Science.gov

Sample records for crop year

  1. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements...

  2. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements...

  3. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  4. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  5. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  6. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  7. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  8. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  9. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  10. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  11. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  12. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  13. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  14. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  15. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  16. 120 years of sustainable crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the late 1800s, the Southern U.S. was producing most of the world’s cotton on highly erodible soils with little or no lime or fertilizer. Cotton every year without cover crops was taking a toll from the land and its farmers. Land Grant Universities and Experiment Stations were just getting star...

  17. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Crop year. 205.107 Section 205.107 Animals and Animal Products GRAIN INSPECTION, PACKERS AND STOCKYARDS ADMINISTRATION (PACKERS AND STOCKYARDS PROGRAMS), DEPARTMENT OF AGRICULTURE CLEAR TITLE-PROTECTION FOR PURCHASERS OF FARM...

  18. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  19. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  20. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TART CHERRIES GROWN IN THE STATES...

  1. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TART CHERRIES GROWN IN THE STATES...

  2. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE TART CHERRIES GROWN IN THE STATES...

  3. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TART CHERRIES GROWN IN THE STATES...

  4. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA...

  5. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA...

  6. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA...

  7. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA...

  8. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA...

  9. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  10. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  11. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  12. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  13. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  14. 7 CFR 981.19 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... the following July 31, inclusive. Any new crop almonds harvested or received prior to August 1 will...

  15. 7 CFR 981.19 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... the following July 31, inclusive. Any new crop almonds harvested or received prior to August 1 will...

  16. 7 CFR 981.19 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... the following July 31, inclusive. Any new crop almonds harvested or received prior to August 1 will...

  17. 7 CFR 981.19 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... the following July 31, inclusive. Any new crop almonds harvested or received prior to August 1 will...

  18. 7 CFR 981.19 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... the following July 31, inclusive. Any new crop almonds harvested or received prior to August 1 will...

  19. Evaluation of spring wheat and barley crop calender models for the 1979 crop year

    NASA Technical Reports Server (NTRS)

    Nazare, C. V.; Carnes, J. G. (Principal Investigator)

    1981-01-01

    During the Large Area Crop Inventory Experiment, spring wheat planting date and crop development stage estimates based on historical normals were improved by the use of the Feyerherm planting date and Robertson spring wheat crop calendar models. The Supporting Research Crop Calendar Project element modified the Robertson model to reduce bias at cardinal growth stages within the growing season. These models were tested in 1980 along with a state-of-the-art barley model (Williams) against a ground-truth data set from 49 calendar year 1979 segments in the U.S. Great Plains spring wheat and barley region.

  20. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which they are born or acquired; (3) For poultry or eggs, the calendar year in which they are sold or to be...

  1. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which they are born or acquired; (3) For poultry or eggs, the calendar year in which they are sold or to be...

  2. Effects of genetically modified herbicide-tolerant cropping systems on weed seedbanks in two years of following crops.

    PubMed

    Firbank, L G; Rothery, P; May, M J; Clark, S J; Scott, R J; Stuart, R C; Boffey, C W H; Brooks, D R; Champion, G T; Haughton, A J; Hawes, C; Heard, M S; Dewar, A M; Perry, J N; Squire, G R

    2006-03-22

    The Farm Scale Evaluations (FSEs) showed that genetically modified herbicide-tolerant (GMHT) cropping systems could influence farmland biodiversity because of their effects on weed biomass and seed production. Recently published results for winter oilseed rape showed that a switch to GMHT crops significantly affected weed seedbanks for at least 2 years after the crops were sown, potentially causing longer-term effects on other taxa. Here, we seek evidence for similar medium-term effects on weed seedbanks following spring-sown GMHT crops, using newly available data from the FSEs. Weed seedbanks following GMHT maize were significantly higher than following conventional varieties for both the first and second years, while by contrast, seedbanks following GMHT spring oilseed rape were significantly lower over this period. Seedbanks following GMHT beet were smaller than following conventional crops in the first year after the crops had been sown, but this difference was much reduced by the second year for reasons that are not clear. These new data provide important empirical evidence for longer-term effects of GMHT cropping on farmland biodiversity.

  3. Climate-Induced Changes in Year-to-Year Variations in Yields of Major Crops

    NASA Astrophysics Data System (ADS)

    Iizumi, T.; Sakurai, G.; Ramankutty, N.

    2014-12-01

    Incidences of climatic extremes and associated crop failures in major food-producing regions have implications for commodity prices and generate concerns for national governments and commercial entities in import-dependent countries. While recent changes in temperature and precipitation extremes are evident, their impacts on the year-to-year variability of yield remain unclear. Here we present a global assessment of the impacts of recent climate change on year-to-year variations in yields of major crops using a global dataset of historical yields recently developed by merging satellite product and country-level crop statistics. We found that crop yield variability, in a large portion (24-53%) of the global harvested area, decreased from the earlier decade (1982—1993) to the later decade (1994—2005). However, yield variability also increased in a substantial portion (9—17%) of the harvested area. The changes in yield variability across 20—31% of the harvested area could be reasonably explained by changes in an agro-climatic index. Our findings reveal that climate change in the last two decades has led to more unstable yields in some regions. However, climate change has reduced yield variability in many more regions of the world. This suggests complex influences of climate change and agronomic technology on yield variability.

  4. A probabilistic model framework for evaluating year-to-year variation in crop productivity

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Iizumi, T.; Tao, F.

    2008-12-01

    Most models describing the relation between crop productivity and weather condition have so far been focused on mean changes of crop yield. For keeping stable food supply against abnormal weather as well as climate change, evaluating the year-to-year variations in crop productivity rather than the mean changes is more essential. We here propose a new framework of probabilistic model based on Bayesian inference and Monte Carlo simulation. As an example, we firstly introduce a model on paddy rice production in Japan. It is called PRYSBI (Process- based Regional rice Yield Simulator with Bayesian Inference; Iizumi et al., 2008). The model structure is the same as that of SIMRIW, which was developed and used widely in Japan. The model includes three sub- models describing phenological development, biomass accumulation and maturing of rice crop. These processes are formulated to include response nature of rice plant to weather condition. This model inherently was developed to predict rice growth and yield at plot paddy scale. We applied it to evaluate the large scale rice production with keeping the same model structure. Alternatively, we assumed the parameters as stochastic variables. In order to let the model catch up actual yield at larger scale, model parameters were determined based on agricultural statistical data of each prefecture of Japan together with weather data averaged over the region. The posterior probability distribution functions (PDFs) of parameters included in the model were obtained using Bayesian inference. The MCMC (Markov Chain Monte Carlo) algorithm was conducted to numerically solve the Bayesian theorem. For evaluating the year-to-year changes in rice growth/yield under this framework, we firstly iterate simulations with set of parameter values sampled from the estimated posterior PDF of each parameter and then take the ensemble mean weighted with the posterior PDFs. We will also present another example for maize productivity in China. The

  5. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage

    NASA Astrophysics Data System (ADS)

    Avnery, Shiri; Mauzerall, Denise L.; Liu, Junfeng; Horowitz, Larry W.

    2011-04-01

    Exposure to elevated concentrations of surface ozone (O 3) causes substantial reductions in the agricultural yields of many crops. As emissions of O 3 precursors rise in many parts of the world over the next few decades, yield reductions from O 3 exposure appear likely to increase the challenges of feeding a global population projected to grow from 6 to 9 billion between 2000 and 2050. This study estimates year 2000 global yield reductions of three key staple crops (soybean, maize, and wheat) due to surface ozone exposure using hourly O 3 concentrations simulated by the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2). We calculate crop losses according to two metrics of ozone exposure - seasonal daytime (08:00-19:59) mean O 3 (M12) and accumulated O 3 above a threshold of 40 ppbv (AOT40) - and predict crop yield losses using crop-specific O 3 concentration:response functions established by field studies. Our results indicate that year 2000 O 3-induced global yield reductions ranged, depending on the metric used, from 8.5-14% for soybean, 3.9-15% for wheat, and 2.2-5.5% for maize. Global crop production losses totaled 79-121 million metric tons, worth $11-18 billion annually (USD 2000). Our calculated yield reductions agree well with previous estimates, providing further evidence that yields of major crops across the globe are already being substantially reduced by exposure to surface ozone - a risk that will grow unless O 3-precursor emissions are curbed in the future or crop cultivars are developed and utilized that are resistant to O 3.

  6. 7 CFR 993.55 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... end of crop year. 993.55 Section 993.55 Agriculture Regulations of the Department of Agriculture....55 Application of salable and reserve percentages after end of crop year. The salable and reserve... reserve obligations shall be adjusted to the newly established percentages. Effective Date Note: At 70...

  7. Eight Years of Annual No-Till Cropping in Washington's Winter Wheat- Summer Fallow Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tillage-based winter wheat – summer fallow (WW-SF) cropping system has dominated dryland farming in the Pacific Northwest for 125 years. We conducted a large-scale multidisciplinary 8-year study of annual no-till cropping systems as an alternative to WW-SF. Soft white and hard white classes of w...

  8. Energy balance in rainfed herbaceous crops in a semiarid environment for a 15-year experiment. 2. Impact of crop rotations.

    NASA Astrophysics Data System (ADS)

    Moreno, M. C.; Moreno, M. M.; Lacasta, C.; Tarquis, A. M.; Meco, R.

    2012-04-01

    Energy balances in agriculture production have been widely studied since the 1970s. Researchers have performed detailed energy balances for different crops and farm management systems all over the world in attempts to assess the efficiency and environmental impact of production systems. This work is part of a larger study assessing the effects of three farming systems (conventional, conservation with zero tillage, and organic) and four barley-based crop rotations (barley followed by fallow [B-F], barley in rotation with vetch for hay production [B-V] or sunflower [B-S], and barley monoculture [B-B]), on the energy balance of crop production under the semi-arid conditions over a 15 year period. However, the present work is focused on the crop rotation effect, so farming systems and years are averaged. Experiments were conducted at "La Higueruela" Experimental Farm (4°26' W, 40°04' N, altitude 450 m) (Spanish National Research Council, Santa Olalla, Toledo, central Spain). The climate is semi-arid Mediterranean, with an average seasonal rainfall of 480 mm irregularly distributed. The rotations were simultaneously duplicated to have all phases of each rotation present every year. Results were expressed with respect to one hectare and year for a complete rotation. The energy balance method used required the identification and quantification of all the inputs and outputs implied, and the conversion to energy values by corresponding coefficients. The parameters considered were (i) energy inputs (EI) (diesel, machines, fertilizers, herbicides, seeds) (ii) energy outputs (EO) (energy in the harvested biomass), (iii) net energy produced (NE) (EI - EO), (iv) the energy output/input ratio (O/I), and (v) energy productivity (EP) (Crop yield/EI). Total EI varied from 6.19 GJ ha-1 year-1 for B-F to 11.7 GJ ha-1 year-1 for B-B, that indicates that the energy requirements of barley monoculture (B-B) are almost double those when a fallow period is included in the rotation

  9. The LACIE crop years: An assessment of the crop conditions experienced in the three years of LACIE

    NASA Technical Reports Server (NTRS)

    Hill, J. D.; Thompson, D. R. (Principal Investigator)

    1979-01-01

    Meteorological data and LANDSAT spectral data from growing regions in the U.S. Great Plains, the U.S.S.R., and Canada were used to assess growing conditions and to document where anomalies such as drought, floods, and freezes were impacting the crop yield and appearance of spring and winter wheat. In the United States, the weekly rainfall and temperature data were used to estimate soil moisture, which was then related to crop needs by a crop moisture index. The transformation of LANDSAT digital data into a green index number provided a procedure whereby data from a LACIE segment could be classified as drought affected or not. The growing seasons encountered in each LACIE country during the three phases are described.

  10. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop...

  11. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop...

  12. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop...

  13. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop...

  14. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop...

  15. Soil-profile distribution of inorganic N during 6 years of integrated crop-livestock management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive accumulation of soil nitrate-N can threaten water and air quality. How integrated crop-livestock systems might influence soil-profile nitrate-N accumulation has not been investigated. Therefore, we determined soil nitrate-N accumulation during 6 years of evaluation of diverse cropping sy...

  16. Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation.

    PubMed

    Sanvido, Olivier; Romeis, Jörg; Bigler, Franz

    2007-01-01

    The worldwide commercial cultivation of genetically modified (GM) crops has raised concerns about potential adverse effects on the environment resulting from the use of these crops. Consequently, the risks of GM crops for the environment, and especially for biodiversity, have been extensively assessed before and during their commercial cultivation. Substantial scientific data on the environmental effects of the currently commercialized GM crops are available today. We have reviewed this scientific knowledge derived from the past 10 years of worldwide experimental field research and commercial cultivation. The review focuses on the currently commercially available GM crops that could be relevant for agriculture in Western and Central Europe (i.e., maize, oilseed rape, and soybean), and on the two main GM traits that are currently commercialized, herbicide tolerance (HT) and insect resistance (IR). The sources of information included peer-reviewed scientific journals, scientific books, reports from regions with extensive GM crop cultivation, as well as reports from international governmental organizations. The data available so far provide no scientific evidence that the cultivation of the presently commercialized GM crops has caused environmental harm. Nevertheless, a number of issues related to the interpretation of scientific data on effects of GM crops on the environment are debated controversially. The present review highlights these scientific debates and discusses the effects of GM crop cultivation on the environment considering the impacts caused by cultivation practices of modern agricultural systems.

  17. 7 CFR 929.251 - Marketable quantity and allotment percentage for the 2001-2002 crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2001-2002 crop year. 929.251 Section 929.251 Agriculture Regulations of the Department of Agriculture... § 929.251 Marketable quantity and allotment percentage for the 2001-2002 crop year. The marketable quantity for the 2001-2002 crop year is set at 4.6 million barrels and the allotment percentage...

  18. 7 CFR 929.251 - Marketable quantity and allotment percentage for the 2001-2002 crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2001-2002 crop year. 929.251 Section 929.251 Agriculture Regulations of the Department of Agriculture... § 929.251 Marketable quantity and allotment percentage for the 2001-2002 crop year. The marketable quantity for the 2001-2002 crop year is set at 4.6 million barrels and the allotment percentage...

  19. Soil microbial biomass and function are altered by 12 years of crop rotation

    NASA Astrophysics Data System (ADS)

    McDaniel, Marshall D.; Grandy, A. Stuart

    2016-11-01

    Declines in plant diversity will likely reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity in agroecosystems (by rotating crops) can partially reverse these trends and enhance soil microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W. K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a 3-year rotation cycle, but all soils were sampled under a corn year. We hypothesized that crop diversity would increase microbial biomass, activity, and catabolic evenness (a measure of functional diversity). Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28-112 % and N by 18-58 % compared to low-diversity systems. Rotations increased potential C mineralization by as much as 53 %, and potential N mineralization by 72 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the soil microbial community showed no, or slightly lower, catabolic evenness in more diverse rotations. However, the catabolic potential indicated that soil microbial communities were functionally distinct, and microbes from monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems

  20. Australia ground data collection 1981-82 crop year, volume 1

    NASA Technical Reports Server (NTRS)

    Quinones, C. R.

    1982-01-01

    Under AgRISTARS management, ground data were collected at 20 agricultural sites within Australia during the crop year 1981-82. The data collection activity is summarized. Specifically, the following information is provided: discussion of data procedures, methods, and products; crop production results; photographs of the Australia agriculture scene, map sheets of segments, LANDSAT full frames, and aerial photographs of data collection areas; and summarizations of district agronomist reports.

  1. Policy Design of Multi-Year Crop Insurance Contracts with Partial Payments.

    PubMed

    Chen, Ying-Erh; Goodwin, Barry K

    2015-01-01

    Current crop insurance is designed to mitigate monetary fluctuations resulting from yield losses for a specific year. However, yield realization tendency can vary from year to year and may depend on the correlation of yield realizations across years. When the current single-year Yield Protection (YP) and Area Risk Protection Insurance (ARPI) contracts are extended to multiple periods, actuarially fair premium rate is expected to decrease as poor yield realizations in a year can be offset by another year's better yield realizations. In this study, we first use simulations to demonstrate how significant premium savings are possible when coverage is based on the sum of yields across years rather than on a year-by-year basis. We then describe the design of a multi-year framework of crop insurance and model the insurance using a copula approach. Insurance terms are extended to more than a year and the premium, liability, and indemnity are determined by a multi-year term. Moreover, partial payment is provided at the end of each term to offset the possibility of significant loss in a single term. County-level data obtained from the U.S. Department of Agriculture are used to demonstrate the implementations of the proposed multi-year crop insurance. The proposed multi-year plan would benefit farmers by offering insurance guarantees across years for significantly lower costs.

  2. Policy Design of Multi-Year Crop Insurance Contracts with Partial Payments

    PubMed Central

    Chen, Ying-Erh; Goodwin, Barry K.

    2015-01-01

    Current crop insurance is designed to mitigate monetary fluctuations resulting from yield losses for a specific year. However, yield realization tendency can vary from year to year and may depend on the correlation of yield realizations across years. When the current single-year Yield Protection (YP) and Area Risk Protection Insurance (ARPI) contracts are extended to multiple periods, actuarially fair premium rate is expected to decrease as poor yield realizations in a year can be offset by another year’s better yield realizations. In this study, we first use simulations to demonstrate how significant premium savings are possible when coverage is based on the sum of yields across years rather than on a year-by-year basis. We then describe the design of a multi-year framework of crop insurance and model the insurance using a copula approach. Insurance terms are extended to more than a year and the premium, liability, and indemnity are determined by a multi-year term. Moreover, partial payment is provided at the end of each term to offset the possibility of significant loss in a single term. County-level data obtained from the U.S. Department of Agriculture are used to demonstrate the implementations of the proposed multi-year crop insurance. The proposed multi-year plan would benefit farmers by offering insurance guarantees across years for significantly lower costs. PMID:26695074

  3. Sugarcane Fertilizer Recommendations for the 2008 Crop Year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Louisiana sugarcane producers continue to face challenges as they attempt to maximize profits and increase production efficiency. This year yet another challenge has been added through the significant increase in the cost of nitrogen (N), phosphorus (P) and potassium (K) fertilizers. Due to these i...

  4. Hydroclimatic Impacts of Perennial Biofuel Crop Growth during an Extreme Drought Year

    NASA Astrophysics Data System (ADS)

    Wagner, M.; Wang, M.; Miguez-Macho, G.; Mahalov, A.; Georgescu, M.

    2013-12-01

    Perennial biofuel crops (e.g, miscanthus and switchgrass) offer a potentially viable energy pathway that can increase U.S. domestic energy security and mitigate greenhouse gas induced climate change. Recent work has shown a positive feedback between evapotranspiration and near-surface cooling resulting from annual to perennial biofuel crop conversion. However, whether near-surface cooling is sustainable remains a critical question requiring further examination, as the conversion to perennial biofuel crops may lead to unintended consequences of soil moisture and groundwater depletion. We conduct continuous, high resolution (5km grid spacing) simulations with and without biofuel crop representation during an extreme drought year (2012). We quantify hydroclimatic impacts associated with the deployment of perennial biofuel crops in recently identified abandoned and degraded farmland over the Central U.S. using WRF coupled to a land surface model linked to a dynamic water table and rivers module (LEAF-Hydro). This is an initial step towards exploration of hydroclimatic sustainability associated with the conversion of large swaths of land to perennial biofuel crops during extreme hydrometeorological conditions aimed at highlighting mechanisms and processes associated with this energy pathway.

  5. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.

    PubMed

    Duke, Stephen O

    2015-05-01

    Herbicide-resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide-resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. CO2 fluxes exchanged by a 4-year crop rotation cycle.

    NASA Astrophysics Data System (ADS)

    Aubinet, M.; Moureaux, C.; Bodson, B.; Dufranne, D.; Heinesch, B.; Suleau, M.; Vancutsem, F.; Vilret, A.

    2009-04-01

    This study analyses carbon fluxes exchanged by a production crop during a four year cycle. Between 2004 and 2008, the successive crops were sugar beet, winter wheat, potato and again winter wheat. Eddy covariance, automatic and manual soil chamber, leaf diffusion and biomass measurements were performed continuously in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), Total Ecosystem Respiration (TER), Net Primary Productivity (NPP), Autotrophic Respiration, Heterotrophic Respiration and Net Biome Production (NBP). The whole cycle budget showed that NEE was negative and the rotation behaved as a sink of 1.59 kgC m-2 over the 4-year rotation. However, if exports were deducted from the budget, the crop would become a small source of 0.22 (+/- 0.14) kgC m-2, which also suggests that the crop soil carbon content decreased. This could partly be explained by the crop management, as neither farmyard manure nor slurry had been applied to the crop for more than 10 years and as cereal straw had been systematically exported for livestock. This result is also strongly dependent on climate: the fluxes were subjected to a large inter-annual variability due to differences between crops but also to climate variability. In particular, the mild winter and the dry spring underwent in 2007 induced an increase of the biomass fraction that returned to the soil, at the expense of harvested biomass. If 2007 had been a ‘normal' year, the carbon emission by the crop rotation would have been twice as great. This is analysed more in detail in a companion presentation (Dufranne et al., this session). The impacts of some farmer interventions were quantified. In particular, the impact of ploughing was found to be limited both in intensity (1 to 2 micromol m-2 s-1) and duration (not more than 1 day). Seasonal budgets showed that, during cropping periods, the TER/GPP ratio varied between 40 and 60% and that TER was dominated mainly by the

  7. THREE-YEAR GIS OF WESTERN OREGON GRASS SEED CROPPING PRACTICES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High quality georeferenced data on crop production practices and other land uses is critical but often lacking in undertakings, such as the USDA Conservation Effects Assessment Program (CEAP), that seek to measure the effectiveness of conservation practices in achieving their goals. A multi-year CEA...

  8. 7 CFR 993.55 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Application of salable and reserve percentages after end of crop year. 993.55 Section 993.55 Agriculture Regulations of the Department of Agriculture...), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA Order Regulating Handling Reserve Control §...

  9. 7 CFR 993.55 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Application of salable and reserve percentages after end of crop year. 993.55 Section 993.55 Agriculture Regulations of the Department of Agriculture...), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA Order Regulating Handling Reserve Control §...

  10. 7 CFR 987.50 - Application after end of crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Application after end of crop year. 987.50 Section 987.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE...

  11. 7 CFR 993.55 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Application of salable and reserve percentages after end of crop year. 993.55 Section 993.55 Agriculture Regulations of the Department of Agriculture...), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA Order Regulating Handling Reserve Control §...

  12. 7 CFR 987.50 - Application after end of crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Application after end of crop year. 987.50 Section 987.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE...

  13. 7 CFR 987.50 - Application after end of crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Application after end of crop year. 987.50 Section 987.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE...

  14. Three years of crop yields using drainage water management at eight sites in Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage water management (NRCS-Practice Code 554) is an important water management practice for dealing with nitrate-loading across the Midwest US. A multi-year study is being conducted in Ohio to evaluate the effects of drainage water management on crop yield and water quality. We have installed w...

  15. 7 CFR 760.105 - Waiver for certain crop years; buy-in.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... crop year, the insurance or NAP purchase requirements of § 760.104 (this is referred to as the... eligible producer paid a fee (buy-in fee) equal to the applicable NAP service fee or catastrophic risk...-in fee does not provide any actual insurance or NAP coverage or assistance. (b) For the 2009...

  16. 7 CFR 760.105 - Waiver for certain crop years; buy-in.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... crop year, the insurance or NAP purchase requirements of § 760.104 (this is referred to as the... eligible producer paid a fee (buy-in fee) equal to the applicable NAP service fee or catastrophic risk...-in fee does not provide any actual insurance or NAP coverage or assistance. (b) For the 2009...

  17. 7 CFR 760.105 - Waiver for certain crop years; buy-in.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... crop year, the insurance or NAP purchase requirements of § 760.104 (this is referred to as the... eligible producer paid a fee (buy-in fee) equal to the applicable NAP service fee or catastrophic risk...-in fee does not provide any actual insurance or NAP coverage or assistance. (b) For the 2009...

  18. 7 CFR 760.105 - Waiver for certain crop years; buy-in.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... crop year, the insurance or NAP purchase requirements of § 760.104 (this is referred to as the... eligible producer paid a fee (buy-in fee) equal to the applicable NAP service fee or catastrophic risk...-in fee does not provide any actual insurance or NAP coverage or assistance. (b) For the 2009...

  19. 7 CFR 760.105 - Waiver for certain crop years; buy-in.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... crop year, the insurance or NAP purchase requirements of § 760.104 (this is referred to as the... eligible producer paid a fee (buy-in fee) equal to the applicable NAP service fee or catastrophic risk...-in fee does not provide any actual insurance or NAP coverage or assistance. (b) For the 2009...

  20. Unintended compositional changes in genetically modified (GM) crops: 20 years of research.

    PubMed

    Herman, Rod A; Price, William D

    2013-12-04

    The compositional equivalency between genetically modified (GM) crops and nontransgenic comparators has been a fundamental component of human health safety assessment for 20 years. During this time, a large amount of information has been amassed on the compositional changes that accompany both the transgenesis process and traditional breeding methods; additionally, the genetic mechanisms behind these changes have been elucidated. After two decades, scientists are encouraged to objectively assess this body of literature and determine if sufficient scientific uncertainty still exists to continue the general requirement for these studies to support the safety assessment of transgenic crops. It is concluded that suspect unintended compositional effects that could be caused by genetic modification have not materialized on the basis of this substantial literature. Hence, compositional equivalence studies uniquely required for GM crops may no longer be justified on the basis of scientific uncertainty.

  1. Detection of anomalous crop condition and soil variability mapping using a 26 year Landsat record and the Palmer crop moisture index

    NASA Astrophysics Data System (ADS)

    Venteris, E. R.; Tagestad, J. D.; Downs, J. L.; Murray, C. J.

    2015-07-01

    Cost-effective and reliable vegetation monitoring methods are needed for applications ranging from traditional agronomic mapping, to verifying the safety of geologic injection activities. A particular challenge is defining baseline crop conditions and subsequent anomalies from long term imagery records (Landsat) in the face of large spatiotemporal variability. We develop a new method for defining baseline crop response (near peak growth) using the normalized difference vegetation index (NDVI) from 26 years (1986-2011) of Landsat data for 400 km2 surrounding a planned geologic carbon sequestration site near Jacksonville, Illinois. The normal score transform (yNDVI) was applied on a field by field basis to accentuate spatial patterns and level differences due to planting times. We tested crop type and soil moisture (Palmer crop moisture index (CMI)) as predictors of expected crop condition. Spatial patterns in yNDVI were similar between corn and soybeans - the two major crops. Linear regressions between yNDVI and the cumulative CMI (CCMI) exposed complex interactions between crop condition, field location (topography and soils), and annual moisture. Wet toposequence positions (depressions) were negatively correlated to CCMI and dry positions (crests) positively correlated. However, only 21% of the landscape showed a statistically significant (p < 0.05) linear relationship. To map anomalous crop conditions, we defined a tolerance interval based on yNDVI statistics. Tested on an independent image (2013), 63 of 1483 possible fields showed unusual crop condition. While the method is not directly suitable for crop health assessment, the spatial patterns in correlation between yNDVI and CCMI have potential applications for pest damage detection and edaphological soil mapping, especially in the developing world.

  2. Developing and normalizing average corn crop water production functions across years and locations using a system model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop water production functions (CWPFs) are often expressed as crop yield vs. consumptive water use or irrigation water applied. CWPFs are helpful for optimizing management of limited water resources, but are site-specific and vary from year to year, especially when yield is expressed as a function ...

  3. Climatic and management drivers of CO2 exchanges by a production crop: analysis over three successive 4-year cycles.

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Moureaux, Christine; Bodson, Bernard; Aubinet, Marc

    2016-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (candidate ICOS site) in the Hesbaye region in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Eddy covariance, automatic and manual soil chambers, leaf diffusion and biomass measurements were performed continuously in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), total Ecosystem Respiration (TER), Net Primary Productivity (NPP), autotrophic respiration, heterotrophic respiration and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. Climatic and seasonal evolutions of the carbon balance components were studied and crop carbon budgets were computed both at the yearly and crop rotation cycle scales. On average over the 12 years, NEE was negative but NBP was positive, i.e. as far as carbon exportation by harvest are included in the budget, the site behaved as a carbon source. Impacts of both meteorological drivers and crop management operations on CO2 exchanges were analyzed and compared between crop types, years, and rotation cycles. The uncertainties associated to the carbon fluxes were also evaluated and discussed.

  4. Root standing crop and chemistry after six years of soil warming in a temperate forest.

    PubMed

    Zhou, Yumei; Tang, Jianwu; Melillo, Jerry M; Butler, Sarah; Mohan, Jacqueline E

    2011-07-01

    Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after 6 years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤1mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m(-2)) lower than in the control area, while live root standing crop in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and C compounds (sugar, starch, hemicellulose, cellulose and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g(-1)) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated with both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass and thus decreases C allocation belowground.

  5. Illustration of year-to-year variation in wheat spectral profile crop growth curves. [Kansas, Oklahoma, North Dakota and South Dakota

    NASA Technical Reports Server (NTRS)

    Gonzalez, P.; Jones, C. (Principal Investigator)

    1980-01-01

    Data previously compiled on the year to year variability of spectral profile crop growth parameters for spring and winter wheat in Kansas, Oklahoma, and the Dakotas were used with a profile model to develop graphs illustrating spectral profile crop growth curves for a number of years and a number of spring and winter wheat segments. These curves show the apparent variability in spectral profiles for wheat from one year to another within the same segment and from one segment to another within the same year.

  6. Effects of 30 Years of Crop Rotation and Tillage on Bacterial and Archaeal Ammonia Oxidizers.

    PubMed

    Munroe, Jake W; McCormick, Ian; Deen, William; Dunfield, Kari E

    2016-05-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) both mediate soil nitrification and may have specialized niches in the soil. Little is understood of how these microorganisms are affected by long-term crop rotation and tillage practices. In this study, we assessed abundance and gene expression of AOB and AOA under two contrasting crop rotations and tillage regimes at a 30-yr-old long-term experiment on a Canadian silt loam soil. Continuous corn ( L.) (CC) was compared with a corn-corn-soybean [ (L.) Merr.]-winter wheat ( L.) rotation under-seeded with red clover ( L.) (RC), with conventional tillage (CT) and no-till (NT) as subplot treatments. Soil sampling was performed during the first corn year at four time points throughout the 2010 season and at three discrete depths (0-5, 5-15, and 15-30 cm). Overall, AOA abundance was found to be more than 10 times that of AOB, although AOA transcriptional activity was below detectable levels across all treatments. Crop rotation had a marginally significant effect on AOB abundance, with 1.3 times as many gene copies under the simpler CC rotation than under the more diverse RC rotation. More pronounced effects of depth on AOB abundance and gene expression were observed under NT versus CT management, and NT supported higher abundances of total archaea and AOA than CT across the growing season. We suggest that AOB may be more functionally important than AOA in this high-input agricultural soil but that NT management can promote enhanced soil archaeal populations.

  7. Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-01-01

    In this study we use a high quality dataset of in-situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We inter-compare crop yield loss estimates according to different exposure metrics such as AOT40 and M7 for the two major crop growing seasons of Kharif (June-October) and Rabi (November-April) and establish a new crop yield exposure relationship for South Asian wheat and rice cultivars. These are a factor of two more sensitive to ozone induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27-41% for wheat, 21-26% for rice, 9-11% for maize and 47-58% for cotton. Crop production losses for wheat amounted to 20.8 million t in fiscal year 2012-2013 and 10.3 million t in fiscal year 2013-2014 for Punjab and Haryana jointly. Crop production losses for rice totalled 5.4 million t in fiscal year 2012-2013 and 3.2 million t year 2013-2014 for Punjab and Haryana jointly. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice/wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. Mitigation of ozone related crop production losses in Punjab and Haryana alone could provide >50% of the wheat and ~10% of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 billion in the fiscal year 2012-2013 and USD 3.7 billion in the fiscal year 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone related crop yield losses in entire India currently amounts to 3.5-20% of India's GDP. Mitigation of high surface ozone

  8. Micrometeorological measurements over 3 years reveal differences in N2 O emissions between annual and perennial crops.

    PubMed

    Abalos, Diego; Brown, Shannon E; Vanderzaag, Andrew C; Gordon, Robert J; Dunfield, Kari E; Wagner-Riddle, Claudia

    2016-03-01

    Perennial crops can deliver a wide range of ecosystem services compared to annual crops. Some of these benefits are achieved by lengthening the growing season, which increases the period of crop water and nutrient uptake, pointing to a potential role for perennial systems to mitigate soil nitrous oxide (N2 O) emissions. Employing a micrometeorological method, we tested this hypothesis in a 3-year field experiment with a perennial grass-legume mixture and an annual corn monoculture. Given that N2 O emissions are strongly dependent on the method of fertilizer application, two manure application options commonly used by farmers for each crop were studied: injection vs. broadcast application for the perennial; fall vs. spring application for the annual. Across the 3 years, lower N2 O emissions (P < 0.001) were measured for the perennial compared to the annual crop, even though annual N2 O emissions increased tenfold for the perennial after ploughing. The percentage of N2 O lost per unit of fertilizer applied was 3.7, 3.1 and 1.3 times higher for the annual for each consecutive year. Differences in soil organic matter due to the contrasting root systems of these crops are probably a major factor behind the N2 O reduction. We found that a specific manure management practice can lead to increases or reductions in annual N2 O emissions depending on environmental variables. The number of freeze-thaw cycles during winter and the amount of rainfall after fertilization in spring were key factors. Therefore, general manure management recommendations should be avoided because interannual weather variability has the potential to determine if a specific practice is beneficial or detrimental. The lower N2 O emissions of perennial crops deserve further research attention and must be considered in future land-use decisions. Increasing the proportion of perennial crops in agricultural landscapes may provide an overlooked opportunity to regulate N2 O emissions.

  9. Recharge and Groundwater Use in the North China Plain for Six Irrigated Crops for an Eleven Year Period

    PubMed Central

    Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Zhang, Min; Sui, Peng; Steenhuis, Tammo S.

    2015-01-01

    Water tables are dropping by approximately one meter annually throughout the North China Plain mainly due to water withdrawals for irrigating winter wheat year after year. In order to examine whether the drawdown can be reduced we calculate the net water use for an 11 year field experiment from 2003 to 2013 where six irrigated crops (winter wheat, summer maize, cotton, peanuts, sweet potato, ryegrass) were grown in different crop rotations in the North China Plain. As part of this experiment moisture contents were measured each at 20 cm intervals in the top 1.8 m. Recharge and net water use were calculated based on these moisture measurement. Results showed that winter wheat and ryegrass had the least recharge with an average of 27 mm/year and 39 mm/year, respectively; cotton had the most recharge with an average of 211 mm/year) followed by peanuts with 118 mm/year, sweet potato with 76 mm/year, and summer maize with 44 mm/year. Recharge depended on the amount of irrigation water pumped from the aquifer and was therefore a poor indicator of future groundwater decline. Instead net water use (recharge minus irrigation) was found to be a good indicator for the decline of the water table. The smallest amount of net (ground water) used was cotton with an average of 14 mm/year, followed by peanut with 32 mm/year, summer maize with 71 mm/year, sweet potato with 74 mm/year. Winter wheat and ryegrass had the greatest net water use with the average of 198 mm/year and 111 mm/year, respectively. Our calculations showed that any single crop would use less water than the prevalent winter wheat summer maize rotation. This growing one crop instead of two will reduce the decline of groundwater and in some rain rich years increase the ground water level, but will result in less income for the farmers. PMID:25625765

  10. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000

    NASA Astrophysics Data System (ADS)

    Monfreda, Chad; Ramankutty, Navin; Foley, Jonathan A.

    2008-03-01

    Croplands cover ~15 million km2 of the planet and provide the bulk of the food and fiber essential to human well-being. Most global land cover data sets from satellites group croplands into just a few categories, thereby excluding information that is critical for answering key questions ranging from biodiversity conservation to food security to biogeochemical cycling. Information about agricultural land use practices like crop selection, yield, and fertilizer use is even more limited. Here we present land use data sets created by combining national, state, and county level census statistics with a recently updated global data set of croplands on a 5 min by 5 min (~10 km by 10 km) latitude-longitude grid. The resulting land use data sets depict circa the year 2000 the area (harvested) and yield of 175 distinct crops of the world. We aggregate these individual crop maps to produce novel maps of 11 major crop groups, crop net primary production, and four physiologically based crop types: annuals/perennials, herbaceous/shrubs/trees, C3/C4, and leguminous/nonleguminous.

  11. Identification of saline soils with multi-year remote sensing of crop yields

    SciTech Connect

    Lobell, D; Ortiz-Monasterio, I; Gurrola, F C; Valenzuela, L

    2006-10-17

    Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions or its impact on regional crop productivity remains sparse. We evaluated the relationships between remotely sensed wheat yields and salinity in an irrigation district in the Colorado River Delta Region. The goals of this study were to (1) document the relative importance of salinity as a constraint to regional wheat production and (2) develop techniques to accurately identify saline fields. Estimates of wheat yield from six years of Landsat data agreed well with ground-based records on individual fields (R{sup 2} = 0.65). Salinity measurements on 122 randomly selected fields revealed that average 0-60 cm salinity levels > 4 dS m{sup -1} reduced wheat yields, but the relative scarcity of such fields resulted in less than 1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years. However, temporal analysis of yield images showed a significant fraction of fields exhibited consistently low yields over the six year period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30-60 cm depth than the control group (p = 0.02). These results suggest that high subsurface salinity is associated with consistently low yields in this region, and that multi-year yield maps derived from remote sensing therefore provide an opportunity to map salinity across agricultural regions.

  12. Aggregate Carbon Pools after 13 Years of Integrated Crop-Livestock Management in Semiarid Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semi-arid regions have the potential to sequester soil organic carbon (SOC) but the magnitude and rate of sequestration is highly management specific. Integrated crop-livestock (ICL) systems that utilize perennial or high-residue no-till annual forage crops as part of the overall agronomic system ma...

  13. Enrichment of natural (15)N abundance during soil N losses under 20years of continuous cereal cropping.

    PubMed

    Jones, Andrew R; Dalal, Ram C

    2017-01-01

    It is generally accepted that the enrichment of natural (15)N abundance in soil over time is reflective of historic N cycling and loss, but this process in cropping soils is not yet clear. In this study, we identified an enrichment gradient of natural (15)N abundance during 20-year chronosequence of cereal cropping on Alfisols in southwest Queensland, Australia, that have no history of fertilisation. We demonstrate that the increase in soil (15)N abundance is explained by isotopic fractionation of (15)N during organic N mineralisation and nitrification, which lead to isotopically heavier ammonium retained in the soil and isotopically lighter soil nitrate taken up and removed by seasonal crops during harvest. Here we present a framework for natural (15)N isotopic fractionation co-occurring with N losses during long-term cultivation.

