Sample records for crop yield variations

  1. Climate variation explains a third of global crop yield variability

    PubMed Central

    Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.

    2015-01-01

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. PMID:25609225

  2. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.

    PubMed

    Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M

    2015-04-01

    Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.

  3. Correlation Between Precipitation and Crop Yield for Corn and Cotton Produced in Alabama

    NASA Technical Reports Server (NTRS)

    Hayes, Carol E.; Perkey, Donald J.

    1998-01-01

    In this study, variations in precipitation during the time of corn silking are compared to Alabama corn yields. Also, this study compares precipitation variations during bloom to Alabama cotton yield. The goal is to obtain mathematical correlations between rainfall during the crop's critical period and the crop amount harvested per acre.

  4. Long-term variation of Surface Ozone, NO2, temperature and relative humidity on crop yield over Andhra Pradesh (AP), India

    NASA Astrophysics Data System (ADS)

    Arunachalam, M. S.; Obili, Manjula; Srimurali, M.

    2016-07-01

    Long-term variation of Surface Ozone, NO2, Temperature, Relative humidity and crop yield datasets over thirteen districts of Andhra Pradesh(AP) has been studied with the help of OMI, MODIS, AIRS, ERA-Interim re-analysis and Directorate of Economics and Statistics (DES) of AP. Inter comparison of crop yield loss estimates according to exposure metrics such as AOT40 (accumulated ozone exposure over a threshold of 40) and non-linear variation of surface temperature for twenty and eighteen varieties of two major crop growing seasons namely, kharif (April-September) and rabi (October-March), respectively has been made. Study is carried to establish a new crop-yield-exposure relationship for different crop cultivars of AP. Both ozone and temperature are showing a correlation coefficient of 0.66 and 0.87 with relative humidity; and 0.72 and 0.80 with NO2. Alleviation of high surface ozone results in high food security and improves the economy thereby reduces the induced warming of the troposphere caused by ozone. Keywords: Surface Ozone, NO2, Temperature, Relative humidity, Crop yield, AOT 40.

  5. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    NASA Astrophysics Data System (ADS)

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  6. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.

    PubMed

    Qiao, Jianmin; Yu, Deyong; Liu, Yupeng

    2017-10-01

    Climate change plays a critical role in crop yield variations, which has attracted a great deal of concern worldwide. However, the mechanisms of how climatic trend and fluctuations affect crop yields are not well understood and need to be further investigated. Thus, using the GIS-based Environmental Policy Integrated Climate (EPIC) model, we simulated the yields of major crops (i.e., wheat, maize, and rice) and evaluated the impacts of climatic factors on crop yields in the Agro-Pastoral Transitional Zone (APTZ) of northern China between 1980 and 2010. The partial least squares regression model was used to assess the contribution rates of climatic factors (i.e., precipitation, photosynthetically active radiation (PAR), minimum temperature (T min ), maximum temperature (T max )) to the variation of crop yields. The Breaks for Additive Season and Trend (BFAST) model was adopted to decompose the climate factors into trend and fluctuation components, and the relative contributions of climate trend and fluctuation were then evaluated. The results indicated that the contributions of climatic factors to yield variations of wheat, maize, and rice were 31.7, 37.7, and 23.1%, respectively. That is, climate change had larger impacts on maize than wheat and rice. More cultivated areas were significantly and positively correlated with precipitation than with other climatic factors due to the limited precipitation in the APTZ. Also, climatic trend component had positive impacts on crop yields in the whole region, whereas the climate fluctuation was associated mainly with the areas where the crop yields decreased. This study helps improve our understanding of the mechanisms of climate change impacts on crop yields, and provides useful scientific information for designing regional-scale strategies of adaptation to climate change.

  7. Food and fitness: associations between crop yields and life-history traits in a longitudinally monitored pre-industrial human population.

    PubMed

    Hayward, Adam D; Holopainen, Jari; Pettay, Jenni E; Lummaa, Virpi

    2012-10-22

    Severe food shortage is associated with increased mortality and reduced reproductive success in contemporary and historical human populations. Studies of wild animal populations have shown that subtle variation in environmental conditions can influence patterns of mortality, fecundity and natural selection, but the fitness implications of such subtle variation on human populations are unclear. Here, we use longitudinal data on local grain production, births, marriages and mortality so as to assess the impact of crop yield variation on individual age-specific mortality and fecundity in two pre-industrial Finnish populations. Although crop yields and fitness traits showed profound year-to-year variation across the 70-year study period, associations between crop yields and mortality or fecundity were generally weak. However, post-reproductive individuals of both sexes, and individuals of lower socio-economic status experienced higher mortality when crop yields were low. This is the first longitudinal, individual-based study of the associations between environmental variation and fitness traits in pre-industrial humans, which emphasizes the importance of a portfolio of mechanisms for coping with low food availability in such populations. The results are consistent with evolutionary ecological predictions that natural selection for resilience to food shortage is likely to weaken with age and be most severe on those with the fewest resources.

  8. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments.

  9. Annual Crop-Yield Variation, Child Survival, and Nutrition Among Subsistence Farmers in Burkina Faso.

    PubMed

    Belesova, Kristine; Gasparrini, Antonio; Sié, Ali; Sauerborn, Rainer; Wilkinson, Paul

    2018-02-01

    Whether year-to-year variation in crop yields affects the nutrition, health, and survival of subsistence-farming populations is relevant to the understanding of the potential impacts of climate change. However, the empirical evidence is limited. We examined the associations of child survival with interannual variation in food crop yield and middle-upper arm circumference (MUAC) in a subsistence-farming population of rural Burkina Faso. The study was of 44,616 children aged <5 years included in the Nouna Health and Demographic Surveillance System, 1992-2012, whose survival was analyzed in relation to the food crop yield in the year of birth (which ranged from 65% to 120% of the period average) and, for a subset of 16,698 children, to MUAC, using shared-frailty Cox proportional hazards models. Survival was appreciably worse in children born in years with low yield (full-adjustment hazard ratio = 1.11 (95% confidence interval: 1.02, 1.20) for a 90th- to 10th-centile decrease in annual crop yield) and in children with small MUAC (hazard ratio = 2.72 (95% confidence interval: 2.15, 3.44) for a 90th- to 10th-centile decrease in MUAC). These results suggest an adverse impact of variations in crop yields, which could increase under climate change. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Understanding the weather signal in national crop-yield variability

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders

    2017-06-01

    Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

  11. Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyang; Zhang, Qingyuan

    2016-04-01

    Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data have been extensively applied for crop yield prediction because of their daily temporal resolution and a global coverage. This study investigated global crop yield using daily two band Enhanced Vegetation Index (EVI2) derived from AVHRR (1981-1999) and MODIS (2000-2013) observations at a spatial resolution of 0.05° (∼5 km). Specifically, EVI2 temporal trajectory of crop growth was simulated using a hybrid piecewise logistic model (HPLM) for individual pixels, which was used to detect crop phenological metrics. The derived crop phenology was then applied to calculate crop greenness defined as EVI2 amplitude and EVI2 integration during annual crop growing seasons, which was further aggregated for croplands in each country, respectively. The interannual variations in EVI2 amplitude and EVI2 integration were combined to correlate to the variation in cereal yield from 1982-2012 for individual countries using a stepwise regression model, respectively. The results show that the confidence level of the established regression models was higher than 90% (P value < 0.1) in most countries in the northern hemisphere although it was relatively poor in the southern hemisphere (mainly in Africa). The error in the yield predication was relatively smaller in America, Europe and East Asia than that in Africa. In the 10 countries with largest cereal production across the world, the prediction error was less than 9% during past three decades. This suggests that crop phenology-controlled greenness from coarse resolution satellite data has the capability of predicting national crop yield across the world, which could provide timely and reliable crop information for global agricultural trade and policymakers.

  12. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments. PMID:25658914

  13. Variability in soybean yield in Brazil stemming from the interaction of heterogeneous management and climate variability

    NASA Astrophysics Data System (ADS)

    Cohn, A.; Bragança, A.; Jeffries, G. R.

    2017-12-01

    An increasing share of global agricultural production can be found in the humid tropics. Therefore, an improved understanding of the mechanisms governing variability in the output of tropical agricultural systems is of increasing importance for food security including through climate change adaptation. Yet, the long window over which many tropical crops can be sown, the diversity of crop varieties and management practices combine to challenge inference into climate risk to cropping output in analyses of tropical crop-climate sensitivity employing administrative data. In this paper, we leverage a newly developed spatially explicit dataset of soybean yields in Brazil to combat this problem. The dataset was built by training a model of remotely-sensed vegetation index data and land cover classification data using a rich in situ dataset of soybean yield and management variables collected over the period 2006 to 2016. The dataset contains soybean yields by plant date, cropping frequency, and maturity group for each 5km grid cell in Brazil. We model variation in these yields using an approach enabling the estimation of the influence of management factors on the sensitivity of soybean yields to variability in: cumulative solar radiation, extreme degree days, growing degree days, flooding rain in the harvest period, and dry spells in the rainy season. We find strong variation in climate sensitivity by management class. Planting date and maturity group each explained a great deal more variation in yield sensitivity than did cropping frequency. Brazil collects comparatively fine spatial resolution yield data. But, our attempt to replicate our results using administrative soy yield data revealed substantially lesser crop-climate sensitivity; suggesting that previous analyses employing administrative data may have underestimated climate risk to tropical soy production.

  14. Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.

    2013-12-01

    The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.

  15. Agricultural Management Practices Explain Variation in Global Yield Gaps of Major Crops

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Gerber, J. S.; Ray, D. K.; Ramankutty, N.; Foley, J. A.

    2010-12-01

    The continued expansion and intensification of agriculture are key drivers of global environmental change. Meeting a doubling of food demand in the next half-century will further induce environmental change, requiring either large cropland expansion into carbon- and biodiversity-rich tropical forests or increasing yields on existing croplands. Closing the “yield gaps” between the most and least productive farmers on current agricultural lands is a necessary and major step towards preserving natural ecosystems and meeting future food demand. Here we use global climate, soils, and cropland datasets to quantify yield gaps for major crops using equal-area climate analogs. Consistent with previous studies, we find large yield gaps for many crops in Eastern Europe, tropical Africa, and parts of Mexico. To analyze the drivers of yield gaps, we collected sub-national agricultural management data and built a global dataset of fertilizer application rates for over 160 crops. We constructed empirical crop yield models for each climate analog using the global management information for 17 major crops. We find that our climate-specific models explain a substantial amount of the global variation in yields. These models could be widely applied to identify management changes needed to close yield gaps, analyze the environmental impacts of agricultural intensification, and identify climate change adaptation techniques.

  16. Weather-based forecasts of California crop yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D B; Cahill, K N; Field, C B

    2005-09-26

    Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over themore » 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.« less

  17. Prediction of Seasonal Climate-induced Variations in Global Food Production

    NASA Technical Reports Server (NTRS)

    Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki; Luo, Jing-Jia; Challinor, Andrew J.; Brown, Molly E.; Sakurai, Gen; Yamagata, Toshio

    2013-01-01

    Consumers, including the poor in many countries, are increasingly dependent on food imports and are therefore exposed to variations in yields, production, and export prices in the major food-producing regions of the world. National governments and commercial entities are paying increased attention to the cropping forecasts of major food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years. Here we present a global assessment of the reliability of crop failure hindcasts for major crops at two lead times derived by linking ensemble seasonal climatic forecasts with statistical crop models. We assessed the reliability of hindcasts (i.e., retrospective forecasts for the past) of crop yield loss relative to the previous year for two lead times. Pre-season yield predictions employ climatic forecasts and have lead times of approximately 3 to 5 months for providing information regarding variations in yields for the coming cropping season. Within-season yield predictions use climatic forecasts with lead times of 1 to 3 months. Pre-season predictions can be of value to national governments and commercial concerns, complemented by subsequent updates from within-season predictions. The latter incorporate information on the most recent climatic data for the upcoming period of reproductive growth. In addition to such predictions, hindcasts using observations from satellites were performed to demonstrate the upper limit of the reliability of crop forecasting.

  18. ENSO and PDO-related climate variability impacts on Midwestern United States crop yields.

    PubMed

    Henson, Chasity; Market, Patrick; Lupo, Anthony; Guinan, Patrick

    2017-05-01

    An analysis of crop yields for the state of Missouri was completed to determine if an interannual or multidecadal variability existed as a result of the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Corn and soybean yields were recorded in kilograms per hectare for each of the six climate regions of Missouri. An analysis using the Mokhov "method of cycles" demonstrated interannual, interdecadal, and multidecadal variations in crop yields. Cross-spectral analysis was used to determine which region was most impacted by ENSO and PDO influenced seasonal (April-September) temperature and precipitation. Interannual (multidecadal) variations found in the spectral analysis represent a relationship to ENSO (PDO) phase, while interdecadal variations represent a possible interaction between ENSO and PDO. Average crop yields were then calculated for each combination of ENSO and PDO phase, displaying a pronounced increase in corn and soybean yields when ENSO is warm and PDO is positive. Climate regions 1, 2, 4, and 6 displayed significant differences (p value of 0.10 or less) in yields between El Niño and La Niña years, representing 55-70 % of Missouri soybean and corn productivity, respectively. Final results give the opportunity to produce seasonal predictions of corn and soybean yields, specific to each climate region in Missouri, based on the combination of ENSO and PDO phases.

  19. Impacts of El Nino Southern Oscillation on the Global Yields of Major Crops

    NASA Technical Reports Server (NTRS)

    Iizumi, Toshichika; Luo, Jing-Jia; Challinor, Andrew J.; Sakurai, Gen; Yokozawa, Masayuki; Sakuma, Hirofumi; Brown, Molly Elizabeth; Yamagata, Toshio

    2014-01-01

    The monitoring and prediction of climate-induced variations in crop yields, production and export prices in major food-producing regions have become important to enable national governments in import-dependent countries to ensure supplies of affordable food for consumers. Although the El Nino/Southern Oscillation (ENSO) often affects seasonal temperature and precipitation, and thus crop yields in many regions, the overall impacts of ENSO on global yields are uncertain. Here we present a global map of the impacts of ENSO on the yields of major crops and quantify its impacts on their global-mean yield anomalies. Results show that El Nino likely improves the global-mean soybean yield by 2.15.4 but appears to change the yields of maize, rice and wheat by -4.3 to +0.8. The global-mean yields of all four crops during La Nina years tend to be below normal (-4.5 to 0.0).Our findings highlight the importance of ENSO to global crop production.

  20. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress

    PubMed Central

    Gu, Junfei; Yin, Xinyou; Zhang, Chengwei; Wang, Huaqi; Struik, Paul C.

    2014-01-01

    Background and Aims Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress. Methods Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions. Key Results To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait ‘total crop nitrogen uptake’ (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10–36 % more yield than those based on markers for yield per se. Conclusions This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The approach can provide more markers for selection programmes for specific environments whilst also allowing for prioritization. Crop modelling is thus a powerful tool for marker design for improved rice yields and for ideotyping under contrasting conditions. PMID:24984712

  1. Uncertainties in Predicting Rice Yield by Current Crop Models Under a Wide Range of Climatic Conditions

    NASA Technical Reports Server (NTRS)

    Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Adam, Myriam; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fumoto, Tamon; hide

    2014-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10 percent of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.

  2. Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield.

    PubMed

    Robson, Paul R H; Farrar, Kerrie; Gay, Alan P; Jensen, Elaine F; Clifton-Brown, John C; Donnison, Iain S

    2013-05-01

    Energy crops can provide a sustainable source of power and fuels, and mitigate the negative effects of CO2 emissions associated with fossil fuel use. Miscanthus is a perennial C4 energy crop capable of producing large biomass yields whilst requiring low levels of input. Miscanthus is largely unimproved and therefore there could be significant opportunities to increase yield. Further increases in yield will improve the economics, energy balance, and carbon mitigation of the crop, as well as reducing land-take. One strategy to increase yield in Miscanthus is to maximize the light captured through an extension of canopy duration. In this study, canopy duration was compared among a diverse collection of 244 Miscanthus genotypes. Canopy duration was determined by calculating the number of days between canopy establishment and senescence. Yield was positively correlated with canopy duration. Earlier establishment and later senescence were also both separately correlated with higher yield. However, although genotypes with short canopy durations were low yielding, not all genotypes with long canopy durations were high yielding. Differences of yield between genotypes with long canopy durations were associated with variation in stem and leaf traits. Different methodologies to assess canopy duration traits were investigated, including visual assessment, image analysis, light interception, and different trait thresholds. The highest correlation coefficients were associated with later assessments of traits and the use of quantum sensors for canopy establishment. A model for trait optimization to enable yield improvement in Miscanthus and other bioenergy crops is discussed.

  3. Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield

    PubMed Central

    Robson, Paul R.H.; Farrar, Kerrie; Gay, Alan P.; Jensen, Elaine F.; Clifton-Brown, John C.; Donnison, Iain S.

    2013-01-01

    Energy crops can provide a sustainable source of power and fuels, and mitigate the negative effects of CO2 emissions associated with fossil fuel use. Miscanthus is a perennial C4 energy crop capable of producing large biomass yields whilst requiring low levels of input. Miscanthus is largely unimproved and therefore there could be significant opportunities to increase yield. Further increases in yield will improve the economics, energy balance, and carbon mitigation of the crop, as well as reducing land-take. One strategy to increase yield in Miscanthus is to maximize the light captured through an extension of canopy duration. In this study, canopy duration was compared among a diverse collection of 244 Miscanthus genotypes. Canopy duration was determined by calculating the number of days between canopy establishment and senescence. Yield was positively correlated with canopy duration. Earlier establishment and later senescence were also both separately correlated with higher yield. However, although genotypes with short canopy durations were low yielding, not all genotypes with long canopy durations were high yielding. Differences of yield between genotypes with long canopy durations were associated with variation in stem and leaf traits. Different methodologies to assess canopy duration traits were investigated, including visual assessment, image analysis, light interception, and different trait thresholds. The highest correlation coefficients were associated with later assessments of traits and the use of quantum sensors for canopy establishment. A model for trait optimization to enable yield improvement in Miscanthus and other bioenergy crops is discussed. PMID:23599277

  4. Prediction of seasonal climate-induced variations in global food production

    NASA Astrophysics Data System (ADS)

    Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki; Luo, Jing-Jia; Challinor, Andrew J.; Brown, Molly E.; Sakurai, Gen; Yamagata, Toshio

    2013-10-01

    Consumers, including the poor in many countries, are increasingly dependent on food imports and are thus exposed to variations in yields, production and export prices in the major food-producing regions of the world. National governments and commercial entities are therefore paying increased attention to the cropping forecasts of important food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years. Here we present a global assessment of the reliability of crop failure hindcasts for major crops at two lead times derived by linking ensemble seasonal climatic forecasts with statistical crop models. We found that moderate-to-marked yield loss over a substantial percentage (26-33%) of the harvested area of these crops is reliably predictable if climatic forecasts are near perfect. However, only rice and wheat production are reliably predictable at three months before the harvest using within-season hindcasts. The reliabilities of estimates varied substantially by crop--rice and wheat yields were the most predictable, followed by soybean and maize. The reasons for variation in the reliability of the estimates included the differences in crop sensitivity to the climate and the technology used by the crop-producing regions. Our findings reveal that the use of seasonal climatic forecasts to predict crop failures will be useful for monitoring global food production and will encourage the adaptation of food systems toclimatic extremes.

  5. The uncertainty of crop yield projections is reduced by improved temperature response functions.

    PubMed

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P; Kimball, Bruce A; Ottman, Michael J; Wall, Gerard W; White, Jeffrey W; Reynolds, Matthew P; Alderman, Phillip D; Aggarwal, Pramod K; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J; De Sanctis, Giacomo; Doltra, Jordi; Fereres, Elias; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A; Izaurralde, Roberto C; Jabloun, Mohamed; Jones, Curtis D; Kersebaum, Kurt C; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Naresh Kumar, Soora; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E; Palosuo, Taru; Priesack, Eckart; Eyshi Rezaei, Ehsan; Ripoche, Dominique; Ruane, Alex C; Semenov, Mikhail A; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold

    2017-07-17

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  6. The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions

    NASA Technical Reports Server (NTRS)

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.; hide

    2017-01-01

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  7. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress.

    PubMed

    Gu, Junfei; Yin, Xinyou; Zhang, Chengwei; Wang, Huaqi; Struik, Paul C

    2014-09-01

    Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress. Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions. To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait 'total crop nitrogen uptake' (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10-36 % more yield than those based on markers for yield per se. This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The approach can provide more markers for selection programmes for specific environments whilst also allowing for prioritization. Crop modelling is thus a powerful tool for marker design for improved rice yields and for ideotyping under contrasting conditions. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Global Agriculture Yields and Conflict under Future Climate

    NASA Astrophysics Data System (ADS)

    Rising, J.; Cane, M. A.

    2013-12-01

    Aspects of climate have been shown to correlate significantly with conflict. We investigate a possible pathway for these effects through changes in agriculture yields, as predicted by field crop models (FAO's AquaCrop and DSSAT). Using satellite and station weather data, and surveyed data for soil and management, we simulate major crop yields across all countries between 1961 and 2008, and compare these to FAO and USDA reported yields. Correlations vary by country and by crop, from approximately .8 to -.5. Some of this range in crop model performance is explained by crop varieties, data quality, and other natural, economic, and political features. We also quantify the ability of AquaCrop and DSSAT to simulate yields under past cycles of ENSO as a proxy for their performance under changes in climate. We then describe two statistical models which relate crop yields to conflict events from the UCDP/PRIO Armed Conflict dataset. The first relates several preceding years of predicted yields of the major grain in each country to any conflict involving that country. The second uses the GREG ethnic group maps to identify differences in predicted yields between neighboring regions. By using variation in predicted yields to explain conflict, rather than actual yields, we can identify the exogenous effects of weather on conflict. Finally, we apply precipitation and temperature time-series under IPCC's A1B scenario to the statistical models. This allows us to estimate the scale of the impact of future yields on future conflict. Centroids of the major growing regions for each country's primary crop, based on USDA FAS consumption. Correlations between simulated yields and reported yields, for AquaCrop and DSSAT, under the assumption that no irrigation, fertilization, or pest control is used. Reported yields are the average of FAO yields and USDA FAS yields, where both are available.

  9. Application of a CROPWAT Model to Analyze Crop Yields in Nicaragua

    NASA Astrophysics Data System (ADS)

    Doria, R.; Byrne, J. M.

    2013-12-01

    ABSTRACT Changes in climate are likely to influence crop yields due to varying evapotranspiration and precipitation over agricultural regions. In Nicaragua, agriculture is extensive, with new areas of land brought into production as the population increases. Nicaraguan staple food items (maize and beans) are produced mostly by small scale farmers with less than 10 hectares, but they are critical for income generation and food security for rural communities. Given that the majority of these farmers are dependent on rain for crop irrigation, and that maize and beans are sensitive to variations in temperature and rainfall patterns, the present study was undertaken to assess the impact of climate change on these crop yields. Climate data were generated per municipio representing the three major climatic zones of the country: the wet Pacific lowland, the cooler Central highland, and the Caribbean lowland. Historical normal climate data from 1970-2000 (baseline period) were used as input to CROPWAT model to analyze the potential and actual evapotranspiration (ETo and ETa, respectively) that affects crop yields. Further, generated local climatic data of future years (2030-2099) under various scenarios were inputted to the CROPWAT to determine changes in ETo and ETa from the baseline period. Spatial variability maps of both ETo and ETa as well as crop yields were created. Results indicated significant variation in seasonal rainfall depth during the baseline period and predicted decreasing trend in the future years that eventually affects yields. These maps enable us to generate appropriate adaptation measures and best management practices for small scale farmers under future climate change scenarios. KEY WORDS: Climate change, evapotranspiration, CROPWAT, yield, Nicaragua

  10. Evaluating the synchronicity in yield variations of staple crops at global scale

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.

