit. In addition, our results revealed that sugarcane varieties face water deficit using distinct strategies based on physiological or morphological changes. When the effectiveness of those changes in maintaining plant growth under low water availability is taken into account, our results indicate that the physiological plasticity is more important than the morphological one in young sugarcane plants. PMID:29326744

  12. Development, maternal effects, and behavioral plasticity.

    PubMed

    Mateo, Jill M

    2014-11-01

    Behavioral, hormonal, and genetic processes interact reciprocally, and differentially affect behavior depending on ecological and social contexts. When individual differences are favored either between or within environments, developmental plasticity would be expected. Parental effects provide a rich source for phenotypic plasticity, including anatomical, physiological, and behavioral traits, because parents respond to dynamic cues in their environment and can, in turn, influence offspring accordingly. Because these inter-generational changes are plastic, parents can respond rapidly to changing environments and produce offspring whose phenotypes are well suited for current conditions more quickly than occurs with changes based on evolution through natural selection. I review studies on developmental plasticity and resulting phenotypes in Belding's ground squirrels (Urocitellus beldingi), an ideal species, given the competing demands to avoid predation while gaining sufficient weight to survive an upcoming hibernation, and the need for young to learn their survival behaviors. I will show how local environments and perceived risk of predation influence not only foraging, vigilance, and anti-predator behaviors, but also adrenal functioning, which may be especially important for obligate hibernators that face competing demands on the storage and mobilization of glucose. Mammalian behavioral development is sensitive to the social and physical environments provided by mothers during gestation and lactation. Therefore, maternal effects on offspring's phenotypes, both positive and negative, can be particularly strong. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  13. Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis.

    PubMed

    Ma, Dedi; Chen, Lei; Qu, Hongchao; Wang, Yilin; Misselbrook, Tom; Jiang, Rui

    2018-04-01

    In order to increase crop yield in semi-arid and arid areas, plastic film mulching (PFM) is widely used in Northwestern China. To date, many studies have addressed the effects of PFM on soil physical and biochemical properties in rain-fed agriculture in Northwestern China, but the findings of different studies are often contradictory. Therefore, a comprehensive review of the impacts of PFM on soil water content, soil nutrients and food production is needed. We compiled the results of 1278 observations to evaluate the overall effects of PFM on soil water content, the distribution of nitrate and soil organic carbon, and crop yield in rain-fed agriculture in Northwestern China. Our results showed that PFM increased soil moisture and nitrate concentration in topsoils (0-20 cm) by 12.9% and 28.2%, respectively, but slightly decreased (1.8%) soil organic carbon (SOC) content in the 0-10 cm soil layer. PFM significantly increased grain yields by 43.1%, with greatest effect in spring maize (79.4%). When related to cumulative precipitation during the crop growing season, yield increase from PFM was greatest (72.8%) at 200-300 mm, which was attributed to the large increase for spring maize and potato, implying that crop zoning would be beneficial for PFM in this region. When related to N application rate, crop yields benefited most from PFM (80.2%) at 200-300 kg/ha. A cost-benefit analysis indicated that PFM increased economic return by an average of 29.5%, with the best improvement for spring maize (71.1%) and no increase for spring wheat. In conclusion, PFM can significantly increase crop yield and economic return (especially for spring maize) in rain-fed agriculture areas of Northwestern China. Crop zoning is recommended for PFM to achieve the largest economic benefit. However, full account needs to be taken of the environmental impacts relating to N loss, SOC depletion and film pollution to evaluate the sustainability of PFM systems and further research is

  14. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops.

    PubMed

    Milla, Rubén; Morente-López, Javier; Alonso-Rodrigo, J Miguel; Martín-Robles, Nieves; Chapin, F Stuart

    2014-10-22

    Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Proteomics to assess the role of phenotypic plasticity in aquatic organisms exposed to pollution and global warming.

    PubMed

    Silvestre, Frédéric; Gillardin, Virginie; Dorts, Jennifer

    2012-11-01

    Nowadays, the unprecedented rates of anthropogenic changes in ecosystems suggest that organisms have to migrate to new distributional ranges or to adapt commensurately quickly to new conditions to avoid becoming extinct. Pollution and global warming are two of the most important threats aquatic organisms will have to face in the near future. If genetic changes in a population in response to natural selection are extensively studied, the role of acclimation through phenotypic plasticity (the property of a given genotype to produce different phenotypes in response to particular environmental conditions) in a species to deal with new environmental conditions remains largely unknown. Proteomics is the extensive study of the protein complement of a genome. It is dynamic and depends on the specific tissue, developmental stage, and environmental conditions. As the final product of gene expression, it is subjected to several regulatory steps from gene transcription to the functional protein. Consequently, there is a discrepancy between the abundance of mRNA and the abundance of the corresponding protein. Moreover, proteomics is closer to physiology and gives a more functional knowledge of the regulation of gene expression than does transcriptomics. The study of protein-expression profiles, however, gives a better portrayal of the cellular phenotype and is considered as a key link between the genotype and the organismal phenotype. Under new environmental conditions, we can observe a shift of the protein-expression pattern defining a new cellular phenotype that can possibly improve the fitness of the organism. It is now necessary to define a proteomic norm of reaction for organisms acclimating to environmental stressors. Its link to fitness will give new insights into how organisms can evolve in a changing environment. The proteomic literature bearing on chronic exposure to pollutants and on acclimation to heat stress in aquatic organisms, as well as potential application of

  16. Ontogenetic loss of phenotypic plasticity of age at metamorphosis in tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, F.R.

    1993-12-01

    Amphibian larvae exhibit phenotypic plasticity in size at metamorphosis and duration of the larval period. I used Pseudacris crucifer tadpoles to test two models for predicting tadpole age and size at metamorphosis under changing environmental conditions. The Wilbur-Collins model states that metamorphosis is initiated as a function of a tadpole's size and relative growth rate, and predicts that changes in growth rate throughout the larval period affect age and size at metamorphosis. An alternative model, the fixed-rate model, states that age at metamorphosis is fixed early in larval life, and subsequent changes in growth rate will have no effect onmore » the length of the larval period. My results confirm that food supplies affect both age and size at metamorphosis, but developmental rates became fixed at approximately Gosner (1960) stages 35-37. Neither model completely predicted these results. I suggest that the generally accepted Wilbur-Collins model is improved by incorporating a point of fixed developmental timing. Growth trajectories predicted from this modified model fit the results of this study better than trajectories based on either of the original models. The results of this study suggests a constraint that limits the simultaneous optimization of age and size at metamorphosis. 32 refs., 5 figs., 1 tab.« less

  17. Climate change and mammals: evolutionary versus plastic responses

    PubMed Central

    Boutin, Stan; Lane, Jeffrey E

    2014-01-01

    Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made. PMID:24454546

  18. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster.

    PubMed

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A; Maltecca, Christian; Mackay, Trudy F C

    2015-05-06

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon.

  19. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster

    PubMed Central

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A.; Maltecca, Christian; Mackay, Trudy F. C.

    2015-01-01

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon. PMID:25943032

  20. Policy-Led Comparative Environmental Risk Assessment of Genetically Modified Crops: Testing for Increased Risk Rather Than Profiling Phenotypes Leads to Predictable and Transparent Decision-Making

    PubMed Central

    Raybould, Alan; Macdonald, Phil

    2018-01-01

    We describe two contrasting methods of comparative environmental risk assessment for genetically modified (GM) crops. Both are science-based, in the sense that they use science to help make decisions, but they differ in the relationship between science and policy. Policy-led comparative risk assessment begins by defining what would be regarded as unacceptable changes when the use a particular GM crop replaces an accepted use of another crop. Hypotheses that these changes will not occur are tested using existing or new data, and corroboration or falsification of the hypotheses is used to inform decision-making. Science-led comparative risk assessment, on the other hand, tends to test null hypotheses of no difference between a GM crop and a comparator. The variables that are compared may have little or no relevance to any previously stated policy objective and hence decision-making tends to be ad hoc in response to possibly spurious statistical significance. We argue that policy-led comparative risk assessment is the far more effective method. With this in mind, we caution that phenotypic profiling of GM crops, particularly with omics methods, is potentially detrimental to risk assessment. PMID:29755975

  1. Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases

    PubMed Central

    Li, Yuanyuan; Tollefsbol, Trygve O

    2016-01-01

    Aging is considered as one of the most important developmental processes in organisms and is closely associated with global deteriorations of epigenetic markers such as aberrant methylomic patterns. This altered epigenomic state, referred to ‘epigenetic drift’, reflects deficient maintenance of epigenetic marks and contributes to impaired cellular and molecular functions in aged cells. Epigenetic drift-induced abnormal changes during aging are scantily repaired by epigenetic modulators. This inflexibility in the aged epigenome may lead to an age-related decline in phenotypic plasticity at the cellular and molecular levels due to epigenetic drift. This perspective aims to provide novel concepts for understanding epigenetic effects on the aging process and to provide insights into epigenetic prevention and therapeutic strategies for age-related human disease. PMID:27882781

  2. Genetic variability and phenotypic plasticity of metric thoracic traits in an invasive drosophilid in America.

    PubMed

    Bitner-Mathé, Blanche Christine; David, Jean Robert

    2015-08-01

    Thermal phenotypic plasticity of 5 metric thoracic traits (3 related to size and 2 to pigmentation) was investigated in Zaprionus indianus with an isofemale line design. Three of these traits are investigated for the first time in a drosophilid, i.e. thorax width and width of pigmented longitudinal white and black stripes. The reaction norms of white and black stripes were completely different: white stripes were insensitive to growth temperature while the black stripes exhibited a strong linear decrease with increasing temperatures. Thorax width exhibited a concave reaction norm, analogous but not identical to those of wing length and thorax length: the temperatures of maximum value were different, the highest being for thorax width. All traits exhibited a significant heritable variability and a low evolvability. Sexual dimorphism was very variable among traits, being nil for white stripes and thorax width, and around 1.13 for black stripes. The ratio thorax length to thorax width (an elongation index) was always >1, showing that males have a more rounded thorax at all temperatures. Black stripes revealed a significant increase of sexual dimorphism with increasing temperature. Shape indices, i.e. ratios between size traits all exhibited a linear decrease with temperature, the least sensitive being the elongation index. All these results illustrate the complexity of developmental processes but also the analytical strength of biometrical plasticity studies in an eco-devo perspective.

  3. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change.

    PubMed

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data.

  4. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change

    PubMed Central

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data. PMID:24454550

  5. Genetic evolution, plasticity, and bet-hedging as adaptive responses to temporally autocorrelated fluctuating selection: A quantitative genetic model.

    PubMed

    Tufto, Jarle

    2015-08-01

    Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  6. The after-hours circadian mutant has reduced phenotypic plasticity in behaviors at multiple timescales and in sleep homeostasis.

    PubMed

    Maggi, Silvia; Balzani, Edoardo; Lassi, Glenda; Garcia-Garcia, Celina; Plano, Andrea; Espinoza, Stefano; Mus, Liudmila; Tinarelli, Federico; Nolan, Patrick M; Gainetdinov, Raul R; Balci, Fuat; Nieus, Thierry; Tucci, Valter

    2017-12-19

    Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.

  7. Morphological plasticity of bacteria—Open questions

    PubMed Central

    Shen, Jie-Pan

    2016-01-01

    Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control. PMID:27375812

  8. Pesticide and plasticizer residues in bergamot essential oils from Calabria (Italy).

    PubMed

    Di Bella, Giuseppa; Saitta, Marcello; La Pera, Lara; Alfa, Maria; Dugo, Giacomo

    2004-08-01

    Organophosphorus and organochlorine pesticides, phosphorated plasticizers, chloroparaffins and phthalate esters contamination in bergamot essential oils produced in Calabria in the crop years 1999-2000 was studied by HRGC in connection with detectors FPD, ECD, MS. Residues of dicofol and tetradifon were found in oils from both crop years. The mean dicofol concentration was 0.26 mg/l in samples from 1999 and 0.20 mg/l in those from 2000; the mean tetradifon content was 0.06 mg/l for both the crop years. Among plasticizers, residues of diisobutyl phthalate, di-n-butyl phthalate, and bis(2-ethylhexyl) phthalate were found in samples from crop years 1999 and 2000, the mean content were 1.22 and 1.23 mg/l, 1.51 and 1.65 mg/l, 1.38 and 1.42 mg/l respectively.

  9. Functional genomics of physiological plasticity and local adaptation in killifish.

    PubMed

    Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.

  10. Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish

    PubMed Central

    Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107

  11. Phenotypic Plasticity in Reproductive Traits of the Perennial Shrub Ulex europaeus in Response to Shading: A Multi-Year Monitoring of Cultivated Clones.

    PubMed

    Atlan, Anne; Hornoy, Benjamin; Delerue, Florian; Gonzalez, Maya; Pierre, Jean-Sébastien; Tarayre, Michèle

    2015-01-01

    Phenotypic plasticity may be advantageous for plants to be able to rapidly cope with new and changing environments associated with climate change or during biological invasions. This is especially true for perennial plants, as they may need a longer period to respond genetically to selective pressures than annuals, and also because they are more likely to experience environmental changes during their lifespan. However, few studies have explored the plasticity of the reproductive life history traits of woody perennial species. This study focuses on a woody shrub, Ulex europaeus (common gorse), and on the response of its reproductive traits to one important environmental factor, shading. The study was performed on clones originating from western France (within the native range of this invasive species) and grown for seven years. We compared traits of plants grown in a shade treatment (with two successive shade levels) vs. full natural light. The traits monitored included flowering onset, pod production and seed predation. All traits studied responded to shading, exhibiting various levels of plasticity. In particular, dense shade induced a radical but reversible decrease in flower and pod production, while moderate shade had little effect on reproductive traits. The magnitude of the response to dense shade depended on the genotype, showing a genetically based polymorphism of plasticity. The level of plasticity also showed substantial variations between years, and the effect of environmental variations was cumulative over time. This suggests that plasticity can influence the lifetime fitness of U. Europaeus and is involved in the capacity of the species to grow under contrasting environmental conditions.

  12. Phenotypic Plasticity in Reproductive Traits of the Perennial Shrub Ulex europaeus in Response to Shading: A Multi-Year Monitoring of Cultivated Clones

    PubMed Central

    Atlan, Anne; Hornoy, Benjamin; Delerue, Florian; Gonzalez, Maya; Pierre, Jean-Sébastien; Tarayre, Michèle

    2015-01-01

    Phenotypic plasticity may be advantageous for plants to be able to rapidly cope with new and changing environments associated with climate change or during biological invasions. This is especially true for perennial plants, as they may need a longer period to respond genetically to selective pressures than annuals, and also because they are more likely to experience environmental changes during their lifespan. However, few studies have explored the plasticity of the reproductive life history traits of woody perennial species. This study focuses on a woody shrub, Ulex europaeus (common gorse), and on the response of its reproductive traits to one important environmental factor, shading. The study was performed on clones originating from western France (within the native range of this invasive species) and grown for seven years. We compared traits of plants grown in a shade treatment (with two successive shade levels) vs. full natural light. The traits monitored included flowering onset, pod production and seed predation. All traits studied responded to shading, exhibiting various levels of plasticity. In particular, dense shade induced a radical but reversible decrease in flower and pod production, while moderate shade had little effect on reproductive traits. The magnitude of the response to dense shade depended on the genotype, showing a genetically based polymorphism of plasticity. The level of plasticity also showed substantial variations between years, and the effect of environmental variations was cumulative over time. This suggests that plasticity can influence the lifetime fitness of U. Europaeus and is involved in the capacity of the species to grow under contrasting environmental conditions. PMID:26383627

  13. Dynamic precision phenotyping reveals mechanism of crop tolerance to root herbivory

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm, Diabrotica virgifera virgifera (LeConte) is a major pest of maize, Zea mays L. Over the years, this pest has repeatedly shown its resilience and adaptability not only to traditional crop management strategies including chemical pesticides and crop rotation, but also to de...

  14. Phenotypic approaches to drought in cassava: review

    PubMed Central

    Okogbenin, Emmanuel; Setter, Tim L.; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2012-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12–18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding. PMID

  15. Can genomics deliver climate-change ready crops?

    PubMed

    Varshney, Rajeev K; Singh, Vikas K; Kumar, Arvind; Powell, Wayne; Sorrells, Mark E

    2018-04-20

    Development of climate resilient crops with accelerating genetic gains in crops will require integration of different disciplines/technologies, to see the impact in the farmer's field. In this review, we summarize how we are utilizing our germplasm collections to identify superior alleles/haplotypes through NGS based sequencing approaches and how genomics-enabled technologies together with precise phenotyping are being used in crop breeding. Pre-breeding and genomics-assisted breeding approaches are contributing to the more efficient development of climate-resilient crops. It is anticipated that the integration of several disciplines/technologies will result in the delivery of climate change ready crops in less time. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Protection, pathogenesis and phenotypic plasticity in Plasmodium falciparum malaria.

    PubMed

    Roberts, D J; Biggs, B A; Brown, G; Newbold, C I

    1993-08-01

    Why does Plasmodium falciparum cause severe illness in some but not all infections? How is clinical immunity acquired? These questions have intrigued investigators since the clinical epidemiology of malaria was first described. The search for answers to both questions has highlighted the changes that take place at the surface of infected red blood cells during the last half of the erythrocytic cycle. These changes specify the antigenic and adhesive or cytoadherence phenotypes for the infected cell. Now the antigenic and adhesive phenotypes appear to be linked and together undergo clonal variation. In this article David Roberts, Beverley-Ann Biggs, Graham Brown and Christopher Newbold explain how clonal phenotypic variation and the linkage between adhesive and antigenic types contribute to our understanding of naturally acquired immunity and of pathogenesis of severe malaria.

  17. Evidence for phenotypic plasticity in response to photic cues and the connection with genes of risk in schizophrenia

    PubMed Central

    Miller, Christine L.

    2013-01-01

    Numerous environmental factors have been identified as influential in the development of schizophrenia. Some are byproducts of modern life, yet others were present in our evolutionary past and persist to a lesser degree in the current era. The present study brings together published epidemiological data for schizophrenia and data on variables related to photic input for places of residence across geographical regions, using rainfall as an inverse, proxy measure for light levels. Data were gathered from the literature for two countries, the former Yugoslavia and Ireland, during a time in the early 20th century when mobility was relatively limited. The data for Yugoslavia showed a strong correlation between hospital census rates for schizophrenia (by place of birth) and annual rain (r = 0.96, p = 0.008). In Ireland, the hospital census rates and first admissions for schizophrenia (by place of permanent residence) showed a trend for correlation with annual rain, reaching significance for 1st admissions when the rainfall data was weighted by the underlying population distribution (r = 0.71, p = 0.047). In addition, across the years 1921–1945, birth-year variations in a spring quarter season-of-birth effect for schizophrenia in Ireland showed a trend for correlation with January-March rainfall (r = 0.80, p ≤ 0.10). The data are discussed in terms of the effect of photoperiod on the gestation and behavior of offspring in animals, and the premise is put forth that vestigial phenotypic plasticity for such photic cues still exists in humans. Moreover, genetic polymorphisms of risk identified for psychotic disorders include genes modulated by photoperiod and sunlight intensity. Such a relationship between phenotypic plasticity in response to a particular environmental regime and subsequent natural selection for fixed changes in the environmentally responsive genes, has been well studied in animals and should not be discounted when considering human disease. PMID:23847488

  18. Phenotypic plasticity, the Baldwin effect, and the speeding up of evolution: the computational roots of an illusion.

    PubMed

    Santos, Mauro; Szathmáry, Eörs; Fontanari, José F

    2015-04-21

    An increasing number of dissident voices claim that the standard neo-Darwinian view of genes as 'leaders' and phenotypes as 'followers' during the process of adaptive evolution should be turned on its head. This idea is older than the rediscovery of Mendel's laws of inheritance, with the turn-of-the-twentieth-century notion eventually labeled as the 'Baldwin effect' as one of the many ways in which the standard neo-Darwinian view can be turned around. A condition for this effect is that environmentally induced variation such as phenotypic plasticity or learning is crucial for the initial establishment of a trait. This gives the additional time for natural selection to act on genetic variation and the adaptive trait can be eventually encoded in the genotype. An influential paper published in the late 1980s claimed the Baldwin effect to happen in computer simulations, and avowed that it was crucial to solve a difficult adaptive task. This generated much excitement among scholars in various disciplines that regard neo-Darwinian accounts to explain the evolutionary emergence of high-order phenotypic traits such as consciousness or language almost hopeless. Here, we use analytical and computational approaches to show that a standard population genetics treatment can easily crack what the scientific community has granted as an unsolvable adaptive problem without learning. Evolutionary psychologists and linguists have invoked the (claimed) Baldwin effect to make wild assertions that should not be taken seriously. What the Baldwin effect needs are plausible case-histories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Advanced phenotyping and phenotype data analysis for the study of plant growth and development

    PubMed Central

    Rahaman, Md. Matiur; Chen, Dijun; Gillani, Zeeshan; Klukas, Christian; Chen, Ming

    2015-01-01

    Due to an increase in the consumption of food, feed, fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to breed high yielding crops that can adapt to the future climate changes, particularly in developing countries. To solve these global challenges, novel approaches are required to identify quantitative phenotypes and to explain the genetic basis of agriculturally important traits. These advances will facilitate the screening of germplasm with high performance characteristics in resource-limited environments. Recently, plant phenomics has offered and integrated a suite of new technologies, and we are on a path to improve the description of complex plant phenotypes. High-throughput phenotyping platforms have also been developed that capture phenotype data from plants in a non-destructive manner. In this review, we discuss recent developments of high-throughput plant phenotyping infrastructure including imaging techniques and corresponding principles for phenotype data analysis. PMID:26322060

  20. Advanced phenotyping and phenotype data analysis for the study of plant growth and development.

    PubMed

    Rahaman, Md Matiur; Chen, Dijun; Gillani, Zeeshan; Klukas, Christian; Chen, Ming

    2015-01-01

    Due to an increase in the consumption of food, feed, fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to breed high yielding crops that can adapt to the future climate changes, particularly in developing countries. To solve these global challenges, novel approaches are required to identify quantitative phenotypes and to explain the genetic basis of agriculturally important traits. These advances will facilitate the screening of germplasm with high performance characteristics in resource-limited environments. Recently, plant phenomics has offered and integrated a suite of new technologies, and we are on a path to improve the description of complex plant phenotypes. High-throughput phenotyping platforms have also been developed that capture phenotype data from plants in a non-destructive manner. In this review, we discuss recent developments of high-throughput plant phenotyping infrastructure including imaging techniques and corresponding principles for phenotype data analysis.

  1. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature.

    PubMed

    Ghalambor, Cameron K; Hoke, Kim L; Ruell, Emily W; Fischer, Eva K; Reznick, David N; Hughes, Kimberly A

    2015-09-17

    Phenotypic plasticity is the capacity for an individual genotype to produce different phenotypes in response to environmental variation. Most traits are plastic, but the degree to which plasticity is adaptive or non-adaptive depends on whether environmentally induced phenotypes are closer or further away from the local optimum. Existing theories make conflicting predictions about whether plasticity constrains or facilitates adaptive evolution. Debate persists because few empirical studies have tested the relationship between initial plasticity and subsequent adaptive evolution in natural populations. Here we show that the direction of plasticity in gene expression is generally opposite to the direction of adaptive evolution. We experimentally transplanted Trinidadian guppies (Poecilia reticulata) adapted to living with cichlid predators to cichlid-free streams, and tested for evolutionary divergence in brain gene expression patterns after three to four generations. We find 135 transcripts that evolved parallel changes in expression within the replicated introduction populations. These changes are in the same direction exhibited in a native cichlid-free population, suggesting rapid adaptive evolution. We find 89% of these transcripts exhibited non-adaptive plastic changes in expression when the source population was reared in the absence of predators, as they are in the opposite direction to the evolved changes. By contrast, the remaining transcripts exhibiting adaptive plasticity show reduced population divergence. Furthermore, the most plastic transcripts in the source population evolved reduced plasticity in the introduction populations, suggesting strong selection against non-adaptive plasticity. These results support models predicting that adaptive plasticity constrains evolution, whereas non-adaptive plasticity potentiates evolution by increasing the strength of directional selection. The role of non-adaptive plasticity in evolution has received relatively

  2. Predicting evolutionary rescue via evolving plasticity in stochastic environments

    PubMed Central

    Baskett, Marissa L.

    2016-01-01

    Phenotypic plasticity and its evolution may help evolutionary rescue in a novel and stressful environment, especially if environmental novelty reveals cryptic genetic variation that enables the evolution of increased plasticity. However, the environmental stochasticity ubiquitous in natural systems may alter these predictions, because high plasticity may amplify phenotype–environment mismatches. Although previous studies have highlighted this potential detrimental effect of plasticity in stochastic environments, they have not investigated how it affects extinction risk in the context of evolutionary rescue and with evolving plasticity. We investigate this question here by integrating stochastic demography with quantitative genetic theory in a model with simultaneous change in the mean and predictability (temporal autocorrelation) of the environment. We develop an approximate prediction of long-term persistence under the new pattern of environmental fluctuations, and compare it with numerical simulations for short- and long-term extinction risk. We find that reduced predictability increases extinction risk and reduces persistence because it increases stochastic load during rescue. This understanding of how stochastic demography, phenotypic plasticity, and evolution interact when evolution acts on cryptic genetic variation revealed in a novel environment can inform expectations for invasions, extinctions, or the emergence of chemical resistance in pests. PMID:27655762

  3. Effects of behavioral and morphological plasticity on risk of predation in a Neotropical tadpole

    USGS Publications Warehouse

    McIntyre, P.B.; Baldwin, S.; Flecker, A.S.

    2004-01-01

    Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wildcaught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation. ?? Springer-Verlag 2004.

  4. Effects of ultraviolet-B irradiance on intraspecific competition and facilitation of plants: self-thinning, size inequality, and phenotypic plasticity.

    PubMed

    Zhang, Rui-Chang; Lin, Yue; Yue, Ming; Li, Qian; Zhang, Xiao-Fei; Liu, Xiao; Chi, Hong; Chai, Yong-Fu; Wang, Mao

    2012-01-01

    (1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one's morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased individual

  5. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops

    PubMed Central

    Khan, M. A.; Gemenet, Dorcus C.; Villordon, Arthur

    2016-01-01

    The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive ‘green revolution.’ In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses. PMID:27847508

  6. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity

    PubMed Central

    2011-01-01

    Background To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. Results Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. Conclusions The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree species, contributes to its spread

  7. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants.

    PubMed

    Großkinsky, Dominik K; Syaifullah, Syahnada Jaya; Roitsch, Thomas

    2018-02-12

    The study of senescence in plants is complicated by diverse levels of temporal and spatial dynamics as well as the impact of external biotic and abiotic factors and crop plant management. Whereas the molecular mechanisms involved in developmentally regulated leaf senescence are very well understood, in particular in the annual model plant species Arabidopsis, senescence of other organs such as the flower, fruit, and root is much less studied as well as senescence in perennials such as trees. This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence. That became feasible through major advances in the establishment of various, complementary 'omics' technologies. Such an interdisciplinary approach will also need to consider knowledge from the animal field, in particular in relation to novel regulators such as small, non-coding RNAs, epigenetic control and telomere length. Such a characterization of phenotypes via the acquisition of high-dimensional datasets within a systems biology approach will allow us to systematically characterize the various programmes governing senescence beyond leaf senescence in Arabidopsis and to elucidate the underlying molecular processes. Such a multi-omics approach is expected to also spur the application of results from model plants to agriculture and their verification for sustainable and environmentally friendly improvement of crop plant stress resilience and productivity and contribute to improvements based on postharvest physiology for the food industry and the benefit of its customers. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. GiNA, an efficient and high-throughput software for horticultural phenotyping

    USDA-ARS?s Scientific Manuscript database

    Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed,...

  9. Field Phenotyping Strategies and Breeding for Adaptation of Rice to Drought†

    PubMed Central

    Fischer, Ken S.; Fukai, Shu; Kumar, Arvind; Leung, Hei; Jongdee, Boonrat

    2012-01-01

    This paper is a section of the book “Drought phenotyping in crops: from theory to practice” (Monneveux Philippe and Ribaut Jean-Marcel eds, published by CGIAR Generation Challenge Programme. Texcoco, Mexico). The section describes recent experience in drought phenotyping in rice which is one of the most drought-susceptible crops. The section contains genetic and genomic resources for drought adaptation and methods for selection of drought-resistant varieties in rice. In appendix, there is experience from Thailand on integration of direct selection for grain yield and physiological traits to confer drought resistance. PMID:22934036

  10. Genome-wide analysis of allele frequency change in sunflower crop-wild hybrid populations evolving under natural conditions.

    PubMed

    Corbi, Jonathan; Baack, Eric J; Dechaine, Jennifer M; Seiler, Gerald; Burke, John M

    2018-01-01

    Crop-wild hybridization occurs in numerous plant species and could alter the genetic structure and evolutionary dynamics of wild populations. Studying crop-derived alleles in wild populations is also relevant to assessing/mitigating the risks associated with transgene escape. To date, crop-wild hybridization has generally been examined via short-term studies, typically within a single generation, focusing on few traits or genetic markers. Little is known about patterns of selection on crop-derived alleles over multiple generations, particularly at a genome-wide scale. Here, we documented patterns of natural selection in an experimental crop × wild sunflower population that was allowed to evolve under natural conditions for two generations at two locations. Allele frequencies at a genome-wide collection of SNPs were tracked across generations, and a common garden experiment was conducted to compare trait means between generations. These data allowed us to identify instances of selection on crop-derived alleles/traits and, in concert with QTL mapping results, test for congruence between our genotypic and phenotypic results. We found that natural selection overwhelmingly favours wild alleles and phenotypes. However, crop alleles in certain genomic regions can be favoured, and these changes often occurred in parallel across locations. We did not, however, consistently observe close agreement between our genotypic and phenotypic results. For example, when a trait evolved towards the wild phenotype, wild QTL alleles associated with that trait did not consistently increase in frequency. We discuss these results in the context of crop allele introgression into wild populations and implications for the management of GM crops. © 2017 John Wiley & Sons Ltd.

  11. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer.

    PubMed

    Androwski, Rebecca J; Flatt, Kristen M; Schroeder, Nathan E

    2017-09-01

    Organisms are often capable of modifying their development to better suit their environment. Under adverse conditions, the nematode Caenorhabditis elegans develops into a stress-resistant alternative larval stage called dauer. The dauer stage is the primary survival stage for C. elegans in nature. Large-scale tissue remodeling during dauer conveys resistance to harsh environments. The environmental and genetic regulation of the decision to enter dauer has been extensively studied. However, less is known about the mechanisms regulating tissue remodeling. Changes to the cuticle and suppression of feeding in dauers lead to an increased resistance to external stressors. Meanwhile reproductive development arrests during dauer while preserving the ability to reproduce once favorable environmental conditions return. Dramatic remodeling of neurons, glia, and muscles during dauer likely facilitate dauer-specific behaviors. Dauer-specific pulsation of the excretory duct likely mediates a response to osmotic stress. The power of C. elegans genetics has uncovered some of the molecular pathways regulating dauer tissue remodeling. In addition to genes that regulate single remodeling events, several mutants result in pleiotropic defects in dauer remodeling. This review details the individual aspects of morphological changes that occur during dauer formation and discusses molecular mechanisms regulating these processes. The dauer stage provides us with an excellent model for understanding phenotypic plasticity and remodeling from the individual cell to an entire animal. WIREs Dev Biol 2017, 6:e278. doi: 10.1002/wdev.278 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  12. The food and environmental safety of Bt crops.

    PubMed

    Koch, Michael S; Ward, Jason M; Levine, Steven L; Baum, James A; Vicini, John L; Hammond, Bruce G

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.

  13. The food and environmental safety of Bt crops

    PubMed Central

    Koch, Michael S.; Ward, Jason M.; Levine, Steven L.; Baum, James A.; Vicini, John L.; Hammond, Bruce G.

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms. PMID:25972882

  14. The second green revolution? Production of plant-based biodegradable plastics.

    PubMed

    Mooney, Brian P

    2009-03-01

    Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants--so-called 'white biotechnology'--have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.

  15. Pupal colour plasticity in a tropical butterfly, Mycalesis mineus (Nymphalidae: Satyrinae).

    PubMed

    Mayekar, Harshad Vijay; Kodandaramaiah, Ullasa

    2017-01-01

    Lepidopteran insects have provided excellent study systems for understanding adaptive phenotypic plasticity. Although there are a few well-studied examples of adult plasticity among tropical butterflies, our understanding of plasticity of larval and pupal stages is largely restricted to temperate butterflies. The environmental parameters inducing phenotypic plasticity and the selective pressures acting on phenotypes are likely to differ across tropical and temperate climate regimes. We tested the influence of relative humidity (RH), a prominent yet under-appreciated tropical climatic component, along with pupation substrate, larval development time, pupal sex and weight in determining pupal colour in the tropical satyrine butterfly Mycalesis mineus. Pupae of this butterfly are either brown or green or very rarely intermediate. Larvae were reared at high (85%) and low (60%) RH at a constant temperature. Proportions of green and brown pupae were expected to vary across low and high RH and pupation substrates in order to enhance crypsis. Brown pupae were more common at low RH than at high RH, as predicted, and developed faster than green pupae. Pupal colour was correlated with pupation substrate. Choice of pupation substrate differed across RH treatments. It is unclear whether pupal colour influences substrate selection or whether substrate influences pupal colour. Our study underscores the need for further work to understand the basis of pupal plasticity in tropical butterflies.

  16. Low genetic diversity contrasts with high phenotypic variability in heptaploid Spartina densiflora populations invading the Pacific Coast of North America

    USDA-ARS?s Scientific Manuscript database

    Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions such as through...

  17. Environmental change, phenotypic plasticity, and genetic compensation.

    PubMed

    Grether, Gregory F

    2005-10-01

    When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.

  18. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Savois, Vincent; Sommerer, Nicolas; Labas, Valérie; Henry, Céline; Burstin, Judith

    2009-01-01

    Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.

  19. Genetically modified (GM) crops: milestones and new advances in crop improvement.

    PubMed

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2016-09-01

    New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.

  20. Molecular biodiversity of mycotoxigenic fungi that threaten food safety

    USDA-ARS?s Scientific Manuscript database

    Fungal biodiversity is one of the most important contributors to the occurrence and severity of mycotoxin contamination of crop plants. Phenotypic and metabolic plasticity has enabled mycotoxigenic fungi to colonize a broad range of agriculturally important crops and to adapt to a range of environme...