  14. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    PubMed Central

    Wratten, Stephen D.; Porter, John R.

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies. PMID:27478691

  15. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    PubMed

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  16. Greenhouse gas flux and crop productivity after 10 years of reduced and no tillage in a wheat-maize cropping system.

    PubMed

    Tian, Shenzhong; Wang, Yu; Ning, Tangyuan; Zhao, Hongxiang; Wang, Bingwen; Li, Na; Li, Zengjia; Chi, Shuyun

    2013-01-01

    Appropriate tillage plays an important role in mitigating the emissions of greenhouse gases (GHG) in regions with higher crop yields, but the emission situations of some reduced tillage systems such as subsoiling, harrow tillage and rotary tillage are not comprehensively studied. The objective of this study was to evaluate the emission characteristics of GHG (CH4 and N2O) under four reduced tillage systems from October 2007 to August 2009 based on a 10-yr tillage experiment in the North China Plain, which included no-tillage (NT) and three reduced tillage systems of subsoil tillage (ST), harrow tillage (HT) and rotary tillage (RT), with the conventional tillage (CT) as the control. The soil under the five tillage systems was an absorption sink for CH4 and an emission source for N2O. The soil temperature positive impacted on the CH4 absorption by the soils of different tillage systems, while a significant negative correlation was observed between the absorption and soil moisture. The main driving factor for increased N2O emission was not the soil temperature but the soil moisture and the content of nitrate. In the two rotation cycle of wheat-maize system (10/2007-10/2008 and 10/2008-10/2009), averaged cumulative uptake fluxes of CH4 under CT, ST, HT, RT and NT systems were approximately 1.67, 1.72, 1.63, 1.77 and 1.17 t ha(-1) year(-1), respectively, and meanwhile, approximately 4.43, 4.38, 4.47, 4.30 and 4.61 t ha(-1) year(-1) of N2O were emitted from soil of these systems, respectively. Moreover, they also gained 33.73, 34.63, 32.62, 34.56 and 27.54 t ha(-1) yields during two crop-rotation periods, respectively. Based on these comparisons, the rotary tillage and subsoiling mitigated the emissions of CH4 and N2O as well as improving crop productivity of a wheat-maize cropping system.

  17. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-08-01

    In this study we use a high-quality data set of in situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We intercompare crop yield loss estimates according to different exposure metrics, such as AOT40 (accumulated ozone exposure over a threshold of 40) and M7 (mean 7-hour ozone mixing ratio from 09:00 to 15:59), for the two major crop growing seasons of kharif (June-October) and rabi (November-April) and establish a new crop-yield-exposure relationship for southern Asian wheat, maize and rice cultivars. These are a factor of 2 more sensitive to ozone-induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27 to 41 % for wheat, 21 to 26 % for rice, 3 to 5 % for maize and 47 to 58 % for cotton. Crop production losses for wheat amounted to 20.8 ± 10.4 million t in the fiscal year of 2012-2013 and 10.3 ± 4.7 million t in the fiscal year of 2013-2014 for Punjab and Haryana taken together. Crop production losses for rice totalled 5.4 ± 1.2 million t in the fiscal year of 2012-2013 and 3.2 ± 0.8 million t in the year 2013-2014 for Punjab and Haryana taken together. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice or wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. The mitigation of ozone-related crop production losses in Punjab and Haryana alone could provide > 50 % of the wheat and ~ 10 % of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 ± 2.2 billion in the fiscal year of 2012-2013 and USD 3.7 ± 1.2 billion in the fiscal year of 2013-2014. This economic loss estimate represents a very conservative lower limit based on

  18. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Calvet, J.-C.; Martin, E.; Moulin, S.; Marloie, O.

    2015-10-01

    Generic land surface models are generally driven by large-scale data sets to describe the climate, the soil properties, the vegetation dynamic and the cropland management (irrigation). This paper investigates the uncertainties in these drivers and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12-year Mediterranean crop succession. We evaluate the forcing data sets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN (Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie) high spatial resolution atmospheric reanalysis, the leaf area index (LAI) time courses derived from the ECOCLIMAP-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional data sets which include the ERA-Interim (ERA-I) low spatial resolution reanalysis, the Global Precipitation Climatology Centre data set (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for ERA-I (2.5 W m-2) compared to the negative biases found for SAFRAN (-10 W m-2) and the MSG satellite (-12 W m-2). Both SAFRAN and ERA-I underestimate downwelling longwave radiations by -12 and -16 W m-2, respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve Mediterranean crop phenology and underestimates the bare soil period which leads to an overall overestimation of LAI over the crop succession. The

  19. Continuous rice cropping has been sequestering carbon in soils in Java and South Korea for the past 30 years

    NASA Astrophysics Data System (ADS)

    Minasny, Budiman; McBratney, Alex B.; Hong, Suk Young; Sulaeman, Yiyi; Kim, Myung Sook; Zhang, Yong Seon; Kim, Yi Hyun; Han, Kyung Hwa

    2012-09-01

    The soil system represents the dominant terrestrial reservoir of carbon in the biosphere. Deforestation, poor land management, and excessive cropping lead to a decrease in soil carbon stocks, but intensive cropping can reverse this trend. We discuss long-term soil organic carbon data from two major rice-growing areas: Java (Indonesia) and South Korea. Soil organic carbon content in the top 15 cm for both countries has increased in recent decades. In South Korea, the top 15 cm of soils store about 31 Tg (1012 g) of carbon (C) with a sequestration rate of 0.3 Tg C per year. In Java, the agricultural topsoils accumulated more than 1.7 Tg C per year over the period 1990-2010. We attribute the increase in measured SOC mainly to increases in above- and below- ground biomass due to fertilization. Good agronomic practices can maintain and increase soil carbon, which ensures soil security to produce food and fiber.

  20. 26 CFR 1.451-6 - Election to include crop insurance proceeds in gross income in the taxable year following the...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., or any other natural disaster, or the inability to plant crops because of such a natural disaster... taxable year following the taxable year of such destruction or damage; (iv) The cause of destruction...

  1. 26 CFR 1.451-6 - Election to include crop insurance proceeds in gross income in the taxable year following the...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., or any other natural disaster, or the inability to plant crops because of such a natural disaster... taxable year following the taxable year of such destruction or damage; (iv) The cause of destruction...

  2. 26 CFR 1.451-6 - Election to include crop insurance proceeds in gross income in the taxable year following the...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., or any other natural disaster, or the inability to plant crops because of such a natural disaster... taxable year following the taxable year of such destruction or damage; (iv) The cause of destruction...

  3. 26 CFR 1.451-6 - Election to include crop insurance proceeds in gross income in the taxable year following the...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., or any other natural disaster, or the inability to plant crops because of such a natural disaster... taxable year following the taxable year of such destruction or damage; (iv) The cause of destruction...

  4. 26 CFR 1.451-6 - Election to include crop insurance proceeds in gross income in the taxable year following the...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., or any other natural disaster, or the inability to plant crops because of such a natural disaster... taxable year following the taxable year of such destruction or damage; (iv) The cause of destruction...

  5. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Martin, E.; Calvet, J.-C.; Moulin, S.; Marloie, O.

    2015-02-01

    Generic land surface models are generally driven by large-scale forcing datasets to describe the climate, the surface characteristics (soil texture, vegetation dynamic) and the cropland management (irrigation). This paper investigates the errors in these forcing variables and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12 year Mediterranean crop succession. We evaluate the forcing datasets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN high spatial resolution atmospheric reanalysis, the Leaf Area Index (LAI) cycles derived from the Ecoclimap-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional datasets which includes the ERA-Interim low spatial resolution reanalysis, the Global Precipitation Climatology Centre dataset (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The methodology consists in comparing the simulation achieved using large-scale forcing datasets with the simulation achieved using local observations for each forcing variable. The relative impacts of the forcing variables on simulated ET are compared with each other and with the model uncertainties triggered by errors in soil parameters. LAI and the lack of irrigation in the simulation generate the largest mean deviations in ET between the large-scale and the local-scale simulations (equivalent to 24 and 19 months of ET over 12 yr). The climate induces smaller mean deviations equivalent to 7-8 months of ET over 12 yr. The soil texture has the lowest impact (equivalent to 3 months of ET). However, the impact of errors in the forcing variables is smaller than the impact triggered by errors in the soil parameters (equivalent to 27 months of ET). The absence of

  6. The effect of within-year variation in acorn crop size on seed harvesting by avian hoarders.

    PubMed

    Pesendorfer, Mario B; Koenig, Walter D

    2016-05-01

    Spatial and temporal variation in resource distribution affect the movement and foraging behavior of many animals. In the case of animal-dispersed trees, numerous studies have addressed masting-the synchronized variation in seed production between years-but the fitness consequences of spatial variation in seed production within a year are unclear. We investigated the effects of variable acorn production in a population of valley oaks (Quercus lobata) on the composition and behavior of the avian-disperser community. We found that western scrub-jays (Aphelocoma californica), high-quality dispersers that store seeds in the ground, were attracted to, and exhibited increased per capita dispersal rates from, trees with large acorn crops. In contrast, acorn woodpeckers (Melanerpes formicivorus), low-quality dispersers that store acorns in trees where they are unlikely to germinate, increased per capita hoarding rates but did not attend trees with large seed crops in higher numbers, suggesting that the two species responded to resources on different spatial scales. Antagonistic interactions within and between species increased with the number of birds attending a tree, resulting in a potential cost for foraging birds, but did not reduce dispersal rates. Using a simulation model, we estimated that trees with large initial crops experienced a greater proportion (77 %) of high-quality seed dispersal events than trees with small crops (62 %). Our findings provide support for a mechanistic link between seed production and foraging behavior of seed dispersers as predicted by the predator dispersal hypothesis for the functional consequences of variable seed production in hoarder-dispersed trees.

  7. The Large Area Crop Inventory Experiment /LACIE/ - A summary of three years' experience

    NASA Technical Reports Server (NTRS)

    Erb, R. B.; Moore, B. H.

    1979-01-01

    Aims, history and schedule of the Large Area Crop Inventory Experiment (LACIE) conducted by NASA, USDA and NOAA from 1974-1977 are described. The LACIE experiment designed to research, develop, apply and evaluate a technology to monitor wheat production in important regions throughout the world (U.S., Canada, USSR, Brasil) utilized quantitative multispectral data collected by Landsat in concert with current weather data and historical information. The experiment successfully exploited computer data and mathematical models to extract timely corp information. A follow-on activities for the early 1980's is planned focusing especially on the early warning of changes affecting production and quality of renewable resources and commodity production forecast.

  8. Energy balance in rainfed herbaceous crops in a semiarid environment for a 15-year experiment. 1. Impact of farming systems

    NASA Astrophysics Data System (ADS)

    Moreno, M. M.; Moreno, C.; Lacasta, C.; Tarquis, A. M.; Meco, R.

    2012-04-01

    During the last years, agricultural practices have led to increase yields by means of the massive consumption on non-renewable fossil energy. However, the viability of a production system does not depend solely on crop yield, but also on its efficiency in the use of available resources. This work is part of a larger study assessing the effects of three farming systems (conventional, conservation with zero tillage, and organic) and four barley-based crop rotations (barley monoculture and in rotation with vetch, sunflower and fallow) on the energy balance of crop production under the semi-arid conditions over a 15 year period. However, the present work is focused on the farming system effect, so crop rotations and years are averaged. Experiments were conducted at "La Higueruela" Experimental Farm (4°26' W, 40°04' N, altitude 450 m) (Spanish National Research Council, Santa Olalla, Toledo, central Spain). The climate is semi-arid Mediterranean, with an average seasonal rainfall of 480 mm irregularly distributed and a 4-month summer drought period. Conventional farming included the use of moldboard plow for tillage, chemical fertilizers and herbicides. Conservation farming was developed with zero tillage, direct sowing and chemical fertilizers and herbicides. Organic farming included the use of cultivator and no chemical fertilizers or herbicides. The energy balance method used required the identification and quantification of all the inputs and outputs implied, and the conversion to energy values by corresponding coefficients. The parameters considered were (i) energy inputs (EI) (diesel, machines, fertilizers, herbicides, seeds) (ii) energy outputs (EO) (energy in the harvested biomass), (iii) net energy produced (NE) (EI - EO), (iv) the energy output/input ratio (O/I), and (v) energy productivity (EP) (Crop yield/EI). EI was 3.0 and 3.5 times higher in conservation (10.4 GJ ha-1 year-1) and conventional (11.7 GJ ha-1 year-1) than in organic farming (3.41 GJ ha-1

  9. Water Erosion in Relation with Soil Management System and Crop Sequence during 20 Years on an Inceptisol in South Brazil

    NASA Astrophysics Data System (ADS)

    Bertol, I.; Schick, J.; Barbosa, F. T.; Paz-Ferreiro, J.; Flores, M. T.; Paz González, A.

    2012-04-01

    Soil erosion still remains persistent at the world scale, even if big efforts have been done to control and reduce it, mainly using soil crop residues to protect soil surface. Although in South Brazil the main management system for most crops is no tillage and direct drilling, water erosion prevails as the most important soil erosion type, which is due both, to the high erosivity and the evenly distribution of rainfall over the year. Moreover, some crops are still grown under soil tillage systems consisting of ploughing, harrowing and less frequently chiselling. Starting 1992, a field experiment under natural rainfall has been conducted on an Inceptisol located in Lages, Santa Catarina State, Brazil, which objective was to assess rainfall water erosion. Two soil cover conditions and four soil management systems were studied: I) a crop rotation, which included oats (Avena strigosa), soybean (Glycine max), common vetch (Vicia sativa), maize (Zea mays), fodder radish (Raphanus sativus) and common bean (Phaseolus vulgaris) under the following soil management types: 1) ploughing plus two levelling operations (CT), chiselling plus levelling (RT) and direct drilling with no tillage (NT), and II) bare soil (BS) without crop cover tilled by ploughing plus two levelling. In more than 90% of the study cases, soil losses were collected for single rain events with erosive power, whose erosivity was calculated. Total rain recorded during the 20 year experimental period was approximately 66,400 mm, which is equivalent to roughly 105,700, MJ mm ha-1 h-1 (EI30), whereas soil losses in the BS treatment were higher than 1,700 t.ha-1. On average, soil losses under RT treatment showed a 92% reduction in relation with BS, whereas under CT the reduction in relation to BS was about 66%. Soil management by direct drilling (NT) was the most efficient system to minimize water erosion, as soil losses decreased about 98% when compared with BS. Moreover, soil management systems with a crop

  10. Effect of sewage sledge and their bio-char on some soil qualities in Second year cropping

    NASA Astrophysics Data System (ADS)

    fathi dokht, hamed; Movahedi Naeini, Seyed Alireza; Dordipor, Esmaeil; mirzanejad, moujan

    2016-04-01

    Bio char (BC) application as a soil amendment has achieved much interest and has been found that considerably improves soil nutrient status and crop yields on poor soils. However, information on the effect of BC on illitic soils in temperate climates is still insufficient. The primary objective in this study was to assess the influence of sewage sledge and their bio-char on the soil physical properties, nutrient status and plant production in Second year cropping. The result may also provide a reference for the use of biochars as a solution in agricultural waste management when sludge with considerable load of pathogens are involved. Soybean was already grown one year and will be repeated one more year with same treatments. The investigated soil properties included soil water content and mechanical resistance, pH, electrical conductivity (EC), calcium- acetate-lactate (CAL)-extractable P (PCAL) and K (KCAL), C, N, and nitrogen-supplying potential (NSP). The results show soil water content, potassium uptake and plant yield were increased. Heating sludge removed all pathogens and soybean yield was increased by 7%.

  11. Water erosion during a 17-year period under two crop rotations in four soil management systems on a Southbrazilian Inceptisol

    NASA Astrophysics Data System (ADS)

    Bertol, Ildegardis; Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    Soil erosion still remains a persistent issue in the world, and this in spite of the efforts to ameliorate soil management systems taken into account the point of view of environmental protection against soil losses. In South Brazil water erosion is mainly associated to rainfall events with a great volume and high intensity, which are more or less evenly distributed all over the year. Nowadays, direct drilling is the most widely soil management system used for the main crops of the region. However, some crops still are grown on conventionally tilled soils, which means mainly ploughing and harrowing and less frequently chisel ploughing. In Lages-Santa Catarina State, Brazil, a plot experiment under natural rain was started in 1992 on an Inceptisol with the aim of quantifying soil and water losses. Treatments included bare and vegetated plots. The crop succession was: oats (Avena strigosa), soybean (Glycine max), vetch (Vicia sativa), maize (Zea mays), fodder radish (Raphanus sativus) and beans (Phaseolus vulgaris). Soil tillage systems investigated in this study were: i) conventional tillage (CT), ii) reduced tillage (MT), iii) no tillage (NT) under crop rotation and iv) conventional tillage on bare soil (BS). Treatments CT and BS involved ploughing plus twice harrowing, whereas MT involved chisel ploughing plus harrowing. Rainfall erosivity from January 1 1992 to December 31 2009 was calculated. Soil losses from the BS treatment along the 17 year study period were higher than 1200 Mg ha-1. Crop cover significantly reduced erosion, so that under some crops soil losses in the CT treatment were 80% lower than in the BS treatment. In turn soil losses in the MT treatment, where tillage was performed by chiselling and harrowing, were on average about 50% lower than in the CT treatment. No tillage was the most efficient soil management system in reducing soil erosion, so that soil losses in the NT treatment were about 98% lower than in the BS treatment. The three

  12. Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping.

    PubMed

    Zhou, Shiwei; Liu, Jing; Xu, Minggang; Lv, Jialong; Sun, Nan

    2015-10-01

    Fertilization is important to increase crop yields, but long-term application of fertilizers probably aggravated the risk of heavy metals in acidic soils. In this study, the effect of 22-year fertilization and cropping on accumulation, availability, and uptake of heavy metals in red soil was investigated. The results showed that pig manure promoted significantly cadmium (Cd) accumulation (average 1.1 mg kg(-1)), nearly three times higher than national soil standards and, thus, increased metal availability. But the enrichment of heavy metals decreased remarkably by 50.5 % under manure fertilization, compared with CK (control without fertilization). On the contrary, chemical fertilizers increased greatly lead (Pb) availability and Cd activity; in particular, exceeding 85 % of soil Cd became available to plant under N (nitrogen) treatment during 9-16 years of fertilization, which correspondingly increased their enrichment by 29.5 %. Long-term application of chemical fertilizers caused soil acidification and manure fertilization led to the increase in soil pH, soil organic matter (SOM), and available phosphorus (Olsen P), which influenced strongly metal behavior in red soil, and their effect had extended to deeper soil layer (20∼40 cm). It is advisable to increase application of manure alone with low content of heavy metals or in combination with chemical fertilizers to acidic soils in order to reduce toxic metal risk.

  13. Eating Quality of Carrots (Daucus carota L.) Grown in One Conventional and Three Organic Cropping Systems over Three Years.

    PubMed

    Bach, Vibe; Kidmose, Ulla; Kristensen, Hanne L; Edelenbos, Merete

    2015-11-11

    The eating quality of carrots (Daucus carota L.) was investigated to evaluate the impact of cropping systems (one conventional and three organic systems) and growing years (2007, 2008, and 2009) on root size, chemical composition, and sensory quality. The content of dry matter, sugars, polyacetylenes, and terpenes as well as the sensory quality and root size were related to the climate during the three growing years. A higher global radiation and a higher temperature sum in 2009 as compared to 2007 and 2008 resulted in larger roots, higher contents of dry matter, sucrose, total sugars, and total polyacetylenes, and lower contents of terpenes, fructose, and glucose. No differences were found between conventional and organic carrots with regard to the investigated parameters. This result shows that organically grown carrots have the same eating quality as conventionally grown carrots, while being produced in a more sustainable way.

  14. Farm Crop Production Technology: Field and Forage Crop and Fruit and Vine Production Options. A Suggested 2-Year Post High School Curriculum.

    ERIC Educational Resources Information Center

    Division of Vocational and Technical Education, BAVT.

    Prepared by a junior college under contract with the Office of Education, the curriculum materials are designed to assist school administrators, advisory committees, supervisors, and teachers in developing or evaluating postsecondary programs in farm crop production technology. Information was gathered by visits to the important farm regions and…

  15. Impact of Multi-year Cropping Regimes on Solanum tuberosum Tuber Yields in the Presence of Pratylenchus penetrans and Verticillium dahliae.

    PubMed

    Chen, J; Bird, G W; Mather, R L

    1995-12-01

    Five cropping regimes involving combinations of 2 legumes, alfalfa (Medicago sativa) and yellow sweet dover (Melilotus officinalis), 2 monocots, corn (Zea mays) and sudax (Sorghum halupeuse x Sorghum sudanese), and potato (Solanum tuberosum cv. Superior) were tested for their impact on potato yields in a field infested with Pratylenchus penetrans and Verticillium dahliae. No differences in 1990 tuber yields were observed among the five cropping regimes (P < 0.05). In 1991, yields following 1 year of corn, sudax, sweet clover, or alfalfa and 2 years of potato were not different from that of 3 years of continuous potato (P < 0.05). Two years of sweet clover or alfalfa followed by potato resulted in significantly increased potato tuber yields compared with 3 years of potato (P < 0.05). The 2-year legume and 2-year grain rotations resulted in lower P. penetrans population densities at the end of the 3-year rotation compared with 3 years of continuous potato (P < 0.01). The highest preplant V. dahliae population density (34 cfu/g soil), together with a P. penetrans density of 12/100 cm(3) of soil was in the sudax-sudax-potato cropping regime and resulted in the lowest potato tuber yield. The highest preplant P. penetrans population density (54/100 cm(3) soil), together with a V. dahliae population density of 19.5 cfu/g soil was observed in the corn-corn-potato cropping regime and resulted in the second lowest potato tuber yield in 1991. After 3 years, potato tuber yields were negatively related to preplant densities of V. dahliae (r(2) = 0.237), P. penetrans (r(2) = 0.175), and both pathogens (r(2) = 0.380). A comprehensive regression model was developed to isolate pathogen effects on potato yields from cropping regime effects encompassing all 10 cropping regimes (r(2) = 0.915).

  16. Impact of Multi-year Cropping Regimes on Solanum tuberosum Tuber Yields in the Presence of Pratylenchus penetrans and Verticillium dahliae

    PubMed Central

    Chen, J.; Bird, G. W.; Mather, R. L.

    1995-01-01

    Five cropping regimes involving combinations of 2 legumes, alfalfa (Medicago sativa) and yellow sweet dover (Melilotus officinalis), 2 monocots, corn (Zea mays) and sudax (Sorghum halupeuse × Sorghum sudanese), and potato (Solanum tuberosum cv. Superior) were tested for their impact on potato yields in a field infested with Pratylenchus penetrans and Verticillium dahliae. No differences in 1990 tuber yields were observed among the five cropping regimes (P < 0.05). In 1991, yields following 1 year of corn, sudax, sweet clover, or alfalfa and 2 years of potato were not different from that of 3 years of continuous potato (P < 0.05). Two years of sweet clover or alfalfa followed by potato resulted in significantly increased potato tuber yields compared with 3 years of potato (P < 0.05). The 2-year legume and 2-year grain rotations resulted in lower P. penetrans population densities at the end of the 3-year rotation compared with 3 years of continuous potato (P < 0.01). The highest preplant V. dahliae population density (34 cfu/g soil), together with a P. penetrans density of 12/100 cm³ of soil was in the sudax-sudax-potato cropping regime and resulted in the lowest potato tuber yield. The highest preplant P. penetrans population density (54/100 cm³ soil), together with a V. dahliae population density of 19.5 cfu/g soil was observed in the corn-corn-potato cropping regime and resulted in the second lowest potato tuber yield in 1991. After 3 years, potato tuber yields were negatively related to preplant densities of V. dahliae (r² = 0.237), P. penetrans (r² = 0.175), and both pathogens (r² = 0.380). A comprehensive regression model was developed to isolate pathogen effects on potato yields from cropping regime effects encompassing all 10 cropping regimes (r² = 0.915). PMID:19277337

  17. Soil carbon after three years under short rotation woody crops grown under varying nutrient and water availability

    SciTech Connect

    Sanchez, Felipe G.; Coleman, Mark; Garten Jr, Charles T; Luxmoore, Robert J; Stanturf, J. A.; Trettin, Carl; Wullschleger, Stan D

    2007-01-01

    Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was harvested and the remaining slash and stumps were pulverized and incorporated 30 cm into the soil. One year after harvest soil carbon levels were consistent with pre-harvest levels but dropped in the third year below pre-harvest levels. Tillage increased soil carbon contents, after three years, as compared with adjacent plots that were not part of the study but where harvested, but not tilled, at the same time. When the soil response to the individual treatments for each genotype was examined, one cottonwood clone (ST66), when irrigated and fertilized, had higher total soil carbon and mineral associated carbon in the upper 30 cm compared with the other tree genotypes. This suggests that root development in ST66 may have been stimulated by the irrigation plus fertilization treatment.

  18. Tile drain losses of nitrogen and phosphorus from fields under integrated and organic crop rotations. A four-year study on a clay soil in southwest Sweden.

    PubMed

    Stenberg, Maria; Ulén, Barbro; Söderström, Mats; Roland, Björn; Delin, Karl; Helander, Carl-Anders

    2012-09-15

    In order to explore the influence of site-specific soil properties on nitrogen (N) and phosphorus (P) losses between individual fields and crop sequences, 16 drained fields with clay soils were investigated in a four-year study. Mean total N (TN) loss was 6.6-11.1 from a conventional, 14.3-21.5 from an organic and 13.1-23.9 kg ha(-1) year(-1) from an integrated cropping system across a 4 year period, with 75% in nitrate form (NO(3)-N). Mean total P (TP) loss was 0.96-3.03, 0.99-4.63 and 0.76-2.67 kg ha(-1) year(-1), from the three systems respectively during the same period, with 25% in dissolved reactive form (DRP). Median N efficiency was calculated to be 70% including gains from estimated N fixation. According to principal component factor (PCA) analysis, field characteristics and cropping system were generally more important for losses of N and P than year. Accumulation of soil mineral N in the autumn and (estimated) N fixation was important for N leaching. No P fertilisers were used at the site in either cropping system. Total P concentration in drainage water from each of the fields was marginally significantly (p<0.05) correlated to TP concentration in the topsoil (r=0.52), measured in hydrochloric acid extract (P-HCl). Mean DRP concentrations were significantly (p<0.01) correlated to degree of P saturation (DPS-AL) and soil carbon (C) content in the topsoil (r=0.63). Good establishment of a crop with efficient nutrient uptake and good soil structure was general preconditions for low nutrient leaching. Incorporation of ley by tillage operations in the summer before autumn crop establishment and repeated operations in autumn as well, increased N leaching. Crop management in sequences with leguminous crops needs to be considered carefully when designing cropping systems high efficiency in N utilisation and low environmental impact.

  19. Turnip Mosaic Potyvirus Probably First Spread to Eurasian Brassica Crops from Wild Orchids about 1000 Years Ago

    PubMed Central

    Nguyen, Huy D.; Tomitaka, Yasuhiro; Ho, Simon Y. W.; Duchêne, Sebastián; Vetten, Heinrich-Josef; Lesemann, Dietrich; Walsh, John A.; Gibbs, Adrian J.; Ohshima, Kazusato

    2013-01-01

    Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world. PMID:23405136

  20. Large Area Crop Inventory Experiment (LACIE). Evaluation of the LACIE transition year crop calendar model. [Wheat growth in the Great Plains Corridor, North America

    NASA Technical Reports Server (NTRS)

    Cheffin, R. E.; Woolley, S. K. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The estimates of developmental stage dates from the LACIE adjustable crop calendar (ACC) winter wheat model was somewhat more accurate than the historical crop calendar after jointing. The ACC winter wheat model was not so accurate for the Texas Panhandle as it was for the other areas of the USPG-7 because dry soil conditions delayed fall planting in the Panhandle. Since the LACIE ACC winter wheat model does not contain a moisture term and it was started with historical planting dates, lengthy delays in planting mean that the ACC model will probably be started early and will estimate the developmental growth stages to occur too early in the season. The LACIE ACC spring wheat model was also started early in most areas because of late planting due to fields wet from melting snow and rain. The starter model used to estimate spring planting dates was not accurate under these wet soil conditions and tended to predict the developmental stages to occur earlier than the dates observed in the fields.

  1. Sorghums as energy crops

    SciTech Connect

    Lipinsky, E. S.; Kresovich, S.

    1980-01-01

    The botanical, physiological, and agronomic characteristics of sorghum are described. Integration concepts to improve sorghum prospects are discussed as follows: multiple sweet sorghum crops each year, integration with sugarcane, integration with sugar beets, integration with starch crops, sweet stemmed grain sorghum, and integration with lignocellulosic crops. (MHR)

  2. Three-year measurements of nitrous oxide emissions from cotton and wheat-maize rotational cropping systems

    NASA Astrophysics Data System (ADS)

    Liu, Chunyan; Yao, Zhisheng; Wang, Kai; Zheng, Xunhua

    2014-10-01

    The remarkable expansion of fertilization and irrigation may stimulate nitrous oxide (N2O) emissions from cropping systems in northern China. High-resolution measurements were conducted in irrigated cotton and wheat-maize rotational systems in Shanxi Province, P.R. China, between 2007 and 2010 (three year-round crop cycles, hereinafter referred to as Y1, Y2 and Y3) to investigate the impacts of natural inter-annual variations and agricultural management on annual N2O emissions and direct emission factors (EFs). Overall, N2O emissions fluctuated diurnally, seasonally and inter-annually in the fertilized treatments. The hourly N2O fluxes closely followed the daily air temperature patterns. The daily mean fluxes corresponded to these hourly fluxes, which were observed between 09:00-10:00 and 19:00-20:00. An optimized sampling protocol could improve the reliability of discrete measurements when estimating cumulative emissions. The N2O emissions for the fertilized treatments were 2.7 ± 0.2 (Y1) and 1.6 ± 0.1 kg N ha-1 yr-1 (Y2) from the cotton field and 6.2 ± 0.4 (Y1), 4.5 ± 0.3 (Y2) and 4.5 ± 0.2 kg N ha-1 yr-1 (Y3) from the wheat-maize field. Peak N2O emissions after fertilization and irrigation/rainfall lasted one to three weeks and accounted for 16-55% of the annual emissions. Leaching losses were estimated at 10.4 ± 3.0 (Y1) and 12.5 ± 3.4 kg N ha-1 yr-1 (Y2), which accounted for 16-17% of the fertilizer-N applied to the cotton field. Annual N2O emissions did not increase with increasing fertilization rates or water inputs because significant amounts of fertilizer-N were lost through leaching. Background emissions amounted to one-third to one-half of the total N2O emissions from the fertilized treatments. The direct EFs were 2.2 ± 0.3% (Y1) and 0.9 ± 0.2% (Y2) in the cotton field and 1.3 ± 0.2% (Y1), 0.8 ± 0.1% (Y2) and 0.7 ± 0.1% (Y3) in the wheat-maize field. The large inter-annual variations in N2O emissions and direct EFs emphasize the importance of

  3. Hyperspectral remote sensing of vegetation and agricultural crops: knowledge gain and knowledge gap after 40 years of research

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo; Edited by Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo

    2011-01-01

    The focus of this chapter was to summarize the advances made over last 40+ years, as reported in various chapters of this book, in understanding, modeling, and mapping terrestrial vegetation using hyperspectral remote sensing (or imaging spectroscopy) using sensors that are ground-based, truck-mounted, airborne, and spaceborne. As we have seen in various chapters of this book and synthesized in this chapter, the advances made include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) ability to discriminate plant species and vegetation types with high degree of accuracies (c) reducing uncertainties in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (b), (e) ability to access stress resulting from causes such as management practices, pests and disease, water deficit or excess; , and (f) establishing more sensitive wavebands and indices to detect plant water\\moisture content. The advent of spaceborne hyperspectral sensors (e.g., NASA’s Hyperion, ESA’s PROBA, and upcoming NASA’s HyspIRI) and numerous methods and techniques espoused in this book to overcome Hughes phenomenon or data redundancy when handling large volumes of hyperspectral data have generated tremendous interest in advancing our hyperspectral applications knowledge base over larger spatial extent such as region, nation, continent, and globe.

  4. Weather and Management Effects over Nine Years of Net Ecosystem Direct Greenhouse Gas Emissions from a Cropping System in the Red River Valley, Manitoba

    NASA Astrophysics Data System (ADS)

    Tenuta, M.; Amiro, B. D.

    2014-12-01

    Variation in weather and crop management practices strongly determines direct greenhouse gas emissions (CO2 and N2O) from agricultural crop land. Thus a long-term study was established to relate weather and management variations to direct emissions in the Northern Great Plains of Canada. Continuously emission determinations of CO2 and N2O were established at the Trace Gas Manitoba (TGAS-MAN) Long Term Greenhouse Gas Monitoring Site at Glenlea, Manitoba, using the flux gradient micrometeorlogical technique with a tunable diode laser analyzer. The soil is poorly drained clay in the Red River Valley. The field experiment consisted of four 4-hectare plots planted to corn in 2006 and faba bean in 2007. In 2008, grass-alfalfa forage was introduced to two plots (annual - perennial) and grown until 2011 whereas the other two plots (annual) were planted to annual crops: spring wheat, rapeseed, barley and spring wheat in 2008, 2009, 2010 and 2011, respectively. In late September of 2011 the grass-alfalfa forage was killed and in 2012, 2013 and 2014 all four plots were planted with corn, soybean and spring wheat, respectively. Management decisions increased emissions such as fertilizer N addition, and hay, straw and silage crop removal greatly increased emissions while choosing legume grain and perennial crops reduced emissions. Weather variation affecting seasonal and daily soil moisture, length of spring freeze-thaw period, and crop yield served to increase or decrease emissions. The variation in management and weather will be discussed in regards to impact on net emissions over the nine year study and answer if development of greenhouse gas neutral cropping systems is possible.

  5. Effect of a 5-Year Multi-Crop Rotation on Mineral N and Hard Red Spring Wheat Yield, Protein, Test Weight and Economics in Western North Dakota, USA

    NASA Astrophysics Data System (ADS)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2016-04-01

    The objectives of this non-irrigated cropping study was to employ the principles of soil health and determine the effect of rotation on seasonal mineral N, HRSW production, protein, test weight, and economics. Prior to the initiation of this research, the cropping study area had been previously seeded to hard red spring wheat (HRSW). The cropping systems consisted of a continuous HRSW control (C) compared to HRSW grown in a multi-crop 5-year rotation (R). The 5-yr rotation consisted of HRSW, cover crop (dual crop winter triticale-hairy vetch harvested for hay in June and immediately reseeded to a 7-species cover crop mix grazed by cows after weaning from mid-November to mid-December), forage corn, field pea-forage barley, and sunflower. The cereal grains, cover crops, and pea-barley intercrop were seeded using a JD 1590 no-till drill, 19 cm row spacing, and seed depth of 2.54 cm Cereal grain plant population was 3,088,750 plants/ha. The row crops were planted using a JD 7000 no-till planter, 76.2 cm row spacing, and seed depth of 5.08 cm. Plant population for the row crops was 46,947 plants/ha. Weeds were controlled using a pre-plant burn down and post-emergence control except for cover crops and pea-barley where a pre-plant burn down was the only chemical applied. Fertilizer application was based on soil test results and recommendations from the North Dakota State University Soil Testing Laboratory. During the 1st three years of the study 31.8 kg of N was applied to the C HRSW and then none the last two years of the 5-year period. The R HRSW was fertilized with 13.6 kg of N the 1st two years of the study and none the remaining three years of the 5-year period. However, chloride was low; therefore, 40.7-56.1 kg/ha were applied each year to both the C and R treatments. Based on 2014 and 2015 seasonal mineral N values, the data suggests that N levels were adequate to meet the 2690 kg/ha yield goal. In 2015, however, the R yield goal was exceeded by 673 kg/ha whereas

  6. Temporal dynamics of direct N2O fluxes from agro-ecosystems in cold climates: importance of year-round measurements in multiple cropping systems

    NASA Astrophysics Data System (ADS)

    Wagner-Riddle, C.; Tenuta, M.

    2014-12-01

    Soil N2O fluxes (direct emissions) are highly variable in time and space due to soil, weather and management drivers. In cold climates, freeze/thaw cycles and short growing seasons can enhance soil N2O production contributing to the temporal variability of fluxes. Year-round measurements of N2O fluxes in multiple cropping systems are needed to decrease the uncertainty of annual emission estimates and to devise mitigation practices for emission reduction in cold climates. We have deployed a micrometeorological flux-gradient approach coupled to a tunable diode laser absorption spectroscopy system at two long-term sites in Canada: Elora, Ontario (2000-2014) and Glenlea, Manitoba (2006-2014). Quasi-simultaneous half-hourly flux measurements on four 4-ha fields within a level and aerodynamically homogeneous landscape were obtained allowing for comparison of crop type and/or management practices within and between years. Annual crops such as corn, soybeans, wheat, and barley received typical inorganic fertilizer and/or manure applications, and best management practices such as timing of application and reduced tillage were studied. Perennial grass-alfalfa hayfields were compared to annual crops during selected time periods. Here we synthesize the long-term datasets from these two sites, and quantify the overall contribution of non-growing season (mainly freeze/thaw cycles) and growing season (mainly nitrogen application) to annual emission totals. Uncertainties of regional estimates for cold-climates will be assessed using these long-term datasets.

  7. Eight years of Conservation Agriculture-based cropping systems research in Eastern Africa to conserve soil and water and mitigate effects of climate change

    NASA Astrophysics Data System (ADS)

    Araya, Tesfay; Nyssen, Jan; Govaerts, Bram; Lanckriet, Sil; Baudron, Frédéric; Deckers, Jozef; Cornelis, Wim

    2014-05-01

    In Ethiopia, repeated plowing, complete removal of crop residues at harvest, aftermath grazing of crop fields and occurrence of repeated droughts have reduced the biomass return to the soil and aggravated cropland degradation. Conservation Agriculture (CA)-based resource conserving cropping systems may reduce runoff and soil erosion, and improve soil quality, thereby increasing crop productivity. Thus, a long-term tillage experiment has been carried out (2005 to 2012) on a Vertisol to quantify - among others - changes in runoff and soil loss for two local tillage practices, modified to integrate CA principles in semi-arid northern Ethiopia. The experimental layout was a randomized complete block design with three replications on permanent plots of 5 m by 19 m. The tillage treatments were (i) derdero+ (DER+) with a furrow and permanent raised bed planting system, ploughed only once at planting by refreshing the furrow from 2005 to 2012 and 30% standing crop residue retention, (ii) terwah+ (TER+) with furrows made at 1.5 m interval, plowed once at planting, 30% standing crop residue retention and fresh broad beds, and (iii) conventional tillage (CT) with a minimum of three plain tillage operations and complete removal of crop residues. All the plowing and reshaping of the furrows was done using the local ard plough mahresha and wheat, teff, barley and grass pea were grown. Glyphosate was sprayed starting from the third year onwards (2007) at 2 l ha-1 before planting to control pre-emergent weeds in CA plots. Runoff and soil loss were measured daily. Soil water content was monitored every 6 days. Significantly different (p<0.05) runoff coefficients averaged over 8 years were 14, 20 and 27% for DER+, TER+ and CT, respectively. Mean soil losses were 4 t ha-1 y-1 in DER+, 13 in TER+ and 18 in CT. Soil water storage during the growing season was constantly higher in CA-based systems compared with CT. A period of at least three years of cropping was required before

  8. Hydraulic properties comparison in the calibration of CropSyst, SWAP and MACRO models in simulating soil water content for 3 years

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Fragnito, F.; Manna, P.; Orefice, N.; Pastori, M.; Perego, A.