    2014-12-01

    Reflecting the recent globalization trend in world commodity market, several major production countries are producing large amount of staple crops, especially, maize and soybean. Thus, simultaneous crop failure (abrupt reduction in crop yield, lean year) due to extreme weather and/or climate change could lead to unstable food supply. This study try to examine the synchronicity in yield variations of staple crops at global scale. We use a gridded crop yields database, which includes the historical year-to-year changes in staple crop yields with a spatial resolution of 1.125 degree in latitude/longitude during a period of 1982-2006 (Iizumi et al. 2013). It has been constructed based on the agriculture statistics issued by local administrative bureaus in each country. For the regions being lack of data, an interpolation was conducted to obtain the values referring to the NPP estimates from satellite data as well as FAO country yield. For each time series of the target crop yield, we firstly applied a local kernel regression to represent the long-term trend component. Next, the deviations of yearly yield from the long-term trend component were defined as ΔY(i, y) in year y at grid i. Then, the correlation of deviation between grids i and j in year y is defined as Cij(y) = ΔY(i, y) ΔY(j, y). In addition, Pij = <ΔY(i, y) ΔY(j, y)> represents the time-averaged correlation of deviation between grids i and j. Bracket <...> means the time average operation over 25 years (1982-2006). As the results, figures show the time changes in the number of grid pairs, in which both the deviation are negative. It represent the time changes in ratio of the grid pairs where both crop yields synchronically decreased to the total grid pairs. The years denoted by arrows in the figures indicate the case that all the ratios of three country pairs (i.e. China-USA, USA-Brazil and Brazil-China) are relatively larger (>0.6 for soybean and >0.5 for maize). This suggests that the reductions in crop yield occurred synchronically in three countries in these years, which are the simultaneous lean years (as of lower yield compared to that of long-term trend).

  11. Reflectance of vegetation, soil, and water. [effects of measurable plant parameters on multispectral signal variations

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Reflectance of crop residues, that are important in reducing wind and water erosion, was more often different from bare soil in band 4 than in bands 5, 6, or 7. The plant parameters leaf area index, plant population, plant cover, and plant height explained 95.9 percent of the variation in band 7 (reflective infrared) digital counts for cotton and 78.2 percent of the variation in digital counts for the combined crops sorghum and corn; hence, measurable plant parameters explain most of the signal variation recorded for corpland. Leaf area index and plant population are both highly correlated with crop yields; since plant population can be readily measured (or possibly inferred from seeding rates), it is useful measurement for calibrating ERTS-type MSS digital data in terms of yield.

  12. Transgressive variation for yield components and dynamic traits in Jefferson (Oryza sativa) x O. rufipogon introgression lines

    USDA-ARS?s Scientific Manuscript database

    Alleles from wild progenitors of crops can be a source of transgressive variation in modern cultivars. Introgressions from the Oryza rufipogon donor (IRGC104591) in an O. sativa tropical japonica cultivar (Jefferson) were shown to confer a yield advantage in multi-location field trials. Yield loci...

  13. Uncertainty in simulating wheat yields under climate change

    NASA Astrophysics Data System (ADS)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P. J.; Rötter, R. P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P. K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Osborne, T. M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J. W.; Williams, J. R.; Wolf, J.

    2013-09-01

    Projections of climate change impacts on crop yields are inherently uncertain. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.

  14. Yield estimation of sugarcane based on agrometeorological-spectral models

    NASA Technical Reports Server (NTRS)

    Rudorff, Bernardo Friedrich Theodor; Batista, Getulio Teixeira

    1990-01-01

    This work has the objective to assess the performance of a yield estimation model for sugarcane (Succharum officinarum). The model uses orbital gathered spectral data along with yield estimated from an agrometeorological model. The test site includes the sugarcane plantations of the Barra Grande Plant located in Lencois Paulista municipality in Sao Paulo State. Production data of four crop years were analyzed. Yield data observed in the first crop year (1983/84) were regressed against spectral and agrometeorological data of that same year. This provided the model to predict the yield for the following crop year i.e., 1984/85. The model to predict the yield of subsequent years (up to 1987/88) were developed similarly, incorporating all previous years data. The yield estimations obtained from these models explained 69, 54, and 50 percent of the yield variation in the 1984/85, 1985/86, and 1986/87 crop years, respectively. The accuracy of yield estimations based on spectral data only (vegetation index model) and on agrometeorological data only (agrometeorological model) were also investigated.

  15. The Role of Climate Covariability on Crop Yields in the Conterminous United States

    DOE PAGES

    Leng, Guoyong; Zhang, Xuesong; Huang, Maoyi; ...

    2016-09-12

    The covariability of temperature (T), precipitation (P) and radiation (R) is an important aspect in understanding the climate influence on crop yields. Here in this paper, we analyze county-level corn and soybean yields and observed climate for the period 1983–2012 to understand how growing-season (June, July and August) mean T, P and R influence crop yields jointly and in isolation across the CONterminous United States (CONUS). Results show that nationally averaged corn and soybean yields exhibit large interannual variability of 21% and 22%, of which 35% and 32% can be significantly explained by T and P, respectively. By including R,more » an additional of 5% in variability can be explained for both crops. Using partial regression analyses, we find that studies that ignore the covariability among T, P, and R can substantially overestimate the sensitivity of crop yields to a single climate factor at the county scale. Further analyses indicate large spatial variation in the relative contributions of different climate variables to the variability of historical corn and soybean yields. Finally, the structure of the dominant climate factors did not change substantially over 1983–2012, confirming the robustness of the findings, which have important implications for crop yield prediction and crop model validations.« less

  16. Simulation of crop yield variability by improved root-soil-interaction modelling

    NASA Astrophysics Data System (ADS)

    Duan, X.; Gayler, S.; Priesack, E.

    2009-04-01

    Understanding the processes and factors that govern the within-field variability in crop yield has attached great importance due to applications in precision agriculture. Crop response to environment at field scale is a complex dynamic process involving the interactions of soil characteristics, weather conditions and crop management. The numerous static factors combined with temporal variations make it very difficult to identify and manage the variability pattern. Therefore, crop simulation models are considered to be useful tools in analyzing separately the effects of change in soil or weather conditions on the spatial variability, in order to identify the cause of yield variability and to quantify the spatial and temporal variation. However, tests showed that usual crop models such as CERES-Wheat and CERES-Maize were not able to quantify the observed within-field yield variability, while their performance on crop growth simulation under more homogeneous and mainly non-limiting conditions was sufficent to simulate average yields at the field-scale. On a study site in South Germany, within-field variability in crop growth has been documented since years. After detailed analysis and classification of the soil patterns, two site specific factors, the plant-available-water and the O2 deficiency, were considered as the main causes of the crop growth variability in this field. Based on our measurement of root distribution in the soil profile, we hypothesize that in our case the insufficiency of the applied crop models to simulate the yield variability can be due to the oversimplification of the involved root models which fail to be sensitive to different soil conditions. In this study, the root growth model described by Jones et al. (1991) was adapted by using data of root distributions in the field and linking the adapted root model to the CERES crop model. The ability of the new root model to increase the sensitivity of the CERES crop models to different enviromental conditions was then evaluated by means of comparison of the simualtion results with measured data and by scenario calculations.

  17. Crop yield monitoring in the Sahel using root zone soil moisture anomalies derived from SMOS soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian

    2017-04-01

    West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were compared to 17 years of crop yield estimates from the FAOSTAT database (1998-2014). Results showed that the 30-cm soil moisture anomalies explained 89% of the crop yield variation in Niger, 72% in Burkina Faso, 82% in Mali and 84% in Senegal.

  18. National Variation in Crop Yield Production Functions

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Rising, J. A.

    2017-12-01

    A new multilevel model for yield prediction at the county scale using regional climate covariates is presented in this paper. A new crop specific water deficit index, growing degree days, extreme degree days, and time-trend as an approximation of technology improvements are used as predictors to estimate annual crop yields for each county from 1949 to 2009. Every county in the United States is allowed to have unique parameters describing how these weather predictors are related to yield outcomes. County-specific parameters are further modeled as varying according to climatic characteristics, allowing the prediction of parameters in regions where crops are not currently grown and into the future. The structural relationships between crop yield and regional climate as well as trends are estimated simultaneously. All counties are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. The model captures up to 60% of the variability in crop yields after removing the effect of technology, does well in out of sample predictions and is useful in relating the climate responses to local bioclimatic factors. We apply the predicted growing models in a cost-benefit analysis to identify the most economically productive crop in each county.

  19. Simulating large-scale crop yield by using perturbed-parameter ensemble method

    NASA Astrophysics Data System (ADS)

    Iizumi, T.; Yokozawa, M.; Sakurai, G.; Nishimori, M.

    2010-12-01

    Toshichika Iizumi, Masayuki Yokozawa, Gen Sakurai, Motoki Nishimori Agro-Meteorology Division, National Institute for Agro-Environmental Sciences, Japan Abstract One of concerning issues of food security under changing climate is to predict the inter-annual variation of crop production induced by climate extremes and modulated climate. To secure food supply for growing world population, methodology that can accurately predict crop yield on a large scale is needed. However, for developing a process-based large-scale crop model with a scale of general circulation models (GCMs), 100 km in latitude and longitude, researchers encounter the difficulties in spatial heterogeneity of available information on crop production such as cultivated cultivars and management. This study proposed an ensemble-based simulation method that uses a process-based crop model and systematic parameter perturbation procedure, taking maize in U.S., China, and Brazil as examples. The crop model was developed modifying the fundamental structure of the Soil and Water Assessment Tool (SWAT) to incorporate the effect of heat stress on yield. We called the new model PRYSBI: the Process-based Regional-scale Yield Simulator with Bayesian Inference. The posterior probability density function (PDF) of 17 parameters, which represents the crop- and grid-specific features of the crop and its uncertainty under given data, was estimated by the Bayesian inversion analysis. We then take 1500 ensemble members of simulated yield values based on the parameter sets sampled from the posterior PDF to describe yearly changes of the yield, i.e. perturbed-parameter ensemble method. The ensemble median for 27 years (1980-2006) was compared with the data aggregated from the county yield. On a country scale, the ensemble median of the simulated yield showed a good correspondence with the reported yield: the Pearson’s correlation coefficient is over 0.6 for all countries. In contrast, on a grid scale, the correspondence is still high in most grids regardless of the countries. However, the model showed comparatively low reproducibility in the slope areas, such as around the Rocky Mountains in South Dakota, around the Great Xing'anling Mountains in Heilongjiang, and around the Brazilian Plateau. As there is a wide-ranging local climate conditions in the complex terrain, such as the slope of mountain, the GCM grid-scale weather inputs is likely one of major sources of error. The results of this study highlight the benefits of the perturbed-parameter ensemble method in simulating crop yield on a GCM grid scale: (1) the posterior PDF of parameter could quantify the uncertainty of parameter value of the crop model associated with the local crop production aspects; (2) the method can explicitly account for the uncertainty of parameter value in the crop model simulations; (3) the method achieve a Monte Carlo approximation of probability of sub-grid scale yield, accounting for the nonlinear response of crop yield to weather and management; (4) the method is therefore appropriate to aggregate the simulated sub-grid scale yields to a grid-scale yield and it may be a reason for high performance of the model in capturing inter-annual variation of yield.

  20. From field to region yield predictions in response to pedo-climatic variations in Eastern Canada

    NASA Astrophysics Data System (ADS)

    JÉGO, G.; Pattey, E.; Liu, J.

    2013-12-01

    The increase in global population coupled with new pressures to produce energy and bioproducts from agricultural land requires an increase in crop productivity. However, the influence of climate and soil variations on crop production and environmental performance is not fully understood and accounted for to define more sustainable and economical management strategies. Regional crop modeling can be a great tool for understanding the impact of climate variations on crop production, for planning grain handling and for assessing the impact of agriculture on the environment, but it is often limited by the availability of input data. The STICS ("Simulateur mulTIdisciplinaire pour les Cultures Standard") crop model, developed by INRA (France) is a functional crop model which has a built-in module to optimize several input parameters by minimizing the difference between calculated and measured output variables, such as Leaf Area Index (LAI). STICS crop model was adapted to the short growing season of the Mixedwood Plains Ecozone using field experiments results, to predict biomass and yield of soybean, spring wheat and corn. To minimize the numbers of inference required for regional applications, 'generic' cultivars rather than specific ones have been calibrated in STICS. After the calibration of several model parameters, the root mean square error (RMSE) of yield and biomass predictions ranged from 10% to 30% for the three crops. A bit more scattering was obtained for LAI (20%

  1. Probabilistic estimates of drought impacts on agricultural production

    NASA Astrophysics Data System (ADS)

    Madadgar, Shahrbanou; AghaKouchak, Amir; Farahmand, Alireza; Davis, Steven J.

    2017-08-01

    Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980-2012, including the Millennium Drought in Australia (2001-2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25-45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops.

  2. Variation of agronomic traits of ravenna grass and its potential as a biomass crop

    USDA-ARS?s Scientific Manuscript database

    Ravenna grass (Tripidium ravennae) is a tall robust bunchgrass with potential as an energy crop. The aim was to investigate the variation of agronomic traits of Ravenna grass. Univariate analyses of traits were conducted on 95 plants from 2013 to 2017. The traits were: biomass yield per plant, C, N,...

  3. Winter camelina: Crop growth, seed yield and quality response to genotype and sowing rate

    USDA-ARS?s Scientific Manuscript database

    Winter camelina [Camelina sativa (L.) Crantz] is a freeze-hardy, early maturing, winter annual crop that allows potential for dual cropping options in short-season temperate environments. However, little is known about genotypic variation of winter camelina or best management for its production. Tra...

  4. Differential Impacts of Climate Change on Crops and Agricultural Regions in India

    NASA Astrophysics Data System (ADS)

    Sharma, A. N.

    2015-12-01

    As India's farmers and policymakers consider potential adaptation strategies to climate change, some questions loom large: - Which climate variables best explain the variability of crop yields? - How does the vulnerability of crop yields to climate vary regionally? - How are these risks likely to change in the future? While process-based crop modelling has started to answer many of these questions, we believe statistical approaches can complement these in improving our understanding of climate vulnerabilities and appropriate responses. We use yield data collected over three decades for more than ten food crops grown in India along with a variety of statistical approaches to answer the above questions. The ability of climate variables to explain yield variation varies greatly by crop and season, which is expected. Equally important, the ability of models to predict crop yields as well as their coefficients varies greatly by district even for districts which are relatively close to each other and similar in their agricultural practices. We believe these results encourage caution and nuance when making projections about climate impacts on crop yields in the future. Most studies about climate impacts on crop yields focus on a handful of major food crops. By extending our analysis to all the crops with long-term district level data in India as well as two growing seasons we gain a more comprehensive picture. Our results indicate that there is a great deal of variability even at relatively small scales, and that this must be taken into account if projections are to be made useful to policymakers.

  5. Food Crops Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Butler, E.; Huybers, P.

    2009-12-01

    Projections of future climate show a warming world and heterogeneous changes in precipitation. Generally, warming temperatures indicate a decrease in crop yields where they are currently grown. However, warmer climate will also open up new areas at high latitudes for crop production. Thus, there is a question whether the warmer climate with decreased yields but potentially increased growing area will produce a net increase or decrease of overall food crop production. We explore this question through a multiple linear regression model linking temperature and precipitation to crop yield. Prior studies have emphasised temporal regression which indicate uniformly decreased yields, but neglect the potentially increased area opened up for crop production. This study provides a compliment to the prior work by exploring this spatial variation. We explore this subject with a multiple linear regression model from temperature, precipitation and crop yield data over the United States. The United States was chosen as the training region for the model because there are good crop data available over the same time frame as climate data and presumably the yield from crops in the United States is optimized with respect to potential yield. We study corn, soybeans, sorghum, hard red winter wheat and soft red winter wheat using monthly averages of temperature and precipitation from NCEP reanalysis and yearly yield data from the National Agriculture Statistics Service for 1948-2008. The use of monthly averaged temperature and precipitation, which neglect extreme events that can have a significant impact on crops limits this study as does the exclusive use of United States agricultural data. The GFDL 2.1 model under a 720ppm CO2 scenario provides temperature and precipitation fields for 2040-2100 which are used to explore how the spatial regions available for crop production will change under these new conditions.

  6. Uncertainty in Simulating Wheat Yields Under Climate Change

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.; hide

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

  7. Improved Satellite-based Crop Yield Mapping by Spatially Explicit Parameterization of Crop Phenology

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Azzari, G.; Lobell, D. B.

    2016-12-01

    Field-scale mapping of crop yields with satellite data often relies on the use of crop simulation models. However, these approaches can be hampered by inaccuracies in the simulation of crop phenology. Here we present and test an approach to use dense time series of Landsat 7 and 8 acquisitions data to calibrate various parameters related to crop phenology simulation, such as leaf number and leaf appearance rates. These parameters are then mapped across the Midwestern United States for maize and soybean, and for two different simulation models. We then implement our recently developed Scalable satellite-based Crop Yield Mapper (SCYM) with simulations reflecting the improved phenology parameterizations, and compare to prior estimates based on default phenology routines. Our preliminary results show that the proposed method can effectively alleviate the underestimation of early-season LAI by the default Agricultural Production Systems sIMulator (APSIM), and that spatially explicit parameterization for the phenology model substantially improves the SCYM performance in capturing the spatiotemporal variation in maize and soybean yield. The scheme presented in our study thus preserves the scalability of SCYM, while significantly reducing its uncertainty.

  8. Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.

    2017-12-01

    Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.

  9. Regional crop gross primary production and yield estimation using fused Landsat-MODIS data

    NASA Astrophysics Data System (ADS)

    He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.

    2017-12-01

    Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, p<0.05). The estimated crop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.

  10. Climate Variability and Yields of Major Staple Food Crops in Northern Ghana

    NASA Astrophysics Data System (ADS)

    Amikuzuno, J.

    2012-12-01

    Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.

  11. Global assessment of nitrogen losses and trade-offs with yields from major crop cultivations.

    PubMed

    Liu, Wenfeng; Yang, Hong; Liu, Junguo; Azevedo, Ligia B; Wang, Xiuying; Xu, Zongxue; Abbaspour, Karim C; Schulin, Rainer

    2016-12-01

    Agricultural application of reactive nitrogen (N) for fertilization is a cause of massive negative environmental problems on a global scale. However, spatially explicit and crop-specific information on global N losses into the environment and knowledge of trade-offs between N losses and crop yields are largely lacking. We use a crop growth model, Python-based Environmental Policy Integrated Climate (PEPIC), to determine global N losses from three major food crops: maize, rice, and wheat. Simulated total N losses into the environment (including water and atmosphere) are 44TgNyr -1 . Two thirds of these, or 29TgNyr -1 , are losses to water alone. Rice accounts for the highest N losses, followed by wheat and maize. The N loss intensity (NLI), defined as N losses per unit of yield, is used to address trade-offs between N losses and crop yields. The NLI presents high variation among different countries, indicating diverse N losses to produce the same amount of yields. Simulations of mitigation scenarios indicate that redistributing global N inputs and improving N management could significantly abate N losses and at the same time even increase yields without any additional total N inputs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The importance of key floral bioactive compounds to honey bees for the detection and attraction of hybrid vegetable crops and increased seed yield.

    PubMed

    Mas, Flore; Harper, Aimee; Horner, Rachael; Welsh, Taylor; Jaksons, Peter; Suckling, David M

    2018-02-15

    Crop breeding programmes generally select for traits for improved yield and human consumption preferences. Yet, they often overlook one fundamental trait essential for insect-pollinated crops: pollinator attraction. This is even more critical for hybrid plants that rely on cross-pollination between the male-fertile line and the male-sterile line to set seeds. This study investigated the role of floral odours for honey bee pollination that could explain the poor seed yield in hybrid crops. The key floral bioactive compounds that honey bees detect were identified for three vegetable hybrid crops. It was found that 30% of the variation in bioactive compound quantities was explained by variety. Differences in quantities of the bioactive compounds triggered different degrees of olfactory response and were also associated with varied appetitive response. Correlating the abundance of each bioactive compound with seed yield, it was found that aldehydes such as nonanal and decanal can have a strong negative influence on seed yield with increasing quantity. Using these methodologies to identify relevant bioactive compounds associated with honey bee pollination, plant breeding programmes should also consider selecting for floral traits attractive to honey bees to improve crop pollination for enhanced seed yield. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. Precision agriculture in dry land: spatial variability of crop yield and roles of soil surveys, aerial photos, and digital elevation models

    NASA Astrophysics Data System (ADS)

    Nachabe, Mahmood; Ahuja, Laj; Shaffer, Mary Lou; Ascough, J.; Flynn, Brian; Cipra, J.

    1998-12-01

    In dryland, yield of crop varies substantially in space, often changing by an order of magnitude within few meters. Precision agriculture aims at exploiting this variability by changing agriculture management practices in space according to site specific conditions. Thus instead of managing a field (typical area 50 to 100 hectares) as a single unit using average conditions, the field is partitioned into small pieces of land known as management units. The size of management units can be in the order of 100 to 1,000 m2 to capture the patterns of variation of yield in the field. Agricultural practices like seeding rate, type of crop, and tillage and fertilizers are applied at the scale of the management unit to suit local agronomic conditions in unit. If successfully practiced, precision agriculture has the potential of increasing income and minimizing environmental impacts by reducing over application of crop production inputs. In the 90s, the implementation of precision agriculture was facilitated tremendously due to the wide availability and use of three technologies: (1) the Global Positioning System (GPS), (2) the Geographic Information System (GIS), and (3) remote sensing. The introduction of the GPS allowed the farmer to determine his coordinate location as equipments are moved in the field. Thus, any piece of equipment can be easily programmed to vary agricultural practices according to coordinate location over the field. The GIS allowed the storage and manipulation of large sets of data and the production of yield maps. Yield maps can be correlated with soil attributes from soil survey, and/or topographical attributes from a Digital Elevation Model (DEM). This helps predicting variation of potential yield over the landscape based on the spatial distribution of soil and topographical attributes. Soil attributes may include soil PH, Organic Matter, porosity, and hydraulic conductivity, whereas topographical attributes involve the estimations of elevation, slope, aspect, curvature, and specific catchment area. Finally remote sensing provided a means of assessing soil and crop conditions over large scales from the air, without excessive sampling on the ground. There are two objectives for this work. The first objective is to analyze the spatial variability of yield across a spectrum of scales to identify the spatial characteristics of yield variation; in essence, we are trying to answer the following questions, at what scale of management unit we should resolve the field level variability and what is the relationship between this resolution and the observed variability form a yield map? The second objective is to identify the soil and topographical attributes that control yield variation over the landscape topography. We already know that, because erosion and deposition are major processes in the formation of a catena, soil variations occur in response to surface and subsurface flow over the landscape. Also landscape positions corresponding to low elevation tend to have high catchment area which usually results in high soil water content in the root zone and thick A horizon. Can topographical attributes explain yield variation observed in the landscape? Will topographical attributes extracted from a DEM compensate for the relatively poor spatial resolution from a soil survey?

  14. Future Warming Increases Global Maize Yield Variability with Implications for Food Markets

    NASA Astrophysics Data System (ADS)

    Tigchelaar, M.; Battisti, D. S.; Naylor, R. L.; Ray, D. K.

    2017-12-01

    If current trends in population growth and dietary shifts continue, the world will need to produce about 70% more food by 2050, while earth's climate is rapidly changing. Rising temperatures in particular are projected to negatively impact agricultural production, as the world's staple crops perform poorly in extreme heat. Theoretical models suggest that as temperatures rise above plants' optimal temperature for performance, not only will mean yields decline rapidly, but the variability of yields will increase, even as interannual variations in climate remain unchanged. Here we use global datasets of maize production and climate variability combined with CMIP5 temperature projections to quantify how yield variability will change in major maize producing countries under 2°C and 4°C of global warming. Maize is the world's most produced crop, and is linked to other staple crops through substitution in consumption and production. We find that in warmer climates - absent any breeding gains in heat tolerance - the Coefficient of Variation (CV) of maize yields increases almost everywhere, to values much larger than present-day. This increase in CV is due both to an increase in the standard deviation of yields, and a decrease in mean yields. In locations where crop failures become the norm under high (4°C) warming (mostly in tropical, low-yield environments), the standard deviation of yields ultimately decreases. The probability that in any given year the most productive areas in the top three maize producing countries (United States, China, Brazil) have simultaneous production losses greater than 10% is virtually zero under present-day climate conditions, but increases to 12% under 2°C warming, and 89% under 4°C warming. This has major implications for global food markets and staple crop prices, affecting especially the 2.5 billion people that comprise the world's poor, who already spend the majority of their disposable income on food and are particularly vulnerable to agricultural price spikes.

  15. Observed Variation in Carbon and Water Exchange Across Crop Types, Seasons, and Years in Un-irrigated Land of the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Billesbach, D. P.; Riley, W. J.; Berry, J. A.; Torn, M. S.