  1. Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts

    PubMed Central

    2013-01-01

    Background Macrophages and fibroblasts are two major players in tissue repair and fibrosis. Despite the relevance of macrophages and fibroblasts in tissue homeostasis, remarkably little is known whether macrophages are able to influence the properties of fibroblasts. Here we investigated the role of paracrine factors secreted by classically activated (M1) and alternatively activated (M2) human macrophages on human dermal fibroblasts (HDFs). Results HDFs stimulated with paracrine factors from M1 macrophages showed a 10 to > 100-fold increase in the expression of the inflammatory cytokines IL6, CCL2 and CCL7 and the matrix metalloproteinases MMP1 and MMP3. This indicates that factors produced by M1 macrophages induce a fibroblast phenotype with pro-inflammatory and extracellular matrix (ECM) degrading properties. HDFs stimulated with paracrine factors secreted by M2 macrophages displayed an increased proliferation rate. Interestingly, the M1-activated pro-inflammatory fibroblasts downregulated, after exposure to paracrine factors produced by M2 macrophages or non-conditioned media, the inflammatory markers as well as MMPs and upregulated their collagen production. Conclusions Paracrine factors of M1 or M2 polarized macrophages induced different phenotypes of HDFs and the HDF phenotypes can in turn be reversed, pointing to a high dynamic plasticity of fibroblasts in the different phases of tissue repair. PMID:23601247

  2. Increased occurrence of pesticide residues on crops grown in protected environments compared to crops grown in open field conditions.

    PubMed

    Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J

    2015-01-01

    Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Phenological plasticity will not help all species adapt to climate change.

    PubMed

    Duputié, Anne; Rutschmann, Alexis; Ronce, Ophélie; Chuine, Isabelle

    2015-08-01

    Concerns are rising about the capacity of species to adapt quickly enough to climate change. In long-lived organisms such as trees, genetic adaptation is slow, and how much phenotypic plasticity can help them cope with climate change remains largely unknown. Here, we assess whether, where and when phenological plasticity is and will be adaptive in three major European tree species. We use a process-based species distribution model, parameterized with extensive ecological data, and manipulate plasticity to suppress phenological variations due to interannual, geographical and trend climate variability, under current and projected climatic conditions. We show that phenological plasticity is not always adaptive and mostly affects fitness at the margins of the species' distribution and climatic niche. Under current climatic conditions, phenological plasticity constrains the northern range limit of oak and beech and the southern range limit of pine. Under future climatic conditions, phenological plasticity becomes strongly adaptive towards the trailing edges of beech and oak, but severely constrains the range and niche of pine. Our results call for caution when interpreting geographical variation in trait means as adaptive, and strongly point towards species distribution models explicitly taking phenotypic plasticity into account when forecasting species distribution under climate change scenarios. © 2015 John Wiley & Sons Ltd.

  4. Linking conceptual mechanisms and transcriptomic evidence of plasticity-driven diversification.

    PubMed

    Young, Rebecca L

    2013-09-01

    The East African cichlid fishes provide text book examples of adaptive radiation. Diversification and speciation of cichlids associate with variation in diet and trophic morphologies among other ecological, behavioural and morphological phenotypes (Kocher 2004). Numerous case studies in cichlids reveal a role of developmental plasticity in generating jaw ecomorphs in response to variation in feeding ecology that can facilitate niche exploitation and subsequent diversification (e.g. Meyer 1987). Specifically, genetic divergence among such environmentally induced morphs can occur via reproductive isolation due to divergence in habitat and resource use in combination with genetic assimilation of environmentally induced phenotypes (West-Eberhard 2003; Pfennig et al. 2010). Expansion of this conceptual model has been hampered in part by the limited knowledge of the molecular mechanisms of plasticity in nonstandard model systems and the associated lack of evidence linking the molecular mechanisms of plasticity to those that generate phenotypic divergence among populations and taxa. In this issue of Molecular Ecology, Gunter et al. (2013) identify the transcriptional mechanisms of diet-induced lower pharyngeal jaw (LPJ) plasticity in the cichlid fish Astatoreochromis alluaudi. Natural populations of A. alluaudi exhibit variation in jaw morphology in relation to diet hardness. Among the plastic responses to diet are adjustments to the LPJ ranging from a robust molariform morph in response to a hard diet to a more gracile papilliform morph in response to a soft diet (Fig. 1). Gunter and colleagues induced developmental plasticity of the A. alluaudi jaw using diet manipulations and compared LPJ transcriptomic profiles of the resulting morphs. In this foundational work, the authors identify 187 differentially expressed genes that underlie the development and maintenance of diet-induced LPJ morphologies. This list includes a wide range of genes spanning from broad

  5. Evolutionary and plastic responses to climate change in terrestrial plant populations

    PubMed Central

    Franks, Steven J; Weber, Jennifer J; Aitken, Sally N

    2014-01-01

    As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate change are clearly occurring. Of the 38 studies that met our criteria for inclusion, all found plastic or evolutionary responses, with 26 studies showing both. These responses, however, may be insufficient to keep pace with climate change, as indicated by eight of 12 studies that examined this directly. There is also mixed evidence for whether evolutionary responses are adaptive, and whether they are directly caused by contemporary climatic changes. We discuss factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species’ life history characteristics including generation time and breeding system, and degree and direction of gene flow. Future studies with standardized methodologies, especially those that use direct approaches assessing responses to climate change over time, and sharing of data through public databases, will facilitate better predictions of the capacity for plant populations to respond to rapid climate change. PMID:24454552

  6. Patterns of developmental plasticity in response to incubation temperature in reptiles.

    PubMed

    While, Geoffrey M; Noble, Daniel W A; Uller, Tobias; Warner, Daniel A; Riley, Julia L; Du, Wei-Guo; Schwanz, Lisa E

    2018-05-28

    Early life environments shape phenotypic development in important ways that can lead to long-lasting effects on phenotype and fitness. In reptiles, one aspect of the early environment that impacts development is temperature (termed 'thermal developmental plasticity'). Indeed, the thermal environment during incubation is known to influence morphological, physiological, and behavioral traits, some of which have important consequences for many ecological and evolutionary processes. Despite this, few studies have attempted to synthesize and collate data from this expansive and important body of research. Here, we systematically review research into thermal developmental plasticity across reptiles, structured around the key papers and findings that have shaped the field over the past 50 years. From these papers, we introduce a large database (the 'Reptile Development Database') consisting of 9,773 trait means across 300 studies examining thermal developmental plasticity. This dataset encompasses data on a range of phenotypes, including morphological, physiological, behavioral, and performance traits along with growth rate, incubation duration, sex ratio, and survival (e.g., hatching success) across all major reptile clades. Finally, from our literature synthesis and data exploration, we identify key research themes associated with thermal developmental plasticity, important gaps in empirical research, and demonstrate how future progress can be made through targeted empirical, meta-analytic, and comparative work. © 2018 Wiley Periodicals, Inc.

  7. Managing cover crops on strawberry furrow bottoms

    USDA-ARS?s Scientific Manuscript database

    Bare furrows in strawberry fields with plastic mulch covered beds can lead to lots of soil erosion and runoff during winter rainy periods. This article describes how growers can plant and manage cover crops in these furrows to minimize runoff and soil erosion. This is based on on-going research at...

  8. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity.

    PubMed

    Vandamme, Niels; Berx, Geert

    2014-01-01

    Compared to the overwhelming amount of literature describing how epithelial-to-mesenchymal transition (EMT)-inducing transcription factors orchestrate cellular plasticity in embryogenesis and epithelial cells, the functions of these factors in non-epithelial contexts, such as melanoma, are less clear. Melanoma is an aggressive tumor arising from melanocytes, endowed with unique features of cellular plasticity. The reversible phenotype-switching between differentiated and invasive phenotypes is increasingly appreciated as a mechanism accounting for heterogeneity in melanoma and is driven by oncogenic signaling and environmental cues. This phenotypic switch is coupled with an intriguing and somewhat counterintuitive signaling switch of EMT-inducing transcription factors. In contrast to carcinomas, different EMT-inducing transcription factors have antagonizing effects in melanoma. Balancing between these different EMT transcription factors is likely the key to successful metastatic spread of melanoma.

  9. Multi `omics reveals role of phenotypic plasticity in governing biogeochemical hotspots within the groundwater-surface water (hyporheic) mixing zone

    NASA Astrophysics Data System (ADS)

    Graham, E.; Tfaily, M. M.; Crump, A.; Arntzen, E.; Romero, E. B.; Goldman, A. E.; Resch, T.; Kennedy, D.; Nelson, W. C.; Stegen, J.

    2017-12-01

    Subsurface groundwater-surface water mixing zones (hyporheic zones) contain spatially heterogeneous hotspots of enhanced biogeochemical activity that contribute disproportionately to river corridor function. We have a poor understanding of the processes governing hotspots, but recent advances have enabled greater mechanistic understanding. We employ a suite of ultra-high resolution measurements to investigate the mechanisms underlying biogeochemical cycles in hyporheic zone hotspots. We use Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), metagenomic shotgun sequencing, and mass spectrometry of metaproteomes to characterize metabolite structure and metabolic transformations, microbiome structure and functional potential, and expressed microbiome functions in hyporheic sediments from the Columbia River in central Washington State. Surprisingly, microbiome structure and function in biogeochemical hotspots were indistinguishable from low-activity sediments. Metabolites were uncorrelated to protein expression but strongly related to aerobic respiration. Hotspot metabolites were distinguished by high molecular weight compounds and protein-, lignin-, and lipid-like molecules. Although the most common metabolic transformations were similar between hotspots and low-activity samples, hotspots contained a greater proportion of rare pathways, which in turn were correlated to metabolism. Our results contradicted our expectations that hotspots would be characterized by a unique microbiome with distinct physiology. Instead, our results indicate that microbial phenotypic plasticity underlies elevated hyporheic zone function, whereby the activity of rare pathways is stimulated by substrate availability. We therefore hypothesize that microbiome plasticity couples meso- (e.g., local root distribution) and macro-scale (e.g., landscape vegetation) resource heterogeneity to ecosystem-scale function. This indicates a need to mechanistically understand and

  10. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  11. Developmental thermal plasticity of prey modifies the impact of predation.

    PubMed

    Seebacher, Frank; Grigaltchik, Veronica S

    2015-05-01

    Environmental conditions during embryonic development can influence the mean expression of phenotypes as well as phenotypic responses to environmental change later in life. The resulting phenotypes may be better matched to their environment and more resilient to environmental change, including human-induced climate change. However, whether plasticity does improve success in an ecological context is unresolved. In a microcosm experiment, we show that developmental plasticity in embryos of the frog Limnodynastes peronii is beneficial by increasing survivorship of tadpoles in the presence of predators when egg incubation (15 or 25°C) and tadpole acclimation temperature in microcosms (15 or 25°C) coincided at 15°C. Tadpoles that survived predation were smaller, and had faster burst swimming speeds than those kept in no-predator control conditions, but only at high (25°C) egg incubation or subsequent microcosm temperatures. Metabolic rates were determined by a three-way interaction between incubation and microcosm temperatures and predation; maximal glycolytic and mitochondrial metabolic capacities (enzyme activities) were lower in survivors from predation compared with controls, particularly when eggs were incubated at 25°C. We show that thermal conditions experienced during early development are ecologically relevant by modulating survivorship from predation. Importantly, developmental thermal plasticity also impacts population phenotypes indirectly by modifying species interactions and the selection pressure imposed by predation. © 2015. Published by The Company of Biologists Ltd.

  12. Effects of Ultraviolet-B Irradiance on Intraspecific Competition and Facilitation of Plants: Self-Thinning, Size Inequality, and Phenotypic Plasticity

    PubMed Central

    Zhang, Rui-Chang; Lin, Yue; Yue, Ming; Li, Qian; Zhang, Xiao-Fei; Liu, Xiao; Chi, Hong; Chai, Yong-Fu; Wang, Mao

    2012-01-01

    (1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one’s morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased

  13. mGlu5 positive allosteric modulation normalizes synaptic plasticity defects and motor phenotypes in a mouse model of Rett syndrome

    PubMed Central

    Gogliotti, Rocco G.; Senter, Rebecca K.; Rook, Jerri M.; Ghoshal, Ayan; Zamorano, Rocio; Malosh, Chrysa; Stauffer, Shaun R.; Bridges, Thomas M.; Bartolome, Jose M.; Daniels, J. Scott; Jones, Carrie K.; Lindsley, Craig W.; Conn, P. Jeffrey; Niswender, Colleen M.

    2016-01-01

    Rett syndrome (RS) is a neurodevelopmental disorder that shares many symptomatic and pathological commonalities with idiopathic autism. Alterations in protein synthesis-dependent synaptic plasticity (PSDSP) are a hallmark of a number of syndromic forms of autism; in the present work, we explore the consequences of disruption and rescue of PSDSP in a mouse model of RS. We report that expression of a key regulator of synaptic protein synthesis, the metabotropic glutamate receptor 5 (mGlu5) protein, is significantly reduced in both the brains of RS model mice and in the motor cortex of human RS autopsy samples. Furthermore, we demonstrate that reduced mGlu5 expression correlates with attenuated DHPG-induced long-term depression in the hippocampus of RS model mice, and that administration of a novel mGlu5 positive allosteric modulator (PAM), termed VU0462807, can rescue synaptic plasticity defects. Additionally, treatment of Mecp2-deficient mice with VU0462807 improves motor performance (open-field behavior and gait dynamics), corrects repetitive clasping behavior, as well as normalizes cued fear-conditioning defects. Importantly, due to the rationale drug discovery approach used in its development, our novel mGlu5 PAM improves RS phenotypes and synaptic plasticity defects without evoking the overt adverse effects commonly associated with potentiation of mGlu5 signaling (i.e. seizures), or affecting cardiorespiratory defects in RS model mice. These findings provide strong support for the continued development of mGlu5 PAMs as potential therapeutic agents for use in RS, and, more broadly, for utility in idiopathic autism. PMID:26936821

  14. Adapting to a Changing Environment: Modeling the Interaction of Directional Selection and Plasticity.

    PubMed

    Nunney, Leonard

    2016-01-01

    Human-induced habitat loss and fragmentation constrains the range of many species, making them unable to respond to climate change by moving. For such species to avoid extinction, they must respond with some combination of phenotypic plasticity and genetic adaptation. Haldane's "cost of natural selection" limits the rate of adaptation, but, although modeling has shown that in very large populations long-term adaptation can be maintained at rates substantially faster than Haldane's suggested limit, maintaining large populations is often an impossibility, so phenotypic plasticity may be crucial in enhancing the long-term survival of small populations. The potential importance of plasticity is in "buying time" for populations subject to directional environmental change: if genotypes can encompass a greater environmental range, then populations can maintain high fitness for a longer period of time. Alternatively, plasticity could be detrimental by lessening the effectiveness of natural selection in promoting genetic adaptation. Here, I modeled a directionally changing environment in which a genotype's adaptive phenotypic plasticity is centered around the environment where its fitness is highest. Plasticity broadens environmental tolerance and, provided it is not too costly, is favored by natural selection. However, a paradoxical result of the individually advantageous spread of plasticity is that, unless the adaptive trait is determined by very few loci, the long-term extinction risk of a population increases. This effect reflects a conflict between the short-term individual benefit of plasticity and a long-term detriment to population persistence, adding to the multiple threats facing small populations under conditions of climate change. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Phenotype adjustment promotes adaptive evolution in a game without conflict.

    PubMed

    Yamaguchi, Sachi; Iwasa, Yoh

    2015-06-01

    Organisms may adjust their phenotypes in response to social and physical environments. Such phenotypic plasticity is known to help or retard adaptive evolution. Here, we study the evolutionary outcomes of adaptive phenotypic plasticity in an evolutionary game involving two players who have no conflicts of interest. A possible example is the growth and sex allocation of a lifelong pair of shrimps entrapped in the body of a sponge. We consider random pair formation, the limitation of total resources for growth, and the needs of male investment to fertilize eggs laid by the partner. We compare the following three different evolutionary dynamics: (1) No adjustment: each individual develops a phenotype specified by its own genotype; (2) One-player adjustment: the phenotype of the first player is specified by its own genotype, and the second player chooses the phenotype that maximizes its own fitness; (3) Two-player adjustment: the first player exhibits an initial phenotype specified by its own genotype, the second player chooses a phenotype given that of the first player, and finally, the first player readjusts its phenotype given that of the second player. We demonstrate that both one-player and two-player adjustments evolve to achieve maximum fitness. In contrast, the dynamics without adjustment fails in some cases to evolve outcomes with the highest fitness. For an intermediate range of male cost, the evolution of no adjustment realizes two hermaphrodites with equal size, whereas the one-player and two-player adjustments realize a small male and a large female. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Application of genomic tools for lesquerella crop improvement

    USDA-ARS?s Scientific Manuscript database

    Lesquerella, a potential new industrial oilseed crop, is valued for its unusual hydroxy fatty acid (20:1OH) which can be used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. As a step towards genetic engineering of lesquerella, we explored a lesqu...

  17. Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication.

    PubMed

    Doust, Andrew N; Lukens, Lewis; Olsen, Kenneth M; Mauro-Herrera, Margarita; Meyer, Ann; Rogers, Kimberly

    2014-04-29

    Domestication is a multifaceted evolutionary process, involving changes in individual genes, genetic interactions, and emergent phenotypes. There has been extensive discussion of the phenotypic characteristics of plant domestication, and recent research has started to identify the specific genes and mutational mechanisms that control domestication traits. However, there is an apparent disconnect between the simple genetic architecture described for many crop domestication traits, which should facilitate rapid phenotypic change under selection, and the slow rate of change reported from the archeobotanical record. A possible explanation involves the middle ground between individual genetic changes and their expression during development, where gene-by-gene (epistatic) and gene-by-environment interactions can modify the expression of phenotypes and opportunities for selection. These aspects of genetic architecture have the potential to significantly slow the speed of phenotypic evolution during crop domestication and improvement. Here we examine whether epistatic and gene-by-environment interactions have shaped how domestication traits have evolved. We review available evidence from the literature, and we analyze two domestication-related traits, shattering and flowering time, in a mapping population derived from a cross between domesticated foxtail millet and its wild progenitor. We find that compared with wild progenitor alleles, those favored during domestication often have large phenotypic effects and are relatively insensitive to genetic background and environmental effects. Consistent selection should thus be able to rapidly change traits during domestication. We conclude that if phenotypic evolution was slow during crop domestication, this is more likely due to cultural or historical factors than epistatic or environmental constraints.

  18. Ocean acidification challenges copepod reproductive plasticity

    NASA Astrophysics Data System (ADS)

    Vehmaa, A.; Almén, A.-K.; Brutemark, A.; Paul, A.; Riebesell, U.; Furuhagen, S.; Engström-Öst, J.

    2015-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia bifilosa in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ~ 365-1231 μatm), and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal if transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female copepod size and egg hatching success. In addition, we found a threshold of fCO2 concentration (~ 1000 μatm), above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon ~ 55 μm) or quality (C : N) weakens the transgenerational effects. However, females with high ORAC produced eggs with high hatching success. Overall, these results indicate that A. bifilosa could be affected by projected near future CO2 levels.

  19. A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria

    USDA-ARS?s Scientific Manuscript database

    With rapid advances in DNA sequencing, phenotyping has become the rate-limiting step in using large-scale genomic data to understand and improve agricultural crops. Here, the Bellwether Phenotyping platform for controlled-environment plant growth and automated, multimodal phenotyping is described. T...

  20. Phenotypic variation in California populations of valley oak (Quercus lobata Née) sampled along elevational gradients

    Treesearch

    Ana L. Albarrán-Lara; Jessica W. Wright; Paul F. Gugger; Annette Delfino-Mix; Juan Manuel Peñaloza-Ramírez; Victoria L. Sork

    2015-01-01

    California oaks exhibit tremendous phenotypic variation throughout their range. This variation reflects phenotypic plasticity in tree response to local environmental conditions as well as genetic differences underlying those phenotypes. In this study, we analyze phenotypic variation in leaf traits for valley oak adults sampled along three elevational transects and in...

  1. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up

    USDA-ARS?s Scientific Manuscript database

    Modern techniques for crop improvement rely on both DNA sequencing and accurate quantification of plant traits to identify genes and germplasm of interest. With rapid advances in DNA sequencing technologies, plant phenotyping is now a bottleneck in advancing crop yields [1,2]. Furthermore, the envir...

  2. Physiological, morphological and allocation plasticity of a semi-deciduous shrub

    NASA Astrophysics Data System (ADS)

    Zunzunegui, M.; Ain-Lhout, F.; Barradas, M. C. Díaz; Álvarez-Cansino, L.; Esquivias, M. P.; García Novo, F.

    2009-05-01

    The main objective of this study was to look into the phenotypic plasticity of the semi-deciduous Mediterranean shrub, Halimium halimifolium. We studied morphological, allocation and physiological traits to determine which characters were more plastic and contribute in a greater extent to the acclimation ability of the species. We present a phenotypic plasticity index for morphological, physiological and allocation traits, which we have applied in the most contrasted plant communities where the species grows naturally. Data published by Díaz Barradas, M.C., García Novo, F. [1987. The vertical structure of Mediterranean scrub in Doñana National Park (SW Spain). Folia Geobotanica Phytotaxonomica 22, 415-433; 1988. Modificación y extinción de la luz a través de la copa en cuatro especies de matorral en el Parque Nacional de Doñana. Monografias Instituto Pirenaico de Ecologia 4, 503-516; 1990. Seasonal changes in canopy structure in two mediterranean dune shrubs. Journal of Vegetation Science 1, 31-40.], Díaz Barradas, M.C., Zunzunegui, M., García Novo, F. [1999a. Autoecological traits of Halimium halimifolium in contrasted habitats under Mediterranean type climate. Folia Geobotanica 34, 189-208.] and Zunzunegui et al. [Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 1997. Autoecological notes of Halimium halimifolium. Lagascalia 19, 725-736. Sevilla, Spain; Zunzunegui, M., Díaz Barradas, M.C., Fernández Baco, L., García Novo, F. 1999. Seasonal changes in photochemical efficiency in leaves of Halimium halimifolium a Mediterranean semideciduous shrub. Photosynthetica 36, 17-31; Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 2000. Different phenotypic response of Halimium halimifolium in relation to groundwater availability. Plant Ecology 148, 165-174; Zunzunegui, M., Díaz Barradas, M.C., Aguilar, F., Ain-Lhout, F., Clavijo, A., García Novo, F. 2002. Growth response of Halimium halimifolium at four sites with different soil water availability

  3. Epigenetic Influences on Brain Development and Plasticity

    PubMed Central

    Fagiolini, Michela; Jensen, Catherine L.; Champagne, Frances A.

    2009-01-01

    A fine interplay exists between sensory experience and innate genetic programs leading to the sculpting of neuronal circuits during early brain development. Recent evidence suggests that the dynamic regulation of gene expression through epigenetic mechanisms is at the interface between environmental stimuli and long-lasting molecular, cellular and complex behavioral phenotypes acquired during periods of developmental plasticity. Understanding these mechanisms may give insight into the formation of critical periods and provide new strategies for increasing plasticity and adaptive change in adulthood. PMID:19545993

  4. Functional molecular markers for crop improvement.

    PubMed

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.

  5. Phenotypic differentiation within a foundation grass species correlates with species richness in a subalpine community.

    PubMed

    Al Hayek, Patrick; Touzard, Blaise; Le Bagousse-Pinguet, Yoann; Michalet, Richard

    2014-10-01

    Few studies have examined consequences of ecotypic differentiation within alpine foundation species for community diversity and their feedbacks for the foundation species' fitness. Additionally, no study has quantified ecotypic differences in competitive effects in the field and in controlled conditions to disentangle genetic from plasticity effects in foundation/subordinate species interactions. We focused on a subalpine community of the French Pyrenees including two phenotypes of a cushion-forming species, Festuca gautieri: tight cushions in dry convex outcrops, and loose cushions (exhibiting high subordinate species richness) in wet concave slopes. We assessed, with field and shadehouse experiments, the genetic vs. plasticity basis of differences in: (1) cushion traits and (2) competitive effects on subordinates, and (3) quantified community feedbacks on foundation species' fitness. We found that trait differences across habitats had both genetic and plasticity bases, with stronger contribution of the latter. Field results showed higher competition within loose than tight phenotypes. In contrast, shadehouse results showed higher competitive ability for tight phenotypes. However, as changes in interactions across habitats were due to environmental effects without changes in cushion effects, we argue that heritable and plastic changes in competitive effects maintain high subordinate species diversity through decreasing competition. We showed high reproduction cost for loose cushions when hosting subordinates highlighting the occurrence of community feedbacks. These results suggest that phenotypic differentiation within foundation species may cascade on subordinate species diversity through heritable and plastic changes in the foundation species' competitive effects, and that community feedbacks may affect foundation species' fitness.

  6. Phenotypic plasticity in haptoral structures of Ligophorus cephali (Monogenea: Dactylogyridae) on the flathead mullet (Mugil cephalus): a geometric morphometric approach.

    PubMed

    Rodríguez-González, Abril; Míguez-Lozano, Raúl; Llopis-Belenguer, Cristina; Balbuena, Juan Antonio

    2015-04-01

    Evaluating phenotypic plasticity in attachment organs of parasites can provide information on the capacity to colonise new hosts and illuminate evolutionary processes driving host specificity. We analysed the variability in shape and size of the dorsal and ventral anchors of Ligophorus cephali from Mugil cephalus by means of geometric morphometrics and multivariate statistics. We also assessed the morphological integration between anchors and between the roots and points in order to gain insight into their functional morphology. Dorsal and ventral anchors showed a similar gradient of overall shape variation, but the amount of localised changes was much higher in the former. Statistical models describing variations in shape and size revealed clear differences between anchors. The dorsal anchor/bar complex seems more mobile than the ventral one in Ligophorus, and these differences may reflect different functional roles in attachment to the gills. The lower residual variation associated with the ventral anchor models suggests a tighter control of their shape and size, perhaps because these anchors seem to be responsible for firmer attachment and their size and shape would allow more effective responses to characteristics of the microenvironment within the individual host. Despite these putative functional differences, the high level of morphological integration indicates a concerted action between anchors. In addition, we found a slight, although significant, morphological integration between roots and points in both anchors, which suggests that a large fraction of the observed phenotypic variation does not compromise the functional role of anchors as levers. Given the low level of genetic variation in our sample, it is likely that much of the morphological variation reflects host-driven plastic responses. This supports the hypothesis of monogenean specificity through host-switching and rapid speciation. The present study demonstrates the potential of geometric

  7. Global analysis of plasticity in turgor loss point, a key drought tolerance trait.

    PubMed

    Bartlett, Megan K; Zhang, Ya; Kreidler, Nissa; Sun, Shanwen; Ardy, Rico; Cao, Kunfang; Sack, Lawren

    2014-12-01

    Many species face increasing drought under climate change. Plasticity has been predicted to strongly influence species' drought responses, but broad patterns in plasticity have not been examined for key drought tolerance traits, including turgor loss or 'wilting' point (πtlp ). As soil dries, plants shift πtlp by accumulating solutes (i.e. 'osmotic adjustment'). We conducted the first global analysis of plasticity in Δπtlp and related traits for 283 wild and crop species in ecosystems worldwide. Δπtlp was widely prevalent but moderate (-0.44 MPa), accounting for 16% of post-drought πtlp. Thus, pre-drought πtlp was a considerably stronger predictor of post-drought πtlp across species of wild plants. For cultivars of certain crops Δπtlp accounted for major differences in post-drought πtlp. Climate was correlated with pre- and post-drought πtlp, but not Δπtlp. Thus, despite the wide prevalence of plasticity, πtlp measured in one season can reliably characterise most species' constitutive drought tolerances and distributions relative to water supply. © 2014 John Wiley & Sons Ltd/CNRS.

  8. Pathogen evolution under host avoidance plasticity.

    PubMed

    McLeod, David V; Day, Troy

    2015-09-07

    Host resistance consists of defences that limit pathogen burden, and can be classified as either adaptations targeting recovery from infection or those focused upon infection avoidance. Conventional theory treats avoidance as a fixed strategy which does not vary from one interaction to the next. However, there is increasing empirical evidence that many avoidance strategies are triggered by external stimuli, and thus should be treated as phenotypically plastic responses. Here, we consider the implications of avoidance plasticity for host-pathogen coevolution. We uncover a number of predictions challenging current theory. First, in the absence of pathogen trade-offs, plasticity can restrain pathogen evolution; moreover, the pathogen exploits conditions in which the host would otherwise invest less in resistance, causing resistance escalation. Second, when transmission trades off with pathogen-induced mortality, plasticity encourages avirulence, resulting in a superior fitness outcome for both host and pathogen. Third, plasticity ensures the sterilizing effect of pathogens has consequences for pathogen evolution. When pathogens castrate hosts, selection forces them to minimize mortality virulence; moreover, when transmission trades off with sterility alone, resistance plasticity is sufficient to prevent pathogens from evolving to fully castrate. © 2015 The Author(s).

  9. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status.

    PubMed

    Gluckman, Peter D; Lillycrop, Karen A; Vickers, Mark H; Pleasants, Anthony B; Phillips, Emma S; Beedle, Alan S; Burdge, Graham C; Hanson, Mark A

    2007-07-31

    Developmental plasticity in response to environmental cues can take the form of polyphenism, as for the discrete morphs of some insects, or of an apparently continuous spectrum of phenotype, as for most mammalian traits. The metabolic phenotype of adult rats, including the propensity to obesity, hyperinsulinemia, and hyperphagia, shows plasticity in response to prenatal nutrition and to neonatal administration of the adipokine leptin. Here, we report that the effects of neonatal leptin on hepatic gene expression and epigenetic status in adulthood are directionally dependent on the animal's nutritional status in utero. These results demonstrate that, during mammalian development, the direction of the response to one cue can be determined by previous exposure to another, suggesting the potential for a discontinuous distribution of environmentally induced phenotypes, analogous to the phenomenon of polyphenism.

  10. Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0177 TITLE: Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer PRINCIPAL INVESTIGATOR: Katerina Politi...CONTRACT NUMBER Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer 5b. GRANT NUMBER W81XWH-14-1-0177 5c. PROGRAM ELEMENT NUMBER 6...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Phenotypic changes have been observed in EGFR mutant lung cancers that become resistant to targeted

  11. Genetic basis and selection for life-history trait plasticity on alternative host plants for the cereal aphid Sitobion avenae.

    PubMed

    Dai, Xinjia; Gao, Suxia; Liu, Deguang

    2014-01-01

    Sitobion avenae (F.) can survive on various plants in the Poaceae, which may select for highly plastic genotypes. But phenotypic plasticity was often thought to be non-genetic, and of little evolutionary significance historically, and many problems related to adaptive plasticity, its genetic basis and natural selection for plasticity have not been well documented. To address these questions, clones of S. avenae were collected from three plants, and their phenotypic plasticity under alternative environments was evaluated. Our results demonstrated that nearly all tested life-history traits showed significant plastic changes for certain S. avenae clones with the total developmental time of nymphs and fecundity tending to have relatively higher plasticity for most clones. Overall, the level of plasticity for S. avenae clones' life-history traits was unexpectedly low. The factor 'clone' alone explained 27.7-62.3% of the total variance for trait plasticities. The heritability of plasticity was shown to be significant in nearly all the cases. Many significant genetic correlations were found between trait plasticities with a majority of them being positive. Therefore, it is evident that life-history trait plasticity involved was genetically based. There was a high degree of variation in selection coefficients for life-history trait plasticity of different S. avenae clones. Phenotypic plasticity for barley clones, but not for oat or wheat clones, was frequently found to be under significant selection. The directional selection of alternative environments appeared to act to decrease the plasticity of S. avenae clones in most cases. G-matrix comparisons showed significant differences between S. avenae clones, as well as quite a few negative covariances (i.e., trade-offs) between trait plasticities. Genetic basis and evolutionary significance of life-history trait plasticity were discussed.

  12. Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity.

    PubMed

    Oizel, Kristell; Chauvin, Cynthia; Oliver, Lisa; Gratas, Catherine; Geraldo, Fanny; Jarry, Ulrich; Scotet, Emmanuel; Rabe, Marion; Alves-Guerra, Marie-Clotilde; Teusan, Raluca; Gautier, Fabien; Loussouarn, Delphine; Compan, Vincent; Martinou, Jean-Claude; Vallette, François M; Pecqueur, Claire

    2017-10-15

    Purpose: Glioblastoma (GBM) is the most common and malignant form of primary human brain tumor in adults, with an average survival at diagnosis of 18 months. Metabolism is a new attractive therapeutic target in cancer; however, little is known about metabolic heterogeneity and plasticity within GBM tumors. We therefore aimed to investigate metabolic phenotyping of primary cultures in the context of molecular tumor heterogeneity to provide a proof of concept for personalized metabolic targeting of GBM. Experimental Design: We have analyzed extensively several primary GBM cultures using transcriptomics, metabolic phenotyping assays, and mitochondrial respirometry. Results: We found that metabolic phenotyping clearly identifies 2 clusters, GLN High and GLN Low , mainly based on metabolic plasticity and glutamine (GLN) utilization. Inhibition of glutamine metabolism slows the in vitro and in vivo growth of GLN High GBM cultures despite metabolic adaptation to nutrient availability, in particular by increasing pyruvate shuttling into mitochondria. Furthermore, phenotypic and molecular analyses show that highly proliferative GLN High cultures are CD133 neg and display a mesenchymal signature in contrast to CD133 pos GLN Low GBM cells. Conclusions: Our results show that metabolic phenotyping identified an essential metabolic pathway in a GBM cell subtype, and provide a proof of concept for theranostic metabolic targeting. Clin Cancer Res; 23(20); 6292-304. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Directional selection on cold tolerance does not constrain plastic capacity in a butterfly.

    PubMed

    Franke, Kristin; Dierks, Anneke; Fischer, Klaus

    2012-12-05

    Organisms may respond to environmental change by means of genetic adaptation, phenotypic plasticity or both, which may result in genotype-environment interactions (G x E) if genotypes differ in their phenotypic response. We here specifically target the latter source of variation (i.e. G x E) by comparing plastic responses among lines of the tropical butterfly Bicyclus anynana that had been selected for increased cold tolerance and according controls. Our main aim here was to test the hypothesis that directional selection on cold tolerance will interfere with plastic capacities. Plastic responses to temperature and feeding treatments were strong, with e.g. higher compared to lower temperatures reducing cold tolerance, longevity, pupal mass, and development time. We report a number of statistically significant genotype-environment interactions (i.e. interactions between selection regime and environmental variables), but most of these were not consistent across treatment groups. We found some evidence though for larger plastic responses to different rearing temperatures in the selection compared to the control lines, while plastic responses to different adult temperatures and feeding treatments were overall very similar across selection regimes. Our results indicate that plastic capacities are not always constrained by directional selection (on cold tolerance) and therefore genetic changes in trait means, but may operate independently.