    2009-04-01

    The quantification of the water balance components within soil-crop-climate system is strictly required to derive proper management conditions for plant growth and environmental protection. Numerical models are currently accepted as helpful tools to gain into the processes occurring in the soil-crop-climate system and to extrapolate data. A large number of available models solves, at field scale, the water balance components by the well known Richard's equation. Despite their common basis of the representation of water flow in the unsaturated zone, it is possible that with the same pedological, climatic and agronomic management conditions, apparently similar hydrological models give different answers. Therefore, to test the capability of a model to represent reality, model simulation must be compared with experimental data and with simulations by other models. The objective of the present study was to evaluate and compare the performances of three well known models (SWAP, MACRO and CropSyst based on the solution of the Richard's equation). Main attention was focussed on the effects of the calibration of the three models on the soil hydraulic properties parameterization. The performance of SWAP, MACRO and CropSyst is compared using field data collected from a structured fine soil (Vertic Calciustepts located in Cerese, Mantova, Italy) cropped to maize. The models are tested and compared on the basis of their ability to predict in situ the measured soil water content at different depths during the years 2002-2004. Water contents was measured with a TDR equipment at 5 depth, where possible with daily frequency. All three models produce acceptable predictions, as evidence by an average root mean square error (RMSE) within ± 0.031 and an average coefficient of residual mass (CRM) within ± 0.66. The SWAP and CropSyst models produces the better performance, but in absolute none of the models is consistently more accurate than the others. In any case the different

  9. Efect of organic barley-based crop rotations on soil nutrient balance in a semiarid environment for a 16-year experiment

    NASA Astrophysics Data System (ADS)

    Meco, Ramón; María Moreno, Marta; Lacasta, Carlos; Moreno, Carmen

    2013-04-01

    In natural ecosystems with no percolating moisture regime, the biogeochemical cycle can be considered a closed system because the nutrients extracted by the roots will be returned to the soil after a certain time. In organic farming, a cycle model as close as possible is taken as a guideline, but we have to consider that unlike natural ecosystems, where most of the nutrients remain in the cycle, the agrosystems are open cycles. To achieve a sustainable fertility of the soil, the soil nutrient levels, the extractions according to the expected crop yields and the export refunds in the form of crop residues, biological nitrogen fixation, green manure or compost will have to be determined. Nutrient balance should be closed with external inputs, always avoiding to be a source of negative impacts on the environment. In organic farming without exogenous inputs, the effect of the crop rotations is much more noticeable in the nutrient balance than in the conventional farming fields which every year receive inputs of nutrients (nitrogen, phosphorus and potassium) in the form of chemical fertilizers. The most extractive crop rotations are those that produce a greater decrease in soil reserves, and in these cases exogenous inputs to maintain sustainability should be considered; however, in less extractive crop rotations, extractions can be restored by the edaphogenesis processes. In this work, soil organic matter, phosphorus and potassium balances were analyzed in different organic barley-based crop rotations (barley monoculture [b-b] and in rotation with vetch for hay production [B-Vh], vetch as green manure [B-Vm], sunflower [B-S], chickpea [B-C] and fallow [B-F]) in clay soils under a semiarid environment ("La Higueruela" Experimental Farm, Santa Olalla, Toledo, central Spain) over a 16 year period. Additionally, barley monoculture in conventional farming [B-B] was included. In the organic system, the fertilization involved the barley straw in all rotations, the sunflower

  10. Current-year and Subsequent-year Effects of Crop-load Manipulation and Epicormic-shoot Removal on Distribution of Long, Short and Epicormic Shoot Growth in Prunus persica

    PubMed Central

    Gordon, D.; Dejong, T. M.

    2007-01-01

    Background and Aims The distribution of canopy growth among different shoot types such as epicormic, long and short shoots is not well understood in the peach tree. In this experiment, the effects of crop load and early epicormic sprout removal on current and subsequent-year distribution of vegetative growth among epicormic, long and short shoots was investigated in Prunus persica. Methods Field trials were conducted in Winters, California, in 2003–2004. Crop load was manipulated with fruit thinning in 2003 to produce trees that were de-fruited, commercially thinned or full crop, and half of the trees in each cropping treatment had all current year epicormic sprouts removed at the time of fruit thinning. Yield was recorded and trunk and root carbohydrates were sampled to confirm the effect of 2003 crop load differences on tissue carbohydrate concentration. All current-season vegetative-shoot extension growth was harvested from half of the trees in each treatment in the autumn of 2003 and from the other half in the autumn of 2004. Epicormic, long and short shoots were separately evaluated for dry weight, node number and leaf-stem parameters. Key Results In 2003, long-shoot dry weight and node number were significantly affected by crop load; however, short-shoot dry weight and node number were not significantly affected. The 2003 crop-load treatments did not affect 2004 vegetative growth of any shoot type. Some re-growth of epicormic shoots followed early epicormic sprout removal: by the end of the 2003 season, trees in the early shoot-removal treatment had approximately one-third of the epicormic-shoot dry weight as unpruned trees. Conclusions Fruit thinning promoted distribution of growth similar to that of de-fruited trees. While thinning was effective in increasing fruit size, it exacerbated the problem of epicormic sprouting. Early epicormic sprout removal did not stimulate the excessive epicormic re-growth in the same or subsequent year relative to previously

  11. Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Calvet, J. C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Buis, S.; Desfonds, V.; Bertrand, N.; Renard, D.

    2015-07-01

    Evapotranspiration has been recognized as one of the most uncertain terms in the surface water balance simulated by land surface models. In this study, the SURFEX/ISBA-A-gs (Interaction Sol-Biosphere-Atmosphere) simulations of evapotranspiration are assessed at the field scale over a 12-year Mediterranean crop succession. The model is evaluated in its standard implementation which relies on the use of the ISBA pedotransfer estimates of the soil properties. The originality of this work consists in explicitly representing the succession of crop cycles and inter-crop bare soil periods in the simulations and assessing its impact on the dynamics of simulated and measured evapotranspiration over a long period of time. The analysis focuses on key parameters which drive the simulation of ET, namely the rooting depth, the soil moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting point. A sensitivity analysis is first conducted to quantify the relative contribution of each parameter on ET simulation over 12 years. The impact of the estimation method used to retrieve the soil parameters (pedotransfer function, laboratory and field methods) on ET is then analysed. The benefit of representing the variations in time of the rooting depth and wilting point is evaluated. Finally, the propagation of uncertainties in the soil parameters on ET simulations is quantified through a Monte Carlo analysis and compared with the uncertainties triggered by the mesophyll conductance which is a key above-ground driver of the stomatal conductance. This work shows that evapotranspiration mainly results from the soil evaporation when it is continuously simulated over a Mediterranean crop succession. This results in a high sensitivity of simulated evapotranspiration to uncertainties in the soil moisture at field capacity and the soil moisture at saturation, both of which drive the simulation of soil evaporation. Field capacity was proved to be the most

  12. Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are great tools to improve soil quality and health, and great tools to increase carbon sequestration. They are nutrient management tools that can help scavenge nitrate, cycle nitrogen to the following crop, mine NO3 from groundwater, and increase nitrogen use efficiency of cropping syste...

  13. A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam.

    PubMed

    Pilling, Edward; Campbell, Peter; Coulson, Mike; Ruddle, Natalie; Tornier, Ingo

    2013-01-01

    Neonicotinoid residues in nectar and pollen from crop plants have been implicated as one of the potential factors causing the declines of honey bee populations. Median residues of thiamethoxam in pollen collected from honey bees after foraging on flowering seed treated maize were found to be between 1 and 7 µg/kg, median residues of the metabolite CGA322704 (clothianidin) in the pollen were between 1 and 4 µg/kg. In oilseed rape, median residues of thiamethoxam found in pollen collected from bees were between <1 and 3.5 µg/kg and in nectar from foraging bees were between 0.65 and 2.4 µg/kg. Median residues of CGA322704 in pollen and nectar in the oilseed rape trials were all below the limit of quantification (1 µg/kg). Residues in the hive were even lower in both the maize and oilseed rape trials, being at or below the level of detection of 1 µg/kg for bee bread in the hive and at or below the level of detection of 0.5 µg/kg for hive nectar, honey and royal jelly samples. The long-term risk to honey bee colonies in the field was also investigated, including the sensitive overwintering stage, from four years consecutive single treatment crop exposures to flowering maize and oilseed rape grown from thiamethoxam treated seeds at rates recommended for insect control. Throughout the study, mortality, foraging behavior, colony strength, colony weight, brood development and food storage levels were similar between treatment and control colonies. Detailed examination of brood development throughout the year demonstrated that colonies exposed to the treated crop were able to successfully overwinter and had a similar health status to the control colonies in the following spring. We conclude that these data demonstrate there is a low risk to honey bees from systemic residues in nectar and pollen following the use of thiamethoxam as a seed treatment on oilseed rape and maize.

  14. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India.

    PubMed

    Masto, Reginald Ebhin; Chhonkar, Pramod K; Singh, Dhyan; Patra, Ashok K

    2008-01-01

    Soil quality assessment provides a tool for evaluating the sustainability of alternative soil management practices. Our objective was to develop the most sensitive soil quality index for evaluating fertilizer, farm yard manure (FYM), and crop management practices on a semiarid Inceptisol in India. Soil indicators and crop yield data from a long-term (31 years) fertilizer, manure, and crop rotation (maize, wheat, cowpea, pearl millet) study at the Indian Agricultural Research Institute (IARI) near New Delhi were used. Plots receiving optimum NPK, super optimum NPK and optimum NPK + FYM had better values for all the parameters analyzed. Biological, chemical, and physical soil quality indicator data were transformed into scores (0 to 1) using both linear and non-linear scoring functions, and combined into soil quality indices using unscreened transformations, regression equation, or principal component analysis (PCA). Long-term application of optimum inorganic fertilizers (NPK) resulted in higher soil quality ratings for all methods, although the highest values were obtained for treatment, which included FYM. Correlations between wheat (Triticum aestivum L.) yield and the various soil quality indices showed the best relationship (highest r) between yield and a PCA-derived SQI. Differences in SQI values suggest that the control (no NPK, no manure) and N only treatments were degrading, while soils receiving animal manure (FYM) or super optimum NPK fertilizer had the best soil quality, respectively. Lower ratings associated with the N only and NP treatments suggest that one of the most common soil management practices in India may not be sustainable. A framework for soil quality assessment is proposed.

  15. 7 CFR 929.250 - Marketable quantity and allotment percentage for the 2000-2001 crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., WISCONSIN, MICHIGAN, MINNESOTA, OREGON, WASHINGTON, AND LONG ISLAND IN THE STATE OF NEW YORK Assessment Rate... percentage if the total industry sales history increases due to established growers receiving additional sales history on acreage with four years sales or less....

  16. 7 CFR 929.250 - Marketable quantity and allotment percentage for the 2000-2001 crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., WISCONSIN, MICHIGAN, MINNESOTA, OREGON, WASHINGTON, AND LONG ISLAND IN THE STATE OF NEW YORK Assessment Rate... percentage if the total industry sales history increases due to established growers receiving additional sales history on acreage with four years sales or less....

  17. 7 CFR 929.250 - Marketable quantity and allotment percentage for the 2000-2001 crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., WISCONSIN, MICHIGAN, MINNESOTA, OREGON, WASHINGTON, AND LONG ISLAND IN THE STATE OF NEW YORK Assessment Rate... percentage if the total industry sales history increases due to established growers receiving additional sales history on acreage with four years sales or less....

  18. 7 CFR 929.250 - Marketable quantity and allotment percentage for the 2000-2001 crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., WISCONSIN, MICHIGAN, MINNESOTA, OREGON, WASHINGTON, AND LONG ISLAND IN THE STATE OF NEW YORK Assessment Rate... percentage if the total industry sales history increases due to established growers receiving additional sales history on acreage with four years sales or less....

  19. 7 CFR 929.250 - Marketable quantity and allotment percentage for the 2000-2001 crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., WISCONSIN, MICHIGAN, MINNESOTA, OREGON, WASHINGTON, AND LONG ISLAND IN THE STATE OF NEW YORK Assessment Rate... percentage if the total industry sales history increases due to established growers receiving additional sales history on acreage with four years sales or less....

  20. Tree-ring footprints of drought variability in last ˜300 years over Kumaun Himalaya, India and its relationship with crop productivity

    NASA Astrophysics Data System (ADS)

    Yadav, Ram R.; Misra, Krishna G.; Yadava, Akhilesh K.; Kotlia, Bahadur S.; Misra, Sandhya

    2015-06-01

    We reconstructed Standardized Precipitation Index (SPI), a metric of drought, using tree-ring width chronologies of Himalayan cedar (Cedrus deodara (Roxb.) G. Don) prepared from two ecologically homogeneous settings in the Kumaun Himalaya, India. The reconstruction employing first principal component of the two site chronologies in linear regression model helped in extending 7-month SPI of May (SPI7-May) back to 1720 CE. The calibration model capturing 60% of variance in the observed SPI series (1902-1967) is the strongest so far from the Indian region. On achieving such a robust tree-ring calibration we are of the opinion that SPI should provide a better option to develop long-term drought records for the data scarce Himalayan region. The SPI reconstruction revealed high year-to-year variability with 1816 (SPI -1.92) and 1737 (SPI +2.33) the driest and the wettest years respectively. The five year mean of reconstructed SPI revealed multiyear droughts in 1920-1924, 1782-1786, 1812-1816, 1744-1748, 1964-1968 and pluvial phases in 1911-1915, 1723-1727, 1788-1792, 1758-1762 and 1733-1737. The SPI7-May was found to be significantly correlated with wheat-barley productivity data of Almora in Kumaun, close to our tree ring sites (r = 0.60, two-tailed p < 0.0001). However, we observed that the wheat-barley productivity data, to some extent, were better correlated with 7-month SPI of April (SPI7-April) (r = 0.69, two-tailed p < 0.0001). The difference in relationship of wheat-barley productivity and SPI of above two periods is largely due to the prevailing crop phenology in the region. The wheat and barley crops sown in October-November are usually harvested in May when the Himalayan cedar trees are in active vegetation phase of seasonal growth in Almora region. We observed strong and significant correlation in SPI7-May and SPI7-April (r = 0.75, two-tailed p = 0.0001) underpinning that the tree-ring derived SPI7-May could also be taken as a proxy of wheat-barley production

  1. A Four-Year Field Program Investigating Long-Term Effects of Repeated Exposure of Honey Bee Colonies to Flowering Crops Treated with Thiamethoxam

    PubMed Central

    Pilling, Edward; Campbell, Peter; Coulson, Mike; Ruddle, Natalie; Tornier, Ingo

    2013-01-01

    Neonicotinoid residues in nectar and pollen from crop plants have been implicated as one of the potential factors causing the declines of honey bee populations. Median residues of thiamethoxam in pollen collected from honey bees after foraging on flowering seed treated maize were found to be between 1 and 7 µg/kg, median residues of the metabolite CGA322704 (clothianidin) in the pollen were between 1 and 4 µg/kg. In oilseed rape, median residues of thiamethoxam found in pollen collected from bees were between <1 and 3.5 µg/kg and in nectar from foraging bees were between 0.65 and 2.4 µg/kg. Median residues of CGA322704 in pollen and nectar in the oilseed rape trials were all below the limit of quantification (1 µg/kg). Residues in the hive were even lower in both the maize and oilseed rape trials, being at or below the level of detection of 1 µg/kg for bee bread in the hive and at or below the level of detection of 0.5 µg/kg for hive nectar, honey and royal jelly samples. The long-term risk to honey bee colonies in the field was also investigated, including the sensitive overwintering stage, from four years consecutive single treatment crop exposures to flowering maize and oilseed rape grown from thiamethoxam treated seeds at rates recommended for insect control. Throughout the study, mortality, foraging behavior, colony strength, colony weight, brood development and food storage levels were similar between treatment and control colonies. Detailed examination of brood development throughout the year demonstrated that colonies exposed to the treated crop were able to successfully overwinter and had a similar health status to the control colonies in the following spring. We conclude that these data demonstrate there is a low risk to honey bees from systemic residues in nectar and pollen following the use of thiamethoxam as a seed treatment on oilseed rape and maize. PMID:24194871

  2. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses

    SciTech Connect

    D.R. Coyle; J. Blake; K. Britton; M. Buford; R.G. Campbell; J. Cox; B. Cregg; D. Daniels; M. Jacobson; K. Johnsen; T. McDonald; K. McLeod; E. Nelson; D. Robison; R. Rummer; F. Sanchez; J. Stanturf; B. Stokes; C. Trettin; J. Tuskan; L. Wright; S. Wullschleger

    2003-12-31

    Coleman, M.D., et. al. 2003. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses. Report. USDA Forest Service, Savannah River, Aiken, SC. 26 pp. Abstract: Many researchers have studied the productivity potential of intensively managed forest plantations. However, we need to learn more about the effects of fundamental growth processes on forest productivity; especially the influence of aboveground and belowground resource acquisition and allocation. This report presents installation, establishment, and first-year results of four tree species (two cottonwood clones, sycamore, sweetgum, and loblolly pine) grown with fertilizer and irrigation treatments. At this early stage of development, irrigation and fertilization were additive only in cottonwood clone ST66 and sweetgum. Leaf area development was directly related to stem growth, but root production was not always consistent with shoot responses, suggesting that allocation of resources varies among treatments. We will evaluate the consequences of these early responses on resource availability in subsequent growing seasons. This information will be used to: (1) optimize fiber and bioenergy production; (2) understand carbon sequestration; and (3) develop innovative applications such as phytoremediation; municipal, industrial, and agricultural wastes management; and protection of soil, air, and water resources.

  3. Herbage intake and milk production of late-lactation dairy cows offered a second-year chicory crop during summer.

    PubMed

    Muir, S K; Ward, G N; Jacobs, J L

    2015-12-01

    Chicory (Cichorum intybus L.) is a summer-active forage herb which has been proposed as an option to increase summer feed supply, increase dry matter intake, nutrient intake, and milk yield from nonirrigated dairy production systems in southern Australia. Dry matter intake, nutrient intake, milk yield, and yield of milk fat and protein of predominantly Holstein-Friesian dairy cows in late lactation consuming 3 herbage-based diets (4 replicates per treatment) were measured. The 3 grazed herbages were second-year chicory (CHIC) and perennial ryegrass (Lolium perenne L.; PRG) monocultures and a mixed sward (~50:50) of chicory and perennial ryegrass (MIX). All diets (CHIC, PRG, and MIX) were supplemented with alfalfa (Medicago sativa L.) hay (5.5kg of DM/cow per day) and an energy-based concentrate pellet (4.0kg of DM/cow per day). There were no significant differences in milk yield (12.0 to 12.6kg/d across the treatments) or the yield of milk fat (539 to 585g/d) and milk protein (433 to 447g/d) between the 3 herbage-based diets. No differences in DMI (17.9 to 19.2kg/d) or estimated metabolizable energy intake (173 to 185MJ/d) were noted between treatments. Estimated metabolizable energy concentrations in the forages on offer were lower in CHIC than PRG (7.6 vs. 8.2MJ/kg of dry matter), but the concentration in consumed herbage was not different (9.1 vs. 9.2MJ/kg of dry matter); as such, potential for increased milk yield in cows offered CHIC was limited. Increased concentration of polyunsaturated fatty acids was observed in chicory herbage compared with perennial ryegrass. This was associated with increased milk conjugated linoleic acid and milk polyunsaturated fatty acids when chicory formed part of the diet (CHIC compared to PRG and MIX). Chicory could be used as an alternative to perennial ryegrass in summer; however, the developmental stage of chicory will influence concentrations of metabolizable energy and neutral detergent fiber and, therefore, intake and milk

  4. Seasonal availability and dietary intake of beta-carotene-rich vegetables and fruit of 2-year-old to 5-year-old children in a rural South African setting growing these crops at household level.

    PubMed

    Faber, Mieke; Laubscher, Ria

    2008-02-01

    This study determined the seasonal availability and dietary intake of beta-carotene-rich vegetables and fruit in a rural South African community growing these crops at household level. Monitoring year-round availability of vegetables and fruit in five local shops during 2004 showed that beta-carotene-rich vegetables and fruit were seldom available in the shops. The dietary intake of 2-year-old to 5-year-old children was determined during February, May, August and November in 2004 and 2005 using an unquantified food frequency questionnaire and 5-day repeated 24-h recall (2005 only). Consumption of beta-carotene-rich vegetables and fruit showed seasonal variation. Inadequate dietary vitamin A intake ranged from 6% in November to 21% in February and August. beta-Carotene-rich vegetables and fruit contributed 49-74% of the total vitamin A intake. It is concluded that beta-carotene-rich vegetables and fruit contribute a major part of the dietary vitamin A intake. Consumption of individual beta-carotene-rich vegetables and fruit fluctuated according to the season; nonetheless, an adequate dietary vitamin A intake was maintained throughout the year for the majority of the study population.

  5. 7 CFR 457.118 - Malting barley crop insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Malting barley crop insurance. 457.118 Section 457.118..., DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.118 Malting barley crop insurance. The malting barley crop insurance provisions for the 1996 and succeeding crop years are as follows:...

  6. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Green pea crop insurance provisions. 457.137 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop insurance provisions. The Green Pea Crop Insurance Provisions for the 1998 and succeeding crop years are as...

  7. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Green pea crop insurance provisions. 457.137 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop insurance provisions. The Green Pea Crop Insurance Provisions for the 1998 and succeeding crop years are as...

  8. Sunflower crop

    SciTech Connect

    Beard, B.H.

    1981-05-01

    A review of the sunflower as a major commercial crop, including its history, cultivation, hybridization and uses. It is grown principally for its oil which is high in polyunsaturated fatty acids and used in a variety of foods. Recently it has been tested in diesel engines and a high protein meal is produced from the seed residues.

  9. Selection of fungi by candidate cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversified cropping systems that incorporate year-round ground cover, are known to maintain healthy soils. Information is available for producers regarding the benefits of specific cover crop species for soil fertility, weed and pest management. Even though it is widely recognized that cover crops ...

  10. The Area IV Soil Conservation Districts Cooperative Research Farm: Thirty years of collaborative research to improve cropping system sustainability in the Northern Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Findings and interpretations generated from long-term cropping system studies serve to inform the status and trajectory of ecosystem services, while concurrently providing opportunities for further inquiry related to basic/fundamental research. Recent calls for increased investment in long-term cro...

  11. How will the two major Midwest crops respond to global climate change? Results from ten years of investigation at SoyFACE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soybean Free Air Concentration Enrichment (SoyFACE) facility is an open-air field "laboratory" for investigating the effects of elevated concentrations of CO2 and ozone, higher temperatures and altered soil water availability on field crops. For over a decade, experiments have examined the produ...

  12. A Comparison of Ecohydrological Function for a Native C4 Grass, Native C3 Forb and C4 Crop during a Wet Year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Daily and seasonal patterns of water use by native prairie vegetation exert an important control on water fluxes within ecosystems to watersheds. However, the replacement of prairie by annual crops in the Midwest has significantly altered the hydrologic cycle. In this study, water use was assessed f...

  13. Oil Crop Potential for Biodiesel Production: Summary of Three Years of Spring Mustard Research -- Methodologies, Results, and Recommendations; 2000-2003

    SciTech Connect

    Brown, J.

    2005-07-01

    This report summarizes a project whose goal was to support R&D to develop an oil-seed crop that has the potential to reduce the feedstock cost of biodiesel to between 7 and 8 cents per pound of oil and expand supplies of biodiesel as demand for biodiesel grows. The key to this goal is that the non-oil fraction of the oil crop (the seed meal) must have a high value outside of the animal feed markets and produce oil that is not suitable for human consumption. To that end, a spring breeding program was developed to increase diversity of glucosinolate and the concentration of glucosinolates in the meal and to optimize the oil composition for biodiesel fuels. This report presents the research on the spring planted hybrids.

  14. Growth stage estimation. [crop calendars

    NASA Technical Reports Server (NTRS)

    Whitehead, V. S.; Phinney, D. E.; Crea, W. E. (Principal Investigator)

    1979-01-01

    Of the three candidate approaches to adjustment of the crop calendar to account for year-to-year weather differences, the Robertson triquadratic unit, a function of a nonlinear function of maximum and minimum temperature and day length, best described the rate of phenological development of wheat. The adjustable crop calendar (ACC) as implemented for LACIE is used to calculate the daily increment of development through six physiological stages of growth. Topics covered include dormancy modeling, the spring restart model, spring wheat starter model, winter starter model, winter wheat starter model, inclusion of the moisture variable, and display of crop stage estimation results. Assessment of the ACC accuracy over the period of LACIE operation indicates that the adjustable crop calendars used provided more accurate information than would have been available using historical norms. The models performed best under the conditions from which they were derived (Canadian spring wheat) and most poorly for the dwarf varieties and Southern Hemisphere applications.

  15. Heterocyclic chemistry in crop protection.

    PubMed

    Lamberth, Clemens

    2013-10-01

    An overview is given of the significance of heterocycles in crop protection chemistry, which is enormous as more than two-thirds of all agrochemicals launched to the market within the last 20 years belong to this huge group of chemicals. This review focuses on two important aspects of heterocyclic agrochemistry: the different roles of heterocyclic scaffolds in crop protection agents and the major possibilities for their synthesis.

  16. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Provisions and Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation... Provisions and applicable Crop Provisions, including the Cotton Crop Insurance Provisions. In addition, FCIC revised various Crop Provisions, including the Macadamia Nut Crop Insurance Provisions, to...

  17. Cover cropping and no-tillage improve soil health in arid irrigated cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact on soil health of long-term no-tillage (NT) and cover cropping (CC) practices, alone and in combination, was measured and compared with standard tillage (ST) with and without cover crops (NO) in irrigated row crops after 15 years of management in the San Joaquin Valley, CA. Soil aggregat...

  18. 76 FR 4201 - Common Crop Insurance Regulations, Macadamia Nut Crop Insurance Provisions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Provisions; Correction AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Correcting amendment... Provisions to specify the correct crop year to which it was applicable. It was published September 27, 2010... background stated ``The 2011 contract change date for the Macadamia Nut Crop Insurance Provisions is...

  19. Soil total carbon and crop yield affected by crop rotation and cultural practice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stacked crop rotation and improved cultural practice have been used to control pests, but their impact on soil organic C (SOC) and crop yield are lacking. We evaluated the effects of stacked vs. alternate-year rotations and cultural practices on SOC at the 0- to 125-cm depth and annualized crop yiel...

  20. Simulating Stochastic Crop Management in Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  1. Connecting Groundwater, Crop Price, and Crop Production Variability in India

    NASA Astrophysics Data System (ADS)

    Pollack, A.; Lobell, D. B.; Jain, M.

    2015-12-01

    Farmers in India rely on groundwater resources for irrigation and production of staple crops that provide over half of the calories consumed domestically each year. While this has been a productive strategy in increasing agricultural production and maintaining high yields, groundwater resources are depleting at a quicker rate than natural resources can replace. This issue gains relevance as climate variability concurrently adds to yearly fluctuations in farmer demand for irrigation each year, which can create high risk for farmers that depend on consistent yields, but do not have access to dwindling water resources. This study investigates variability in groundwater levels from 2005 to 2013 in relation to crop prices and production by analyzing district-level datasets made available through India's government. Through this analysis, we show the impact of groundwater variability on price variability, crop yield, and production during these years. By examining this nine-year timescale, we extend our analysis to forthcoming years to demonstrate the increasing importance of groundwater resources in irrigation, and suggest strategies to reduce the impact of groundwater shortages on crop production and prices.

  2. Cover crop water use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are being widely promoted because of soil health benefits. However, semi-arid dryland production systems, chronically short of water for crop production, may not be able to profitably withstand the yield reduction that follows cover crops because of cover crop water use. Some studies sug...

  3. Effects of atmospheric VPD, plant canopies, and low-water years on leaf stomatal conductance and photosynthetic water use efficiency in fifteen potential crop species for use in arid environments

    NASA Astrophysics Data System (ADS)

    Lue, A.; Jasoni, R. L.; Arnone, J.

    2011-12-01

    When evaluating the potential for growing alternative crop species in arid environments, high vapor pressure deficits (VPDs) that could potentially inhibit crop productivity by limiting stomatal conductance and CO2 uptake must be considered. The objective of this study was to quantify the effects of VPD and irrigation levels on leaf stomatal conductance (gs) and photosynthetic water use efficiency (PWUE) for a range of alternative crop species for aridland agriculture. We evaluated fifteen alternative crops in a field trial in the northern Nevada Walker River Basin. Plots of each species were subjected to two irrigation treatments, 4 and 2 acre-feet per growing season, to simulate normal-year and dry-year irrigation levels. We quantified gs and photosynthesis (A) under decreasing relative humidity (RH) (increasing VPDs) in 10% increments, from about 75% to 2%. About seventeen leaves per species were measured throughout the 2010 growing season over eleven days of samplings. Canopy air temperature and RH were logged in experimental plots to calculate diel and seasonal patterns in canopy VPD. Volumetric water content was also collected to quantify the effects of irrigation treatments on soil moisture and leaf gas exchange. Species varied in their gs and PWUE responses to increasing VPD. Stomatal conductance (gs) of leaves of all species generally increased initially as RH was lowered but then decreased at differing rates as RH dropped further. Average gs (across all measurement VPDs), maximum gs, maximum PWUE, and corresponding VPDs differed among species and between irrigation treatments. Some species (Medicago sativa, Leymus racemosus) showed higher gs across the range of measurement VPDs than other species (Bothrichloa ischaemum, Sorghastrum nutans), while some species exhibited maximum gs and maximum PWUE at higher VPDs (Erograstis tef, Calamovilfa longifolia) than other species (Leymus cinereus, Sorghastrum nutans). These results suggest that some species may

  4. Genetics and consequences of crop domestication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotypic variation has been manipulated by humans during crop domestication, which occurred primarily between 3,000 and 10,000 years ago in the various centers of origin around the world. The process of domestication has profound consequences on crops, where the domesticate has moderately reduced ...

  5. Energy crops for ethanol: a processing perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global production of bioethanol for fuel is over 13 billions gal per year. Continued expansion of ethanol production will necessitate developing lignocellulose as an alternative to today’s use of starch and sugar producing crops. Dedicated energy crops are one such option. In the U.S., it has bee...

  6. Linking Drought Information to Crop Yield

    NASA Astrophysics Data System (ADS)

    Madadgar, S.; Farahmand, A.; Li, L.; Aghakouchak, A.

    2015-12-01

    Droughts have detrimental impacts on agricultural yields all over the world every year. This study analyzes the relationship between three drought indicators including Standardized Precipitation Index (SPI); Standardized Soil Moisture Index (SSI), Multivariate Standardized Drought Index (MSDI) and the yields of five largest rain-fed crops in Australia (wheat, broad beans, canola, lupins and barley). Variation of the five chosen crop yields is overall in agreement with the three drought indicators SPI, SSI, and MSDI during the analysis period of 1980-2012. This study develops a bivariate copula model to investigate the statistical dependence of drought and crop yield. Copula functions are used to establish the existing connections between climate variables and crop yields during the Millennium drought in Australia. The proposed model estimates the likelihood of crop yields given the observed or predicted drought indicators SPI, SSI or MSDI. The results are also useful to estimate crop yields associated with different thresholds of precipitation or soil moisture.

  7. Origins of food crops connect countries worldwide

    PubMed Central

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  8. Wind Turbines Benefit Crops

    SciTech Connect

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  9. Wind Turbines Benefit Crops

    ScienceCinema

    Takle, Gene

    2016-07-12

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  10. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System

    PubMed Central

    Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V.

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha−1 yr−1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000–250, 250–53, and <53 μm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000–250 μm > 250–53μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient

  11. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System.

    PubMed

    Cai, Andong; Xu, Hu; Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha(-1) yr(-1), respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000-250, 250-53, and <53 μm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000-250 μm > 250-53 μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient.

  12. Improving crop salt tolerance.

    PubMed

    Flowers, T J

    2004-02-01

    Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced

  13. Cover crops for Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are grown to benefit the following crop as well as to improve the soil, but they are normally not intended for harvest. Selecting the right cover crops for farming operations can improve yields, soil and water conservation and quality, and economic productivity. Properly managed cover ...

  14. Cucurbitaceae (Vine Crops)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cucurbitaceae or vine crop family is a distinct family without any close relatives. The Cucurbitaceae or vine crop family includes many important vegetables collectively referred to as cucurbits. Cucumber, melon, and watermelon are major crop species originally from the Old World (cucumber fro...

  15. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    PubMed

    Meisner, Matthew H; Rosenheim, Jay A

    2014-01-01

    Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  16. Soil residual nitrogen under various crop rotations and cultural practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotation and cultural practice may influence soil residual N available for environmental loss due to crop N uptake and N immobilization. We evaluated the effects of stacked vs. alternate-year crop rotations and cultural practices on soil residual N (NH4-N and NO3-N contents) at the 0-125 cm dep...

  17. Biodiversity, evolution and adaptation of cultivated crops.

    PubMed

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation.

  18. Promise and issues of genetically modified crops.

    PubMed

    Chen, Hao; Lin, Yongjun

    2013-05-01

    The growing area of genetically modified (GM) crops has substantially expanded since they were first commercialized in 1996. Correspondingly, the adoption of GM crops has brought huge economic and environmental benefits. All these achievements have been primarily supported by two simple traits of herbicide tolerance and insect resistance in the past 17 years. However, this situation will change soon. Recently, the advance of new products, technologies and safety assessment approaches has provided new opportunities for development of GM crops. In this review, we focus on the developmental trend in various aspects of GM crops including new products, technical innovation and risk assessment approaches, as well as potential challenges that GM crops are currently encountering.

  19. Remote sensing of perennial crop stand duration and pre-crop identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field to field variability in soil erosion and off-site transport of nutrients and pesticides in western Oregon in any single year is primarily driven by the question of whether individual fields were disturbed for planting of new crop stands or remained in production of established perennial crops...

  20. Biomass energy crop production versus food crop production in the Caribbean

    SciTech Connect

    Sammuels, G.

    1983-12-01

    The Caribbean countries have traditionally grown sugar cane, coffee and bananas as major agriculture export crops. Food crop production was sufficient in most cases for domestic consumption. In recent years powerful social and economic changes of increasing population, industrial development and higher living standards have placed pressure on local governments to provide food, clothing, shelter and energy. Energy that is mainly supplied by imported oil. Biomass, primarily as sugar cane, can provide a solution, either partial or total, to the problem. Unfortunately, the arable land area for the majority of the countries is limited. Food crop production is needed for local consumption and export. Possible energy crop production to provide local needs will place an increasing demand on arable land. The objective of this paper is to present the scope of food versus energy crop production and a suggested renewable energy crop program to help achieve a balance within the limited land resources of the Caribbean.

  1. N2O and CH4-emissions from energy crops - Can the use of organic fertilizers in form of biogas digestate be considered as a real alternative? Results from a three and a half year multi-site field study of energy crops fertilized with biogas digestate in so

    NASA Astrophysics Data System (ADS)

    Heintze, Gawan

    2016-04-01

    Gawan Heintze1,2, Matthias Drösler1, Ulrike Hagemann3and Jürgen Augustin3 1University of Applied Sciences Weihenstephan-Triesdorf, Chair of Vegetation Ecology, Weihenstephaner Berg 4, 85354 Freising, Germany 2Technische Universität München, Chair of Plant Nutrition, Emil-Ramann-Str. 2, 85354 Freising, Germany 3Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany Together with industrial process-related emissions (8.1%) the actual GHG emissions from agriculture (7.5% - 70 million tones (Mt) of carbon dioxide (CO2)-equivalents) representing after energy-related emissions from combustion processes of fossil fuels (83.7%) the second largest budget of the Germany-wide total emissions per year. To reduce the EU's CO2 emissions by 20% by 2020 the cultivation of energy crops for biogas production, ideally coupled to a subsequent return of the resulting residues in form of biogas digestate is intended as one key element in the pathway of renewable energy production. Despite an increasing cultivation of energy crops for the production of biogas aiming to reduce the overall climate impact of the agricultural sector, it is still largely unknown how the application of ammonia-rich organic digestate effects field N2O emissions. Therefore, the collaborative research project "potential for reducing the release of climate-relevant trace gases in the cultivation of energy crops for the production of biogas" was launched. The main objective of the study was to determine an improved process understanding and to quantify the influence of mineral nitrogen fertilization, biogas digestate application, crop type and crop rotation, to gain precise and generalizable statements on the exchange of trace gases like nitrous oxide (N2O) and methane (CH4) on the resulting climate impact. Gas fluxes of N2O and CH4 were measured for three and a half years on two differently managed sites in maize monoculture with different applied organic

  2. Biosolarization in garlic crop

    NASA Astrophysics Data System (ADS)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly

  3. Putting mechanisms into crop production models.

    PubMed

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects.

  4. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment.