    2004-12-01

    Accurate prediction of the regional responses of carbon and water fluxes to changing climate, land use, and management requires models that are parameterized and tested against measurements made in multiple land cover types and over seasonal and inter-annual time scales. In particular, modelers predicting fluxes for un-irrigated agriculture are posed with the additional challenge of characterizing the onset and severity of water stress. We report results from three years of an ongoing series of measurement campaigns that quantify the spatial heterogeneity of land surface-atmosphere exchanges of carbon dioxide, water, and energy. Eddy covariance flux measurements were made in pastures and dominant crop types surrounding the US-DOE Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma (36.605 N, 97.485 W). Ancillary measurements included radiation budget, meteorology, soil moisture and temperature, leaf area index, plant biomass, and plant and soil carbon and nitrogen content. Within a given year, the dominant spatial variation in fluxes of carbon, water, and energy are caused by variations of land cover due to the distinct phenology of winter-spring (winter wheat) versus summer crops (e.g., pasture, sorghum, soybeans). Within crop and yearly variations were smaller. In 2002, variations in net ecosystem carbon exchange (NEE), for three closely spaced winter wheat fields was 10-20%. Variations between years for the same crop types were also large. Net primary production (NPP) of winter wheat in the spring of 2003 versus 2002 increased by a factor of two, while NEE increased by 35%. The large increase in production and NEE are positively correlated with precipitation, integrated over the previous summer-fall periods. We discuss the implications of these results by extracting and comparing factors relevant for parameterization of land surface models and by comparing crop yield with historic variations in yield at the landscape scale.

  16. A decade of precision agriculture impacts on grain yield and yield variation

    USDA-ARS?s Scientific Manuscript database

    Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century, including simultaneously improving crop yields and reducing environmental impacts. Although the potential is high, few studies have do...

  17. Fusion of multi-source remote sensing data for agriculture monitoring tasks

    NASA Astrophysics Data System (ADS)

    Skakun, S.; Franch, B.; Vermote, E.; Roger, J. C.; Becker Reshef, I.; Justice, C. O.; Masek, J. G.; Murphy, E.

    2016-12-01

    Remote sensing data is essential source of information for enabling monitoring and quantification of crop state at global and regional scales. Crop mapping, state assessment, area estimation and yield forecasting are the main tasks that are being addressed within GEO-GLAM. Efficiency of agriculture monitoring can be improved when heterogeneous multi-source remote sensing datasets are integrated. Here, we present several case studies of utilizing MODIS, Landsat-8 and Sentinel-2 data along with meteorological data (growing degree days - GDD) for winter wheat yield forecasting, mapping and area estimation. Archived coarse spatial resolution data, such as MODIS, VIIRS and AVHRR, can provide daily global observations that coupled with statistical data on crop yield can enable the development of empirical models for timely yield forecasting at national level. With the availability of high-temporal and high spatial resolution Landsat-8 and Sentinel-2A imagery, course resolution empirical yield models can be downscaled to provide yield estimates at regional and field scale. In particular, we present the case study of downscaling the MODIS CMG based generalized winter wheat yield forecasting model to high spatial resolution data sets, namely harmonized Landsat-8 - Sentinel-2A surface reflectance product (HLS). Since the yield model requires corresponding in season crop masks, we propose an automatic approach to extract winter crop maps from MODIS NDVI and MERRA2 derived GDD using Gaussian mixture model (GMM). Validation for the state of Kansas (US) and Ukraine showed that the approach can yield accuracies > 90% without using reference (ground truth) data sets. Another application of yearly derived winter crop maps is their use for stratification purposes within area frame sampling for crop area estimation. In particular, one can simulate the dependence of error (coefficient of variation) on the number of samples and strata size. This approach was used for estimating the area of winter crops in Ukraine for 2013-2016. The GMM-GDD approach is further extended for HLS data to provide automatic winter crop mapping at 30 m resolution for crop yield model and area estimation. In case of persistent cloudiness, addition of Sentinel-1A synthetic aperture radar (SAR) images is explored for automatic winter crop mapping.

  18. Critical Climate-Sensitive and Important Grain-Producing Regions: Grain Production/Yield Variations Due to Climate Fluctuations. Volume 1

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    2004-01-01

    Ideally, the Crop Country Inventory, CCI, is a methodology for the pre-harvest prediction of large variations in a country s crop production. This is accomplished by monitoring the historical climatic fluctuations, especially during the crop calendar period, in a climate sensitive large crop production region or sub-country, rather than the entire country. The argument can be made that the climatic fluctuations in the climatic sensitive region are responsible for the major annual crop country variations and that the remainder of the country, without major climatic fluctuations for a given year, can be assumed to be a steady-state crop producer. The principal data set that has been used is the Global Climate Mode (GCM) data from the National Center for Environmental Prediction (NCEP), taken over the last half century. As a test of its accuracy, GCM data can and has been correlated with the actual meteorological station data at the station site.

  19. Soybean yield in relation to distance from the Itaipu reservoir

    NASA Astrophysics Data System (ADS)

    de Faria, Rogério Teixeira; Junior, Ruy Casão; Werner, Simone Silmara; Junior, Luiz Antônio Zanão; Hoogenboom, Gerrit

    2016-07-01

    Crops close to small water bodies may exhibit changes in yield if the water mass causes significant changes in the microclimate of areas near the reservoir shoreline. The scientific literature describes this effect as occurring gradually, with higher intensity in the sites near the shoreline and decreasing intensity with distance from the reservoir. Experiments with two soybean cultivars were conducted during four crop seasons to evaluate soybean yield in relation to distance from the Itaipu reservoir and determine the effect of air temperature and water availability on soybean crop yield. Fifteen experimental sites were distributed in three transects perpendicular to the Itaipu reservoir, covering an area at approximately 10 km from the shoreline. The yield gradient between the site closest to the reservoir and the sites farther away in each transect did not show a consistent trend, but varied as a function of distance, crop season, and cultivar. This finding indicates that the Itaipu reservoir does not affect the yield of soybean plants grown within approximately 10 km from the shoreline. In addition, the variation in yield among the experimental sites was not attributed to thermal conditions because the temperature was similar within transects. However, the crop water availability was responsible for higher differences in yield among the neighboring experimental sites related to water stress caused by spatial variability in rainfall, especially during the soybean reproductive period in January and February.

  20. Impacts of climate variability and change on crop yield in sub-Sahara Africa

    NASA Astrophysics Data System (ADS)

    Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.

    2017-12-01

    Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.

  1. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.

    2003-01-01

    In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.

  2. Crop responses to climatic variation

    PubMed Central

    Porter, John R; Semenov, Mikhail A

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal resolution. This paper demonstrates the impacts of climate variability for crop production in a number of crops. Increasing temperature and precipitation variability increases the risks to yield, as shown via computer simulation and experimental studies. The issue of food quality has not been given sufficient importance when assessing the impact of climate change for food and this is addressed. Using simulation models of wheat, the concentration of grain protein is shown to respond to changes in the mean and variability of temperature and precipitation events. The paper concludes with discussion of adaptation possibilities for crops in response to drought and argues that characters that enable better exploration of the soil and slower leaf canopy expansion could lead to crop higher transpiration efficiency. PMID:16433091

  3. Quantifying the thermal heat requirement of Brassica in assessing biophysical parameters under semi-arid microenvironments

    NASA Astrophysics Data System (ADS)

    Adak, Tarun; Chakravarty, N. V. K.

    2010-07-01

    Evaluation of the thermal heat requirement of Brassica spp. across agro-ecological regions is required in order to understand the further effects of climate change. Spatio-temporal changes in hydrothermal regimes are likely to affect the physiological growth pattern of the crop, which in turn will affect economic yields and crop quality. Such information is helpful in developing crop simulation models to describe the differential thermal regimes that prevail at different phenophases of the crop. Thus, the current lack of quantitative information on the thermal heat requirement of Brassica crops under debranched microenvironments prompted the present study, which set out to examine the response of biophysical parameters [leaf area index (LAI), dry biomass production, seed yield and oil content] to modified microenvironments. Following 2 years of field experiments on Typic Ustocrepts soils under semi-arid climatic conditions, it was concluded that the Brassica crop is significantly responsive to microenvironment modification. A highly significant and curvilinear relationship was observed between LAI and dry biomass production with accumulated heat units, with thermal accumulation explaining ≥80% of the variation in LAI and dry biomass production. It was further observed that the economic seed yield and oil content, which are a function of the prevailing weather conditions, were significantly responsive to the heat units accumulated from sowing to 50% physiological maturity. Linear regression analysis showed that growing degree days (GDD) could indicate 60-70% variation in seed yield and oil content, probably because of the significant response to differential thermal microenvironments. The present study illustrates the statistically strong and significant response of biophysical parameters of Brassica spp. to microenvironment modification in semi-arid regions of northern India.

  4. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    DOE PAGES

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    2017-07-10

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981–2004 hindcast yields over the coterminous United States (US) against US Departmentmore » of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. In conclusion, this disparity is largely attributable to heterogeneity in GGCMs' responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.« less

  5. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981–2004 hindcast yields over the coterminous United States (US) against US Departmentmore » of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. In conclusion, this disparity is largely attributable to heterogeneity in GGCMs' responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.« less

  6. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    NASA Astrophysics Data System (ADS)

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    2017-07-01

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981-2004 hindcast yields over the coterminous United States (US) against US Department of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. This disparity is largely attributable to heterogeneity in GGCMs’ responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.

  7. Linkages among climate change, crop yields and Mexico–US cross-border migration

    PubMed Central

    Feng, Shuaizhang; Krueger, Alan B.; Oppenheimer, Michael

    2010-01-01

    Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately −0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15–65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming. PMID:20660749

  8. Linkages among climate change, crop yields and Mexico-US cross-border migration.

    PubMed

    Feng, Shuaizhang; Krueger, Alan B; Oppenheimer, Michael

    2010-08-10

    Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately -0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15-65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming.

  9. A probabilistic model framework for evaluating year-to-year variation in crop productivity

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Iizumi, T.; Tao, F.

    2008-12-01

    Most models describing the relation between crop productivity and weather condition have so far been focused on mean changes of crop yield. For keeping stable food supply against abnormal weather as well as climate change, evaluating the year-to-year variations in crop productivity rather than the mean changes is more essential. We here propose a new framework of probabilistic model based on Bayesian inference and Monte Carlo simulation. As an example, we firstly introduce a model on paddy rice production in Japan. It is called PRYSBI (Process- based Regional rice Yield Simulator with Bayesian Inference; Iizumi et al., 2008). The model structure is the same as that of SIMRIW, which was developed and used widely in Japan. The model includes three sub- models describing phenological development, biomass accumulation and maturing of rice crop. These processes are formulated to include response nature of rice plant to weather condition. This model inherently was developed to predict rice growth and yield at plot paddy scale. We applied it to evaluate the large scale rice production with keeping the same model structure. Alternatively, we assumed the parameters as stochastic variables. In order to let the model catch up actual yield at larger scale, model parameters were determined based on agricultural statistical data of each prefecture of Japan together with weather data averaged over the region. The posterior probability distribution functions (PDFs) of parameters included in the model were obtained using Bayesian inference. The MCMC (Markov Chain Monte Carlo) algorithm was conducted to numerically solve the Bayesian theorem. For evaluating the year-to-year changes in rice growth/yield under this framework, we firstly iterate simulations with set of parameter values sampled from the estimated posterior PDF of each parameter and then take the ensemble mean weighted with the posterior PDFs. We will also present another example for maize productivity in China. The framework proposed here provides us information on uncertainties, possibilities and limitations on future improvements in crop model as well.

  10. The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Estes, L. D.; Vergopolan, N.

    2017-12-01

    Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water stress. Understanding the relationships between soil moisture spatiotemporal variability and yields can help to improve agricultural drought risk assessment and seasonal crop yield forecasting as well as early season warning of potential famines.

  11. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s

    PubMed Central

    Hawkins, Ed; Fricker, Thomas E; Challinor, Andrew J; Ferro, Christopher A T; Kit Ho, Chun; Osborne, Tom M

    2013-01-01

    Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. PMID:23504849

  12. Population pressure and agricultural productivity in Bangladesh.

    PubMed

    Chaudhury, R H

    1983-01-01

    The relationship between population pressure or density and agricultural productivity is examined by analyzing the changes in the land-man ratio and the changes in the level of land yield in the 17 districts of Bangladesh from 1961-64 and 1974-77. The earlier years were pre-Green Revolution, whereas in the later years new technology had been introduced in some parts of the country. Net sown area, value of total agricultural output, and number of male agricultural workers were the main variables. For the country as a whole, agricultural output grew by 1.2%/year during 1961-64 to 1974-77, while the number of male agricultural workers grew at 1.5%/year. The major source of agricultural growth during the 1960s was found to be increased land-yield associated with a higher ratio of labor to land. The findings imply that a more intensified pattern of land use, resulting in both higher yield and higher labor input/unit of land, is the main source of growth of output and employment in agriculture. There is very little scope for extending the arable area in Bangladesh; increased production must come from multiple cropping, especially through expansion of irrigation and drainage, and from increases in per acre yields, principly through adoption of high yield variants, which explained 87% of the variation in output per acre during the 1970s. Regional variation in output was also associated with variation in cropping intensity and proportion of land given to high yield variants. There is considerable room for modernizing agricultural technology in Bangladesh: in 1975-76 less than 9% of total crop land was irrigated and only 12% of total acreage was under high yield variants. The adoption of new food-grain technology and increased use of high yield variants in Bangladesh's predominantly subsistence-based agriculture would require far-reaching institutional and organizational changes and more capital. Without effective population control, expansion of area under high yield variants would not improve the employment situation in the foreseeable future.

  13. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes

    PubMed Central

    Dwivedi, Sangam L.; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro

    2017-01-01

    There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and overall genetic gain of multigenic traits. An integrated approach involving multiple stakeholders specializing in management and utilization of genetic resources, crop breeding, molecular biology and genomics, agronomy, stress tolerance, and reproductive/seed biology will help to address the global challenge of ensuring food security in the face of growing resource demands and climate change induced stresses. PMID:28900432

  14. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes.

    PubMed

    Dwivedi, Sangam L; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro

    2017-01-01

    There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and overall genetic gain of multigenic traits. An integrated approach involving multiple stakeholders specializing in management and utilization of genetic resources, crop breeding, molecular biology and genomics, agronomy, stress tolerance, and reproductive/seed biology will help to address the global challenge of ensuring food security in the face of growing resource demands and climate change induced stresses.

  15. Modeling global yield growth of major crops under multiple socioeconomic pathways

    NASA Astrophysics Data System (ADS)

    Iizumi, T.; Kim, W.; Zhihong, S.; Nishimori, M.

    2016-12-01

    Global gridded crop models (GGCMs) are a key tool in deriving global food security scenarios under climate change. However, it is difficult for GGCMs to reproduce the reported yield growth patterns—rapid growth, yield stagnation and yield collapse. Here, we propose a set of parameterizations for GGCMs to capture the contributions to yield from technological improvements at the national and multi-decadal scales. These include country annual per capita gross domestic product (GDP)-based parameterizations for the nitrogen application rate and crop tolerance to stresses associated with high temperature, low temperature, water deficit and water excess. Using a GGCM combined with the parameterizations, we present global 140-year (1961-2100) yield growth simulations for maize, soybean, rice and wheat under multiple shared socioeconomic pathways (SSPs) and no climate change. The model reproduces the major characteristics of reported global and country yield growth patterns over the 1961-2013 period. Under the most rapid developmental pathway SSP5, the simulated global yields for 2091-2100, relative to 2001-2010, are the highest (1.21-1.82 times as high, with variations across the crops), followed by SSP1 (1.14-1.56 times as high), SSP2 (1.12-1.49 times as high), SSP4 (1.08-1.38 times as high) and SSP3 (1.08-1.36 times as high). Future country yield growth varies substantially by income level as well as by crop and by SSP. These yield pathways offer a new baseline for addressing the interdisciplinary questions related to global agricultural development, food security and climate change.

  16. A comparative analysis of transcriptomic, biochemical and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops

    USDA-ARS?s Scientific Manuscript database

    Current concentrations of tropospheric ozone (O3) pollution negatively impact plant metabolism, which can result in decreased crop yields. Interspecific variation in the physiological response of plants to elevated [O3] exists; however, the underlying cellular responses explaining species-specific d...

  17. The effect of soil moisture anomalies on maize yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Thober, Stephan; Meyer, Volker; Samaniego, Luis

    2018-03-01

    Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.

  18. Cultivar variation in cotton photosynthetic performance under different temperature regimes

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis when plants were grown in the field under...

  19. Targeting carbon for crop yield and drought resilience

    PubMed Central

    Griffiths, Cara A

    2017-01-01

    Abstract Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step‐change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28653336

  20. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato.

    PubMed

    Soyk, Sebastian; Müller, Niels A; Park, Soon Ju; Schmalenbach, Inga; Jiang, Ke; Hayama, Ryosuke; Zhang, Lei; Van Eck, Joyce; Jiménez-Gómez, José M; Lippman, Zachary B

    2017-01-01

    Plants evolved so that their flowering is triggered by seasonal changes in day length. However, day-length sensitivity in crops limits their geographical range of cultivation, and thus modification of the photoperiod response was critical for their domestication. Here we show that loss of day-length-sensitive flowering in tomato was driven by the florigen paralog and flowering repressor SELF-PRUNING 5G (SP5G). SP5G expression is induced to high levels during long days in wild species, but not in cultivated tomato because of cis-regulatory variation. CRISPR/Cas9-engineered mutations in SP5G cause rapid flowering and enhance the compact determinate growth habit of field tomatoes, resulting in a quick burst of flower production that translates to an early yield. Our findings suggest that pre-existing variation in SP5G facilitated the expansion of cultivated tomato beyond its origin near the equator in South America, and they provide a compelling demonstration of the power of gene editing to rapidly improve yield traits in crop breeding.

  1. Electrical resistivity tomography to delineate greenhouse soil variability

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Amato, M.; Bitella, G.; Bochicchio, R.

    2013-03-01

    Appropriate management of soil spatial variability is an important tool for optimizing farming inputs, with the result of yield increase and reduction of the environmental impact in field crops. Under greenhouses, several factors such as non-uniform irrigation and localized soil compaction can severely affect yield and quality. Additionally, if soil spatial variability is not taken into account, yield deficiencies are often compensated by extra-volumes of crop inputs; as a result, over-irrigation and overfertilization in some parts of the field may occur. Technology for spatially sound management of greenhouse crops is therefore needed to increase yield and quality and to address sustainability. In this experiment, 2D-electrical resistivity tomography was used as an exploratory tool to characterize greenhouse soil variability and its relations to wild rocket yield. Soil resistivity well matched biomass variation (R2=0.70), and was linked to differences in soil bulk density (R2=0.90), and clay content (R2=0.77). Electrical resistivity tomography shows a great potential in horticulture where there is a growing demand of sustainability coupled with the necessity of stabilizing yield and product quality.

  2. Yield response to landscape position under variable N for irrigated corn

    USDA-ARS?s Scientific Manuscript database

    Variable nutrient and water supply can result in spatial and temporal variation in crop yield within a given agricultural field. For the western Corn Belt, irrigated corn accounts for 58% of total annual corn production with the majority grown in Nebraska. Although irrigation decreases temporal yi...

  3. Natural genetic variation for morphological and molecular determinants of plant growth and yield.

    PubMed

    Nunes-Nesi, Adriano; Nascimento, Vitor de Laia; de Oliveira Silva, Franklin Magnum; Zsögön, Agustin; Araújo, Wagner L; Sulpice, Ronan

    2016-05-01

    The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Soybean Cultivar Variation in Response to Elevated Ozone Concentration

    USDA-ARS?s Scientific Manuscript database

    Crop losses to ozone damage are conservatively estimated to cost $1 to $3 billion in the U.S. These costs will rise as surface-level ozone increases over this century. A critical step in maximizing soybean yield in a future of rising tropospheric ozone is identifying variation in cultivar responses,...

  5. Global warming threatens agricultural productivity in Africa and South Asia

    NASA Astrophysics Data System (ADS)

    Sultan, Benjamin

    2012-12-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; Christensen et al 2007) has, with greater confidence than previous reports, warned the international community that the increase in anthropogenic greenhouse gases emissions will result in global climate change. One of the most direct and threatening impacts it may have on human societies is the potential consequences on global crop production. Indeed agriculture is considered as the most weather-dependent of all human activities (Hansen 2002) since climate is a primary determinant for agricultural productivity. The potential impact of climate change on crop productivity is an additional strain on the global food system which is already facing the difficult challenge of increasing food production to feed a projected 9 billion people by 2050 with changing consumption patterns and growing scarcity of water and land (Beddington 2010). In some regions such as Sub-Saharan Africa or South Asia that are already food insecure and where most of the population increase and economic development will take place, climate change could be the additional stress that pushes systems over the edge. A striking example, if needed, is the work from Collomb (1999) which estimates that by 2050 food needs will more than quintuple in Africa and more than double in Asia. Better knowledge of climate change impacts on crop productivity in those vulnerable regions is crucial to inform policies and to support adaptation strategies that may counteract the adverse effects. Although there is a growing literature on the impact of climate change on crop productivity in tropical regions, it is difficult to provide a consistent assessment of future yield changes because of large uncertainties in regional climate change projections, in the response of crops to environmental change (rainfall, temperature, CO2 concentration), in the coupling between climate models and crop productivity functions, and in the adaptation of agricultural systems to progressive climate change (Roudier et al 2011, Challinor et al 2007). These uncertainties result in a large spread of crop yield projections indicating a low confidence in future yield projections. A recent study by Knox et al (2012) is among the first to provide robust evidence of how climate change will impact productivity of major crops in Africa and South Asia. Using a meta-analysis, which is widely used in epidemiology and medicine and consists in comparing and combining results from different independent published studies, Knox et al (2012) show a consistent yield loss by the 2050s of major crops (wheat, maize, sorghum and millet) in both regions. This systematic review and meta-analysis of data in 52 original publications from an initial screen of 1144 studies nicely extend previous works by Müller et al (2011) and Roudier et al (2011), confirming the threat of negative climate change impacts in Africa but also in South Asia. Knox et al (2012) estimate that mean yield change for all crops is -8% by the 2050s with strong variations among crops and regions. For instance evidence of yield reduction up to -40% are detected for some regions of Africa while no mean yield change is detected for rice in India. Variations in crop yield projections decrease when considering a large number of climate models confirming the relevance of the expanded use of multi-model ensembles of projections of future climate change adopted in the IPCC Fourth Assessment Report. Conversely, variations in crop yield projections increase with the crop model complexity especially when using process-based crop models over statistical models. Such differences in crop yield variations may be attributed either to the structural differences between crop model approaches or to the spatial scale differences; biophysical crop models operating at finer spatial scales and thus reproducing the higher variability of impacts at these scales. Such robust evidence of future yield change in Africa and South Asia can be surprising in regards to the diverging projections in a warmer climate of summer monsoon rainfall, the primary driver for rainfed crop productivity in the region, especially in West Africa where some studies make projections of wetter conditions and some predict more frequent droughts (Druyan 2011). This is because of the adverse role of higher temperatures in shortening the crop cycle duration and increasing evapotranspiration demand and thus reducing crop yields, irrespective of rainfall changes (Berg et al 2012, Roudier et al 2011, Schlenker and Lobell 2010). Potential wetter conditions or elevated CO2 concentrations hardly counteract the adverse effect of higher temperatures. Although such systematic reviews and meta-analyses conducted by Knox et al (2012), Müller et al (2011) or Roudier et al (2011) can provide important insights about sign, magnitude and uncertainty of climate change impacts, direct comparison among studies suffers from inevitable limitations. In particular the diversity of the studies selected for the meta-analysis, encompassing a range of different countries, scales, crops and methods (climate models and scenarios, crop models, downscaling technique), makes it difficult to aggregate crop yield projections to provide a consistent and precise impact assessment. A rigorous multi-ensembles approach, with varying climate models, emissions scenarios, crop models, and downscaling techniques, as recommended by Challinor et al (2007), would enable a move towards a more complete sampling of uncertainty in crop yield projections. In that sense, coordinated modeling experiments such as the ones conducted throughout the Agricultural Model Intercomparison and Improvement Project (AgMIP; www.agmip.org/) are likely to improve substantially the characterization of the threat of crop yield losses and food insecurity due to climate change. In spite of the threat of crop yield losses in a warmer climate, it is important to keep in mind, as discussed by Berg et al (2012), that developing countries in the tropics have the potential to more than offset such adverse impacts by implementing more intensive agricultural practices and adapting agriculture to climate and environmental change. Indeed Africa and in a lesser extend South Asia are among the only regions of the world where there is an untapped potential for raising agricultural productivity since poor soil fertility and low input levels, combined with extensive agricultural practices, contribute to a large gap between actual and potential yields (Licker et al 2010). References Beddington J 2010 Food security: contributions from science to a new and greener revolution Phil. Trans. R. Soc. B 365 61-71 Berg A, de Noblet-Ducoudré N, Sultan B, Lengaigne N and Guimberteau M 2012 Projections of climate change impacts on potential crop productivity over tropical regions Agric. For. Meteorol. at press (doi:10.1016/j.agrformet.2011.12.003) Challinor A, Wheeler T, Garforth C, Craufurd P and Kassam A 2007 Assessing the vulnerability of food crop systems in Africa to climate change Clim. Change 83 381-99 Christensen J H et al 2007 Regional climate projections Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon, D Qin, M Manning, Z Chen, M Marquis, K B Averyt, M Tignor and H L Miller (Cambridge: Cambridge University Press) Collomb P 1999 A narrow road to food security from now to 2050 FAO Economica (Paris: FAO) Druyan L M 2011 Studies of 21st-century precipitation trends over West Africa Int. J. Climatol. 31 1415-572 Hansen J W 2002 Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges Agric. Syst. 74 309-30 Knox J, Hess T, Daccache A and Wheeler T 2012 Climate change impacts on crop productivity in Africa and South Asia Environ. Res. Lett. 7 034032 Licker R, Johnston M, Foley J A, Barford C, Kucharik C J, Monfreda C and Ramankutty N 2010 Mind the gap: how do climate and agricultural management explain the 'yield gap' of croplands around the world? Glob. Ecol. Biogeogr. 19 769-82 Müller C, Cramer W, Hare W L and Lotze-Campen H 2011 Climate change risks for African agriculture Proc. Natl Acad. Sci. USA 108 4313-5 Roudier P, Sultan S, Quirion P and Berg A 2011 The impact of future climate change on West African crop yields: what does the recent literature say? Glob. Environ. Change 21 1073-83 Schlenker W and Lobell D 2010 Robust negative impacts of climate change on African agriculture Environ. Res. Lett. 5 014010

  6. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  7. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  8. Impacts of multiple global environmental changes on African crop yield and water use efficiency: Implications to food and water security

    NASA Astrophysics Data System (ADS)

    Pan, S.; Yang, J.; Zhang, J.; Xu, R.; Dangal, S. R. S.; Zhang, B.; Tian, H.