  14. Successful technologies and approaches used to develop and manage resistance against crop diseases and pests

    USDA-ARS?s Scientific Manuscript database

    Food security is highly dependent on many factors including biological, climate related, and political. Soon after Mendel showed that phenotypic traits could be inherited through hybridization, scientists have been using classical genetics to increase crop production. Part of the increase in crop pr...

  15. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    PubMed

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  16. Will temperature effects or phenotypic plasticity determine the thermal response of a heterothermic tropical bat to climate change?

    PubMed

    Stawski, Clare; Geiser, Fritz

    2012-01-01

    The proportion of organisms exposed to warm conditions is predicted to increase during global warming. To better understand how bats might respond to climate change, we aimed to obtain the first data on how use of torpor, a crucial survival strategy of small bats, is affected by temperature in the tropics. Over two mild winters, tropical free-ranging bats (Nyctophilus bifax, 10 g, n = 13) used torpor on 95% of study days and were torpid for 33.5±18.8% of 113 days measured. Torpor duration was temperature-dependent and an increase in ambient temperature by the predicted 2°C for the 21(st) century would decrease the time in torpor to 21.8%. However, comparisons among Nyctophilus populations show that regional phenotypic plasticity attenuates temperature effects on torpor patterns. Our data suggest that heterothermy is important for energy budgeting of bats even under warm conditions and that flexible torpor use will enhance bats' chance of survival during climate change.

  17. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure.

    PubMed

    Schulte, Patricia M; Healy, Timothy M; Fangue, Nann A

    2011-11-01

    Thermal performance curves (TPCs) describe the effects of temperature on biological rate processes. Here, we use examples from our work on common killifish (Fundulus heteroclitus) to illustrate some important conceptual issues relating to TPCs in the context of using these curves to predict the responses of organisms to climate change. Phenotypic plasticity has the capacity to alter the shape and position of the TPCs for acute exposures, but these changes can be obscured when rate processes are measured only following chronic exposures. For example, the acute TPC for mitochondrial respiration in killifish is exponential in shape, but this shape changes with acclimation. If respiration rate is measured only at the acclimation temperature, the TPC is linear, concealing the underlying mechanistic complexity at an acute time scale. These issues are particularly problematic when attempting to use TPCs to predict the responses of organisms to temperature change in natural environments. Many TPCs are generated using laboratory exposures to constant temperatures, but temperature fluctuates in the natural environment, and the mechanisms influencing performance at acute and chronic time scales, and the responses of the performance traits at these time scales may be quite different. Unfortunately, our current understanding of the mechanisms underlying the responses of organisms to temperature change is incomplete, particularly with respect to integrating from processes occurring at the level of single proteins up to whole-organism functions across different time scales, which is a challenge for the development of strongly grounded mechanistic models of responses to global climate change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  18. Plastic cup traps equipped with light-emitting diodes for monitoring adult Bemisia tabaci (Homoptera: Aleyrodidae).

    PubMed

    Chu, Chang-Chi; Jackson, Charles G; Alexander, Patrick J; Karut, Kamil; Henneberry, Thomas J

    2003-06-01

    Equipping the standard plastic cup trap, also known as the CC trap, with lime-green light-emitting diodes (LED-plastic cup trap) increased its efficacy for catching Bemisia tabaci by 100%. Few Eretmocerus eremicus Rose and Zolnerowich and Encarsia formosa Gahan were caught in LED-plastic cup traps. The LED-plastic cup traps are less expensive than yellow sticky card traps for monitoring adult whiteflies in greenhouse crop production systems and are more compatible with whitefly parasitoids releases for Bemisia nymph control.

  19. Trait Values, Not Trait Plasticity, Best Explain Invasive Species' Performance in a Changing Environment

    PubMed Central

    Matzek, Virginia

    2012-01-01

    The question of why some introduced species become invasive and others do not is the central puzzle of invasion biology. Two of the principal explanations for this phenomenon concern functional traits: invasive species may have higher values of competitively advantageous traits than non-invasive species, or they may have greater phenotypic plasticity in traits that permits them to survive the colonization period and spread to a broad range of environments. Although there is a large body of evidence for superiority in particular traits among invasive plants, when compared to phylogenetically related non-invasive plants, it is less clear if invasive plants are more phenotypically plastic, and whether this plasticity confers a fitness advantage. In this study, I used a model group of 10 closely related Pinus species whose invader or non-invader status has been reliably characterized to test the relative contribution of high trait values and high trait plasticity to relative growth rate, a performance measure standing in as a proxy for fitness. When grown at higher nitrogen supply, invaders had a plastic RGR response, increasing their RGR to a much greater extent than non-invaders. However, invasive species did not exhibit significantly more phenotypic plasticity than non-invasive species for any of 17 functional traits, and trait plasticity indices were generally weakly correlated with RGR. Conversely, invasive species had higher values than non-invaders for 13 of the 17 traits, including higher leaf area ratio, photosynthetic capacity, photosynthetic nutrient-use efficiency, and nutrient uptake rates, and these traits were also strongly correlated with performance. I conclude that, in responding to higher N supply, superior trait values coupled with a moderate degree of trait variation explain invasive species' superior performance better than plasticity per se. PMID:23119098

  20. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change.

    PubMed

    Anderson, Jill T; Inouye, David W; McKinney, Amy M; Colautti, Robert I; Mitchell-Olds, Tom

    2012-09-22

    Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010-2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change.

  1. Cell plasticity and heterogeneity in cancer.

    PubMed

    Marjanovic, Nemanja D; Weinberg, Robert A; Chaffer, Christine L

    2013-01-01

    Heterogeneity within a given cancer arises from diverse cell types recruited to the tumor and from genetic and/or epigenetic differences amongst the cancer cells themselves. These factors conspire to create a disease with various phenotypes. There are 2 established models of cancer development and progression to metastatic disease. These are the clonal evolution and cancer stem cell models. The clonal evolution theory suggests that successive mutations accumulating in a given cell generate clonal outgrowths that thrive in response to microenvironmental selection pressures, dictating the phenotype of the tumor. The alternative cancer stem cell (CSC) model suggests that cancer cells with similar genetic backgrounds can be hierarchically organized according to their tumorigenic potential. Accordingly, CSCs reside at the apex of the hierarchy and are thought to possess the majority of a cancer's tumor-initiating and metastatic ability. A defining feature of this model is its apparent unidirectional nature, whereby CSCs undergo symmetric division to replenish the CSC pool and irreversible asymmetric division to generate daughter cells (non-CSCs) with low tumorigenic potential. However, evolving evidence supports a new model of tumorigenicity, in which considerable plasticity exists between the non-CSC and CSC compartments, such that non-CSCs can reacquire a CSC phenotype. These findings suggest that some tumors may adhere to a plastic CSC model, in which bidirectional conversions are common and essential components of tumorigenicity. Accumulating evidence surrounding the plasticity of cancer cells, in particular, suggests that aggressive CSCs can be created de novo within a tumor. Given the current focus on therapeutic targeting of CSCs, we discuss the implications of non-CSC-to-CSC conversions on the development of future therapies. © 2012 American Association for Clinical Chemistry

  2. Are the Most Plastic Species the Most Abundant Ones? An Assessment Using a Fish Assemblage

    PubMed Central

    Vidal, Nicolás; Zaldúa, Natalia; D'Anatro, Alejandro; Naya, Daniel E.

    2014-01-01

    Few studies have evaluated phenotypic plasticity at the community level, considering, for example, plastic responses in an entire species assemblage. In addition, none of these studies have addressed the relationship between phenotypic plasticity and community structure. Within this context, here we assessed the magnitude of seasonal changes in digestive traits (seasonal flexibility), and of changes during short-term fasting (flexibility during fasting), occurring in an entire fish assemblage, comprising ten species, four trophic levels, and a 37-fold range in body mass. In addition, we analyzed the relationship between estimates of digestive flexibility and three basic assemblage structure attributes, i.e., species trophic position, body size, and relative abundance. We found that: (1) Seasonal digestive flexibility was not related with species trophic position or with body size; (2) Digestive flexibility during fasting tended to be inversely correlated with body size, as expected from scaling relationships; (3) Digestive flexibility, both seasonal and during fasting, was positively correlated with species relative abundance. In conclusion, the present study identified two trends in digestive flexibility in relation to assemblage structure, which represents an encouraging departure point in the search of general patterns in phenotypic plasticity at the local community scale. PMID:24651865

  3. Use of pepper crop residues for the control of root-knot nematodes.

    PubMed

    Piedra Buena, A; García-Alvarez, A; Díez-Rojo, M A; Ros, C; Fernández, P; Lacasa, A; Bello, A

    2007-11-01

    The biofumigant effect of pepper crop residues (PCR) for controlling Meloidogyne incognita populations was evaluated. Under laboratory conditions, 0, 5, 10 and 20 g PCR were applied to 500 g nematode infested soil, with four replicates per treatment. After 20 days at 25 degrees C, PCR reduced significantly M. incognita populations and root galling indices in susceptible tomato cv. Marmande, and increased K, N and organic C in soil. In the field, biofumigation with PCR combined with fresh animal manures (with and without plastic cover), methyl bromide, and a control were evaluated through root galling indices on a pepper crop. Each treatment, except for the control, had a grafted and non-grafted susceptible pepper sub-treatment, with three replicates. Root galling indices were lower, and yields higher, on grafted plants, biofumigation with PCR and plastic cover, with similar values as MB treatment, suggesting that biofumigation with PCR is an efficient non-chemical alternative to control M. incognita populations, especially when applied with plastic cover, nitrogen-rich organic matter and followed by grafting on resistant pepper.

  4. Niche construction through phenological plasticity: life history dynamics and ecological consequences.

    PubMed

    Donohue, Kathleen

    2005-04-01

    The ability of an organism to alter the environment that it experiences has been termed 'niche construction'. Plants have several ways whereby they can determine the environment to which they are exposed at different life stages. This paper discusses three of these: plasticity in dispersal, flowering timing and germination timing. It reviews pathways through which niche construction alters evolutionary and ecological trajectories by altering the selective environment to which organisms are exposed, the phenotypic expression of plastic characters, and the expression of genetic variation. It provides examples whereby niche construction creates positive or negative feedbacks between phenotypes and environments, which in turn cause novel evolutionary constraints and novel life-history expression. Copyright New Phytologist (2005).

  5. Effects of sowing date on phenotypic plasticity of fitness-related traits in two annual weeds on the Songnen Plain of China.

    PubMed

    Li, Haiyan; Lindquist, John L; Yang, Yunfei

    2015-01-01

    Phenotypic plasticity of fitness-related traits is vital for plant species to adapt to variable environments. Chenopodium glaucum L. and Amaranthus retroflexus L. are two common weed species globally. Understanding the plasticity in life-history traits, especially in reproductive allocation, within and among these species is important for predicting their success and for managing them in different environments. Seeds of the two plant species were sown every 10 days from 26 Jun to 15 Aug. Life-history and fitness-related traits of both phenology and morphology were measured, and dry biomass of roots, stems, leaves, and reproductive tissues was determined at physiological maturity. Length of reproductive and total life period of the two species differed among six sowing-date treatments. Later germinating plants led to relatively reduced total life period, size, and earlier reproduction than earlier germinating plants. The ratio of reproductive biomass to total plant biomass increased with later planting dates in C. glaucum but declined in A. retroflexus. Mature plant height, crown diameter, and reproductive tissue biomass, and seed production of C. glaucum and A. retroflexus increased with delayed reproductive period. Both species displayed true plasticity in reproductive allocation. However, the sowing date had a far greater effect on rate of vegetative growth than on allocation to reproduction. The fitness of both C. glaucum and A. retroflexus populations have an apparent increase when the period between germination and seed production is much longer. However, C. glaucum appears better adapted to later sowing than A. retroflexus. Controlling seedlings prior to reproduction will alleviate the negative effect not only in the present year but also in future years.

  6. Beta vulgaris crop types: Genomic signatures of selection (GSS) using next generation sequencing of pooled samples

    USDA-ARS?s Scientific Manuscript database

    Beta vulgaris crop types represent highly diverged populations with distinct phenotypes resulting from long-term selection. Differential end use in the crop types includes: leaf quality (chard/leaf beet), root enlargement and biomass, (table beet, fodder beet, sugar beet), and secondary metabolite a...

  7. Efficacy of Fluensulfone in a Tomato–Cucumber Double Cropping System

    PubMed Central

    Morris, Kelly A.; Langston, David B.; Dickson, Donald W.; Davis, Richard F.; Timper, Patricia; Noe, James P.

    2015-01-01

    Vegetable crops in the southeastern United States are commonly grown on plastic mulch with two crop cycles produced on a single mulch application. Field trials were conducted in 2013 and 2014 in two locations to evaluate the efficacy of fluensulfone for controlling Meloidogyne spp. when applied through drip irrigation to cucumber in a tomato–cucumber double-cropping system. In the spring tomato crop, 1,3-dichloropropene (1,3-D), fluensulfone, and a resistant cultivar significantly decreased root galling by 91%, 73%, and 97%, respectively, compared to the untreated control. Tomato plots from the spring were divided into split plots for the fall where the main plots were the spring treatment and the subplots were cucumber either treated with fluensulfone (3.0 kg a.i./ha. via drip irrigation) or left untreated. The fall application of fluensulfone improved cucumber vigor and reduced gall ratings compared to untreated subplots. Fluensulfone reduced damage from root-knot nematodes when applied to the first crop as well as provided additional protection to the second crop when it was applied through a drip system. PMID:26941459

  8. Lesquerella, a potential new oilseed crop for producing industrial bioproducts

    USDA-ARS?s Scientific Manuscript database

    Lesquerella (Physaria fendleri) is valued for its unusual hydroxy fatty acid (HFA) in seed and is a new industrial oilseed crop in the southwestern US. HFA and its derivatives are used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. The majority o...

  9. The Evolutionary Fate of Phenotypic Plasticity and Functional Traits under Domestication in Manioc: Changes in Stem Biomechanics and the Appearance of Stem Brittleness

    PubMed Central

    Ménard, Léa; McKey, Doyle; Mühlen, Gilda S.; Clair, Bruno; Rowe, Nick P.

    2013-01-01

    Domestication can influence many functional traits in plants, from overall life-history and growth form to wood density and cell wall ultrastructure. Such changes can increase fitness of the domesticate in agricultural environments but may negatively affect survival in the wild. We studied effects of domestication on stem biomechanics in manioc by comparing domesticated and ancestral wild taxa from two different regions of greater Amazonia. We compared mechanical properties, tissue organisation and wood characteristics including microfibril angles in both wild and domesticated plants, each growing in two different habitats (forest or savannah) and varying in growth form (shrub or liana). Wild taxa grew as shrubs in open savannah but as lianas in overgrown and forested habitats. Growth form plasticity was retained in domesticated manioc. However, stems of the domesticate showed brittle failure. Wild plants differed in mechanical architecture between shrub and liana phenotypes, a difference that diminished between shrubs and lianas of the domesticate. Stems of wild plants were generally stiffer, failed at higher bending stresses and were less prone to brittle fracture compared with shrub and liana phenotypes of the domesticate. Biomechanical differences between stems of wild and domesticated plants were mainly due to changes in wood density and cellulose microfibril angle rather than changes in secondary growth or tissue geometry. Domestication did not significantly modify “large-scale” trait development or growth form plasticity, since both wild and domesticated manioc can develop as shrubs or lianas. However, “finer-scale” developmental traits crucial to mechanical stability and thus ecological success of the plant were significantly modified. This profoundly influenced the likelihood of brittle failure, particularly in long climbing stems, thereby also influencing the survival of the domesticate in natural situations vulnerable to mechanical perturbation

  10. Plasticity first: molecular signatures of a complex morphological trait in filamentous cyanobacteria.

    PubMed

    Koch, Robin; Kupczok, Anne; Stucken, Karina; Ilhan, Judith; Hammerschmidt, Katrin; Dagan, Tal

    2017-08-31

    Filamentous cyanobacteria that differentiate multiple cell types are considered the peak of prokaryotic complexity and their evolution has been studied in the context of multicellularity origins. Species that form true-branching filaments exemplify the most complex cyanobacteria. However, the mechanisms underlying the true-branching morphology remain poorly understood despite of several investigations that focused on the identification of novel genes or pathways. An alternative route for the evolution of novel traits is based on existing phenotypic plasticity. According to that scenario - termed genetic assimilation - the fixation of a novel phenotype precedes the fixation of the genotype. Here we show that the evolution of transcriptional regulatory elements constitutes a major mechanism for the evolution of new traits. We found that supplementation with sucrose reconstitutes the ancestral branchless phenotype of two true-branching Fischerella species and compared the transcription start sites (TSSs) between the two phenotypic states. Our analysis uncovers several orthologous TSSs whose transcription level is correlated with the true-branching phenotype. These TSSs are found in genes that encode components of the septosome and elongasome (e.g., fraC and mreB). The concept of genetic assimilation supplies a tenable explanation for the evolution of novel traits but testing its feasibility is hindered by the inability to recreate and study the evolution of present-day traits. We present a novel approach to examine transcription data for the plasticity first route and provide evidence for its occurrence during the evolution of complex colony morphology in true-branching cyanobacteria. Our results reveal a route for evolution of the true-branching phenotype in cyanobacteria via modification of the transcription level of pre-existing genes. Our study supplies evidence for the 'plasticity-first' hypothesis and highlights the importance of transcriptional regulation in

  11. Land-based crop phenotyping by image analysis: Accurate estimation of canopy height distributions using stereo images.

    PubMed

    Cai, Jinhai; Kumar, Pankaj; Chopin, Joshua; Miklavcic, Stanley J

    2018-01-01

    In this paper we report on an automated procedure to capture and characterize the detailed structure of a crop canopy by means of stereo imaging. We focus attention specifically on the detailed characteristic of canopy height distribution-canopy shoot area as a function of height-which can provide an elaborate picture of canopy growth and health under a given set of conditions. We apply the method to a wheat field trial involving ten Australian wheat varieties that were subjected to two different fertilizer treatments. A novel camera self-calibration approach is proposed which allows the determination of quantitative plant canopy height data (as well as other valuable phenotypic information) by stereo matching. Utilizing the canopy height distribution to provide a measure of canopy height, the results compare favourably with manual measurements of canopy height (resulting in an R2 value of 0.92), and are indeed shown to be more consistent. By comparing canopy height distributions of different varieties and different treatments, the methodology shows that different varieties subjected to the same treatment, and the same variety subjected to different treatments can respond in much more distinctive and quantifiable ways within their respective canopies than can be captured by a simple trait measure such as overall canopy height.

  12. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity.

    PubMed

    Chen, Leiyi; Tiu, Candice J; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.

  13. Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis

    PubMed Central

    Huang, Bin; Jolly, Mohit Kumar; Lu, Mingyang; Tsarfaty, Ilan; Ben-Jacob, Eshel; Onuchic, Jose’ N

    2015-01-01

    Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) – have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT). PMID:26627083

  14. Black plastic mulch combined with summer cover crop increases the yield and water use efficiency of apple tree on the rainfed Loess Plateau

    PubMed Central

    Zheng, Wei; Wen, Meijuan; Zhao, Zhiyuan; Liu, Jie; Wang, Zhaohui; Li, Ziyan

    2017-01-01

    Water deficit significantly limits dryland rainfed fruit production, so increasing water conservation is crucial for improving fruit productivity in arid and semiarid areas. In this study, we tested two treatments in an apple orchard: 1) PC treatment comprising black plastic mulch (BPM) (in-row) with weed control (inter-row); 2) and PGC treatment comprising BPM (in-row) combined with a summer cover crop (inter-row) of rape (Brassica campestris L.), which was sown in mid-June and was living from July to September. Under PGC, the inter-row soil water storage increased by 17.9% and 11.5% compared with PC after the harvest in 2013 and 2014, respectively, but there was no significant increase in 2015. The evapotranspiration (ET) from the inter-row areas during the cover crop period was lower under PGC than PC in 2013 (19.6%), 2014 (11.3%), and 2015 (13.3%). However, the differences in the total ET from the inter-row areas between the two treatments were not obvious, and the total ET from in-row areas was higher under PGC than PC due to the increased water uptake by apple trees under PGC. The apple yield, water use efficiency during the cover crop period (WUEg) and total water use efficiency (WUE) fluctuated during the experimental years. Compared with PC, the apple yield increased by 14.1%, 18.8%, and 26.7% under PGC in 2013, 2014, and 2015, respectively. In addition, the WUEg was 26.4%, 24.7%, and 32.7% higher under PGC compared with PC in 2013, 2014, and 2015, respectively. Thus, the WUE under PGC was 13.8% and 11.7% higher than that under PC in 2013 and 2014, respectively, but the difference was not significant in 2015 (p = 0.0527). Thus, BPM combined with a summer cover crop is recommended for decreasing the summer ET and promoting apple production in rainfed dryland areas where the rainy season is usually the hot season. PMID:28957428

  15. Field evidence for transfer of plastic debris along a terrestrial food chain.

    PubMed

    Huerta Lwanga, Esperanza; Mendoza Vega, Jorge; Ku Quej, Victor; Chi, Jesus de Los Angeles; Sanchez Del Cid, Lucero; Chi, Cesar; Escalona Segura, Griselda; Gertsen, Henny; Salánki, Tamás; van der Ploeg, Martine; Koelmans, Albert A; Geissen, Violette

    2017-10-26

    Although plastic pollution happens globally, the micro- (<5 mm) and macroplastic (5-150 mm) transfer of plastic to terrestrial species relevant to human consumption has not been examined. We provide first-time evidence for micro- and macroplastic transfer from soil to chickens in traditional Mayan home gardens in Southeast Mexico where waste mismanagement is common. We assessed micro- and macroplastic in soil, earthworm casts, chicken feces, crops and gizzards (used for human consumption). Microplastic concentrations increased from soil (0.87 ± 1.9 particles g -1 ), to earthworm casts (14.8 ± 28.8 particles g -1 ), to chicken feces (129.8 ± 82.3 particles g -1 ). Chicken gizzards contained 10.2 ± 13.8 microplastic particles, while no microplastic was found in crops. An average of 45.82 ± 42.6 macroplastic particles were found per gizzard and 11 ± 15.3 macroplastic particles per crop, with 1-10 mm particles being significantly more abundant per gizzard (31.8 ± 27.27 particles) compared to the crop (1 ± 2.2 particles). The data show that micro- and macroplastic are capable of entering terrestrial food webs.

  16. Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells

    PubMed Central

    Sundelacruz, Sarah; Levin, Michael

    2013-01-01

    Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na+/K+ ATPase inhibitor, or by treatment with high concentrations of extracellular K+. To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved

  17. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda.

    PubMed

    Silva-Brandão, Karina Lucas; Horikoshi, Renato Jun; Bernardi, Daniel; Omoto, Celso; Figueira, Antonio; Brandão, Marcelo Mendes

    2017-10-16

    Our main purpose was to evaluate the expression of plastic and evolved genes involved in ecological speciation in the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW); and to demonstrate how host plants might influence lineage differentiation in this polyphagous insect. FAW is an important pest of several crops worldwide, and it is differentiated into host plant-related strains, corn (CS) and rice strains (RS). RNA-Seq and transcriptome characterization were applied to evaluate unbiased genetic expression differences in larvae from the two strains, fed on primary (corn) and alternative (rice) host plants. We consider that genes that are differently regulated by the same FAW strain, as a response to different hosts, are "plastic". Otherwise, differences in gene expression between the two strains fed on the same host are considered constitutive differences. Individual performance parameters (larval and pupal weight) varied among conditions (strains vs. hosts). A total of 3657 contigs was related to plastic response, and 2395 contigs were differentially regulated in the two strains feeding on preferential and alternative hosts (constitutive contigs). Three molecular functions were present in all comparisons, both down- and up-regulated: oxidoreductase activity, metal-ion binding, and hydrolase activity. Metabolization of foreign chemicals is among the key functions involved in the phenotypic variation of FAW strains. From an agricultural perspective, high plasticity in families of detoxifying genes indicates the capacity for a rapid response to control compounds such as insecticides.

  18. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops.

    PubMed

    Hammer, Graeme L; van Oosterom, Erik; McLean, Greg; Chapman, Scott C; Broad, Ian; Harland, Peter; Muchow, Russell C

    2010-05-01

    Progress in molecular plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex adaptive traits. Suitably constructed crop growth and development models have the potential to bridge this predictability gap. A generic cereal crop growth and development model is outlined here. It is designed to exhibit reliable predictive skill at the crop level while also introducing sufficient physiological rigour for complex phenotypic responses to become emergent properties of the model dynamics. The approach quantifies capture and use of radiation, water, and nitrogen within a framework that predicts the realized growth of major organs based on their potential and whether the supply of carbohydrate and nitrogen can satisfy that potential. The model builds on existing approaches within the APSIM software platform. Experiments on diverse genotypes of sorghum that underpin the development and testing of the adapted crop model are detailed. Genotypes differing in height were found to differ in biomass partitioning among organs and a tall hybrid had significantly increased radiation use efficiency: a novel finding in sorghum. Introducing these genetic effects associated with plant height into the model generated emergent simulated phenotypic differences in green leaf area retention during grain filling via effects associated with nitrogen dynamics. The relevance to plant breeding of this capability in complex trait dissection and simulation is discussed.

  19. Plastic and evolutionary responses to climate change in fish

    PubMed Central

    Crozier, Lisa G; Hutchings, Jeffrey A

    2014-01-01

    The physical and ecological ‘fingerprints’ of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to ‘fine-grained’ population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change. PMID:24454549

  20. Plastic and evolutionary responses to climate change in fish.

    PubMed

    Crozier, Lisa G; Hutchings, Jeffrey A

    2014-01-01

    The physical and ecological 'fingerprints' of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to 'fine-grained' population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change.

  1. Conspecific Plasticity and Invasion: Invasive Populations of Chinese Tallow (Triadica sebifera) Have Performance Advantage over Native Populations Only in Low Soil Salinity

    PubMed Central

    Chen, Leiyi; Tiu, Candice J.; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the “Master-of-some” pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas. PMID:24040366

  2. The GP problem: quantifying gene-to-phenotype relationships.

    PubMed

    Cooper, Mark; Chapman, Scott C; Podlich, Dean W; Hammer, Graeme L

    2002-01-01

    In this paper we refer to the gene-to-phenotype modeling challenge as the GP problem. Integrating information across levels of organization within a genotype-environment system is a major challenge in computational biology. However, resolving the GP problem is a fundamental requirement if we are to understand and predict phenotypes given knowledge of the genome and model dynamic properties of biological systems. Organisms are consequences of this integration, and it is a major property of biological systems that underlies the responses we observe. We discuss the E(NK) model as a framework for investigation of the GP problem and the prediction of system properties at different levels of organization. We apply this quantitative framework to an investigation of the processes involved in genetic improvement of plants for agriculture. In our analysis, N genes determine the genetic variation for a set of traits that are responsible for plant adaptation to E environment-types within a target population of environments. The N genes can interact in epistatic NK gene-networks through the way that they influence plant growth and development processes within a dynamic crop growth model. We use a sorghum crop growth model, available within the APSIM agricultural production systems simulation model, to integrate the gene-environment interactions that occur during growth and development and to predict genotype-to-phenotype relationships for a given E(NK) model. Directional selection is then applied to the population of genotypes, based on their predicted phenotypes, to simulate the dynamic aspects of genetic improvement by a plant-breeding program. The outcomes of the simulated breeding are evaluated across cycles of selection in terms of the changes in allele frequencies for the N genes and the genotypic and phenotypic values of the populations of genotypes.

  3. Genetic and Computational Approaches for Studying Plant Development and Abiotic Stress Responses Using Image-Based Phenotyping

    NASA Astrophysics Data System (ADS)

    Campbell, M. T.; Walia, H.; Grondin, A.; Knecht, A.

    2017-12-01

    The development of abiotic stress tolerant crops (i.e. drought, salinity, or heat stress) requires the discovery of DNA sequence variants associated with stress tolerance-related traits. However, many traits underlying adaptation to abiotic stress involve a suite of physiological pathways that may be induced at different times throughout the duration of stress. Conventional single-point phenotyping approaches fail to fully capture these temporal responses, and thus downstream genetic analysis may only identify a subset of the genetic variants that are important for adaptation to sub-optimal environments. Although genomic resources for crops have advanced tremendously, the collection of phenotypic data for morphological and physiological traits is laborious and remains a significant bottleneck in bridging the phenotype-genotype gap. In recent years, the availability of automated, image-based phenotyping platforms has provided researchers with an opportunity to collect morphological and physiological traits non-destructively in a highly controlled environment. Moreover, these platforms allow abiotic stress responses to be recorded throughout the duration of the experiment, and have facilitated the use of function-valued traits for genetic analyses in major crops. We will present our approaches for addressing abiotic stress tolerance in cereals. This talk will focus on novel open-source software to process and extract biological meaningful data from images generated from these phenomics platforms. In addition, we will discuss the statistical approaches to model longitudinal phenotypes and dissect the genetic basis of dynamic responses to these abiotic stresses throughout development.

  4. Development of transgenic crops based on photo-biotechnology.

    PubMed

    Ganesan, Markkandan; Lee, Hyo-Yeon; Kim, Jeong-Il; Song, Pill-Soon

    2017-11-01

    The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses. © 2016 John Wiley & Sons Ltd.

  5. A systems biology approach to defining regulatory mechanisms for cartilage and tendon cell phenotypes.

    PubMed

    Mueller, A J; Tew, S R; Vasieva, O; Clegg, P D; Canty-Laird, E G

    2016-09-27

    Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin.

  6. Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement.

    PubMed

    Sahoo, Ranjan K; Ansari, Mohammad W; Dangar, Tushar K; Mohanty, Santanu; Tuteja, Narendra

    2014-05-01

    Biological nitrogen fixation (BNF) is highly effective in the field and potentially useful to reduce adverse effects chemical fertilisers. Here, Azotobacter species were selected via phenotypic, biochemical and molecular characterisations from different rice fields. Acetylene reduction assay of Azotobacter spp. showed that Azotobacter vinelandii (Az3) fixed higher amount of nitrogen (121.09 nmol C2H4 mg(-1) bacteria h(-1)). Likewise, its plant growth functions, viz. siderophore, hydrogen cyanide, salicylic acid, IAA, GA3, zeatin, NH3, phosphorus solubilisation, ACC deaminase and iron tolerance, were also higher. The profile of gDNA, plasmid DNA and cellular protein profile depicted inter-generic and inter-specific diversity among the isolates of A. vinelandii. The PCR-amplified genes nifH, nifD and nifK of 0.87, 1.4 and 1.5 kb , respectively, were ascertained by Southern blot hybridisation in isolates of A. vinelandii. The 16S rRNA sequence from A. vinelandii (Az3) was novel, and its accession number (JQ796077) was received from NCBI data base. Biofertiliser formulation of novel A. vinelandii isolates along with commercial one was evaluated in rice (Oriza sativa L. var. Khandagiri) fields. The present finding revealed that treatment T4 (Az3) (A. vinelandii) are highly efficient to improved growth and yield of rice crop.

  7. Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition

    PubMed Central

    Vermerris, Wilfred; Sherman, Debra M.; McIntyre, Lauren M.

    2010-01-01

    The hydrophobic cell wall polymer lignin is deposited in specialized cells to make them impermeable to water and prevent cell collapse as negative pressure or gravitational force is exerted. The variation in lignin subunit composition that exists among different species, and among different tissues within the same species suggests that lignin subunit composition varies depending on its precise function. In order to gain a better understanding of the relationship between lignin subunit composition and the physico-chemical properties of lignified tissues, detailed analyses were performed of near-isogenic brown midrib2 (bm2), bm4, bm2-bm4, and bm1-bm2-bm4 mutants of maize. This investigation was motivated by the fact that the bm2-bm4 double mutant is substantially shorter, displays drought symptoms even when well watered, and will often not develop reproductive organs, whereas the phenotypes of the individual bm single mutants and double mutant combinations other than bm2-bm4 are only subtly different from the wild-type control. Detailed cell wall compositional analyses revealed midrib-specific reductions in Klason lignin content in the bm2, bm4, and bm2-bm4 mutants relative to the wild-type control, with reductions in both guaiacyl (G)- and syringyl (S)-residues. The cellulose content was not different, but the reduction in lignin content was compensated by an increase in hemicellulosic polysaccharides. Linear discriminant analysis performed on the compositional data indicated that the bm2 and bm4 mutations act independently of each other on common cell wall biosynthetic steps. After quantitative analysis of scanning electron micrographs of midrib sections, the variation in chemical composition of the cell walls was shown to be correlated with the thickness of the sclerenchyma cell walls, but not with xylem vessel surface area. The bm2-bm4 double mutant represents the limit of phenotypic plasticity in cell wall composition, as the bm1-bm2-bm4 and bm2-bm3-bm4 mutants

  8. Study of the degradation of mulch materials in vegetable crops for organic farming

    NASA Astrophysics Data System (ADS)

    María Moreno, Marta; Mancebo, Ignacio; Moreno, Carmen; Villena, Jaime; Meco, Ramón

    2014-05-01

    Mulching is the most common technique used worldwide by vegetable growers in protected cultivation. For this purpose, several plastic materials have been used, with polyethylene (PE) being the most widespread. However, PE is produced from petroleum derivatives, it is not degradable, and thus pollutes the environment for periods much longer than the crop duration (Martín-Closas and Pelacho, 2011), which are very important negative aspects especially for organic farmers. A large portion of plastic films is left on the field or burnt uncontrollably by the farmers, with the associated negative consequences to the environment (Moreno and Moreno, 2008). Therefore, the best solution is to find a material with a lifetime similar to the crop duration time that can be later incorporated by the agricultural system through a biodegradation process (Martín-Closas and Pelacho, 2011). In this context, various biodegradable materials have been considered as alternatives in the last few years, including oxo-biodegradable films, biopolymer mulches, different types of papers, and crop residues (Kasirajan and Ngouajio, 2012). In this work we evaluate the evolution of different properties related to mulch degradation in both the buried and the superficial (exposed) part of mulch materials of different composition (standard black PE, papers and black biodegradable plastics) in summer vegetable crops under organic management in Castilla-La Mancha (Central Spain). As results, it is remarkable the early deterioration suffered by the buried part of the papers, disappearing completely in the soil at the end of the crop cycles and therefore indicating the total incorporation of these materials to the soil once the crop has finished. In the case of the degradation of the exposed mulch, small differences between crops were observed. In general, all the materials were less degraded under the plants than when receiving directly the solar radiation. As conclusion, biodegradable mulches degrade

  9. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions1[OPEN

    PubMed Central

    Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-01-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311

  10. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination.