    PubMed

    Singh, Pooja; Heikkinen, Jaakko; Ketoja, Elise; Nuutinen, Visa; Palojärvi, Ansa; Sheehy, Jatta; Esala, Martti; Mitra, Sudip; Alakukku, Laura; Regina, Kristiina

    2015-06-15

    We studied the effects of tillage and straw management on soil aggregation and soil carbon sequestration in a 30-year split-plot experiment on clay soil in southern Finland. The experimental plots were under conventional or reduced tillage with straw retained, removed or burnt. Wet sieving was done to study organic carbon and soil composition divided in four fractions: 1) large macroaggregates, 2) small macroaggregates, 3) microaggregates and 4) silt and clay. To further estimate the stability of carbon in the soil, coarse particulate organic matter, microaggregates and silt and clay were isolated from the macroaggregates. Total carbon stock in the topsoil (equivalent to 200 kg m(-2)) was slightly lower under reduced tillage (5.0 kg m(-2)) than under conventional tillage (5.2 kg m(-2)). Reduced tillage changed the soil composition by increasing the percentage of macroaggregates and decreasing the percentage of microaggregates. There was no evidence of differences in the composition of the macroaggregates or carbon content in the macroaggregate-occluded fractions. However, due to the higher total amount of macroaggregates in the soil, more carbon was bound to the macroaggregate-occluded microaggregates in reduced tillage. Compared with plowed soil, the density of deep burrowing earthworms (Lumbricus terrestris) was considerably higher under reduced tillage and positively associated with the percentage of large macroaggregates. The total amount of microbial biomass carbon did not differ between the treatments. Straw management did not have discernible effects either on soil aggregation or soil carbon stock. We conclude that although reduced tillage can improve clay soil structure, generally the chances to increase topsoil carbon sequestration by reduced tillage or straw management practices appear limited in cereal monoculture systems of the boreal region. This may be related to the already high C content of soils, the precipitation level favoring decomposition and

  5. Decomposing global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  6. Determination of crop coefficients (Kc) for irrigation management of crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weighing lysimeters are used to measure crop water use during the growing season. By relating the water use of a specific crop to a well-watered reference crop such as grass, crop coefficients (Kc) can be developed to assist in predicting crop needs using meteorological data available from weather ...

  7. Unique cover crops for Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Louisiana sugarcane production practices provide a tremendous opportunity for the use of cover crops following the final sugarcane harvest in the fall of one year and prior to replanting sugarcane during the summer of the next year. A Louisiana sugarcane field is typically replanted every four years...

  8. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  9. Waves and Crops

    ERIC Educational Resources Information Center

    Bennett, J.

    1973-01-01

    Discusses wave patterns on the surfaces of ripening wheat and barley crops when the wind is moderately strong. Examines the structure of the turbulence over such natural surfaces and conditions under which the crop may be damaged by the wind. (JR)

  10. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  11. New indicators for global crop monitoring in CropWatch -case study in North China Plain

    NASA Astrophysics Data System (ADS)

    Bingfang, Wu; Miao, Zhang; Hongwei, Zeng; Guoshui, Liu; Sheng, Chang; Gommes, René

    2014-03-01

    CropWatch is a monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information. Now in its 15th year of operation, CropWatch was modified several times to be a timely, comprehensive and independent global agricultural monitoring system using advanced remote sensing technology. Currently CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite (FY-3A) and cloud classification products of FY-2. With new satellite data, CropWatch will generate new indicators such as fallow land ratio (FLR), crop condition for irrigated (CCI) and non-irrigated (CCNI) areas separately, photosynthetically active radiation (PAR), radiation use efficiency for the photosynthetically active radiation (RUEPAR) and cropping index (CI) with crop rotation information (CRI). In this paper, the methods for monitoring the new indicators are applied to the North China Plain which is one of the major grain producing areas in China. This paper shows the preliminary results of the new indicators and methods; they still need to be thoroughly validated before being incorporated into the operational CropWatch system. In the future, the new and improved indicators will help us to better understand the global situation of food security.

  12. Crop Sequence Economics in Dynamic Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till production systems allow more intensified and diversified production in the northern Great Plains; however, this has increased the need for information on improving economic returns through crop sequence selection. Field research was conducted 6 km southwest of Mandan ND to determine the inf...

  13. Timing of appearance of Gyrodactylus colemanensis (Monogenea) on young-of-the-year Salvelinus fontinalis in a Nova Scotia stream and contribution of these infections to total parasite standing crop.

    PubMed

    Leblanc, Roland; MacMillan, John; Cone, David

    2013-08-01

    Young-of-the-year (YOY) brook trout (Salvelinus fontinalis) were collected at 2 wk intervals (15 April to 4 June 2012) after emergence from redds and occurrence of the ectoparasite Gyrodactylus colemanensis (Monogenea) recorded. Emergent YOY were not infected. Infected trout (14%) first appeared 15 May, with host age estimated to be 4 wk or less post-emergence. Prevalence and intensity increased over the study period and reached, respectively, 93% and 8.2 ± 6.1 by 4 June. Prevalence and intensity of infection was also determined for older cohorts (1+, >1+) on 6 June, with G. colemanensis occurring on representatives of all age groups. The number of hosts in each age group was estimated by mark/recapture electrofishing over a 100 m reach of the stream. Combining estimated host numbers by age group with parasite prevalence and intensity data from those groups allowed calculation of parasite total standing crop. The results indicate that, by late spring, the new host recruits already carried 64% of the parasite population in the stream, serving to illustrate the remarkable efficiency of transmission by this viviparous monogenean in a temperate stream system.

  14. 7 CFR 1214.5 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Definitions §...

  15. 7 CFR 1214.5 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Definitions §...

  16. 7 CFR 1214.5 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Definitions §...

  17. Impacts of crop rotation and irrigation on soilborne diseases and soil microbial communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotation provides numerous benefits to crop production, and is essential to reduce the build-up of soilborne plant pathogens and diseases that can devastate potato crops grown in multiple consecutive years. Crop rotations can reduce soilborne diseases through a variety of mechanisms, including ...

  18. Crop physiology calibration in the CLM

    DOE PAGES

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  19. Crop physiology calibration in the CLM

    SciTech Connect

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurements of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.

  20. General multiyear aggregation technology: Methodology and software documentation. [estimating seasonal crop acreage proportions

    NASA Technical Reports Server (NTRS)

    Baker, T. C. (Principal Investigator)

    1982-01-01

    A general methodology is presented for estimating a stratum's at-harvest crop acreage proportion for a given crop year (target year) from the crop's estimated acreage proportion for sample segments from within the stratum. Sample segments from crop years other than the target year are (usually) required for use in conjunction with those from the target year. In addition, the stratum's (identifiable) crop acreage proportion may be estimated for times other than at-harvest in some situations. A by-product of the procedure is a methodology for estimating the change in the stratum's at-harvest crop acreage proportion from crop year to crop year. An implementation of the proposed procedure as a statistical analysis system routine using the system's matrix language module, PROC MATRIX, is described and documented. Three examples illustrating use of the methodology and algorithm are provided.

  1. Unique cropping systems for Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Louisiana sugarcane field is typically replanted every four years due to declining yields, and, although, it is a costly process, it is both necessary and an opportunity to maximize the financial return during the next four year cropping cycle. Fallow planting systems (FPS) during the fallow perio...

  2. The state of genetically modified crop regulation in Canada

    PubMed Central

    Smyth, Stuart J

    2014-01-01

    Genetically modified (GM) crops were first commercialized in Canada in 1995 and the 2014 crop represents the 20th year of successful production. Prior to the first commercialization of GM crops, Canada reviewed its existing science-based regulatory framework and adapted the existing framework to allow for risk assessments on the new technology to be undertaken in a timely and efficient manner. The result has been the rapid and widespread adoption of GM varieties of canola, corn and soybeans. The first decade of GM crop production precipitated 2 landmark legal cases relating to patent infringement and economic liability, while the second decade witnessed increased political efforts to have GM crops labeled in Canada as well as significant challenges from the low level comingling of GM crops with non-GM commodities. This article reviews the 20 y of GM crop production in Canada from a social science perspective that includes intellectual property, consumer acceptance and low level presence. PMID:25437238

  3. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  4. Using cover crops and cropping systems for nitrogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  5. Transgenics in crops

    NASA Technical Reports Server (NTRS)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  6. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  7. Regional variability of environmental effects of energy crop rotations

    NASA Astrophysics Data System (ADS)

    Prescher, Anne-Katrin; Peter, Christiane; Specka, Xenia; Willms, Matthias; Glemnitz, Michael

    2014-05-01

    The use of energy crops for bioenergy production is increasingly promoted by different frameworks and policies (ECCP, UNFCCC). Energy cropping decreases greenhouse gas emissions by replacing the use of fossil fuel. However, despite this, growing in monocultures energy crop rotations has low environmental benefit. It is broadly accepted consensus that sustainable energy cropping is only realizable by crop rotations which include several energy crop species. Four crop rotations consisting of species mixtures of C3, C4 and leguminous plants and their crop positions were tested to identify the environmental effect of energy cropping systems. The experimental design included four replicates per crop rotation each covering four cultivation years. The study took place at five sites across Germany covering a considerable range of soil types (loamy sand to silt loam), temperatures (7.5 ° C - 10.0 ° C) and precipitation (559 mm - 807 mm) which allow a regional comparison of crop rotation performance. Four indicators were used to characterize the environmental conditions: (1) greenhouse gas (GHG) emissions from the management actions; (2) change in humus carbon (Chum); (3) groundwater recharge (RGW) and (4) nitrogen dynamics. The indicators were derived by balance, by an empirical model and by a dynamic model, respectively, all based and calibrated on measured values. The results show that the crop rotation impact on environmental indicators varied between plant species mixtures and the crop positions, between sites and climate. Crop rotations with 100 % energy crops (including C4 plants) had negative influence on Chum, GHG emissions per area and RGW in comparison to the rotation of 50 % energy crops and 50 % cash crops, which were mainly due to the remaining straw on the field. However, the biogas yield of the latter rotation was smaller, thus GHG emissions per product were higher, pointing out the importance to distinguish between GHG emissions per product and per area

  8. Radioactivity in food crops

    SciTech Connect

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  9. Influence of post-harvest crop residue fires on surface ozone mixing ratios in the N.W. IGP analyzed using 2 years of continuous in situ trace gas measurements

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Sarkar, C.; Sinha, V.

    2016-04-01

    O3, CO, and NOx affect air quality and tropospheric chemistry but factors that control them in the densely populated N.W. Indo-Gangetic Plain (IGP) are poorly understood. This work presents the first simultaneous 2 year long in situ data set acquired from August 2011 to September 2013 at a N.W. IGP site (30.667°N, 76.729°E; 310 m asl). We investigate the impact of emissions and meteorology on the diel and seasonal variability of O3, CO, and NOx. Regional post-harvest crop residue fires contribute majorly to an enhancement of 19 ppb in hourly averaged ozone concentrations under similar meteorological conditions in summer and 7 ppb under conditions of lower radiation during the post monsoon. d[O3]/dt (from sunrise to daytime O3 maxima) was highest during periods influenced by post-harvest fires in post monsoon season (9.2 ppb h-1) and lowest during monsoon season (4.1 ppb h-1). Analysis of air mass clusters revealed that enhanced chemical formation of O3 and not transport was the driver of the summertime and post monsoon ambient O3 maxima. Despite having high daytime NOx (>12 ppb) and CO (>440 ppb) in winter, average daytime O3 was less than 40 ppb due to reduced photochemistry and fog. Average daytime O3 during the monsoon was less than 45 ppb due to washout of precursors and suppressed photochemistry due to cloud cover. The 8 h ambient air quality O3 standard was violated on 451 days in the period August 2011-September 2013. The results show that substantial mitigation efforts are required to reduce regional O3 pollution in the N.W. IGP.

  10. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China.

    PubMed

    Qin, Xiaobo; Li, Yu'e; Wang, Hong; Liu, Chong; Li, Jianling; Wan, Yunfan; Gao, Qingzhu; Fan, Fenliang; Liao, Yulin

    2016-11-01

    To evaluate long-term effect of biochar application on yield-scaled greenhouse gas emissions (YSGE) in a paddy rice cropping system, a 4-year field experiment by static chamber - gas chromatograph method was conducted in South China. Principal component analysis and terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR was used to unravel the microbial mechanisms of biochar addition. Six treatments were included: control (CK), application of 5tha(-1) biochar (BC1), application of 10tha(-1) biochar (BC2), application of 10tha(-1) biochar (BC3), rice straw return at 2400kgha(-1)(RS) and inoculated rice straw return at 2400kgha(-1)(RI). The results indicated that biochar amendment significantly decreased methane (CH4) and gross greenhouse gas (GHG) emissions. This may primarily be ascribed to the stimulated biodiversity and abundance of methanotrophic microbes, increased soil pH and improved aeration by reducing bulk density after biochar incorporation. Compared with CK, RS and RI, 26.18%, 70.02%, 66.47% of CH4 flux and 26.14%, 70.16%, 66.46% of gross GHG emissions were reduced by biochar (mean of three biochar treatments), respectively. Furthermore, biochar significantly increased harvest index of double rice production (p<0.05). In comparison with CK, RS and RI, 29.14%, 68.04%, 62.28% of YSGE was reduced by biochar, respectively, and the highest biochar addition rate (20tha(-1)) contributed most to the mitigation of GHG emissions (36.24% decrease compared to CK) and improvement of rice yield (7.65% increase compared to CK). Results of our study suggested that long-term application of biochar should be the potential way to mitigate GHGs emissions and simultaneously improve rice productivity in the paddy rice system.

  11. Biomass resource potential using energy crops

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Martin, S.A.

    1993-09-01

    Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.

  12. Biotechnology: herbicide-resistant crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  13. Grand challenges for crop science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  14. Cover crops and N credits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops often provide many short- and long-term benefits to cropping systems. Legume cover crops can significantly reduce the N fertilizer requirement of non-legume cash crops that follow. The objectives of this presentation were to: I) educate stakeholders about the potential benefits of cover ...

  15. 78 FR 47214 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation... the Common Crop Insurance Regulations, Extra Long Staple (ELS) Cotton Crop Insurance Provisions to make the ELS Cotton Crop Insurance Provisions consistent with the Upland Cotton Crop...

  16. Impacts of crop rotations on soil organic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  17. Effects of potato-cotton cropping systems and nematicides on plant-parasitic nematodes and crop yields.

    PubMed

    Crow, W T; Weingartner, D P; Dickson, D W

    2000-09-01

    Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used.

  18. Effect of organic and conventional crop rotation, fertilization, and crop protection practices on metal contents in wheat (Triticum aestivum).

    PubMed

    Cooper, Julia; Sanderson, Roy; Cakmak, Ismail; Ozturk, Levent; Shotton, Peter; Carmichael, Andrew; Haghighi, Reza Sadrabadi; Tetard-Jones, Catherine; Volakakis, Nikos; Eyre, Mick; Leifert, Carlo

    2011-05-11

    The effects of organic versus conventional crop management practices (crop rotation, crop protection, and fertility management strategies) on wheat yields and grain metal (Al, Cd, Cu, Ni, Pb, and Zn) concentrations were investigated in a long-term field trial. The interactions between crop management practices and the season that the crop was grown were investigated using univariate and redundancy analysis approaches. Grain yields were highest where conventional fertility management and crop protection practices were used, but growing wheat after a previous crop of grass/clover was shown to partially compensate for yield reductions due to the use of organic fertility management. All metals except for Pb were significantly affected by crop management practices and the year that the wheat was grown. Grain Cd and Cu levels were higher on average when conventional fertility management practices were used. Al and Cu were higher on average when conventional crop protection practices were used. The results demonstrate that there is potential to manage metal concentrations in the diet by adopting specific crop management practices shown to affect crop uptake of metals.

  19. Economic Analysis of Energy Crop Production in the U.S. - Location, Quantities, Price, and Impacts on Traditional Agricultural Crops

    SciTech Connect

    Walsh, M.E.; De La Torre Ugarte, D.; Slinsky, S.; Graham, R.L.; Shapouri, H.; Ray, D.

    1998-10-04

    POLYSYS is used to estimate US locations where, for any given energy crop price, energy crop production can be economically competitive with conventional crops. POLYSYS is a multi-crop, multi-sector agricultural model developed and maintained by the University of Tennessee and used by the USDA-Economic Research Service. It includes 305 agricultural statistical districts (ASD) which can be aggregated to provide state, regional, and national information. POLYSYS is being modified to include switchgrass, hybrid poplar, and willow on all land suitable for their production. This paper summarizes the preliminary national level results of the POLYSYS analysis for selected energy crop prices for the year 2007 and presents the corresponding maps (for the same prices) of energy crop production locations by ASD. Summarized results include: (1) estimates of energy crop hectares (acres) and quantities (dry Mg, dry tons), (2) identification of traditional crops allocated to energy crop production and calculation of changes in their prices and hectares (acres) of production, and (3) changes in total net farm returns for traditional agricultural crops. The information is useful for identifying areas of the US where large quantities of lowest cost energy crops can most likely be produced.

  20. Pollinator shortage and global crop yield

    PubMed Central

    Aizen, Marcelo A; Cunningham, Saul A; Klein, Alexandra M

    2009-01-01

    A pollinator decline caused by environmental degradation might be compromising the production of pollinator-dependent crops. In a recent article, we compared 45 year series (1961–2006) in yield, production and cultivated area of pollinator-dependent and nondependent crop around the world. If pollinator shortage is occurring globally, we expected a lower annual growth rate in yield for pollinator-dependent than nondependent crops, but a higher growth in cultivated area to compensate the lower yield. We have found little evidence for the first “yield” prediction but strong evidence for the second “area” prediction. Here, we present an additional analysis to show that the first and second predictions are both supported for crops that vary in dependency levels from nondependent to moderate dependence (i.e., up to 65% average yield reduction without pollinators). However, those crops for which animal pollination is essential (i.e., 95% average yield reduction without pollinators) showed higher growth in yield and lower expansion in area than expected in a pollination shortage scenario. We propose that pollination management for highly pollinator-dependent crops, such us renting hives or hand pollination, might have compensated for pollinator limitation of yield. PMID:19704865

  1. CFD Simulation of Aerial Crop Spraying

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Qiang, Kua Yong; Mohd, Sofian; Rosly, Nurhayati

    2016-11-01

    Aerial crop spraying, also known as crop dusting, is made for aerial application of pesticides or fertilizer. An agricultural aircraft which is converted from an aircraft has been built to combine with the aerial crop spraying for the purpose. In recent years, many studies on the aerial crop spraying were conducted because aerial application is the most economical, large and rapid treatment for the crops. The main objective of this research is to study the airflow of aerial crop spraying system using Computational Fluid Dynamics. This paper is focus on the effect of aircraft speed and nozzle orientation on the distribution of spray droplet at a certain height. Successful and accurate of CFD simulation will improve the quality of spray during the real situation and reduce the spray drift. The spray characteristics and efficiency are determined from the calculated results of CFD. Turbulence Model (k-ɛ Model) is used for the airflow in the fluid domain to achieve a more accurate simulation. Furthermore, spray simulation is done by setting the Flat-fan Atomizer Model of Discrete Phase Model (DPM) at the nozzle exit. The interaction of spray from each flat-fan atomizer can also be observed from the simulation. The evaluation of this study is validation and grid dependency study using field data from industry.

  2. Crop Coefficients of Some Selected Crops of Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Reddy, K. Chandrasekhar; Arunajyothy, S.; Mallikarjuna, P.

    2015-06-01

    Precise information on crop coefficients for estimating crop evapotranspiration (ETc) for regional scale irrigation planning is a major impediment in many regions. Crop coefficients suggested based on lysimeter data by earlier investigators have to be locally calibrated to account for the differences in the crop canopy under given climatic conditions. In the present study crop coefficients were derived based on reference crop evapotranspiration (ET0) estimated from Penman-Monteith equation and lysimeter measured ETc for groundnut, paddy, tobacco, sugarcane and castor crops at Tirupati, Nellore, Rajahmundry, Anakapalli and Rajendranagar centers of Andhra Pradesh respectively. Crop coefficients derived were compared with those recommended by FAO-56. The mean crop coefficients at different stages of growth were significantly different from those of FAO-56 curve though a similar trend was observed. A third order polynomial crop coefficient model has therefore been developed as a function of time (days after sowing the crop) for deriving suitable crop coefficients. The crop coefficient models suggested may be adopted to estimate crop evapotranspiration in the study area with reasonable degree of accuracy.

  3. Estimation of flood losses to agricultural crops using remote sensing

    NASA Astrophysics Data System (ADS)

    Tapia-Silva, Felipe-Omar; Itzerott, Sibylle; Foerster, Saskia; Kuhlmann, Bernd; Kreibich, Heidi

    2011-01-01

    The estimation of flood damage is an important component of risk-oriented flood design, risk mapping, financial appraisals and comparative risk analyses. However, research on flood loss modelling, especially in the agricultural sector, has not yet gained much attention. Agricultural losses strongly depend on the crops affected, which need to be predicted accurately. Therefore, three different methods to predict flood-affected crops using remote sensing and ancillary data were developed, applied and validated. These methods are: (a) a hierarchical classification based on standard curves of spectral response using satellite images, (b) disaggregation of crop statistics using a Monte Carlo simulation and probabilities of crops to be cultivated on specific soils and (c) analysis of crop rotation with data mining Net Bayesian Classifiers (NBC) using soil data and crop data derived from a multi-year satellite image analysis. A flood loss estimation model for crops was applied and validated in flood detention areas (polders) at the Havel River (Untere Havelniederung) in Germany. The polders were used for temporary storage of flood water during the extreme flood event in August 2002. The flood loss to crops during the extreme flood event in August 2002 was estimated based on the results of the three crop prediction methods. The loss estimates were then compared with official loss data for validation purposes. The analysis of crop rotation with NBC obtained the best result, with 66% of crops correctly classified. The accuracy of the other methods reached 34% with identification using Normalized Difference Vegetation Index (NDVI) standard curves and 19% using disaggregation of crop statistics. The results were confirmed by evaluating the loss estimation procedure, in which the damage model using affected crops estimated by NBC showed the smallest overall deviation (1%) when compared to the official losses. Remote sensing offers various possibilities for the improvement of

  4. Handling Procedures of Vegetable Crops

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  5. 75 FR 15777 - Common Crop Insurance Regulations, Basic Provisions; and Various Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Basic Provisions, Small Grains Crop Insurance Provisions, Cotton Crop Insurance Provisions, Sunflower Seed Crop Insurance Provisions, Coarse Grains Crop Insurance Provisions, Malting Barley Crop Insurance Provisions, Rice Crop Insurance Provisions, and Canola and Rapeseed Crop Insurance Provisions to......

  6. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    NASA Astrophysics Data System (ADS)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  7. Plant biotechnology: transgenic crops.

    PubMed

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  8. Cover crops support ecological intensification of arable cropping systems

    PubMed Central

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-01-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification. PMID:28157197

  9. Cover crops support ecological intensification of arable cropping systems

    NASA Astrophysics Data System (ADS)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  10. Large Area Crop Inventory Experiment (LACIE). Feasibility of assessing crop condition and yield from LANDSAT data

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. Yield modelling for crop production estimation derived a means of predicting the within-a-year yield and the year-to-year variability of yield over some fixed or randomly located unit of area. Preliminary studies indicated that the requirements for interpreting LANDSAT data for yield may be sufficiently similar to those of signature extension that it is feasible to investigate the automated estimation of production. The concept of an advanced yield model consisting of both spectral and meteorological components was endorsed. Rationale for using meteorological parameters originated from known between season and near harvest dynamics in crop environmental-condition-yield relationships.

  11. [Unintended effects assessment of genetically modified crops using omics techniques].

    PubMed

    Zhao, Yan; Li, Yan-Yan

    2013-12-01

    Safety assessment is the essential process for commercial application of genetically modified (GM) crops. Omics techniques can be used to evaluate the safety of GM crops unbiasedly at different biological levels, such as transcripts, proteins and metabolites. In the present review, the researches on unintended effects assessment of GM crops using transcriptomic, proteomic and metabolomic techniques in recent ten years have been summarized. The facts show that the environmental factors (growing area and season) and genotype difference play greater roles than gene insertion does for most unintended variations in GM crops.

  12. The Role of Crop Systems Simulation in Agriculture and Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...

  13. Dealing with drought: Securing nitrogen with cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This year the drought in the Midwest has significantly reduced the growth and yield of all crops. When the growth of the cash crop has been reduced by drought or any other cause it is important to remember that more nitrogent than normal will remain in the soil after harvest. This nitrogen will be v...

  14. Influence of angular effects on surface reflections for crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing imageries with wide swath have been broadly used in mapping crop types and monitoring crop conditions at the regional, continental or global scales. In recent years, the U.S. Department of Agriculture (USDA) has used the Moderate Resolution Imaging Spectroradiometer (MODIS, 250m–1km) ...

  15. Dynamic precision phenotyping reveals mechanism of crop tolerance to herbivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The western corn rootworm, Diabrotica virgifera virgifera (LeConte) is a major pest of maize, Zea mays L. Over the years, this pest has repeatedly shown its resilience and adaptability not only to traditional crop management strategies including chemical pesticides and crop rotation, but also to de...

  16. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... year prior to the year the trees normally bloom, and ends on November 20 of the following calendar year... the year the insured crop normally blooms, except that for the year of application, if...

  17. Ecosystem services of woody crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of fast growing forest tree species to produce biomass for fuel, fodder, and building materials has a long history. Research programs on short rotation wood crops began in the 1960s; 50 years ago, the concept of silage sycamore (Platanus sp.) was conceived in Georgia. The basic premise was t...

  18. Why we need GMO crops in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fact that in a very short period of 35 years the global population will reach an estimated 9 billion people presents a massive challenge to agriculture: how do we feed all of these people with nutritious food in a sustainable way? At the present time the yields of most of our major crops are sta...

  19. Biotechnology Towards Energy Crops.

    PubMed

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  20. Crop Dusting Using GPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global Positioning System (GPS) receivers and GPS-based swath guidance systems are used on agricultural aircraft for remote sensing, airplane guidance, and to support variable-rate aerial application of crop inputs such as insecticides, cotton growth regulators, and defoliants. Agricultural aircraf...

  1. Major Cucurbit Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucurbit is a general term to denote all species within the Cucurbitaceae family, which includes approximately 800 species in 130 genera. Cucurbits are mostly annual, herbaceous, tendril-bearing and frost sensitive vines and are among the economically most important vegetable crops worldwide. Cucurb...

  2. Crop biotechnology. Where now?

    PubMed

    Miflin, B J

    2000-05-01

    Nature Biotechnology organized a conference in London on Agobiotech 99: Biotechnology and World Agriculture (November 14-16, 1999). The conference focused entirely on crop biotechnology and covered both societal and scientific aspects. Below is an account of the more important issues raised by the speakers and the audience.

  3. Nitrogen catch crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High costs of nitrogen (N) fertilizer and the potential for N losses to ground and surface water have resulted in increased interest in using catch crops to recover this N. Research on potatoes has shown that the amount of N lost to leaching can be as much as the amount of N removed from the field ...

  4. Replacing fallow by cover crops: economic sustainability

    NASA Astrophysics Data System (ADS)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  5. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  6. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  7. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    NASA Astrophysics Data System (ADS)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  8. Crop kites: Determining crop-water production functions using crop coefficients and sensitivity indices

    NASA Astrophysics Data System (ADS)

    Smilovic, Mikhail; Gleeson, Tom; Adamowski, Jan

    2016-11-01

    The crop-water production function quantitatively evaluates the relationship between seasonal water use and crop yield and is used to evaluate optimal irrigation depth and assess the potential of deficit and supplemental irrigation. A simple and easily applicable methodology to develop crop- and region-specific crop-water production functions using crop coefficients and sensitivity-indices is presented. Previous efforts to describe the crop-water production function have not accounted for the effects of the temporal distribution of water use and trivialize the associated variability in yields by assuming an optimized or arbitrary temporal distribution. The temporal distribution of water use throughout the growing season can significantly influence crop yield, and the ability of farmers to manage both the timing and amount of irrigation water may result in higher yields. We propose crop kites, a tool that explicitly acknowledges crop yield as a function of the temporal distribution of water use to both evaluate the complete space of water use and crop yield relationships, and extract from this space specific crop-water production functions. An example for winter wheat is presented using previously validated crop-specific sensitivity indices. Crop-water production functions are extracted from the crop kite related to specific irrigation schedules and temporal distributions of water use. Crop-water production functions associated with maximizing agricultural production agree with previous efforts characterizing the shape as a diminishing curvilinear function. Crop kites provide the tools for water managers and policy makers to evaluate crop- and region-specific agricultural production as it relates to water management and the associated economics, and to determine appropriate policies for developing and supporting the infrastructure to increase water productivity.

  9. Genetically modified crops and food security.

    PubMed

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15-20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy.

  10. Assessing the natural variability in crop composition.

    PubMed

    Harrigan, George G; Glenn, Kevin C; Ridley, William P

    2010-12-01

    The number of evaluations of the nutrient composition of food and feed crops has increased over the past 15years due to the introduction of new crops using the tools of modern biotechnology. The composition of these crops has been extensively compared with conventional (non-transgenic) controls as an integral part of the comparative safety assessment process. Following guidelines outlined in the Organization of Economic Co-operation and Development (OECD) Consensus Documents, most of these studies have incorporated field trials at multiple geographies and a diverse range of commercially available varieties/hybrids that are analyzed to understand natural variability in composition due to genetic and environmental influences. Using studies conducted in the US, Argentina and Brazil over multiple growing seasons, this report documents the effect of geography, growing season, and genetic background on soybean composition where fatty acids and isoflavones were shown to be particularly variable. A separate investigation of 96 different maize hybrids grown at three locations in the US demonstrated that levels of free amino acids, sugars/polyols, and molecules associated with stress response can vary to a greater degree than that observed for more abundant components. The International Life Sciences Institute (ILSI) crop composition database has proven to be an important resource for collecting and disseminating nutrient composition data to promote a further understanding of the variability that occurs naturally in crops used for food and feed.

  11. Sugar crops for fuel alcohol

    SciTech Connect

    Irvine, J.E.

    1980-01-01

    The use of alcohol rather than petroleum as a fuel source would require a large amount of land and suitable crops. Acerage now in use for food crops and animal production in the USA is given. The author presents alternatives to present land use in order to free acreage for energy crops such as sorghum, sugar beets, and sugar cane. (DC)

  12. Crop Sequence Calculator, v. 3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers need to know how to sequence crops to develop sustainable dynamic cropping systems that take advantage of inherent internal resources, such as crop synergism, nutrient cycling, and soil water, and capitalize on external resources, such as weather, markets, and government programs. Version ...

  13. Crop genomics: advances and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The completion of reference genome sequences for many important crops and the ability to perform high-throughput resequencing are providing opportunities for improving our understanding of the history of plant domestication and to accelerate crop improvement. Crop plant comparative genomics is being...

  14. Short rotation Wood Crops Program

    SciTech Connect

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  15. AgRISTARS: Supporting research. US crop calendars in support of the early warning project

    NASA Technical Reports Server (NTRS)

    Hodges, T. (Principal Investigator)

    1981-01-01

    The crop calendars produced for the Large Area Crop Inventory Experiment (LACIE) and crop calendar samples for Colorado, Iowa, Kansas, Minnesota, Montana, Nebraska, North Dakota, South Dakota, and Texas are presented. These calendars are based on weekly crop reporting district level observations of the percentage of various crops at several growth stages. A sample of the statistical treatments of the weekly data is provided. Four to five years of 50-percent dates for stages on a crop reporting district level for Arkansas, Iowa, Kentucky, Louisiana, Michigan, Mississippi, Ohio and Wisconsin are also given.

  16. Epigenetics and crop improvement.

    PubMed

    Springer, Nathan M

    2013-04-01

    There is considerable excitement about the potential for epigenetic information to contribute to heritable variation in many species. Our understanding of the molecular mechanisms of epigenetic inheritance is rapidly growing, and it is now possible to profile the epigenome at high resolution. Epigenetic information plays a role in developmental gene regulation, response to the environment, and in natural variation of gene expression levels. Because of these central roles, there is the potential for epigenetics to play a role in crop improvement strategies including the selection for favorable epigenetic states, creation of novel epialleles, and regulation of transgene expression. In this review we consider the potential, and the limitations, of epigenetic variation in crop improvement.

  17. Halophytes As Bioenergy Crops

    PubMed Central

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K.

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops. PMID:27679645

  18. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    , while this is 121 m3 GJ-1 for maize. The global water footprint related to crop production in the period 1996-2005 was 7404 billion cubic meters per year (78 % green, 12 % blue, 10 % grey). A large total water footprint was calculated for wheat (1087 Gm3 yr-1), rice (992 Gm3 yr-1) and maize (770 Gm3 yr-1). Wheat and rice have the largest blue water footprints, together accounting for 45 % of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr-1), China (967 Gm3 yr-1) and the USA (826 Gm3 yr-1). A relatively large total blue water footprint as a result of crop production is observed in the Indus river basin (117 Gm3 yr-1) and the Ganges river basin (108 Gm3 yr-1). The two basins together account for 25 % of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr-1 (91 % green, 9 % grey); irrigated agriculture has a water footprint of 2230 Gm3 yr-1 (48 % green, 40 % blue, 12 % grey).

  19. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-01-01

    m3 GJ-1, while this is 121 m3 GJ-1 for maize. The global water footprint related to crop production in the period 1996-2005 was 7404 billion cubic meters per year (78% green, 12% blue, 10% grey). A large total water footprint was calculated for wheat (1087 Gm3 yr-1), rice (992 Gm3 yr-1) and maize (770 Gm3 yr-1). Wheat and rice have the largest blue water footprints, together accounting for 45% of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr-1), China (967 Gm3 yr-1) and the USA (826 Gm3 yr-1). A relatively large total blue water footprint as a result of crop production is observed in the Indus River Basin (117 Gm3 yr-1) and the Ganges River Basin (108 Gm3 yr-1). The two basins together account for 25% of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr-1 (91% green, 9% grey); irrigated agriculture has a water footprint of 2230 Gm3 yr-1 (48% green, 40% blue, 12% grey).

  20. Effects of crop rotation on properties of a Vietnam clay soil under rice-based cropping systems in small-scale farmers' fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In tropical deltas, intensive monocultures with three rice crops per year have been the standard for decades. In recent years, though, rice-based rotations with one or more upland crops per year are being adopted by several farmers. Their trends of increasing grain yields raise the question whether ...

  1. Crop stress detection and classification using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  2. Advancing Crop Transformation in the Era of Genome Editing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than thirty years of technological advances. Genome editing provides new opportunities to...

  3. Economic Benefits of Predictive Models for Pest Control in Agricultural Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various forms of crop models or decision making tools for managing crops have existed for many years. The potential advantage of all of these decision making tools is that more informed and economically improved crop management or decision making is accomplished. However, examination of some of thes...

  4. Advances in managing pest resistance to Bt crops: Pyramids and seed mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic crops producing toxins from the soil bacterium Bacillus thuringiensis (Bt) have been widely used for the control of insect pests during the last 20 years. Although Bt crops have provided significant environmental and economic benefits, sustainable use of these crops is threatened by the r...

  5. Monitoring crop condition at field scale using multiple remote sensing data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop growth condition is affected by both environmental variables (climate, weather and soil condition etc.) and anthropogenic activities (fertilization and irrigation etc.). Crop condition varies by year and location and is critical for crop management and yield estimation. In the United States, cr...

  6. Managing cover crops in no-till organic systems using rolling technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years use of cover crops in no-till organic production systems without incorporating them into the soil has been steadily increasing. This increase is associated with important benefits from cover crops left on the soil surface which improve soil properties and enhance main crop growth. Ro...

  7. Assessing the MODIS Crop Detection Algorithm for Soybean Crop Area Mapping and Expansion in the Mato Grosso State, Brazil

    PubMed Central

    Ricardo Ducati, Jorge; da Silveira, Luiz Gonzaga

    2014-01-01

    Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with R2 = 0.97 and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state. PMID:24983007

  8. Crop yield response to climate change varies with cropping intensity.

    PubMed

    Challinor, Andrew J; Parkes, Ben; Ramirez-Villegas, Julian

    2015-04-01

    Projections of the response of crop yield to climate change at different spatial scales are known to vary. However, understanding of the causes of systematic differences across scale is limited. Here, we hypothesize that heterogeneous cropping intensity is one source of scale dependency. Analysis of observed global data and regional crop modelling demonstrate that areas of high vs. low cropping intensity can have systematically different yields, in both observations and simulations. Analysis of global crop data suggests that heterogeneity in cropping intensity is a likely source of scale dependency for a number of crops across the globe. Further crop modelling and a meta-analysis of projected tropical maize yields are used to assess the implications for climate change assessments. The results show that scale dependency is a potential source of systematic bias. We conclude that spatially comprehensive assessments of climate impacts based on yield alone, without accounting for cropping intensity, are prone to systematic overestimation of climate impacts. The findings therefore suggest a need for greater attention to crop suitability and land use change when assessing the impacts of climate change.

  9. Economic impacts of ethanol fuels from crops

    SciTech Connect

    Hertzmark, D.; Ray, D.; Richardson, J.

    1981-08-01

    This paper presents selected results of simulations of agricultural production of ethanol feedstocks from grains and sugar crops. Production levels of up to 5 billion gallons per year were simulated using various combinations of corn, high energy sorghum, sweet sorghum, and sugar beets. Major results include (1) at up to 2 billion gallons per year of ethanol, impacts on the agricultural sector are mild; (2) beyond 2 billion gallons per year, diversification away from corn appears to be necessary to avoid major feed price inflation; (3) farm income unambiguously rises in response to higher crop prices; and (4) exports of food grains are affected differently by alternative feedstocks, and high-energy sorghum shows a good potential for competing with food grains.

  10. Crop scientists break down barriers at Ames meeting

    SciTech Connect

    Moffat, A.S.

    1992-09-04

    For years, crop science has been balkanized, with specialists in rice, corn, and soy beans, for example, working on their commodities and attending their own meetings. But at the First International Crop Science Congress, held in July in Ames, Iowa-an 8-day event 3 years in the making-the discipline displayed a new found hybrid vigor. More than 1000 researchers of various persuasions, including plant molecular biology, classical plant breeding, agronomy, and soil science, representing 85 countries, shared their expertise in basic and applied studies. Here are a couple of proposals for expanding world food production and another that shows the diverse roles crops can play.

  11. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... time that begins on November 21 of the calendar year prior to the year the trees normally bloom, and... November 21 of the calendar year prior to the year the insured crop normally blooms, except that for...

  12. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... time that begins on November 21 of the calendar year prior to the year the trees normally bloom, and... November 21 of the calendar year prior to the year the insured crop normally blooms, except that for...

  13. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... time that begins on November 21 of the calendar year prior to the year the trees normally bloom, and... November 21 of the calendar year prior to the year the insured crop normally blooms, except that for...

  14. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... that begins on November 21 of the calendar year prior to the year the trees normally bloom, and ends on... November 21 of the calendar year prior to the year the insured crop normally blooms, except that for...

  15. Multi-scale indicators in CropWatch

    NASA Astrophysics Data System (ADS)

    Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zhang, N.; Zou, W.; Chang, S.; Liu, G.