    2016-12-01

    Africa is one of the most vulnerable regions in the world to climate change and climate variability. Much concern has been raised about the impacts of climate and other environmental factors on water resource and food security through the climate-water-food nexus. Understanding the responses of crop yield and water use efficiency to environmental changes is particularly important because Africa is well known for widespread poverty, slow economic growth and agricultural systems particularly sensitive to frequent and persistent droughts. However, the lack of integrated understanding has limited our ability to quantify and predict the potential of Africa's agricultural sustainability and freshwater supply, and to better manage the system for meeting an increasing food demand in a way that is socially and environmentally or ecologically sustainable. By using the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop yield, evapotranspiration (ET) and water use efficiency across entire Africa in the past 35 years (1980-2015) and the rest of the 21st century (2016-2099). Our preliminary results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion (about 50%), elevated atmospheric CO2 concentration, and nitrogen deposition. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop yield in the most vulnerable regions. Our results indicate that N fertilizer could be a major driver to improve food security in Africa. Future climate warming could reduce crop yield and shift cropland distribution. Our study further suggests that improving water use efficiency through land management practices including the increased uses of fertilizers and irrigation will be the key for reducing the loss of crop yield in a warming climate and extreme weather.

  9. Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments.

    PubMed

    Hasegawa, Toshihiro; Li, Tao; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Baker, Jeffrey; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fugice, Job; Fumoto, Tamon; Gaydon, Donald; Kumar, Soora Naresh; Lafarge, Tanguy; Marcaida Iii, Manuel; Masutomi, Yuji; Nakagawa, Hiroshi; Oriol, Philippe; Ruget, Françoise; Singh, Upendra; Tang, Liang; Tao, Fulu; Wakatsuki, Hitomi; Wallach, Daniel; Wang, Yulong; Wilson, Lloyd Ted; Yang, Lianxin; Yang, Yubin; Yoshida, Hiroe; Zhang, Zhao; Zhu, Jianguo

    2017-11-01

    The CO 2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO 2 ] (E-[CO 2 ]) by comparison to free-air CO 2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO 2 ] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO 2 ] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO 2 ] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO 2 ] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO 2 ] × N interactions is necessary to better evaluate management practices under climate change.

  10. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008.

    PubMed

    Zhang, Tianyi; Huang, Yao

    2012-06-01

    Negative climate impacts on crop yield increase pressures on food security in China. In this study, climatic impacts on cereal yields (rice, wheat and maize) were investigated by analyzing climate-yield relationships from 1980 to 2008. Results indicated that warming was significant, but trends in precipitation and solar radiation were not statistically significant in most of China. In general, maize is particularly sensitive to warming. However, increase in temperature was correlated with both lower and higher yield of rice and wheat, which is inconsistent with the current view that warming results in decline in yields. Of the three cereal crops, further analysis suggested that reduction in yields with higher temperature is accompanied by lower precipitation, which mainly occurred in northern parts of China, suggesting droughts reduced yield due to lack of water resources. Similarly, a positive correlation between temperature and yield can be alternatively explained by the effect of solar radiation, mainly in the southern part of China where water resources are abundant. Overall, our study suggests that it is inter-annual variations in precipitation and solar radiation that have driven change in cereal yields in China over the last three decades. Copyright © 2011 Society of Chemical Industry.

  11. Interannual variability of crop water footprint

    NASA Astrophysics Data System (ADS)

    Tuninetti, M.; Tamea, S.; Laio, F.; Ridolfi, L.

    2016-12-01

    The crop water footprint, CWF, is a useful tool to investigate the water-food nexus, since it measures the water requirement for crop production. Heterogeneous spatial patterns of climatic conditions and agricultural practices have inspired a flourishing literature on the geographic assessment of CWF, mostly referred to a fixed (time-averaged) period. However, given that both climatic conditions and crop yield may vary substantially over time, also the CWF temporal dynamics need to be addressed. As other studies have done, we base the CWF variability on yield, while keeping the crop evapotranspiration constant over time. As a new contribution, we prove the feasibility of this approach by comparing these CWF estimates with the results obtained with a full model considering variations of crop evapotranspiration: overall, the estimates compare well showing high coefficients of determination that read 0.98 for wheat, 0.97 for rice, 0.97 for maize, and 0.91 for soybean. From this comparison, we derive also the precision of the method, which is around ±10% that is higher than the precision of the model used to evaluate the crop evapotranspiration (i.e., ±30%). Over the period between 1961 and 2013, the CWF of the most cultivated grains has sharply decreased on a global basis (i.e., -68% for wheat, -62% for rice, -66% for maize, and -52% for soybean), mainly driven by enhanced yield values. The higher water use efficiency in crop production implies a reduced virtual displacement of embedded water per ton of traded crop and as a result, the temporal variability of virtual water trade is different if considering constant or time-varying CWF. The proposed yield-based approach to estimate the CWF variability implies low computational costs and requires limited input data, thus, it represents a promising tool for time-dependent water footprint assessments.

  12. Usability of NASA Satellite Imagery-Based Daily Solar Radiation for Crop Yield Simulation and Management Decisions

    NASA Astrophysics Data System (ADS)

    Yang, H.; Cassman, K. G.; Stackhouse, P. W.; Hoell, J. M.

    2007-12-01

    We tested the usability of NASA satellite imagery-based daily solar radiation for farm-specific crop yield simulation and management decisions using the Hybrid-Maize model (www.hybridmaize.unl.edu). Solar radiation is one of the key inputs for crop yield simulation. Farm-specific crop management decisions using simulation models require long-term (i.e., 20 years or longer) daily local weather data including solar radiation for assessing crop yield potential and its variation, optimizing crop planting date, and predicting crop yield in a real time mode. Weather stations that record daily solar radiation have sparse coverage and many of them have record shorter than 15 years. Based on satellite imagery and other remote sensed information, NASA has provided estimates of daily climatic data including solar radiation at a resolution of 1 degree grid over the earth surface from 1983 to 2005. NASA is currently continuing to update the database and has plans to provide near real-time data in the future. This database, which is free to the public at http://power.larc.nasa.gov, is a potential surrogate for ground- measured climatic data for farm-specific crop yield simulation and management decisions. In this report, we quantified (1) the similarities between NASA daily solar radiation and ground-measured data atr 20 US sites and four international sites, and (2) the accuracy and precision of simulated corn yield potential and its variability using NASA solar radiation coupled with other weather data from ground measurements. The 20 US sites are in the western Corn Belt, including Iowa, South Dakota, Nebraska, and Kansas. The four international sites are Los Banos in the Philippines, Beijing in China, Cali in Columbia, and Ibatan in Nigeria. Those sites were selected because of their high quality weather record and long duration (more than 20 years on average). We found that NASA solar radiation was highly significantly correlated (mean r2 =0.88**) with the ground measurements at the 20 US sites, while the correlation was poor (mean r2=0.55**, though significant) at the four international sites. At the 20 US sites, the mean root mean square error (RMSE) between NASA solar radiation and the ground data was 2.7 MJ/m2/d, or 19% of the mean daily ground data. At the four international sites, the mean RMSE was 4.0 MJ/m2/d, or 25% of the mean daily ground value. Large differences between NASA solar radiation and the ground data were likely associated with tropical environment or significant variation in elevation within a short distance. When using NASA solar radiation coupled with other weather data from ground measurements, the simulated corn yields were highly significantly correlated (mean r2=0.85**) with those using complete ground weather data at the 20 US sites, while the correlation (mean r2=0.48**) was poor at the four international sites. The mean RMSE between the simulated corn yields of the two batches was 0.50 Mg/ha, or 3% of the mean absolute value using the ground data. At the four international sites, the RMSE of the simulated yields was 1.5 Mg/ha, or 13% of the mean absolute value using the ground data. We conclude that the NASA satellite imagery-based daily solar radiation is a reasonably reliable surrogate for the ground observations for farm-specific crop yield simulation and management decisions, especially at locations where ground-measured solar radiation is unavailable.

  13. How model and input uncertainty impact maize yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli

    2015-02-01

    Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.

  14. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  15. Variation in the volatile terpenoids of two industrially important basil (Ocimum basilicum L.) cultivars during plant ontogeny in two different cropping seasons from India.

    PubMed

    Verma, Ram Swaroop; Padalia, Rajendra Chandra; Chauhan, Amit

    2012-02-01

    Two Ocimum basilicum cultivars, 'Vikarsudha' and 'CIM-Saumya', grown in the Kumaon region of western Himalaya were evaluated for their essential oil yield and composition at different stages of plant growth during two distinct cropping seasons (spring-summer and rain-autumn). The highest yield of essential oil was obtained at full bloom stage in both cultivars in both cropping seasons. The essential oils obtained from different stages in two cropping seasons were analysed by capillary gas chromatography with flame ionisation detection, and gas chromatography-mass spectrometry. The major component of cultivar 'Vikarsudha' was methyl chavicol (84.3-94.3%), while for cultivar 'CIM-Saumya' the main components were methyl chavicol (62.5-77.6%) and linalool (14.4-34.1%). This study clearly indicated that cultivar, cropping season, plant ontogeny and plant part had significant effects on the yield and quality of the essential oil of O. basilicum. Further, the amount of methyl chavicol in the cultivars grown in this region was higher than in cultivars from other parts of India. Copyright © 2011 Society of Chemical Industry.

  16. Optimal mapping of site-specific multivariate soil properties.

    PubMed

    Burrough, P A; Swindell, J

    1997-01-01

    This paper demonstrates how geostatistics and fuzzy k-means classification can be used together to improve our practical understanding of crop yield-site response. Two aspects of soil are important for precision farming: (a) sensible classes for a given crop, and (b) their spatial variation. Local site classifications are more sensitive than general taxonomies and can be provided by the method of fuzzy k-means to transform a multivariate data set with i attributes measured at n sites into k overlapping classes; each site has a membership value mk for each class in the range 0-1. Soil variation is of interest when conditions vary over patches manageable by agricultural machinery. The spatial variation of each of the k classes can be analysed by computing the variograms of mk over the n sites. Memberships for each of the k classes can be mapped by ordinary kriging. Areas of class dominance and the transition zones between them can be identified by an inter-class confusion index; reducing the zones to boundaries gives crisp maps of dominant soil groups that can be used to guide precision farming equipment. Automation of the procedure is straightforward given sufficient data. Time variations in soil properties can be automatically incorporated in the computation of membership values. The procedures are illustrated with multi-year crop yield data collected from a 5 ha demonstration field at the Royal Agricultural College in Cirencester, UK.

  17. Targeting carbon for crop yield and drought resilience.

    PubMed

    Griffiths, Cara A; Paul, Matthew J

    2017-11-01

    Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step-change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  18. Assessing the impact of climate change upon hydrology and agriculture in the Indrawati Basin, Nepal.

    NASA Astrophysics Data System (ADS)

    Palazzoli, Irene; Bocchiola, Daniele; Nana, Ester; Maskey, Shreedhar; Uhlenbrook, Stefan

    2014-05-01

    Agriculture is sensitive to climate change, especially to temperature and precipitation changes. The purpose of this study was to evaluate the climate change impacts upon rain-fed crops production in the Indrawati river basin, Nepal. The Soil and Water Assessment Tool SWAT model was used to model hydrology and cropping systems in the catchment, and to predict the influence of different climate change scenarios therein. Daily weather data collected from about 13 weather stations during 4 decades were used to constrain the SWAT model, and data from two hydrometric stations used to calibrate/validate it. Then management practices (crop calendar) were applied to specific Hydrological Response Units (HRUs) for the main crops of the region, rice, corn and wheat. Manual calibration of crop production was also carried, against values of crop yield in the area from literature. The calibrated and validated model was further applied to assess the impact of three future climate change scenarios (RCPs) upon the crop productivity in the region. Three climate models (GCMs) were adopted, each with three RCPs (2.5, 4.5, 8.5). Hence, impacts of climate change were assessed considering three time windows, namely a baseline period (1995-2004), the middle of century (2045-2054) and the end of century (2085-2094). For each GCM and RCP future hydrology and yield was compared to baseline scenario. The results displayed slightly modified hydrological cycle, and somewhat small variation in crop production, variable with models and RCPs, and for crop type, the largest being for wheat. Keywords: Climate Change, Nepal, hydrological cycle, crop yield.

  19. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    NASA Astrophysics Data System (ADS)

    Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.

    2011-07-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  20. Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration

    USDA-ARS?s Scientific Manuscript database

    The atmospheric [CO2] in which crops grow today is greater than at any point in their domestication history, and represents an opportunity for positive effects on seed yield that can counteract the negative effects of greater heat and drought this century. In order to maximize yields under future at...

  1. JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator

    NASA Astrophysics Data System (ADS)

    Osborne, T.; Gornall, J.; Hooker, J.; Williams, K.; Wiltshire, A.; Betts, R.; Wheeler, T.

    2014-10-01

    Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.

  2. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    NASA Astrophysics Data System (ADS)

    B, Potgieter A.; D, Rodriguez; B, Power; J, Mclean; P, Davis

    2014-02-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (~1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible and 90m for thermal) satellite platforms. Results showed that spatial variations in crop yield were related to a satellite derived canopy stress index (CSIsat) and a moisture stress index (MSIsat). A weather station level canopy stress index (CSIws) calculated at midday was correlated to the CSIsat at late morning. In addition, a strong linear relationship was observed between EVI and LST at point scale throughout the crop growth period. Differences were smallest at anthesis when the canopy closure was highest. This suggests that LST imagery data around flowering could be used to calculate crop stress over large areas of the crop. The harvested yield was related (R2 = 0.67) to CSIsat using a fix date across all fields. This relationship improved (R2 = 0.92) using both indices from all five dates across all fields during the crop growth period. Here we successfully showed that satellite derived crop attributes (CSIsat and MSIsat) can account for most of the variability in final crop yield and that they can be used to predict crop yield at field scales. Applications of these results could enhance the ability of producers to hedge their financial on -farm crop production losses due to in-season water stress by taking crop insurance. This is likely to further improve their adaptive capacity and thus strengthening the long-term viability of the industry domestically and elsewhere.

  3. Challenges in breeding for yield increase for drought.

    PubMed

    Sinclair, Thomas R

    2011-06-01

    Crop genetic improvement for environmental stress at the molecular and physiological level is very complex and challenging. Unlike the example of the current major commercial transgenic crops for which biotic stress tolerance is based on chemicals alien to plants, the complex, redundant and homeostatic molecular and physiological systems existing in plants must be altered for drought tolerance improvement. Sophisticated tools must be developed to monitor phenotype expression at the crop level to characterize variation among genotypes across a range of environments. Once stress-tolerant cultivars are developed, regional probability distributions describing yield response across years will be necessary. This information can then aid in identifying environmental conditions for positive and negative responses to genetic modification to guide farmer selection of stress-tolerant cultivars. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Phenotypic variation and identification of quantitative trait loci for ozone injury in a Fiskeby III x Mandarin (Ottawa) soybean population

    USDA-ARS?s Scientific Manuscript database

    Ground-level ozone reduces yield in crops such as soybean (Glycine max (L.) Merr.). Phenotypic variation has been observed for this trait in multiple species; however, breeding for ozone tolerance has been limited. A recombinant inbred population was developed from soybean genotypes differing in tol...

  5. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency.

    PubMed

    Orr, Douglas J; Alcântara, André; Kapralov, Maxim V; Andralojc, P John; Carmo-Silva, Elizabete; Parry, Martin A J

    2016-10-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally "better" compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Temporal Variations of Water Productivity in Irrigated Corn: An Analysis of Factors Influencing Yield and Water Use across Central Nebraska

    PubMed Central

    Carr, Tony; Yang, Haishun; Ray, Chittaranjan

    2016-01-01

    Water Productivity (WP) of a crop defines the relationship between the economic or physical yield of the crop and its water use. With this concept it is possible to identify disproportionate water use or water-limited yield gaps and thereby support improvements in agricultural water management. However, too often important qualitative and quantitative environmental factors are not part of a WP analysis and therefore neglect the aspect of maintaining a sustainable agricultural system. In this study, we examine both the physical and economic WP in perspective with temporally changing environmental conditions. The physical WP analysis was performed by comparing simulated maximum attainable corn yields per unit of water using the crop model Hybrid-Maize with observed data from 2005 through 2013 from 108 farm plots in the Central Platte and the Tri Basin Natural Resource Districts of Nebraska. In order to expand the WP analysis on external factors influencing yields, a second model, Maize-N, was used to estimate optimal nitrogen (N)–fertilizer rate for specific fields in the study area. Finally, a vadose zone flow and transport model, HYDRUS-1D for simulating vertical nutrient transport in the soil, was used to estimate locations of nitrogen pulses in the soil profile. The comparison of simulated and observed data revealed that WP was not on an optimal level, mainly due to large amounts of irrigation used in the study area. The further analysis illustrated year-to-year variations of WP during the nine consecutive years, as well as the need to improve fertilizer management to favor WP and environmental quality. In addition, we addressed the negative influence of groundwater depletion on the economic WP through increasing pumping costs. In summary, this study demonstrated that involving temporal variations of WP as well as associated environmental and economic issues can represent a bigger picture of WP that can help to create incentives to sustainably improve agricultural production. PMID:27575368

  7. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops.

    PubMed

    Thorburn, Peter J; Biggs, Jody S; Palmer, Jeda; Meier, Elizabeth A; Verburg, Kirsten; Skocaj, Danielle M

    2017-01-01

    Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N) -1 , where yields were low (i.e., <50 Mg ha -1 ) and N inputs were high, to >5 Mg cane (kg N) -1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions support systems and enhanced efficiency fertilizers have potential for making N fertilizer management more site specific, an action that should facilitate increased NUE.

  8. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops

    PubMed Central

    Thorburn, Peter J.; Biggs, Jody S.; Palmer, Jeda; Meier, Elizabeth A.; Verburg, Kirsten; Skocaj, Danielle M.

    2017-01-01

    Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N)-1, where yields were low (i.e., <50 Mg ha-1) and N inputs were high, to >5 Mg cane (kg N)-1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions support systems and enhanced efficiency fertilizers have potential for making N fertilizer management more site specific, an action that should facilitate increased NUE. PMID:28928756

  9. [Variation characteristics of maize yield and fertilizer utilization rate on an upland yellow soil under long term fertilization].

    PubMed

    Luo, Long-Zao; Li, Yu; Zhang, Wen-An; Xiao, Hou-Jun; Jiang, Tai-Ming

    2013-10-01

    An analysis was made on the 16-year experimental data from the long term fertilization, experiment of maize on a yellow soil in Guizhou of Southwest China. Four treatments, i. e. , no fertilization (CK), chemical fertilization (165 kg N x hm(-2), 82.5 kg P2O5 x hm(-2), and 82.5 kg K2O x hm(-2), NPK), organic manure (30555 kg x hm(-2), M), and combined applicatioin of chemical fertilizers and organic manure (NPKM), were selected to analyze the variation trends of maize yield and fertilizer use efficiency on yellow soil under effects of different long term fertilization modes, aimed to provide references for evaluating and establishing long term fertilization mode and promote the sustainable development of crop production. Overall, the maize yield under long term fertilization had an increasing trend, with a large annual variation. Treatment NPKM had the best yield-increasing effect, with the maize yield increased by 4075.71 kg x hm(-2) and the increment being up to 139.2%. Long term fertilization increased the fertilizer utilization efficiency of maize. In treatment M, the nitrogen and phosphorus utilization rates were increased significantly by 35.4% and 18.8%, respectively. Treatment NPK had obvious effect in improving potassium utilization rate, with an increment of 20% and being far higher than that in treatments M (8.7%) and NPKM (9.2%). The results showed that long term fertilization, especially the combined application of chemical fertilizers and organic manure, was of great importance in increasing crop yield and fertilizer use efficiency.

  10. Variation in Yield Gap Induced by Nitrogen, Phosphorus and Potassium Fertilizer in North China Plain

    PubMed Central

    Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin

    2013-01-01

    A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha−1 yr−1 for wheat and 560.6 kg ha−1 yr−1 for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha−1 yr−1. The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP. PMID:24349204

  11. Variation in yield gap induced by nitrogen, phosphorus and potassium fertilizer in North China Plain.

    PubMed

    Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin

    2013-01-01

    A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha(-1) yr(-1) for wheat and 560.6 kg ha(-1) yr(-1) for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha(-1) yr(-1). The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP.

  12. The Importance of Juvenile Root Traits for Crop Yields

    NASA Astrophysics Data System (ADS)

    White, Philip; Adu, Michael; Broadley, Martin; Brown, Lawrie; Dupuy, Lionel; George, Timothy; Graham, Neil; Hammond, John; Hayden, Rory; Neugebauer, Konrad; Nightingale, Mark; Ramsay, Gavin; Thomas, Catherine; Thompson, Jacqueline; Wishart, Jane; Wright, Gladys

    2014-05-01

    Genetic variation in root system architecture (RSA) is an under-exploited breeding resource. This is partly a consequence of difficulties in the rapid and accurate assessment of subterranean root systems. However, although the characterisation of root systems of large plants in the field are both time-consuming and labour-intensive, high-throughput (HTP) screens of root systems of juvenile plants can be performed in the field, glasshouse or laboratory. It is hypothesised that improving the root systems of juvenile plants can accelerate access to water and essential mineral elements, leading to rapid crop establishment and, consequently, greater yields. This presentation will illustrate how aspects of the juvenile root systems of potato (Solanum tuberosum L.) and oilseed rape (OSR; Brassica napus L.) correlate with crop yields and examine the reasons for such correlations. It will first describe the significant positive relationships between early root system development, phosphorus acquisition, canopy establishment and eventual yield among potato genotypes. It will report the development of a glasshouse assay for root system architecture (RSA) of juvenile potato plants, the correlations between root system architectures measured in the glasshouse and field, and the relationships between aspects of the juvenile root system and crop yields under drought conditions. It will then describe the development of HTP systems for assaying RSA of OSR seedlings, the identification of genetic loci affecting RSA in OSR, the development of mathematical models describing resource acquisition by OSR, and the correlations between root traits recorded in the HTP systems and yields of OSR in the field.

  13. Characterizing spatial and temporal variability of crop yield caused by climate and irrigation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Baethgen, Walter E.; Wang, Enli; Yu, Qiang

    2011-12-01

    Grain yields of wheat and maize were obtained from national statistics and simulated with an agricultural system model to investigate the effects of historical climate variability and irrigation on crop yield in the North China Plain (NCP). Both observed and simulated yields showed large temporal and spatial variability due to variations in climate and irrigation supply. Wheat yield under full irrigation (FI) was 8 t ha-1 or higher in 80% of seasons in the north, it ranged from 7 to 10 t ha-1 in 90% of seasons in central NCP, and less than 9 t ha-1 in 85% of seasons in the south. Reduced irrigation resulted in increased crop yield variability. Wheat yield under supplemental irrigation, i.e., to meet only 50% of irrigation water requirement [supplemental irrigation (SI)] ranged from 2.7 to 8.8 t ha-1 with the maximum frequency of seasons having the range of 4-6 t ha-1 in the north, 4-7 t ha-1 in central NCP, and 5-8 t ha-1 in the south. Wheat yield under no irrigation (NI) was lower than 1 t ha-1 in about 50% of seasons. Considering the NCP as a whole, simulated maize yield under FI ranged from 3.9 to 11.8 t ha-1 with similar frequency distribution in the range of 6-11.8 t ha-1 with the interval of 2 t ha-1. It ranged from 0 to 11.8 t ha-1, uniformly distributed into the range of 4-10 t ha-1 under SI, and NI. The results give an insight into the levels of regional crop production affected by climate and water management strategies.