    PubMed

    Kohl, Kathryn P; Singh, Nadia D

    2018-04-01

    Phenotypic plasticity is pervasive in nature. One mechanism underlying the evolution and maintenance of such plasticity is environmental heterogeneity. Indeed, theory indicates that both spatial and temporal variation in the environment should favor the evolution of phenotypic plasticity under a variety of conditions. Cyclical environmental conditions have also been shown to yield evolved increases in recombination frequency. Here, we use a panel of replicated experimental evolution populations of D. melanogaster to test whether variable environments favor enhanced plasticity in recombination rate and/or increased recombination rate in response to temperature. In contrast to expectation, we find no evidence for either enhanced plasticity in recombination or increased rates of recombination in the variable environment lines. Our data confirm a role of temperature in mediating recombination fraction in D. melanogaster, and indicate that recombination is genetically and plastically depressed under lower temperatures. Our data further suggest that the genetic architectures underlying plastic recombination and population-level variation in recombination rate are likely to be distinct. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  11. Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity.

    PubMed

    Odendaal, Lizelle J; Jacobs, David S; Bishop, Jacqueline M

    2014-03-27

    Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of 'adaptive differentiation with minimal gene flow' in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Our study reveals significant sensory trait differentiation in

  12. Limited social plasticity in the socially polymorphic sweat bee Lasioglossum calceatum.

    PubMed

    Davison, P J; Field, J

    2018-01-01

    Eusociality is characterised by a reproductive division of labour, where some individuals forgo direct reproduction to instead help raise kin. Socially polymorphic sweat bees are ideal models for addressing the mechanisms underlying the transition from solitary living to eusociality, because different individuals in the same species can express either eusocial or solitary behaviour. A key question is whether alternative social phenotypes represent environmentally induced plasticity or predominantly genetic differentiation between populations. In this paper, we focus on the sweat bee Lasioglossum calceatum , in which northern or high-altitude populations are solitary, whereas more southern or low-altitude populations are typically eusocial. To test whether social phenotype responds to local environmental cues, we transplanted adult females from a solitary, northern population, to a southern site where native bees are typically eusocial. Nearly all native nests were eusocial, with foundresses producing small first brood (B1) females that became workers. In contrast, nine out of ten nests initiated by transplanted bees were solitary, producing female offspring that were the same size as the foundress and entered directly into hibernation. Only one of these ten nests became eusocial. Social phenotype was unlikely to be related to temperature experienced by nest foundresses when provisioning B1 offspring, or by B1 emergence time, both previously implicated in social plasticity seen in two other socially polymorphic sweat bees. Our results suggest that social polymorphism in L. calceatum predominantly reflects genetic differentiation between populations, and that plasticity is in the process of being lost by bees in northern populations. Phenotypic plasticity is thought to play a key role in the early stages of the transition from solitary to eusocial behaviour, but may then be lost if environmental conditions become less variable. Socially polymorphic sweat bees exhibit

  13. Plastic responses of bryozoans to ocean acidification.

    PubMed

    Swezey, Daniel S; Bean, Jessica R; Hill, Tessa M; Gaylord, Brian; Ninokawa, Aaron T; Sanford, Eric

    2017-12-01

    Phenotypic plasticity has the potential to allow organisms to respond rapidly to global environmental change, but the range and effectiveness of these responses are poorly understood across taxa and growth strategies. Colonial organisms might be particularly resilient to environmental stressors, as organizational modularity and successive asexual generations can allow for distinctively flexible responses in the aggregate form. We performed laboratory experiments to examine the effects of increasing dissolved carbon dioxide (CO 2 ) (i.e. ocean acidification) on the colonial bryozoan Celleporella cornuta sampled from two source populations within a coastal upwelling region of the northern California coast. Bryozoan colonies were remarkably plastic under these CO 2 treatments. Colonies raised under high CO 2 grew more quickly, investing less in reproduction and producing lighter skeletons when compared with genetically identical clones raised under current surface atmosphere CO 2 values. Bryozoans held under high CO 2 conditions also changed the Mg/Ca ratio of skeletal calcite and increased the expression of organic coverings in new growth, which may serve as protection against acidified water. We also observed strong differences between source populations in reproductive investment and organic covering reaction norms, consistent with adaptive responses to persistent spatial variation in local oceanographic conditions. Our results demonstrate that phenotypic plasticity and energetic trade-offs can mediate biological responses to global environmental change, and highlight the broad range of strategies available to colonial organisms. © 2017. Published by The Company of Biologists Ltd.

  14. Correlational selection on personality and social plasticity: morphology and social context determine behavioural effects on mating success.

    PubMed

    Montiglio, Pierre-Olivier; Wey, Tina W; Chang, Ann T; Fogarty, Sean; Sih, Andrew

    2017-03-01

    Despite a central line of research aimed at quantifying relationships between mating success and sexually dimorphic traits (e.g., ornaments), individual variation in sexually selected traits often explains only a modest portion of the variation in mating success. Another line of research suggests that a significant portion of the variation in mating success observed in animal populations could be explained by correlational selection, where the fitness advantage of a given trait depends on other components of an individual's phenotype and/or its environment. We tested the hypothesis that interactions between multiple traits within an individual (phenotype dependence) or between an individual's phenotype and its social environment (context dependence) can select for individual differences in behaviour (i.e., personality) and social plasticity. To quantify the importance of phenotype- and context-dependent selection on mating success, we repeatedly measured the behaviour, social environment and mating success of about 300 male stream water striders, Aquarius remigis. Rather than explaining individual differences in long-term mating success, we instead quantified how the combination of a male's phenotype interacted with the immediate social context to explain variation in hour-by-hour mating decisions. We suggest that this analysis captures more of the mechanisms leading to differences in mating success. Males differed consistently in activity, aggressiveness and social plasticity. The mating advantage of these behavioural traits depended on male morphology and varied with the number of rival males in the pool, suggesting mechanisms selecting for consistent differences in behaviour and social plasticity. Accounting for phenotype and context dependence improved the amount of variation in male mating success we explained statistically by 30-274%. Our analysis of the determinants of male mating success provides important insights into the evolutionary forces that shape

  15. Morphological and structural plasticity of grassland species in response to a gradient in saline-sodic soils.

    PubMed

    Huang, Y; Song, Y; Li, G; Drake, P L; Zheng, W; Li, Z; Zhou, D

    2015-11-01

    The abundance and distribution of species can be ascribed to both environmental heterogeneity and stress tolerance, with the latter measure sometimes associated with phenotypic plasticity. Although phenotypic plasticity varies predictably in response to common forms of stress, we lack a mechanistic understanding of the response of species to high saline-sodic soils. We compared the phenotypic plasticity of three pairs of high and low saline-sodic tolerant congeners from the families Poaceae (Leymus chinensis versus L. secalinus), Fabaceae (Lespedeza davurica versus L. bicolor) and Asteraceae (Artemisia mongolica versus A. sieversiana) in a controlled pot experiment in the Songnen grassland, China. The low tolerant species, L. secalinus and A. sieversiana exhibited higher plasticity in response to soil salinity and sodicity than their paired congeners. Highly tolerant species, L. chinensis and A. mongolica, had higher values for several important morphological traits, such as shoot length and total biomass under the high saline-sodic soil treatment than their paired congeners. In contrast, congeners from the family Fabaceae, L. davurica and L. bicolor, did not exhibit significantly different plasticity in response to soil salinity and sodicity. All species held a constant reproductive effort in response to saline-sodic soil stress. The different responses between low and high tolerant species offer an explanation for the distribution patterns of these species in the Songnen grassland. Highly tolerant species showed less morphological plasticity over a range of saline-sodic conditions than their paired congeners, which may manifest as an inability to compete with co-occurring species in locations where saline-sodic soils are absent. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics.

    PubMed

    Teeraphatpornchai, T; Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nakayama, M; Nomura, N; Nakahara, T; Uchiyama, H

    2003-01-01

    Microorganisms isolated from soil samples were screened for their ability to degrade various biodegradable polyester-based plastics. The most active strain, designated as strain TB-13, was selected as the best strain for degrading these plastics. From its phenotypic and genetic characteristics, strain TB-13 was closely related to Paenibacillus amyloyticus. It could degrade poly(lactic acid), poly(butylene succinate), poly(butylene succinate-co-adipate), poly(caprolactone) and poly(ethylene succinate) but not poly(hydroxybutylate-co-valerate). However, it could not utilize these plastics as sole carbon sources. Both protease and esterase activities, which may be involved in the degradation of plastic, were constitutively detected in the culture broth.

  17. Breeding to adapt agriculture to climate change: affordable phenotyping solutions.

    PubMed

    Araus, José L; Kefauver, Shawn C

    2018-05-28

    Breeding is one of the central pillars of adaptation of crops to climate change. However, phenotyping is a key bottleneck that is limiting breeding efficiency. The awareness of phenotyping as a breeding limitation is not only sustained by the lack of adequate approaches, but also by the perception that phenotyping is an expensive activity. Phenotyping is not just dependent on the choice of appropriate traits and tools (e.g. sensors) but relies on how these tools are deployed on their carrying platforms, the speed and volume of data extraction and analysis (throughput), the handling of spatial variability and characterization of environmental conditions, and finally how all the information is integrated and processed. Affordable high throughput phenotyping aims to achieve reasonably priced solutions for all the components comprising the phenotyping pipeline. This mini-review will cover current and imminent solutions for all these components, from the increasing use of conventional digital RGB cameras, within the category of sensors, to open-access cloud-structured data processing and the use of smartphones. Emphasis will be placed on field phenotyping, which is really the main application for day-to-day phenotyping. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Disentangling plasticity of serotiny, a key adaptive trait in a Mediterranean conifer.

    PubMed

    Martín-Sanz, Ruth C; Santos-Del-Blanco, Luis; Notivol, Eduardo; Chambel, M Regina; San-Martín, Roberto; Climent, José

    2016-09-01

    Serotiny, the maintenance of ripe seeds in closed fruits or cones until fire causes dehiscence, is a key adaptive trait of plants in fire-prone ecosystems, but knowledge of phenotypic plasticity for cone retention in woody plants is extremely scarce. On the basis of published literature and our field observations, we hypothesized that increased aridity might decrease the aerial seed bank as a plastic response, not necessarily adaptive. We used a Pinus halepensis common garden replicated in three contrasted sites (mild, cold, and dry) to separate population differentiation from phenotypic plasticity of cone serotiny and canopy cone bank (CCB). Differences in growth among trees of the same provenance allowed us to include size effect as a proxy of ontogenetic age for the same chronological age of the trees. Tree size had a strong negative effect on serotiny, but serotiny degree differed among trial sites even after accounting for size effects. As hypothesized, serotiny was lower at the harsh (dry and cold) sites compared with the mild site. Genetic variation for size-dependent cone serotiny and significant population × site interaction were confirmed, the latter implying different plasticity of serotiny among populations. Population differentiation for CCB showed an ecotypic trend, with positive correlation with temperature oscillation (continentality) and negative correlation with summer rainfall. Growth-limiting environments exacerbated the precocious release of seeds, contrary to the ecotypic trend found for the aerial cone bank, suggesting a counter-gradient plasticity. This plastic response is potentially maladaptive under a scenario of frequent wildfires. © 2016 Botanical Society of America.

  19. Plastic responses to elevated temperature in low and high elevation populations of three grassland species.

    PubMed

    Frei, Esther R; Ghazoul, Jaboury; Pluess, Andrea R

    2014-01-01

    Local persistence of plant species in the face of climate change is largely mediated by genetic adaptation and phenotypic plasticity. In species with a wide altitudinal range, population responses to global warming are likely to differ at contrasting elevations. In controlled climate chambers, we investigated the responses of low and high elevation populations (1200 and 1800 m a.s.l.) of three nutrient-poor grassland species, Trifolium montanum, Ranunculus bulbosus, and Briza media, to ambient and elevated temperature. We measured growth-related, reproductive and phenological traits, evaluated differences in trait plasticity and examined whether trait values or plasticities were positively related to approximate fitness and thus under selection. Elevated temperature induced plastic responses in several growth-related traits of all three species. Although flowering phenology was advanced in T. montanum and R. bulbosus, number of flowers and reproductive allocation were not increased under elevated temperature. Plasticity differed between low and high elevation populations only in leaf traits of T. montanum and B. media. Some growth-related and phenological traits were under selection. Moreover, plasticities were not correlated with approximate fitness indicating selectively neutral plastic responses to elevated temperature. The observed plasticity in growth-related and phenological traits, albeit variable among species, suggests that plasticity is an important mechanism in mediating plant responses to elevated temperature. However, the capacity of species to respond to climate change through phenotypic plasticity is limited suggesting that the species additionally need evolutionary adaptation to adjust to climate change. The observed selection on several growth-related and phenological traits indicates that the study species have the potential for future evolution in the context of a warming climate.

  20. Conserved patterns of integrated developmental plasticity in a group of polyphenic tropical butterflies.

    PubMed

    van Bergen, Erik; Osbaldeston, Dave; Kodandaramaiah, Ullasa; Brattström, Oskar; Aduse-Poku, Kwaku; Brakefield, Paul M

    2017-02-27

    Developmental plasticity is thought to have profound macro-evolutionary effects, for example, by increasing the probability of establishment in new environments and subsequent divergence into independently evolving lineages. In contrast to plasticity optimized for individual traits, phenotypic integration, which enables a concerted response of plastic traits to environmental variability, may affect the rate of local adaptation by constraining independent responses of traits to selection. Using a comparative framework, this study explores the evolution of reaction norms for a variety of life history and morphological traits across five related species of mycalesine butterflies from the Old World tropics. Our data indicate that an integrated response of a suite of key traits is shared amongst these species. Interestingly, the traits that make up the functional suite are all known to be regulated by ecdysteroid signalling in Bicyclus anynana, one of the species included in this study, suggesting the same underlying hormonal regulator may be conserved within this group of polyphenic butterflies. We also detect developmental thresholds for the expression of alternative morphs. The phenotypic plasticity of a broad suite of morphological and life history traits is integrated and shared among species from three geographically independent lineages of mycalesine butterflies, despite considerable periods of independent evolution and exposure to disparate environments. At the same time, we have detected examples of evolutionary change where independent traits show different patterns of reaction norms. We argue that the expression of more robust phenotypes may occur by shifting developmental thresholds beyond the boundaries of the typical environmental variation.

  1. Impact of plastic mulching on nitrous oxide emissions in China's arid agricultural region under climate change conditions

    NASA Astrophysics Data System (ADS)

    Yu, Yongxiang; Tao, Hui; Jia, Hongtao; Zhao, Chengyi

    2017-06-01

    The denitrification-decomposition (DNDC) model is a useful tool for integrating the effects of agricultural practices and climate change on soil nitrous oxide (N2O) emissions from agricultural ecosystems. In this study, the DNDC model was evaluated against observations and used to simulate the effect of plastic mulching on soil N2O emissions and crop growth. The DNDC model performed well in simulating temporal variations in N2O emissions and plant growth during the observation period, although it slightly underestimated the cumulative N2O emissions, and was able to simulate the effects of plastic mulching on N2O emissions and crop yield. Both the observations and simulations demonstrated that the application of plastic film increased cumulative N2O emissions and cotton lint yield compared with the non-mulched treatment. The sensitivity test showed that the N2O emissions and lint yield were sensitive to changes in climate and management practices, and the application of plastic film made the N2O emissions and lint yield less sensitive to changes in temperature and irrigation. Although the simulations showed that the beneficial impacts of plastic mulching on N2O emissions were not gained under high fertilizer and irrigation scenarios, our simulations suggest that the application of plastic film effectively reduced soil N2O emissions while promoting yields under suitable fertilizer rates and irrigation. Compared with the baseline scenario, future climate change significantly increased N2O emissions by 15-17% without significantly influencing the lint yields in the non-mulched treatment; in the mulched treatment, climate change significantly promoted the lint yield by 5-6% and significantly reduced N2O emissions by 14% in the RCP4.5 and RCP8.5 scenarios. Overall, our results demonstrate that the application of plastic film is an efficient way to address increased N2O emissions and simultaneously enhance crop yield in the future.

  2. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    NASA Astrophysics Data System (ADS)

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.

  3. Host-Specific Phenotypic Plasticity of the Turtle Barnacle Chelonibia testudinaria: A Widespread Generalist Rather than a Specialist

    PubMed Central

    Chu, Ka Hou; Cheng, I-Jiunn; Chan, Benny K. K.

    2013-01-01

    Turtle barnacles are common epibionts on marine organisms. Chelonibia testudinaria is specific on marine turtles whereas C. patula is a host generalist, but rarely found on turtles. It has been questioned why C. patula, being abundant on a variety of live substrata, is almost absent from turtles. We evaluated the genetic (mitochondrial COI, 16S and 12S rRNA, and amplified fragment length polymorphism (AFLP)) and morphological differentiation of C. testudinaia and C. patula from different hosts, to determine the mode of adaptation exhibited by Chelonibia species on different hosts. The two taxa demonstrate clear differences in shell morphology and length of 4–6th cirri, but very similar in arthropodal characters. Moreover, we detected no genetic differentiation in mitochondrial DNA and AFLP analyses. Outlier detection infers insignificant selection across loci investigated. Based on combined morphological and molecular evidence, we proposed that C. testudinaria and C. patula are conspecific, and the two morphs with contrasting shell morphologies and cirral length found on different host are predominantly shaped by developmental plasticity in response to environmental setting on different hosts. Chelonibia testudinaria is, thus, a successful general epibiotic fouler and the phenotypic responses postulated can increase the fitness of the animals when they attach on hosts with contrasting life-styles. PMID:23469208

  4. Phenotyping maize for adaptation to drought

    PubMed Central

    Araus, Jose L.; Serret, María D.; Edmeades, Gregory O.

    2012-01-01

    The need of a better adaptation of crops to drought is an issue of increasing urgency. However, enhancing the tolerance of maize has, therefore, proved to be somewhat elusive in terms of plant breeding. In that context, proper phenotyping remains as one of the main factors limiting breeding advance. Topics covered by this review include the conceptual framework for identifying secondary traits associated with yield response to drought and how to measure these secondary traits in practice. PMID:22934056

  5. Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency.

    PubMed

    Li, Pengcheng; Zhuang, Zhongjuan; Cai, Hongguang; Cheng, Shuai; Soomro, Ayaz Ali; Liu, Zhigang; Gu, Riliang; Mi, Guohua; Yuan, Lixing; Chen, Fanjun

    2016-03-01

    Maize (Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen (N) deficiency, but the underlying genetic architecture remains to be investigated. Using an advanced BC4 F3 population, we investigated the root growth plasticity under two contrasted N levels and identified the quantitative trait loci (QTLs) with QTL-environment (Q × E) interaction effects. Principal components analysis (PCA) on changes of root traits to N deficiency (ΔLN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC, while root traits scattered highly on PC2 and PC3. Hierarchical cluster analysis on traits for ΔLN-HN further assigned the BC4 F3 lines into six groups, in which the special phenotypic responses to N deficiency was presented. These results revealed the complicated root plasticity of maize in response to N deficiency that can be caused by genotype-environment (G × E) interactions. Furthermore, QTL mapping using a multi-environment analysis identified 35 QTLs for root traits. Nine of these QTLs exhibited significant Q × E interaction effects. Taken together, our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N deficiency, which will be useful for developing maize tolerance cultivars to N deficiency. © 2015 Institute of Botany, Chinese Academy of Sciences.

  6. A Home-Made Trap Baited With Sex Pheromone for Monitoring Spodoptera Frugiperda Males (Lepidoptera: Noctuidae) in Corn crops in Mexico.

    PubMed

    Malo, Edi A; Cruz-Esteban, Samuel; González, Francisco J; Rojas, Julio C

    2018-05-15

    Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), populations are monitored with a variety of commercial sex pheromone-baited traps. However, a number of trap-related variables may affect the number of FAW males captured. In this study, we tested the effect of trap design, trap size, and trap color for monitoring FAW males in corn crops in Mexico. We found that plastic jug trap (a home-made trap), captured significantly more FAW males than a commercial trap (Scentry Heliothis) and water bottle trap (another home-made trap). We also found that size of plastic jug traps (3.78, 10, or 20 liters) did not affect the captures of FAW males. Our results indicated that plastic yellow jug traps captured significantly more males than blue and black traps. Plastic jug white, red, and green traps captured a similar number of FAW males than plastic jug yellow, blue, and black traps. Plastic jug blue, white, and yellow traps captured more nontarget insects compared to black traps. The number of nontarget insects captured by green and red traps was similar and not significantly different to that caught by blue, white, yellow, and black traps. Traps captured more individuals from Diptera than Coleoptera and Hymenoptera. Overall, the results suggest that yellow plastic jug may be used for monitoring FAW males in corn and sorghum crops in Mexico.

  7. Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops.

    PubMed

    Cao, Ke; Zheng, Zhijun; Wang, Lirong; Liu, Xin; Zhu, Gengrui; Fang, Weichao; Cheng, Shifeng; Zeng, Peng; Chen, Changwen; Wang, Xinwei; Xie, Min; Zhong, Xiao; Wang, Xiaoli; Zhao, Pei; Bian, Chao; Zhu, Yinling; Zhang, Jiahui; Ma, Guosheng; Chen, Chengxuan; Li, Yanjun; Hao, Fengge; Li, Yong; Huang, Guodong; Li, Yuxiang; Li, Haiyan; Guo, Jian; Xu, Xun; Wang, Jun

    2014-07-31

    Recently, many studies utilizing next generation sequencing have investigated plant evolution and domestication in annual crops. Peach, Prunus persica, is a typical perennial fruit crop that has ornamental and edible varieties. Unlike other fruit crops, cultivated peach includes a large number of phenotypes but few polymorphisms. In this study, we explore the genetic basis of domestication in peach and the influence of humans on its evolution. We perform large-scale resequencing of 10 wild and 74 cultivated peach varieties, including 9 ornamental, 23 breeding, and 42 landrace lines. We identify 4.6 million SNPs, a large number of which could explain the phenotypic variation in cultivated peach. Population analysis shows a single domestication event, the speciation of P. persica from wild peach. Ornamental and edible peach both belong to P. persica, along with another geographically separated subgroup, Prunus ferganensis. Our analyses enhance our knowledge of the domestication history of perennial fruit crops, and the dataset we generated could be useful for future research on comparative population genomics.

  8. Experimental tests for heritable morphological color plasticity in non-native brown trout (Salmo trutta) populations.

    PubMed

    Westley, Peter A H; Stanley, Ryan; Fleming, Ian A

    2013-01-01

    The success of invasive species is frequently attributed to phenotypic plasticity, which facilitates persistence in novel environments. Here we report on experimental tests to determine whether the intensity of cryptic coloration patterns in a global invader (brown trout, Salmo trutta) was primarily the result of plasticity or heritable variation. Juvenile F1 offspring were created through experimental crosses of wild-caught parents and reared for 30 days in the laboratory in a split-brood design on either light or dark-colored gravel substrate. Skin and fin coloration quantified with digital photography and image analysis indicated strong plastic effects in response to substrate color; individuals reared on dark substrate had both darker melanin-based skin color and carotenoid-based fin colors than other members of their population reared on light substrate. Slopes of skin and fin color reaction norms were parallel between environments, which is not consistent with heritable population-level plasticity to substrate color. Similarly, we observed weak differences in population-level color within an environment, again suggesting little genetic control on the intensity of skin and fin colors. Taken as whole, our results are consistent with the hypothesis that phenotypic plasticity may have facilitated the success of brown trout invasions and suggests that plasticity is the most likely explanation for the variation in color intensity observed among these populations in nature.

  9. Biodiversity of important toxigenic fungi that threaten food safety

    USDA-ARS?s Scientific Manuscript database

    Phenotypic and metabolic plasticity of toxigenic fungi that threaten food safety allows these microorganisms to colonize a broad range of agriculturally important crops and to adapt to a range of environmental conditions. In addition, trans-global transportation and trade of plant products significa...

  10. Comparing the strength of behavioural plasticity and consistency across situations: animal personalities in the hermit crab Pagurus bernhardus.

    PubMed

    Briffa, Mark; Rundle, Simon D; Fryer, Adam

    2008-06-07

    Many phenotypic traits show plasticity but behaviour is often considered the 'most plastic' aspect of phenotype as it is likely to show the quickest response to temporal changes in conditions or 'situation'. However, it has also been noted that constraints on sensory acuity, cognitive structure and physiological capacities place limits on behavioural plasticity. Such limits to plasticity may generate consistent differences in behaviour between individuals from the same population. It has recently been suggested that these consistent differences in individual behaviour may be adaptive and the term 'animal personalities' has been used to describe them. In many cases, however, a degree of both behavioural plasticity and relative consistency is probable. To understand the possible functions of animal personalities, it is necessary to determine the relative strength of each tendency and this may be achieved by comparison of statistical effect sizes for tests of difference and concordance. Here, we describe a new statistical framework for making such comparisons and investigate cross-situational plasticity and consistency in the duration of startle responses in the European hermit crab Pagurus bernhardus, in the field and the laboratory. The effect sizes of tests for behavioural consistency were greater than for tests of behavioural plasticity, indicating for the first time the presence of animal personalities in a crustacean model.

  11. The continuum of stem cell transdifferentiation: possibility of hematopoietic stem cell plasticity with concurrent CD45 expression.

    PubMed

    Udani, V M

    2006-02-01

    Recent years have seen a surge of scientific research examining adult stem cell plasticity. For example, the hematopoietic stem cell has been shown to give rise to skin, respiratory epithelium, intestinal epithelium, renal epithelium, liver parenchyma, pancreas, skeletal muscle, vascular endothelium, myocardium, and central nervous system (CNS) neurons. The potential for such stem cell plasticity seems to be enhanced by stressors such as injury and neoplasia. Interestingly, recent studies have demonstrated that hematopoietic stem cells may be able to adopt certain nonhematopoietic phenotypes, such as endothelial, neural, or skeletal muscle phenotypes, without entirely losing their initial hematopoietic identity. We propose that transdifferentiation can, in certain conditions, be a partial rather than a complete event, and we encourage further investigation into the phenomenon of a stem cell simultaneously expressing phenotypic features of two distinct cell fates.

  12. A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility?

    PubMed

    Seebacher, Frank

    2005-10-01

    Biological functions are dependent on the temperature of the organism. Animals may respond to fluctuation in the thermal environment by regulating their body temperature and by modifying physiological and biochemical rates. Phenotypic flexibility (reversible phenotypic plasticity, acclimation, or acclimatisation in rate functions occurs in all major taxonomic groups and may be considered as an ancestral condition. Within the Reptilia, representatives from all major groups show phenotypic flexibility in response to long-term or chronic changes in the thermal environment. Acclimation or acclimatisation in reptiles are most commonly assessed by measuring whole animal responses such as oxygen consumption, but whole animal responses are comprised of variation in individual traits such as enzyme activities, hormone expression, and cardiovascular functions. The challenge now lies in connecting the changes in the components to the functioning of the whole animal and its fitness. Experimental designs in research on reptilian thermal physiology should incorporate the capacity for reversible phenotypic plasticity as a null-hypothesis, because the significance of differential body temperature-performance relationships (thermal reaction norms) between individuals, populations, or species cannot be assessed without testing that null-hypothesis.

  13. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential

    PubMed Central

    Stoks, Robby; Geerts, Aurora N; De Meester, Luc

    2014-01-01

    We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respect to responses to temperature, there are many studies on temporal trait changes in phenology and body size in the wild that are believed to be driven by temperature increases, but there is a general lack of rigorous demonstration whether these trait changes are genetically based, adaptive, and causally driven by climate change. Current proof for genetic trait changes under climate change in freshwater invertebrates stems from a limited set of common garden experiments replicated in time. Experimental thermal evolution experiments and common garden warming experiments associated with space-for-time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypic changes under climate change in aquatic invertebrates. Apart from plastic and genetic thermal adjustments, also genetic photoperiod adjustments are widespread and may even dominate the observed phenological shifts. PMID:24454547

  14. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential.

    PubMed

    Stoks, Robby; Geerts, Aurora N; De Meester, Luc

    2014-01-01

    We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respect to responses to temperature, there are many studies on temporal trait changes in phenology and body size in the wild that are believed to be driven by temperature increases, but there is a general lack of rigorous demonstration whether these trait changes are genetically based, adaptive, and causally driven by climate change. Current proof for genetic trait changes under climate change in freshwater invertebrates stems from a limited set of common garden experiments replicated in time. Experimental thermal evolution experiments and common garden warming experiments associated with space-for-time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypic changes under climate change in aquatic invertebrates. Apart from plastic and genetic thermal adjustments, also genetic photoperiod adjustments are widespread and may even dominate the observed phenological shifts.

  15. Molecular mechanisms involved in convergent crop domestication.

    PubMed

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Oilseed crops as renewable sources of industrial chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeon, T.A.; Lin, Jiann-Tsyh; Goodrich-Tanrikulu, M.

    1995-12-01

    The presence of specific functional groups on a fatty acid confers value for industrial uses. The plant kingdom contains numerous examples of plants that produce seed oils containing fatty acids with epoxy groups, hydroxyl groups, triple bonds or with unusual double bond positions. These fatty acids can be used directly or are readily modified for use in specialty lubricants, plastics and coatings. Many of these plants are not cultivated in the U.S. due to unsuitable climate or growth habit. Such plants provide a source of genes coding for enzymes that will carry out the desired fatty acid modification. Genetic technologymore » allows the transfer of these genes into domestically grown crops such as rapeseed or soybean, with consequent production of the desired fatty acid in the seed oil. One biotechnology company has commercialized a transgenic oilseed crop with an altered fatty acid composition. This talk will review current and projected plans for developing oilseed crops to serve as renewable resources that meet current industrial needs or provide chemical feedstocks for new uses.« less

  17. Shape plasticity in response to water velocity in the freshwater blenny Salaria fluviatilis.

    PubMed

    Laporte, M; Claude, J; Berrebi, P; Perret, P; Magnan, P

    2016-03-01

    A non-random association between an environmental factor and a given trait could be explained by directional selection (genetic determinism) and by phenotypic plasticity (environmental determinism). A previous study showed a significant relationship between morphology and water velocity in Salaria fluviatilis that conformed to functional expectations. The objective of this study was to test whether this relationship could be explained by phenotypic plasticity. Salaria fluviatilis from a Corsican stream were placed in four experimental channels with different water velocities (0, 10, 20 and 30 cm s(-1)) to test whether there was a morphological response associated with this environmental factor. After 28 days, fish shape changed in response to water velocity without any significant growth. Fish in higher water velocities exhibited a more slender body shape and longer anal and caudal fins. These results indicate a high degree of morphological plasticity in riverine populations of S. fluviatilis and suggest that the previous relationship between morphology and water velocity observed in the field may largely be due to an environmental determinism. © 2016 The Fisheries Society of the British Isles.

  18. Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement.

    PubMed

    Bohra, Abhishek; Singh, Narendra P

    2015-08-01

    Unprecedented developments in legume genomics over the last decade have resulted in the acquisition of a wide range of modern genomic resources to underpin genetic improvement of grain legumes. The genome enabled insights direct investigators in various ways that primarily include unearthing novel structural variations, retrieving the lost genetic diversity, introducing novel/exotic alleles from wider gene pools, finely resolving the complex quantitative traits and so forth. To this end, ready availability of cost-efficient and high-density genotyping assays allows genome wide prediction to be increasingly recognized as the key selection criterion in crop breeding. Further, the high-dimensional measurements of agronomically significant phenotypes obtained by using new-generation screening techniques will empower reference based resequencing as well as allele mining and trait mapping methods to comprehensively associate genome diversity with the phenome scale variation. Besides stimulating the forward genetic systems, accessibility to precisely delineated genomic segments reveals novel candidates for reverse genetic techniques like targeted genome editing. The shifting paradigm in plant genomics in turn necessitates optimization of crop breeding strategies to enable the most efficient integration of advanced omics knowledge and tools. We anticipate that the crop improvement schemes will be bolstered remarkably with rational deployment of these genome-guided approaches, ultimately resulting in expanded plant breeding capacities and improved crop performance.

  19. Phenotypic plasticity of post-fire activity and thermal biology of a free-ranging small mammal.

    PubMed

    Stawski, Clare; Körtner, Gerhard; Nowack, Julia; Geiser, Fritz

    2016-05-15

    Ecosystems can change rapidly and sometimes irreversibly due to a number of anthropogenic and natural factors, such as deforestation and fire. How individual animals exposed to such changes respond behaviourally and physiologically is poorly understood. We quantified the phenotypic plasticity of activity patterns and torpor use - a highly efficient energy conservation mechanism - in brown antechinus (Antechinus stuartii), a small Australian marsupial mammal. We compared groups in densely vegetated forest areas (pre-fire and control) with a group in a burned, open habitat (post-fire). Activity and torpor patterns differed among groups and sexes. Females in the post-fire group spent significantly less time active than the other groups, both during the day and night. However, in males only daytime activity declined in the post-fire group, although overall activity was also reduced on cold days in males for all groups. The reduction in total or diurnal activity in the post-fire group was made energetically possible by a ~3.4-fold and ~2.2-fold increase in the proportion of time females and males, respectively, used torpor in comparison to that in the pre-fire and control groups. Overall, likely due to reproductive needs, torpor was more pronounced in females than in males, but low ambient temperatures increased torpor bout duration in both sexes. Importantly, for both male and female antechinus and likely other small mammals, predator avoidance and energy conservation - achieved by reduced activity and increased torpor use - appear to be vital for post-fire survival where ground cover and refuges have been obliterated. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The evolution of plasticity of dauer larva developmental arrest in the nematode Caenorhabditis elegans.

    PubMed

    Diaz, S Anaid; Viney, Mark

    2015-03-01

    Organisms can end up in unfavourable conditions and to survive this they have evolved various strategies. Some organisms, including nematodes, survive unfavourable conditions by undergoing developmental arrest. The model nematode Caenorhabditis elegans has a developmental choice between two larval forms, and it chooses to develop into the arrested dauer larva form in unfavourable conditions (specifically, a lack of food and high population density, indicated by the concentration of a pheromone). Wild C. elegans isolates vary extensively in their dauer larva arrest phenotypes, and this prompts the question of what selective pressures maintain such phenotypic diversity? To investigate this we grew C. elegans in four different environments, consisting of different combinations of cues that can induce dauer larva development: two combinations of food concentration (high and low) in the presence or absence of a dauer larva-inducing pheromone. Five generations of artificial selection of dauer larvae resulted in an overall increase in dauer larva formation in most selection regimes. The presence of pheromone in the environment selected for twice the number of dauer larvae, compared with environments not containing pheromone. Further, only a high food concentration environment containing pheromone increased the plasticity of dauer larva formation. These evolutionary responses also affected the timing of the worms' reproduction. Overall, these results give an insight into the environments that can select for different plasticities of C. elegans dauer larva arrest phenotypes, suggesting that different combinations of environmental cues can select for the diversity of phenotypically plastic responses seen in C. elegans.

  1. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of Arabidopsis thaliana.