    2013-12-01

    CropWatch is a crop monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information, mostly for Chinese users. In its 15th year of operation, CropWatch uses remote sensing data combined with selected field data to determine key crop descriptors: acreage, yield and production, condition, cropping intensity, planting proportion, total food availability, and the status and severity of droughts. Currently, CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite 3 (FY-3A) and geostationary meteorological satellites (FY-2). The new indicators can be assigned to three different scales: (1) global, (2) regional/Agro-ecological Zone (AEZ), and (3) National/sub-national level. At the global scale, CropWatch focuses on the growing environment including precipitation (R), soil moisture (SM), land surface temperature accumulation (LSTA) and photosynthetically active radiation (PAR). National values of these four descriptors of the current season and their departure from long term average (LTA) will be determined by spatial average weighted by the production potential. At regional/AEZ scale, CropWatch will use three indicators (biomass, fallow land ratio and cropping intensity) to represent crop condition. At the national/sub-national scale, CropWatch will focus on 30 countries plus China, covering 80% of exports and 80% of production, plus some additional countries. Indicators at global and AEZ scale will also be used for the 30 countries plus China but at a high resolution. Normalized difference vegetation index (NDVI) as well as Evapotranspiration (ET) will be incorporated to determine the crop condition and water stress. All these national/sub-national indicators will be analyzed by irrigated and rain-fed areas

  16. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    USGS Publications Warehouse

    Hively, Wells; Sjoerd Duiker,; Greg McCarty,; Prabhakara, Kusuma

    2015-01-01

    showed consistent increases in vegetative groundcover over the four-year study period and determined that trends did not result from annual weather variability, indicating that farmers are increasing adoption of practices such as cover cropping that promote wintertime vegetation. Between 2010 and 2013, the occurrence of wintertime vegetation on agricultural fields increased from 36% to 67% of corn fields in Berks County, from 53% to 75% in Lancaster County, from 42% to 65% in Lebanon County, and from 26% to 52% in York County. Apparently, efforts to promote cover crop use in the Chesapeake Bay Watershed have coincided with a rapid increase in the occurrence of wintertime vegetation following corn harvest in southeastern Pennsylvania. However, despite these increases, between 25% and 48% of corn fields remained without substantial green vegetation over the wintertime, indicating further opportunity for cover crop adoption.

  17. Impact of GM crops on biodiversity.

    PubMed

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  18. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  19. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    PubMed

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  20. Alfalfa interseeded into silage corn can serve as a cover crop and subsequent forage crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa (Medicago sativa) and corn (Zea mays) silage are commonly grown in rotation in dairy forage production systems throughout the northern regions of the USA. Alfalfa interseeded into silage corn could potentially serve two purposes: as a cover crop during the silage corn production year, and as...

  1. Space Data for Crop Management

    NASA Technical Reports Server (NTRS)

    1990-01-01

    CROPIX, Inc., formed in 1984 by Frank Lamb, president of the Eastern Oregon Farming Company, monitors primarily potato crops in a 20,000 square mile area of northern Oregon and central Washington. Potatoes are a high value specialty crop that can be more profitable to the farmer if he has advance knowledge of market conditions, knows when to harvest, and when to take it to market. By processing and collecting data collected by the NASA-developed Landsat Earth Resources survey satellites, Lamb is able to provide accurate information on crop acreage and conditions on a more timely basis than the routine estimates by the USDA. CROPIX uses Landsat data to make acreage estimates of crops, and to calculate a field-by-field vegetative index number. CROPIX then distributes to its customers a booklet containing color-coded maps, an inventory of crops, plus data and graphs on crop conditions and other valuable information.

  2. Crop demand of manganese.

    PubMed

    Marton, Laszlo

    2012-01-01

    The objectives of this study were to evaluate some of the popular rotation crops grown in Hungary for tolerance to low external Mn(2+) levels and to determine the critical tissue concentration of Mn(2+) deficiency during early stages of growth. The minimum Mn(2+) concentration required in soil nutrient contents was 42.5 mg kg(-1) for sunflower, 24.3 mg kg(-1) for tobacco and 10.2 mg kg(-1) for triticale. Sunflower, tobacco and triticale achieved optimum growth at 48.0-65.0 mg Mn(2+) kg(-1), 24.9-32.1 mg Mn( n+) kg(-1) and 28.7 to 29.6 mg Mn(2+) kg(-1), respectively. Critical shoot Mn(2+) concentration at early stages of growth was 53.6 mg kg(-1) in sunflower, 458.0 mg kg(-1) in tobacco and 193.8 mg kg(-1) in triticale. Our results demonstrate that the tolerance to low external Mn(2+) (triticale: <30.2 mg kg(-1); sunflower: <56.2 mg kg(-1); tobacco: <69.3 mg kg(-1)) and the critical tissue Mn(2+) levels for deficiency varied significantly between crop species tested.

  3. Historical patterns and drivers of global crop water demand.

    NASA Astrophysics Data System (ADS)

    Urban, D.; Lobell, D. B.; Sheffield, J.

    2015-12-01

    With climate change expected to subject staple crops in major growing regions to increased heat exposure, a critical question for agriculture and global food security is the degree to which crop water demand is also likely to change. Recent work has explored the relationship between extreme temperatures and crop water demand, finding that vapor pressure deficit (VPD), through its dependence on both temperature and humidity, provides a very good meteorological predictor of water stress. However, assessing crop water demand solely through atmospheric conditions ignores the roles of radiation and transpiration efficiency, which are increased through elevated CO2. We provide a 60-year global assessment of crop water demand in the world's major growing areas, comparing trends and drivers across key growing regions. We find that an atmospheric-based demand measure can differ significantly from that of a crop-specific sink-based approach that incorporates radiation and CO2 effects, sometimes enough to reverse the sign of historical trends. We also find that these changes differ significantly by region, and that multi-decadal trends can mask large decadal swings. To our knowledge, our work is the first to use global meteorological datasets in a global analysis of crop water demand, and should serve as a valuable reference for future work examining the interaction of hydrological, temperature, and CO2 changes on crop yields.

  4. WEED POPULATION IN RELATION TO CROP ROTATION AND NITROGEN FERTILISATION.

    PubMed

    Derycke, V; Latré, J; Van De Vijver, E; De Roo, B; De Cauwer, B; Haesaert, G

    2014-01-01

    In order to assess the impact of crop rotation and nitrogen fertilisation in an agro system, a long-term field experiment has been established in 2006 at the experimental farm of Ghent University and University College Ghent (Bottelare-Belgium). The trial comprises 11 different crop rotations in combination with four nitrogen fertilizer regimes. The different crop rotations are monoculture of grain- and silage maize, whether or not followed by Italian ryegrass, permanent and temporary grass-clover and six other rotations of maize in combination with potatoes, wheat, fodder beet and peas. Normal crop husbandry measures were taken for each crop. The experiment was set up on a sandy loam soil, according to a strip plot design with 3 replicates. In the course of the experiment, crop rotation was the horizontal factor and fertilizer nitrogen (N) the vertical factor. The effect of crop rotation on yield, disease pressure, soil structure and earthworm abundance were evaluated yearly. In autumn 2013 the weed seed bank was analysed for each plot using the seedling emergence method. The obtained results indicated differences between the different crop rotations.

  5. Research in satellite-aided crop forecasting

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Dragg, J. L.; Bizzell, R. M.; Trichel, M. C.

    1984-01-01

    Evaluations of remote sensing procedures developed specifically to estimate non-U.S. spring small grains area show accuracies of less than 10 percent relative difference to reference statistics for North Dakota in 1978 and good comparison with 9000 square miles of observations over four states and Saskatchewan, Canada during the years 1976-79. Processing a 5 x 6-nautical-mile sample site requires a few minutes manual time and a few minutes central processing unit time on an AS-3000 computer. Evaluations of summer crop, corn, and soybeans area estimates show unbiased summer crops estimates in the U.S. central corn belt but significant bias in one of two years for area estimates of corn and soybeans. Based on results to date, a highly automated corn/sorghum/soybean area estimation procedure should be achieved that is applicable to Argentina.

  6. Elevating crop disease resistance with cloned genes

    PubMed Central

    Jones, Jonathan D. G.; Witek, Kamil; Verweij, Walter; Jupe, Florian; Cooke, David; Dorling, Stephen; Tomlinson, Laurence; Smoker, Matthew; Perkins, Sara; Foster, Simon

    2014-01-01

    Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree. PMID:24535396

  7. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India.

    PubMed

    Mandal, S; Choudhury, B U; Satpati, L N

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant (p < 0.05) increasing trend (at 0.22 days year(-1)) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning

  8. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Choudhury, B. U.; Satpati, L. N.

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant ( p < 0.05) increasing trend (at 0.22 days year-1) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning including abiotic stress

  9. [Cultivation and environmental impacts of GMO crops].

    PubMed

    Pelletier, Georges

    2009-01-01

    Transgenic plant varieties are grown since 1996 on surfaces increasing each year. They covered 114 million hectares worldwide in 2007, which shows their success among the farmers in developed as well as developing countries, despite the propaganda campaigns of the environmental movements and advocates of decline. The first transgenic crops (soybean, corn, coton and rapeseed) offer benefits in terms of health, economy and environment. Europe and especially France, which reject this technology, sentence their research to death and penalize their agriculture.

  10. El Nino southern oscillation effects on dryland crop production in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Risk adverse dryland crop management in the US Southern High Plains may stabilize year to year productivity, however in some years the full yield potential is unrealized thereby reducing the overall cropping system productivity. Equatorial Pacific sea surface temperature anomalies (SSTA) systematica...

  11. Evaluation of herbacceous biomass crops in the northern Great Plains. Final report

    SciTech Connect

    Meyer, D.W.; Norby, W.E.; Erickson, D.O.; Johnson, R.G.

    1994-08-01

    Herbaceous lignocellulose crops are a potential renewable feedstock for biochemical conversion systems second in size to wood products. Several herbaceous crops are utilized as forage crops in the northern Great Plains, but forage quality considerations usually dictates a early harvest. Biomass cropping does not have this constraint; therefore, little information was available on herbaceous crops utilized as energy crops prior to this project. Our primary objectives were to evaluate the biomass yield and select chemical components of several herbaceous crops for energy crops in the northern Great Plains, compare the economic feasibility of energy crops with common competing crops, and evaluate biomass cropping on summer fallow lands. Three good, two marginal, and one irrigated sites were used during 1988 to 1992 for the first component. At least six perennial and four annual biomass species were included at all sites. Three to four nitrogen (N) levels and a crop-recrop comparison (annuals only) were management intensities included. Biomass cropping on idled lands was performed on dryland at Carrington and evaluated the effects of removing leguminous biomass on fallowed lands. This report summarizes results from the 5-year project.

  12. 605 Salad crops: Root, bulb, and tuber Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root and tuber crops (potato, cassava, sweet potato, and yams) comprise 4 of the 10 major food staples of the world and serve as a major source of energy for the poor of developing nations. Minimal strain placed on agro ecosystems by root and tuber crops highlight their welcomed contribution to the ...

  13. COLT: seasonal prediction of crop irrigation needs

    NASA Astrophysics Data System (ADS)

    Villani, Giulia; Spisni, Andrea; Mariani, Maria Cristina; Pratizzoli, William; Pavan, Valentina; Tomei, Fausto; Botarelli, Lucio; Marletto, Vittorio

    2013-04-01

    COLT is an operational chain to predict summer (June, July, August) crop irrigation needs in Emilia-Romagna (Northern Italy) at the regional and lower scales. Set up by ARPA-SIMC in 2010, it has been applied since with good results. COLT predicts summer irrigation needs in May, i.e. at the beginning of the irrigation season in Emilia-Romagna. COLT is based on the production of yearly updated land use maps, observed daily weather data, a regional soil map and ensemble probabilistic seasonal weather forecasts obtained from the EUROSIP multi-model operational system and a geographical soil water balance model (CRITERIA). The first step of the operational scheme is the supervised classification of crops through field surveys and a set of multitemporal satellite images acquired during the first months of the growing period. As the identification of all crop species during the satellite working windows is not feasible, they are grouped in six classes: summer field crops (including corn, sorghum, tomato, sugar beet, potato and others), winter crops (wheat, barley, oat, etc.), perennial grasses (alfa-alfa and meadows), rice, vineyards and orchards, on the whole regional plain, covering about 775000 ha. The second step involves the statistical downscaling of the EUROSIP ensemble predictions over Emilia-Romagna and the use of a weather generator to synthetically produce a number (usually 50) replicated meteorological summer daily data series, consistent with the predicted and downscaled summer anomalies of temperature, rainfall and other related indices. During the final step the CRITERIA model computes crop development and soil water balance on the crop classification map using observed meteorological daily data up to the end of May. Afterword forecasts are used up to the end of the summer irrigation season, i.e. August 31st. The statistical distribution projections of summer irrigation needs at the regional and reclamation consortia scale are then issued and disseminated

  14. Thiamin biofortification of crops.

    PubMed

    Goyer, Aymeric

    2016-10-14

    Thiamin is essential for human health. While plants are the ultimate source of thiamin in most human diets, staple foods like white rice have low thiamin content. Therefore, populations whose diets are mainly based on low-thiamin staple crops suffer from thiamin deficiency. Biofortification of rice grain by engineering the thiamin biosynthesis pathway has recently been attempted, with up to 5-fold increase in thiamin content in unpolished seeds. However, polished seeds that retain only the starchy endosperm had similar thiamin content than that of non-engineered plants. Various factors such as limited supply of precursors, limited activity of thiamin biosynthetic enzymes, dependence on maternal tissues to supply thiamin, or lack of thiamin stabilizing proteins may have hindered thiamin increase in the endosperm.

  15. Why genetically modified crops?

    PubMed

    Jones, Jonathan D G

    2011-05-13

    This paper is intended to convey the message of the talk I gave at the Theo Murphy meeting at the Kavli Centre in July 2010. It, like the talk, is polemical, and conveys the exasperation felt by a practitioner of genetically modified (GM) plant science at its widespread misrepresentation. I argue that sustainable intensification of agriculture, using GM as well as other technologies, reduces its environmental impact by reducing pesticide applications and conserving soil carbon by enabling low till methods. Current technologies (primarily insect resistance and herbicide tolerance) have been beneficial. Moreover, the near-term pipeline of new GM methods and traits to enhance our diet, increase crop yields and reduce losses to disease is substantial. It would be perverse to spurn this approach at a time when we need every tool in the toolbox to ensure adequate food production in the short, medium and long term.

  16. Identifying representative crop rotation patterns and grassland loss in the US Western Corn Belt

    SciTech Connect

    Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gelfand, Ilya; Hurtt, George C.

    2014-10-01

    Crop rotations (the practice of growing crops on the same land in sequential seasons) reside at the core of agronomic management as they can influence key ecosystem services such as crop yields, carbon and nutrient cycling, soil erosion, water quality, pest and disease control. Despite the availability of the Cropland Data Layer (CDL) which provides remotely sensed data on crop type in the US on an annual basis, crop rotation patterns remain poorly mapped due to the lack of tools that allow for consistent and efficient analysis of multi-year CDLs. This study presents the Representative Crop Rotations Using Edit Distance (RECRUIT) algorithm, implemented as a Python software package, to select representative crop rotations by combining and analyzing multi-year CDLs. Using CDLs from 2010 to 2012 for 5 states in the US Midwest, we demonstrate the performance and parameter sensitivity of RECRUIT in selecting representative crop rotations that preserve crop area and capture land-use changes. Selecting only 82 representative crop rotations accounted for over 90% of the spatio-temporal variability of the more than 13,000 rotations obtained from combining the multi-year CDLs. Furthermore, the accuracy of the crop rotation product compared favorably with total state-wide planted crop area available from agricultural census data. The RECRUIT derived crop rotation product was used to detect land-use conversion from grassland to crop cultivation in a wetland dominated part of the US Midwest. Monoculture corn and monoculture soybean cropping were found to comprise the dominant land-use on the newly cultivated lands.

  17. Irrigation modeling with AquaCrop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AquaCrop is a crop water productivity model developed by the Land and Water Division of UN-FAO. It simulates yield response to water of herbaceous crops, and is suited to address conditions where water is a key limiting factor in crop production. AquaCrop attempts to balance accuracy, simplicity, an...

  18. Transgenic Crops for Herbicide Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  19. High plains cover crop research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some recent statements have been made about the benefits of growing cover crops in mixtures as compared with single-species plantings of cover crops. Those stated benefits have included greatly reduced water use, enhanced soil microbiological activity, increased biomass productivity, and enhanced wa...

  20. Crop Residue and Soil Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield is greatly influenced by the amount of water that moves from the soil, through the plant, and out into the atmosphere. Winter wheat yield responds linearly to available soil water content at planting (bu/a = 5.56 + 5.34*inches). Therefore, storing precipitation in the soil during non-crop...

  1. Genetic Engineering and Crop Production.

    ERIC Educational Resources Information Center

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  2. Transgenic horticultural crops in Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern biotechnology applications, including genetic engineering, are a powerful tool to complement the conventional methods of crop improvement. Asia currently has three countries cultivating biotech/transgenic crops – China, India, and the Philippines, but only China commercially grows a transgen...

  3. Midwest Cover Crops Field Guide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers who want to prevent soil erosion, improve nutrient cycling, sustain their soils, and protect/maintain the environment have been returning to a very old practice: planting cover crops. Cover crops are effective tools for reducing soil erosion and increasing nutrient recycling on farmlands, ...

  4. Alternative cropping systems for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Research was conducted at the USDA, ARS, Sugarcane Research Unit at Houma, LA to determine the impac...

  5. Double- and relay-cropping oilseed and biomass crops for sustainable energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically and environmentally sustainable bioenergy production requires strategic integration of biofuel crops into modern cropping systems. Double- and relay-cropping can offer a means of increasing production efficiency to boost profits and provide environmental benefits through crop diversific...

  6. Orphan Crops Browser: a bridge between model and orphan crops.

    PubMed

    Kamei, Claire Lessa Alvim; Severing, Edouard I; Dechesne, Annemarie; Furrer, Heleen; Dolstra, Oene; Trindade, Luisa M

    Many important crops have received little attention by the scientific community, either because they are not considered economically important or due to their large and complex genomes. De novo transcriptome assembly, using next-generation sequencing data, is an attractive option for the study of these orphan crops. In spite of the large amount of sequencing data that can be generated, there is currently a lack of tools which can effectively help molecular breeders and biologists to mine this type of information. Our goal was to develop a tool that enables molecular breeders, without extensive bioinformatics knowledge, to efficiently study de novo transcriptome data from any orphan crop (http://www.bioinformatics.nl/denovobrowser/db/species/index). The Orphan Crops Browser has been designed to facilitate the following tasks (1) search and identification of candidate transcripts based on phylogenetic relationships between orthologous sequence data from a set of related species and (2) design specific and degenerate primers for expression studies in the orphan crop of interest. To demonstrate the usability and reliability of the browser, it was used to identify the putative orthologues of 17 known lignin biosynthetic genes from maize and sugarcane in the orphan crop Miscanthus sinensis. Expression studies in miscanthus stem internode tissue differing in maturation were subsequently carried out, to follow the expression of these genes during lignification. Our results showed a negative correlation between lignin content and gene expression. The present data are in agreement with recent findings in maize and other crops, and it is further discussed in this paper.

  7. Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties

    SciTech Connect

    Lobell, D; Field, C; Cahill, K; Bonfils, C

    2006-01-10

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiple climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.

  8. Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem.

    PubMed

    Hu, Guoqing; Liu, Xiao; He, Hongbo; Zhang, Wei; Xie, Hongtu; Wu, Yeye; Cui, Jiehua; Sun, Ci; Zhang, Xudong

    2015-01-01

    In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N). However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009). From the 2nd to 4th year (2010-2012), one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9%) was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%), but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9%) and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile.

  9. Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem

    PubMed Central

    Hu, Guoqing; Liu, Xiao; He, Hongbo; Zhang, Wei; Xie, Hongtu; Wu, Yeye; Cui, Jiehua; Sun, Ci; Zhang, Xudong

    2015-01-01

    In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N). However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009). From the 2nd to 4th year (2010-2012), one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9%) was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%), but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9%) and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile. PMID:26192436

  10. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1975-01-01

    A model was developed for predicting the day 50 percent of the wheat crop is planted in North Dakota. This model incorporates location as an independent variable. The Julian date when 50 percent of the crop was planted for the nine divisions of North Dakota for seven years was regressed on the 49 variables through the step-down multiple regression procedure. This procedure begins with all of the independent variables and sequentially removes variables that are below a predetermined level of significance after each step. The prediction equation was tested on daily data. The accuracy of the model is considered satisfactory for finding the historic dates on which to initiate yield prediction model. Growth prediction models were also developed for spring wheat.

  11. Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas

    NASA Astrophysics Data System (ADS)

    Jeuffroy, M. H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P.

    2013-03-01

    Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas (GHG), originate from soils at a global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes can reduce N fertilizer use, and possibly N2O emissions. Nevertheless, the decomposition of crop organic matter during the crop cycle and residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed rape crops, fertilized or not, in various rotations. A field experiment was conducted over 4 consecutive years to compare the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly due to the site's soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after the pea crop. These results should be confirmed over a wider range of soil types. Nevertheless, they demonstrate the absence of N2O emissions linked to the symbiotic N fixation process, and allow us to estimate the decrease in N2O emissions by 20-25% through including one pea crop in a three-year rotation. On a larger scale, this reduction of GHG emissions at field level has to be added to the decrease due to the reduced production and transport of the N fertilizer not applied to the pea crop.

  12. Increased Productivity of a Cover Crop Mixture Is Not Associated with Enhanced Agroecosystem Services

    PubMed Central

    Smith, Richard G.; Atwood, Lesley W.; Warren, Nicholas D.

    2014-01-01

    Cover crops provide a variety of important agroecological services within cropping systems. Typically these crops are grown as monocultures or simple graminoid-legume bicultures; however, ecological theory and empirical evidence suggest that agroecosystem services could be enhanced by growing cover crops in species-rich mixtures. We examined cover crop productivity, weed suppression, stability, and carryover effects to a subsequent cash crop in an experiment involving a five-species annual cover crop mixture and the component species grown as monocultures in SE New Hampshire, USA in 2011 and 2012. The mean land equivalent ratio (LER) for the mixture exceeded 1.0 in both years, indicating that the mixture over-yielded relative to the monocultures. Despite the apparent over-yielding in the mixture, we observed no enhancement in weed suppression, biomass stability, or productivity of a subsequent oat (Avena sativa L.) cash crop when compared to the best monoculture component crop. These data are some of the first to include application of the LER to an analysis of a cover crop mixture and contribute to the growing literature on the agroecological effects of cover crop diversity in cropping systems. PMID:24847902

  13. Using Imaging Spectrometry to Identify Crops in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Shivers, S.; Roberts, D. A.

    2015-12-01

    With a growing global population, limited resources and a changing climate, understanding and monitoring the distribution of our food and water resources is essential to their sustainability. Regional food yield estimates and water resource accounting are dependent upon accurate agricultural records. Crop mapping provides farmers, managers, and policymakers the information necessary to anticipate annual food supplies and water demands by better understanding the distribution of species. While on the ground crop accounting usually happens yearly at the county level and requires significant time and labor inputs, remote sensing has the potential to map crops and monitor their health over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometers have the capability to produce imagery at high spectral and spatial resolutions, which may allow for differentiation of crops at the field-level scale. In this research 14 crop species and soil were classified in Kern County, California using canonical discriminant analysis (CDA) and Multiple Endmember Spectral Mixture Analysis (MESMA) on airborne visible/infrared imaging spectrometer (AVIRIS) imagery from June 2013. Imagery was then degraded to Landsat spectral resolution and reclassified for comparison. Results with the AVIRIS imagery show an overall accuracy of 69.0% using MESMA and 89.4% using CDA with nine out of fourteen crop species showing user and producer errors under ten percent. Lower accuracy was found for OLI data. This research illustrates great potential for field-level crop mapping with imaging spectrometry.

  14. Hyperspectral mapping of crop and soils for precision agriculture

    NASA Astrophysics Data System (ADS)

    Whiting, Michael L.; Ustin, Susan L.; Zarco-Tejada, Pablo; Palacios-Orueta, Alicia; Vanderbilt, Vern C.

    2006-08-01

    Precision agriculture requires high spectral and spatial resolution imagery for advanced analyses of crop and soil conditions to increase environmental protection and producers' sustainability. GIS models that anticipate crop responses to nutrients, water, and pesticides require high spatial detail to generate application prescription maps. While the added precision of geo-spatial interpolation to field scouting generates improved zone maps and are an improvement over field-wide applications, it is limited in detail due to expense, and lacks the high precision required for pixel level applications. Multi-spectral imagery gives the spatial detail required, but broad band indexes are not sensitive to many variables in the crop and soil environment. Hyperspectral imagery provides both the spatial detail of airborne imagery and spectral resolution for spectroscopic and narrow band analysis techniques developed over recent decades in the laboratory that will advance precise determination of water and bio-physical properties of crops and soils. For several years, we have conducted remote sensing investigations to improve cotton production through field spectrometer measurements, and plant and soil samples in commercial fields and crop trials. We have developed spectral analyses techniques for plant and soil conditions through determination of crop water status, effectiveness of pre-harvest defoliant applications, and soil characterizations. We present the most promising of these spectroscopic absorption and narrow band index techniques, and their application to airborne hyperspectral imagery in mapping the variability in crops and soils.

  15. Temporal and spatial control of gene expression in horticultural crops

    PubMed Central

    Dutt, Manjul; Dhekney, Sadanand A; Soriano, Leonardo; Kandel, Raju; Grosser, Jude W

    2014-01-01

    Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement. PMID:26504550

  16. Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence.

    PubMed

    Sainju, Upendra M; Allen, Brett L; Caesar-TonThat, Thecan; Lenssen, Andrew W

    2015-01-01

    Information on the effect of long-term management on soil nutrients and chemical properties is scanty. We examined the 30-year effect of tillage frequency and cropping sequence combination on dryland soil Olsen-P, K, Ca, Mg, Na, SO4-S, and Zn concentrations, pH, electrical conductivity (EC), and cation exchange capacity (CEC) at the 0-120 cm depth and annualized crop yield in the northern Great Plains, USA. Treatments were no-till continuous spring wheat (Triticum aestivum L.) (NTCW), spring till continuous spring wheat (STCW), fall and spring till continuous spring wheat (FSTCW), fall and spring till spring wheat-barley (Hordeum vulgare L., 1984-1999) followed by spring wheat-pea (Pisum sativum L., 2000-2013) (FSTW-B/P), and spring till spring wheat-fallow (STW-F, traditional system). At 0-7.5 cm, P, K, Zn, Na, and CEC were 23-60% were greater, but pH, buffer pH, and Ca were 6-31% lower in NTCW, STCW, and FSTW-B/P than STW-F. At 7.5-15 cm, K was 23-52% greater, but pH, buffer pH, and Mg were 3-21% lower in NTCW, STCW, FSTCW, FSTW-B/P than STW-F. At 60-120 cm, soil chemical properties varied with treatments. Annualized crop yield was 23-30% lower in STW-F than the other treatments. Continuous N fertilization probably reduced soil pH, Ca, and Mg, but greater crop residue returned to the soil increased P, K, Na, Zn, and CEC in NTCW and STCW compared to STW-F. Reduced tillage with continuous cropping may be adopted for maintaining long-term soil fertility and crop yields compared with the traditional system.

  17. VegScape: U.S. Crop Condition Monitoring Service

    NASA Astrophysics Data System (ADS)

    mueller, R.; Yang, Z.; Di, L.

    2013-12-01

    Since 1995, the US Department of Agriculture (USDA)/National Agricultural Statistics Service (NASS) has provided qualitative biweekly vegetation condition indices to USDA policymakers and the public on a weekly basis during the growing season. Vegetation indices have proven useful for assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. With growing emphasis on more extreme weather events and food security issues rising to the forefront of national interest, a new vegetation condition monitoring system was developed. The new vegetation condition portal named VegScape was initiated at the start of the 2013 growing season. VegScape delivers web mapping service based interactive vegetation indices. Users can use an interactive map to explore, query and disseminate current crop conditions. Vegetation indices like Normal Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and mean, median, and ratio comparisons to prior years can be constructed for analytical purposes and on-demand crop statistics. The NASA MODIS satellite with 250 meter (15 acres) resolution and thirteen years of data history provides improved spatial and temporal resolutions and delivers improved detailed timely (i.e., daily) crop specific condition and dynamics. VegScape thus provides supplemental information to support NASS' weekly crop reports. VegScape delivers an agricultural cultivated crop mask and the most recent Cropland Data Layer (CDL) product to exploit the agricultural domain and visualize prior years' planted crops. Additionally, the data can be directly exported to Google Earth for web mashups or delivered via web mapping services for uses in other applications. VegScape supports the ethos of data democracy by providing free and open access to digital geospatial data layers using open geospatial standards, thereby supporting transparent and collaborative government

  18. Automatic image cropping for republishing

    NASA Astrophysics Data System (ADS)

    Cheatle, Phil

    2010-02-01

    Image cropping is an important aspect of creating aesthetically pleasing web pages and repurposing content for different web or printed output layouts. Cropping provides both the possibility of improving the composition of the image, and also the ability to change the aspect ratio of the image to suit the layout design needs of different document or web page formats. This paper presents a method for aesthetically cropping images on the basis of their content. Underlying the approach is a novel segmentation-based saliency method which identifies some regions as "distractions", as an alternative to the conventional "foreground" and "background" classifications. Distractions are a particular problem with typical consumer photos found on social networking websites such as FaceBook, Flickr etc. Automatic cropping is achieved by identifying the main subject area of the image and then using an optimization search to expand this to form an aesthetically pleasing crop. Evaluation of aesthetic functions like auto-crop is difficult as there is no single correct solution. A further contribution of this paper is an automated evaluation method which goes some way towards handling the complexity of aesthetic assessment. This allows crop algorithms to be easily evaluated against a large test set.

  19. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  20. Nutrient biofortification of food crops.

    PubMed

    Hirschi, Kendal D

    2009-01-01

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, but the advances in molecular biology are rapidly being exploited to engineer crops with enhanced key nutrients. Nutritional targets include elevated mineral content, improved fatty acid composition, increased amino acid levels, and heightened antioxidant levels. Unfortunately, in many cases the benefits of these "biofortified" crops to human nutrition have not been demonstrated.

  1. Dealing with frost damage and climate change in tree fruit crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Each year, the U.S. produces about 15 million tons of deciduous fruit crops that have a combined value of >$10 billion. Unpredictable cold damage to these nutritionally important crops is a major threat to industry profitability. Over the last six years, cold damage has accounted for almost half o...

  2. Technical performance of some commercial glyphosate-resistant crops.

    PubMed

    Pline-Srnic, Wendy

    2005-03-01

    Glyphosate-resistant (GR) crops have been sold commercially in the USA since 1996. The use of glyphosate alone or with conventional pre- and post-emergence herbicides with different modes of action gives growers many options for affordable, safe, easy, effective wide-spectrum weed control. Despite the overwhelming popularity of this technology, technical issues have surfaced from time to time as US growers adopt these crops for use on their farms. The types of concern raised by growers vary from year to year depending on the crop and the environment, but include perceptions of increased sensitivity to diseases, increased fruit abortion, reduced pollination efficiency, increased sensitivity to environmental stress, and differences in yield and agronomic characteristics between transgenic and sister conventional varieties. Although several glyphosate-resistant crops are commercially available, maize, soybean and cotton constitute the largest cultivated acreage and have likewise been associated with the highest number of technical concerns. Because glyphosate is rapidly translocated to and accumulates in metabolic sink tissues, reproductive tissues and roots are particularly vulnerable. Increased sensitivity to glyphosate in reproductive tissues has been documented in both glyphosate-resistant cotton and maize, and results in reduced pollen production and viability, or increased fruit abortion. Glyphosate treatments have the potential to affect relationships between the GR crop, plant pathogens, plant pests and symbiotic micro-organisms, although management practices can also have a large impact. Despite these potential technical concerns, this technology remains popular, and is a highly useful tool for weed control in modern crop production.

  3. Regional climate change mitigation with crops: context and assessment.

    PubMed

    Singarayer, J S; Davies-Barnard, T

    2012-09-13

    The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.

  4. The Genetics of Nitrogen Use Efficiency in Crop Plants.

    PubMed

    Han, Mei; Okamoto, Mamoru; Beatty, Perrin H; Rothstein, Steven J; Good, Allen G

    2015-01-01

    In the past 50 years, the application of synthetic nitrogen (N) fertilizer to farmland resulted in a dramatic increase in crop yields but with considerable negative impacts on the environment. New solutions are therefore needed to simultaneously increase yields while maintaining, or preferably decreasing, applied N to maximize the nitrogen use efficiency (NUE) of crops. In this review, we outline the definition of NUE, the selection and development of NUE crops, and the factors that interact with NUE. In particular, we emphasize the challenges of developing crop plants with enhanced NUE, using more classical genetic approaches based on utilizing existing allelic variation for NUE traits. The challenges of phenotyping, mapping quantitative trait loci (QTLs), and selecting candidate genes for NUE improvement are described. In addition, we highlight the importance of different factors that lead to changes in the NUE components of nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE).

  5. Small RNA Based Genetic Engineering for Plant Viral Resistance: Application in Crop Protection

    PubMed Central

    Khalid, Annum; Zhang, Qingling; Yasir, Muhammad; Li, Feng

    2017-01-01

    Small RNAs regulate a large set of gene expression in all plants and constitute a natural immunity against viruses. Small RNA based genetic engineering (SRGE) technology had been explored for crop protection against viruses for nearly 30 years. Viral resistance has been developed in diverse crops with SRGE technology and a few viral resistant crops have been approved for commercial release. In this review we summarized the efforts generating viral resistance with SRGE in different crops, analyzed the evolution of the technology, its efficacy in different crops for different viruses and its application status in different crops. The challenge and potential solution for application of SRGE in crop protection are also discussed. PMID:28167936

  6. Regression model estimation of early season crop proportions: North Dakota, some preliminary results

    NASA Technical Reports Server (NTRS)

    Lin, K. K. (Principal Investigator)

    1982-01-01

    To estimate crop proportions early in the season, an approach is proposed based on: use of a regression-based prediction equation to obtain an a priori estimate for specific major crop groups; modification of this estimate using current-year LANDSAT and weather data; and a breakdown of the major crop groups into specific crops by regression models. Results from the development and evaluation of appropriate regression models for the first portion of the proposed approach are presented. The results show that the model predicts 1980 crop proportions very well at both county and crop reporting district levels. In terms of planted acreage, the model underpredicted 9.1 percent of the 1980 published data on planted acreage at the county level. It predicted almost exactly the 1980 published data on planted acreage at the crop reporting district level and overpredicted the planted acreage by just 0.92 percent.

  7. Soil moisture monitoring for crop management

    NASA Astrophysics Data System (ADS)

    Boyd, Dale

    2015-07-01

    The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts

  8. Crop yield gaps in Cameroon.

    PubMed

    Yengoh, Genesis T; Ardö, Jonas

    2014-03-01

    Although food crop yields per hectare have generally been increasing in Cameroon since 1961, the food price crisis of 2008 and the ensuing social unrest and fatalities raised concerns about the country's ability to meet the food needs of its population. This study examines the country's potential for increasing crop yields and food production to meet this food security challenge. Fuzzy set theory is used to develop a biophysical spatial suitability model for different crops, which in turn is employed to ascertain whether crop production is carried out in biophysically suited areas. We use linear regression to examine the trend of yield development over the last half century. On the basis of yield data from experimental stations and farmers' fields we assess the yield gap for major food crops. We find that yields have generally been increasing over the last half century and that agricultural policies can have significant effects on them. To a large extent, food crops are cultivated in areas that are biophysically suited for their cultivation, meaning that the yield gap is not a problem of biophysical suitability. Notwithstanding, there are significantly large yield gaps between actual yields on farmers' farms and maximum attainable yields from research stations. We conclude that agronomy and policies are likely to be the reasons for these large yield gaps. A key challenge to be addressed in closing the yield gaps is that of replenishing and properly managing soil nutrients.

  9. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  10. Modeling olive-crop forecasting in Tunisia

    NASA Astrophysics Data System (ADS)

    Ben Dhiab, Ali; Ben Mimoun, Mehdi; Oteros, Jose; Garcia-Mozo, Herminia; Domínguez-Vilches, Eugenio; Galán, Carmen; Abichou, Mounir; Msallem, Monji

    2016-01-01

    Tunisia is the world's second largest olive oil-producing region after the European Union. This paper reports on the use of models to forecast local olive crops, using data for Tunisia's five main olive-producing areas: Mornag, Jemmel, Menzel Mhiri, Chaal, and Zarzis. Airborne pollen counts were monitored over the period 1993-2011 using a Cour trap. Forecasting models were constructed using agricultural data (harvest size in tonnes of fruit/year) and data for several weather-related and phenoclimatic variables (rainfall, humidity, temperature, Growing Degree Days, and Chilling). Analysis of these data revealed that the amount of airborne pollen emitted over the pollen season as a whole (i.e., the Pollen Index) was the variable most influencing harvest size. Findings for all local models also indicated that the amount, timing, and distribution of rainfall (except during blooming) had a positive impact on final olive harvests. Air temperature also influenced final crop yield in three study provinces (Menzel Mhiri, Chaal, and Zarzis), but with varying consequences: in the model constructed for Chaal, cumulative maximum temperature from budbreak to start of flowering contributed positively to yield; in the Menzel Mhiri model, cumulative average temperatures during fruit development had a positive impact on output; in Zarzis, by contrast, cumulative maximum temperature during the period prior to flowering negatively influenced final crop yield. Data for agricultural and phenoclimatic variables can be used to construct valid models to predict annual variability in local olive-crop yields; here, models displayed an accuracy of 98, 93, 92, 91, and 88 % for Zarzis, Mornag, Jemmel, Chaal, and Menzel Mhiri, respectively.

  11. Evapotranspiration and water use efficiency in maize-soybean crops in the US Midwest

    NASA Astrophysics Data System (ADS)

    Hussain, M. Z.; Hamilton, S. K.; Bhardwaj, A. K.; Basso, B.; Thelen, K.; Robertson, P.