  14. From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact

    PubMed Central

    Baron, Christian; Sultan, Benjamin; Balme, Maud; Sarr, Benoit; Traore, Seydou; Lebel, Thierry; Janicot, Serge; Dingkuhn, Michael

    2005-01-01

    General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level. PMID:16433096

  15. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    PubMed

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Integrated remote sensing imagery and two-dimensional hydraulic modeling approach for impact evaluation of flood on crop yields

    NASA Astrophysics Data System (ADS)

    Chen, Huili; Liang, Zhongyao; Liu, Yong; Liang, Qiuhua; Xie, Shuguang

    2017-10-01

    The projected frequent occurrences of extreme flood events will cause significant losses to crops and will threaten food security. To reduce the potential risk and provide support for agricultural flood management, prevention, and mitigation, it is important to account for flood damage to crop production and to understand the relationship between flood characteristics and crop losses. A quantitative and effective evaluation tool is therefore essential to explore what and how flood characteristics will affect the associated crop loss, based on accurately understanding the spatiotemporal dynamics of flood evolution and crop growth. Current evaluation methods are generally integrally or qualitatively based on statistic data or ex-post survey with less diagnosis into the process and dynamics of historical flood events. Therefore, a quantitative and spatial evaluation framework is presented in this study that integrates remote sensing imagery and hydraulic model simulation to facilitate the identification of historical flood characteristics that influence crop losses. Remote sensing imagery can capture the spatial variation of crop yields and yield losses from floods on a grid scale over large areas; however, it is incapable of providing spatial information regarding flood progress. Two-dimensional hydraulic model can simulate the dynamics of surface runoff and accomplish spatial and temporal quantification of flood characteristics on a grid scale over watersheds, i.e., flow velocity and flood duration. The methodological framework developed herein includes the following: (a) Vegetation indices for the critical period of crop growth from mid-high temporal and spatial remote sensing imagery in association with agricultural statistics data were used to develop empirical models to monitor the crop yield and evaluate yield losses from flood; (b) The two-dimensional hydraulic model coupled with the SCS-CN hydrologic model was employed to simulate the flood evolution process, with the SCS-CN model as a rainfall-runoff generator and the two-dimensional hydraulic model implementing the routing scheme for surface runoff; and (c) The spatial combination between crop yield losses and flood dynamics on a grid scale can be used to investigate the relationship between the intensity of flood characteristics and associated loss extent. The modeling framework was applied for a 50-year return period flood that occurred in Jilin province, Northeast China, which caused large agricultural losses in August 2013. The modeling results indicated that (a) the flow velocity was the most influential factor that caused spring corn, rice and soybean yield losses from extreme storm event in the mountainous regions; (b) the power function archived the best results that fit the velocity-loss relationship for mountainous areas; and (c) integrated remote sensing imagery and two-dimensional hydraulic modeling approach are helpful for evaluating the influence of historical flood event on crop production and investigating the relationship between flood characteristics and crop yield losses.

  17. Mixed cropping regimes promote the soil fungal community under zero tillage.

    PubMed

    Silvestro, L B; Biganzoli, F; Stenglein, S A; Forjan, H; Manso, L; Moreno, M V

    2018-07-01

    Fungi of yield soils represent a significant portion of the microbial biomass and reflect sensitivity to changes in the ecosystem. Our hypothesis was that crops included in cropping regimes under the zero tillage system modify the structure of the soil fungi community. Conventional and molecular techniques provide complementary information for the analysis of diversity of fungal species and successful information to accept our hypothesis. The composition of the fungal community varied according to different crops included in the cropping regimes. However, we detected other factors as sources of variation among them, season and sampling depth. The mixed cropping regimes including perennial pastures and one crop per year promote fungal diversity and species with potential benefit to soil and crop. The winter season and 0-5 cm depth gave the largest evenness and fungal diversity. Trichoderma aureoviride and Rhizopus stolonifer could be used for monitoring changes in soil under zero tillage.

  18. Increased Night Temperature Negatively Affects Grain Yield, Biomass and Grain Number in Chilean Quinoa

    PubMed Central

    Lesjak, Jurka; Calderini, Daniel F.

    2017-01-01

    Quinoa high nutritive value increases interest worldwide, especially as a crop that could potentially feature in different cropping systems, however, climate change, particularly rising temperatures, challenges this and other crop species. Currently, only limited knowledge exists regarding the grain yield and other key traits response to higher temperatures of this crop, especially to increased night temperatures. In this context, the main objective of this study was to evaluate the effect of increased night temperature on quinoa yield, grain number, individual grain weight and processes involved in crop growth under the environmental conditions (control treatment) and night thermal increase at two phases: flowering (T1) and grain filling (T2) in southern Chile. A commercial genotype, Regalona, and a quinoa accession (Cod. BO5, N°191, grain bank from Semillas Baer, hereby referred to as Accession) were used, due to their adaptability to Southern Chilean conditions and contrasting grain yield potential, grain weight and size of plants. Temperature was increased ≈4°C above the ambient from 8 pm until 9 am the next morning. Control treatments reached a high grain yield (600 and 397 g m-2, i.e., Regalona and Accession). Temperature increase reduced grain yield by 31% under T1 treatment and 12% when under T2 in Regalona and 23 and 26% in Accession, respectively. Aboveground biomass was negatively affected by the thermal treatments and a positive linear association was found between grain yield and aboveground biomass across treatments. By contrast, the harvest index was unaffected either by genotype, or by thermal treatments. Grain number was significantly affected between treatments and this key trait was linearly associated with grain yield. On the other hand, grain weight showed a narrow range of variation across treatments. Additionally, leaf area index was not affected, but significant differences were found in SPAD values at the end of T1 treatment, compared to control. Little change was found in the harvest index, individual grain weight, grain protein content or water soluble carbohydrates in response to the increased night temperature in this crop. PMID:28386266

  19. Inter- and intraspecific variation in leaf economic traits in wheat and maize

    PubMed Central

    Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F

    2018-01-01

    Abstract Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world’s most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates (Amax) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait–environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on Amax; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in Amax and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species. PMID:29484152

  20. Inter- and intraspecific variation in leaf economic traits in wheat and maize.

    PubMed

    Martin, Adam R; Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F

    2018-02-01

    Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world's most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates ( A max ) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait-environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on A max ; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in A max and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species.

  1. Climate Change Impact Uncertainties for Maize in Panama: Farm Information, Climate Projections, and Yield Sensitivities

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Cecil, L. Dewayne; Horton, Radley M.; Gordon, Roman; McCollum, Raymond (Brown, Douglas); Brown, Douglas; Killough, Brian; Goldberg, Richard; Greeley, Adam P.; Rosenzweig, Cynthia

    2011-01-01

    We present results from a pilot project to characterize and bound multi-disciplinary uncertainties around the assessment of maize (Zea mays) production impacts using the CERES-Maize crop model in a climate-sensitive region with a variety of farming systems (Panama). Segunda coa (autumn) maize yield in Panama currently suffers occasionally from high water stress at the end of the growing season, however under future climate conditions warmer temperatures accelerate crop maturation and elevated CO (sub 2) concentrations improve water retention. This combination reduces end-of-season water stresses and eventually leads to small mean yield gains according to median projections, although accelerated maturation reduces yields in seasons with low water stresses. Calibrations of cultivar traits, soil profile, and fertilizer amounts are most important for representing baseline yields, however sensitivity to all management factors is reduced in an assessment of future yield changes (most dramatically for fertilizers), suggesting that yield changes may be more generalizable than absolute yields. Uncertainty around General Circulation Model (GCM)s' projected changes in rainfall gain in importance throughout the century, with yield changes strongly correlated with growing season rainfall totals. Climate changes are expected to be obscured by the large inter-annual variations in Panamanian climate that will continue to be the dominant influence on seasonal maize yield into the coming decades. The relatively high (A2) and low (B1) emissions scenarios show little difference in their impact on future maize yields until the end of the century. Uncertainties related to the sensitivity of CERES-Maize to carbon dioxide concentrations have a substantial influence on projected changes, and remain a significant obstacle to climate change impacts assessment. Finally, an investigation into the potential of simple statistical yield emulators based upon key climate variables characterizes the important uncertainties behind the selection of climate change metrics and their performance against more complex process-based crop model simulations, revealing a danger in relying only on long-term mean quantities for crop impact assessment.

  2. Spatial relationships among cereal yields and selected soil physical and chemical properties.

    PubMed

    Lipiec, Jerzy; Usowicz, Bogusław

    2018-08-15

    Sandy soils occupy large area in Poland (about 50%) and in the world. This study aimed at determining spatial relationships of cereal yields and the selected soil physical and chemical properties in three study years (2001-2003) on low productive sandy Podzol soil (Podlasie, Poland). The yields and soil properties in plough and subsoil layers were determined at 72-150 points. The test crops were: wheat, wheat and barley mixture and oats. To explore the spatial relationship between cereal yields and each soil property spatial statistics was used. The best fitting models were adjusted to empirical semivariance and cross-semivariance, which were used to draw maps using kriging. Majority of the soil properties and crop yields exhibited low and medium variability (coefficient of variation 5-70%). The effective ranges of the spatial dependence (the distance at which data are autocorrelated) for yields and all soil properties were 24.3-58.5m and 10.5-373m, respectively. Nugget to sill ratios showed that crop yields and soil properties were strongly spatially dependent except bulk density. Majority of the pairs in cross-semivariograms exhibited strong spatial interdependence. The ranges of the spatial dependence varied in plough layer between 54.6m for yield×pH up to 2433m for yield×silt content. Corresponding ranges in subsoil were 24.8m for crop yield×clay content in 2003 and 1404m for yield×bulk density. Kriging maps allowed separating sub-field area with the lowest yield and soil cation exchange capacity, organic carbon content and pH. This area had lighter color on the aerial photograph due to high content of the sand and low content of soil organic carbon. The results will help farmers at identifying sub-field areas for applying localized management practices to improve these soil properties and further spatial studies in larger scale. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Transgenic soybeans and soybean protein analysis: an overview.

    PubMed

    Natarajan, Savithiry; Luthria, Devanand; Bae, Hanhong; Lakshman, Dilip; Mitra, Amitava

    2013-12-04

    To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification. Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli. This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with soy-derived food products.

  4. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield.

    PubMed

    Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J

    2017-06-15

    Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Climate impacts on palm oil yields in the Nigerian Niger Delta

    NASA Astrophysics Data System (ADS)

    Okoro, Stanley U.; Schickhoff, Udo; Boehner, Juergen; Schneider, Uwe A.; Huth, Neil

    2016-04-01

    Palm oil production has increased in recent decades and is estimated to increase further. The optimal role of palm oil production, however, is controversial because of resource conflicts with alternative land uses. Local conditions and climate change affect resource competition and the desirability of palm oil production. Based on this, crop yield simulations using different climate model output under different climate scenarios could be important tool in addressing the problem of uncertainty quantification among different climate model outputs. Previous studies on this region have focused mostly on single experimental fields, not considering variations in Agro-Ecological Zones, climatic conditions, varieties and management practices and, in most cases not extending to various IPCC climate scenarios and were mostly based on single climate model output. Furthermore, the uncertainty quantification of the climate- impact model has rarely been investigated on this region. To this end we use the biophysical simulation model APSIM (Agricultural Production Systems Simulator) to simulate the regional climate impact on oil palm yield over the Nigerian Niger Delta. We also examine whether the use of crop yield model output ensemble reduces the uncertainty rather than the use of climate model output ensemble. The results could serve as a baseline for policy makers in this region in understanding the interaction between potentials of energy crop production of the region as well as its food security and other negative feedbacks that could be associated with bioenergy from oil palm. Keywords: Climate Change, Climate impacts, Land use and Crop yields.

  6. Impact of the Gulf of California SST on simulating precipitation and crop productivity in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, J.; Prasad, A. K.; Stack, D. H.; El-Askary, H. M.; Kafatos, M.

    2012-12-01

    Like other ecosystems, agricultural productivity is substantially affected by climate factors. Therefore, accurate climatic data (i.e. precipitation, temperature, and radiation) is crucial to simulating crop yields. In order to understand and anticipate climate change and its impacts on agricultural productivity in the Southwestern United States, the WRF regional climate model (RCM) and the Agricultural Production Systems sIMulator (APSIM) were employed for simulating crop production. 19 years of WRF RCM output show that there is a strong dry bias during the warm season, especially in Arizona. Consequently, the APSIM crop model indicates very low crop yields in this region. We suspect that the coarse resolution of reanalysis data could not resolve the relatively warm Sea Surface Temperature (SST) in the Gulf of California (GC), causing the SST to be up to 10 degrees lower than the climatology. In the Southwestern United States, a significant amount of precipitation is associated with North American Monsoon (NAM). During the monsoon season, the low-level moisture is advected to the Southwestern United States via the GC, which is known to be the dominant moisture source. Thus, high-resolution SST data in the GC is required for RCM simulations to accurately represent a reasonable amount of precipitation in the region, allowing reliable evaluation of the impacts on regional ecosystems.and evaluate impacts on regional ecosystems. To evaluate the influence of SST on agriculture in the Southwestern U.S., two sets of numerical simulations were constructed: a control, using unresolved SST of GC, and daily updated SST data from the MODIS satellite sensor. The meteorological drivers from each of the 6 year RCM runs were provided as input to the APSIM model to determine the crop yield. Analyses of the simulated crop production, and the interannual variation of the meteorological drivers, demonstrate the influence of SST on crop yields in the Southwestern United States.

  7. Spatial variability of surface temperature as related to cropping practice with implications for irrigation management

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Millard, J. P.; Reginato, R. J.; Jackson, R. D.; Idso, S. B.; Pinter, P. J., Jr.; Goettelman, R. C.

    1980-01-01

    Crop stress measured using thermal infrared emission is evaluated with the stress-degree-day (SDD) concept. Throughout the season, the accumulation of SDD during the reproductive stage of growth is inversely related to yield. This relationship is shown for durum wheat, hard red winter wheat, barley, grain sorghum and soybeans. It is noted that SDD can be used to schedule irrigations for maximizing yields and for applying remotely sensed data to management of water resources. An airborne flight with a thermal-IR scanner was used to examine the variability in temperature that may exist from one field to another and to determine realistic within-field temperature variations. It was found that the airborne and the ground-based data agreed very well and that there was less variability in the fields that were completely covered with crops than those of bare soil.

  8. A heterogeneous landscape does not guarantee high crop pollination

    PubMed Central

    Hambäck, Peter A.; Lemessa, Debissa; Nemomissa, Sileshi; Hylander, Kristoffer

    2016-01-01

    The expansion of pollinator-dependent crops, especially in the developing world, together with reports of worldwide pollinator declines, raises concern of possible yield gaps. Farmers directly reliant on pollination services for food supply often live in regions where our knowledge of pollination services is poor. In a manipulative experiment replicated at 23 sites across an Ethiopian agricultural landscape, we found poor pollination services and severe pollen limitation in a common oil crop. With supplementary pollination, the yield increased on average by 91%. Despite the heterogeneous agricultural matrix, we found a low bee abundance, which may explain poor pollination services. The variation in pollen limitation was unrelated to surrounding forest cover, local bee richness and bee abundance. While practices that commonly increase pollinators (restricted pesticide use, flower strips) are an integral part of the landscape, these elements are apparently insufficient. Management to increase pollination services is therefore in need of urgent investigation. PMID:27629036

  9. What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?

    PubMed Central

    Alonso-Blanco, Carlos; Aarts, Mark G.M.; Bentsink, Leonie; Keurentjes, Joost J.B.; Reymond, Matthieu; Vreugdenhil, Dick; Koornneef, Maarten

    2009-01-01

    Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available. PMID:19574434

  10. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    NASA Astrophysics Data System (ADS)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that correspond with low soil organic carbon and cation exchange capacity and high content of sand. These areas are considered as management zones to improve crop productivity and soil properties responsible for soil quality and functions. We conclude that soil organic carbon, cation exchange capacity and pH should be included as indicators of soil quality in sandy soils. The study was funded by HORIZON 2020, European Commission, Programme H2020-SFS-2015-2: Soil Care for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021).

  11. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    PubMed

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  12. Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2014-12-01

    Biochar's effects on improving soil fertility, enhancing crop productivity and reducing greenhouse gases (GHGs) emission from croplands had been well addressed in numerous short-term experiments with biochar soil amendment (BSA) mostly in a single crop season / cropping year. However, the persistence of these effects, after a single biochar application, has not yet been well known due to limited long-term field studies so far. Large scale BSA in agriculture is often commented on the high cost due to large amount of biochar in a single application. Here, we try to show the persistence of biochar effects on soil fertility and crop productivity improvement as well as GHGs emission reduction, using data from a field experiment with BSA for 5 crop seasons in central North China. A single amendment of biochar was performed at rates of 0 (C0), 20 (C20) and 40 t ha-1 (C40) before sowing of the first crop season. Emissions of CO2, CH4 and N2O were monitored with static closed chamber method throughout the crop growing season for the 1st, 2nd and 5th cropping. Crop yield was measured and topsoil samples were collected at harvest of each crop season. BSA altered most of the soil physic-chemical properties with a significant increase over control in soil organic carbon (SOC) and available potassium (K) content. The increase in SOC and available K was consistent over the 5 crop seasons after BSA. Despite a significant yield increase in the first maize season, enhancement of crop yield was not consistent over crop seasons without corresponding to the changes in soil nutrient availability. BSA did not change seasonal total CO2 efflux but greatly reduced N2O emissions throughout the five seasons. This supported a stable nature of biochar carbon in soil, which played a consistent role in reducing N2O emission, which showed inter-annual variation with changes in temperature and soil moisture conditions. The biochar effect was much more consistent under C40 than under C20 and with GHGs emission than with soil property and crop yield. Thus, our study suggested that biochar amended in dry land could sustain a low carbon production both of maize and wheat in terms of its efficient carbon sequestration, lower GHGs emission intensity and soil improvement over 5 crop seasons after a single amendment.

  13. The role of soil communities in improving ecosystem services in organic farming

    NASA Astrophysics Data System (ADS)

    Zandbergen, Jelmer; Koorneef, Guusje; Veen, Cees; Schrama, Jan; van der Putten, Wim

    2017-04-01

    Worldwide soil fertility decreases and it is generally believed that organic matter (OM) addition to agricultural soils can improve soil properties leading to beneficial ecosystem services. However, it remains unknown under which conditions and how fast biotic, physical and chemical soil properties respond to varying quality and quantity of OM inputs. Therefore, the aims of this research project are (1) to unravel biotic, physical and chemical responses of soils to varying quantity and quality of OM addition; and (2) to understand how we can accelerate the response of soils in order to improve beneficial soil ecosystem services faster. The first step in our research project is to determine how small-scale spatio-temporal patterns in soil biotic, physical and chemical properties relate to crop production and quality. To do this we combine field measurements on soil properties with remote and proximate sensing measures on crop development and yield in a long-term farming systems experiment in the Netherlands (Vredepeel). We hypothesize that spatio-temporal variation in crop development and yield are strongly related to spatio-temporal variation in soil parameters. In the second step of our project we will use this information to identify biological interactions underlying improving soil functions in response to OM addition over time. We will specifically focus on the role of soil communities in driving nutrient cycling, disease suppression and the formation of soil structure, all crucial elements of key soil services in agricultural soils. The knowledge that will be generated in our project can be used to detect specific organic matter qualities that support the underlying ecological processes to accelerate the transition towards improved soil functioning thereby governing enhanced crop yields.

  14. The use of seasonal forecasts in a crop failure early warning system for West Africa

    NASA Astrophysics Data System (ADS)

    Nicklin, K. J.; Challinor, A.; Tompkins, A.

    2011-12-01

    Seasonal rainfall in semi-arid West Africa is highly variable. Farming systems in the region are heavily dependent on the monsoon rains leading to large variability in crop yields and a population that is vulnerable to drought. The existing crop yield forecasting system uses observed weather to calculate a water satisfaction index, which is then related to expected crop yield (Traore et al, 2006). Seasonal climate forecasts may be able to increase the lead-time of yield forecasts and reduce the humanitarian impact of drought. This study assesses the potential for a crop failure early warning system, which uses dynamic seasonal forecasts and a process-based crop model. Two sets of simulations are presented. In the first, the crop model is driven with observed weather as a control run. Observed rainfall is provided by the GPCP 1DD data set, whilst observed temperature and solar radiation data are given by the ERA-Interim reanalysis. The crop model used is the groundnut version of the General Large Area Model for annual crops (GLAM), which has been designed to operate on the grids used by seasonal weather forecasts (Challinor et al, 2004). GLAM is modified for use in West Africa by allowing multiple planting dates each season, replanting failed crops and producing parameter sets for Spanish- and Virginia- type West African groundnut. Crop yields are simulated for three different assumptions concerning the distribution and relative abundance of Spanish- and Virginia- type groundnut. Model performance varies with location, but overall shows positive skill in reproducing observed crop failure. The results for the three assumptions are similar, suggesting that the performance of the system is limited by something other than information on the type of groundnut grown. In the second set of simulations the crop model is driven with observed weather up to the forecast date, followed by ECMWF system 3 seasonal forecasts until harvest. The variation of skill with forecast date is assessed along with the extent to which forecasts can be improved by bias correction of the rainfall data. Two forms of bias correction are applied: a novel method of spatially bias correcting daily data, and statistical bias correction of the frequency and intensity distribution. Results are presented using both observed yields and the control run as the reference for verification. The potential for current dynamic seasonal forecasts to form part of an operational system giving timely and accurate warnings of crop failure is discussed. Traore S.B. et al., 2006. A Review of Agrometeorological Monitoring Tools and Methods Used in the West African Sahel. In: Motha R.P. et al., Strengthening Operational Agrometeorological Services at the National Level. Technical Bulletin WAOB-2006-1 and AGM-9, WMO/TD No. 1277. Pages 209-220. www.wamis.org/agm/pubs/agm9/WMO-TD1277.pdf Challinor A.J. et al., 2004. Design and optimisation of a large-area process based model for annual crops. Agric. For. Meteorol. 124, 99-120.

  15. Soil Moisture Anomaly as Predictor of Crop Yield Deviation in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Thober, Stephan; Schwarze, Reimund; Meyer, Volker; Samaniego, Luis

    2016-04-01

    Natural hazards, such as droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany (COPA-COGECA 2003). Predicting crop yields allows to economize the mitigation of risks of weather extremes. Economic approaches for quantifying agricultural impacts of natural hazards mainly rely on temperature and related concepts. For instance extreme heat over the growing season is considered as best predictor of corn yield (Auffhammer and Schlenker 2014). However, those measures are only able to provide a proxy for the available water content in the root zone that ultimately determines plant growth and eventually crop yield. The aim of this paper is to analyse whether soil moisture has a causal effect on crop yield that can be exploited in improving adaptation measures. For this purpose, reduced form fixed effect panel models are developed with yield as dependent variable for both winter wheat and silo maize crops. The explanatory variables used are soil moisture anomalies, precipitation and temperature. The latter two are included to estimate the current state of the water balance. On the contrary, soil moisture provides an integrated signal over several months. It is also the primary source of water supply for plant growth. For each crop a single model is estimated for every month within the growing period to study the variation of the effects over time. Yield data is available for Germany as a whole on the level of administrative districts from 1990 to 2010. Station data by the German Weather Service are obtained for precipitation and temperature and are aggregated to the same spatial units. Simulated soil moisture computed by the mesoscale Hydrologic Model (mHM, www.ufz.de/mhm) is transformed into Soil Moisture Index (SMI), which represents the monthly soil water quantile and hence accounts directly for the water content available to plants. The results indicate that wet and dry soil moisture anomalies have a causal effect on crop yields. However, the effects vary in magnitude and direction for each crop depending on the month. For instance dry soil moisture anomalies in July, August and September reduce silo maize yield more than ten percent with respect to average conditions. Extreme wetness, however, increases silo maize yield in the same time period. A negative effect is observed for winter wheat during this period for both wet and dry anomalies. The reduction due to dry anomalies is smaller for winter wheat than for silo maize. This study shows that the impact of soil moisture anomalies varies dependent on months and crops. These evolving patterns provide new insights to improve adaptation measures for extreme soil moisture conditions. References Auffhammer, M., and W. Schlenker. 2014. "Empirical studies on agricultural impacts and adaptation." Energy Economics 46:555-561. COPA-COGECA. 2003. "Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry." In Committee of Agricultural Organisations in the European Union General Committee for Agricultural Cooperation in the European Union, Brussels. p. 15.