    PubMed

    Cousins, Elsa A; Murren, Courtney J

    2017-12-01

    Studies on phenotypic plasticity and plasticity of integration have uncovered functionally linked modules of aboveground traits and seedlings of Arabidopsis thaliana , but we lack details about belowground variation in adult plants. Functional modules can be comprised of additional suites of traits that respond to environmental variation. We assessed whether shoot and root responses to nutrient environments in adult A. thaliana were predictable from seedling traits or population-specific geologic soil characteristics at the site of origin. We compared 17 natural accessions from across the native range of A. thaliana using 14-day-old seedlings grown on agar or sand and plants grown to maturity across nutrient treatments in sand. We measured aboveground size, reproduction, timing traits, root length, and root diameter. Edaphic characteristics were obtained from a global-scale dataset and related to field data. We detected significant among-population variation in root traits of seedlings and adults and in plasticity in aboveground and belowground traits of adult plants. Phenotypic integration of roots and shoots varied by population and environment. Relative integration was greater in roots than in shoots, and integration was predicted by edaphic soil history, particularly organic carbon content, whereas seedling traits did not predict later ontogenetic stages. Soil environment of origin has significant effects on phenotypic plasticity in response to nutrients, and on phenotypic integration of root modules and shoot modules. Root traits varied among populations in reproductively mature individuals, indicating potential for adaptive and integrated functional responses of root systems in annuals. © 2017 Botanical Society of America.

  2. Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity

    PubMed Central

    2014-01-01

    Background Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of ‘adaptive differentiation with minimal gene flow’ in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Results Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Conclusions Our study reveals

  3. Estimate of genetic gain in popcorn after cycles of phenotypic recurrent selection.

    PubMed

    Ematné, H J; Nunes, J A R; Dias, K O G; Prado, P E R; Souza, J C

    2016-05-20

    Popcorn is widely consumed in Brazil, yet there are few breeding programs for this crop. Recurrent selection (RS) is a viable breeding alternative for popcorn; however, the gains achieved must be frequently checked. The aim of this study was to assess the effect of selection for grain type (round and pointed) after four cycles of phenotypic RS on the main agronomic traits of popcorn, to estimate the genetic gain achieved for the trait of expansion volume (EV), and to obtain estimates of phenotypic correlations for the main traits of the crop in the UFLA E and UFLA R populations. The zero, one, two, and three cycles of the UFLA E and UFLA R populations, the fourth cycle, and the controls IAC-112 and IAC-125 were used. The experiments were conducted at the experimental farm of Universidade Federal de Lavras (UFLA; Environment 1) and at the experimental area of the Genetics and Plant Breeding Sector of the Department of Biology at UFLA (Environment 2) in the 2010/11 crop season. Nine agronomic traits were evaluated, including EV and grain yield (GY). The UFLA R and UFLA E populations showed similar behavior for all evaluated traits. The type of grain did not affect the genetic gain for EV, which was 5 and 3.7% in each cycle carried out in the UFLA E and UFLA R population, respectively. Phenotypic selection carried out during recombination for EV is an effective method for increasing expression of the trait. EV and GY did not show a linear association.

  4. Foliar nitrogen, phosphorus and potassium content in trees in environmentally toxic plastic industry area.

    PubMed

    Sett, Rupnarayan; Soni, Bhawna

    2013-04-01

    In plants, nitrogen deficiency causes stunted growth and chlorosis or yellowing of the leaves due to decreased levels of chlorophyll, while excess nitrogen uptake may cause dark green overly vigorous foliage which may have increased susceptibility to disease and insect attacks. Phosphorus is an important nutrient in crop production, since many soils in their native state do not have sufficient available phosphorus to maximize crop yield. Potassium deficiency may cause necrosis or interveinal chlorosis. Plastics are synthetic or semi-synthetic moldable organic solids that are organic polymers of high molecular mass, most commonly derived from petrochemicals; these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen. Plastic is a non- biodegradable major toxic pollutant. It pollutes earth and leads to air pollution and water pollution. Merely there is any safe way to dispose the hazardous plastic wastes. The study was targeted to estimate foliar level of NPK content of three plant species, viz. Cassia tora (Herb), Ailanthus excelsa (Tree) and Dalbergia sissoo (Tree) from polluted areas associated to polythene-industries as well as control areas having least pollution, where all the parameters were found to be higher than the control experiments.

  5. Pheromone modulates two phenotypically plastic traits - adult reproduction and larval diapause - in the nematode Caenorhabditis elegans.

    PubMed

    Wharam, Barney; Weldon, Laura; Viney, Mark

    2017-08-22

    Animals use information from their environment to make decisions, ultimately to maximize their fitness. The nematode C. elegans has a pheromone signalling system, which hitherto has principally been thought to be used by worms in deciding whether or not to arrest their development as larvae. Recent studies have suggested that this pheromone can have other roles in the C. elegans life cycle. Here we demonstrate a new role for the C. elegans pheromone, showing that it accelerates hermaphrodites' reproductive rate, a phenomenon which we call pheromone-dependent reproductive plasticity (PDRP). We also find that pheromone accelerates larval growth rates, but this depends on a live bacterial food source, while PDRP does not. Different C. elegans strains all show PDRP, though the magnitude of these effects differ among the strains, which is analogous to the diversity of arrested larval phenotypes that this pheromone also induces. Using a selection experiment we also show that selection for PDRP or for larval arrest affects both the target and the non-target trait, suggesting that there is cross-talk between these two pheromone-dependent traits. Together, these results show that C. elegans' pheromone is a signal that acts at two key life cycle points, controlling alternative larval fates and affecting adult hermaphrodites' reproduction. More broadly, these results suggest that to properly understand and interpret the biology of pheromone signalling in C. elegans and other nematodes, the life-history biology of these organisms in their natural environment needs to be considered.

  6. Advances in crop proteomics: PTMs of proteins under abiotic stress.

    PubMed

    Wu, Xiaolin; Gong, Fangping; Cao, Di; Hu, Xiuli; Wang, Wei

    2016-03-01

    Under natural conditions, crop plants are frequently subjected to various abiotic environmental stresses such as drought and heat wave, which may become more prevalent in the coming decades. Plant acclimation and tolerance to an abiotic stress are always associated with significant changes in PTMs of specific proteins. PTMs are important for regulating protein function, subcellular localization and protein activity and stability. Studies of plant responses to abiotic stress at the PTMs level are essential to the process of plant phenotyping for crop improvement. The ability to identify and quantify PTMs on a large-scale will contribute to a detailed protein functional characterization that will improve our understanding of the processes of crop plant stress acclimation and stress tolerance acquisition. Hundreds of PTMs have been reported, but it is impossible to review all of the possible protein modifications. In this review, we briefly summarize several main types of PTMs regarding their characteristics and detection methods, review the advances in PTMs research of crop proteomics, and highlight the importance of specific PTMs in crop response to abiotic stress. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evidence for lower plasticity in CTMAX at warmer developmental temperatures.

    PubMed

    Kellermann, Vanessa; Sgrò, Carla M

    2018-06-07

    Understanding the capacity for different species to reduce their susceptibility to climate change via phenotypic plasticity is essential for accurately predicting species extinction risk. The climatic variability hypothesis suggests that spatial and temporal variation in climatic variables should select for more plastic phenotypes. However, empirical support for this hypothesis is limited. Here, we examine the capacity for ten Drosophila species to increase their critical thermal maxima (CT MAX ) through developmental acclimation and/or adult heat hardening. Using four fluctuating developmental temperature regimes, ranging from 13 to 33 °C, we find that most species can increase their CT MAX via developmental acclimation and adult hardening, but found no relationship between climatic variables and absolute measures of plasticity. However, when plasticity was dissected across developmental temperatures, a positive association between plasticity and one measure of climatic variability (temperature seasonality) was found when development took place between 26 and 28 °C, whereas a negative relationship was found when development took place between 20 and 23 °C. In addition, a decline in CT MAX and egg-to-adult viability, a proxy for fitness, was observed in tropical species at the warmer developmental temperatures (26-28 °C); this suggests that tropical species may be at even greater risk from climate change than currently predicted. The combined effects of developmental acclimation and adult hardening on CT MAX were small, contributing to a <0.60 °C shift in CT MAX . Although small shifts in CT MAX may increase population persistence in the shorter term, the degree to which they can contribute to meaningful responses in the long term is unclear. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  8. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase.

    PubMed

    Peña, Pamela A; Quach, Truyen; Sato, Shirley; Ge, Zhengxiang; Nersesian, Natalya; Dweikat, Ismail M; Soundararajan, Madhavan; Clemente, Tom

    2017-12-01

    The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.

  9. Vernonia galamensis, potential new crop source of epoxy acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdue, R.E. Jr.; Carlson, K.D.; Gilbert, M.G.

    Vernonia galamensis is a good source of seed oil rich in epoxy acid, which can be used to manufacture plastic formulations, protective coatings, and other products. Seed from a natural stand in Ethiopia contained 31% epoxy acid. Under cultivation in Kenya, this unimproved germ plasm produced a substantial yield of seed with 32% epoxy acid. This African species has good natural seed retention and is a promising new crop for semiarid tropical areas. 11 references.

  10. Trash + Creativity = Problem Solved: Award Winners Give Plastic Bottles Second Life

    ERIC Educational Resources Information Center

    Tech Directions, 2007

    2007-01-01

    Judge Harry T. Roman, an electrical engineer and inventor, has selected the best of the crop in the 2006/2007 Tech Directions Inventors Award Competition. The challenge this year called on students to slow the filling of landfills by devising uses for discarded plastic water, juice, soda, and sports-drink bottles. Judge Roman noted "many common…

  11. Phenotypic divergence despite low genetic differentiation in house sparrow populations.

    PubMed

    Ben Cohen, Shachar; Dor, Roi

    2018-01-10

    Studying patterns of phenotypic variation among populations can shed light on the drivers of evolutionary processes. The house sparrow (Passer domesticus) is one of the world's most ubiquitous bird species, as well as a successful invader. We investigated phenotypic variation in house sparrow populations across a climatic gradient and in relation to a possible scenario of an invasion. We measured variation in morphological, coloration, and behavioral traits (exploratory behavior and neophobia) and compared it to the neutral genetic variation. We found that sparrows were larger and darker in northern latitudes, in accordance with Bergmann's and Gloger's biogeographic rules. Morphology and behavior mostly differed between the southernmost populations and the other regions, supporting the possibility of an invasion. Genetic differentiation was low and diversity levels were similar across populations, indicating high gene flow. Nevertheless, the southernmost and northern populations differed genetically to some extent. Furthermore, genetic differentiation (F ST ) was lower in comparison to phenotypic variation (P ST ), indicating that the phenotypic variation is shaped by directional selection or by phenotypic plasticity. This study expands our knowledge on evolutionary mechanisms and biological invasions.

  12. Effect of plastic mulching and nitrapyrin on N2O concentration and emissions in China under climate change

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Zhu, C.

    2017-12-01

    Fertilized agricultural soils are the main source of atmospheric nitrous oxide (N2O). In this study, both soil N2O concentration in the profile and N2O emission were measured to quantify the effect of plastic mulching and nitrapyrin on N2O dynamic in an oasis cotton field. During the observation period, both N2O concentration and N2O emissions rapidly increased following fertigation, and soil temperature, moisture and mineral N content were the main factors influencing N2O. Temporal variation in N2O emission coincided with changes in N2O content in all soil layers, indicating that the accumulation of N2O likely drives the release of N2O into the atmosphere. The crop yields, N2O content (the sum of aqueous and gaseous phases) in the soil and N2O emissions increased linearly as the application of N fertilizer increased from 80 to 400 kg N ha-1. Plastic mulching increased the crop yields by 16-21%, increased the N2O contents by 88-99%, and reduced the cumulative N2O emissions by 19-28%, indicating that the application of plastic film reduced N2O emission probably through restricted the N2O diffusion process, and limited the N2O production through enhanced the N uptake of cotton. The addition of nitrapyrin to the N fertilizer significantly reduced the levels of N2O without influencing crop yield, with N2O content in the soil profile and cumulative N2O emissions decreasing by 25-32% and 23-42%, respectively. Overall, our result suggested the combined use of plastic film and nitrapyrin could be an efficient practice to reduce N2O emission in the oasis cotton field. Keywords: N2O emissions; plastic film mulching; nitrapyrin; climate change

  13. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia

    PubMed Central

    Amici, Stephanie A.; Dong, Joycelyn; Guerau-de-Arellano, Mireia

    2017-01-01

    Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype. PMID:29176977

  14. Network motifs that stabilize the hybrid epithelial/mesenchymal phenotype

    NASA Astrophysics Data System (ADS)

    Jolly, Mohit Kumar; Jia, Dongya; Tripathi, Satyendra; Hanash, Samir; Mani, Sendurai; Ben-Jacob, Eshel; Levine, Herbert

    Epithelial to Mesenchymal Transition (EMT) and its reverse - MET - are hallmarks of cancer metastasis. While transitioning between E and M phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) phenotype that enables collective cell migration as a cluster of Circulating Tumor Cells (CTCs). These clusters can form 50-times more tumors than individually migrating CTCs, underlining their importance in metastasis. However, this hybrid E/M phenotype has been hypothesized to be only a transient one that is attained en route EMT. Here, via mathematically modeling, we identify certain `phenotypic stability factors' that couple with the core three-way decision-making circuit (miR-200/ZEB) and can maintain or stabilize the hybrid E/M phenotype. Further, we show experimentally that this phenotype can be maintained stably at a single-cell level, and knockdown of these factors impairs collective cell migration. We also show that these factors enable the association of hybrid E/M with high stemness or tumor-initiating potential. Finally, based on these factors, we deduce specific network motifs that can maintain the E/M phenotype. Our framework can be used to elucidate the effect of other players in regulating cellular plasticity during metastasis. This work was supported by NSF PHY-1427654 (Center for Theoretical Biological Physics) and the CPRIT Scholar in Cancer Research of the State of Texas at Rice University.

  15. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana.

    PubMed

    Ibañez, Carla; Poeschl, Yvonne; Peterson, Tom; Bellstädt, Julia; Denk, Kathrin; Gogol-Döring, Andreas; Quint, Marcel; Delker, Carolin

    2017-07-06

    Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q 10 , GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.

  16. Conceptual framework for drought phenotyping during molecular breeding.

    PubMed

    Salekdeh, Ghasem Hosseini; Reynolds, Matthew; Bennett, John; Boyer, John

    2009-09-01

    Drought is a major threat to agricultural production and drought tolerance is a prime target for molecular approaches to crop improvement. To achieve meaningful results, these approaches must be linked with suitable phenotyping protocols at all stages, such as the screening of germplasm collections, mutant libraries, mapping populations, transgenic lines and breeding materials and the design of OMICS and quantitative trait loci (QTLs) experiments. Here we present a conceptual framework for molecular breeding for drought tolerance based on the Passioura equation of expressing yield as the product of water use (WU), water use efficiency (WUE) and harvest index (HI). We identify phenotyping protocols that address each of these factors, describe their key features and illustrate their integration with different molecular approaches.

  17. Stressful environments induce novel phenotypic variation: hierarchical reaction norms for sperm performance of a pervasive invader

    PubMed Central

    Purchase, Craig F; Moreau, Darek T R

    2012-01-01

    Genetic variation for phenotypic plasticity is ubiquitous and important. However, the scale of such variation including the relative variability present in reaction norms among different hierarchies of biological organization (e.g., individuals, populations, and closely related species) is unknown. Complicating interpretation is a trade-off in environmental scale. As plasticity can only be inferred over the range of environments tested, experiments focusing on fine tuned responses to normal or benign conditions may miss cryptic phenotypic variation expressed under novel or stressful environments. Here, we sought to discern the presence and shape of plasticity in the performance of brown trout sperm as a function of optimal to extremely stressful river pH, and demarcate if the reaction norm varies among genotypes. Our overarching goal was to determine if deteriorating environmental quality increases expressed variation among individuals. A more applied aim was to ascertain whether maintaining sperm performance over a wide pH range could help explain how brown trout are able to invade diverse river systems when transplanted outside of their native range. Individuals differed in their reaction norms of phenotypic expression of an important trait in response to environmental change. Cryptic variation was revealed under stressful conditions, evidenced through increasing among-individual variability. Importantly, data on population averages masked this variability in plasticity. In addition, canalized reaction norms in sperm swimming velocities of many individuals over a very large range in water chemistry may help explain why brown trout are able to colonize a wide variety of habitats. PMID:23145341

  18. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors.

    PubMed

    Richard, Geoffrey; Dalle, Stéphane; Monet, Marie-Ambre; Ligier, Maud; Boespflug, Amélie; Pommier, Roxane M; de la Fouchardière, Arnaud; Perier-Muzet, Marie; Depaepe, Lauriane; Barnault, Romain; Tondeur, Garance; Ansieau, Stéphane; Thomas, Emilie; Bertolotto, Corine; Ballotti, Robert; Mourah, Samia; Battistella, Maxime; Lebbé, Céleste; Thomas, Luc; Puisieux, Alain; Caramel, Julie

    2016-10-01

    Targeted therapies with MAPK inhibitors (MAPKi) are faced with severe problems of resistance in BRAF-mutant melanoma. In parallel to the acquisition of genetic mutations, melanoma cells may also adapt to the drugs through phenotype switching. The ZEB1 transcription factor, a known inducer of EMT and invasiveness, is now considered as a genuine oncogenic factor required for tumor initiation, cancer cell plasticity, and drug resistance in carcinomas. Here, we show that high levels of ZEB1 expression are associated with inherent resistance to MAPKi in BRAF V 600 -mutated cell lines and tumors. ZEB1 levels are also elevated in melanoma cells with acquired resistance and in biopsies from patients relapsing while under treatment. ZEB1 overexpression is sufficient to drive the emergence of resistance to MAPKi by promoting a reversible transition toward a MITF low /p75 high stem-like and tumorigenic phenotype. ZEB1 inhibition promotes cell differentiation, prevents tumorigenic growth in vivo, sensitizes naive melanoma cells to MAPKi, and induces cell death in resistant cells. Overall, our results demonstrate that ZEB1 is a major driver of melanoma cell plasticity, driving drug adaptation and phenotypic resistance to MAPKi. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Dynamic phenotypic plasticity in photosynthesis and biomass patterns in Douglas-fir seedlings

    Treesearch

    A. C. Koehn; G. I. McDonald; D. L. Turner; D. L. Adams

    2010-01-01

    As climate changes, understanding the mechanisms long-lived conifers use to adapt becomes more important. Light gradients within a forest stand vary constantly with the changes in climate, and the minimum light required for survival plays a major role in plant community dynamics. This study focuses on the dynamic plasticity of Douglas-fir (Pseudotsuga menziesii var....

  20. GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping.

    PubMed

    Diaz-Garcia, Luis; Covarrubias-Pazaran, Giovanny; Schlautman, Brandon; Zalapa, Juan

    2016-01-01

    Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed, but most of them are expensive, species-dependent, complex to use, and available only for major crops. To overcome such limitations, we present the open-source software GiNA, which is a simple and free tool for measuring horticultural traits such as shape- and color-related parameters of fruits, vegetables, and seeds. GiNA is multiplatform software available in both R and MATLAB® programming languages and uses conventional images from digital cameras with minimal requirements. It can process up to 11 different horticultural morphological traits such as length, width, two-dimensional area, volume, projected skin, surface area, RGB color, among other parameters. Different validation tests produced highly consistent results under different lighting conditions and camera setups making GiNA a very reliable platform for high-throughput phenotyping. In addition, five-fold cross validation between manually generated and GiNA measurements for length and width in cranberry fruits were 0.97 and 0.92. In addition, the same strategy yielded prediction accuracies above 0.83 for color estimates produced from images of cranberries analyzed with GiNA compared to total anthocyanin content (TAcy) of the same fruits measured with the standard methodology of the industry. Our platform provides a scalable, easy-to-use and affordable tool for massive acquisition of phenotypic data of fruits, seeds, and vegetables.

  1. GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping

    PubMed Central

    Diaz-Garcia, Luis; Covarrubias-Pazaran, Giovanny; Schlautman, Brandon; Zalapa, Juan

    2016-01-01

    Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed, but most of them are expensive, species-dependent, complex to use, and available only for major crops. To overcome such limitations, we present the open-source software GiNA, which is a simple and free tool for measuring horticultural traits such as shape- and color-related parameters of fruits, vegetables, and seeds. GiNA is multiplatform software available in both R and MATLAB® programming languages and uses conventional images from digital cameras with minimal requirements. It can process up to 11 different horticultural morphological traits such as length, width, two-dimensional area, volume, projected skin, surface area, RGB color, among other parameters. Different validation tests produced highly consistent results under different lighting conditions and camera setups making GiNA a very reliable platform for high-throughput phenotyping. In addition, five-fold cross validation between manually generated and GiNA measurements for length and width in cranberry fruits were 0.97 and 0.92. In addition, the same strategy yielded prediction accuracies above 0.83 for color estimates produced from images of cranberries analyzed with GiNA compared to total anthocyanin content (TAcy) of the same fruits measured with the standard methodology of the industry. Our platform provides a scalable, easy-to-use and affordable tool for massive acquisition of phenotypic data of fruits, seeds, and vegetables. PMID:27529547

  2. Phenotypic Variability in the Coccolithophore Emiliania huxleyi.

    PubMed

    Blanco-Ameijeiras, Sonia; Lebrato, Mario; Stoll, Heather M; Iglesias-Rodriguez, Debora; Müller, Marius N; Méndez-Vicente, Ana; Oschlies, Andreas

    2016-01-01

    Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean.

  3. Phenotypic Variability in the Coccolithophore Emiliania huxleyi

    PubMed Central

    Lebrato, Mario; Stoll, Heather M.; Iglesias-Rodriguez, Debora; Müller, Marius N.; Méndez-Vicente, Ana; Oschlies, Andreas

    2016-01-01

    Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean. PMID:27348427

  4. Cancer Stem Cells: Cellular Plasticity, Niche, and its Clinical Relevance.

    PubMed

    Lee, Gina; Hall, Robert R; Ahmed, Atique U

    2016-10-01

    Cancer handles an estimated 7.6 million deaths worldwide per annum. A recent theory focuses on the role Cancer Stem Cells (CSCs) in driving tumorigenesis and disease progression. This theory hypothesizes that a population of the tumor cell with similar functional and phenotypic characteristics as normal tissue stem cells are responsible for formation and advancement of many human cancers. The CSCs subpopulation can differentiate into non-CSC tumor cells and promote phenotypic and functional heterogeneity within the tumor. The presence of CSCs has been reported in a number of human cancers including blood, breast, brain, colon, lung, pancreas prostate and liver. Although the origin of CSCs remains a mystery, recent reports suggest that the phenotypic characteristics of CSCs may be plastic and are influenced by the microenvironment specific for the individual tumor. Such factors unique to each tumor preserve the dynamic balance between CSCs to non-CSCs cell fate, as well as maintain the proper equilibrium. Alternating such equilibrium via dedifferentiation can result in aggressiveness, as CSCs are considered to be more resistant to the conventional cancer treatments of chemotherapy and radiation. Understanding how the tumoral microenvironment affects the plasticity driven CSC niche will be critical for developing a more effective treatment for cancer by eliminating its aggressive and recurring nature that now is believed to be perpetuated by CSCs.

  5. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops.

    PubMed

    Bhatnagar-Mathur, Pooja; Sunkara, Sowmini; Bhatnagar-Panwar, Madhurima; Waliyar, Farid; Sharma, Kiran Kumar

    2015-05-01

    Aflatoxins are toxic, carcinogenic, mutagenic, teratogenic and immunosuppressive byproducts of Aspergillus spp. that contaminate a wide range of crops such as maize, peanut, and cotton. Aflatoxin not only affects crop production but renders the produce unfit for consumption and harmful to human and livestock health, with stringent threshold limits of acceptability. In many crops, breeding for resistance is not a reliable option because of the limited availability of genotypes with durable resistance to Aspergillus. Understanding the fungal/crop/environment interactions involved in aflatoxin contamination is therefore essential in designing measures for its prevention and control. For a sustainable solution to aflatoxin contamination, research must be focused on identifying and improving knowledge of host-plant resistance factors to aflatoxin accumulation. Current advances in genetic transformation, proteomics, RNAi technology, and marker-assisted selection offer great potential in minimizing pre-harvest aflatoxin contamination in cultivated crop species. Moreover, developing effective phenotyping strategies for transgenic as well as precision breeding of resistance genes into commercial varieties is critical. While appropriate storage practices can generally minimize post-harvest aflatoxin contamination in crops, the use of biotechnology to interrupt the probability of pre-harvest infection and contamination has the potential to provide sustainable solution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Spontaneous mutation rate is a plastic trait associated with population density across domains of life.

    PubMed

    Krašovec, Rok; Richards, Huw; Gifford, Danna R; Hatcher, Charlie; Faulkner, Katy J; Belavkin, Roman V; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J; Knight, Christopher G

    2017-08-01

    Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life.

  7. Spontaneous mutation rate is a plastic trait associated with population density across domains of life

    PubMed Central

    Gifford, Danna R.; Hatcher, Charlie; Faulkner, Katy J.; Belavkin, Roman V.; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J.

    2017-01-01

    Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life. PMID:28837573

  8. Path analysis of phenotypic traits in young cacao plants under drought conditions.

    PubMed

    Santos, Emerson Alves Dos; Almeida, Alex-Alan Furtado de; Branco, Marcia Christina da Silva; Santos, Ivanildes Conceição Dos; Ahnert, Dario; Baligar, Virupax C; Valle, Raúl René

    2018-01-01

    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant.

  9. Path analysis of phenotypic traits in young cacao plants under drought conditions

    PubMed Central

    dos Santos, Emerson Alves; de Almeida, Alex-Alan Furtado; Branco, Marcia Christina da Silva; dos Santos, Ivanildes Conceição; Ahnert, Dario; Baligar, Virupax C.; Valle, Raúl René

    2018-01-01

    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant. PMID:29408854

  10. Endocrine mediated phenotypic plasticity: condition-dependent effects of juvenile hormone on dominance and fertility of wasp queens.

    PubMed

    Tibbetts, Elizabeth A; Izzo, Amanda S

    2009-11-01

    There has been increasing interest in the mechanisms that mediate behavioral and physiological plasticity across individuals with similar genotypes. Some of the most dramatic plasticity is found within and between social insect castes. For example, Polistes wasp queens can nest alone, dominate a group of cooperative queens, or act as worker-like subordinates who rarely reproduce. Previous work suggests that condition-dependent endocrine responses may play a role in plasticity between castes in the hymenoptera. Here, we test whether condition-dependent endocrine responses influence plasticity within castes in the wasp Polistes dominulus. We experimentally manipulate juvenile hormone (JH) titers in nest-founding queens and assess whether JH mediates variation in behavior and physiology. JH generally increased dominance and fertility of queens, but JH's effects were not uniform across individuals. JH had a stronger effect on the dominance and fertility of large individuals and individuals with facial patterns advertising high quality than on the dominance and fertility of small individuals and those advertising low quality. These results demonstrate that JH has condition-dependent effects. As such, they clarify how JH can mediate different behaviors in well nourished queens and poorly nourished workers. Many Polistes queens nest cooperatively with other queens, so condition-dependent hormonal responses provide a mechanism for queens to adaptively allocate energy based on their probability of successfully becoming the dominant queen. Research on the endocrine basis of plasticity often focuses on variation in endocrine titers alone. However, differential endocrine responses are likely to be a widespread mechanism mediating behavioral and physiological plasticity.

  11. Extensive transcriptional response associated with seasonal plasticity of butterfly wing patterns.

    PubMed

    Daniels, Emily V; Murad, Rabi; Mortazavi, Ali; Reed, Robert D

    2014-12-01

    In the eastern United States, the buckeye butterfly, Junonia coenia, shows seasonal wing colour plasticity where adults emerging in the spring are tan, while those emerging in the autumn are dark red. This variation can be artificially induced in laboratory colonies, thus making J. coenia a useful model system to examine the mechanistic basis of plasticity. To better understand the developmental basis of seasonal plasticity, we used RNA-seq to quantify transcription profiles associated with development of alternative seasonal wing morphs. Depending on the developmental stage, between 547 and 1420 transfrags were significantly differentially expressed between morphs. These extensive differences in gene expression stand in contrast to the much smaller numbers of differentially expressed transcripts identified in previous studies of genetic wing pattern variation in other species and suggest that environmentally induced phenotypic shifts arise from very broad systemic processes. Analyses of candidate endocrine and pigmentation transcripts revealed notable genes upregulated in the red morph, including several ecdysone-associated genes, and cinnabar, an ommochrome pigmentation gene implicated in colour pattern variation in other butterflies. We also found multiple melanin-related transcripts strongly upregulated in the red morph, including tan and yellow-family genes, leading us to speculate that dark red pigmentation in autumn J. coenia may involve nonommochrome pigments. While we identified several endocrine and pigmentation genes as obvious candidates for seasonal colour morph differentiation, we speculate that the majority of observed expression differences were due to thermal stress response. The buckeye transcriptome provides a basis for further developmental studies of phenotypic plasticity. © 2014 John Wiley & Sons Ltd.

  12. Elevated temperature is more effective than elevated [CO2 ] in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change.

    PubMed

    Huang, Guomin; Rymer, Paul D; Duan, Honglang; Smith, Renee A; Tissue, David T

    2015-10-01

    Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2 ] (CE ) and elevated temperature (TE ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE . We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under CE or TE , and the interactive effects of CE and TE on intraspecific variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes. © 2015 John Wiley & Sons Ltd.

  13. The Potential of Five Winter-grown Crops to Reduce Root-knot Nematode Damage and Increase Yield of Tomato

    PubMed Central

    López-Pérez, Jose Antonio; Roubtsova, Tatiana; de Cara García, Miguel

    2010-01-01

    Broccoli (Brassica oleracea), carrot (Daucus carota), marigold (Tagetes patula), nematode-resistant tomato (Solanum lycopersicum), and strawberry (Fragaria ananassa) were grown for three years during the winter in a root-knot nematode (Meloidogyne incognita) infested field in Southern California. Each year in the spring, the tops of all crops were shredded and incorporated in the soil. Amendment with poultry litter was included as a sub-treatment. The soil was then covered with clear plastic for six weeks and M. incognita-susceptible tomato was grown during the summer season. Plastic tarping raised the average soil temperature at 13 cm depth by 7°C.The different winter-grown crops or the poultry litter did not affect M. incognita soil population levels. However, root galling on summer tomato was reduced by 36%, and tomato yields increased by 19% after incorporating broccoli compared to the fallow control. This crop also produced the highest amount of biomass of the five winter-grown crops. Over the three-year trial period, poultry litter increased tomato yields, but did not affect root galling caused by M. incognita. We conclude that cultivation followed by soil incorporation of broccoli reduced M. incognita damage to tomato. This effect is possibly due to delaying or preventing a portion of the nematodes to reach the host roots. We also observed that M. incognita populations did not increase under a host crop during the cool season when soil temperatures remained low (< 18°C). PMID:22736848

  14. Comparing the strength of behavioural plasticity and consistency across situations: animal personalities in the hermit crab Pagurus bernhardus

    PubMed Central

    Briffa, Mark; Rundle, Simon D; Fryer, Adam

    2008-01-01

    Many phenotypic traits show plasticity but behaviour is often considered the ‘most plastic’ aspect of phenotype as it is likely to show the quickest response to temporal changes in conditions or ‘situation’. However, it has also been noted that constraints on sensory acuity, cognitive structure and physiological capacities place limits on behavioural plasticity. Such limits to plasticity may generate consistent differences in behaviour between individuals from the same population. It has recently been suggested that these consistent differences in individual behaviour may be adaptive and the term ‘animal personalities’ has been used to describe them. In many cases, however, a degree of both behavioural plasticity and relative consistency is probable. To understand the possible functions of animal personalities, it is necessary to determine the relative strength of each tendency and this may be achieved by comparison of statistical effect sizes for tests of difference and concordance. Here, we describe a new statistical framework for making such comparisons and investigate cross-situational plasticity and consistency in the duration of startle responses in the European hermit crab Pagurus bernhardus, in the field and the laboratory. The effect sizes of tests for behavioural consistency were greater than for tests of behavioural plasticity, indicating for the first time the presence of animal personalities in a crustacean model. PMID:18331983

  15. The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.

    PubMed

    Niu, Yuanling; Wang, Yue; Zhou, Da

    2015-12-07

    The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.

    PubMed

    Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina

    2015-10-01

    The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.

  17. Delayed in vitro development of Up states but normal network plasticity in Fragile X circuits.

    PubMed

    Motanis, Helen; Buonomano, Dean

    2015-09-01

    A broad range of neurophysiological phenotypes have been reported since the generation of the first mouse model of Fragile X syndrome (FXS). However, it remains unclear which phenotypes are causally related to the cognitive deficits associated with FXS. Indeed, because many of these phenotypes are known to be modulated by experience, a confounding factor in the interpretation of many studies is whether some phenotypes are an indirect consequence of abnormal development and experience. To help diminish this confound we first conducted an in vitro developmental study of spontaneous neural dynamics in cortical organotypic cultures. A significant developmental increase in network activity and Up states was observed in both wild-type and Fmr1(-/y) circuits, along with a specific developmental delay in the emergence of Up states in knockout circuits. To determine whether Up state regulation is generally impaired in FXS circuits, we examined Up state plasticity using chronic optogenetic stimulation. Wild-type and Fmr1(-/y) stimulated circuits exhibited a significant decrease in overall spontaneous activity including Up state frequency; however, no significant effect of genotype was observed. These results demonstrate that developmental delays characteristic of FXS are recapitulated during in vitro development, and that Up state abnormalities are probably a direct consequence of the disease, and not an indirect consequence of abnormal experience. However, the fact that Fmr1(-/y) circuits exhibited normal homeostatic modulation of Up states suggests that these plasticity mechanisms are largely intact, and that some of the previously reported plasticity deficits could reflect abnormal experience or the engagement of compensatory mechanisms. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Transient Shifts of Incubation Temperature Reveal Immediate and Long-Term Transcriptional Response in Chicken Breast Muscle Underpinning Resilience and Phenotypic Plasticity.

    PubMed

    Naraballobh, Watcharapong; Trakooljul, Nares; Murani, Eduard; Brunner, Ronald; Krischek, Carsten; Janisch, Sabine; Wicke, Michael; Ponsuksili, Siriluck; Wimmers, Klaus

    2016-01-01

    transiently decreased incubation temperature, which did not affect the phenotypes, prompts compensatory effects reflecting resilience. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype. These mechanisms of considerable phenotypic plasticity contribute to the biodiversity and broaden the basis for managing poultry populations.