    2015-12-01

    Evapotranspiration from maize and soybean crops is an important component of terrestrial water balance in the US Midwest. In this study we examine water use in continuous maize (corn) vs. maize-soybean rotations, with cover crops planted in some years. From 2010-14, we continuously measured growing season evapotranspiration (ET) based on daily drawdown of soil moisture content using TDR (time-domain reflectometry) probes installed throughout the root zone. Treatments included continuous maize (CM), continuous maize with cover crops (CMC) and maize-soybean rotation with cover crops (MSC), all grown without irrigation in a temperate humid climate (Michigan, USA). Cover crops were planted in the autumn after harvest of the main crop and harvested in spring prior to planting of the next main crop during 2012-2013 (2013) and 2013-2014 (2014). Four study years (2010, 2011, 2013 and 2014) had normal growing season rainfall (568, 555, 445, and 472 mm) while 2012 was an extreme drought season with a growing-season rainfall deficit of ~50% (210 mm below average). Growing season ET in CM, CMC and MSC during years of normal rainfall averaged 517, 433, and 443 mm, respectively, compared to 455, 374 and 304 mm in the 2012 drought year. Cover crop ET was inconsequential to the subsequent main crops due to abundant rainfall in the spring periods; soils held as much water as they could at the transition from cover crops to main crops. Grain yield in years of normal rainfall for CM, CMC and MSC averaged 12.6, 8.4 and 7.8 Mg ha-1, respectively, compared to 4.9, 4.0, and 4.0 Mg ha-1 in the 2012 drought year. Maximum biomass in years of normal rainfall averaged 38, 30 and 21 Mg ha-1 compared to 19, 13, and 13 Mg ha-1 in the drought year. Water use efficiencies, defined as ratio of maximum standing-stock biomass to growing season evapotranspiration, were 74, 69, and 47 kg ha-1 mm-1 for CM, CMC and MSC in years of normal rainfall, while values in the drought year were 41, 34 and 46 kg ha

  12. Rice crop monitoring with multitemporal MODIS-Landsat data fusion

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Ru; Chen, Chi-Farn; Son, Nguyen-Thanh

    2014-05-01

    Rice is one of the most important cereal crops in the world and is the major crop in Taiwan. However, it is a challenge because rice fields are generally small and fragmental, while crop mapping requires information of crop phenology associating with the high spatiotemporal resolution of remote-sensing data. This problem can be partially overcome by a spatiotemporal fusion to create a new dataset that has a better spatiotemporal resolution. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imageries were used because MODIS data, which a spatial resolution of land bands of 500 m and temporal resolution of 1-2 days, were able to achieve the phenological information of rice crops at a large region; while Landsat data demonstrate the effectiveness to collectively map small patches of crop fields at the subnational level due to its spatial resolution of 30 m. However, the temporal resolution of Landsat data is lower (16 days), making it difficult to investigate temporal responses of crop phenology from rice fields. The main objective of this study was to take into account of advantages of MODIS and Landsat imageries to generate a synthetic dataset at Landsat spatial resolution and MODIS temporal resolution for rice crop mapping in Taiwan. The methodology comprised five steps: (1) satellite data for 2011 were pre-processed to account for geometric and radiometric correction of MODIS and Landsat data, (2) MODIS-Landsat data fusion using the Spatial Temporal Adaptive Fusion Model (STARFM), (3) construct the smooth time-series Normalized Difference Vegetation Index (NDVI) data using wavelet transform, (4) rice crop classification using phenological information of crop phenology, and (5) accuracy assessment. The data fusion results for day of year (DOY) 153 were compared with the reference Landsat data (DOY 153) indicated a close correlation (R2 = 0.81). The phenology-based classification results compared with the ground reference data

  13. Cropping frequency and area response to climate variability can exceed yield response

    NASA Astrophysics Data System (ADS)

    Cohn, Avery S.; Vanwey, Leah K.; Spera, Stephanie A.; Mustard, John F.

    2016-06-01

    The sensitivity of agricultural output to climate change has often been estimated by modelling crop yields under climate change scenarios or with statistical analysis of the impacts of year-to-year climatic variability on crop yields. However, the area of cropland and the number of crops harvested per growing season (cropping frequency) both also affect agricultural output and both also show sensitivity to climate variability and change. We model the change in agricultural output associated with the response of crop yield, crop frequency and crop area to year-to-year climate variability in Mato Grosso (MT), Brazil, a key agricultural region. Roughly 70% of the change in agricultural output caused by climate was determined by changes in frequency and/or changes in area. Hot and wet conditions were associated with the largest losses and cool and dry conditions with the largest gains. All frequency and area effects had the same sign as total effects, but this was not always the case for yield effects. A focus on yields alone may therefore bias assessments of the vulnerability of agriculture to climate change. Efforts to reduce climate impacts to agriculture should seek to limit production losses not only from crop yield, but also from changes in cropland area and cropping frequency.

  14. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  15. Zinc requirements of tropical legume cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soils are deficient in essential plant nutrients, including zinc (Zn). Using cover crops in cropping systems is an important option to improve soil fertility for sustainable crop production. However, success of cover crops in highly weathered tropical infertile acid soils is greatly influen...

  16. Global crop yield losses from recent warming

    SciTech Connect

    Lobell, D; Field, C

    2006-06-02

    Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach

  17. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.

    2015-03-01

    Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.

  18. Helping crops stand up to salt

    SciTech Connect

    Raeburn, P.

    1985-05-01

    A new approach to the problem of increasing soil salinity is to raise salt-tolerant plants. The search for such plants involves finding new applications for naturally occurring salt-resistant plants (halophytes), using conventional breeding techniques to identify and strengthen crop varieties known to have better-than-average salt tolerance, and applying recombinant DNA methods to introduce salt resistance into existing plants. One promising plant is salicornia, which produces oil high in polyunsaturates at a greater yield than soybeans. Two varieties of atriplex yield as much animal feed as alfalfa and can be harvested several times a year. Seed companies are supporting the research.

  19. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Corporation 7 CFR Part 457 RIN 0563-AC27 Common Crop Insurance Regulations; Extra Long Staple Cotton Crop... Staple Cotton Crop Insurance Provisions to remove all references to the Daily Spot Cotton Quotation and... Cotton Crop Insurance Provisions consistent with the Upland Cotton Crop Insurance Provisions....

  20. [Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation].

    PubMed

    Wu, Jian-qiang; Wang, Yi-xiang; Yang, Yi; Zhu, Ting-ting; Zhu, Xu-dan

    2015-02-01

    Crop trees were selected in a 26-year-old even-aged Cunninghamia lanceolata plantation in Lin' an, and compared in plots that were released and unreleased to examine growth and structure responses for 3 years after thinning. Crop tree release significantly increased the mean increments of diameter and volume of individual tree by 1.30 and 1.25 times relative to trees in control stands, respectively. The increments of diameter and volume of crop trees were significantly higher than those of general trees in thinning plots, crop trees and general trees in control plots, which suggested that the responses from different tree types to crop tree release treatment were different. Crop tree release increased the average distances of crop trees to the nearest neighboring trees, reducing competition among crop trees by about 68.2%. 3-year stand volume increment for thinning stands had no significant difference with that of control stands although the number of trees was only 81.5% of the control. Crop trees in thinned plots with diameters over than 14 cm reached 18.0% over 3 years, compared with 12.0% for trees without thinning, suggesting that crop tree release benefited the larger individual trees. The pattern of tree locations in thinning plots tended to be random, complying with the rule that tree distribution pattern changes with growth. Crop tree release in C. lanceolata plantation not only promoted the stand growth, but also optimized the stand structure, benefiting crop trees sustained rapid growth and larger diameter trees production.

  1. Selecting herbaceous energy crops for the southeast and midwest/lake states

    SciTech Connect

    Cushman, J.H.; Turhollow, A.F.

    1990-01-01

    This paper summarizes an approach to crop selection and development that has evolved through the five years of species screening and selection in the US Department of Energy's Herbaceous Energy Crops Program. The first phase of this program was designed to identify a number of species for development as energy crops for the Southeast and Midwest/Lake States, specifically as feedstocks for the biochemical and thermochemical conversion processes for alcohol fuels now under development. 14 refs., 1 tab.

  2. Network Candidate Genes in Breeding for Drought Tolerant Crops

    PubMed Central

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-01-01

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance. PMID:26193269

  3. Network Candidate Genes in Breeding for Drought Tolerant Crops.

    PubMed

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-07-17

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  4. Impacts of biofuel cultivation on mortality and crop yields

    NASA Astrophysics Data System (ADS)

    Ashworth, K.; Wild, O.; Hewitt, C. N.

    2013-05-01

    Ground-level ozone is a priority air pollutant, causing ~ 22,000 excess deaths per year in Europe, significant reductions in crop yields and loss of biodiversity. It is produced in the troposphere through photochemical reactions involving oxides of nitrogen (NOx) and volatile organic compounds (VOCs). The biosphere is the main source of VOCs, with an estimated 1,150TgCyr-1 (~ 90% of total VOC emissions) released from vegetation globally. Isoprene (2-methyl-1,3-butadiene) is the most significant biogenic VOC in terms of mass (around 500TgCyr-1) and chemical reactivity and plays an important role in the mediation of ground-level ozone concentrations. Concerns about climate change and energy security are driving an aggressive expansion of bioenergy crop production and many of these plant species emit more isoprene than the traditional crops they are replacing. Here we quantify the increases in isoprene emission rates caused by cultivation of 72Mha of biofuel crops in Europe. We then estimate the resultant changes in ground-level ozone concentrations and the impacts on human mortality and crop yields that these could cause. Our study highlights the need to consider more than simple carbon budgets when considering the cultivation of biofuel feedstock crops for greenhouse-gas mitigation.

  5. Trends in global approvals of biotech crops (1992–2014)

    PubMed Central

    Aldemita, Rhodora R; Reaño, Ian Mari E; Solis, Renando O; Hautea, Randy A

    2015-01-01

    ABSTRACT With the increasing number of genetically modified (GM) events, traits, and crops that are developed to benefit the global population, approval of these technologies for food, feed, cultivation and import in each country may vary depending on needs, demand and trade interest. ISAAA established a GMO Approval Database to document global approvals of biotech crops. GM event name, crops, traits, developer, year of approval for cultivation, food/feed, import, and relevant dossiers were sourced from credible government regulatory websites and biosafety clearinghouses. This paper investigates the trends in GM approvals for food, feed and cultivation based on the number of approving countries, GM crops, events, and traits in the last 23 y (1992–2014), rationale for approval, factors influencing approvals, and their implications in GM crop adoption. Results show that in 2014, there was an accumulative increase in the number of countries granting approvals at 29 (79% developing countries) for commercial cultivation and 31 (70% developing countries) for food and 19 (80% developing developing) for feed; 2012 had the highest number of approving countries and cultivation approvals; 2011 had the highest number of country approvals for feed, and 2014 for food approvals. Herbicide tolerance trait had the highest events approved, followed by insect tolerance traits. Approvals for food product quality increased in the second decade. Maize had the highest number of events approved (single and stacked traits), and stacked traits product gradually increased which is already 30% of the total trait approvals. These results may indicate understanding and acceptance of countries to enhance regulatory capability to be able to benefit from GM crop commercialization. Hence, the paper provided information on the trends on the growth of the GM crop industry in the last 23 y which may be vital in predicting future GM crops and traits. PMID:26039675

  6. Trends in global approvals of biotech crops (1992-2014).

    PubMed

    Aldemita, Rhodora R; Reaño, Ian Mari E; Solis, Renando O; Hautea, Randy A

    2015-01-01

    With the increasing number of genetically modified (GM) events, traits, and crops that are developed to benefit the global population, approval of these technologies for food, feed, cultivation and import in each country may vary depending on needs, demand and trade interest. ISAAA established a GMO Approval Database to document global approvals of biotech crops. GM event name, crops, traits, developer, year of approval for cultivation, food/feed, import, and relevant dossiers were sourced from credible government regulatory websites and biosafety clearinghouses. This paper investigates the trends in GM approvals for food, feed and cultivation based on the number of approving countries, GM crops, events, and traits in the last 23 y (1992-2014), rationale for approval, factors influencing approvals, and their implications in GM crop adoption. Results show that in 2014, there was an accumulative increase in the number of countries granting approvals at 29 (79% developing countries) for commercial cultivation and 31 (70% developing countries) for food and 19 (80% developing developing) for feed; 2012 had the highest number of approving countries and cultivation approvals; 2011 had the highest number of country approvals for feed, and 2014 for food approvals. Herbicide tolerance trait had the highest events approved, followed by insect tolerance traits. Approvals for food product quality increased in the second decade. Maize had the highest number of events approved (single and stacked traits), and stacked traits product gradually increased which is already 30% of the total trait approvals. These results may indicate understanding and acceptance of countries to enhance regulatory capability to be able to benefit from GM crop commercialization. Hence, the paper provided information on the trends on the growth of the GM crop industry in the last 23 y which may be vital in predicting future GM crops and traits.

  7. Selection of herbaceous energy crops for the western corn belt

    SciTech Connect

    Anderson, I.C.; Buxton, D.R.; Hallam, J.A.

    1994-05-01

    The ultimate economic feasibility of biomass depends on its cost of production and on the cost of competing fuels. The purpose of this research project is to evaluate the production costs of several combinations of species and management systems for producing herbaceous biomass for energy use in Iowa. Herbaceous biomass production systems have costs similar to other crop production systems, such as corn, soybean, and forages. Thus, the factors influencing the costs of producing dedicated biomass energy crops include technological factors such as the cultivation system, species, treatments, soil type, and site and economic factors such as input prices and use of fixed resources. In order to investigate how these production alternatives are influenced by soil resources, and climate conditions, two locations in Iowa, Ames and Chariton, with different soil types and slightly different weather patterns were selected for both the agronomic and economic analyses. Nine crops in thirteen cropping systems were grown at the two sites for five years, from 1988 to 1992. Some of the systems had multiple cropping or interplanting, using combinations of cool-season species and warm-season species, in order to meet multiple objectives of maximum biomass, minimal soil loss, reduced nitrogen fertilization or diminished pesticide inputs. Six of the systems use continuous monocropping of herbaceous crops with an emphasis on production. The seven other systems consist of similar crops, but with crop rotation and soil conservation considerations. While the erosion and other off-site effects of these systems is an important consideration in their overall evaluation, this report will concentrate on direct production costs only.

  8. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  9. Crop phenology feedback on climate over central US in a regional climate model

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Takle, E.; Xue, L.; Segal, M.

    2004-12-01

    The moisture and CO2 fluxes over cropland represent local climate forcing and an important component of atmospheric energy and CO2 budgets. Since observed fluxes, especially for CO2, are rarely available over extensive areas the fluxes are mainly estimated by climate models. The carbon sequestration and water consumption by crops are only crudely represented in the models. For example, most climate models use climatological or static crop growth and development that do not change from year to year, indistinguishable between flood and drought years. To improve the moisture and CO2 fluxes (i.e., photosynthesis) from crops we coupled crop models (CERES for corn and CropGro for soybean) with the regional model (MM5) along with the land surface model (LSM). This crop-climate coupled model with interactive crop phenology can simulate interannual variations in CO2 and water fluxes from the surface. The coupled model was used to simulate CO2 and moisture fluxes in the past couple of growing seasons in the central U.S. Results were compared with available CO2 flux observations at some AmeriFlux sites. It is found that the coupled model gives more realistic seasonal accumulation of CO2 fluxes and that the dynamic crop development in the coupled model has a strong feedback on regional precipitation. The typical climate models using static crop phenology significantly overestimate CO2 fluxes during early growing season because of positive biases in specifying leaf area index.

  10. The extraction of multiple cropping index of China based on NDVI time-series

    NASA Astrophysics Data System (ADS)

    Huang, Haitao; Gao, Zhiqiang

    2011-09-01

    Multiple cropping index reflects the intensity of arable land been used by a certain planting system. The bond between multiple cropping index and NDVI time-series is the crop cycle rule, which determines the crop process of seeding, jointing, tasseling, ripeness and harvesting and so on. The cycle rule can be retrieved by NDVI time-series for that peaks and valleys on the time-series curve correspond to different periods of crop growth. In this paper, we aim to extract the multiple cropping index of China from NDVI time-series. Because of cloud contamination, some NDVI values are depressed. MVC (Maximum Value Composite) synthesis is used to SPOT-VGT data to remove the noise, but this method doesn't work sufficiently. In order to accurately extract the multiple cropping index, the algorithm HANTS (Harmonic Analysis of Time Series) is employed to remove the cloud contamination. The reconstructed NDVI time-series can explicitly characterize the biophysical process of planting, seedling, elongating, heading, harvesting of crops. Based on the reconstructed curve, we calculate the multiple cropping index of arable land by extracting the number of peaks of the curve for that one peak represents one season crop. This paper presents a method to extracting the multiple cropping index from remote sensing image and then the multiple cropping index of China is extracted from VEGETATION decadal composites NDVI time series of year 2000 and 2009. From the processed data, we can get the spatial distribution of tillage system of China, and then further discussion about cropping index change between the 10 years is conducted.

  11. Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe

    NASA Astrophysics Data System (ADS)

    Webber, Heidi; Gaiser, Thomas; Oomen, Roelof; Teixeira, Edmar; Zhao, Gang; Wallach, Daniel; Zimmermann, Andrea; Ewert, Frank

    2016-07-01

    While crop models are widely used to assess the change in crop productivity with climate change, their skill in assessing irrigation water demand or the risk of crop failure in large area impact assessments is relatively unknown. The objective of this study is to investigate which aspects of modeling crop water use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance and root growth) contributes most to the variability in estimates of maize crop water use and the risk of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe. The SIMPLACE crop modeling framework was used to couple the LINTUL5 crop model in factorial combinations of 2-3 different approaches for simulating the 5 aspects of crop water use, resulting in 51 modeling approaches. Using experiments in France and New Zeland, analysis of total sensitivity revealed that ET0 explained the most variability in both irrigated maize water use and rainfed grain yield levels, with soil evaporation also imporatant in the French experiment. In the European impact study, net irrigation requirement differed by 36% between the Penman and Hargreaves ET0 methods in the baseline period. Average EU grain yields were similar between models, but differences approached 1-2 tonnes in parts of France and Southern Europe. EU wide esimates of crop failure in the historical period ranged between 5.4 years for Priestley-Taylor to every 7.9 years for the Penman ET0 methods. While the uncertainty in absolute values between models was significant, estimates of relative changes were similar between models, confirming the utility of crop models in assessing climate change impacts. If ET0 estimates in crop models can be improved, through the use of appropriate methods, uncertainty in irrigation water demand as well as in yield estimates under drought can be reduced.

  12. Integrated forage crop refinery system

    SciTech Connect

    Barrier, J.W.; Broder, J.D.; Madewell, C.E.; Mays, D.A.

    1985-04-01

    The proposed program involves the development of an integrated agricultural-chemical refining system for converting forage crops to useful foods, feeds, fuels, and chemicals. TVA has facilities and resources available to support extensive research and development activities. Modification can easily be made in the existing experimental facility being used to develop acid hydrolysis of corn stover, to include production of products other than fuel ethanol from forages. These products include protein, lignin-derived products, chemicals, single-cell protein, methane, aquaculture feed, and distillers solids. Refining forage crops in this manner has potential to increase the value of that crop and produce an economical integrated system. The results of the program will also be directly applicable to other areas and regions of the US. 11 refs., 7 figs., 9 tabs.

  13. Crop identification using ERTS imagery

    NASA Technical Reports Server (NTRS)

    Horton, M. L.; Heilman, J. L.

    1973-01-01

    Digital analysis of August 15 ERTS-I imagery for southeastern South Dakota was performed to determine the feasibility of conducting crop surveys from satellites. Selected areas of bands 4, 5, 6, and 7 positive transparencies were converted to digital form utilizing Signal Analysis and Dissemination Equipment (SADE). The optical transmission values were printed out in a spatial format. Visual analysis of the printouts indicated that cultivated areas were readily distinguished from non-cultivated areas in all four bands. Bare soil was easily recognized in all four bands. Corn and soybeans, the two major crops in the area, were treated as separate classes rather than as a single class called row crops. Bands 6 and 7 provided good results in distinguishing between corn and soybeans.

  14. A Comparative Analysis of Global Cropping Systems Models and Maps

    NASA Astrophysics Data System (ADS)

    Anderson, W. B.; You, L.; Wood, S.; Wood-Sichra, U.; Wu, W.

    2013-12-01

    Agricultural practices have dramatically altered the land cover of the Earth, but the spatial extent and intensity of these practices is often difficult to catalogue. Cropland accounts for nearly 15 million km2 of the Earth's land cover - amounting to 12% of the Earth's ice-free land surface - yet information on the distribution and performance of specific crops is often available only through national or sub-national statistics. While remote sensing products offer spatially disaggregated information, those currently available on a global scale are ill-suited for many applications due to the limited separation of crop types within the area classified as cropland. Recently, however, there have been multiple independent efforts to incorporate the detailed information available from statistical surveys with supplemental spatial information to produce a spatially explicit global dataset specific to individual cropss for the year 2000. While these datasets provide analysts and decision makers with improved information on global cropping systems, the final global cropping maps differ from one another substantially. This study aims to explore and quantify systematic similarities and differences between four major global cropping systems products: the monthly irrigated and rainfed crop areas around the year 2000 (MIRAC2000) dataset, the spatial production allocation model (SPAM), the global agro-ecological zone (GAEZ) dataset, and the dataset developed by Monfreda et al., 2008. The analysis explores not only the final cropping systems maps but also the interdependencies of each product, methodological differences and modeling assumptions, which will provide users with information vital for discerning between datasets in selecting a product appropriate for each intended application.

  15. Climate impacts on agriculture: Implications for crop production

    SciTech Connect

    Hatfield, Jerry L.; Boote, Kenneth J.; Kimball, B. A.; Ziska, Lewis A.; Izaurralde, Roberto C.; Ort, Don; Thomson, Allison M.; Wolfe, David W.

    2011-04-19

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 years present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency; however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population.

  16. [Fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato].

    PubMed

    Meng, Pin-Pin; Liu, Xing; Qiu, Hui-Zhen; Zhang, Wen-Ming; Zhang, Chun-Hong; Wang, Di; Zhang, Jun-Lian; Shen, Qi-Rong

    2012-11-01

    Continuous cropping obstacle is one of the main restriction factors in potato industry. In order to explore the mechanisms of potato's continuous cropping obstacle and to reduce the impact on potato's tuber yield, a field experiment combined with PCR-DGGE molecular fingerprinting was conducted to investigate the fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato. With the increasing year of potato' s continuous cropping, the numbers of visible bands in rhizosphere fungal DGGE profiles increased obviously. As compared with that of CK (rotation cropping), the operational taxonomic unit (OTU) in treatments of one to five years continuous cropping was increased by 38.5%, 38.5%, 30.8%, 46.2%, and 76.9% respectively, indicating that potato's continuous cropping caused an obvious increase in the individual numbers of dominant fungal populations in rhizosphere soil. Also with the increasing year of potato's continuous cropping, the similarity of the fungal population structure among the treatments had a gradual decrease. The sequencing of the fungal DGGE bands showed that with the increasing year of continuous cropping, the numbers of the potato's rhizosphere soil-borne pathogens Fusarium oxysporum and F. solani increased obviously, while the number of Chaetomium globosum, as a biocontrol species, had a marked decrease in the fifth year of continuous cropping. It was suggested that potato' s continuous cropping caused the pathogen fungal populations become the dominant microbial populations in rhizosphere soil, and the rhizosphere micro-ecological environment deteriorated, which in turn affected the root system, making the root vigor and its absorption area reduced, and ultimately, the tuber yield decreased markedly.

  17. Simulation of crop evapotranspiration and crop coefficient with data in weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  18. Simulating crop growth with Expert-N-GECROS under different site conditions in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Poyda, Arne; Ingwersen, Joachim; Demyan, Scott; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    When feedbacks between the land surface and the atmosphere are investigated by Atmosphere-Land surface-Crop-Models (ALCM) it is fundamental to accurately simulate crop growth dynamics as plants directly influence the energy partitioning at the plant-atmosphere interface. To study both the response and the effect of intensive agricultural crop production systems on regional climate change in Southwest Germany, the crop growth model GECROS (YIN & VAN LAAR, 2005) was calibrated based on multi-year field data from typical crop rotations in the Kraichgau and Swabian Alb regions. Additionally, the SOC (soil organic carbon) model DAISY (MÜLLER et al., 1998) was implemented in the Expert-N model tool (ENGEL & PRIESACK, 1993) and combined with GECROS. The model was calibrated based on a set of plant (BBCH, LAI, plant height, aboveground biomass, N content of biomass) and weather data for the years 2010 - 2013 and validated with the data of 2014. As GECROS adjusts the root-shoot partitioning in response to external conditions (water, nitrogen, CO2), it is suitable to simulate crop growth dynamics under changing climate conditions and potentially more frequent stress situations. As C and N pools and turnover rates in soil as well as preceding crop effects were expected to considerably influence crop growth, the model was run in a multi-year, dynamic way. Crop residues and soil mineral N (nitrate, ammonium) available for the subsequent crop were accounted for. The model simulates growth dynamics of winter wheat, winter rape, silage maize and summer barley at the Kraichgau and Swabian Alb sites well. The Expert-N-GECROS model is currently parameterized for crops with potentially increasing shares in future crop rotations. First results will be shown.

  19. Can crops tolerate acid rain

    SciTech Connect

    Kaplan, J.K.

    1989-11-01

    This brief article describes work by scientists at the ARS Air Quality-Plant Growth and Development Laboratory in Raleigh, North Carolina, that indicates little damage to crops as a result of acid rain. In studies with simulated acid rain and 216 exposed varieties of 18 crops, there were no significant injuries nor was there reduced growth in most species. Results of chronic and acute exposures were correlated in sensitive tomato and soybean plants and in tolerant winter wheat and lettuce plants. These results suggest that 1-hour exposures could be used in the future to screen varieties for sensitivity to acid rain.

  20. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  1. Microwave emission and crop residues

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1991-01-01

    A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.

  2. Study on extraction of crop information using time-series MODIS data in the Chao Phraya Basin of Thailand

    NASA Astrophysics Data System (ADS)

    Tingting, Lv; Chuang, Liu

    2010-03-01

    In order to acquire the crop-related information in Chao Phraya Basin, time-series MODIS data were used in this paper. Although the spatial resolution of MODIS data is not very high, it is still useful for detecting very large-scale phenomenon, such as changes in seasonal vegetation patterns. After the data processing a general crop-related LULC (land use and land cover) map, cropping intensity map and cropping patterns map were produced. Analysis of these maps showed that the main land use type in the study area was farmland, most of which was dominated by rice. Rice fields mostly concentrated in the flood plains and double or triple rice-cropping system was commonly employed in this area. Maize, cassava, sugarcane and other upland crops were mainly distributed in the high alluvial terraces. Because these area often have water shortage problem particularly in the dry season which can support only one crop in a year, the cropping intensity was very low. However, some upland areas can be cultivated twice a year with crops which have short growing seasons. The crop information extracted from MODIS data sets were assessed by CBERS data, statistic data and so on. It was shown that MODIS derived crop information coincided well with the statistic data at the provincial level. At the same time, crop information extracted by MODIS data sets and CBERS were compared with each other which also showed similar spatial patterns.

  3. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest

    PubMed Central

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut

  4. Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective.

    PubMed

    Kleter, Gijs A; Bhula, Raj; Bodnaruk, Kevin; Carazo, Elizabeth; Felsot, Allan S; Harris, Caroline A; Katayama, Arata; Kuiper, Harry A; Racke, Kenneth D; Rubin, Baruch; Shevah, Yehuda; Stephenson, Gerald R; Tanaka, Keiji; Unsworth, John; Wauchope, R Donald; Wong, Sue-Sun

    2007-11-01

    The large-scale commercial cultivation of transgenic crops has undergone a steady increase since their introduction 10 years ago. Most of these crops bear introduced traits that are of agronomic importance, such as herbicide or insect resistance. These traits are likely to impact upon the use of pesticides on these crops, as well as the pesticide market as a whole. Organizations like USDA-ERS and NCFAP monitor the changes in crop pest management associated with the adoption of transgenic crops. As part of an IUPAC project on this topic, recent data are reviewed regarding the alterations in pesticide use that have been observed in practice. Most results indicate a decrease in the amounts of active ingredients applied to transgenic crops compared with conventional crops. In addition, a generic environmental indicator -- the environmental impact quotient (EIQ) -- has been applied by these authors and others to estimate the environmental consequences of the altered pesticide use on transgenic crops. The results show that the predicted environmental impact decreases in transgenic crops. With the advent of new types of agronomic trait and crops that have been genetically modified, it is useful to take also their potential environmental impacts into account.

  5. Crop Frequency Mapping for Land Use Intensity Estimation During Three Decades

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Tindall, Dan

    2016-08-01

    Crop extent and frequency maps are an important input to inform the debate around land value and competitive land uses, food security and sustainability of agricultural practices. Such spatial datasets are likely to support decisions on natural resource management, planning and policy. The complete Landsat Time Series (LTS) archive for 23 Landsat footprints in western Queensland from 1987 to 2015 was used in a multi-temporal mapping approach. Spatial, spectral and temporal information were combined in multiple crop-modelling steps, supported by on ground training data sampled across space and time for the classes Crop and No-Crop. Temporal information within summer and winter growing seasons for each year were summarised, and combined with various vegetation indices and band ratios computed from a mid-season spectral-composite image. All available temporal information was spatially aggregated to the scale of image segments in the mid- season composite for each growing season and used to train a random forest classifier for a Crop and No- Crop classification. Validation revealed that the predictive accuracy varied by growing season and region to be within k = 0.88 to 0.97 and are thus suitable for mapping current and historic cropping activity. Crop frequency maps were produced for all regions at different time intervals. The crop frequency maps were validated separately with a historic crop information time series. Different land use intensities and conversions e.g. from agricultural to pastures are apparent and potential drivers of these conversions are discussed.

  6. Crop Identification Technolgy Assessment for Remote Sensing (CITARS). Volume 1: Task design plan

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Bizzell, R. M.

    1975-01-01

    A plan for quantifying the crop identification performances resulting from the remote identification of corn, soybeans, and wheat is described. Steps for the conversion of multispectral data tapes to classification results are specified. The crop identification performances resulting from the use of several basic types of automatic data processing techniques are compared and examined for significant differences. The techniques are evaluated also for changes in geographic location, time of the year, management practices, and other physical factors. The results of the Crop Identification Technology Assessment for Remote Sensing task will be applied extensively in the Large Area Crop Inventory Experiment.

  7. Greenhouse Gas Emissions Associated With Establishing Energy Crops

    NASA Astrophysics Data System (ADS)

    NiChonchubhair, Orlaith; Osborne, Bruce; Krol, Dominika; Williams, Mike; Jones, Mike; Lanigan, Gary

    2013-04-01

    Land-use change to biomass crop production can contribute towards meeting both national and international renewable energy and emissions targets. As a carbon-neutral fuel stock, these crops have the capacity to mitigate GHG emissions through the substitution of fossil fuels. However, studies have also provided evidence of carbon sequestration in vegetative and soil reservoirs in these ecosystems. Realisation of this mitigation potential is, however, dependent on suitable crop selection and thorough assessment of the emissions and sinks associated with biomass crop cultivation. The aim of this research was to assess the GHG implications of land-use change to biomass crops by quantifying carbon dioxide (CO2) and nitrous oxide (N2O) emissions both during the initial land conversion phase and in the newly-established plantations. Field-scale stands of Miscanthus × giganteus and Reed Canary Grass (RCG; Phalaris arundinacea) were established on land previously under permanent pasture in 2009 and 2010 respectively in the south-east of Ireland. CO2 uptake and release was measured at the ecosystem scale by two open path eddy covariance systems, while N2O fluxes before and after cultivation were sampled using the static chamber technique. Short-term tillage-induced carbon emissions were found to be high immediately after ploughing but transient in nature, reducing to background levels within a matter of hours. Results suggest that longer term losses could be limited to approximately 2 t CO2 ha-1 provided the fallow period is minimised. A more sustained release of N2O was observed after soil cultivation, resulting from increased availability of organic N for mineralisation by soil microbes. Development was initially slow in the Miscanthus stand, however by the third year, the crop had begun to mature and had switched from a net GHG source in the first year of establishment to a net sink of over 10 t CO2 ha-1 yr-1. More rapid establishment of RCG facilitated the development

  8. Topsoil Depth Effects on Crop Yields as Affected by Weather

    NASA Astrophysics Data System (ADS)

    Lee, Scott; Cruse, Richard

    2015-04-01

    Topsoil (A-horizon) depth is positively correlated with crop productivity; crop roots and available nutrients are concentrated in this layer; topsoil is critical for nutrient retention and water holding capacity. Its loss or reduction can be considered an irreversible impact of soil erosion. Climatic factors such as precipitation and temperature extremes that impose production stress further complicate the relationship between soil erosion and crop productivity. The primary research objective was to determine the effects of soil erosion on corn and soybean yields of loess and till-derived soils in the rain-fed farming region of Iowa. Data collection took place from 2007 to 2012 at seven farm sites located in different major soil regions. Collection consisted of 40 to 50 randomly selected georeferenced soil probe locations across varying erosion classes in well drained landscape positions. Soil probes were done to a minimum depth of 100 cm and soil organic carbon samples were obtained in the top 10 cm. Crop yields were determined utilizing georeferenced harvest maps from yield monitoring devices and cross referenced with georeferenced field data points. Data analysis targeted relationships between crop yields versus soil organic carbon contents (SOC) and crop yields versus topsoil depths (TSD). The variation of yield and growing season rainfall across multiple years were also evaluated to provide an indication of soil resiliency associated with topsoil depth and soil organic carbon levels across varying climatic conditions. Results varied between sites but generally indicated a greater yield potential at thicker TSD's and higher SOC concentrations; an annual variation in yield response as a function of precipitation amount during the growing season; largest yield responses to both TSD and SOC occurred in the driest study year (2012); and little to no significant yield responses to TSD occurred during the wettest study year (2010). These results were not

  9. Bumper transgenic plant crop

    SciTech Connect

    Moffat, A.S.

    1991-07-05

    Although it may seem hard to believe, it's been almost 10 years since researchers showed that they could use gene transfer technology on plants. Since then the plant genetic engineers have taken great strides. With several dozen field trials already under way, they may soon achieve their original goal - the development of high-yielding plant varieties with enhanced resistance to herbicides, disease, or insects. So now the researchers are branching out, beginning to design plants with improved consumer appeal, such as tomatoes that hold up better to freezing, as well as creating plants that can serve as factories for pharmaceuticals and industrial oils, just as researchers are now attempting to use pigs to make human hemoglobin. Some of the plant varieties being developed include: tobacco plants, soybeans, tomatoes, and dry, navy and green beans.

  10. Soil quality differences in a mature alley cropping system in temperate North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alley cropping in agroforestry practices has been shown to improve soil quality, however information on long-term effects (>10 years) of alley cropping on soils in the temperate zone is very limited. The objective of this study was to examine effects of management, landscape, and soil depth on soil...

  11. Effect of Seeding Rate and Planting Arrangement on Rye Cover Crop and Weed Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed growth in winter cover crops in warm climates may contribute to weed management costs in subsequent crops. A two year experiment was conducted on an organic vegetable farm in Salinas, California, to determine the impact of seeding rate and planting arrangement on rye (Secale cereale L. cv. Merc...

  12. Soil and rainfall factors influencing yields of a dryland cropping system in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The semi-arid Great Plains of the United States experience a large variation in crop yields due to variability in rainfall, soil, and other factors. We analyzed crop yields (24-year period) from a no-till rotation of wheat(Triticum aestivum)-corn (Zea mays L.) or sorghum[Sorghum bicolor (L.) Moench]...

  13. Changes of crop rotation in Iowa determined from the USDA-NASS cropland data layer product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotation is one of the important decisions made independently by numerous farm managers, and is a critical variable in models of crop growth and soil carbon. By combining multiple years (2001-2009) of the USDA National Agricultural Statistics Service (NASS) cropland data layer (CDL), it is pos...

  14. The Bushland weighing lysimeters: A quarter century of crop ET investigations to advance sustainable irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1987-1989, the first irrigated crops were grown on the four large, precision weighing lysimeters at the USDA-ARS Laboratory at Bushland, Texas, on the Southern High Plains (SHP). Thus began >25-years of full- and deficit-irrigated crop growth, energy and water balance, evapotranspiration (ET), yi...

  15. The Bushland weighing lysimeters: A quarter century of crop ET investigations to advance sustainable irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1987-1989, the first irrigated crops were grown on the four large, precision weighing lysimeters at the USDA-ARS Conservation & Production Laboratory on the Southern High Plains (SHP) at Bushland, Texas. Thus began >25-years of full- and deficit-irrigated crop growth, energy and water balance, ev...

  16. Crop species diversity changes in the United States: 1978-2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which is collected on 5-year intervals, we qua...

  17. Soil nitrate and forage yields of corn grown with clover or grass companion crops and manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few studies have compared the agronomic performance of cover crop and living mulch systems for no-till silage corn (Zea mays L.). In a four-year Wisconsin study, we compared soil nitrate levels, dry matter yields (DMY) and crude protein yields (CPY) from five such corn-companion crop systems amended...

  18. Soil pH and exchangeable cation responses to tillage and fertilizer in dryland cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term use of nitrogen (N) fertilizers can lead to soil acidification and other chemical changes that can lower fertility. Here, we present near-surface (0-7.6 cm) soil chemistry data from 16 years of two different crop rotations in the US northern Great Plains: (1) continuous crop (CC; spring w...

  19. Acquisition history simulation for evaluation of Landsat-based crop inventory systems

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Malin, J. T.; Lin, C. C.; Dvorin, M.

    1982-01-01

    This paper describes the development and evaluation of a simulation procedure which produces patterns of Landsat data loss attributable to cloud patterns that are characteristic of a crop region. This simulation procedure is part of a simulation system under development which evaluates the performance of crop inventory system components over a number of years and under a variety of conditions.

  20. Corn and soybean grain yields in a long-term tillage and cropping systems study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports on the long-term effects of tillage and cropping systems on corn and soybean yields are limited. Yields have been measured in a long-term experiment (30+ years) with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage system...

  1. Replacing fallow with cover crops in a semiarid soil: effects on soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replacement of fallow in crop-fallow systems with cover crops (CCs) may improve soil properties. We assessed whether replacing fallow in no-till winter wheat (Triticum aestivum L.)-fallow with winter and spring CCs for five years reduced wind and water erosion, increased soil organic carbon (SOC), a...

  2. US-1136, US-1137, and US-1138 Cowpea Germplasm Lines for Use as a Cover Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adoption of sustainable and organic cultural practices in recent years has resulted in an increased use of cover crops. Cowpea (Vigna unguiculata L.) is an excellent warm season cover crop due to its tolerance of heat and drought stress, ability to grow well in sandy, poor, acidic soils, high b...

  3. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.

    PubMed

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P D; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Ward, Kimiora L; Westphal, Catrin; Potts, Simon G

    2015-06-16

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.

  4. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    PubMed Central

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893

  5. Gene flow from herbicide-resistant crops: it's not just for transgenes.

    PubMed

    Mallory-Smith, Carol A; Sanchez Olguin, Elena

    2011-06-08

    Gene flow was raised as one of the first issues related to the development and release of genetically engineered (GE) crops. Gene flow has remained a topic of discussion for more than 20 years and is still used as an argument against the release of transgenic crops. With respect to herbicide-resistant crops, gene flow does not differ whether the herbicide resistance trait is introduced via genetic engineering or via conventional breeding techniques. Conventional breeding and genetic engineering techniques have been used to produce herbicide resistance in many of the same crop species. In addition, conventional breeding has been used to produce a broader range of herbicide-resistant crops than have been genetically engineered for herbicide resistance. Economic, political, and social concerns center on the breeding technique, but the results of gene flow for weed management are the same irrespective of breeding technique. This paper will focus on gene flow from nonGE herbicide-resistant crops in North America.