  16. Estimating yield gaps at the cropping system level.

    PubMed

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  17. Spectral estimates of solar radiation intercepted by corn canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Gallo, K. P.

    1982-01-01

    Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models.

  18. The effect of socio-economic status and food availability on first birth interval in a pre-industrial human population

    PubMed Central

    Nenko, Ilona; Hayward, Adam D.; Lummaa, Virpi

    2014-01-01

    Individual variation in nutritional status has direct implications for fitness and thus is crucial in shaping patterns of life-history variation. Nevertheless, it is difficult to measure in natural populations, especially in humans. Here, we used longitudinal data on individual life-histories and annual crop yield variation collected from pre-industrial Finnish populations experiencing natural mortality and fertility to test the validity of first birth interval (FBI; time between marriage and first birth) as a surrogate measure of nutritional status. We evaluated whether women with different socio-economic groups differ in length of FBI, whether women of poorer socio-economic status and experiencing lower crop yields conceive slower following marriage, and whether shorter FBI is associated with higher lifetime breeding success. We found that poorer women had longer FBI and reduced probability of giving birth in months with low food availability, while the FBI of richer women was not affected by variation in food availability. Women with shorter FBI achieved higher lifetime breeding success and a faster reproductive rate. This is, to our knowledge, the first study to show a direct relationship between environmental conditions and speed of childbirth following marriage, highlighting the value of FBI as an indicator of nutritional status when direct data are lacking. PMID:24285194

  19. The effect of socio-economic status and food availability on first birth interval in a pre-industrial human population.

    PubMed

    Nenko, Ilona; Hayward, Adam D; Lummaa, Virpi

    2014-01-22

    Individual variation in nutritional status has direct implications for fitness and thus is crucial in shaping patterns of life-history variation. Nevertheless, it is difficult to measure in natural populations, especially in humans. Here, we used longitudinal data on individual life-histories and annual crop yield variation collected from pre-industrial Finnish populations experiencing natural mortality and fertility to test the validity of first birth interval (FBI; time between marriage and first birth) as a surrogate measure of nutritional status. We evaluated whether women with different socio-economic groups differ in length of FBI, whether women of poorer socio-economic status and experiencing lower crop yields conceive slower following marriage, and whether shorter FBI is associated with higher lifetime breeding success. We found that poorer women had longer FBI and reduced probability of giving birth in months with low food availability, while the FBI of richer women was not affected by variation in food availability. Women with shorter FBI achieved higher lifetime breeding success and a faster reproductive rate. This is, to our knowledge, the first study to show a direct relationship between environmental conditions and speed of childbirth following marriage, highlighting the value of FBI as an indicator of nutritional status when direct data are lacking.

  20. Real-Time Imaging of Ground Cover: Relationships with Radiation Capture, Canopy Photosynthesis, and Daily Growth Rate

    NASA Technical Reports Server (NTRS)

    Klassen, S. P.; Ritchie, G.; Frantz, J. M.; Pinnock, D.; Bugbee, B.

    2003-01-01

    Cumulative absorbed radiation is highly correlated with crop biomass and yield. In this chapter we describe the use of a digital camera and commercial imaging software for estimating daily radiation capture, canopy photosynthesis, and relative growth rate. Digital images were used to determine percentage of ground cover of lettuce (Lactuca sativa L.) communities grown at five temperatures. Plants were grown in a steady-state, 10-chamber CO2 gas exchange system, which was used to measure canopy photosynthesis and daily carbon gain. Daily measurements of percentage of ground cover were highly correlated with daily measurements of both absorbed radiation (r(sup 2) = 0.99) and daily carbon gain (r(sup 2) = 0.99). Differences among temperature treatments indicated that these relationships were influenced by leaf angle, leaf area index, and chlorophyll content. An analysis of the daily images also provided good estimates of relative growth rates, which were verified by gas exchange measurements of daily carbon gain. In a separate study we found that images taken at hourly intervals were effective for monitoring real-time growth. Our data suggests that hourly images can be used for early detection of plant stress. Applications, limitations, and potential errors are discussed. We have long known that crop yield is determined by the efficiency of four component processes: (i) radiation capture, (ii) quantum yield, (iii) carbon use efficiency, and (iv) carbon partitioning efficiency (Charles-Edwards, 1982; Penning de Vries & van Laar, 1982; Thornley, 1976). More than one-half century ago, Watson (1947, 1952) showed that variation in radiation capture accounted for almost all of the variation in yield between sites in temperate regions, because the three other components are relatively constant when the crop is not severely stressed. More recently, Monteith (1977) reviewed the literature on the close correlation between radiation capture and yield. Bugbee and Monje (1992) demonstrated the close relationship between absorbed radiation and yield in an optimal environment.

  1. Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat☆

    PubMed Central

    Barraclough, Peter B.; Lopez-Bellido, Rafael; Hawkesford, Malcolm J.

    2014-01-01

    Twenty elite varieties of wheat (Triticum aestivum L.), primarily winter wheat, were grown with low and high supplies of nitrogen (N) in a field experiment at Rothamsted, southern England, in the season 2004–05. The aim was to quantify genetic variation in the uptake, partitioning and remobilisation of N in individual plant organs at extreme rates of N supply. The biggest contibutor to variation in plant and crop performance was ‘N-rate’ followed by ‘growth stage’ and then ‘genotype’. At both N-rates, there was significant genetic variation in crop performance (grain yield, grain %N, total N-uptake and post-anthesis N-uptake), and in N contents of individual organs at anthesis and maturity, and in N remobilised from individual vegetative organs to the grain during grain-fill. Nitrogen was remobilised from all vegetative organs with very high levels of efficiency by all varieties (80–85%). Stem-N was a major N pool at anthesis probably due to the amounts of soluble N compounds in transit in the vascular system at this time. Despite the genetic variation in N-related plant parameters including stem-N, there were no strong correlations with grain yield and grain %N at a given N-rate. This was probably due to the narrow gene pool employed in this single-season study. PMID:26412936

  2. Geosensors to Support Crop Production: Current Applications and User Requirements

    PubMed Central

    Thessler, Sirpa; Kooistra, Lammert; Teye, Frederick; Huitu, Hanna; Bregt, Arnold K.

    2011-01-01

    Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load. PMID:22163978

  3. Catch crops as universal and effective method for reducing nitrogen leaching loss in spring cereal production: A meta-analysis.

    NASA Astrophysics Data System (ADS)

    Valkama, Elena; Lemola, Riitta; Känkänen, Hannu; Turtola, Eila

    2016-04-01

    Sustainable farms produce adequate amounts of a high-quality product, protect their resources and are both environmentally friendly and economically profitable. Nitrogen (N) fertilization decisively influences the cereal yields as well as increases soil N balance (N input in fertilizer - N output in harvested yield), thereby leading to N losses to the environment. However, while N input reduction affects soil N balance, such approach would markedly reduce N leaching loss only in case of abnormally high N balances. As an alternative approach, the growing of catch crops aims to prevent nutrient leaching in autumn after harvest and during the following winter, but due to competition, catch crops may also reduce yields of the main crop. Although studies have explored the environmental effects of catch crops in cereal production in the Nordic countries (Denmark, Sweden, Finland and Norway) during the past 40 years, none has yet carried out a meta-analysis. We quantitatively summarized 35 studies on the effect of catch crops (non-legume and legume) undersown in spring cereals on N leaching loss or its risk as estimated by the content of soil nitrate N or its sum with ammonium in late autumn. The meta-analysis also included the grain yield and N content of spring cereals. To identify sources of variation, we studied the effects of soil texture and management (ploughing time, the amount of N applied, fertilizer type), as well as climatic (annual precipitation) and experimental conditions (duration of experiments, lysimeter vs. field experiments). Finally, we examined whether the results differed between the countries or over the decades. Compared to control groups with no catch crops, non-legume catch crops, mainly ryegrass species, reduced N leaching loss by 50% on average, and soil nitrate N or inorganic N by 35% in autumn. Italian ryegrass depleted soil N more effectively (by 60%) than did perennial ryegrass or Westerwolds ryegrass (by 25%). In contrast, legumes (white and red clovers) did not diminish the risk for N leaching. Otherwise, the effect on N leaching and its risk were consistent across the studies conducted in different countries on clay and coarse-textured mineral soils with different ploughing times, N fertilization rates (50-160 kg/ ha), and amounts of annual precipitation (480-1040 mm). Non-legume catch crops reduced grain yield by 3% with no changes in grain N content. In contrast, legumes and mixed catch crops increased both grain yield and grain N content by 6%. In spring cereal production, undersown non-legume catch crops are deemed a universal and effective method for reducing N leaching loss across the various soils, management practices and weather conditions in the Nordic countries. The environmental benefits of using non-legume catch crops appear considerable compared to the adverse reduction in grain yields, amounting to only a few percent. Catch crops are advisable for fields at high risk for N leaching (e.g., sandy soils or soils and crops requiring high N fertilization).

  4. Determining switchgrass biomass supplies for cellulosic biorefineries

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is being developed into a bioenergy crop for use in temperate regions of the USA. Information on spatial and temporial variation for stands and biomass yield among and within fields in large agroecoregions is not available. A reliable feedstock supply will be essent...

  5. Using a spatially explicit analysis model to evaluate spatial variation of corn yield

    USDA-ARS?s Scientific Manuscript database

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  6. Carbon-Temperature-Water Change Analysis for Peanut Production Under Climate Change: A Prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP)

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; McDermid, Sonali; Rosenzweig, Cynthia; Baigorria, Guillermo A.; Jones, James W.; Romero, Consuelo C.; Cecil, L. DeWayne

    2014-01-01

    Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO2]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO2], temperature changes, and precipitation changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca. 2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (<10%) median yield losses in the middle of the 21st century accelerating to more severe (>20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach.

  7. Crop weather models of barley and spring wheat yield for agrophysical units in North Dakota

    NASA Technical Reports Server (NTRS)

    Leduc, S. (Principal Investigator)

    1982-01-01

    Models based on multiple regression were developed to estimate barley yield and spring wheat yield from weather data for Agrophysical units(APU) in North Dakota. The predictor variables are derived from monthly average temperature and monthly total precipitation data at meteorological stations in the cooperative network. The models are similar in form to the previous models developed for Crop Reporting Districts (CRD). The trends and derived variables were the same and the approach to select the significant predictors was similar to that used in developing the CRD models. The APU models show sight improvements in some of the statistics of the models, e.g., explained variation. These models are to be independently evaluated and compared to the previously evaluated CRD models. The comparison will indicate the preferred model area for this application, i.e., APU or CRD.

  8. Seed vigour and crop establishment: extending performance beyond adaptation.

    PubMed

    Finch-Savage, W E; Bassel, G W

    2016-02-01

    Seeds are central to crop production, human nutrition, and food security. A key component of the performance of crop seeds is the complex trait of seed vigour. Crop yield and resource use efficiency depend on successful plant establishment in the field, and it is the vigour of seeds that defines their ability to germinate and establish seedlings rapidly, uniformly, and robustly across diverse environmental conditions. Improving vigour to enhance the critical and yield-defining stage of crop establishment remains a primary objective of the agricultural industry and the seed/breeding companies that support it. Our knowledge of the regulation of seed germination has developed greatly in recent times, yet understanding of the basis of variation in vigour and therefore seed performance during the establishment of crops remains limited. Here we consider seed vigour at an ecophysiological, molecular, and biomechanical level. We discuss how some seed characteristics that serve as adaptive responses to the natural environment are not suitable for agriculture. Past domestication has provided incremental improvements, but further actively directed change is required to produce seeds with the characteristics required both now and in the future. We discuss ways in which basic plant science could be applied to enhance seed performance in crop production. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop.

    PubMed

    Hazzouri, Khaled M; Flowers, Jonathan M; Visser, Hendrik J; Khierallah, Hussam S M; Rosas, Ulises; Pham, Gina M; Meyer, Rachel S; Johansen, Caryn K; Fresquez, Zoë A; Masmoudi, Khaled; Haider, Nadia; El Kadri, Nabila; Idaghdour, Youssef; Malek, Joel A; Thirkhill, Deborah; Markhand, Ghulam S; Krueger, Robert R; Zaid, Abdelouahhab; Purugganan, Michael D

    2015-11-09

    Date palms (Phoenix dactylifera) are the most significant perennial crop in arid regions of the Middle East and North Africa. Here, we present a comprehensive catalogue of approximately seven million single nucleotide polymorphisms in date palms based on whole genome re-sequencing of a collection of 62 cultivars. Population structure analysis indicates a major genetic divide between North Africa and the Middle East/South Asian date palms, with evidence of admixture in cultivars from Egypt and Sudan. Genome-wide scans for selection suggest at least 56 genomic regions associated with selective sweeps that may underlie geographic adaptation. We report candidate mutations for trait variation, including nonsense polymorphisms and presence/absence variation in gene content in pathways for key agronomic traits. We also identify a copia-like retrotransposon insertion polymorphism in the R2R3 myb-like orthologue of the oil palm virescens gene associated with fruit colour variation. This analysis documents patterns of post-domestication diversification and provides a genomic resource for this economically important perennial tree crop.

  10. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop

    PubMed Central

    Hazzouri, Khaled M.; Flowers, Jonathan M.; Visser, Hendrik J.; Khierallah, Hussam S. M.; Rosas, Ulises; Pham, Gina M.; Meyer, Rachel S.; Johansen, Caryn K.; Fresquez, Zoë A.; Masmoudi, Khaled; Haider, Nadia; El Kadri, Nabila; Idaghdour, Youssef; Malek, Joel A.; Thirkhill, Deborah; Markhand, Ghulam S.; Krueger, Robert R.; Zaid, Abdelouahhab; Purugganan, Michael D.

    2015-01-01

    Date palms (Phoenix dactylifera) are the most significant perennial crop in arid regions of the Middle East and North Africa. Here, we present a comprehensive catalogue of approximately seven million single nucleotide polymorphisms in date palms based on whole genome re-sequencing of a collection of 62 cultivars. Population structure analysis indicates a major genetic divide between North Africa and the Middle East/South Asian date palms, with evidence of admixture in cultivars from Egypt and Sudan. Genome-wide scans for selection suggest at least 56 genomic regions associated with selective sweeps that may underlie geographic adaptation. We report candidate mutations for trait variation, including nonsense polymorphisms and presence/absence variation in gene content in pathways for key agronomic traits. We also identify a copia-like retrotransposon insertion polymorphism in the R2R3 myb-like orthologue of the oil palm virescens gene associated with fruit colour variation. This analysis documents patterns of post-domestication diversification and provides a genomic resource for this economically important perennial tree crop. PMID:26549859

  11. Satellite-based studies of maize yield spatial variations and their causes in China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2013-12-01

    Maize production in China has been expanding significantly in the past two decades, but yield has become relatively stagnant in the past few years, and needs to be improved to meet increasing demand. Multiple studies found that the gap between potential and actual yield of maize is as large as 40% to 60% of yield potential. Although a few major causes of yield gap have been qualitatively identified with surveys, there has not been spatial analysis aimed at quantifying relative importance of specific biophysical and socio-economic causes, information which would be useful for targeting interventions. This study analyzes the causes of yield variation at field and village level in Quzhou county of North China Plain (NCP). We combine remote sensing and crop modeling to estimate yields in 2009-2012, and identify fields that are consistently high or low yielding. To establish the relationship between yield and potential factors, we gather data on those factors through a household survey. We select targeted survey fields such that not only both extremes of yield distribution but also all soil texture categories in the county is covered. Our survey assesses management and biophysical factors as well as social factors such as farmers' access to agronomic knowledge, which is approximated by distance to the closest demonstration plot or 'Science and technology backyard'. Our survey covers 10 townships, 53 villages and 180 fields. Three to ten farmers are surveyed depending on the amount of variation present among sub pixels of each field. According to survey results, we extract the amount of variation within as well as between villages and or soil type. The higher within village or within field variation, the higher importance of management factors. Factors such as soil type and access to knowledge are more represented by between village variation. Through regression and analysis of variance, we gain more quantitative and thorough understanding of causes to yield variation at village scale, which further explains the gap between average and highest achieved yield.

  12. Spectral variations of canopy reflectance in support of precision agriculture

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi; Borisova, Denitsa; Nikolov, Hristo

    2014-05-01

    Agricultural monitoring is an important and continuously spreading activity in remote sensing and applied Earth observations. It supplies precise, reliable and valuable information on current crop condition and growth processes. In agriculture, the timing of seasonal cycles of crop activity is important for species classification and evaluation of crop development, growing conditions and potential yield. The correct interpretation of remotely sensed data, however, and the increasing demand for data reliability require ground-truth knowledge of the seasonal spectral behavior of different species and their relation to crop vigor. For this reason, we performed ground-based study of the seasonal response of winter wheat reflectance patterns to crop growth patterns. The goal was to quantify crop seasonality by establishing empirical relationships between plant biophysical and spectral properties in main ontogenetic periods. Phenology and agro-specific relationships allow assessing crop condition during different portions of the growth cycle and thus effectively tracking plant development, and finally make yield predictions. The applicability of a number of vegetation indices (VIs) for monitoring crop seasonal dynamics, its health condition, and yield potential was examined. Special emphasis we put on narrow-band indices as the availability of data from hyperspectral imagers is unavoidable future. The temporal behavior of vegetation indices revealed increased sensitivity to crop growth. The derived spectral-biophysical relationships allowed extraction of quantitative information about crop variables and yield at different stages of the phenological development. Relating plant spectral and biophysical variables in a phenology-based manner allows crop monitoring, that is crop diagnosis and predictions to be performed multiple times during plant ontogenesis. During active vegetative periods spectral data was highly indicative of plant growth trends and yield potential. The VIs values contributed to reliable yield prediction and showed very good correspondence with the estimates from biophysical models. For dates before full maturity most of the examined VIs proved to be meaningful statistical predictors of crop state-indicative biophysical variables. High correlations were obtained for canopy cover fraction, LAI, and biomass. Sensitivity to red, near-infrared and green reflectance showed both vigorous and stressed plants. As crops attained advanced growth stages, decreased sensitivity of VIs and weaker correlations with bioparameters were observed, yet still significant in a statistical sense. The results highlight the capability of the presented approach to track the dynamics of crop growth from multitemporal spectral data, and illustrate the prediction accuracy of the spectral models. The results are useful in assessing the efficiency of various spectral band ratios and other vegetation indices often used in remote sensing studies of natural and agricultural vegetation. They suggest that the used algorithm for data processing is particularly suitable for airborne cropland monitoring and could be expanded to sites at farm or municipality scale. The results reported are from pilot study carried out on a plot located in one of the established polygons for experimental crop monitoring. In the mentioned research GIS database is established for supporting the experiments and modelling process. Recommendations on good farming practices for medium sized farms for monitoring stress conditions such as drought and overfertilizing are developed.

  13. Impact of Lygus spp. (Hemiptera: Miridae) on damage, yield and quality of lesquerella (Physaria fendleri), a potential new oil-seed crop.

    PubMed

    Naranjo, Steven E; Ellsworth, Peter C; Dierig, David A

    2011-10-01

    Lesquerella, Physaria fendleri (A. Gray) S. Watson, is a mustard native to the western United States and is currently being developed as a commercial source of valuable hydroxy fatty acids that can be used in a number of industrial applications, including biolubricants, biofuel additives, motor oils, resins, waxes, nylons, plastics, corrosion inhibitors, cosmetics, and coatings. The plant is cultivated as a winter-spring annual and in the desert southwest it harbors large populations of arthropods, several of which could be significant pests once production expands. Lygus spp. (Hemiptera: Miridae) are common in lesquerella and are known pests of a number of agronomic and horticultural crops where they feed primarily on reproductive tissues. A 4-yr replicated plot study was undertaken to evaluate the probable impact of Lygus spp. on production of this potential new crop. Plant damage and subsequent seed yield and quality were examined relative to variable and representative densities of Lygus spp. (0.3-4.9 insects per sweep net) resulting from variable frequency and timing of insecticide applications. Increasing damage to various fruiting structures (flowers [0.9-13.9%], buds [1.2-7.1%], and seed pods [19.4-42.5%]) was significantly associated with increasing pest abundance, particularly the abundance of nymphs, in all years. This damage, however, did not consistently translate into reductions in seed yield (481-1,336 kg/ha), individual seed weight (0.5-0.7 g per 1,000 seed), or seed oil content (21.8-30.4%), and pest abundance generally explained relatively little of the variation in crop yield and quality. Negative effects on yield were not sensitive to the timing of pest damage (early versus late season) but were more pronounced during years when potential yields were lower due to weed competition and other agronomic factors. Results suggest that if the crop is established and managed in a more optimal fashion, Lygus spp. may not significantly limit yield. Nonetheless, additional work will be needed once more uniform cultivars become available and yield effects can be more precisely measured. Densities of Lygus spp. in unsprayed lesquerella are on par with those in other known agroecosystem level sources of this pest (e.g., forage and seed alfalfa, Medicago sativa L.). Thus, lesquerella production may introduce new challenges to pest management in crops such as cotton.

  14. Changes in water budgets and sediment yields from a hypothetical agricultural field as a function of landscape and management characteristics--A unit field modeling approach

    USGS Publications Warehouse

    Roth, Jason L.; Capel, Paul D.

    2012-01-01

    Crop agriculture occupies 13 percent of the conterminous United States. Agricultural management practices, such as crop and tillage types, affect the hydrologic flow paths through the landscape. Some agricultural practices, such as drainage and irrigation, create entirely new hydrologic flow paths upon the landscapes where they are implemented. These hydrologic changes can affect the magnitude and partitioning of water budgets and sediment erosion. Given the wide degree of variability amongst agricultural settings, changes in the magnitudes of hydrologic flow paths and sediment erosion induced by agricultural management practices commonly are difficult to characterize, quantify, and compare using only field observations. The Water Erosion Prediction Project (WEPP) model was used to simulate two landscape characteristics (slope and soil texture) and three agricultural management practices (land cover/crop type, tillage type, and selected agricultural land management practices) to evaluate their effects on the water budgets of and sediment yield from agricultural lands. An array of sixty-eight 60-year simulations were run, each representing a distinct natural or agricultural scenario with various slopes, soil textures, crop or land cover types, tillage types, and select agricultural management practices on an isolated 16.2-hectare field. Simulations were made to represent two common agricultural climate regimes: arid with sprinkler irrigation and humid. These climate regimes were constructed with actual climate and irrigation data. The results of these simulations demonstrate the magnitudes of potential changes in water budgets and sediment yields from lands as a result of landscape characteristics and agricultural practices adopted on them. These simulations showed that variations in landscape characteristics, such as slope and soil type, had appreciable effects on water budgets and sediment yields. As slopes increased, sediment yields increased in both the arid and humid environments. However, runoff did not increase with slope in the arid environment as was observed in the humid environment. In both environments, clayey soils exhibited the greatest amount of runoff and sediment yields while sandy soils had greater recharge and lessor runoff and sediment yield. Scenarios simulating the effects of the timing and type of tillage practice showed that no-till, conservation, and contouring tillages reduced sediment yields and, with the exception of no-till, runoff in both environments. Changes in land cover and crop type simulated the changes between the evapotransporative potential and surface roughness imparted by specific vegetations. Substantial differences in water budgets and sediment yields were observed between most agricultural crops and the natural covers selected for each environment: scrub and prairie grass for the arid environment and forest and prairie grass for the humid environment. Finally, a group of simulations was performed to model selected agricultural management practices. Among the selected practices subsurface drainage and strip cropping exhibited the largest shifts in water budgets and sediment yields. The practice of crop rotation (corn/soybean) and cover cropping (corn/rye) were predicted to increase sediment yields from a field planted as conventional corn.