  19. Coordination and plasticity in leaf anatomical traits of invasive and native vine species.

    PubMed

    Osunkoya, Olusegun O; Boyne, Richard; Scharaschkin, Tanya

    2014-09-01

    • Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance.• Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum. © 2014 Botanical Society of America, Inc.

  20. Paying and playing with plastic. The meaning of plastics, plasticity, and plastic surgery.

    PubMed

    Williams, D

    1996-11-01

    Plastics are not only the proverbial everyday commodity, but they also permeate almost every aspect of medical devices, from technology to clinical application. This article addresses some of the confusing features of plasticity as they relate to the materials called plastics, to the phenomena of material plasticity, and to the clinical and biological usage of the word.

  1. Reactivation of stalled polyribosomes in synaptic plasticity

    PubMed Central

    Graber, Tyson E.; Hébert-Seropian, Sarah; Khoutorsky, Arkady; David, Alexandre; Yewdell, Jonathan W.; Lacaille, Jean-Claude; Sossin, Wayne S.

    2013-01-01

    Some forms of synaptic plasticity require rapid, local activation of protein synthesis. Although this is thought to reflect recruitment of mRNAs to free ribosomes, this would limit the speed and magnitude of translational activation. Here we provide compelling in situ evidence supporting an alternative model in which synaptic mRNAs are transported as stably paused polyribosomes. Remarkably, we show that metabotropic glutamate receptor activation allows the synthesis of proteins that lead to a functional long-term depression phenotype even when translation initiation has been greatly reduced. Thus, neurons evolved a unique mechanism to swiftly translate synaptic mRNAs into functional protein upon synaptic signaling using stalled polyribosomes to bypass the rate-limiting step of translation initiation. Because dysregulated plasticity is implicated in neurodevelopmental and psychiatric disorders such as fragile X syndrome, this work uncovers a unique translational target for therapies. PMID:24043809

  2. Towards a reference plant trait ontology for modeling knowledge of plant traits and phenotypes

    USDA-ARS?s Scientific Manuscript database

    Ontology engineering and knowledge modeling for the plant sciences is expected to contribute to the understanding of the basis of plant traits that determine phenotypic expression in a given environment. Several crop- or clade-specific plant trait ontologies have been developed to describe plant tr...

  3. Norway maple displays greater seasonal growth and phenotypic plasticity to light than native sugar maple.

    PubMed

    Paquette, Alain; Fontaine, Bastien; Berninger, Frank; Dubois, Karine; Lechowicz, Martin J; Messier, Christian; Posada, Juan M; Valladares, Fernando; Brisson, Jacques

    2012-11-01

    Norway maple (Acer platanoides L), which is among the most invasive tree species in forests of eastern North America, is associated with reduced regeneration of the related native species, sugar maple (Acer saccharum Marsh) and other native flora. To identify traits conferring an advantage to Norway maple, we grew both species through an entire growing season under simulated light regimes mimicking a closed forest understorey vs. a canopy disturbance (gap). Dynamic shade-houses providing a succession of high-intensity direct-light events between longer periods of low, diffuse light were used to simulate the light regimes. We assessed seedling height growth three times in the season, as well as stem diameter, maximum photosynthetic capacity, biomass allocation above- and below-ground, seasonal phenology and phenotypic plasticity. Given the north European provenance of Norway maple, we also investigated the possibility that its growth in North America might be increased by delayed fall senescence. We found that Norway maple had significantly greater photosynthetic capacity in both light regimes and grew larger in stem diameter than sugar maple. The differences in below- and above-ground biomass, stem diameter, height and maximum photosynthesis were especially important in the simulated gap where Norway maple continued extension growth during the late fall. In the gap regime sugar maple had a significantly higher root : shoot ratio that could confer an advantage in the deepest shade of closed understorey and under water stress or browsing pressure. Norway maple is especially invasive following canopy disturbance where the opposite (low root : shoot ratio) could confer a competitive advantage. Considering the effects of global change in extending the potential growing season, we anticipate that the invasiveness of Norway maple will increase in the future.

  4. Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics.

    PubMed

    Bradford, Kent J; Van Deynze, Allen; Gutterson, Neal; Parrott, Wayne; Strauss, Steven H

    2005-04-01

    The costs of meeting regulatory requirements and market restrictions guided by regulatory criteria are substantial impediments to the commercialization of transgenic crops. Although a cautious approach may have been prudent initially, we argue that some regulatory requirements can now be modified to reduce costs and uncertainty without compromising safety. Long-accepted plant breeding methods for incorporating new diversity into crop varieties, experience from two decades of research on and commercialization of transgenic crops, and expanding knowledge of plant genome structure and dynamics all indicate that if a gene or trait is safe, the genetic engineering process itself presents little potential for unexpected consequences that would not be identified or eliminated in the variety development process before commercialization. We propose that as in conventional breeding, regulatory emphasis should be on phenotypic rather than genomic characteristics once a gene or trait has been shown to be safe.

  5. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis

    PubMed Central

    Jolly, Mohit Kumar; Boareto, Marcelo; Huang, Bin; Jia, Dongya; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.; Levine, Herbert

    2015-01-01

    Transitions between epithelial and mesenchymal phenotypes – the epithelial to ­mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and hybrid E/M – and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell–cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary “bad actors” of metastasis. PMID:26258068

  6. RGB picture vegetation indexes for High-Throughput Phenotyping Platforms (HTPPs)

    NASA Astrophysics Data System (ADS)

    Kefauver, Shawn C.; El-Haddad, George; Vergara-Diaz, Omar; Araus, José Luis

    2015-10-01

    Extreme and abnormal weather events, as well as the more gradual meteorological changes associated with climate change, often coincide with not only increased abiotic risks (such as increases in temperature and decreases in precipitation), but also increased biotic risks due to environmental conditions that favor the rapid spread of crop pests and diseases. Durum wheat is by extension the most cultivated cereal in the south and east margins of the Mediterranean Basin. It is of strategic importance for Mediterranean agriculture to develop new varieties of durum wheat with greater production potential, better adaptation to increasingly adverse environmental conditions (drought) and better grain quality. Similarly, maize is the top staple crop for low-income populations in Sub-Saharan Africa and is currently suffering from the appearance of new diseases, which, together with increased abiotic stresses from climate change, are challenging the very sustainability of African societies. Current constraints in field phenotyping remain a major bottleneck for future breeding advances, but RGB-based High-Throughput Phenotyping Platforms (HTPPs) have shown promise for rapidly developing both disease-resistant and weather-resilient crops. RGB cameras have proven costeffective in studies assessing the effect of abiotic stresses, but have yet to be fully exploited to phenotype disease resistance. Recent analyses of durum wheat in Spain have shown RGB vegetation indexes to outperform multispectral indexes such as NDVI consistently in disease and yield prediction. Towards HTTP development for breeding maize disease resistance, some of the same RGB picture vegetation indexes outperformed NDVI (Normalized Difference Vegetation Index), with R2 values up to 0.65, compared to 0.56 for NDVI. . Specifically, hue, a*, u*, and Green Area (GA), as produced by FIJI and BreedPix open source software, performed similar to or better than NDVI in predicting yield and disease severity conditions

  7. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change

    PubMed Central

    2016-01-01

    Invasive pathogens can cause considerable damage to forest ecosystems. Lack of coevolution is generally thought to enable invasive pathogens to bypass the defence and/or recognition systems in the host. Although mostly true, this argument fails to predict intermittent outcomes in space and time, underlining the need to include the roles of the environment and the phenotype in host–pathogen interactions when predicting disease impacts. We emphasize the need to consider host–tree imbalances from a phenotypic perspective, considering the lack of coevolutionary and evolutionary history with the pathogen and the environment, respectively. We describe how phenotypic plasticity and plastic responses to environmental shifts may become maladaptive when hosts are faced with novel pathogens. The lack of host–pathogen and environmental coevolution are aligned with two global processes currently driving forest damage: globalization and climate change, respectively. We suggest that globalization and climate change act synergistically, increasing the chances of both genotypic and phenotypic imbalances. Short moves on the same continent are more likely to be in balance than if the move is from another part of the world. We use Gremmeniella abietina outbreaks in Sweden to exemplify how host–pathogen phenotypic interactions can help to predict the impacts of specific invasive and emergent diseases. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080981

  8. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change.

    PubMed

    Stenlid, Jan; Oliva, Jonàs

    2016-12-05

    Invasive pathogens can cause considerable damage to forest ecosystems. Lack of coevolution is generally thought to enable invasive pathogens to bypass the defence and/or recognition systems in the host. Although mostly true, this argument fails to predict intermittent outcomes in space and time, underlining the need to include the roles of the environment and the phenotype in host-pathogen interactions when predicting disease impacts. We emphasize the need to consider host-tree imbalances from a phenotypic perspective, considering the lack of coevolutionary and evolutionary history with the pathogen and the environment, respectively. We describe how phenotypic plasticity and plastic responses to environmental shifts may become maladaptive when hosts are faced with novel pathogens. The lack of host-pathogen and environmental coevolution are aligned with two global processes currently driving forest damage: globalization and climate change, respectively. We suggest that globalization and climate change act synergistically, increasing the chances of both genotypic and phenotypic imbalances. Short moves on the same continent are more likely to be in balance than if the move is from another part of the world. We use Gremmeniella abietina outbreaks in Sweden to exemplify how host-pathogen phenotypic interactions can help to predict the impacts of specific invasive and emergent diseases.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  9. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield.

    PubMed

    Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J

    2017-06-15

    Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  11. CARDIAC-LIKE OSCILLATION IN LIVER STEM CELLS INDUCE THEIR ACQUISITION OF CARDIAC PHENOTYPE

    EPA Science Inventory

    We examined in a cardiac microenvironment the plasticity of a liver stem cell line (WB F344) generated from a cloned, single, non-parenchymal epithelial cell from a normal adult male rat. Our previous studies suggested that WB F344 cells acquire a cardiac phenotype in the absenc...

  12. Interdependent effects of male and female body size plasticity on mating behaviour of predatory mites.

    PubMed

    Walzer, Andreas; Schausberger, Peter

    2015-02-01

    The adaptive canalization hypothesis predicts that traits with low phenotypic plasticity are more fitness relevant, because they have been canalized via strong past selection, than traits with high phenotypic plasticity. Based on differing male body size plasticities of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity), we accordingly hypothesized that small male body size entails higher costs in female choice and male-male competition in P. persimilis than N. californicus . Males of both species are highly polygynous but females differ in the level of polyandry (low level in P. persimilis ; medium level in N. californicus ). We videotaped the mating interactions in triplets of either P. persimilis or N. californicus , consisting of a virgin female (small or standard-sized) and a small and a standard-sized male. Mating by both small and standard-sized P. persimilis females was biased towards standard-sized males, resulting from the interplay between female preference for standard-sized males and the inferiority of small males in male-male competition. In contrast, mating by N. californicus females was equally balanced between small and standard-sized males. Small N. californicus males were more aggressive ('Napoleon complex') in male-male competition, reducing the likelihood of encounter between the standard-sized male and the female, and thus counterbalancing female preference for standard-sized males. Our results support the hypothesis that male body size is more important to fitness in the low-level polyandrous P. persimilis than in the medium-level polyandrous N. californicus and provide a key example of the implications of sexually selected body size plasticity on mating behaviour.

  13. Interdependent effects of male and female body size plasticity on mating behaviour of predatory mites

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2015-01-01

    The adaptive canalization hypothesis predicts that traits with low phenotypic plasticity are more fitness relevant, because they have been canalized via strong past selection, than traits with high phenotypic plasticity. Based on differing male body size plasticities of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity), we accordingly hypothesized that small male body size entails higher costs in female choice and male–male competition in P. persimilis than N. californicus. Males of both species are highly polygynous but females differ in the level of polyandry (low level in P. persimilis; medium level in N. californicus). We videotaped the mating interactions in triplets of either P. persimilis or N. californicus, consisting of a virgin female (small or standard-sized) and a small and a standard-sized male. Mating by both small and standard-sized P. persimilis females was biased towards standard-sized males, resulting from the interplay between female preference for standard-sized males and the inferiority of small males in male–male competition. In contrast, mating by N. californicus females was equally balanced between small and standard-sized males. Small N. californicus males were more aggressive (‘Napoleon complex’) in male–male competition, reducing the likelihood of encounter between the standard-sized male and the female, and thus counterbalancing female preference for standard-sized males. Our results support the hypothesis that male body size is more important to fitness in the low-level polyandrous P. persimilis than in the medium-level polyandrous N. californicus and provide a key example of the implications of sexually selected body size plasticity on mating behaviour. PMID:25673881

  14. Peruvian Maca (Lepidium peruvianum): (II) Phytochemical Profiles of Four Prime Maca Phenotypes Grown in Two Geographically-Distant Locations.

    PubMed

    O Meissner, Henry; Mscisz, Alina; Piatkowska, Ewa; Baraniak, Marek; Mielcarek, Sebastian; Kedzia, Bogdan; Holderna-Kedzia, Elzbieta; Pisulewski, Pawel

    2016-03-01

    Peruvian Maca crops (Lepidium peruvianum), grown in two geographically-distant cultivation sites located at similar altitudes in the highlands of the Peruvian Andes (Junin at 4,200 m a.s.l. and Ancash 4,150 m a.s.l.), were used in the study. Four prime Maca phenotypes, distinguished by hypocotyl colours labelled as "Yellow", "Purple", "Red" and "Black" were selected to determine distribution in levels and corresponding ratios between individual Glucosinolates (Glucotropaeolin and m-methylglucotropaeolin) in an attempt to identify four Peruvian Maca phenotypes from analyses of powdered hypocotyls. There were highly significant differences (P<0.01) in hypocotyl weight/size of four Maca phenotypes harvested in two locations. The Junin crop represented a mostly "large" class (13.3 g) with "small" size hypocotyls (7.2 g), while a "small" class was predominant in Ancash (3.5 g). Powdered Yellow Maca showed significantly higher (P<0.001) microbial contamination than the other three, with Black Maca being the least infected. Only minor, statistically-confirmed differences were detected in nutritive characteristics between the four Maca phenotypes grown in Junin, however highly significant differences (P<0.01) in Glucosinolates existed between the Red and Black Maca grown in Junin and Ancash. Irrespective of the cultivation location, Red phenotypes showed the highest content of Total Glucosinolates, followed by Black and Purple, with the Yellow phenotype showing consistently lower levels. Highly significant P<0.01) differences determined in ratios of individual Glucosinolates between four Maca phenotypes grown in two locations, confirms an earlier assumption that sums of individual Glucosinolates, their ratios and profiles, may be feasible to explore in analytically identifying individual Maca phenotypes in pulverised marketed Maca products.

  15. Developmental Control and Plasticity of Fruit and Seed Dimorphism in Aethionema arabicum1[CC-BY

    PubMed Central

    Lenser, Teresa; Adigüzel, Nezaket; Dönmez, Ali A.; Grosche, Christopher; Kettermann, Marcel; Mayland-Quellhorst, Sara; Mohammadin, Setareh; Rümpler, Florian; Sperber, Katja; Wiegand, Nils

    2016-01-01

    Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum. Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity. PMID:27702842

  16. Genetic Control of Plasticity in Root Morphology and Anatomy of Rice in Response to Water Deficit1[OPEN

    PubMed Central

    Tamilselvan, Anandhan; Lawas, Lovely M.F.; Quinones, Cherryl; Bahuguna, Rajeev N.; Dingkuhn, Michael

    2017-01-01

    Elucidating the genetic control of rooting behavior under water-deficit stress is essential to breed climate-robust rice (Oryza sativa) cultivars. Using a diverse panel of 274 indica genotypes grown under control and water-deficit conditions during vegetative growth, we phenotyped 35 traits, mostly related to root morphology and anatomy, involving 45,000 root-scanning images and nearly 25,000 cross sections from the root-shoot junction. The phenotypic plasticity of these traits was quantified as the relative change in trait value under water-deficit compared with control conditions. We then carried out a genome-wide association analysis on these traits and their plasticity, using 45,608 high-quality single-nucleotide polymorphisms. One hundred four significant loci were detected for these traits under control conditions, 106 were detected under water-deficit stress, and 76 were detected for trait plasticity. We predicted 296 (control), 284 (water-deficit stress), and 233 (plasticity) a priori candidate genes within linkage disequilibrium blocks for these loci. We identified key a priori candidate genes regulating root growth and development and relevant alleles that, upon validation, can help improve rice adaptation to water-deficit stress. PMID:28600346

  17. Developmental plasticity and language: A comparative perspective

    PubMed Central

    Griebel, Ulrike; Pepperberg, Irene; Oller, D. Kimbrough

    2016-01-01

    The growing field of evo-devo is increasingly demonstrating the complexity of steps involved in genetic, intracellular regulatory, and extracellular environmental control of the development of phenotypes. A key result of such work is an account for the remarkable plasticity of organismal form in many species based on relatively minor changes in regulation of highly conserved genes and genetic processes. Accounting for behavioral plasticity is of similar potential interest but has received far less attention. Of particular interest is plasticity in communication systems, where human language represents an ultimate target for research. The present paper considers plasticity of language capabilities in a comparative framework, focusing attention on examples of a remarkable fact: Whereas there exist design features of mature human language that have never been observed to occur in nonhumans in the wild, many of these features can be developed to notable extents when nonhumans are enculturated through human training (especially with intensive social interaction). These examples of enculturated developmental plasticity across extremely diverse taxa suggest, consistent with the evo-devo theme of highly conserved processes in evolution, that human language is founded in part on cognitive capabilities that are indeed ancient and that even modern humans show self-organized emergence of many language capabilities in the context of rich enculturation, built on the special social/ecological history of the hominin line. Human culture can thus be seen as a regulatory system encouraging language development in the context of a cognitive background with many highly conserved features. PMID:27003391

  18. Developmental Plasticity and Language: A Comparative Perspective.

    PubMed

    Griebel, Ulrike; Pepperberg, Irene M; Oller, D Kimbrough

    2016-04-01

    The growing field of evo-devo is increasingly demonstrating the complexity of steps involved in genetic, intracellular regulatory, and extracellular environmental control of the development of phenotypes. A key result of such work is an account for the remarkable plasticity of organismal form in many species based on relatively minor changes in regulation of highly conserved genes and genetic processes. Accounting for behavioral plasticity is of similar potential interest but has received far less attention. Of particular interest is plasticity in communication systems, where human language represents an ultimate target for research. The present paper considers plasticity of language capabilities in a comparative framework, focusing attention on examples of a remarkable fact: Whereas there exist design features of mature human language that have never been observed to occur in non-humans in the wild, many of these features can be developed to notable extents when non-humans are enculturated through human training (especially with intensive social interaction). These examples of enculturated developmental plasticity across extremely diverse taxa suggest, consistent with the evo-devo theme of highly conserved processes in evolution, that human language is founded in part on cognitive capabilities that are indeed ancient and that even modern humans show self-organized emergence of many language capabilities in the context of rich enculturation, built on the special social/ecological history of the hominin line. Human culture can thus be seen as a regulatory system encouraging language development in the context of a cognitive background with many highly conserved features. Copyright © 2016 Cognitive Science Society, Inc.

  19. High-fidelity detection of crop biomass quantitative trait loci from low-cost imaging in the field

    USDA-ARS?s Scientific Manuscript database

    Field-based, rapid, and non-destructive techniques for assessing plant productivity can accelerate the discovery of genotype-to-phenotype relationships needed to improve next-generation biomass grass crops. The use of hemispherical imaging and light attenuation modeling was evaluated against destruc...

  20. Developmental plasticity in reptiles: Insights into thermal and maternal effects on chameleon phenotypes.

    PubMed

    Andrews, Robin M

    2018-04-23

    Embryonic environments affect a range of phenotypic traits including sex and reproductive success. I determined (1) how the interaction between incubation temperature and egg size affects sex allocation of Chamaeleo calyptratus and (2) how incubation temperature and maternal parent (clutch) affect water uptake by eggs and body size, growth, and climbing speed of hatchlings and juveniles. Eggs from five clutches were exposed to five temperature treatments with clutches replicated within and among treatments. Temperature affected sex, but only when egg size was included as a factor in analyses. At intermediate (28°C) temperatures, daughters were more likely to be produced from large eggs and sons more likely to be produced from small eggs, while at 25 and 30°C, the pattern of sex allocation was reversed. Temperature and clutch affected water uptake and body size. Nonetheless, the direction of temperature and clutch effects on water uptake by eggs and on the size of hatchlings were not the same and the direction of temperature effects on body sizes of hatchlings and juveniles differed as well. Clutch affected hatchling size but not juvenile size and growth rate. Clutch, but not incubation temperature, affected climbing speed, but the fastest hatchlings were not from the same clutches as the fastest juveniles. The independent effects of incubation temperature and clutch indicate that hatchling phenotypes are influenced largely by conditions experienced during incubation, while juvenile phenotypes are influenced largely by conditions experienced in the rearing environment. © 2018 Wiley Periodicals, Inc.

  1. Gene expression plasticity in response to salinity acclimation in threespine stickleback ecotypes from different salinity habitats.

    PubMed

    Gibbons, Taylor C; Metzger, David C H; Healy, Timothy M; Schulte, Patricia M

    2017-05-01

    Phenotypic plasticity is thought to facilitate the colonization of novel environments and shape the direction of evolution in colonizing populations. However, the relative prevalence of various predicted patterns of changes in phenotypic plasticity following colonization remains unclear. Here, we use a whole-transcriptome approach to characterize patterns of gene expression plasticity in the gills of a freshwater-adapted and a saltwater-adapted ecotype of threespine stickleback (Gasterosteus aculeatus) exposed to a range of salinities. The response of the gill transcriptome to environmental salinity had a large shared component common to both ecotypes (2159 genes) with significant enrichment of genes involved in transmembrane ion transport and the restructuring of the gill epithelium. This transcriptional response to freshwater acclimation is induced at salinities below two parts per thousand. There was also differentiation in gene expression patterns between ecotypes (2515 genes), particularly in processes important for changes in the gill structure and permeability. Only 508 genes that differed between ecotypes also responded to salinity and no specific processes were enriched among this gene set, and an even smaller number (87 genes) showed evidence of changes in the extent of the response to salinity acclimation between ecotypes. No pattern of relative expression dominated among these genes, suggesting that neither gains nor losses of plasticity dominated the changes in expression patterns between the ecotypes. These data demonstrate that multiple patterns of changes in gene expression plasticity can occur following colonization of novel habitats. © 2017 John Wiley & Sons Ltd.

  2. Pronounced within-individual plasticity in sperm morphometry across social environments.

    PubMed

    Immler, Simone; Pryke, Sarah R; Birkhead, Tim R; Griffith, Simon C

    2010-06-01

    Sperm morphometry (i.e., size and shape) and function are important determinants of male reproductive success and are thought to be under stabilizing selection. However, recent studies suggest that sperm morphometry can be a phenotypically plastic trait, which can be adjusted to varying conditions. We tested whether different behavioral strategies in aggression between aggressive red and nonaggressive black males of the color polymorphic Gouldian finch (Erythrura gouldiae) can influence sperm morphometry. We show pronounced within-individual phenotypic plasticity in sperm morphometry of male Gouldian finches in three different social environments. Both red and black males placed in intermediate to high competitive environments (high frequency of red males) increased the relative length of their sperm midpiece. By contrast, red males placed in low to intermediate competitive environments (higher frequency of black males) increased the length of the sperm flagellum. Significant changes in stress and sex steroid hormone levels (in response to the competitive environment) appear to influence sperm traits in red but not in black males, suggesting that changes in hormonal levels are not solely responsible for the observed changes in sperm morphometry. These findings imply that males can adjust sperm morphometry across social environments.

  3. Interspecific competition alters natural selection on shade avoidance phenotypes in Impatiens capensis.

    PubMed

    McGoey, Brechann V; Stinchcombe, John R

    2009-08-01

    Shade avoidance syndrome is a known adaptive response for Impatiens capensis growing in dense intraspecific competition. However, I. capensis also grow with dominant interspecific competitors in marshes. Here, we compare the I. capensis shade-avoidance phenotypes produced in the absence and presence of heterospecific competitors, as well as selection on those traits. Two treatments were established in a marsh; in one treatment all heterospecifics were removed, while in the other, all competitors remained. We compared morphological traits, light parameters, seed output and, using phenotypic selection analysis, examined directional and nonlinear selection operating in the different competitive treatments. Average phenotypes, light parameters and seed production all varied depending on competitive treatment. Phenotypic selection analyses revealed different directional, disruptive, stabilizing and correlational selection. The disparities seen in both phenotypes and selection between the treatments related to the important differences in elongation timing depending on the presence of heterospecifics, although environmental covariances between traits and fitness could also contribute. Phenotypes produced by I. capensis depend on their competitive environment, and differing selection on shade-avoidance traits between competitive environments could indirectly select for increased plasticity given gene flow between populations in different competitive contexts.

  4. Epithelial Plasticity in Castration-Resistant Prostate Cancer: Biology of the Lethal Phenotype

    DTIC Science & Technology

    2011-07-01

    Sorg BS, Albrecht T et al. Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected... exon 658IIIc in Dunning prostate tumors reveals unexpected epithelial 659mesenchymal plasticity. Proc Natl Acad Sci U S A 2006;103: 66014116–21. 24...variant isoforms (such as, for example FGFR2 that includes or excludes either exon IIIc or exon IIIb), or CD133, or any combination of two or more

  5. Handling Procedures of Vegetable Crops

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  6. Personality-matching habitat choice, rather than behavioural plasticity, is a likely driver of a phenotype-environment covariance.

    PubMed

    Holtmann, Benedikt; Santos, Eduardo S A; Lara, Carlos E; Nakagawa, Shinichi

    2017-10-11

    An emerging hypothesis of animal personality posits that animals choose the habitat that best fits their personality, and that the match between habitat and personality can facilitate population differentiation, and eventually speciation. However, behavioural plasticity and the adjustment of behaviours to new environments have been a classical explanation for such matching patterns. Using a population of dunnocks ( Prunella modularis ), we empirically tested whether personality or behavioural plasticity is responsible for the non-random distribution of shy and bold individuals in a heterogeneous environment. We found evidence for bold individuals settling in areas with high human disturbance, but also that birds became bolder with increasing age. Importantly, personality primarily determines the distribution of individuals, and behavioural adjustment over time contributes very little to the observed patterns. We cannot, however, exclude a possibility of very early behavioural plasticity (a type of developmental plasticity) shaping what we refer to as 'personality'. Nonetheless, our findings highlight the role personality plays in shaping population structure, lending support to the theory of personality-mediated speciation. Moreover, personality-matching habitat choice has important implications for population management and conservation. © 2017 The Author(s).

  7. Plasticity in Dendroclimatic Response across the Distribution Range of Aleppo Pine (Pinus halepensis)

    PubMed Central

    de Luis, Martin; Čufar, Katarina; Di Filippo, Alfredo; Novak, Klemen; Papadopoulos, Andreas; Piovesan, Gianluca; Rathgeber, Cyrille B. K.; Raventós, José; Saz, Miguel Angel; Smith, Kevin T.

    2013-01-01

    We investigated the variability of the climate-growth relationship of Aleppo pine across its distribution range in the Mediterranean Basin. We constructed a network of tree-ring index chronologies from 63 sites across the region. Correlation function analysis identified the relationships of tree-ring index to climate factors for each site. We also estimated the dominant climatic gradients of the region using principal component analysis of monthly, seasonal, and annual mean temperature and total precipitation from 1,068 climatic gridpoints. Variation in ring width index was primarily related to precipitation and secondarily to temperature. However, we found that the dendroclimatic relationship depended on the position of the site along the climatic gradient. In the southern part of the distribution range, where temperature was generally higher and precipitation lower than the regional average, reduced growth was also associated with warm and dry conditions. In the northern part, where the average temperature was lower and the precipitation more abundant than the regional average, reduced growth was associated with cool conditions. Thus, our study highlights the substantial plasticity of Aleppo pine in response to different climatic conditions. These results do not resolve the source of response variability as being due to either genetic variation in provenance, to phenotypic plasticity, or a combination of factors. However, as current growth responses to inter-annual climate variability vary spatially across existing climate gradients, future climate-growth relationships will also likely be determined by differential adaptation and/or acclimation responses to spatial climatic variation. The contribution of local adaptation and/or phenotypic plasticity across populations to the persistence of species under global warming could be decisive for prediction of climate change impacts across populations. In this sense, a more complex forest dynamics modeling approach that

  8. Some Like It Hot, Some Like It Warm: Phenotyping to Explore Thermotolerance Diversity

    PubMed Central

    Yeh, Ching-Hui; Kaplinsky, Nicholas J.; Hu, Catherine; Charng, Yee-yung

    2012-01-01

    Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: 1) the heat stress regime used, 2) the developmental stage of the plants being studied, and 3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance. PMID:22920995

  9. Plastic responses of native plant root systems to the presence of an invasive annual grass.

    PubMed

    Phillips, Allison J; Leger, Elizabeth A

    2015-01-01

    • The ability to respond to environmental change via phenotypic plasticity may be important for plants experiencing disturbances such as climate change and plant invasion. Responding to belowground competition through root plasticity may allow native plants to persist in highly invaded systems such as the cold deserts of the Intermountain West, USA.• We investigated whether Poa secunda, a native bunchgrass, could alter root morphology in response to nutrient availability and the presence of a competitive annual grass. Seeds from 20 families were grown with high and low nutrients and harvested after 50 d, and seeds from 48 families, grown with and without Bromus tectorum, were harvested after ∼2 or 6 mo. We measured total biomass, root mass fraction, specific root length (SRL), root tips, allocation to roots of varying diameter, and plasticity in allocation.• Plants had many parallel responses to low nutrients and competition, including increased root tip production, a trait associated with tolerance to reduced resources, though families differed in almost every trait and correlations among trait changes varied among experiments, indicating flexibility in plant responses. Seedlings actively increased SRL and fine root allocation under competition, while older seedlings also increased coarse root allocation, a trait associated with increased tolerance, and increased root mass fraction.• The high degree of genetic variation for root plasticity within natural populations could aid in the long-term persistence of P. secunda because phenotypic plasticity may allow native species to persist in invaded and fluctuating resource environments. © 2015 Botanical Society of America, Inc.

  10. Developing integrated crop knowledge networks to advance candidate gene discovery.

    PubMed

    Hassani-Pak, Keywan; Castellote, Martin; Esch, Maria; Hindle, Matthew; Lysenko, Artem; Taubert, Jan; Rawlings, Christopher

    2016-12-01

    The chances of raising crop productivity to enhance global food security would be greatly improved if we had a complete understanding of all the biological mechanisms that underpinned traits such as crop yield, disease resistance or nutrient and water use efficiency. With more crop genomes emerging all the time, we are nearer having the basic information, at the gene-level, to begin assembling crop gene catalogues and using data from other plant species to understand how the genes function and how their interactions govern crop development and physiology. Unfortunately, the task of creating such a complete knowledge base of gene functions, interaction networks and trait biology is technically challenging because the relevant data are dispersed in myriad databases in a variety of data formats with variable quality and coverage. In this paper we present a general approach for building genome-scale knowledge networks that provide a unified representation of heterogeneous but interconnected datasets to enable effective knowledge mining and gene discovery. We describe the datasets and outline the methods, workflows and tools that we have developed for creating and visualising these networks for the major crop species, wheat and barley. We present the global characteristics of such knowledge networks and with an example linking a seed size phenotype to a barley WRKY transcription factor orthologous to TTG2 from Arabidopsis, we illustrate the value of integrated data in biological knowledge discovery. The software we have developed (www.ondex.org) and the knowledge resources (http://knetminer.rothamsted.ac.uk) we have created are all open-source and provide a first step towards systematic and evidence-based gene discovery in order to facilitate crop improvement.

  11. Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping

    PubMed Central

    Madec, Simon; Irfan, Kamran; Lopez, Jeremy; Comar, Alexis; Hemmerlé, Matthieu; Dutartre, Dan; Praud, Sebastien; Tixier, Marie Helene

    2018-01-01

    Abstract Leaf rolling in maize crops is one of the main plant reactions to water stress that can be visually scored in the field. However, leaf-scoring techniques do not meet the high-throughput requirements needed by breeders for efficient phenotyping. Consequently, this study investigated the relationship between leaf-rolling scores and changes in canopy structure that can be determined by high-throughput remote-sensing techniques. Experiments were conducted in 2015 and 2016 on maize genotypes subjected to water stress. Leaf-rolling was scored visually over the whole day around the flowering stage. Concurrent digital hemispherical photographs were taken to evaluate the impact of leaf-rolling on canopy structure using the computed fraction of intercepted diffuse photosynthetically active radiation, FIPARdif. The results showed that leaves started to roll due to water stress around 09:00 h and leaf-rolling reached its maximum around 15:00 h (the photoperiod was about 05:00–20:00 h). In contrast, plants maintained under well-watered conditions did not show any significant rolling during the same day. A canopy-level index of rolling (CLIR) is proposed to quantify the diurnal changes in canopy structure induced by leaf-rolling. It normalizes for the differences in FIPARdif between genotypes observed in the early morning when leaves are unrolled, as well as for yearly effects linked to environmental conditions. Leaf-level rolling score was very strongly correlated with changes in canopy structure as described by the CLIR (r2=0.86, n=370). The daily time course of rolling was characterized using the amplitude of variation, and the rate and the timing of development computed at both the leaf and canopy levels. Results obtained from eight genotypes common between the two years of experiments showed that the amplitude of variation of the CLIR was the more repeatable trait (Spearman coefficient ρ=0.62) as compared to the rate (ρ=0.29) and the timing of development (ρ=0

  12. Optimization of Phenotyping Assays for the Model Monocot Setaria viridis

    PubMed Central

    Acharya, Biswa R.; Roy Choudhury, Swarup; Estelle, Aiden B.; Vijayakumar, Anitha; Zhu, Chuanmei; Hovis, Laryssa; Pandey, Sona

    2017-01-01

    Setaria viridis (green foxtail) is an important model plant for the study of C4 photosynthesis in panicoid grasses, and is fast emerging as a system of choice for the study of plant development, domestication, abiotic stress responses and evolution. Basic research findings in Setaria are expected to advance research not only in this species and its close relative S. italica (foxtail millet), but also in other panicoid grasses, many of which are important food or bioenergy crops. Here we report on the standardization of multiple growth and development assays for S. viridis under controlled conditions, and in response to several phytohormones and abiotic stresses. We optimized these assays at three different stages of the plant’s life: seed germination and post-germination growth using agar plate-based assays, early seedling growth and development using germination pouch-based assays, and adult plant growth and development under environmentally controlled growth chambers and greenhouses. These assays will be useful for the community to perform large scale phenotyping analyses, mutant screens, comparative physiological analysis, and functional characterization of novel genes of Setaria or other related agricultural crops. Precise description of various growth conditions, effective treatment conditions and description of the resultant phenotypes will help expand the use of S. viridis as an effective model system. PMID:29312412

  13. Optimization of Phenotyping Assays for the Model Monocot Setaria viridis.

    PubMed

    Acharya, Biswa R; Roy Choudhury, Swarup; Estelle, Aiden B; Vijayakumar, Anitha; Zhu, Chuanmei; Hovis, Laryssa; Pandey, Sona

    2017-01-01

    Setaria viridis (green foxtail) is an important model plant for the study of C4 photosynthesis in panicoid grasses, and is fast emerging as a system of choice for the study of plant development, domestication, abiotic stress responses and evolution. Basic research findings in Setaria are expected to advance research not only in this species and its close relative S. italica (foxtail millet), but also in other panicoid grasses, many of which are important food or bioenergy crops. Here we report on the standardization of multiple growth and development assays for S. viridis under controlled conditions, and in response to several phytohormones and abiotic stresses. We optimized these assays at three different stages of the plant's life: seed germination and post-germination growth using agar plate-based assays, early seedling growth and development using germination pouch-based assays, and adult plant growth and development under environmentally controlled growth chambers and greenhouses. These assays will be useful for the community to perform large scale phenotyping analyses, mutant screens, comparative physiological analysis, and functional characterization of novel genes of Setaria or other related agricultural crops. Precise description of various growth conditions, effective treatment conditions and description of the resultant phenotypes will help expand the use of S. viridis as an effective model system.