  6. Safety assessment of foods from genetically modified crops in countries with developing economies.

    PubMed

    Delaney, Bryan

    2015-12-01

    Population growth particularly in countries with developing economies will result in a need to increase food production by 70% by the year 2050. Biotechnology has been utilized to produce genetically modified (GM) crops for insect and weed control with benefits including increased crop yield and will also be used in emerging countries. A multicomponent safety assessment paradigm has been applied to individual GM crops to determine whether they as safe as foods from non-GM crops. This paper reviews methods to assess the safety of foods from GM crops for safe consumption from the first generation of GM crops. The methods can readily be applied to new products developed within country and this paper will emphasize the concept of data portability; that safety data produced in one geographic location is suitable for safety assessment regardless of where it is utilized.

  7. Cascade effects of crop species richness on the diversity of pest insects and their natural enemies.

    PubMed

    Shi, PeiJian; Hui, Cang; Men, XingYuan; Zhao, ZiHua; Ouyang, Fang; Ge, Feng; Jin, XianShi; Cao, HaiFeng; Li, B Larry

    2014-07-01

    Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology. We explore the effects of crop species richness on the diversity of pest insects and their natural enemies. Using data from a four-year experiment with five levels of crop species richness, we found that crop species richness significantly affected the pest species richness, but there were no significant effects on richness of the pests' natural enemies. In contrast, the species richness of pest insects significantly affected their natural enemies. These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels, while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level. High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops. Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.

  8. How Do We Improve Crop Production in a Warming World?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global analysis of crop yields from 1981-2002, showed a negative response of wheat, maize and barley yields to rising temperature, costing an estimated $5 billion per year. An analysis of maize and soybean production in the northern Corn Belt region of the U.S. found that productivity was adversely ...

  9. Impact of preceding crop on alfalfa competitiveness with weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic producers would like to include no-till practices in their farming systems. We are seeking to develop a continuous no-till system for organic farming, based on a complex rotation that includes a 3-year sequence of alfalfa. In this study, we evaluated impact of preceding crop on weed infest...

  10. Photosynthetic targets for improving crop tolerance to ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone (O3) is an air-born pollutant that has increased in the atmosphere from industrial activities. Current O3 concentrations exceed the threshold for damage to plants, and globally, $14-$26 billion in potential crop productivity is estimated to be lost to O3 stress each year. Sensitivity of C3 cro...

  11. Surprising yields with no-till cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers using no-till practices have observed that crop yields can greatly exceed expectations based on nutrient and water supply. For example, Ralph Holzwarth, who farms near Gettysburg, SD, has averaged 150 bu/ac of corn on his farm for the past 6 years. We were surprised with this yield, as c...

  12. Risk Management of GM Crops

    EPA Science Inventory

    Driven by biofuel demand, a significant increase in GM corn acreage is anticipated for the 2007 growing season with future planted GM corn acreage approaching 80% of the corn crop by 2009. As demand increases, grower non-compliance with mandated planting requirements is likely to...

  13. Sustainability of Switchgrass Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass that is native to the eastern two thirds of temperate North America. It has been used for conservation purposes and as a pasture grass since the 1940’s. It is currently being developed as a cellulosic biomass energy crop because it can produ...

  14. The limits of crop productivity

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce; Monje, Oscar

    1992-01-01

    The component processes that govern yield limits in food crops are reviewed and how each process can be individually measured is described. The processes considered include absorption of photosynthetic radiation by green tissue, carbon-fixation efficiency in photosynthesis, carbon use efficiency in respiration, biomass allocation to edible products, and efficiency of photosynthesis and respiration. The factors limiting yields in optimal environments are considered.

  15. Fruit Crop Pests. MEP 312.

    ERIC Educational Resources Information Center

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…

  16. Vegetable Crop Pests. MEP 311.

    ERIC Educational Resources Information Center

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  17. Crop stubble needs and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers in Australia and elsewhere around the world are being offered opportunities to market their crop residues as a bioenergy feedstock, but many are not aware of how that could affect their soil resources. This report shares information from the USDA-ARS Renewable Energy Assessment Project (REAP...

  18. Using the CLM Crop Model to assess the impacts of changes in Climate, Atmospheric CO2, Irrigation, Fertilizer and Geographic Distribution on Historical and Future Crop Yields

    NASA Astrophysics Data System (ADS)

    Lawrence, P.

    2015-12-01

    Since the start of the green revolution global crop yields have increased linearly for most major cereal crops, so that present day global values are around twice those of the 1960s. The increase in crop yields have allowed for large increases in global agricultural production without correspondingly large increases in cropping area. Future projections under the Shared Socio-economic Pathways (SSP) framework and other assessments result in increases of global crop production of greater than 100% by the year 2050. In order to meet this increased agricultural demand within the available arable land, future production gains need to be understood in terms of the yield changes due to changes in climate, atmospheric CO2, and adaptive management such as irrigation and fertilizer application. In addition to the changes in crop yield, future agricultural demand will need to be met through increasing cropping areas into what are currently marginal lands at the cost of existing forests and other natural ecosystems. In this study we assess the utility of the crop model within the Community Land Model (CLM Crop) to provide both historical and future guidance on changes in crop yields under a range of global idealized crop modeling experiments. The idealized experiments follow the experimental design of the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) in which CLM Crop is a participating model. The idealized experiments consist of global crop simulations for Cotton, Maize, Rice, Soy, Sugarcane, and Wheat under various climate, atmospheric CO2 levels, irrigation prescription, and nitrogen fertilizer application. The time periods simulated for the experiments are for the Historical period (1901 - 2005), and for the two Representative Concentration Pathways of RCP 4.5 and RCP 8.5 (2006 - 2100). Each crop is simulated on all land grid cells globally for each time period with atmospheric forcing that is a combination of: 1. transient climate and CO2; 2. transient climate

  19. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1993-01-01

    During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center.

  20. Water Footprint of crop productions: A review.

    PubMed

    Lovarelli, Daniela; Bacenetti, Jacopo; Fiala, Marco

    2016-04-01

    Water Footprint is an indicator recently developed with the goal of quantifying the virtual content of water in products and/or services. It can also be used to identify the worldwide virtual water trade. Water Footprint is composed of three parts (green, blue and grey waters) that make the assessment complete in accordance with the Water Footprint Network and with the recent ISO14046. The importance of Water Footprint is linked to the need of taking consciousness about water content in products and services and of the achievable changes in productions, diets and market trades. In this study, a literature review has been completed on Water Footprint of agricultural productions. In particular, the focus was paid on crops for the production of food and bioenergy. From the review, the development of the Water Footprint concept emerged: in early studies the main goal was to assess products' water trade on a global scale, while in the subsequent years, the goal was the rigorous quantification of the three components for specific crops and in specific geographical areas. In the most recent assessments, similarities about the methodology and the employed tools emerged. For 96 scientific articles on Water Footprint indicator of agricultural productions, this literature review reports the main results and analyses weaknesses and strengths. Seventy-eight percent of studies aimed to quantify Water Footprint, while the remaining 22% analysed methodology, uncertainty, future trends and comparisons with other footprints. It emerged that most studies that quantified Water Footprint concerned cereals (33%), among which maize and wheat were the most investigated crops. In 46% of studies all the three components were assessed, while in 18% no indication about the subdivision was given; in the remaining 37%, only blue or green and blue components were quantified.

  1. Crop Species Diversity Changes in the United States: 1978–2012

    PubMed Central

    Aguilar, Jonathan; Gramig, Greta G.; Hendrickson, John R.; Archer, David W.; Forcella, Frank; Liebig, Mark A.

    2015-01-01

    Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability. PMID:26308552

  2. Large Area Crop Inventory Experiment (LACIE). Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. The Large Area Crop Inventory Experiment (LACIE), completed June 30, 1978, has met the USDA at-harvest goals (90% accuracy with a 90% confidence level) in the US Great Plains and U.S.S.R. for two consecutive years. In addition, in the U.S.S.R., LACIE indicated a shortfall in the '76-'77 wheat crop about two months prior to harvest, thus demonstrating the capability of LACIE to make accurate preharvest estimates.

  3. The food and environmental safety of Bt crops.

    PubMed

    Koch, Michael S; Ward, Jason M; Levine, Steven L; Baum, James A; Vicini, John L; Hammond, Bruce G

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.

  4. GM crops and the rat digestive tract: a critical review.

    PubMed

    Zdziarski, I M; Edwards, J W; Carman, J A; Haynes, J I

    2014-12-01

    The aim of this review is to examine the relationship between genetically modified (GM) crops and health, based on histopathological investigations of the digestive tract in rats. We reviewed published long-term feeding studies of crops containing one or more of three specific traits: herbicide tolerance via the EPSPS gene and insect resistance via cry1Ab or cry3Bb1 genes. These genes are commonly found in commercialised GM crops. Our search found 21 studies for nine (19%) out of the 47 crops approved for human and/or animal consumption. We could find no studies on the other 38 (81%) approved crops. Fourteen out of the 21 studies (67%) were general health assessments of the GM crop on rat health. Most of these studies (76%) were performed after the crop had been approved for human and/or animal consumption, with half of these being published at least nine years after approval. Our review also discovered an inconsistency in methodology and a lack of defined criteria for outcomes that would be considered toxicologically or pathologically significant. In addition, there was a lack of transparency in the methods and results, which made comparisons between the studies difficult. The evidence reviewed here demonstrates an incomplete picture regarding the toxicity (and safety) of GM products consumed by humans and animals. Therefore, each GM product should be assessed on merit, with appropriate studies performed to indicate the level of safety associated with them. Detailed guidelines should be developed which will allow for the generation of comparable and reproducible studies. This will establish a foundation for evidence-based guidelines, to better determine if GM food is safe for human and animal consumption.

  5. Root crops and their biomass potential in Florida

    SciTech Connect

    O'Hair, S.K.; Locascio, S.J.; Forbes, R.R.; White, J.M.; Hensel, D.R.; Shumaker, J.R.; Dangler, J.M.

    1983-01-01

    Root and tuber crops are of particular interest as biofuel crops because of their ability to concentrate and store fermentables including starch and sugars, in enlarged organs at or below the soil surface. In Florida, harvest index, the storage organ biomass divided by total plant biomass, of sweet potato, fodder beet, cassava and potato has approached 0.80. Chicory, fodder beet, cassava and sweet potato produced a total plant yield of 16.0, 14.1, 11.4 and 11.3 t/ha, respectively. Since the crops vary for time to maturity and storage organ chemical composition, a conventional unit to equate yield differences is kilocalorie (kcal) production/ha/day. Of the warm season crops, sweet potato and cassava roots produced an estimated 32 and 14 x 10/sup 4/ kcal/ha/day, respectively. Chinese radish and rutabaga roots produced 18 and 17 x 10/sup 4/ kcal/ha/day. Thus, a year round average of as much as 25 x 10/sup 4/ kcal/ha/day has been demonstrated. In conjunction with the total potential biomass production by a plant, root and tuber crops may be able to surpass grain crops in fermentable productivity on a temporal and spacial basis. The factors that will contribute to this include developing the appropriate cultural practices for biomass production along with breeding and selecting for adaptability and favorable harvest index. Since many of these crops have been neglected from a research standpoint, there is little doubt that improvements can be made by further work. 27 references.

  6. The food and environmental safety of Bt crops

    PubMed Central

    Koch, Michael S.; Ward, Jason M.; Levine, Steven L.; Baum, James A.; Vicini, John L.; Hammond, Bruce G.

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms. PMID:25972882

  7. AN APPROACH TO TRANSGENIC CROP MONITORING

    EPA Science Inventory

    Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal crop distribution in the landscape. Genetically engineered crops containing bacterial gene(s) that express an insecticidal protein from Bacillus thuringiensis (Bt) are regulated...

  8. Nutritionally Enhanced Food Crops; Progress and Perspectives

    PubMed Central

    Hefferon, Kathleen L.

    2015-01-01

    Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world’s poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops. PMID:25679450

  9. Crop Genetics: The Seeds of Revolution.

    ERIC Educational Resources Information Center

    DeYoung, H. Garrett

    1983-01-01

    Current research in plant genetics is described. Benefits of this research (which includes genetic engineering applications) will include reduction/elimination of crop diseases, assurance of genetic stability, and the creation of new crop varieties. (JN)

  10. Nutritionally enhanced food crops; progress and perspectives.

    PubMed

    Hefferon, Kathleen L

    2015-02-11

    Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world's poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops.

  11. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time.

  12. Looking forward to genetically edited fruit crops.

    PubMed

    Nagamangala Kanchiswamy, Chidananda; Sargent, Daniel James; Velasco, Riccardo; Maffei, Massimo E; Malnoy, Mickael

    2015-02-01

    The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed.

  13. Genetically engineered crops: from idea to product.

    PubMed

    Prado, Jose Rafael; Segers, Gerrit; Voelker, Toni; Carson, Dave; Dobert, Raymond; Phillips, Jonathan; Cook, Kevin; Cornejo, Camilo; Monken, Josh; Grapes, Laura; Reynolds, Tracey; Martino-Catt, Susan

    2014-01-01

    Genetically engineered crops were first commercialized in 1994 and since then have been rapidly adopted, enabling growers to more effectively manage pests and increase crop productivity while ensuring food, feed, and environmental safety. The development of these crops is complex and based on rigorous science that must be well coordinated to create a plant with desired beneficial phenotypes. This article describes the general process by which a genetically engineered crop is developed from an initial concept to a commercialized product.

  14. Reductions in India's crop yield due to ozone

    NASA Astrophysics Data System (ADS)

    Ghude, Sachin D.; Jena, Chinmay; Chate, D. M.; Beig, G.; Pfister, G. G.; Kumar, Rajesh; Ramanathan, V.

    2014-08-01

    This bottom-up modeling study, supported by emission inventories and crop production, simulates ozone on local to regional scales. It quantifies, for the first time, potential impact of ozone on district-wise cotton, soybeans, rice, and wheat crops in India for the first decade of the 21st century. Wheat is the most impacted crop with losses of 3.5 ± 0.8 million tons (Mt), followed by rice at 2.1 ± 0.8 Mt, with the losses concentrated in central and north India. On the national scale, this loss is about 9.2% of the cereals required every year (61.2 Mt) under the provision of the recently implemented National Food Security Bill (in 2013) by the Government of India. The nationally aggregated yield loss is sufficient to feed about 94 million people living below poverty line in India.

  15. Barriers and paths to market for genetically engineered crops.

    PubMed

    Rommens, Caius M

    2010-02-01

    Each year, billions of dollars are invested in efforts to improve crops through genetic engineering (GE). These activities have resulted in a surge of publications and patents on technologies and genes: a momentum in basic research that, unfortunately, is not sustained throughout the subsequent phases of product development. After more than two decades of intensive research, the market for transgenic crops is still dominated by applications of just a handful of methods and genes. This discrepancy between research and development reflects difficulties in understanding and overcoming seven main barriers-to-entry: (1) trait efficacy in the field, (2) critical product concepts, (3) freedom-to-operate, (4) industry support, (5) identity preservation and stewardship, (6) regulatory approval and (7) retail and consumer acceptance. In this review, I describe the various roadblocks to market for transgenic crops and also discuss methods and approaches on how to overcome these, especially in the United States.

  16. Trait stacking in transgenic crops: challenges and opportunities.

    PubMed

    Que, Qiudeng; Chilton, Mary-Dell M; de Fontes, Cheryl M; He, Chengkun; Nuccio, Michael; Zhu, Tong; Wu, Yuexuan; Chen, Jeng S; Shi, Liang

    2010-01-01

    In recent years, there has been a rapid increase in the planting of transgenic crops with stacked traits. Most of these products have been formed by conventional breeding, i.e. the crossing of transgenic plant (event) containing individual transgenes with other event(s) containing single or double transgenic traits. Many biotech companies are developing stacked trait products with increasing numbers of insect and herbicide tolerance genes for controlling a broad range of insect pests and weeds. There has also been an increase in development of technologies for molecular stacking of multiple traits in a single transgene locus. In this review we look at the status of stacked trait products, crop trait stacking technologies and the technical challenges we are facing. We also review recent progress in developing technology for assembling large transgene arrays in vitro (molecular stacks), their delivery to crop plants and issues they pose for transgene expression.

  17. [Carbon storage of poplar-crop ecosystem in Eastern Henan Plain].

    PubMed

    Li, Qing-Yun; Fan, Wei; Yu, Xin-Xiao; Wan, Meng

    2010-03-01

    Aimed to understand the carbon storage of poplar-crop ecosystem in Eastern Henan Plain, the poplar-crop ecosystems with different ages (5, 9, 11, and 13 years old) of poplar were selected, and each of them was further divided into four subsystems, i. e. , forest, crop, litterfall, and soil. In the poplar-crop ecosystems with 5, 9, 11, and 13 years old poplar, the carbon storage of the subsystems forest and litterfall was summed as 7.86, 42.07, 44.31, and 60.71 t x hm(-2), respectively. Subsystem crop averagely sequestrated 6. 8 t x hm(-2) of CO2 per year, and the carbon storage of subsystem soil achieved 45.55, 51.06, 55.94, and 60.49 t x hm(-2), respectively. The total carbon storage of these four poplar-crop ecosystems reached 60.81, 100.09, 106.76, and 127.34 t x hm(-2), respectively, much higher than that in mono-cultured farmland (49.36 t x hm(-2)). For the test poplar-crop ecosystems, the carbon storage of subsystems forest and soil occupied a large proportion, accounting for 87.1%-93.1% of the total carbon storage, while that of subsystems crop and litterfall occupied a relatively small proportion, being 6.9%-12.9% of the total, illustrating that agroforestry ecosystem had a high potential in carbon absorption and sequestration.

  18. Quantifying the link between crop production and mined groundwater irrigation in China.

    PubMed

    Grogan, Danielle S; Zhang, Fan; Prusevich, Alexander; Lammers, Richard B; Wisser, Dominik; Glidden, Stanley; Li, Changsheng; Frolking, Steve

    2015-04-01

    In response to increasing demand for food, Chinese agriculture has both expanded and intensified over the past several decades. Irrigation has played a key role in increasing crop production, and groundwater is now an important source of irrigation water. Groundwater abstraction in excess of recharge (which we use here to estimate groundwater mining) has resulted in declining groundwater levels and could eventually restrict groundwater availability. In this study we used a hydrological model, WBMplus, in conjunction with a process based crop growth model, DNDC, to evaluate Chinese agriculture's recent dependence upon mined groundwater, and to quantify mined groundwater-dependent crop production across a domain that includes variation in climate, crop choice, and management practices. This methodology allowed for the direct attribution of crop production to irrigation water from rivers and reservoirs, shallow (renewable) groundwater, and mined groundwater. Simulating 20 years of weather variability and circa year 2000 crop areas, we found that mined groundwater fulfilled 20%-49% of gross irrigation water demand, assuming all demand was met. Mined groundwater accounted for 15%-27% of national total crop production. There was high spatial variability across China in irrigation water demand and crop production derived from mined groundwater. We find that climate variability and mined groundwater demand do not operate independently; rather, years in which irrigation water demand is high due to the relatively hot and dry climate also experience limited surface water supplies and therefore have less surface water with which to meet that high irrigation water demand.

  19. Germany wide seasonal flood risk analysis for agricultural crops

    NASA Astrophysics Data System (ADS)

    Klaus, Stefan; Kreibich, Heidi; Kuhlmann, Bernd; Merz, Bruno; Schröter, Kai

    2016-04-01

    In recent years, large-scale flood risk analysis and mapping has gained attention. Regional to national risk assessments are needed, for example, for national risk policy developments, for large-scale disaster management planning and in the (re-)insurance industry. Despite increasing requests for comprehensive risk assessments some sectors have not received much scientific attention, one of these is the agricultural sector. In contrast to other sectors, agricultural crop losses depend strongly on the season. Also flood probability shows seasonal variation. Thus, the temporal superposition of high flood susceptibility of crops and high flood probability plays an important role for agricultural flood risk. To investigate this interrelation and provide a large-scale overview of agricultural flood risk in Germany, an agricultural crop loss model is used for crop susceptibility analyses and Germany wide seasonal flood-frequency analyses are undertaken to derive seasonal flood patterns. As a result, a Germany wide map of agricultural flood risk is shown as well as the crop type most at risk in a specific region. The risk maps may provide guidance for federal state-wide coordinated designation of retention areas.

  20. Random Forests for Global and Regional Crop Yield Predictions

    PubMed Central

    Jeong, Jig Han; Resop, Jonathan P.; Mueller, Nathaniel D.; Fleisher, David H.; Yun, Kyungdahm; Butler, Ethan E.; Timlin, Dennis J.; Shim, Kyo-Moon; Gerber, James S.; Reddy, Vangimalla R.

    2016-01-01

    Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison with multiple linear regressions (MLR) serving as a benchmark. We used crop yield data from various sources and regions for model training and testing: 1) gridded global wheat grain yield, 2) maize grain yield from US counties over thirty years, and 3) potato tuber and maize silage yield from the northeastern seaboard region. RF was found highly capable of predicting crop yields and outperformed MLR benchmarks in all performance statistics that were compared. For example, the root mean square errors (RMSE) ranged between 6 and 14% of the average observed yield with RF models in all test cases whereas these values ranged from 14% to 49% for MLR models. Our results show that RF is an effective and versatile machine-learning method for crop yield predictions at regional and global scales for its high accuracy and precision, ease of use, and utility in data analysis. RF may result in a loss of accuracy when predicting the extreme ends or responses beyond the boundaries of the training data. PMID:27257967

  1. Advancing Crop Transformation in the Era of Genome Editing.

    PubMed

    Altpeter, Fredy; Springer, Nathan M; Bartley, Laura E; Blechl, Ann E; Brutnell, Thomas P; Citovsky, Vitaly; Conrad, Liza J; Gelvin, Stanton B; Jackson, David P; Kausch, Albert P; Lemaux, Peggy G; Medford, June I; Orozco-Cárdenas, Martha L; Tricoli, David M; Van Eck, Joyce; Voytas, Daniel F; Walbot, Virginia; Wang, Kan; Zhang, Zhanyuan J; Stewart, C Neal

    2016-07-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized.

  2. Evolutionary ecology of insect adaptation to Bt crops

    PubMed Central

    Carrière, Yves; Crowder, David W; Tabashnik, Bruce E

    2010-01-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins are used worldwide to control major pests of corn and cotton. Development of strategies to delay the evolution of pest resistance to Bt crops requires an understanding of factors affecting responses to natural selection, which include variation in survival on Bt crops, heritability of resistance, and fitness advantages associated with resistance mutations. The two main strategies adopted for delaying resistance are the refuge and pyramid strategies. Both can reduce heritability of resistance, but pyramids can also delay resistance by reducing genetic variation for resistance. Seasonal declines in the concentration of Bt toxins in transgenic cultivars, however, can increase the heritability of resistance. The fitness advantages associated with resistance mutations can be reduced by agronomic practices, including increasing refuge size, manipulating refuges to increase fitness costs, and manipulating Bt cultivars to reduce fitness of resistant individuals. Manipulating costs and fitness of resistant individuals on transgenic insecticidal crops may be especially important for thwarting evolution of resistance in haplodiploid and parthenogenetic pests. Field-evolved resistance to Bt crops in only five pests during the last 14 years suggests that the refuge strategy has successfully delayed resistance, but the accumulation of resistant pests could accelerate. PMID:25567947

  3. Nitrogen input effectiveness on carbon sequestration in rainfed cropping system

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Poma, Ignazio

    2016-04-01

    The combined effect of total N and C/N ratio had a large influence on the decomposition rate and consequently on potential soil organic carbon sequestration. The aim of the work was to evaluate Carbon sequestration potentiality under three mineral N fertilization levels in interaction with two cropping systems characterized by addition of N input due to leguminous species in the rotation. The study was carried out in the semiarid Mediterranean environment in a 18years long-term experiment. Is well know that in the semiarid environment the excess of N fertilization reduces biomass yield and the consequent C input. On the contrary, both N and C input determine high difference in C/N input ratio and faster organic matter mineralization. Results showed no influence of N fertilization on SOC sequestration and a reduction of SOC stock due to crop rotation due to lower C input. Crop residue quality of durum wheat-pea crop rotation characterized by a faster decomposition rate could explain the lower ability of crop rotation to sequester C in the semiarid environment.

  4. Collection of sugarcane crop residue for energy

    SciTech Connect

    Eiland, B.R.; Clayton, J.E.

    1982-12-01

    Crop residue left after sugarcane harvesting was recovered using a forage harvester and a large round baler. The quantity, bulk density and moisture content of the crop residue was determined in four fields. Crop residue from 7 ha was burned in boilers at a sugar mill. Samples of this residue were tested by a laboratory and compared to sugarcane bagasse.

  5. Control of crop diseases, third edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The authors in the Control of Crop Diseases cover a wide range of topics from crop diseases and their diagnosis and eradication to a primer on fungicides and legislation. This wide range of topics, all critical to the topic of crop diseases, thus appeals to a wide audience from molecular biologists,...

  6. Managing cover crops: an economic perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common reasons given by producers as to why they do not adopt cover crops are related to economics: time, labor, and cost required for planting and managing cover crops. While many of the agronomic benefits of cover crops directly relate to economics, there are costs associated with adopting the pra...

  7. Roadmap to increased cover crop adoption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are increasingly utilized by farmers and promoted by agronomists for the multiple benefits they contribute to soil and crop management systems. Yet, only a small percentage of cropland is planted to cover crops. In June of 2012, the National Wildlife Federation brought together 36 of the...

  8. Timely precipitation drives cover crop outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  9. Wind pumps for irrigating greenhouse crops

    NASA Astrophysics Data System (ADS)

    Peillón, M.; Sánchez, R.; Tarquis, A. M.; García, J. L.

    2012-04-01

    Agriculture is a major consumer of energy in many countries of the world. Only a few of these countries are self-sufficient in conventional energy sources, which are also exhaustible. Fortunately, there are other sources of energy, such as wind, which has experienced recent developments in the area of wind power generation. From irrigation projects to power supply in remote farms, wind power generation can play a vital role. A simple methodology for technical evaluation of windmills for irrigation water pumping has been developed in this study to determine the feasibility per unit amount of water supplied and the levels of daily irrigation demand satisfied by windmill irrigation system at various levels of risk (probability of failure). For this purpose, a series of three hourly wind-speed data over a period of 38 years at Ciego de Ávila, Cuba, were analyzed to compute the diurnal wind pump discharge at varying levels of risk. The sizes of reservoirs required to modulate fluctuating discharge and to satisfy the levels of irrigation demand, on function of crop development dates, cultivated area and water elevation height, were computed by cumulative deficit water budgeting. An example is given illustrating the use of the methodology on tomato crop (Licopersicon esculentum Mill) under greenhouse.

  10. Canadian regulatory perspectives on genome engineered crops.

    PubMed

    Smyth, Stuart J

    2017-01-02

    New breeding techniques in plant agriculture exploded upon the scene about two years ago, in 2014. While these innovative plant breeding techniques, soon to be led by CRISPR/Cas9, initially appear to hold tremendous promise for plant breeding, if not a revolution for the industry, the question of how the products of these technologies will be regulated is rapidly becoming a key aspect of the technology's future potential. Regulation of innovative technologies and products has always lagged that of the science, but in the past decade, regulatory systems in many jurisdictions have become gridlocked as they try to regulate genetically modified (GM) crops. This regulatory incapability to efficiently assess and approve innovative new agricultural products is particularly important for new plant breeding techniques as if these techniques are classified as genetically modified breeding techniques, then their acceptance and future will diminish considerably as they will be rejected by the European Union. Conversely, if the techniques are accepted as conventional plant breeding, then the future is blindingly bright. This article examines the international debate about the regulation of new plant breeding techniques and then assesses how the Canadian regulatory system has approached the regulation of these technologies through two more public product approvals, GM apples and GM potatoes, then discusses other crop variety approval and those in the regulatory pipeline.

  11. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China

    SciTech Connect

    Ye, Qing; Yang, Xiaoguang; Dai, Shuwei; Chen, Guangsheng; Li, Yong; Zhang, Caixia

    2015-06-05

    Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.

  12. Effects of Break Crops on Yield and Grain Protein Concentration of Barley in a Boreal Climate

    PubMed Central

    Zou, Ling; Yli-Halla, Markku; Stoddard, Frederick L.; Mäkelä, Pirjo S. A.

    2015-01-01

    Rotation with dicotyledonous crops to break cereal monoculture has proven to be beneficial to successive cereals. In two fields where the soil had been subjected to prolonged, continuous cereal production, two 3-year rotation trials were established. In the first year, faba bean, turnip rape and barley were grown, as first crops, in large blocks and their residues tilled into the soil after harvest. In the following year, barley, buckwheat, caraway, faba bean, hemp and white lupin were sown, as second crops, in each block and incorporated either at flowering stage (except barley) or after harvest. In the third year, barley was grown in all plots and its yield and grain protein concentration were determined. Mineral N in the plough layer was determined two months after incorporation of crops and again before sowing barley in the following year. The effect of faba bean and turnip rape on improving barley yields and grain protein concentration was still detectable two years after they were grown. The yield response of barley was not sensitive to the growth stage of second crops when they were incorporated, but was to different second crops, showing clear benefits averaging 6-7% after white lupin, faba bean and hemp but no benefit from caraway or buckwheat. The effect of increased N in the plough layer derived from rotation crops on barley yields was minor. Incorporation of plants at flowering stage slightly increased third-year barley grain protein concentration but posed a great potential for N loss compared with incorporation of crop residues after harvest, showing the value of either delayed incorporation or using catch crops. PMID:26076452

  13. Monitoring Crop Yield in USA Using a Satellite-Based Climate-Variability Impact Index

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Anderson, Bruce; Tan, Bin; Barlow, Mathew; Myneni, Ranga

    2011-01-01

    A quantitative index is applied to monitor crop growth and predict agricultural yield in continental USA. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to overall anomalies in growth during a given year, is derived from 1-km MODIS Leaf Area Index. The growing-season integrated CVII can provide an estimate of the fractional change in overall growth during a given year. In turn these estimates can provide fine-scale and aggregated information on yield for various crops. Trained from historical records of crop production, a statistical model is used to produce crop yield during the growing season based upon the strong positive relationship between crop yield and the CVII. By examining the model prediction as a function of time, it is possible to determine when the in-season predictive capability plateaus and which months provide the greatest predictive capacity.

  14. Large scale maps of cropping intensity in Asia from MODIS

    NASA Astrophysics Data System (ADS)

    Gray, J. M.; Friedl, M. A.; Frolking, S. E.; Ramankutty, N.; Nelson, A.

    2013-12-01

    for linear regressions estimated for local windows, and constrained by the EVI amplitude and length of crop cycles that are identified. The procedure can be used to map seasonal or long-term average cropping strategies, and to characterize changes in cropping intensity over longer time periods. The datasets produced using this method therefore provide information related to global cropping systems, and more broadly, provide important information that is required to ensure sustainable management of Earth's resources and ensure food security. To test our algorithm, we applied it to time series of MODIS EVI images over Asia from 2000-2012. Our results demonstrate the utility of multi-temporal remote sensing for characterizing multi-cropping practices in some of the most important and intensely agricultural regions in the world. To evaluate our approach, we compared results from MODIS to field-scale survey data at the pixel scale, and agricultural inventory statistics at sub-national scales. We then mapped changes in multi-cropped area in Asia from the early MODIS period (2001-2004) to present (2009-2012), and characterizes the magnitude and location of changes in cropping intensity over the last 12 years. We conclude with a discussion of the challenges, future improvements, and broader impacts of this work.

  15. Use Of Crop Canopy Size To Estimate Water Requirements Of Vegetable Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting time, plant density, variety, and cultural practices vary widely for horticultural crops. It is difficult to estimate crop water requirements for crops with these variations. Canopy size, or factional ground cover, as an indicator of intercepted sunlight, is related to crop water use. We...

  16. 75 FR 70850 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Proposed... amend the Common Crop Insurance Regulations, Extra Long Staple Cotton Crop Insurance Provisions to remove all references to the Daily Spot Cotton Quotation and replace the reference with the...

  17. 75 FR 44709 - Common Crop Insurance Regulations; Stonefruit Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Insurance Provisions, and removes the Plum Crop Insurance Provisions from the Code of Federal Regulations. The intended effect of this action is to allow coverage for plums under the Stonefruit Crop Insurance... commenters support combining the Plum Crop Insurance Provisions and the Stonefruit Crop Insurance...

  18. Estimating Crop Water use From Remotely Sensed NDVI, Crop Models and Reference ET

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop water use can be estimated from reference evapotranspiration, ETo, calculated from weather station data, and estimated crop coefficients, Kc. However, because Kc varies with crop growth rate, planting density, and management practices, generic Kc curves often don’t match actual crop water use....

  19. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  20. 78 FR 33690 - Common Crop Insurance Regulations; Pecan Crop Insurance Provisions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... 33690-33691] [FR Doc No: 2013-13358] DEPARTMENT OF AGRICULTURE Federal Crop Insurance Corporation 7 CFR Part 457 [Docket No. FCIC-11-0008] RIN 0563-AC35 Common Crop Insurance Regulations; Pecan Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Final...

  1. 75 FR 59057 - Common Crop Insurance Regulations, Stonefruit Crop Insurance Provisions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC21 Common Crop Insurance Regulations, Stonefruit Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation, USDA. ACTION... published July 29, 2010 (75 FR 44709-44718). The regulation, as here ] pertinent, related to the...

  2. 78 FR 22411 - Common Crop Insurance Regulations; Florida Citrus Fruit Crop Insurance Provisions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... / Tuesday, April 16, 2013 / Rules and Regulations#0;#0; ] DEPARTMENT OF AGRICULTURE Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC39 Common Crop Insurance Regulations; Florida Citrus Fruit Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Final...

  3. Derived crop management data for the LandCarbon Project

    USGS Publications Warehouse

    Schmidt, Gail; Liu, Shu-Guang; Oeding, Jennifer

    2011-01-01

    The LandCarbon project is assessing potential carbon pools and greenhouse gas fluxes under various scenarios and land management regimes to provide information to support the formulation of policies governing climate change mitigation, adaptation and land management strategies. The project is unique in that spatially explicit maps of annual land cover and land-use change are created at the 250-meter pixel resolution. The project uses vast amounts of data as input to the models, including satellite, climate, land cover, soil, and land management data. Management data have been obtained from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and USDA Economic Research Service (ERS) that provides information regarding crop type, crop harvesting, manure, fertilizer, tillage, and cover crop (U.S. Department of Agriculture, 2011a, b, c). The LandCarbon team queried the USDA databases to pull historic crop-related management data relative to the needs of the project. The data obtained was in table form with the County or State Federal Information Processing Standard (FIPS) and the year as the primary and secondary keys. Future projections were generated for the A1B, A2, B1, and B2 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) scenarios using the historic data values along with coefficients generated by the project. The PBL Netherlands Environmental Assessment Agency (PBL) Integrated Model to Assess the Global Environment (IMAGE) modeling framework (Integrated Model to Assess the Global Environment, 2006) was used to develop coefficients for each IPCC SRES scenario, which were applied to the historic management data to produce future land management practice projections. The LandCarbon project developed algorithms for deriving gridded data, using these tabular management data products as input. The derived gridded crop type, crop harvesting, manure, fertilizer, tillage, and cover crop

  4. Ammonia volatilization from crop residues and frozen green manure crops

    NASA Astrophysics Data System (ADS)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  5. Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2014-12-01

    Biochar's effects on improving soil fertility, enhancing crop productivity and reducing greenhouse gases (GHGs) emission from croplands had been well addressed in numerous short-term experiments with biochar soil amendment (BSA) mostly in a single crop season / cropping year. However, the persistence of these effects, after a single biochar application, has not yet been well known due to limited long-term field studies so far. Large scale BSA in agriculture is often commented on the high cost due to large amount of biochar in a single application. Here, we try to show the persistence of biochar effects on soil fertility and crop productivity improvement as well as GHGs emission reduction, using data from a field experiment with BSA for 5 crop seasons in central North China. A single amendment of biochar was performed at rates of 0 (C0), 20 (C20) and 40 t ha-1 (C40) before sowing of the first crop season. Emissions of CO2, CH4 and N2O were monitored with static closed chamber method throughout the crop growing season for the 1st, 2nd and 5th cropping. Crop yield was measured and topsoil samples were collected at harvest of each crop season. BSA altered most of the soil physic-chemical properties with a significant increase over control in soil organic carbon (SOC) and available potassium (K) content. The increase in SOC and available K was consistent over the 5 crop seasons after BSA. Despite a significant yield increase in the first maize season, enhancement of crop yield was not consistent over crop seasons without corresponding to the changes in soil nutrient availability. BSA did not change seasonal total CO2 efflux but greatly reduced N2O emissions throughout the five seasons. This supported a stable nature of biochar carbon in soil, which played a consistent role in reducing N2O emission, which showed inter-annual variation with changes in temperature and soil moisture conditions. The biochar effect was much more consistent under C40 than under C20 and with

  6. Folate biofortification in food crops.

    PubMed

    Strobbe, Simon; Van Der Straeten, Dominique

    2017-03-19

    Folates are essential vitamins in the human diet. Folate deficiency is still very common, provoking disorders such as birth defects and anemia. Biofortification via metabolic engineering is a proven powerful means to alleviate folate malnutrition. A variety of metabolic engineering approaches have been successfully implemented in different crops and tissues. Furthermore, ensuring folate stability is crucial for long-term storage of crop products. However, the current strategies, shown to be successful in rice and tomato, will need to be fine-tuned to enable adequate biofortification of other staples such as potato, wheat and cassava. Thus, there is a need to overcome remaining hurdles in folate biofortification. Overall, biofortification, via breeding or metabolic engineering, will be imperative to effectively combat folate deficiency.

  7. Biofortification of staple food crops.

    PubMed

    Nestel, Penelope; Bouis, Howarth E; Meenakshi, J V; Pfeiffer, Wolfgang

    2006-04-01

    Deficiencies of vitamin A, iron, and zinc affect over one-half of the world's population. Progress has been made to control micronutrient deficiencies through supplementation and food fortification, but new approaches are needed, especially to reach the rural poor. Biofortification (enriching the nutrition contribution of staple crops through plant breeding) is one option. Scientific evidence shows this is technically feasible without compromising agronomic productivity. Predictive cost-benefit analyses also support biofortification as being important in the armamentarium for controlling micronutrient deficiencies. The challenge is to get producers and consumers to accept biofortified crops and increase their intake of the target nutrients. With the advent of good seed systems, the development of markets and products, and demand creation, this can be achieved.