  15. Building a statistical emulator for prediction of crop yield response to climate change: a global gridded panel data set approach

    NASA Astrophysics Data System (ADS)

    Mistry, Malcolm; De Cian, Enrica; Wing, Ian Sue

    2015-04-01

    There is widespread concern that trends and variability in weather induced by climate change will detrimentally affect global agricultural productivity and food supplies. Reliable quantification of the risks of negative impacts at regional and global scales is a critical research need, which has so far been met by forcing state-of-the-art global gridded crop models with outputs of global climate model (GCM) simulations in exercises such as the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)-Fastrack. Notwithstanding such progress, it remains challenging to use these simulation-based projections to assess agricultural risk because their gridded fields of crop yields are fundamentally denominated as discrete combinations of warming scenarios, GCMs and crop models, and not as model-specific or model-averaged yield response functions of meteorological shifts, which may have their own independent probability of occurrence. By contrast, the empirical climate economics literature has adeptly represented agricultural responses to meteorological variables as reduced-form statistical response surfaces which identify the crop productivity impacts of additional exposure to different intervals of temperature and precipitation [cf Schlenker and Roberts, 2009]. This raises several important questions: (1) what do the equivalent reduced-form statistical response surfaces look like for crop model outputs, (2) do they exhibit systematic variation over space (e.g., crop suitability zones) or across crop models with different characteristics, (3) how do they compare to estimates based on historical observations, and (4) what are the implications for the characterization of climate risks? We address these questions by estimating statistical yield response functions for four major crops (maize, rice, wheat and soybeans) over the historical period (1971-2004) as well as future climate change scenarios (2005-2099) using ISIMIP-Fastrack data for five GCMs and seven crop models under rain-fed and irrigated management regimes. Our approach, which is patterned after Lobell and Burke [2010], is a novel application of cross-section/time-series statistical techniques from the climate economics literature to large, high-dimension, multi-model datasets, and holds considerable promise as a diagnostic methodology to elucidate uncertainties in the processes simulated by crop models, and to support the development of climate impact intercomparison exercises.

  16. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield.

    PubMed

    Guo, Mei; Rupe, Mary A; Wei, Jun; Winkler, Chris; Goncalves-Butruille, Marymar; Weers, Ben P; Cerwick, Sharon F; Dieter, Jo Ann; Duncan, Keith E; Howard, Richard J; Hou, Zhenglin; Löffler, Carlos M; Cooper, Mark; Simmons, Carl R

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer's modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer's female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance.

  17. Topographic controls on soil nutrient variations in a Silvopasture system

    USDA-ARS?s Scientific Manuscript database

    Topography plays a crucial role in the spatial distribution of nutrients in soils because of its influence on the flow and (re)distribution of water and energy in a landscape. Information on the spatial pattern of soil nutrient distribution would benefit management decisions to maximize crop yield a...

  18. Site-specific cotton management: Soil measurements

    USDA-ARS?s Scientific Manuscript database

    oil variability within fields has a large effect on crop growth and yield, often due to variations in soil texture and water holding capacity. This is particularly true in the alluvial soils of the Mississippi Delta, where profile sand contents can range from 20% to 90% within a field. Variable-rate...

  19. A Multi-sensor Approach to Identify Crop Sensitivity Related to Climate Variability in Central India

    NASA Astrophysics Data System (ADS)

    Mondal, P.; DeFries, R. S.; Jain, M.; Robertson, A. W.; Galford, G. L.; Small, C.

    2012-12-01

    Agriculture is a primary source of livelihood for over 70% of India's population, with staple crops (e.g. winter wheat) playing a pivotal role in satisfying an ever-increasing food-demand of a growing population. Agricultural yield in India has been reported to be highly correlated with the timing and total amount of monsoon rainfall and/or temperature depending on crop type. With expected change in future climate (temperature and precipitation), significant fluctuations in crop yields are projected for near future. To date, little work has identified the sensitivity of cropping intensity, or the number of crops planted in a given year, to climate variability. The objective of this study is to shed light on relative importance of different climate parameters through a statistical analysis of inter-annual variations in cropping intensity at a regional scale, which may help identify adaptive strategies in response to future climate anomalies. Our study focuses on a highly human-modified landscape in central India, and uses a multi-sensor approach to determine the sensitivity of agriculture to climate variability. First, we assembled the 16-day time-series of 250m Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), and applied a spline function-based smoothing algorithm to develop maps of monsoon and winter crops in Central India for a decadal time-span. A hierarchical model involving moderate resolution Landsat (30m) data was used to estimate the heterogeneity of the spectral signature within the MODIS dataset (250m). We then compared the season-specific cropping patterns with spatio-temporal variability in climate parameters derived from the Tropical Rainfall Measuring Mission (TRMM) data. Initial data indicates that the existence of a monsoon crop has moderate to strong correlation with wet season end date (ρ = .522), wet season length (ρ = .522), and the number of rainy days during wet season (ρ = .829). Existence of a winter crop, however, has a moderately strong correlation with wet season start date (ρ = .577). In addition, winter crop yield (ton/ha) has a moderate correlation with wet season end date (ρ = .624), number of rainy days during the wet season (ρ = .492), and during the dry season (ρ = .410). Future work will assess which other factors influence cropping intensity (e.g. access to irrigation among many other), since a complex interplay of bio-physical and socio-economic factors governs the decision-making at the farm-level, ultimately leading to inter-annual variability in cropping intensity and/or yield.

  20. Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States.

    PubMed

    Kniss, Andrew R; Savage, Steven D; Jabbour, Randa

    2016-01-01

    Land area devoted to organic agriculture has increased steadily over the last 20 years in the United States, and elsewhere around the world. A primary criticism of organic agriculture is lower yield compared to non-organic systems. Previous analyses documenting the yield deficiency in organic production have relied mostly on data generated under experimental conditions, but these studies do not necessarily reflect the full range of innovation or practical limitations that are part of commercial agriculture. The analysis we present here offers a new perspective, based on organic yield data collected from over 10,000 organic farmers representing nearly 800,000 hectares of organic farmland. We used publicly available data from the United States Department of Agriculture to estimate yield differences between organic and conventional production methods for the 2014 production year. Similar to previous work, organic crop yields in our analysis were lower than conventional crop yields for most crops. Averaged across all crops, organic yield averaged 67% of conventional yield [corrected]. However, several crops had no significant difference in yields between organic and conventional production, and organic yields surpassed conventional yields for some hay crops. The organic to conventional yield ratio varied widely among crops, and in some cases, among locations within a crop. For soybean (Glycine max) and potato (Solanum tuberosum), organic yield was more similar to conventional yield in states where conventional yield was greatest. The opposite trend was observed for barley (Hordeum vulgare), wheat (Triticum aestevum), and hay crops, however, suggesting the geographical yield potential has an inconsistent effect on the organic yield gap.

  1. Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States

    PubMed Central

    Savage, Steven D.; Jabbour, Randa

    2016-01-01

    Land area devoted to organic agriculture has increased steadily over the last 20 years in the United States, and elsewhere around the world. A primary criticism of organic agriculture is lower yield compared to non-organic systems. Previous analyses documenting the yield deficiency in organic production have relied mostly on data generated under experimental conditions, but these studies do not necessarily reflect the full range of innovation or practical limitations that are part of commercial agriculture. The analysis we present here offers a new perspective, based on organic yield data collected from over 10,000 organic farmers representing nearly 800,000 hectares of organic farmland. We used publicly available data from the United States Department of Agriculture to estimate yield differences between organic and conventional production methods for the 2014 production year. Similar to previous work, organic crop yields in our analysis were lower than conventional crop yields for most crops. Averaged across all crops, organic yield averaged 80% of conventional yield. However, several crops had no significant difference in yields between organic and conventional production, and organic yields surpassed conventional yields for some hay crops. The organic to conventional yield ratio varied widely among crops, and in some cases, among locations within a crop. For soybean (Glycine max) and potato (Solanum tuberosum), organic yield was more similar to conventional yield in states where conventional yield was greatest. The opposite trend was observed for barley (Hordeum vulgare), wheat (Triticum aestevum), and hay crops, however, suggesting the geographical yield potential has an inconsistent effect on the organic yield gap. PMID:27552217

  2. Representing winter wheat in the Community Land Model (version 4.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land–atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange ofmore » CO 2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.« less

  3. Representing winter wheat in the Community Land Model (version 4.5)

    NASA Astrophysics Data System (ADS)

    Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; Torn, Margaret S.; Kueppers, Lara M.

    2017-05-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange of CO2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.

  4. Representing winter wheat in the Community Land Model (version 4.5)

    DOE PAGES

    Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; ...

    2017-05-05

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land–atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange ofmore » CO 2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.« less

  5. Correlation studies on nitrogen for sunflower crop across the agroclimatic variability.

    PubMed

    Nasim, Wajid; Belhouchette, Hatem; Tariq, Muhammad; Fahad, Shah; Hammad, Hafiz Mohkum; Mubeen, Muhammad; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed; Khan, Imran; Mahmood, Faisal; Abbas, Tauqeer; Rasul, Fahd; Nadeem, Muhammad; Bajwa, Ali Ahsan; Ullah, Najeeb; Alghabari, Fahad; Saud, Shah; Mubarak, Hussani; Ahmad, Rafiq

    2016-02-01

    Nitrogen (N) fertilizer is an important yield limiting factor for sunflower production. The correlation between yield components and growth parameters of three sunflower hybrids (Hysun-33, Hysun-38, Pioneer-64A93) were studied with five N rates (0, 60, 120, 180, 240 kg ha(-1)) at three different experimental sites during the two consecutive growing seasons 2008 and 2009. The results revealed that total dry matter (TDM) production and grain yield were positively and linearly associated with leaf area index (LAI), leaf area duration (LAD), and crop growth rate (CGR) at all three sites of the experiments. The significant association of yield with growth components indicated that the humid climate was most suitable for sunflower production. Furthermore, the association of these components can be successfully used to predict the grain yield under diverse climatic conditions. The application of N at increased rate of 180 kg ha(-1) resulted in maximum yield as compared to standard rate (120 kg ha(-1)) at all the experimental sites. In this way, N application rate was significantly correlated with growth and development of sunflower under a variety of climatic conditions. Keeping in view such relationship, the N dose can be optimized for sunflower crop in a particular region to maximize the productivity. Multilocation trails help to predict the input rates precisely while taking climatic variations into account also. In the long run, results of this study provides basis for sustainable sunflower production under changing climate.

  6. Impacts of climate change on paddy rice yield in a temperate climate.

    PubMed

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  7. An analysis of the energetic reward offered by field bean (Vicia faba) flowers: Nectar, pollen, and operative force.

    PubMed

    Bailes, Emily J; Pattrick, Jonathan G; Glover, Beverley J

    2018-03-01

    Global consumption of crops with a yield that is dependent on animal pollinators is growing, with greater areas planted each year. However, the floral traits that influence pollinator visitation are not usually the focus of breeding programmes, and therefore, it is likely that yield improvements may be made by optimizing floral traits to enhance pollinator visitation rates. We investigated the variation present in the floral reward of the bee-pollinated crop Vicia faba (field bean). We examined the genetic potential for breeding flowers with a greater reward into current commercial varieties and used bee behavioral experiments to gain insight into the optimal nectar concentration to maximize bee preference. There was a large range of variation in the amount of pollen and nectar reward of flowers in the genotypes investigated. Bee behavioral experiments using nectar sugar concentrations found in V. faba lines suggest that Bombus terrestris prefers 55% w/w sugar solution over 40% w/w, but has no preference between 55% w/w and 68% w/w sugar solution. We provide a first indication of the force required to open V. faba flowers. Our results provide a valuable starting point toward breeding for varieties with optimized floral reward. Field studies are now needed to verify whether the genetic potential for breeding more rewarding flowers can translate into higher yield and yield stability.

  8. Cowpea and Groundnut Haulms Fodder Trading and Its Lessons for Multidimensional Cowpea Improvement for Mixed Crop Livestock Systems in West Africa

    PubMed Central

    Samireddypalle, Anandan; Boukar, Ousmane; Grings, Elaine; Fatokun, Christian A.; Kodukula, Prasad; Devulapalli, Ravi; Okike, Iheanacho; Blümmel, Michael

    2017-01-01

    Cowpea is an important legume crop in Africa, valued highly for its grain and also haulms, which are a tradable commodity in fodder markets. Fodder market surveys in Northern Nigeria showed that groundnut haulms were priced higher than cowpea haulms, probably because of their superior nutritive value. The economic value of haulms has prompted cowpea breeders and livestock nutritionists to explore haulm fodder traits as additional selection and breeding criteria. Fifty cowpea genotypes cultivated across five locations in Nigeria in 2013 and 2014 were evaluated for food fodder traits. Significant (P < 0.05) genotypic dependent variations were observed in yields (kg/ha) of grains (537–1082) and haulms (1173–3368), though significant (P < 0.05) effects of location and year were observed. Grain and fodder yield had a tendency to be positively correlated (r = 0.26, P = 0.07). Haulms were analyzed for nitrogen (N), fiber fractions, in vitro digestibility, and metabolizable energy content. Highly significant variations were observed in all genotypic and livestock nutrition traits, although location and year had significant effects. Trade-offs between grain yield and haulm fodder quality traits were largely absent and haulm acid detergent lignin and grain yield were even inversely correlated (r = -0.28, P = 0.05), that is high grain yielders had decreased haulm lignin. However, haulm N and grain yield also tended to be negatively associated (r = -0.26, P = 0.07). Haulm fodder quality traits and haulm yield were mostly positively correlated (P < 0.05). Broad sense heritabilities for grain and fodder yield were 0.50 and 0.29, respectively, while heritability for haulm fodder quality traits ranged from 0.61 to 0.67, providing opportunities for concomitant increase in grain yield and haulm fodder quality traits. Selection of the 10 highest ranking genotypes for grain yield, haulm yield, haulm N, and haulm in vitro organic matter digestibility showed selection groups overlapping, suggesting that multi-trait selection is feasible. Economical evaluation showed that choice of primary traits is context specific, highlighting the need for identifying and targeting appropriate genotypes to fit different production systems. Considering haulm quantity and quality as traits of economic value can increase overall plant value in mixed crop-livestock systems. PMID:28197154

  9. Active sensing: An innovative tool for evaluating grain yield and nitrogen use efficiency of multiple wheat genotypes

    NASA Astrophysics Data System (ADS)

    Naser, Mohammed Abdulridha

    Precision agricultural practices have significantly contributed to the improvement of crop productivity and profitability. Remote sensing based indices, such as Normalized Difference Vegetative Index (NDVI) have been used to obtain crop information. It is used to monitor crop development and to provide rapid and nondestructive estimates of plant biomass, nitrogen (N) content and grain yield. Remote sensing tools are helping improve nitrogen use efficiency (NUE) through nitrogen management and could also be useful for high NUE genotype selection. The objectives of this study were: (i) to determine if active sensor based NDVI readings can differentiate wheat genotypes, (ii) to determine if NDVI readings can be used to classify wheat genotypes into grain yield productivity classes, (iii) to identify and quantify the main sources of variation in NUE across wheat genotypes, and (iv) to determine if normalized difference vegetation index (NDVI) could characterize variability in NUE across wheat genotypes. This study was conducted in north eastern Colorado for two years, 2010 and 2011. The NDVI readings were taken weekly during the winter wheat growing season from March to late June, in 2010 and 2011 and NUE were calculated as partial factor productivity and as partial nitrogen balance at the end of the season. For objectives i and ii, the correlation between NDVI and grain yield was determined using Pearson's product-moment correlation coefficient (r) and linear regression analysis was used to explain the relationship between NDVI and grain yield. The K-means clustering algorithm was used to classify mean NDVI and mean grain yield into three classes. For objectives iii and iv, the parameters related to NUE were also calculated to measure their relative importance in genotypic variation of NUE and power regression analysis between NDVI and NUE was used to characterize the relationship between NDVI and NUE. The results indicate more consistent association between grain yield and NDVI and between NDVI and NUE later in the season, after anthesis and during mid-grain filling stage under dryland and a poor association in wheat grown in irrigated conditions. The results suggest that below saturation of NDVI values (about 0.9), (i.e. prior to full canopy closure and after the beginning of senescence or most of the season under dryland conditions) NDVI could assess grain yield and NUE. The results also indicate that nitrogen uptake efficiency was the main source of variation of NUE among genotypes grown in site-years with lower yield. Overall, results from this study demonstrate that NDVI readings successfully classified wheat genotypes into grain yield classes across dryland and irrigated conditions and characterized variability in NUE across wheat genotypes.

  10. Recent changes in county-level corn yield variability in the United States from observations and crop models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong

    The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota,more » Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated the change trend of corn yield variability, in projecting its future changes.« less

  11. Crop Yield Predictions - High Resolution Statistical Model for Intra-season Forecasts Applied to Corn in the US

    NASA Astrophysics Data System (ADS)

    Cai, Y.

    2017-12-01

    Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.

  12. Glutamine synthetase in durum wheat: Genotypic variation and relationship with grain protein content

    USDA-ARS?s Scientific Manuscript database

    Nitrogen Use Efficiency (NUE), one of the most valuable indicators for nitrogen use in crops, both in terms of yield and final grain protein content (GPC), is a very complex trait. The identification of wheat varieties with high NUE, as well as the characterization of central enzymes involved in th...

  13. Climate Impacts on Agriculture in the United States: The Value of Past Observations

    USDA-ARS?s Scientific Manuscript database

    Climate impacts on agriculture cause variations in crop yields and lead to lack of stability in grain production. This will become more critical as the world population continues to increase and demands more food. There have been many studies that have shown the impact of climate on agricultural pro...

  14. Adapting to warmer climate through prolonged maize grain filling period in the US Midwest

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Zhuang, Q.; Jin, Z.

    2017-12-01

    Climate warming is expected to negatively impact the US food productivity. How to adapt to the future warmer environment and meet the rising food requirement becomes unprecedented urgent. Continuous satellite observational data provides an opportunity to examine the historic responses of crop plants to climate variation. Here 16 years crop growing phases information across US Midwest is generated based on satellite observations. We found a prolonged grain-filling period during 2000-2015, which could partly explain the increasing trend in Midwest maize yield. This longer grain-filling period might be resulted from the adoption of longer maturity group varieties or more resistant varieties to temperature variation. Other management practice changes like advance in planting date could be also an effective way of adapting future warmer climate through lowering the possibility of exposure to heat and drought stresses. If the progress in breeding technology enables the maize grain-filling period to prolong with the current rate, the maize grain filling length could be longer and maize yield in Midwest could adapt to future climate despite of the warming.

  15. Empirically Estimating the Potential for Farm-Level Adaptation to Climate Change in Western European Agriculture

    NASA Astrophysics Data System (ADS)

    Moore, F. C.; Lobell, D. B.

    2013-12-01

    Agriculture is one of the economic sectors most exposed to climate change and estimating the sensitivity of food production to these changes is critical for determining the severity of climate change impacts and for informing both adaptation and mitigation policy. While climate change might have adverse effects in many areas, it has long been recognized that farmers have a suite of adaptation options at their disposal including, inter alia, changing planting date, varieties, crops, or the mix and quantity of inputs applied. These adaptations may significantly reduce the adverse impacts of climate change but the potential effectiveness of these options and the speed with which farmers will adopt them remain uncertain. We estimate the sensitivity of crop yields and farm profits in western Europe to climate change with and without the adoption of on-farm adaptations. We use cross-sectional variation across farms to define the long-run response function that includes adaptation and inter-annual variation within farms to define the short-run response function without adaptation. The difference between these can be interpreted as the potential for adaptation. We find that future warming will have a large adverse impact on wheat and barley yields and that adaptation will only be able to mitigate a small fraction of this. Maize, oilseed and sugarbeet yields are more modestly affected and adaptation is more effective for these crops. Farm profits could increase slightly under moderate amounts of warming if adaptations are adopted but will decline in the absence of adaptation. A decomposition of variance gives the relative importance of different sources of uncertainty in projections of climate change impacts. We find that in most cases uncertainty over future adaptation pathways (whether farmers will or will not adopt beneficial adaptations) is the most important source of uncertainty in projecting the effect of temperature changes on crop yields and farm profits. This source of uncertainty dominates both uncertainty over temperature projections (climate uncertainty) and uncertainty over how sensitive crops or profits are to changes in temperature (response uncertainty). Therefore, constraining how quickly farmers are likely to adapt will be essential for improving our understanding of how climate change will affect food production over the next few decades.

  16. Functional group diversity of bee pollinators increases crop yield

    PubMed Central

    Hoehn, Patrick; Tscharntke, Teja; Tylianakis, Jason M; Steffan-Dewenter, Ingolf

    2008-01-01

    Niche complementarity is a commonly invoked mechanism underlying the positive relationship between biodiversity and ecosystem functioning, but little empirical evidence exists for complementarity among pollinator species. This study related differences in three functional traits of pollinating bees (flower height preference, daily time of flower visitation and within-flower behaviour) to the seed set of the obligate cross-pollinated pumpkin Cucurbita moschata Duch. ex Poir. across a land-use intensity gradient from tropical rainforest and agroforests to grassland in Indonesia. Bee richness and abundance changed with habitat variables and we used this natural variation to test whether complementary resource use by the diverse pollinator community enhanced final yield. We found that pollinator diversity, but not abundance, was positively related to seed set of pumpkins. Bees showed species-specific spatial and temporal variation in flower visitation traits and within-flower behaviour, allowing for classification into functional guilds. Diversity of functional groups explained even more of the variance in seed set (r2=45%) than did species richness (r2=32%) highlighting the role of functional complementarity. Even though we do not provide experimental, but rather correlative evidence, we can link spatial and temporal complementarity in highly diverse pollinator communities to pollination success in the field, leading to enhanced crop yield without any managed honeybees. PMID:18595841

  17. Time Series Analysis of Remote Sensing Observations for Citrus Crop Growth Stage and Evapotranspiration Estimation

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Chakraborty, M.; Suradhaniwar, S.; Adinarayana, J.; Durbha, S. S.

    2016-06-01

    Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (http://earthexplorer.usgs.gov/). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system observed relevant weather parameters for crop ET estimation. The results show that time series EO based crop growth stage estimates provide better information about geographically separated citrus orchards. Attempts are being made to estimate regional variations in citrus crop water requirement for effective irrigation planning. In future high resolution Sentinel 2 observations from European Space Agency (ESA) will be used to fill the time gaps and to get better understanding about citrus crop canopy parameters.

  18. Impact of crop rotation and soil amendments on long-term no-tilled soybean yields

    USDA-ARS?s Scientific Manuscript database

    Continuous cropping systems without cover crops are perceived as unsustainable for long-term yield and soil health. To test this, cropping sequence and cover crop effects on soybean (Glycine max L.) yields were assessed. Main effects were 10 cropping sequences of soybean, corn (Zea mays L.), and co...

  19. Tradeoffs between water requirements and yield stability in annual vs. perennial crops

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Brunsell, Nathaniel A.

    2018-02-01

    Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.

  20. Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.

    PubMed

    Edwards, Felicity A; Edwards, David P; Sloan, Sean; Hamer, Keith C

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.

  1. Sustainable Management in Crop Monocultures: The Impact of Retaining Forest on Oil Palm Yield

    PubMed Central

    Edwards, Felicity A.; Edwards, David P.; Sloan, Sean; Hamer, Keith C.

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture. PMID:24638038

  2. Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models

    DOE PAGES

    Blanc, Élodie

    2017-01-26

    This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less

  3. Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, Élodie

    This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less

  4. High resolution crop growth simulation for identification of potential adaptation strategies under climate change

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Yoo, B. H.

    2016-12-01

    Impact assessment of climate change on crop production would facilitate planning of adaptation strategies. Because socio-environmental conditions would differ by local areas, it would be advantageous to assess potential adaptation measures at a specific area. The objectives of this study was to develop a crop growth simulation system at a very high spatial resolution, e.g., 30 m, and to assess different adaptation options including shift of planting date and use of different cultivars. The Decision Support System for Agrotechnology Transfer (DSSAT) model was used to predict yields of soybean and maize in Korea. Gridded data for climate and soil were used to prepare input data for the DSSAT model. Weather input data were prepared at the resolution of 30 m using bilinear interpolation from gridded climate scenario data. Those climate data were obtained from Korean Meteorology Administration. Spatial resolution of temperature and precipitation was 1 km whereas that of solar radiation was 12.5 km. Soil series data at the 30 m resolution were obtained from the soil database operated by Rural Development Administration, Korea. The SOL file, which is a soil input file for the DSSAT model was prepared using physical and chemical properties of a given soil series, which were available from the soil database. Crop yields were predicted by potential adaptation options based on planting date and cultivar. For example, 10 planting dates and three cultivars were used to identify ideal management options for climate change adaptation. In prediction of maize yield, combination of 20 planting dates and two cultivars was used as management options. Predicted crop yields differed by site even within a relatively small region. For example, the maximum of average yields for 2001-2010 seasons differed by sites In a county of which areas is 520 km2 (Fig. 1). There was also spatial variation in the ideal management option in the region (Fig. 2). These results suggested that local assessment of climate change impact on crop production would be useful for planning adaptation options.

  5. Yield and Economic Responses of Peanut to Crop Rotation Sequence

    USDA-ARS?s Scientific Manuscript database

    Proper crop rotation is essential to maintaining high peanut yield and quality. However, the economic considerations of maintaining or altering crop rotation sequences must incorporate the commodity prices, production costs, and yield responses of all crops in, or potentially in, the crop rotation ...

  6. Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus

    PubMed Central

    Schiessl, Sarah; Samans, Birgit; Hüttel, Bruno; Reinhard, Richard; Snowdon, Rod J.