  14. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop Insurance... cotton and macadamia nuts that published March 30, 2010. DATES: Effective Date: September 27, 2010. FOR... Common Crop Insurance Regulations, Basic Provisions and applicable Crop Provisions, including the Cotton...

  15. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects.

    PubMed

    Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W; Iorizzo, Massimo; Ismail, Abdelbagi M; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Simon, Philipp W; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Wullschleger, Stan D; Yano, Masahiro; Prasad, Manoj

    2015-01-01

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.

  16. SMART – Sunflower Mutant population And Reverse genetic Tool for crop improvement

    PubMed Central

    2013-01-01

    Background Sunflower (Helianthus annuus L.) is an important oilseed crop grown widely in various areas of the world. Classical genetic studies have been extensively undertaken for the improvement of this particular oilseed crop. Pertaining to this endeavor, we developed a “chemically induced mutated genetic resource for detecting SNP by TILLING” in sunflower to create new traits. Results To optimize the EMS mutagenesis, we first conducted a “kill curve” analysis with a range of EMS dose from 0.5% to 3%. Based on the observed germination rate, a 50% survival rate i.e. LD50, treatment with 0.6% EMS for 8 hours was chosen to generate 5,000 M2 populations, out of which, 4,763 M3 plants with fertile seed set. Phenotypic characterization of the 5,000 M2 mutagenised lines were undertaken to assess the mutagenesis quality and to identify traits of interest. In the M2 population, about 1.1% of the plants showed phenotypic variations. The sunflower TILLING platform was setup using Endo-1-nuclease as mismatch detection system coupled with an eight fold DNA pooling strategy. As proof-of-concept, we screened the M2 population for induced mutations in two genes related to fatty acid biosynthesis, FatA an acyl-ACP thioesterase and SAD the stearoyl-ACP desaturase and identified a total of 26 mutations. Conclusion Based on the TILLING of FatA and SAD genes, we calculated the overall mutation rate to one mutation every 480 kb, similar to other report for this crop so far. As sunflower is a plant model for seed oil biosynthesis, we anticipate that the developed genetic resource will be a useful tool to identify novel traits for sunflower crop improvement. PMID:23496999

  17. Biosolarization in garlic crop

    NASA Astrophysics Data System (ADS)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    watered until field capacity and covered with clear plastic (160 gauges). Plastic remained until 28 October. There have been two soil sampling, July 24 and November 4. Garlic bulbs were planted in December 23. Selected "Morado" variety, obtained free virus by in vitro culture by the own Cooperative was used. The culture will run until July, following homogeneous organic practices for the 5 treatments. The microbiological activity of a soil directly influences the stability and fertility of a crop. The most common indices used to measure the metabolic activity of the soil are, apart from the net nitrogen mineralization, microbial respiration, soil enzyme activities and the energy involved in the processes (Brookes, 1995; Nanipieri, 1994). Soil samples taken in the different experimental conditions were cleaned, sieved and kept in the laboratory at 4° C for immediate analysis of respiration, biomass carbon and enzyme activities (β-glucosidase, phosphatase, urease and dehydrogenase). They were then dried for analysis of physico-chemical parameters, total carbon and nitrogen, phosphorus, conductivity, pH and carbonates. At the time of this summary, biosolarization shows to be effective in controlling weeds before crop planting. The results of soil analysis show a significant effect on the indicators studied.

  18. Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development.

    PubMed

    Heyland, Andreas; Hodin, Jason

    2004-03-01

    Recent work on a diverse array of echinoderm species has demonstrated, as is true in amphibians, that thyroid hormone (TH) accelerates development to metamorphosis. Interestingly, the feeding larvae of several species of sea urchins seem to obtain TH through their diet of planktonic algae (exogenous source), whereas nonfeeding larvae of the sand dollar Peronella japonica produce TH themselves (endogenous source). Here we examine the effects of TH (thyroxine) and a TH synthesis inhibitor (thiourea) on the development of Dendraster excentricus, a sand dollar with a feeding larva. We report reduced larval skeleton lengths and more rapid development of the juvenile rudiment in the exogenous TH treatments when compared to controls. Also, larvae treated with exogenous TH reached metamorphic competence faster at a significantly reduced juvenile size, representing the greatest reduction in juvenile size ever reported for an echinoid species with feeding larvae. These effects of TH on D. excentricus larval development are strikingly similar to the phenotypically plastic response of D. excentricus larvae reared under high food conditions. We hypothesize that exogenous (algae-derived) TH is the plasticity cue in echinoid larvae, and that the larvae use ingested TH levels as an indicator for larval nutrition, ultimately signaling the attainment of metamorphic competence. Furthermore, our experiments with the TH synthesis inhibitor thiourea indicate that D. excentricus larvae can produce some TH endogenously. Endogenous TH production might, therefore, be a shared feature among sand dollars, facilitating the evolution of nonfeeding larval development in that group. Mounting evidence on the effects of thyroid hormones in echinoderm development suggests life-history models need to incorporate metamorphic hormone effects and the evolution of metamorphic hormone production.

  19. Peruvian Maca (Lepidium peruvianum): (II) Phytochemical Profiles of Four Prime Maca Phenotypes Grown in Two Geographically-Distant Locations

    PubMed Central

    O. Meissner, Henry; Mscisz, Alina; Piatkowska, Ewa; Baraniak, Marek; Mielcarek, Sebastian; Kedzia, Bogdan; Holderna-Kedzia, Elzbieta; Pisulewski, Pawel

    2016-01-01

    Peruvian Maca crops (Lepidium peruvianum), grown in two geographically-distant cultivation sites located at similar altitudes in the highlands of the Peruvian Andes (Junin at 4,200 m a.s.l. and Ancash 4,150 m a.s.l.), were used in the study. Four prime Maca phenotypes, distinguished by hypocotyl colours labelled as “Yellow”, “Purple”, “Red” and “Black” were selected to determine distribution in levels and corresponding ratios between individual Glucosinolates (Glucotropaeolin and m-methylglucotropaeolin) in an attempt to identify four Peruvian Maca phenotypes from analyses of powdered hypocotyls. There were highly significant differences (P<0.01) in hypocotyl weight/size of four Maca phenotypes harvested in two locations. The Junin crop represented a mostly “large” class (13.3 g) with “small” size hypocotyls (7.2 g), while a “small” class was predominant in Ancash (3.5 g). Powdered Yellow Maca showed significantly higher (P<0.001) microbial contamination than the other three, with Black Maca being the least infected. Only minor, statistically-confirmed differences were detected in nutritive characteristics between the four Maca phenotypes grown in Junin, however highly significant differences (P<0.01) in Glucosinolates existed between the Red and Black Maca grown in Junin and Ancash. Irrespective of the cultivation location, Red phenotypes showed the highest content of Total Glucosinolates, followed by Black and Purple, with the Yellow phenotype showing consistently lower levels. Highly significant P<0.01) differences determined in ratios of individual Glucosinolates between four Maca phenotypes grown in two locations, confirms an earlier assumption that sums of individual Glucosinolates, their ratios and profiles, may be feasible to explore in analytically identifying individual Maca phenotypes in pulverised marketed Maca products. PMID:27127450

  20. Crop immunity against viruses: outcomes and future challenges

    PubMed Central

    Nicaise, Valérie

    2014-01-01

    Viruses cause epidemics on all major cultures of agronomic importance, representing a serious threat to global food security. As strict intracellular pathogens, they cannot be controlled chemically and prophylactic measures consist mainly in the destruction of infected plants and excessive pesticide applications to limit the population of vector organisms. A powerful alternative frequently employed in agriculture relies on the use of crop genetic resistances, approach that depends on mechanisms governing plant–virus interactions. Hence, knowledge related to the molecular bases of viral infections and crop resistances is key to face viral attacks in fields. Over the past 80 years, great advances have been made on our understanding of plant immunity against viruses. Although most of the known natural resistance genes have long been dominant R genes (encoding NBS-LRR proteins), a vast number of crop recessive resistance genes were cloned in the last decade, emphasizing another evolutive strategy to block viruses. In addition, the discovery of RNA interference pathways highlighted a very efficient antiviral system targeting the infectious agent at the nucleic acid level. Insidiously, plant viruses evolve and often acquire the ability to overcome the resistances employed by breeders. The development of efficient and durable resistances able to withstand the extreme genetic plasticity of viruses therefore represents a major challenge for the coming years. This review aims at describing some of the most devastating diseases caused by viruses on crops and summarizes current knowledge about plant–virus interactions, focusing on resistance mechanisms that prevent or limit viral infection in plants. In addition, I will discuss the current outcomes of the actions employed to control viral diseases in fields and the future investigations that need to be undertaken to develop sustainable broad-spectrum crop resistances against viruses. PMID:25484888

  1. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    PubMed Central

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  2. Phenotyping bananas for drought resistance

    PubMed Central

    Ravi, Iyyakkutty; Uma, Subbaraya; Vaganan, Muthu Mayil; Mustaffa, Mohamed M.

    2012-01-01

    Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with “B” genome are more tolerant to abiotic stresses than those solely based on “A” genome. In particular, bananas with “ABB” genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite for any improvement program for targeted traits. In the present article, known drought tolerant traits of other crop plants are validated in bananas with different genomic backgrounds and presented. Since, banana is recalcitrant to breeding, strategies for making hybrids between different genomic backgrounds are also discussed. Stomatal conductance, cell membrane stability (CMS), leaf emergence rate, rate of leaf senescence, RWC, and bunch yield under soil moisture deficit stress are some of the traits associated with drought tolerance. Among these stress bunch yield under drought should be given top priority for phenotyping. In the light of recently released Musa genome draft sequence, the molecular breeders may have interest in developing molecular markers for drought resistance. PMID:23443573

  3. Explaining postnatal growth plasticity in a generalist brood parasite

    NASA Astrophysics Data System (ADS)

    Remeš, Vladimír

    2010-03-01

    Selection of a particular host has clear consequences for the performance of avian brood parasites. Experimental studies showed that growth rate and fledging mass of brood parasites varied between host species independently of the original host species. Finding correlates of this phenotypic plasticity in growth is important for assessing adaptiveness and potential fitness consequences of host choice. Here, I analyzed the effects of several host characteristics on growth rate and fledging mass of the young of brown-headed cowbird ( Molothrus ater), a generalist, non-evicting brood parasite. Cowbird chicks grew better in fast-developing host species and reached higher fledging mass in large hosts with fast postnatal development. A potential proximate mechanism linking fast growth and high fledging mass of cowbird with fast host development is superior food supply in fast-developing foster species. So far, we know very little about the consequences of the great plasticity in cowbird growth for later performance of the adult parasite. Thus, cowbird species could become interesting model systems for investigating the role of plasticity and optimization in the evolution of growth rate in birds.

  4. Speed breeding is a powerful tool to accelerate crop research and breeding.

    PubMed

    Watson, Amy; Ghosh, Sreya; Williams, Matthew J; Cuddy, William S; Simmonds, James; Rey, María-Dolores; Asyraf Md Hatta, M; Hinchliffe, Alison; Steed, Andrew; Reynolds, Daniel; Adamski, Nikolai M; Breakspear, Andy; Korolev, Andrey; Rayner, Tracey; Dixon, Laura E; Riaz, Adnan; Martin, William; Ryan, Merrill; Edwards, David; Batley, Jacqueline; Raman, Harsh; Carter, Jeremy; Rogers, Christian; Domoney, Claire; Moore, Graham; Harwood, Wendy; Nicholson, Paul; Dieters, Mark J; DeLacy, Ian H; Zhou, Ji; Uauy, Cristobal; Boden, Scott A; Park, Robert F; Wulff, Brande B H; Hickey, Lee T

    2018-01-01

    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.

  5. Developmental plasticity of murine and human Foxp3(+) regulatory T cells.

    PubMed

    Liston, Adrian; Piccirillo, Ciriaco A

    2013-01-01

    Murine and human CD4(+) regulatory T (Treg) cells expressing the Forkhead box p3 (Foxp3) transcription factor represent a distinct, highly differentiated CD4(+) T cell lineage that is programmed for dominant self-tolerance and control of immune responses against a variety of foreign antigens. Sustained Foxp3 expression in these cells drives the differentiation of a regulatory phenotype and ensures the stability of their suppressive functions under a variety of inflammatory settings. Some recent studies have challenged this premise and advanced the notion that Foxp3(+) Treg cells manifest a high degree of functional plasticity that enables them to adapt and reprogram into effector-like T cells in response to various inflammatory stimuli. The concept of Treg cell plasticity remains highly contentious, with a high degree of variation in measured plasticity potential observed under different experimental conditions. In this chapter, we propose a unifying model of Treg cell plasticity, which hypothesizes that the stable fates of regulatory and effector T (Teff) cell lineages allow transient plasticity into the alternative lineage under a discrete set of microenvironmental influences associated with, respectively, the initiation and resolution phases of infection. This model utilizes a theoretical framework consistent with the requirements for effective immune regulation and accounts for both the extraordinary long-term stability of Treg cells and the observed fate plasticity. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Glutamic acid decarboxylase 65: a link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization.

    PubMed

    Lange, Maren D; Jüngling, Kay; Paulukat, Linda; Vieler, Marc; Gaburro, Stefano; Sosulina, Ludmila; Blaesse, Peter; Sreepathi, Hari K; Ferraguti, Francesco; Pape, Hans-Christian

    2014-08-01

    An imbalance of the gamma-aminobutyric acid (GABA) system is considered a major neurobiological pathomechanism of anxiety, and the amygdala is a key brain region involved. Reduced GABA levels have been found in anxiety patients, and genetic variations of glutamic acid decarboxylase (GAD), the rate-limiting enzyme of GABA synthesis, have been associated with anxiety phenotypes in both humans and mice. These findings prompted us to hypothesize that a deficiency of GAD65, the GAD isoform controlling the availability of GABA as a transmitter, affects synaptic transmission and plasticity in the lateral amygdala (LA), and thereby interferes with fear responsiveness. Results indicate that genetically determined GAD65 deficiency in mice is associated with (1) increased synaptic length and release at GABAergic connections, (2) impaired efficacy of GABAergic synaptic transmission and plasticity, and (3) reduced spillover of GABA to presynaptic GABAB receptors, resulting in a loss of the associative nature of long-term synaptic plasticity at cortical inputs to LA principal neurons. (4) In addition, training with high shock intensities in wild-type mice mimicked the phenotype of GAD65 deficiency at both the behavioral and synaptic level, indicated by generalization of conditioned fear and a loss of the associative nature of synaptic plasticity in the LA. In conclusion, GAD65 is required for efficient GABAergic synaptic transmission and plasticity, and for maintaining extracellular GABA at a level needed for associative plasticity at cortical inputs in the LA, which, if disturbed, results in an impairment of the cue specificity of conditioned fear responses typifying anxiety disorders.

  7. Glutamic Acid Decarboxylase 65: A Link Between GABAergic Synaptic Plasticity in the Lateral Amygdala and Conditioned Fear Generalization

    PubMed Central

    Lange, Maren D; Jüngling, Kay; Paulukat, Linda; Vieler, Marc; Gaburro, Stefano; Sosulina, Ludmila; Blaesse, Peter; Sreepathi, Hari K; Ferraguti, Francesco; Pape, Hans-Christian

    2014-01-01

    An imbalance of the gamma-aminobutyric acid (GABA) system is considered a major neurobiological pathomechanism of anxiety, and the amygdala is a key brain region involved. Reduced GABA levels have been found in anxiety patients, and genetic variations of glutamic acid decarboxylase (GAD), the rate-limiting enzyme of GABA synthesis, have been associated with anxiety phenotypes in both humans and mice. These findings prompted us to hypothesize that a deficiency of GAD65, the GAD isoform controlling the availability of GABA as a transmitter, affects synaptic transmission and plasticity in the lateral amygdala (LA), and thereby interferes with fear responsiveness. Results indicate that genetically determined GAD65 deficiency in mice is associated with (1) increased synaptic length and release at GABAergic connections, (2) impaired efficacy of GABAergic synaptic transmission and plasticity, and (3) reduced spillover of GABA to presynaptic GABAB receptors, resulting in a loss of the associative nature of long-term synaptic plasticity at cortical inputs to LA principal neurons. (4) In addition, training with high shock intensities in wild-type mice mimicked the phenotype of GAD65 deficiency at both the behavioral and synaptic level, indicated by generalization of conditioned fear and a loss of the associative nature of synaptic plasticity in the LA. In conclusion, GAD65 is required for efficient GABAergic synaptic transmission and plasticity, and for maintaining extracellular GABA at a level needed for associative plasticity at cortical inputs in the LA, which, if disturbed, results in an impairment of the cue specificity of conditioned fear responses typifying anxiety disorders. PMID:24663011

  8. Contrasting patterns of variation in weedy traits and unique crop features in divergent populations of US weedy rice (Oryza sativa sp.) in Arkansas and California.

    PubMed

    Kanapeckas, Kimberly L; Tseng, Te-Ming; Vigueira, Cynthia C; Ortiz, Aida; Bridges, William C; Burgos, Nilda R; Fischer, Albert J; Lawton-Rauh, Amy

    2018-06-01

    Weed evolution from crops involves changes in key traits, but it is unclear how genetic and phenotypic variation contribute to weed diversification and productivity. Weedy rice is a conspecific weed of rice (Oryza sativa) worldwide. We used principal component analysis and hierarchical clustering to understand how morphologically and evolutionarily distinct US weedy rice populations persist in rice fields in different locations under contrasting management regimes. Further, we used a representative subset of 15 sequence-tagged site fragments of expressed genes from global Oryza to assess genome-wide sequence variation among populations. Crop hull color and crop-overlapping maturity dates plus awns, seed (panicle) shattering (> 50%), pigmented pericarp and stature variation (30.2% of total phenotypic variance) characterize genetically less diverse California weedy rice. By contrast, wild-like hull color, seed shattering (> 50%) and stature differences (55.8% of total phenotypic variance) typify genetically diverse weedy rice ecotypes in Arkansas. Recent de-domestication of weedy species - such as in California weedy rice - can involve trait combinations indistinguishable from the crop. This underscores the need for strict seed certification with genetic monitoring and proactive field inspection to prevent proliferation of weedy plant types. In established populations, tillage practice may affect weed diversity and persistence over time. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin

    PubMed Central

    Hernández-Terán, Alejandra; Wegier, Ana; Benítez, Mariana; Lira, Rafael; Escalante, Ana E.

    2017-01-01

    Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest

  10. Computer vision and machine learning for robust phenotyping in genome-wide studies

    PubMed Central

    Zhang, Jiaoping; Naik, Hsiang Sing; Assefa, Teshale; Sarkar, Soumik; Reddy, R. V. Chowda; Singh, Arti; Ganapathysubramanian, Baskar; Singh, Asheesh K.

    2017-01-01

    Traditional evaluation of crop biotic and abiotic stresses are time-consuming and labor-intensive limiting the ability to dissect the genetic basis of quantitative traits. A machine learning (ML)-enabled image-phenotyping pipeline for the genetic studies of abiotic stress iron deficiency chlorosis (IDC) of soybean is reported. IDC classification and severity for an association panel of 461 diverse plant-introduction accessions was evaluated using an end-to-end phenotyping workflow. The workflow consisted of a multi-stage procedure including: (1) optimized protocols for consistent image capture across plant canopies, (2) canopy identification and registration from cluttered backgrounds, (3) extraction of domain expert informed features from the processed images to accurately represent IDC expression, and (4) supervised ML-based classifiers that linked the automatically extracted features with expert-rating equivalent IDC scores. ML-generated phenotypic data were subsequently utilized for the genome-wide association study and genomic prediction. The results illustrate the reliability and advantage of ML-enabled image-phenotyping pipeline by identifying previously reported locus and a novel locus harboring a gene homolog involved in iron acquisition. This study demonstrates a promising path for integrating the phenotyping pipeline into genomic prediction, and provides a systematic framework enabling robust and quicker phenotyping through ground-based systems. PMID:28272456

  11. Social parasitism and the molecular basis of phenotypic evolution.

    PubMed

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B J; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization.

  12. Social parasitism and the molecular basis of phenotypic evolution

    PubMed Central

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B. J.; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer—Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  13. Testing evolutionary hypotheses for phenotypic divergence using landscape genetics.

    PubMed

    Funk, W Chris; Murphy, Melanie A

    2010-02-01

    Understanding the evolutionary causes of phenotypic variation among populations has long been a central theme in evolutionary biology. Several factors can influence phenotypic divergence, including geographic isolation, genetic drift, divergent natural or sexual selection, and phenotypic plasticity. But the relative importance of these factors in generating phenotypic divergence in nature is still a tantalizing and unresolved problem in evolutionary biology. The origin and maintenance of phenotypic divergence is also at the root of many ongoing debates in evolutionary biology, such as the extent to which gene flow constrains adaptive divergence (Garant et al. 2007) and the relative importance of genetic drift, natural selection, and sexual selection in initiating reproductive isolation and speciation (Coyne & Orr 2004). In this issue, Wang & Summers (2010) test the causes of one of the most fantastic examples of phenotypic divergence in nature: colour pattern divergence among populations of the strawberry poison frog (Dendrobates pumilio) in Panama and Costa Rica (Fig. 1). This study provides a beautiful example of the use of the emerging field of landscape genetics to differentiate among hypotheses for phenotypic divergence. Using landscape genetic analyses, Wang & Summers were able to reject the hypotheses that colour pattern divergence is due to isolation-by-distance (IBD) or landscape resistance. Instead, the hypothesis left standing is that colour divergence is due to divergent selection, in turn driving reproductive isolation among populations with different colour morphs. More generally, this study provides a wonderful example of how the emerging field of landscape genetics, which has primarily been applied to questions in conservation and ecology, now plays an essential role in evolutionary research.

  14. Cotton phenotyping with lidar from a track-mounted platform

    NASA Astrophysics Data System (ADS)

    French, Andrew N.; Gore, Michael A.; Thompson, Alison

    2016-05-01

    High-Throughput Phenotyping (HTP) is a discipline for rapidly identifying plant architectural and physiological responses to environmental factors such as heat and water stress. Experiments conducted since 2010 at Maricopa, Arizona with a three-fold sensor group, including thermal infrared radiometers, active visible/near infrared reflectance sensors, and acoustic plant height sensors, have shown the validity of HTP with a tractor-based system. However, results from these experiments also show that accuracy of plant phenotyping is limited by the system's inability to discriminate plant components and their local environmental conditions. This limitation may be overcome with plant imaging and laser scanning which can help map details in plant architecture and sunlit/shaded leaves. To test the capability for mapping cotton plants with a laser system, a track-mounted platform was deployed in 2015 over a full canopy and defoliated cotton crop consisting of a scanning LIDAR driven by Arduinocontrolled stepper motors. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at 0.1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). These tests showed that an autonomous LIDAR platform can reduce HTP logistical problems and provide the capability to accurately map cotton plants and cotton bolls. A prototype track-mounted platform was developed to test the use of LIDAR scanning for High- Throughput Phenotyping (HTP). The platform was deployed in 2015 at Maricopa, Arizona over a senescent cotton crop. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at <1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). Scanning data mapped the canopy heights and widths, and detected cotton bolls.

  15. Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth (Amaranthus caudatus).

    PubMed

    Stetter, Markus G; Müller, Thomas; Schmid, Karl J

    2017-02-01

    The domestication syndrome comprises phenotypic changes that differentiate crops from their wild ancestors. We compared the genomic variation and phenotypic differentiation of the two putative domestication traits seed size and seed colour of the grain amaranth Amaranthus caudatus, which is an ancient crop of South America, and its two close wild relatives and putative ancestors A. hybridus and A. quitensis. Genotyping 119 accessions of the three species from the Andean region using genotyping by sequencing (GBS) resulted in 9485 SNPs that revealed a strong genetic differentiation of cultivated A. caudatus from its two relatives. A. quitensis and A. hybridus accessions did not cluster by their species assignment but formed mixed groups according to their geographic origin in Ecuador and Peru, respectively. A. caudatus had a higher genetic diversity than its close relatives and shared a high proportion of polymorphisms with their wild relatives consistent with the absence of a strong bottleneck or a high level of recent gene flow. Genome sizes and seed sizes were not significantly different between A. caudatus and its relatives, although a genetically distinct group of A. caudatus from Bolivia had significantly larger seeds. We conclude that despite a long history of human cultivation and selection for white grain colour, A. caudatus shows a weak genomic and phenotypic domestication syndrome and proposes that it is an incompletely domesticated crop species either because of weak selection or high levels of gene flow from its sympatric close undomesticated relatives that counteracted the fixation of key domestication traits. © 2016 John Wiley & Sons Ltd.

  16. Cover crops support ecological intensification of arable cropping systems

    NASA Astrophysics Data System (ADS)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  17. Adenosine Kinase Deficiency in the Brain Results in Maladaptive Synaptic Plasticity.

    PubMed

    Sandau, Ursula S; Colino-Oliveira, Mariana; Jones, Abbie; Saleumvong, Bounmy; Coffman, Shayla Q; Liu, Long; Miranda-Lourenço, Catarina; Palminha, Cátia; Batalha, Vânia L; Xu, Yiming; Huo, Yuqing; Diógenes, Maria J; Sebastião, Ana M; Boison, Detlev

    2016-11-30

    Adenosine kinase (ADK) deficiency in human patients (OMIM:614300) disrupts the methionine cycle and triggers hypermethioninemia, hepatic encephalopathy, cognitive impairment, and seizures. To identify whether this neurological phenotype is intrinsically based on ADK deficiency in the brain or if it is secondary to liver dysfunction, we generated a mouse model with a brain-wide deletion of ADK by introducing a Nestin-Cre transgene into a line of conditional ADK deficient Adk fl/fl mice. These Adk Δbrain mice developed a progressive stress-induced seizure phenotype associated with spontaneous convulsive seizures and profound deficits in hippocampus-dependent learning and memory. Pharmacological, biochemical, and electrophysiological studies suggest enhanced adenosine levels around synapses resulting in an enhanced adenosine A 1 receptor (A 1 R)-dependent protective tone despite lower expression levels of the receptor. Theta-burst-induced LTP was enhanced in the mutants and this was dependent on adenosine A 2A receptor (A 2A R) and tropomyosin-related kinase B signaling, suggesting increased activation of these receptors in synaptic plasticity phenomena. Accordingly, reducing adenosine A 2A receptor activity in Adk Δbrain mice restored normal associative learning and contextual memory and attenuated seizure risk. We conclude that ADK deficiency in the brain triggers neuronal adaptation processes that lead to dysregulated synaptic plasticity, cognitive deficits, and increased seizure risk. Therefore, ADK mutations have an intrinsic effect on brain physiology and may present a genetic risk factor for the development of seizures and learning impairments. Furthermore, our data show that blocking A 2A R activity therapeutically can attenuate neurological symptoms in ADK deficiency. A novel human genetic condition (OMIM #614300) that is based on mutations in the adenosine kinase (Adk) gene has been discovered recently. Affected patients develop hepatic encephalopathy

  18. Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop.

    PubMed

    Somleva, Maria N; Snell, Kristi D; Beaulieu, Julie J; Peoples, Oliver P; Garrison, Bradley R; Patterson, Nii A

    2008-09-01

    Polyhydroxyalkanoate bio-based plastics made from renewable resources can reduce petroleum consumption and decrease plastic waste disposal issues as they are inherently biodegradable in soil, compost and marine environments. In this paper, the successful engineering of the biomass crop switchgrass (Panicum virgatum L.) for the synthesis of polyhydroxybutyrate (PHB) is reported. Polymer production was monitored in more than 400 primary transformants grown under in vitro and glasshouse conditions. Plants containing up to 3.72% dry weight of PHB in leaf tissues and 1.23% dry weight of PHB in whole tillers were obtained. Results from the analysis of the polymer distribution at the cellular and whole plant levels are presented, and target areas for the improvement of PHB production are highlighted. Polymer accumulation was also analysed in the T(1) generation obtained from controlled crosses of transgenic plants. This study presents the first successful expression of a functional multigene pathway in switchgrass, and demonstrates that this high-yielding biomass crop is amenable to the complex metabolic engineering strategies necessary to produce high-value biomaterials with lignocellulose-derived biofuels.

  19. Fitness consequences of maternal and embryonic responses to environmental variation: using reptiles as models for studies of developmental plasticity.

    PubMed

    Warner, Daniel A

    2014-11-01

    Environmental factors strongly influence phenotypic variation within populations. The environment contributes to this variation in two ways: (1) by acting as a determinant of phenotypic variation (i.e., plastic responses) and (2) as an agent of selection that "chooses" among existing phenotypes. Understanding how these two environmental forces contribute to phenotypic variation is a major goal in the field of evolutionary biology and a primary objective of my research program. The objective of this article is to provide a framework to guide studies of environmental sources of phenotypic variation (specifically, developmental plasticity and maternal effects, and their adaptive significance). Two case studies from my research on reptiles are used to illustrate the general approaches I have taken to address these conceptual topics. Some key points for advancing our understanding of environmental influences on phenotypic variation include (1) merging laboratory-based research that identifies specific environmental effects with field studies to validate ecological relevance; (2) using controlled experimental approaches that mimic complex environments found in nature; (3) integrating data across biological fields (e.g., genetics, morphology, physiology, behavior, and ecology) under an evolutionary framework to provide novel insights into the underlying mechanisms that generate phenotypic variation; (4) assessing fitness consequences using measurements of survival and/or reproductive success across ontogeny (from embryos to adults) and under multiple ecologically-meaningful contexts; and (5) quantifying the strength and form of natural selection in multiple populations over multiple periods of time to understand the spatial and temporal consistency of phenotypic selection. Research programs that focus on organisms that are amenable to these approaches will provide the most promise for advancing our understanding of the environmental factors that generate the remarkable

  20. Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits

    PubMed Central

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris

    2016-01-01

    Phenotyping local crop cultivars is becoming more and more important, as they are an important genetic source for breeding – especially in regard to inherent root system architectures. Machine learning algorithms are promising tools to assist in the analysis of complex data sets; novel approaches are need to apply them on root phenotyping data of mature plants. A greenhouse experiment was conducted in large, sand-filled columns to differentiate 16 European Pisum sativum cultivars based on 36 manually derived root traits. Through combining random forest and support vector machine models, machine learning algorithms were successfully used for unbiased identification of most distinguishing root traits and subsequent pairwise cultivar differentiation. Up to 86% of pea cultivar pairs could be distinguished based on top five important root traits (Timp5) – Timp5 differed widely between cultivar pairs. Selecting top important root traits (Timp) provided a significant improved classification compared to using all available traits or randomly selected trait sets. The most frequent Timp of mature pea cultivars was total surface area of lateral roots originating from tap root segments at 0–5 cm depth. The high classification rate implies that culturing did not lead to a major loss of variability in root system architecture in the studied pea cultivars. Our results illustrate the potential of machine learning approaches for unbiased (root) trait selection and cultivar classification based on rather small, complex phenotypic data sets derived from pot experiments. Powerful statistical approaches are essential to make use of the increasing amount of (root) phenotyping information, integrating the complex trait sets describing crop cultivars. PMID:27999587

  1. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement

    PubMed Central

    Hill, Camilla B.; Li, Chengdao

    2016-01-01

    Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation

  2. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis

    PubMed Central

    Martínez, María Sofía; Palmar, Jim; Bautista, Jordan; Chávez-Castillo, Mervin; Gómez, Alexis; Bermúdez, Valmore

    2015-01-01

    Cardiovascular disease (CVD) is a global epidemic, currently representing the worldwide leading cause of morbidity and mortality. Atherosclerosis is the fundamental pathophysiologic component of CVD, where the immune system plays an essential role. Monocytes and macrophages are key mediators in this aspect: due to their heterogeneity and plasticity, these cells may act as either pro- or anti-inflammatory mediators. Indeed, monocytes may develop heterogeneous functional phenotypes depending on the predominating pro- or anti-inflammatory microenvironment within the lesion, resulting in classic, intermediate, and non-classic monocytes, each with strikingly differing features. Similarly, macrophages may also adopt heterogeneous profiles being mainly M1 and M2, the former showing a proinflammatory profile while the latter demonstrates anti-inflammatory traits; they are further subdivided in several subtypes with more specialized functions. Furthermore, macrophages may display plasticity by dynamically shifting between phenotypes in response to specific signals. Each of these distinct cell profiles is associated with diverse biomarkers which may be exploited for therapeutic intervention, including IL-10, IL-13, PPAR-γ, LXR, NLRP3 inflammasomes, and microRNAs. Direct modulation of the molecular pathways concerning these potential macrophage-related targets represents a promising field for new therapeutic alternatives in atherosclerosis and CVD. PMID:26491604

  3. Land-based crop phenotyping by image analysis: consistent canopy characterization from inconsistent field illumination.

    PubMed

    Chopin, Joshua; Kumar, Pankaj; Miklavcic, Stanley J

    2018-01-01

    One of the main challenges associated with image-based field phenotyping is the variability of illumination. During a single day's imaging session, or between different sessions on different days, the sun moves in and out of cloud cover and has varying intensity. How is one to know from consecutive images alone if a plant has become darker over time, or if the weather conditions have simply changed from clear to overcast? This is a significant problem to address as colour is an important phenotypic trait that can be measured automatically from images. In this work we use an industry standard colour checker to balance the colour in images within and across every day of a field trial conducted over four months in 2016. By ensuring that the colour checker is present in every image we are afforded a 'ground truth' to correct for varying illumination conditions across images. We employ a least squares approach to fit a quadratic model for correcting RGB values of an image in such a way that the observed values of the colour checker tiles align with their true values after the transformation. The proposed method is successful in reducing the error between observed and reference colour chart values in all images. Furthermore, the standard deviation of mean canopy colour across multiple days is reduced significantly after colour correction is applied. Finally, we use a number of examples to demonstrate the usefulness of accurate colour measurements in recording phenotypic traits and analysing variation among varieties and treatments.