  8. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  9. Crop yield network and its response to changes in climate system

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  10. Long-term Annual No-Till Cropping in Washington’s Winter Wheat – Summer Fallow Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tillage-based winter wheat – summer fallow (WW-SF) cropping system has dominated dryland farming in the Pacific Northwest for 125 years. We conducted a large-scale multidisciplinary 8-year study of annual no-till cropping systems as an alternative to WW-SF. Soft white and hard white classes of w...

  11. Cropping systems and control of soil erosion in a Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Cosentino, Salvatore; Copani, Venera; Testa, Giorgio; Scalici, Giovanni

    2013-04-01

    The research has been carried out over the years 1996-2010 in an area of the internal hill of Sicily region (Enna, c.da Geracello, 550 m a. s. l. 37° 23' N. Lat, 14° 21' E. Long) in the center of Mediterranean Sea, mainly devoted to durum wheat cultivation, using the experimental plots, established in 1996 on a slope of 26-28%, equipped to determine surface runoff and soil losses. The establishment consists of twelve plots, having 40 m length and 8 m width. In order to study the effect of different field crop systems in controlling soil erosion in slopes subjected to water erosion, the following systems were studied: permanent crops, tilled annual crops, no-tilled annual crops, set-aside. The used crops were: durum wheat, faba bean, rapeseed, subterranean clover, Italian ryegrass, alfalfa, sweetvetch, moon trefoil, barley, sweet sorghum, sunflower. The results pointed out that the cropping systems with perennial crops allowed to keep low the soil loss, while annual crop rotation determined a high amount of soil loss. Sod seeding showed promising results also for annual crop rotations.

  12. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994.

    PubMed

    Koenning, S R; Overstreet, C; Noling, J W; Donald, P A; Becker, J O; Fortnum, B A

    1999-12-01

    Previous reports of crop losses to plant-parasitic nematodes have relied on published results of survey data based on certain commodities, including tobacco, peanuts, cotton, and soybean. Reports on crop-loss assessment by land-grant universities and many commodity groups generally are no longer available, with the exception of the University of Georgia, the Beltwide Cotton Conference, and selected groups concerned with soybean. The Society of Nematologists Extension Committee contacted extension personnel in 49 U.S. states for information on estimated crop losses caused by plant-parasitic nematodes in major crops for the year 1994. Included in this paper are survey results from 35 states on various crops including corn, cotton, soybean, peanut, wheat, rice, sugarcane, sorghum, tobacco, numerous vegetable crops, fruit and nut crops, and golf greens. The data are reported systematically by state and include the estimated loss, hectarage of production, source of information, nematode species or taxon when available, and crop value. The major genera of phytoparasitic nematodes reported to cause crop losses were Heterodera, Hoplolaimus, Meloidogyne, Pratylenchus, Rotylenchulus, and Xiphinema.

  13. Survey of Crop Losses in Response to Phytoparasitic Nematodes in the United States for 1994

    PubMed Central

    Koenning, S. R.; Overstreet, C.; Noling, J. W.; Donald, P. A.; Becker, J. O.; Fortnum, B. A.

    1999-01-01

    Previous reports of crop losses to plant-parasitic nematodes have relied on published results of survey data based on certain commodities, including tobacco, peanuts, cotton, and soybean. Reports on crop-loss assessment by land-grant universities and many commodity groups generally are no longer available, with the exception of the University of Georgia, the Beltwide Cotton Conference, and selected groups concerned with soybean. The Society of Nematologists Extension Committee contacted extension personnel in 49 U.S. states for information on estimated crop losses caused by plant-parasitic nematodes in major crops for the year 1994. Included in this paper are survey results from 35 states on various crops including corn, cotton, soybean, peanut, wheat, rice, sugarcane, sorghum, tobacco, numerous vegetable crops, fruit and nut crops, and golf greens. The data are reported systematically by state and include the estimated loss, hectarage of production, source of information, nematode species or taxon when available, and crop value. The major genera of phytoparasitic nematodes reported to cause crop losses were Heterodera, Hoplolaimus, Meloidogyne, Pratylenchus, Rotylenchulus, and Xiphinema. PMID:19270925

  14. The effect of excess copper on growth and physiology of important food crops: a review.

    PubMed

    Adrees, Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Ibrahim, Muhammad; Abbas, Farhat; Farid, Mujahid; Zia-Ur-Rehman, Muhammad; Irshad, Muhammad Kashif; Bharwana, Saima Aslam

    2015-06-01

    In recent years, copper (Cu) pollution in agricultural soils, due to arbitrary use of pesticides, fungicides, industrial effluent and wastewater irrigation, present a major concern for sustainable agrifood production especially in developing countries. The world's major food requirement is fulfilled through agricultural food crops. The Cu-induced losses in growth and yield of food crops probably exceeds from all other causes of food safety and security threats. Here, we review the adverse effects of Cu excess on growth and yield of essential food crops. Numerous studies reported the Cu-induced growth inhibition, oxidative damage and antioxidant response in agricultural food crops such as wheat, rice, maize, sunflower and cucumber. This article also describes the toxic levels of Cu in crops that decreased plant growth and yield due to alterations in mineral nutrition, photosynthesis, enzyme activities and decrease in chlorophyll biosynthesis. The response of various crops to elevated Cu concentrations varies depending upon nature of crop and cultivars used. This review could be helpful to understand the Cu toxicity and the mechanism of its tolerance in food crops. We recommend that Cu-tolerant crops should be grown on Cu-contaminated soils in order to ameliorate the toxic effects for sustainable farming systems and to meet the food demands of the intensively increasing population.

  15. Simulation of winter wheat yield and its uncertainty band; A comparison of two crop growth models

    NASA Astrophysics Data System (ADS)

    Javad Khordadi Varamini, Mohammad; Nassiri Mahallati, Mehdi; Alizadeh, Amin

    2016-04-01

    In this study, we used the WOFOST and AquaCrop crop growth simulation models to examine crop yield responses to a set of plausible scenarios of climate change in Mashhad region, located in Ghareghom basin, northeast of Iran up to 2040. We selected winter wheat as an indicator crop. Also six AOGCMs including GFCM21, HADCM3, INCM3, IPCM4, MPEH5 and NCCCSM under A2 and B1 emission scenarios are used. LARS-WG statistical method for downscaling is utilized. In the present research, using 7-year observed crop data, the crop models were calibrated and then validated. Evaluation of WOFOST and AquaCrop models confirmed the models are able for simulating the yield of wheat grown in the study area. The results showed that average potential yield of wheat ranged from 3.43 to 8.42 and 2.76 to 6.49 ton.ha-1, in AquaCrop and WOFOST models, respectively. Finally, the uncertainty band due to the six AOGCMs for estimating crop yield is drawn and investigated. These bands show possible changes for the yield in the future period to the past one. It can be concluded the positive effects of climate warming and elevated CO2 concentrations on the production in the studied region.

  16. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    SciTech Connect

    Wang, Q.R.; Li, Y.C.; Klassen, W.

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  17. Simple weighing lysimeters for measuring reference and crop evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of cotton crop evapotranspiration is important in scheduling irrigations, optimizing crop production, and modeling evapotranspiration and crop growth. The ability to measure, estimate, and predict evapotranspiration and cotton crop water requirements can result in better satisfying the cr...

  18. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  19. MODELING WORLD BIOENERGY CROP POTENTIAL

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kensuke; Hanasaki, Naota; Kanae, Shinjiro

    Bioenergy is regarded as clean energy due to its characteristics and expected to be a new support of world energy de¬mand, but there are few integrated assessments of the potential of bioenergy considering sustainable land use. We esti¬mated the global bioenergy potential with an integrated global water resources model, the H08. It can simulate the crop yields on global-scale at a spatial resolution of 0.50.5. Seven major crops in the world were considered; namely, maize, sugar beet, sugar cane, soybean, rapeseed, rice, and wheat, of which the first 5 are commonly used to produce biofuel now. Three different land-cover types were chosen as potential area for cultivation of biofuel-producing crop: fallow land, grassland, and portion of forests (excluding areas sensitive for biodiversity such as frontier forest). We attempted to estimate the maximum global bioenergy potential and it was estimated to be 1120EJ. Bioenergy potential depends on land-use limitations for the protection of bio-diversity and security of food. In another condition which assumed more land-use limitations, bioenergy potential was estimated to be 70-233EJ.

  20. WEBGIS based CropWatch online agriculture monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  1. Agricultural land application of pulp and paper mill sludges in the Donnacona area, Quebec: Chemical evaluation and crop response

    SciTech Connect

    Veillette, A.X.; Tanguay, M.G.

    1997-12-31

    Primary paper mill sludges from a thermomechanical pulp (TMP) mill were land applied at the rate of 20 metric ton per hectare (t/ha) for agricultural purposes in the Donnacona area, Quebec, in May 1994 and May 1995. Eleven agricultural sites featuring various crops were tested over two seasons to measure the impact of TMP primary paper mill sludges on soil, plant tissue and crop yield. Cereal and potato crops showed a significant increase in yield. TMP Primary sludges were also applied at the rate of 225 t/ha for land reclamation purposes of one site at the end of 1994. Soils were tested every second month. Chemical crop analyses were also performed. The first year crop response was satisfactory. Combined (primary and secondary) TMP sludges were added at the rate of 200 t/ha in the beginning of 1996. Soil, vadose zone water and crop analysis are being investigated. Impressive crop responses were obtained in the 1996 season.

  2. Effect of Winter Cover Crops on Nematode Population Levels in North Florida

    PubMed Central

    Wang, K.-H.; McSorley, R.; Gallaher, R. N.

    2004-01-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P ≤ 0.05), but no treatment differences were observed in year 2. Wheat was a good host to Paratrichodorus minor, whereas vetch was a poor host, but numbers of P. minor were not lower in vetch-planted plots after corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor × S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P ≤ 0.05) but not by the winter cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida. PMID:19262833

  3. Agricultural management practices to sustain crop yields and improve soil and environmental qualities.

    PubMed

    Sainju, Upendra M; Whitehead, Wayne F; Singh, Bharat P

    2003-08-20

    In the past several decades, agricultural management practices consisting of intensive tillage and high rate of fertilization to improve crop yields have resulted in the degradation of soil and environmental qualities by increasing erosion and nutrient leaching in the groundwater and releasing greenhouses gases, such as carbon dioxide (CO2) and nitrous oxide (N2O), that cause global warming in the atmosphere by oxidation of soil organic matter. Consequently, management practices that sustain crop yields and improve soil and environmental qualities are needed. This paper reviews the findings of the effects of tillage practices, cover crops, and nitrogen (N) fertilization rates on crop yields, soil organic carbon (C) and N concentrations, and nitrate (NO3)-N leaching from the soil. Studies indicate that conservation tillage, such as no-till or reduced till, can increase soil organic C and N concentrations at 0- to 20-cm depth by as much as 7-17% in 8 years compared with conventional tillage without significantly altering crop yields. Similarly, cover cropping and 80-180 kg N ha(-1) year(-1) fertilization can increase soil organic C and N concentrations by as much as 4-12% compared with no cover cropping or N fertilization by increasing plant biomass and amount of C and N inputs to the soil. Reduced till, cover cropping, and decreased rate of N fertilization can reduce soil N leaching compared with conventional till, no cover cropping, and full rate of N fertilization. Management practices consisting of combinations of conservation tillage, mixture of legume and nonlegume cover crops, and reduced rate of N fertilization have the potentials for sustaining crop yields, increasing soil C and N storage, and reducing soil N leaching, thereby helping to improve soil and water qualities. Economical and social analyses of such practices are needed to find whether they are cost effective and acceptable to the farmers.

  4. 7 CFR 718.11 - Disqualification due to Federal crop insurance violation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Crop Insurance Corporation (FCIC) or to an approved insurance provider with respect to a policy or plan... of up to 5 years from receiving any monetary or non-monetary benefit under a number of programs....

  5. 7 CFR 457.146 - Northern potato crop insurance-storage coverage endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... varieties, types, or groups for the crop year. 4. When production from separate insurance units, basic or... approved by us, a potato grader licensed or certified by the applicable State or the United...

  6. 7 CFR 457.146 - Northern potato crop insurance-storage coverage endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... varieties, types, or groups for the crop year. 4. When production from separate insurance units, basic or... approved by us, a potato grader licensed or certified by the applicable State or the United...

  7. 7 CFR 457.146 - Northern potato crop insurance-storage coverage endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... varieties, types, or groups for the crop year. 4. When production from separate insurance units, basic or... approved by us, a potato grader licensed or certified by the applicable State or the United...

  8. 7 CFR 457.146 - Northern potato crop insurance-storage coverage endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... varieties, types, or groups for the crop year. 4. When production from separate insurance units, basic or... approved by us, a potato grader licensed or certified by the applicable State or the United...

  9. Nitrous Oxide Emissions from Biofuel Crops and Parameterization in the EPIC Biogeochemical Model

    EPA Science Inventory

    This presentation describes year 1 field measurements of N2O fluxes and crop yields which are used to parameterize the EPIC biogeochemical model for the corresponding field site. Initial model simulations are also presented.

  10. Seeding date affects fall growth of winter canola (Brassica napus L. ‘Baldur’) and its performance as a winter cover crop in central Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, interest has increased in finding non-grass cover crop species that could be planted after soybean (Glycine max (L) Merr.) and before corn (Zea mays L.) in Iowa crop rotations. In this study, we investigate the use of winter canola (Brassica napus L.) as an alternative cover crop fo...

  11. The present status of commercialized and developed biotech (GM) crops, results of evaluation of plum 'HoneySweet" for resistance to plum pox virus in the Czech Republic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercialization of biotech (GM) crops started in 1996. A significant increase of 9 million hectars was realized in 1996-2009. In the years 2010-2011, it was already 12 million hectars (8 percent of total crop area). 16.7 million farmers in 29 countries planted 160 million hectars of GM crops in...

  12. Porphyra: a marine crop shaped by stress.

    PubMed

    Blouin, Nicolas A; Brodie, Juliet A; Grossman, Arthur C; Xu, Pu; Brawley, Susan H

    2011-01-01

    The marine red alga Porphyra is an important marine crop, worth ∼US$1.3 billion per year. Cultivation research now includes farm ecology, breeding, strain conservation and new net-seeding technologies. The success of cultivation is due, in part, to the high stress tolerance of Porphyra. Many species of Porphyra lose 85-95% of their cellular water during the daytime low tide, when they are also exposed to high light and temperature stress. Antioxidant and mycosporine-like amino acid activities have been partially characterized in Porphyra, but, as we discuss here, the Porphyra umbilicalis genome project will further elucidate proteins associated with stress tolerance. Furthermore, phylogenomic and transcriptomic investigations of Porphyra sensu lato could elucidate tradeoffs made during physiological acclimation and factors associated with life-history evolution in this ancient lineage.

  13. The large area crop inventory experiment: A major demonstration of space remote sensing

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Hall, F. G.

    1977-01-01

    Strategies are presented in agricultural technology to increase the resistance of crops to a wider range of meteorological conditions in order to reduce year-to-year variations in crop production. Uncertainties in agricultral production, together with the consumer demands of an increasing world population, have greatly intensified the need for early and accurate annual global crop production forecasts. These forecasts must predict fluctuation with an accuracy, timeliness and known reliability sufficient to permit necessary social and economic adjustments, with as much advance warning as possible.

  14. Integrated biological and cultural practices can reduce crop rotation period of organic strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approached by an organic grower and the land owner, a team of researchers conducted a replicated on-farm experiment with the break period between strawberry crops (continuous strawberries with broccoli residue incorporation, one year break, two year break, three year break, and seven year break) as ...

  15. 7 CFR 205.205 - Crop rotation practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Crop rotation practice standard. 205.205 Section 205... Crop rotation practice standard. The producer must implement a crop rotation including but not limited to sod, cover crops, green manure crops, and catch crops that provide the following functions...

  16. 7 CFR 205.205 - Crop rotation practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Crop rotation practice standard. 205.205 Section 205... Crop rotation practice standard. The producer must implement a crop rotation including but not limited to sod, cover crops, green manure crops, and catch crops that provide the following functions...

  17. 7 CFR 205.205 - Crop rotation practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Crop rotation practice standard. 205.205 Section 205... Crop rotation practice standard. The producer must implement a crop rotation including but not limited to sod, cover crops, green manure crops, and catch crops that provide the following functions...

  18. 7 CFR 205.205 - Crop rotation practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Crop rotation practice standard. 205.205 Section 205... Crop rotation practice standard. The producer must implement a crop rotation including but not limited to sod, cover crops, green manure crops, and catch crops that provide the following functions...

  19. 7 CFR 205.205 - Crop rotation practice standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Crop rotation practice standard. 205.205 Section 205... Crop rotation practice standard. The producer must implement a crop rotation including but not limited to sod, cover crops, green manure crops, and catch crops that provide the following functions...

  20. Closing the Carbon Budget in Perennial Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Anderson-Teixeira, K. J.; Bernacchi, C.; Hudiburg, T. W.; Masters, M. D.; DeLucia, E. H.

    2013-12-01

    At present, some 40% of corn grown in the United States, accounting for more than 26 million acres of farmland, is processed for bioethanol. Interest has arisen in converting biofuel production from corn grain ethanol to cellulosic ethanol, derived primarily from cellulose from dedicated energy crops. As many cellulosic biofuel feedstocks are perennial grasses, conversion from annual corn cropping to perennials represents a substantial change in farming practices with the potential to alter the plant-soil relationship in the Midwestern United States. Elimination of annual tillage preserves soils structure, conserving soil carbon and maintaining plant root systems. Five years of perennial grass establishment in former agricultural land in Illinois has shown a significant change in soil carbon pools and fluxes. Atmospheric carbon exchange monitoring combined with vegetation and soil sampling and respiration measurements confirm that in the first 3 years (establishment phase), perennial giant grasses Miscanthus x giganteus and Panicum virgatum rapidly increased belowground carbon allocation >400% and belowground biomass 400-750% compared to corn. Following establishment, perennial grasses maintained below- and aboveground annual biomass production, out-performing corn in both average and drought conditions. Here we offer a quantitative comparison of the carbon allocation pathways of corn and perennial biofuel crops in Midwestern landscapes, demonstrating the carbon benefits of perennial cropping through increased C allocation to root and rhizome structures. Long rotation periods in perennial grasses combined with annual carbon inputs to the soil system are expected to convert these agricultural soils from atmospheric carbon sources to carbon sinks.

  1. Monitoring cropping patterns using sequential Landsat imagery: An adaptive threshold approach and its application in Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Fan, C.; Zheng, B.; Myint, S. W.; Aggarwal, R.

    2014-12-01

    Cropping intensity is the number of crops grown per year per unit area of cropland. Since 1970s, the Phoenix Active Management Area (AMA) has undergone rapid urbanization mostly via land conversions from agricultural prime lands to urban land use. Agricultural intensification, or multiple cropping, has been observed globally as a positive response to the growing land pressure as a consequence of urbanization and exploding population. Nevertheless, increased cropping intensity has associated local, regional, and global environmental outcomes such as degradation of water quality and soil fertility. Quantifying spatio-temporal patterns of cropping intensity can serve as a first step towards understanding these environmental problems and developing effective and sustainable cropping strategies. In this study, an adaptive threshold method was developed to measure the cropping intensity in the Phoenix AMA from 1995 to 2010 at five-year intervals. The method has several advantages in terms of (1) minimization of errors arising from missing data and noise; (2) ability to distinguish growing cycles from multiple small false peaks in a vegetation index time series; (3) flexibility when dealing with temporal profiles with diffing numbers of observations. The adaptive threshold approach measures the cropping intensity effectively with overall accuracies higher than 97%. Results indicate a dramatic decline in the area of total croplands, single crops, and double crops. A small land conversion was witnessed from single crops into double crops from 1995 to 2000, whereas a reverse trend was observed from 2005 to 2010. Changes in cropping intensity can affect local water consumption. Therefore, joint investigation of cropping patterns and agricultural water use can provide implications for future water demand, which is an increasingly critical issue in this rapidly expanding desert city.

  2. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  3. Nitrous oxide emissions from crop rotations including wheat, rapeseed and dry pea

    NASA Astrophysics Data System (ADS)

    Jeuffroy, M. H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P.

    2012-07-01

    Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas, originate from soils at global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes allow to reduce N fertilizer use, and possibly N2O emission. Nevertheless, the decomposition of crop organic matter during the crop cycle and during the residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed-rape crops, fertilized or not, in various rotations. A field experiment was conducted during 4 consecutive years, aiming at comparing the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly linked with the site soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after pea. These results, combined with the emission reduction allowed by the production and transport of the N fertiliser not applied on the pea crop, should be confirmed in a larger range of soil types. Nevertheless, they demonstrate the absence of N2O emission linked to the symbiotic N fixation process, and allow us to estimate the decrease of N2O emissions to 20-25% by including one pea crop in a three-year rotation. At a larger scale, this reduction of GHG emissions at field level has to be cumulated with the reduction of GHG emissions linked with the lower level of production and transport of the N

  4. A global foresight on food crop needs for livestock.

    PubMed

    Le Cotty, T; Dorin, B

    2012-09-01

    Increasingly more studies are raising concerns about the increasing consumption of meat and the increasing amount of crops (cereals and oilseeds in particular) used to feed animals and that could be used to feed people. The evolution of this amount is very sensitive to human diets and to the productivity of feed. This article provides a 2050 foresight on the necessary increase in crop production for food and feed in three contrasting scenarios: diets with no animal products; current diets in each main region of the world; and the average diet of developed countries extended to the whole world. We develop empirical aggregate production models for seven world regions, using 43 years and 150 countries. These models realistically account for the contribution of feed from food plants (i.e. plants that would be edible for humans) and of grassland to animal products. We find that the amount of edible crops necessary to feed livestock in 2050 is between 8% and 117% of today's need. The latter figure is lower than that in comparable foresight studies because our models take into account empirical features occurring at an aggregate level, such as the increasing share of animal production from regions using less crop product per unit of animal product. In particular, the expected increase in animal production is estimated to occur mostly in Sub-Saharan Africa and Asia, where the amount of feed from food crops required per unit of animal product proves to be lower than that in other areas. This 117% increase indicates that crop production would have to double if the whole world adopted the present diet of developed countries.

  5. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  6. Impacts of crop growth dynamics on soil quality at the regional scale

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop

  7. Evaluation of pre-crops and organic fertilization program on the subsequent crop under Mediterranean conditions: case of South of Italy

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Hmid, Amine; Baysal, Damla; Amer, Nasser; Bitar, Lina Al; Aksoy, Uygun

    2013-04-01

    Organic farming systems rely on soil fertility management to enhance the soil chemical properties for the optimization of crop production and increase food quality. Soil fertility-building crops have been reported as a way to reduce inputs of fertilizers, improve soil fertility and increase the subsequent crop yield. A four-year rotation programme was launched by the Mediterranean Agronomic Institute of Bari that aims at identifying the most suitable fertilization strategy in organic farming for Mediterranean countries under the prevailing conditions. The present study was conducted in southern Italy and it consists in evaluating the effects of pre-crops (faba bean, vetch and broccoli) in comparison to a fallow test on the subsequent crop (zucchini, tomato, lettuce and radish) in four consecutive years. Vetch and faba bean were able to satisfy the nutrient requirement of the main crop without any compost application; while commercial compost was applied to broccoli and fallow treatments prior to transplanting the main crop. The main soil chemical parameters: organic carbon, total nitrogen, available phosphorus, and exchangeable potassium were improved over four years experiment. The trend was consistent; all main chemical parameters displayed a significant increase in all treatments, while no significant differences were obtained between treatments. Based on the results obtained in the first two years, the effect of different pre-crops and fertilizers on zucchini and organic tomato qualitative and quantitative parameters were not significant. While the results obtained in the third and forth years showed that pre-crops and fertilizers had significant effects on lettuce and radish yield and quality. Low nitrate contents were found in fallow and broccoli treatments (70 to 80% lower) in comparison to Vetch and Faba bean treatments and the ascorbic acid contents were (20 to 40% higher) after broccoli and fallow treatments. The low nitrate content in broccoli and fallow

  8. Establishing Crop Productivity Using RADARSAT-2

    NASA Astrophysics Data System (ADS)

    McNairn, H.; Shang, J.; Jiao, X.; Deschamps, B.

    2012-07-01

    Crop productivity is influenced by a number of management and environmental conditions, and variations in crop growth can occur in-season due to, for example, unfavourable meteorological conditions. Consequently information on crop growth must be temporally frequent in order to adequately characterize crop productivity. Leaf Area Index (LAI) is a key indicator of crop productivity and a number of methods have been developed to derive LAI from optical satellite data. Integration of LAI estimates from synthetic aperture radar (SAR) sensors would assist in efforts to monitor crop production through the growing season, particularly during periods of persistent cloud cover. Consequently, Agriculture and Agri-Food Canada has assessed the capability of RADARSAT-2 data to estimate LAI. The results of a sensitivity analysis revealed that several SAR polarimetric variables were strongly correlated with LAI derived from optical sensors for small grain crops. As the growing season progressed, contributions from volume scattering from the crop canopies increased. This led to the sensitivity of the intensity of linear cross-polarization backscatter, entropy and the Freeman-Durden volume scattering component, to LAI. For wheat and oats, correlations above 0.8 were reported. Following this sensitivity analysis, the Water Cloud Model (WCM) was parameterized using LAI, soil moisture and SAR data. A look up table inversion approach to estimate LAI from SAR parameters, using the WCM, was subsequently developed. This inversion approach can be used to derive LAI from sensors like RADARSAT-2 to support the monitoring of crop condition throughout the cropping season.

  9. Alternative Crops and Biofuel Production

    SciTech Connect

    Kenkel, Philip; Holcomb, Rodney B.

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  10. Metabolomics of genetically modified crops.

    PubMed

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-10-20

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  11. Metabolomics of Genetically Modified Crops

    PubMed Central

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  12. The elasticity of global cropland with respect to crop production and its implications for peak cropland

    NASA Astrophysics Data System (ADS)

    Rajagopal, Deepak

    2016-11-01

    Trends in average crop yield i.e., crop output per unit area, are the basis for numerous forecasts of the future global expanse of agriculture. Although a number of studies predict a sizable expansion in global cropland area through the year 2050, some argue, to the contrary, that peak cropland is at hand. This paper analyzes historical trends in the ‘correlation’ between annual global cropland and annual crop production using a new measure called the elasticity of cropland with respect to production (crop output). Three different statistics of elasticity—the mean, the frequency of different combinations of directional changes in crop area and output, and time trend, each computed over different but fixed time intervals (5, 10, 15 and 20 years, which were chosen arbitrarily) suggest that the global area of cropland is set to increase with consumption. Achieving an absolute reduction in global cropland hinges on increasing crop yields beyond anything seen in the last fifty years. While this is consistent with several existing forecasts, the salience of an elasticity-based analysis is that it captures the effect of changing marginal as well as average crop yield as opposed to just the latter. The elasticity-based approach is applicable to trends in the exploitation of other scarce natural resources as well as releases of different pollutants.

  13. SO/sub 2/ dose-response sensitivity classification data for crops and natural vegetation species

    SciTech Connect

    Irving, P.M.; Ballou, S.W.

    1980-09-01

    Over the past several years studies have been made on the interaction of sulfur dioxide (SO/sub 2/) and vegetation by performing field research and by developing analytical procedures for applying field observation data to energy impact assessments. As a result of this work, numerous reports have been prepared on crop-pollutant interactions, such as dose-response data; on the applications of such data to screening approaches for identifying crops at risk; and on models that predict crop yield reductions from point source emissions of SO/sub 2/. Data that were used for these studies, such as the crop-at-risk screening procedure, are presented in this report. Maps are also presented that show the national distribution of SO/sub 2/-sensitive crops and natural vegetation.

  14. Engineering pathogen resistance in crop plants: current trends and future prospects.

    PubMed

    Collinge, David B; Jørgensen, Hans J L; Lund, Ole S; Lyngkjaer, Michael F

    2010-01-01

    Transgenic crops are now grown commercially in 25 countries worldwide. Although pathogens represent major constraints for the growth of many crops, only a tiny proportion of these transgenic crops carry disease resistance traits. Nevertheless, transgenic disease-resistant plants represent approximately 10% of the total number of approved field trials in North America, a proportion that has remained constant for 15 years. In this review, we explore the socioeconomic and biological reasons for the paradox that although technically useful solutions now exist for providing transgenic disease resistance, very few new crops have been introduced to the global market. For bacteria and fungi, the majority of transgenic crops in trials express antimicrobial proteins. For viruses, three-quarters of the transgenics express coat protein (CP) genes. There is a notable trend toward more biologically sophisticated solutions involving components of signal transduction pathways regulating plant defenses. For viruses, RNA interference is increasingly being used.

  15. Nitrogen and phosphorus effluent loads from a paddy-field district adopting collective crop rotation.

    PubMed

    Hama, T; Aoki, T; Osuga, K; Sugiyama, S; Iwasaki, D

    2012-01-01

    Japanese paddy rice systems commonly adopt the rotation of vegetables, wheat and soybeans with paddy rice. Crop rotation may, however, increase the nutrient load in effluent discharged from the district because more fertilizer is applied to the rotation crops than is applied to paddy crops. We investigated a paddy-field district subject to collective crop rotation and quantified the annual nutrient load of effluent from the district in three consecutive years. The total annual exports of nitrogen and phosphorus over the investigation period ranged from 30.3 to 40.6 kg N ha(-1) and 2.62 to 3.13 kg P ha(-1). The results suggest that rotation cropping increases the effluent nutrient load because applied fertilizer is converted to nitrate, and surface runoff is increased due to the absence of shuttering boards at the field outlets.

  16. Greenhouse gas fluxes during growth of different bioenergy crops

    NASA Astrophysics Data System (ADS)

    Walter, K.; Don, A.; Flessa, H.

    2012-04-01

    Bioenergy crops are expected to contribute to greenhouse gas mitigation by substituting fossil fuels. However, during production, processing and transport of bioenergy crops greenhouse gas emissions are generated that have to be taken into account when evaluating the role of bioenergy for climate mitigation. Especially nitrous oxide (N2O) emissions during feedstock production determine the greenhouse gas balance of bioenergy due to its strong global warming potential. This fact has often been ignored due to insufficient data and knowledge on greenhouse gas emission from cropland soils under bioenergy production. Therefore, we started to investigate the greenhouse gas emissions of major bioenergy crops maize, oil seed rape, grass (grass-clover, without N-fertilizer) and short rotation coppice (SRC, poplar hybrid) at two sites in Central Germany (near Göttingen and in Thuringia). The nitrous oxide and methane (CH4) fluxes from these sites have been determined by weekly chamber measurements since May 2011. The N2O emissions from all fields were low and without extreme peaks during the first five months of measurement (222 to 687 g N2O-N ha-1 for 5 months). The rape field near Göttingen emitted less N2O than the SRC, probably because SRC was newly established in spring 2011 and the rape has not been fertilized during the measurement period (cumulative emission over 5 months: rape seed 366 ± 188 g N2O-N ha-1, grassland 497 ± 153 g N2O-N ha-1, SRC 687 ± 124 g N2O-N ha-1). The maize field in Thuringia emitted more N2O than the SRC due to emission peaks related to the fertilization of maize (cumulative emission over 5 months: maize 492 ± 140 g N2O-N ha-1, grasslands 253 ± 87 and 361 ± 135 g N2O-N ha-1, new SRC 222 ± 90 g N2O-N ha-1, 4 years old SRC 340 ± 264 g N2O-N ha-1). All sites showed a net uptake of atmospheric methane throughout the summer season (104 to 862 g CH4-C ha-1 for 5 months). However, net-exchange of CH4 is of little importance for the greenhouse

  17. Soil Moisture as an Estimator for Crop Yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Meyer, Volker; Samaniego, Luis; Thober, Stephan

    2015-04-01

    Annual crop yield depends on various factors such as soil properties, management decisions, and meteorological conditions. Unfavorable weather conditions, e.g. droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany. Predicting crop yields allows to mitigate negative effects of weather extremes which are assumed to occur more often in the future due to climate change. A standard approach in economics is to predict the impact of climate change on agriculture as a function of temperature and precipitation. This approach has been developed further using concepts like growing degree days. Other econometric models use nonlinear functions of heat or vapor pressure deficit. However, none of these approaches uses soil moisture to predict crop yield. We hypothesize that soil moisture is a better indicator to explain stress on plant growth than estimations based on precipitation and temperature. This is the case because the latter variables do not explicitly account for the available water content in the root zone, which is the primary source of water supply for plant growth. In this study, a reduced form panel approach is applied to estimate a multivariate econometric production function for the years 1999 to 2010. Annual crop yield data of various crops on the administrative district level serve as depending variables. The explanatory variable of major interest is the Soil Moisture Index (SMI), which quantifies anomalies in root zone soil moisture. The SMI is computed by the mesoscale Hydrological Model (mHM, www.ufz.de/mhm). The index represents the monthly soil water quantile at a 4 km2 grid resolution covering entire Germany. A reduced model approach is suitable because the SMI is the result of a stochastic weather process and therefore can be considered exogenous. For the ease of interpretation a linear functionality is preferred. Meteorological

  18. Trace Gas Exchange of Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Graus, M.; Warneke, C.; Williams, E. J.; Lerner, B. M.; Gilman, J. B.; Li, R.; Eller, A. S.; Gray, C.; Fierer, N.; Fall, R.; Harley, P. C.; Roberts, J. M.; Yuan, B.; Qian, Y.; Westra, P.; Fryrear, C.; Collins, M.; Whitman, K.; De Gouw, J. A.

    2011-12-01

    In 2010 leaf level gas exchange and VOC fluxes from switchgrass and corn grown at the CSU horticultural farm in Ft Collins (CO) were measured using a PTR-MS coupled to a modified Li6400 cuvette system. Both species are C4 plants with corn currently being the dominant biofuel crop in the USA whilst switchgrass being a promising candidate for cellulosic fuel ethanol production. Amongst the strongest VOC emissions from both plants were methanol, acetic acid, acetaldehyde, acetone and toluene. The switchgrass VOC emissions compare reasonably well with the only published data measured from potted plants in a whole plant enclosure (Eller et al. 2011). VOC emission studies on corn are almost as scarce as those of switchgrass. Considering the acreage of corn grown in the USA every year, VOC flux measurements of this plant species are largely under-represented in the literature. The emission rates that do exist in the literature do not compare well with the numbers found in this study (e.g. Das et al. 2003; 35μg methanol per hour per gram biomass). To investigate the biosphere atmosphere exchange of corn fields in more detail the field campaign BioCORN 2011 was initiated. In summer 2011 an eddy covariance system was set up in a corn field at ARDEC (CSU, Ft Collins, CO) to investigate the energy flux and the trace gas exchange of the US' dominant biofuel crop. Besides energy flux, evapotranspiration and CO2 flux a comprehensive suite of volatile organic compounds and inorganic species (O3, NO, NO2, CO) are measured for virtual disjunct eddy covariance (vDEC) analysis and true eddy covariance (EC) fluxes, respectively. VOCs are monitored by PTR-MS and, for the first time, fluxes of formic acid are measured utilizing NI-CIMS data for vDEC analysis. Besides the EC approach leaf level flux measurements and soil flux measurements are performed using a GC-MS system (TACOH) coupled to a modified Li6400 system and to soil chambers, respectively. Ethanol and methanol are amongst the

  19. Crop immunity against viruses: outcomes and future challenges

    PubMed Central

    Nicaise, Valérie

    2014-01-01

    Viruses cause epidemics on all major cultures of agronomic importance, representing a serious threat to global food security. As strict intracellular pathogens, they cannot be controlled chemically and prophylactic measures consist mainly in the destruction of infected plants and excessive pesticide applications to limit the population of vector organisms. A powerful alternative frequently employed in agriculture relies on the use of crop genetic resistances, approach that depends on mechanisms governing plant–virus interactions. Hence, knowledge related to the molecular bases of viral infections and crop resistances is key to face viral attacks in fields. Over the past 80 years, great advances have been made on our understanding of plant immunity against viruses. Although most of the known natural resistance genes have long been dominant R genes (encoding NBS-LRR proteins), a vast number of crop recessive resistance genes were cloned in the last decade, emphasizing another evolutive strategy to block viruses. In addition, the discovery of RNA interference pathways highlighted a very efficient antiviral system targeting the infectious agent at the nucleic acid level. Insidiously, plant viruses evolve and often acquire the ability to overcome the resistances employed by breeders. The development of efficient and durable resistances able to withstand the extreme genetic plasticity of viruses therefore represents a major challenge for the coming years. This review aims at describing some of the most devastating diseases caused by viruses on crops and summarizes current knowledge about plant–virus interactions, focusing on resistance mechanisms that prevent or limit viral infection in plants. In addition, I will discuss the current outcomes of the actions employed to control viral diseases in fields and the future investigations that need to be undertaken to develop sustainable broad-spectrum crop resistances against viruses. PMID:25484888

  20. Organic fertilization for soil improvement in a vegetable cropping system

    NASA Astrophysics Data System (ADS)

    Verhaeghe, Micheline; De Rocker, Erwin; De Reycke, Luc

    2016-04-01

    Vegetable Research Centre East-Flanders Karreweg 6, 9770 Kruishoutem, Belgium A long term trial for soil improvement by organic fertilization was carried out in Kruishoutem from 2001 till 2010 in a vegetable rotation (carrots - leek - lettuce (2/year) - cauliflower (2/year) - leek - carrots - lettuce (2/year) - cauliflower (2/year) - leek and spinach). The trial compared yearly applications of 30 m²/ha of three types of compost (green compost, vfg-compost and spent mushroom compost) with an untreated object which did not receive any organic fertilization during the trial timescale. The organic fertilization was applied shortly before the cropping season. Looking at the soil quality, effects of organic fertilization manifest rather slow. The first four years after the beginning of the trial, no increase in carbon content of the soil is detectable yet. Although, mineralization of the soil has increased. The effect on the mineralization is mainly visible in crops with a lower N uptake (e.g. carrots) leading to a higher nitrate residue after harvest. Effects on soil structure and compaction occur rather slowly although, during the first two cropping seasons compost applications increase the water retention capacity of the soil. Compost increases the pH of the soil from the first year on till the end of the trial in 2010. Thus, organic fertilization impedes acidification in light sandy soils. Also soil fertility benefits from compost by an increase in K-, Ca- and Mg- content in the soil from the second year on. After 10 years of organic fertilization, yield and quality of spinach were increased significantly (p<0.05) compared to the untreated object. Also leek (2002 and 2009) and lettuce (2003 and 2007) benefit from organic fertilization.