  4. Diversity in phenotypic and nutritional traits in vegetable amaranth (Amaranthus tricolor), a nutritionally underutilised crop.

    PubMed

    Shukla, Sudhir; Bhargava, Atul; Chatterjee, Avijeet; Pandey, Avinash Chandra; Mishra, Brij K

    2010-01-15

    Assessment of genetic diversity in a crop-breeding programme helps in the identification of diverse parental combinations to create segregating progenies with maximum genetic variability and facilitates introgression of desirable genes from diverse germplasm into the available genetic base. In the present study, 39 strains of vegetable amaranth (Amaranthus tricolor) were evaluated for eight morphological and seven quality traits for two test seasons to study the extent of genetic divergence among the strains. Multivariate analysis showed that the first four principal components contributed 67.55% of the variability. Cluster analysis grouped the strains into six clusters that displayed a wide range of diversity for most of the traits. Cluster analysis has proved to be an effective method in grouping strains that may facilitate effective management and utilisation in crop-breeding programmes. The diverse strains falling in different clusters were identified, which can be utilised in different hybridisation programmes to develop high-foliage-yielding varieties rich in nutritional components. Copyright (c) 2009 Society of Chemical Industry.

  5. Phenotypic Heterogeneity and Plasticity of Isocortical and Hippocampal Astrocytes in the Human Brain

    PubMed Central

    Sosunov, Alexander A.; Wu, Xiaoping; Tsankova, Nadejda M.; Guilfoyle, Eileen; McKhann, Guy M.

    2014-01-01

    To examine the diversity of astrocytes in the human brain, we immunostained surgical specimens of temporal cortex and hippocampus and autopsy brains for CD44, a plasma membrane protein and extracellular matrix receptor. CD44 antibodies outline the details of astrocyte morphology to a degree not possible with glial fibrillary acidic protein (GFAP) antibodies. CD44+ astrocytes could be subdivided into two groups. First, CD44+ astrocytes with long processes were consistently found in the subpial area (“interlaminar” astrocytes), the deep isocortical layers, and the hippocampus. Many of these processes ended on blood vessels. Some were also found adjacent to large blood vessels, from which they extended long processes. We observed these CD44+, long-process astrocytes in every brain we examined, from fetal to adult. These astrocytes generally displayed high immunostaining for GFAP, S100β, and CD44, but low immunostaining for glutamine synthetase, excitatory amino-acid transporter 1 (EAAT1), and EAAT2. Aquaporin 4 (AQP4) appeared distributed all over the cell bodies and processes of the CD44+ astrocytes, while, in contrast, AQP4 localized to perivascular end feet in the CD44− protoplasmic astrocytes. Second, there were CD44+ astrocytes without long processes in the cortex. These were not present during gestation or at birth, and in adult brains varied substantially in number, shape, and immunohistochemical phenotype. Many of these displayed a “mixed” morphological and immunocytochemical phenotype between protoplasmic and fibrous astrocytes. We conclude that the diversity of astrocyte populations in the isocortex and archicortex in the human brain reflects both intrinsic and acquired phenotypes, the latter perhaps representing a shift from CD44− “protoplasmic” to CD44+ “fibrous”-like astrocytes. PMID:24501367

  6. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade.

    PubMed

    Ouzounova, Maria; Lee, Eunmi; Piranlioglu, Raziye; El Andaloussi, Abdeljabar; Kolhe, Ravindra; Demirci, Mehmet F; Marasco, Daniela; Asm, Iskander; Chadli, Ahmed; Hassan, Khaled A; Thangaraju, Muthusamy; Zhou, Gang; Arbab, Ali S; Cowell, John K; Korkaya, Hasan

    2017-04-06

    It is widely accepted that dynamic and reversible tumour cell plasticity is required for metastasis, however, in vivo steps and molecular mechanisms are poorly elucidated. We demonstrate here that monocytic (mMDSC) and granulocytic (gMDSC) subsets of myeloid-derived suppressor cells infiltrate in the primary tumour and distant organs with different time kinetics and regulate spatiotemporal tumour plasticity. Using co-culture experiments and mouse transcriptome analyses in syngeneic mouse models, we provide evidence that tumour-infiltrated mMDSCs facilitate tumour cell dissemination from the primary site by inducing EMT/CSC phenotype. In contrast, pulmonary gMDSC infiltrates support the metastatic growth by reverting EMT/CSC phenotype and promoting tumour cell proliferation. Furthermore, lung-derived gMDSCs isolated from tumour-bearing animals enhance metastatic growth of already disseminated tumour cells. MDSC-induced 'metastatic gene signature' derived from murine syngeneic model predicts poor patient survival in the majority of human solid tumours. Thus spatiotemporal MDSC infiltration may have clinical implications in tumour progression.

  7. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade

    PubMed Central

    Ouzounova, Maria; Lee, Eunmi; Piranlioglu, Raziye; El Andaloussi, Abdeljabar; Kolhe, Ravindra; Demirci, Mehmet F.; Marasco, Daniela; Asm, Iskander; Chadli, Ahmed; Hassan, Khaled A.; Thangaraju, Muthusamy; Zhou, Gang; Arbab, Ali S.; Cowell, John K.; Korkaya, Hasan

    2017-01-01

    It is widely accepted that dynamic and reversible tumour cell plasticity is required for metastasis, however, in vivo steps and molecular mechanisms are poorly elucidated. We demonstrate here that monocytic (mMDSC) and granulocytic (gMDSC) subsets of myeloid-derived suppressor cells infiltrate in the primary tumour and distant organs with different time kinetics and regulate spatiotemporal tumour plasticity. Using co-culture experiments and mouse transcriptome analyses in syngeneic mouse models, we provide evidence that tumour-infiltrated mMDSCs facilitate tumour cell dissemination from the primary site by inducing EMT/CSC phenotype. In contrast, pulmonary gMDSC infiltrates support the metastatic growth by reverting EMT/CSC phenotype and promoting tumour cell proliferation. Furthermore, lung-derived gMDSCs isolated from tumour-bearing animals enhance metastatic growth of already disseminated tumour cells. MDSC-induced ‘metastatic gene signature' derived from murine syngeneic model predicts poor patient survival in the majority of human solid tumours. Thus spatiotemporal MDSC infiltration may have clinical implications in tumour progression. PMID:28382931

  8. Image-Based High-Throughput Field Phenotyping of Crop Roots1[W][OPEN

    PubMed Central

    Bucksch, Alexander; Burridge, James; York, Larry M.; Das, Abhiram; Nord, Eric; Weitz, Joshua S.; Lynch, Jonathan P.

    2014-01-01

    Current plant phenotyping technologies to characterize agriculturally relevant traits have been primarily developed for use in laboratory and/or greenhouse conditions. In the case of root architectural traits, this limits phenotyping efforts, largely, to young plants grown in specialized containers and growth media. Hence, novel approaches are required to characterize mature root systems of older plants grown under actual soil conditions in the field. Imaging methods able to address the challenges associated with characterizing mature root systems are rare due, in part, to the greater complexity of mature root systems, including the larger size, overlap, and diversity of root components. Our imaging solution combines a field-imaging protocol and algorithmic approach to analyze mature root systems grown in the field. Via two case studies, we demonstrate how image analysis can be utilized to estimate localized root traits that reliably capture heritable architectural diversity as well as environmentally induced architectural variation of both monocot and dicot plants. In the first study, we show that our algorithms and traits (including 13 novel traits inaccessible to manual estimation) can differentiate nine maize (Zea mays) genotypes 8 weeks after planting. The second study focuses on a diversity panel of 188 cowpea (Vigna unguiculata) genotypes to identify which traits are sufficient to differentiate genotypes even when comparing plants whose harvesting date differs up to 14 d. Overall, we find that automatically derived traits can increase both the speed and reproducibility of the trait estimation pipeline under field conditions. PMID:25187526

  9. The significance of macrophage phenotype in cancer and biomaterials

    DOE PAGES

    Bygd, Hannah C.; Forsmark, Kiva D.; Bratlie, Kaitlin M.

    2014-11-25

    Macrophages have long been known to exhibit heterogeneous and plastic phenotypes. They show functional diversity with roles in homeostasis, tissue repair, immunity and disease. There exists a spectrum of macrophage phenotypes with varied effector functions, molecular determinants, cytokine and chemokine profiles, as well as receptor expression. In tumor microenvironments, the subset of macrophages known as tumor-associated macrophages generates byproducts that enhance tumor growth and angiogenesis, making them attractive targets for anti-cancer therapeutics. With respect to wound healing and the foreign body response, there is a necessity for balance between pro-inflammatory, wound healing, and regulatory macrophages in order to achieve successfulmore » implantation of a scaffold for tissue engineering. In this review, we discuss the multitude of ways macrophages are known to be important in cancer therapies and implanted biomaterials.« less

  10. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops

    PubMed Central

    Migicovsky, Zoë; Myles, Sean

    2017-01-01

    Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops. PMID:28421095

  11. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops.

    PubMed

    Migicovsky, Zoë; Myles, Sean

    2017-01-01

    Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops.

  12. The role of epithelial plasticity in prostate cancer dissemination and treatment resistance

    PubMed Central

    Bitting, Rhonda L.; Schaeffer, Daneen; Somarelli, Jason A.; Garcia-Blanco, Mariano A.

    2014-01-01

    Nearly 30,000 men die annually in the USA of prostate cancer, nearly uniformly from metastatic dissemination. Despite recent advances in hormonal, immunologic, bone-targeted, and cytotoxic chemotherapies, treatment resistance and further dissemination are inevitable in men with metastatic disease. Emerging data suggests that the phenomenon of epithelial plasticity, encompassing both reversible mesenchymal transitions and acquisition of stemness traits, may underlie this lethal biology of dissemination and treatment resistance. Understanding the molecular underpinnings of this cellular plasticity from preclinical models of prostate cancer and from biomarker studies of human metastatic prostate cancer has provided clues to novel therapeutic approaches that may delay or prevent metastatic disease and lethality over time. This review will discuss the preclinical and clinical evidence for epithelial plasticity in this rapidly changing field and relate this to clinical phenotype and resistance in prostate cancer while suggesting novel therapeutic approaches. PMID:24414193

  13. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    NASA Astrophysics Data System (ADS)

    York, Larry

    2015-04-01

    Food insecurity is among the greatest challenges humanity will face in the 21st century. Agricultural production in much of the world is constrained by the natural infertility of soil which restrains crops from reaching their yield potential. In developed nations, fertilizer inputs pollute air and water and contribute to climate change and environmental degradation. In poor nations low soil fertility is a primary constraint to food security and economic development. Water is almost always limiting crop growth in any system. Increasing the acquisition efficiency of soil resources is one method by which crop yields could be increased without the use of more fertilizers or irrigation. Cereals are the most widely grown crops, both in terms of land area and in yield, so optimizing uptake efficiency of cereals is an important goal. Roots are the primary interface between plant and soil and are responsible for the uptake of soil resources. The deployment of roots in space and time comprises root system architecture (RSA). Cereal RSA is a complex phenotype that aggregates many elemental phenes (elemental units of phenotype). Integration of root phenes will be determined by interactions through their effects on soil foraging and plant metabolism. Many architectural, metabolic, and physiological root phenes have been identified in maize, including: nodal root number, nodal root growth angle, lateral root density, lateral root length, aerenchyma, cortical cell size and number, and nitrate uptake kinetics. The utility of these phenes needs confirmation in maize and in other cereals. The maize root system is composed of an embryonic root system and nodal roots that emerge in successive whorls as the plant develops, and is similar to other cereals. Current phenotyping platforms often ignore the inner whorls and instead focus on the most visible outer whorls after excavating a maize root crown from soil. Here, an intensive phenotyping platform evaluating phenes of all nodal root

  14. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming.

    PubMed

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R; Wahl, Martin

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  15. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    PubMed Central

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21–27°C) and southern (16.5°N, 28–33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28–29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals. PMID:25754672

  16. The Vascular Wall: a Plastic Hub of Activity in Cardiovascular Homeostasis and Disease.

    PubMed

    Awgulewitsch, Cassandra P; Trinh, Linh T; Hatzopoulos, Antonis K

    2017-06-01

    This review aims to summarize recent findings regarding the plasticity and fate switching among somatic and progenitor cells residing in the vascular wall of blood vessels in health and disease. Cell lineage tracing methods have identified multiple origins of stem cells, macrophages, and matrix-producing cells that become mobilized after acute or chronic injury of cardiovascular tissues. These studies also revealed that in the disease environment, resident somatic cells become plastic, thereby changing their stereotypical identities to adopt proinflammatory and profibrotic phenotypes. Currently, the functional significance of this heterogeneity among reparative cells is unknown. Furthermore, mechanisms that control cellular plasticity and fate decisions in the disease environment are poorly understood. Cardiovascular diseases are responsible for the majority of deaths worldwide. From a therapeutic perspective, these novel discoveries may identify new targets to improve the repair and regeneration of the cardiovascular system.

  17. Recent progress in drought and salt tolerance studies in Brassica crops

    PubMed Central

    Zhang, Xuekun; Lu, Guangyuan; Long, Weihua; Zou, Xiling; Li, Feng; Nishio, Takeshi

    2014-01-01

    Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops. PMID:24987291

  18. Is plasticity across seasons adaptive in the annual cleistogamous plant Lamium amplexicaule?

    PubMed Central

    Stojanova, B.; Maurice, S.; Cheptou, P.-O.

    2016-01-01

    Background and aims Many angiosperms exhibit cleistogamy, the production of both cleistogamous flowers (CL), which remain closed and obligately self-pollinated, and chasmogamous flowers (CH), which are potentially open-pollinated. The CH proportion can be plastic. Plasticity is adaptive if environmental changes can be reliably assessed and responded to with an appropriate phenotype and if plastic genotypes have higher fitness in variable environments than non-plastic ones. Methods We studied the plastic response of four natural populations from northern and southern France of an annual cleistogamous plant, Lamium amplexicaule, to predictable seasonal variation. Plants were grown in a semi-controlled environment in spring and in autumn. We assessed the variation in flower number, phenology and cleistogamy-related traits, which were all plastic with respect to season. The CH proportion was higher in spring than in autumn in all four populations. Key Results We showed significant stabilizing selection for cleistogamy traits, with higher optimal CH proportions and more pronounced stabilizing selection in spring than in autumn. Observed CH proportions were close to the predicted optimal CH proportions in each season except in autumn for southern populations, which do not experience the autumnal growing season in nature. Conclusions These results are consistent with adaptive plasticity across seasons of cleistogamy in L. amplexicaule. We propose that adaptive plasticity of cleistogamy could be driven by pollination environment variation, with CL flowers providing reproductive assurance when pollinators are scarce and CH flowers reducing the inbreeding depression in offspring when pollinators are abundant. PMID:26995537

  19. Temperature and population density: interactional effects of environmental factors on phenotypic plasticity, immune defenses, and disease resistance in an insect pest.

    PubMed

    Silva, Farley W S; Elliot, Simon L

    2016-06-01

    Temperature and crowding are key environmental factors mediating the transmission and epizooty of infectious disease in ectotherm animals. The host physiology may be altered in a temperature-dependent manner and thus affects the pathogen development and course of diseases within an individual and host population, or the transmission rates (or infectivity) of pathogens shift linearly with the host population density. To our understanding, the knowledge of interactive and synergistic effects of temperature and population density on the host-pathogen system is limited. Here, we tested the interactional effects of these environmental factors on phenotypic plasticity, immune defenses, and disease resistance in the velvetbean caterpillar Anticarsia gemmatalis . Upon egg hatching, caterpillars were reared in thermostat-controlled chambers in a 2 × 4 factorial design: density (1 or 8 caterpillars/pot) and temperature (20, 24, 28, or 32°C). Of the immune defenses assessed, encapsulation response was directly affected by none of the environmental factors; capsule melanization increased with temperature in both lone- and group-reared caterpillars, although the lone-reared ones presented the most evident response, and hemocyte numbers decreased with temperature regardless of the population density. Temperature, but not population density, affected considerably the time from inoculation to death of velvetbean caterpillar. Thus, velvetbean caterpillars succumbed to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) more quickly at higher temperatures than at lower temperatures. As hypothesized, temperature likely affected caterpillars' movement rates, and thus the contact between conspecifics, which in turn affected the phenotypic expression of group-reared caterpillars. Our results suggest that environmental factors, mainly temperature, strongly affect both the course of disease in velvetbean caterpillar population and its defenses against pathogens. As a soybean

  20. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae).

    PubMed

    Anderson, Jill T; Gezon, Zachariah J

    2015-04-01

    Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration. Here, we quantified plasticity in life history, foliar morphology, and ecophysiology in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In this region, warming winters are reducing snowpack and warming springs are advancing the timing of snow melt. We hypothesized that traits that were historically advantageous in hot and dry, low-elevation locations will be favored at higher elevation sites due to climate change. To test this hypothesis, we quantified trait variation in natural populations across an elevational gradient. We then estimated plasticity and genetic variation in common gardens at two elevations. Finally, we tested whether climatic manipulations induce plasticity, with the prediction that plants exposed to early snow removal would resemble individuals from lower elevation populations. In natural populations, foliar morphology and ecophysiology varied with elevation in the predicted directions. In the common gardens, trait plasticity was generally concordant with phenotypic clines from the natural populations. Experimental snow removal advanced flowering phenology by 7 days, which is similar in magnitude to flowering time shifts over 2-3 decades of climate change. Therefore, snow manipulations in this system can be used to predict eco-evolutionary responses to global change. Snow removal also altered foliar morphology, but in unexpected ways. Extensive plasticity could buffer against immediate fitness

  1. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    DOE PAGES

    Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert; ...

    2015-08-11

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful inmore » enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.« less

  2. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful inmore » enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.« less

  3. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects

    PubMed Central

    Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J.; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W.; Iorizzo, Massimo; Ismail, Abdelbagi M.; Marshall, Athole; Mayes, Sean; Nguyen, Henry T.; Ogbonnaya, Francis C.; Ortiz, Rodomiro; Paterson, Andrew H.; Simon, Philipp W.; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K.; Wullschleger, Stan D.; Yano, Masahiro; Prasad, Manoj

    2015-01-01

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security. PMID:26322050

  4. Scaling up high throughput field phenotyping of corn and soy research plots using ground rovers

    NASA Astrophysics Data System (ADS)

    Peshlov, Boyan; Nakarmi, Akash; Baldwin, Steven; Essner, Scott; French, Jasenka

    2017-05-01

    Crop improvement programs require large and meticulous selection processes that effectively and accurately collect and analyze data to generate quality plant products as efficiently as possible, develop superior cropping and/or crop improvement methods. Typically, data collection for such testing is performed by field teams using hand-held instruments or manually-controlled devices. Although steps are taken to reduce error, the data collected in such manner can be unreliable due to human error and fatigue, which reduces the ability to make accurate selection decisions. Monsanto engineering teams have developed a high-clearance mobile platform (Rover) as a step towards high throughput and high accuracy phenotyping at an industrial scale. The rovers are equipped with GPS navigation, multiple cameras and sensors and on-board computers to acquire data and compute plant vigor metrics per plot. The supporting IT systems enable automatic path planning, plot identification, image and point cloud data QA/QC and near real-time analysis where results are streamed to enterprise databases for additional statistical analysis and product advancement decisions. Since the rover program was launched in North America in 2013, the number of research plots we can analyze in a growing season has expanded dramatically. This work describes some of the successes and challenges in scaling up of the rover platform for automated phenotyping to enable science at scale.

  5. Developmental plasticity and the origin of species differences

    PubMed Central

    West-Eberhard, Mary Jane

    2005-01-01

    Speciation is the origin of reproductive isolation and divergence between populations, according to the “biological species concept” of Mayr. Studies of reproductive isolation have dominated research on speciation, leaving the origin of species differences relatively poorly understood. Here, I argue that the origin of species differences, and of novel phenotypes in general, involves the reorganization of ancestral phenotypes (developmental recombination) followed by the genetic accommodation of change. Because selection acts on phenotypes, not directly on genotypes or genes, novel traits can originate by environmental induction as well as mutation, then undergo selection and genetic accommodation fueled by standing genetic variation or by subsequent mutation and genetic recombination. Insofar as phenotypic novelties arise from adaptive developmental plasticity, they are not “random” variants, because their initial form reflects adaptive responses with an evolutionary history, even though they are initiated by mutations or novel environmental factors that are random with respect to (future) adaptation. Change in trait frequency involves genetic accommodation of the threshold or liability for expression of a novel trait, a process that follows rather than directs phenotypic change. Contrary to common belief, environmentally initiated novelties may have greater evolutionary potential than mutationally induced ones. Thus, genes are probably more often followers than leaders in evolutionary change. Species differences can originate before reproductive isolation and contribute to the process of speciation itself. Therefore, the genetics of speciation can profit from studies of changes in gene expression as well as changes in gene frequency and genetic isolation. PMID:15851679

  6. Flood induced phenotypic plasticity in amphibious genus Elatine (Elatinaceae).

    PubMed

    Molnár V, Attila; Tóth, János Pál; Sramkó, Gábor; Horváth, Orsolya; Popiela, Agnieszka; Mesterházy, Attila; Lukács, Balázs András

    2015-01-01

    Vegetative characters are widely used in the taxonomy of the amphibious genus Elatine L. However, these usually show great variation not just between species but between their aquatic and terrestrial forms. In the present study we examine the variation of seed and vegetative characters in nine Elatine species (E. brachysperma, E. californica, E. gussonei, E. hexandra, E. hungarica, E. hydropiper, E. macropoda, E. orthosperma and E. triandra) to reveal the extension of plasticity induced by the amphibious environment, and to test character reliability for species identification. Cultivated plant clones were kept under controlled conditions exposed to either aquatic or terrestrial environmental conditions. Six vegetative characters (length of stem, length of internodium, length of lamina, width of lamina, length of petioles, length of pedicel) and four seed characters (curvature, number of pits / lateral row, 1st and 2nd dimension) were measured on 50 fruiting stems of the aquatic and on 50 stems of the terrestrial form of the same clone. MDA, NPMANOVA Random Forest classification and cluster analysis were used to unravel the morphological differences between aquatic and terrestrial forms. The results of MDA cross-validated and Random Forest classification clearly indicated that only seed traits are stable within species (i.e., different forms of the same species keep similar morphology). Consequently, only seed morphology is valuable for taxonomic purposes since vegetative traits are highly influenced by environmental factors.

  7. Flood induced phenotypic plasticity in amphibious genus Elatine (Elatinaceae)

    PubMed Central

    Sramkó, Gábor; Horváth, Orsolya; Popiela, Agnieszka; Mesterházy, Attila; Lukács, Balázs András

    2015-01-01

    Vegetative characters are widely used in the taxonomy of the amphibious genus Elatine L. However, these usually show great variation not just between species but between their aquatic and terrestrial forms. In the present study we examine the variation of seed and vegetative characters in nine Elatine species (E. brachysperma, E. californica, E. gussonei, E. hexandra, E. hungarica, E. hydropiper, E. macropoda, E. orthosperma and E. triandra) to reveal the extension of plasticity induced by the amphibious environment, and to test character reliability for species identification. Cultivated plant clones were kept under controlled conditions exposed to either aquatic or terrestrial environmental conditions. Six vegetative characters (length of stem, length of internodium, length of lamina, width of lamina, length of petioles, length of pedicel) and four seed characters (curvature, number of pits / lateral row, 1st and 2nd dimension) were measured on 50 fruiting stems of the aquatic and on 50 stems of the terrestrial form of the same clone. MDA, NPMANOVA Random Forest classification and cluster analysis were used to unravel the morphological differences between aquatic and terrestrial forms. The results of MDA cross-validated and Random Forest classification clearly indicated that only seed traits are stable within species (i.e., different forms of the same species keep similar morphology). Consequently, only seed morphology is valuable for taxonomic purposes since vegetative traits are highly influenced by environmental factors. PMID:26713235

  8. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles.

    PubMed

    Chen, Haixin; Liu, Jingjing; Zhang, Afeng; Chen, Jing; Cheng, Gong; Sun, Benhua; Pi, Xiaomin; Dyck, Miles; Si, Bingcheng; Zhao, Ying; Feng, Hao

    2017-02-01

    Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L. cv Qinlong 11) rotation field over two-year period in the Loess Plateau, northwestern China. The following four field treatments were included: T1 (control, no mulching), T2 (4000kgha -1 wheat straw mulching, covering 100% of soil surface), T3 (half plastic film mulching, covering 50% of soil surface), and T4 (complete plastic film mulching, covering 100% of soil surface). Compared with the control, straw mulching decreased soil temperature and increased soil moisture, whereas plastic film mulching increased both soil temperature and moisture. Accordingly, straw mulching increased annual crop yields over both cycles, while plastic film mulching significantly enhanced annual crop yield over cycle 2. Compared to the no-mulching treatment, all mulching treatments increased soil CO 2 emission over both cycles, and straw mulching increased soil CH 4 absorption over both cycles, but patterns of soil N 2 O emissions under straw or film mulching are not consistent. Overall, compared to T1, annual GHG intensity was significantly decreased by 106%, 24% and 26% under T2, T3 and T4 over cycle 1, respectively; and by 20%, 51% and 29% under T2, T3 and T4 over cycle 2, respectively. Considering the additional cost and environmental issues associated with plastic film mulching, the application of straw mulching might achieve a balance between food security and GHG emissions in the Chinese Loess Plateau. However, further research is required to investigate the perennial influence of different mulching applications. Copyright

  9. Adaptive shaping of the behavioural and neuroendocrine phenotype during adolescence

    PubMed Central

    Kaiser, Sylvia; Hennessy, Michael B.; Sachser, Norbert

    2017-01-01

    Environmental conditions during early life can adaptively shape the phenotype for the prevailing environment. Recently, it has been suggested that adolescence represents an additional temporal window for adaptive developmental plasticity, though supporting evidence is scarce. Previous work has shown that male guinea pigs living in large mixed-sex colonies develop a low-aggressive phenotype as part of a queuing strategy that is adaptive for integrating into large unfamiliar colonies. By contrast, males living in pairs during adolescence become highly aggressive towards strangers. Here, we tested whether the high-aggressive phenotype is adaptive under conditions of low population density, namely when directly competing with a single opponent for access to females. For that purpose, we established groups of one pair-housed male (PM), one colony-housed male (CM) and two females. PMs directed more aggression towards the male competitor and more courtship and mating towards females than did CMs. In consequence, PMs attained the dominant position in most cases and sired significantly more offspring. Moreover, they showed distinctly higher testosterone concentrations and elevated cortisol levels, which probably promoted enhanced aggressiveness while mobilizing necessary energy. Taken together, our results provide the clearest evidence to date for adaptive shaping of the phenotype by environmental influences during adolescence. PMID:28202817

  10. Using cover crops and cropping systems for nitrogen management

    USDA-ARS?s Scientific Manuscript database

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  11. Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow.

    PubMed

    Richter-Boix, Alex; Teplitsky, Céline; Rogell, Björn; Laurila, Anssi

    2010-02-01

    In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open-canopy or partially closed-canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (Q(ST)) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (F(ST)). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in F(ST) at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature-induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.

  12. The Potential of Transcription Factor-Based Genetic Engineering in Improving Crop Tolerance to Drought

    PubMed Central

    Tripathi, Prateek

    2014-01-01

    Abstract Drought is one of the major constraints in crop production and has an effect on a global scale. In order to improve crop production, it is necessary to understand how plants respond to stress. A good understanding of regulatory mechanisms involved in plant responses during drought will enable researchers to explore and manipulate key regulatory points in order to enhance stress tolerance in crops. Transcription factors (TFs) have played an important role in crop improvement from the dawn of agriculture. TFs are therefore good candidates for genetic engineering to improve crop tolerance to drought because of their role as master regulators of clusters of genes. Many families of TFs, such as CCAAT, homeodomain, bHLH, NAC, AP2/ERF, bZIP, and WRKY have members that may have the potential to be tools for improving crop tolerance to drought. In this review, the roles of TFs as tools to improve drought tolerance in crops are discussed. The review also focuses on current strategies in the use of TFs, with emphasis on several major TF families in improving drought tolerance of major crops. Finally, many promising transgenic lines that may have improved drought responses have been poorly characterized and consequently their usefulness in the field is uncertain. New advances in high-throughput phenotyping, both greenhouse and field based, should facilitate improved phenomics of transgenic lines. Systems biology approaches should then define the underlying changes that result in higher yields under water stress conditions. These new technologies should help show whether manipulating TFs can have effects on yield under field conditions. PMID:25118806

  13. Extraordinary adaptive plasticity of Colorado potato beetle: “Ten-striped spearman” in the era of biotechnological warfare

    USDA-ARS?s Scientific Manuscript database

    Expanding from remote areas of Mexico to a worldwide scale, the ten-striped insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata Say), has risen from being an innocuous beetle to a prominent global pest. A diverse life cycle, phenotypic plasticity, adaptation to adverse conditions, and...

  14. Systems biology-based approaches toward understanding drought tolerance in food crops.

    PubMed

    Jogaiah, Sudisha; Govind, Sharathchandra Ramsandra; Tran, Lam-Son Phan

    2013-03-01

    Economically important crops, such as maize, wheat, rice, barley, and other food crops are affected by even small changes in water potential at important growth stages. Developing a comprehensive understanding of host response to drought requires a global view of the complex mechanisms involved. Research on drought tolerance has generally been conducted using discipline-specific approaches. However, plant stress response is complex and interlinked to a point where discipline-specific approaches do not give a complete global analysis of all the interlinked mechanisms. Systems biology perspective is needed to understand genome-scale networks required for building long-lasting drought resistance. Network maps have been constructed by integrating multiple functional genomics data with both model plants, such as Arabidopsis thaliana, Lotus japonicus, and Medicago truncatula, and various food crops, such as rice and soybean. Useful functional genomics data have been obtained from genome-wide comparative transcriptome and proteome analyses of drought responses from different crops. This integrative approach used by many groups has led to identification of commonly regulated signaling pathways and genes following exposure to drought. Combination of functional genomics and systems biology is very useful for comparative analysis of other food crops and has the ability to develop stable food systems worldwide. In addition, studying desiccation tolerance in resurrection plants will unravel how combination of molecular genetic and metabolic processes interacts to produce a resurrection phenotype. Systems biology-based approaches have helped in understanding how these individual factors and mechanisms (biochemical, molecular, and metabolic) "interact" spatially and temporally. Signaling network maps of such interactions are needed that can be used to design better engineering strategies for improving drought tolerance of important crop species.

  15. Evolutionary outcomes should inform plant breeding and transgenic approaches to drought tolerance in crop species: the importance of xylem traits

    USDA-ARS?s Scientific Manuscript database

    Genomic-assisted breeding and transgenic approaches to crop improvement are presently targeting phenotypic traits that allegedly confer drought tolerance. A news feature published in Nature Biotechnology last year suggests that these efforts may not be proceeding with sufficient haste, considering t...

  16. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Macrophage origin limits functional plasticity in helminth-bacterial co-infection

    PubMed Central

    Campbell, Sharon M.; Duncan, Sheelagh; Hewitson, James P.; Barr, Tom A.; Jackson-Jones, Lucy H.; Maizels, Rick M.

    2017-01-01

    Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell. PMID:28334040

  18. Is plasticity across seasons adaptive in the annual cleistogamous plant Lamium amplexicaule?

    PubMed

    Stojanova, B; Maurice, S; Cheptou, P-O

    2016-04-01

    Many angiosperms exhibit cleistogamy, the production of both cleistogamous flowers (CL), which remain closed and obligately self-pollinated, and chasmogamous flowers (CH), which are potentially open-pollinated. The CH proportion can be plastic. Plasticity is adaptive if environmental changes can be reliably assessed and responded to with an appropriate phenotype and if plastic genotypes have higher fitness in variable environments than non-plastic ones. We studied the plastic response of four natural populations from northern and southern France of an annual cleistogamous plant, Lamium amplexicaule, to predictable seasonal variation. Plants were grown in a semi-controlled environment in spring and in autumn. We assessed the variation in flower number, phenology and cleistogamy-related traits, which were all plastic with respect to season. The CH proportion was higher in spring than in autumn in all four populations. We showed significant stabilizing selection for cleistogamy traits, with higher optimal CH proportions and more pronounced stabilizing selection in spring than in autumn. Observed CH proportions were close to the predicted optimal CH proportions in each season except in autumn for southern populations, which do not experience the autumnal growing season in nature. These results are consistent with adaptive plasticity across seasons of cleistogamy in L. amplexicaule.We propose that adaptive plasticity of cleistogamy could be driven by pollination environment variation, with CL flowers providing reproductive assurance when pollinators are scarce and CH flowers reducing the inbreeding depression in offspring when pollinators are abundant. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Food Allergy - Basic Mechanisms and Applications to Identifying Risks Associated with Plant Incorporated Pesticides and Other Genetically Modified Crops

    EPA Science Inventory

    Food allergy is a relatively new concern for toxicologists as a result of the incorporation of novel proteins into food crops in order to promote resistance to pests and other stresses, improve nutrition, or otherwise modify the phenotype. Food allergy can manifest as inflammatio...

  20. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion

    PubMed Central

    Konen, J.; Summerbell, E.; Dwivedi, B.; Galior, K.; Hou, Y.; Rusnak, L.; Chen, A.; Saltz, J.; Zhou, W.; Boise, L. H.; Vertino, P.; Cooper, L.; Salaita, K.; Kowalski, J.; Marcus, A. I.

    2017-01-01

    Phenotypic heterogeneity is widely observed in cancer cell populations. Here, to probe this heterogeneity, we developed an image-guided genomics technique termed spatiotemporal genomic and cellular analysis (SaGA) that allows for precise selection and amplification of living and rare cells. SaGA was used on collectively invading 3D cancer cell packs to create purified leader and follower cell lines. The leader cell cultures are phenotypically stable and highly invasive in contrast to follower cultures, which show phenotypic plasticity over time and minimally invade in a sheet-like pattern. Genomic and molecular interrogation reveals an atypical VEGF-based vasculogenesis signalling that facilitates recruitment of follower cells but not for leader cell motility itself, which instead utilizes focal adhesion kinase-fibronectin signalling. While leader cells provide an escape mechanism for followers, follower cells in turn provide leaders with increased growth and survival. These data support a symbiotic model of collective invasion where phenotypically distinct cell types cooperate to promote their escape. PMID:28497793