    2014-01-01

    Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC), homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus) and a swede (B. napus ssp. napobrassica), which show extreme differences in winter-hardiness, vernalization requirement and flowering behavior. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalization, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species. PMID:25202314

  7. Marker-Based Estimates Reveal Significant Non-additive Effects in Clonally Propagated Cassava (Manihot esculenta): Implications for the Prediction of Total Genetic Value and the Selection of Varieties.

    PubMed

    Wolfe, Marnin D; Kulakow, Peter; Rabbi, Ismail Y; Jannink, Jean-Luc

    2016-08-31

    In clonally propagated crops, non-additive genetic effects can be effectively exploited by the identification of superior genetic individuals as varieties. Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop that feeds hundreds of millions. We quantified the amount and nature of non-additive genetic variation for three key traits in a breeding population of cassava from sub-Saharan Africa using additive and non-additive genome-wide marker-based relationship matrices. We then assessed the accuracy of genomic prediction for total (additive plus non-additive) genetic value. We confirmed previous findings based on diallel populations, that non-additive genetic variation is significant for key cassava traits. Specifically, we found that dominance is particularly important for root yield and epistasis contributes strongly to variation in CMD resistance. Further, we showed that total genetic value predicted observed phenotypes more accurately than additive only models for root yield but not for dry matter content, which is mostly additive or for CMD resistance, which has high narrow-sense heritability. We address the implication of these results for cassava breeding and put our work in the context of previous results in cassava, and other plant and animal species. Copyright © 2016 Author et al.

  8. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield.

    PubMed

    Ma, Zhiying; He, Shoupu; Wang, Xingfen; Sun, Junling; Zhang, Yan; Zhang, Guiyin; Wu, Liqiang; Li, Zhikun; Liu, Zhihao; Sun, Gaofei; Yan, Yuanyuan; Jia, Yinhua; Yang, Jun; Pan, Zhaoe; Gu, Qishen; Li, Xueyuan; Sun, Zhengwen; Dai, Panhong; Liu, Zhengwen; Gong, Wenfang; Wu, Jinhua; Wang, Mi; Liu, Hengwei; Feng, Keyun; Ke, Huifeng; Wang, Junduo; Lan, Hongyu; Wang, Guoning; Peng, Jun; Wang, Nan; Wang, Liru; Pang, Baoyin; Peng, Zhen; Li, Ruiqiang; Tian, Shilin; Du, Xiongming

    2018-05-07

    Upland cotton is the most important natural-fiber crop. The genomic variation of diverse germplasms and alleles underpinning fiber quality and yield should be extensively explored. Here, we resequenced a core collection comprising 419 accessions with 6.55-fold coverage depth and identified approximately 3.66 million SNPs for evaluating the genomic variation. We performed phenotyping across 12 environments and conducted genome-wide association study of 13 fiber-related traits. 7,383 unique SNPs were significantly associated with these traits and were located within or near 4,820 genes; more associated loci were detected for fiber quality than fiber yield, and more fiber genes were detected in the D than the A subgenome. Several previously undescribed causal genes for days to flowering, fiber length, and fiber strength were identified. Phenotypic selection for these traits increased the frequency of elite alleles during domestication and breeding. These results provide targets for molecular selection and genetic manipulation in cotton improvement.

  9. Analysis of climate signals in the crop yield record of sub-Saharan Africa.

    PubMed

    Hoffman, Alexis L; Kemanian, Armen R; Forest, Chris E

    2018-01-01

    Food security and agriculture productivity assessments in sub-Saharan Africa (SSA) require a better understanding of how climate and other drivers influence regional crop yields. In this paper, our objective was to identify the climate signal in the realized yields of maize, sorghum, and groundnut in SSA. We explored the relation between crop yields and scale-compatible climate data for the 1962-2014 period using Random Forest, a diagnostic machine learning technique. We found that improved agricultural technology and country fixed effects are three times more important than climate variables for explaining changes in crop yields in SSA. We also found that increasing temperatures reduced yields for all three crops in the temperature range observed in SSA, while precipitation increased yields up to a level roughly matching crop evapotranspiration. Crop yields exhibited both linear and nonlinear responses to temperature and precipitation, respectively. For maize, technology steadily increased yields by about 1% (13 kg/ha) per year while increasing temperatures decreased yields by 0.8% (10 kg/ha) per °C. This study demonstrates that although we should expect increases in future crop yields due to improving technology, the potential yields could be progressively reduced due to warmer and drier climates. © 2017 John Wiley & Sons Ltd.

  10. Crop yield responses to a hardwood biochar across varied soils and climate conditions

    USDA-ARS?s Scientific Manuscript database

    Biochars applied to soil for crop yield improvements have produced mixed results. The assorted crop yield responses may be linked to employing biochars with diverse chemical and physical characteristics. To clarify if biochars can improve crop yields, it may be prudent to evaluate one biochar type...

  11. How does spatial and temporal resolution of vegetation index impact crop yield estimation?

    USDA-ARS?s Scientific Manuscript database

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing data have long been used in crop yield estimation for decades. The process-based approach uses light use efficiency model to estimate crop yield. Vegetation index (VI) ...

  12. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield

    PubMed Central

    Guo, Mei

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays ARGOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer’s modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer’s female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance. PMID:24218327

  13. Airborne and ground-based remote sensing for the estimation of evapotranspiration and yield of bean, potato, and sugar beet crops

    NASA Astrophysics Data System (ADS)

    Jayanthi, Harikishan

    The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were compared with the actual yields extracted from the ground. The remote sensing-derived yields compared well with the actual yields sampled on the ground. This research has highlighted the importance of the date of spectral emergence, the need to know the duration for which the crops stand on the ground, and the need to identify critical periods of time when multispectral coverages are essential for reliable tuber yield estimation.

  14. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    DOE PAGES

    Wing, Ian Sue; Monier, Erwan; Stern, Ari; ...

    2015-10-28

    In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less

  15. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wing, Ian Sue; Monier, Erwan; Stern, Ari

    In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less

  16. An experimental case study to estimate Pre-harvest Wheat Acreage/Production in Hilly and Plain region of Uttarakhand state: Challenges and solutions of problems by using satellite data

    NASA Astrophysics Data System (ADS)

    Uniyal, D.; Kimothi, M. M.; Bhagya, N.; Ram, R. D.; Patel, N. K.; Dhaundiya, V. K.

    2014-11-01

    Wheat is an economically important Rabi crop for the state, which is grown on around 26 % of total available agriculture area in the state. There is a variation in productivity of wheat crop in hilly and tarai region. The agricultural productivity is less in hilly region in comparison of tarai region due to terrace cultivation, traditional system of agriculture, small land holdings, variation in physiography, top soil erosion, lack of proper irrigation system etc. Pre-harvest acreage/yield/production estimation of major crops is being done with the help of conventional crop cutting method, which is biased, inaccurate and time consuming. Remote Sensing data with multi-temporal and multi-spectral capabilities has shown new dimension in crop discrimination analysis and acreage/yield/production estimation in recent years. In view of this, Uttarakhand Space Applications Centre (USAC), Dehradun with the collaboration of Space Applications Centre (SAC), ISRO, Ahmedabad and Uttarakhand State Agriculture Department, have developed different techniques for the discrimination of crops and estimation of pre-harvest wheat acreage/yield/production. In the 1st phase, five districts (Dehradun, Almora, Udham Singh Nagar, Pauri Garhwal and Haridwar) with distinct physiography i.e. hilly and plain regions, have been selected for testing and verification of techniques using IRS (Indian Remote Sensing Satellites), LISS-III, LISS-IV satellite data of Rabi season for the year 2008-09 and whole 13 districts of the Uttarakhand state from 2009-14 along with ground data were used for detailed analysis. Five methods have been developed i.e. NDVI (Normalized Differential Vegetation Index), Supervised classification, Spatial modeling, Masking out method and Programming on visual basics methods using multitemporal satellite data of Rabi season along with the collateral and ground data. These methods were used for wheat discriminations and preharvest acreage estimations and subsequently results were compared with Bureau of Estimation Statistics (BES). Out of these five different methods, wheat area that was estimated by spatial modeling and programming on visual basics has been found quite near to Bureau of Estimation Statistics (BES). But for hilly region, maximum fields were going in shadow region, so it was difficult to estimate accurate result, so frequency distribution curve method has been used and frequency range has been decided to discriminate wheat pixels from other pixels in hilly region, digitized those regions and result shows good result. For yield estimation, an algorithm has been developed by using soil characteristics i.e. texture, depth, drainage, temperature, rainfall and historical yield data. To get the production estimation, estimated yield multiplied by acreage of crop per hectare. Result shows deviation for acreage estimation from BES is around 3.28 %, 2.46 %, 3.45 %, 1.56 %, 1.2 % and 1.6 % (estimation not declared till now by state Agriculture dept. For the year 2013-14) estimation and deviation for production estimation is around 4.98 %, 3.66 % 3.21 % , 3.1 % NA and 2.9 % for the consecutive above mentioned years i.e. 2008-09, 2009-10, 2010-11, 2011-12, 2012-13 and 2013-14. The estimated data has been provided to State Agriculture department for their use. To forecast production before harvest facilitate the formulation of workable marketing strategies leading to better export/import of crop in the state, which will help to lead better economic condition of the state. Yield estimation would help agriculture department in assessment of productivity of land for specific crop. Pre-harvest wheat acreage/production estimation, is useful to facilitate the reliable and timely estimates and enable the administrators and planners to take strategic decisions on import-export policy matters and trade negotiations.

  17. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    NASA Astrophysics Data System (ADS)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of vulnerability analysis. They also contribute to considerations of adaptation, focusing attention on adapting to increased variability in yield rather than just reductions in yield. For example, in the face of increased variability or reduced reliability, hedging and risk spreading strategies may be more important than technological innovations such as drought-resistant crops or other optimization strategies. Our findings also have implications for the choice and application of climate extreme indices, demands on models used to project climate change and the development of next generation integrated assessment models (IAM) that incorporate the agricultural sector, and especially adaption within that sector, in energy and broader more general markets.

  18. Large Area Crop Inventory Experiment (LACIE). Phase 2 evaluation report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Documentation of the activities of the Large Area Crop Inventory Experiment during the 1976 Northern Hemisphere crop year is presented. A brief overview of the experiment is included as well as phase two area, yield, and production estimates for the United States Great Plains, Canada, and the Union of Soviet Socialist Republics spring winter wheat regions. The accuracies of these estimates are compared with independent government estimates. Accuracy assessment of the United States Great Plains yardstick region based on a through blind sight analysis is given, and reasons for variations in estimating performance are discussed. Other phase two technical activities including operations, exploratory analysis, reporting, methods of assessment, phase three and advanced system design, technical issues, and developmental activities are also included.

  19. Assessment of climate change impact on yield of major crops in the Banas River Basin, India.

    PubMed

    Dubey, Swatantra Kumar; Sharma, Devesh

    2018-09-01

    Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.

  20. High-yield maize with large net energy yield and small global warming intensity

    PubMed Central

    Grassini, Patricio; Cassman, Kenneth G.

    2012-01-01

    Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684

  1. Development of estimation method for crop yield using MODIS satellite imagery data and process-based model for corn and soybean in US Corn-Belt region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.

    2012-12-01

    Crop productivity is associated with the food security and hence, several models have been developed to estimate crop yield by combining remote sensing data with carbon cycle processes. In present study, we attempted to estimate crop GPP and NPP using algorithm based on the LUE model and a simplified respiration model. The state of Iowa and Illinois was chosen as the study site for estimating the crop yield for a period covering the 5 years (2006-2010), as it is the main Corn-Belt area in US. Present study focuses on developing crop-specific parameters for corn and soybean to estimate crop productivity and yield mapping using satellite remote sensing data. We utilized a 10 km spatial resolution daily meteorological data from WRF to provide cloudy-day meteorological variables but in clear-say days, MODIS-based meteorological data were utilized to estimate daily GPP, NPP, and biomass. County-level statistics on yield, area harvested, and productions were used to test model predicted crop yield. The estimated input meteorological variables from MODIS and WRF showed with good agreements with the ground observations from 6 Ameriflux tower sites in 2006. For examples, correlation coefficients ranged from 0.93 to 0.98 for Tmin and Tavg ; from 0.68 to 0.85 for daytime mean VPD; from 0.85 to 0.96 for daily shortwave radiation, respectively. We developed county-specific crop conversion coefficient, i.e. ratio of yield to biomass on 260 DOY and then, validated the estimated county-level crop yield with the statistical yield data. The estimated corn and soybean yields at the county level ranged from 671 gm-2 y-1 to 1393 gm-2 y-1 and from 213 gm-2 y-1 to 421 gm-2 y-1, respectively. The county-specific yield estimation mostly showed errors less than 10%. Furthermore, we estimated crop yields at the state level which were validated against the statistics data and showed errors less than 1%. Further analysis for crop conversion coefficient was conducted for 200 DOY and 280 DOY. For the case of 280 DOY, Crop yield estimation showed better accuracy for soybean at county level. Though the case of 200 DOY resulted in less accuracy (i.e. 20% mean bias), it provides a useful tool for early forecasting of crop yield. We improved the spatial accuracy of estimated crop yield at county level by developing county-specific crop conversion coefficient. Our results indicate that the aboveground crop biomass can be estimated successfully with the simple LUE and respiration models combined with MODIS data and then, county-specific conversion coefficient can be different with each other across different counties. Hence, applying region-specific conversion coefficient is necessary to estimate crop yield with better accuracy.

  2. Strategies for narrowing the maize yield gap of household farms through precision fertigation under irrigated conditions using CERES-Maize model.

    PubMed

    Liu, Jiangang; Wang, Guangyao; Chu, Qingquan; Chen, Fu

    2017-07-01

    Nitrogen (N) application significantly increases maize yield; however, the unreasonable use of N fertilizer is common in China. The analysis of crop yield gaps can reveal the limiting factors for yield improvement, but there is a lack of practical strategies for narrowing yield gaps of household farms. The objectives of this study were to assess the yield gap of summer maize using an integrative method and to develop strategies for narrowing the maize yield gap through precise N fertilization. The results indicated that there was a significant difference in maize yield among fields, with a low level of variation. Additionally, significant differences in N application rate were observed among fields, with high variability. Based on long-term simulation results, the optimal N application rate was 193 kg ha -1 , with a corresponding maximum attainable yield (AY max ) of 10 318 kg ha -1 . A considerable difference between farmers' yields and AY max was observed. Low agronomic efficiency of applied N fertilizer (AE N ) in farmers' fields was exhibited. The integrative method lays a foundation for exploring the specific factors constraining crop yield gaps at the field scale and for developing strategies for rapid site-specific N management. Optimization strategies to narrow the maize yield gap include increasing N application rates and adjusting the N application schedule. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion.

    PubMed

    Krzyzanowski, Flávio; de Souza Lauretto, Marcelo; Nardocci, Adelaide Cássia; Sato, Maria Inês Zanoli; Razzolini, Maria Tereza Pepe

    2016-10-15

    A deeper understanding about the risks involved in sewage sludge practice in agriculture is required. The aims of the present study were to determine the annual risk of infection of consuming lettuce, carrots and tomatoes cultivated in soil amended with sewage sludge. The risk to agricultural workers of accidental ingestion of sludge or amended soil was also investigated. A Quantitative Microbial Risk Assessment was conducted based on Salmonella concentrations from five WWTPs were used to estimate the probability of annual infection associated with crops and soil ingestion. The risk of infection was estimated for nine exposure scenarios considering concentration of the pathogen, sewage sludge dilution in soil, variation of Salmonella concentration in soil, soil attachment to crops, seasonal average temperatures, hours of post-harvesting exposure, Salmonella regrowth in lettuce and tomatoes, Salmonella inhibition factor in carrots, crop ingestion and frequency of exposure, sludge/soil ingestion by agricultural workers and frequency of exposure. Annual risks values varied across the scenarios evaluated. Highest values of annual risk were found for scenarios in which the variation in the concentration of Salmonella spp. in both soil and crops (scenario 1) and without variation in the concentration of Salmonella spp. in soil and variation in crops (scenario 3) ranging from 10(-3) to 10(-2) for all groups considered. For agricultural workers, the highest annual risks of infection were found when workers applied sewage sludge to agricultural soils (2.26×10(-2)). Sensitivity analysis suggests that the main drivers for the estimated risks are Salmonella concentration and ingestion rate. These risk values resulted from conservative scenarios since some assumptions were derived from local or general studies. Although these scenarios can be considered conservative, the sensitivity analysis yielded the drivers of the risks, which can be useful for managing risks from the fresh products chain with stakeholders' involvement. Copyright © 2016. Published by Elsevier B.V.

  4. Statistical analysis of corn yields responding to climate variability at various spatio-temporal resolutions

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lin, T.

    2017-12-01

    Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.

  5. Evaluating high temporal and spatial resolution vegetation index for crop yield prediction

    USDA-ARS?s Scientific Manuscript database

    Remote sensing data have been widely used in estimating crop yield. Remote sensing derived parameters such as Vegetation Index (VI) were used either directly in building empirical models or by assimilating with crop growth models to predict crop yield. The abilities of remote sensing VI in crop yiel...

  6. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems

    DOE PAGES

    Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.; ...

    2015-10-03

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.« less

  7. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.« less

  8. A quality assessment of the MARS crop yield forecasting system for the European Union

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  9. Progress and Challenges in Predicting Crop Responses to Atmospheric [CO2

    NASA Astrophysics Data System (ADS)

    Kent, J.; Paustian, K.

    2017-12-01

    Increasing atmospheric [CO2] directly accelerates photosynthesis in C3 crops, and indirectly promotes yields by reducing stomatal conductance and associated water losses in C3 and C4 crops. Several decades of experiments have exposed crops to eCO2 in greenhouses and other enclosures and observed yield increases on the order of 33%. FACE systems were developed in the early 1990s to better replicate open-field growing conditions. Some authors contend that FACE results indicate lower crop yield responses than enclosure studies, while others maintain no significant difference or attribute differences to various methodological factors. The crop CO2 response processes in many crop models were developed using results from enclosure experiments. This work tested the ability of one such model, DayCent, to reproduce crop responses to CO2 enrichment from several FACE experiments. DayCent performed well at simulating yield and transpiration responses in C4 crops, but significantly overestimated yield responses in C3 crops. After adjustment of CO2-response parameters, DayCent was able to reproduce mean yield responses for specific crops. However, crop yield responses from FACE experiments vary widely across years and sites, and likely reflect complex interactions between conditions such as weather, soils, cultivars, and biotic stressors. Further experimental work is needed to identify the secondary variables that explain this variability so that models can more reliably forecast crop yields under climate change. Likewise, CO2 impacts on crop outcomes such as belowground biomass allocation and grain N content have implications for agricultural C fluxes and human nutrition, respectively, but are poorly understood and thus difficult to simulate with confidence.

  10. Assessment of 1.5°C and 2°C climate change scenarios impact on wheat production in Tunisia

    NASA Astrophysics Data System (ADS)

    Bergaoui, karim; Belhaj Fraj, Makram; Zaaboul, Rashyd; Allen, Myles; Mitchell, Dann; Schleussner, Carl-Friedrich; Saeed, Fahad; Mc Donnell, Rachael

    2017-04-01

    Wheat is the main staple crop in North Africa region and contributes the most to food security. It is almost entirely grown under rainfed conditions and its yield is highly impacted by the climate variability, e. g. dry winters, a late autumn or late spring. Irregular rainfall or drought events particularly at key stages of the growing season, lead to both early and terminal wheat stresses and high inter-year variation in yield. The goal of this study was to explore the impacts of future climate on wheat production in Tunisia using an ensemble of regional bias corrected climate models outputs for the 1.5°C and 2°C warming above the pre-industrial levels. By examining the outputs on wheat yield levels the study would help answer the question of whether the ambitious climate change mitigation efforts involved in stabilizing temperatures at 1.5°C would bring the cereal yields needed in North Africa. Tunisia was chosen as the focus country because its wheat systems are found across a wide diversity in biophysical and farming conditions so giving insight on more localized effects. Data availability across a wide range of wheat management systems from subsistence farming systems to highly mechanized agribusinesses also supported work here as model results could be readily validated for the historical period. Two scenarios were obtained using the RCP2.6 as boundary conditions for 1.5 scenario and a weighted combination of RCP2.6 and RCP4.5 for the 2°C scenario using their respective CO2 levels in the future. We calibrated and validated a dynamical crop model, DSSAT, to simulate the national wheat production and to understand the impact of drought on growth and development that causes yield variation. DSSAT simulations were driven by CHIRPS and ERA-Interim reanalysis data as daily climate forcings. The simulations were validated in a set of farmer fields which were representative of the dominant cropping systems in the country. Then, the model was validated with 10 years' state-level production data. Finally, we forced the crop model with HAPPI bias corrected outputs using ISI-MIP approach where the trend and the long-term mean are well represented and we assessed the impact of each scenario on the wheat production at the national level. The results highlighted a difference in wheat yield in some biophysical areas and farming systems. This insight is important as countries develop mitigation and adaptation strategies as the impact costs can be included.

  11. Global growth and stability of agricultural yield decrease with pollinator dependence

    PubMed Central

    Garibaldi, Lucas A.; Aizen, Marcelo A.; Klein, Alexandra M.; Cunningham, Saul A.; Harder, Lawrence D.

    2011-01-01

    Human welfare depends on the amount and stability of agricultural production, as determined by crop yield and cultivated area. Yield increases asymptotically with the resources provided by farmers’ inputs and environmentally sensitive ecosystem services. Declining yield growth with increased inputs prompts conversion of more land to cultivation, but at the risk of eroding ecosystem services. To explore the interdependence of agricultural production and its stability on ecosystem services, we present and test a general graphical model, based on Jensen's inequality, of yield–resource relations and consider implications for land conversion. For the case of animal pollination as a resource influencing crop yield, this model predicts that incomplete and variable pollen delivery reduces yield mean and stability (inverse of variability) more for crops with greater dependence on pollinators. Data collected by the Food and Agriculture Organization of the United Nations during 1961–2008 support these predictions. Specifically, crops with greater pollinator dependence had lower mean and stability in relative yield and yield growth, despite global yield increases for most crops. Lower yield growth was compensated by increased land cultivation to enhance production of pollinator-dependent crops. Area stability also decreased with pollinator dependence, as it correlated positively with yield stability among crops. These results reveal that pollen limitation hinders yield growth of pollinator-dependent crops, decreasing temporal stability of global agricultural production, while promoting compensatory land conversion to agriculture. Although we examined crop pollination, our model applies to other ecosystem services for which the benefits to human welfare decelerate as the maximum is approached. PMID:21422295

  12. Estimating the impact of mineral aerosols on crop yields in food insecure regions using statistical crop models

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Forest, C. E.; Kemanian, A.

    2016-12-01

    A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with traditional crop models, but likely at the cost of removing climate information. Our random forest models consistently discover the positive trend without removing any additional data. The application of random forests as a statistical crop model provides insight into understanding the impact of dust on yields in marginal food producing regions.

  13. Quantifying the risks of winter damage on overwintering crops under future climates: Will low-temperature damage be more likely in warmer climates?

    NASA Astrophysics Data System (ADS)

    Vico, G.; Weih, M.

    2014-12-01

    Autumn-sown crops act as winter cover crop, reducing soil erosion and nutrient leaching, while potentially providing higher yields than spring varieties in many environments. Nevertheless, overwintering crops are exposed for longer periods to the vagaries of weather conditions. Adverse winter conditions, in particular, may negatively affect the final yield, by reducing crop survival or its vigor. The net effect of the projected shifts in climate is unclear. On the one hand, warmer temperatures may reduce the frequency of low temperatures, thereby reducing damage risk. On the other hand, warmer temperatures, by reducing plant acclimation level and the amount and duration of snow cover, may increase the likelihood of damage. Thus, warmer climates may paradoxically result in more extensive low temperature damage and reduced viability for overwintering plants. The net effect of a shift in climate is explored by means of a parsimonious probabilistic model, based on a coupled description of air temperature, snow cover, and crop tolerable temperature. Exploiting an extensive dataset of winter wheat responses to low temperature exposure, the risk of winter damage occurrence is quantified under conditions typical of northern temperate latitudes. The full spectrum of variations expected with climate change is explored, quantifying the joint effects of alterations in temperature averages and their variability as well as shifts in precipitation. The key features affecting winter wheat vulnerability to low temperature damage under future climates are singled out.

  14. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    NASA Astrophysics Data System (ADS)

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.

  15. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields.

    PubMed

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.

  16. Assessing gaps in irrigated agricultural productivity through satellite earth observations-A case study of the Fergana Valley, Central Asia

    NASA Astrophysics Data System (ADS)

    Löw, Fabian; Biradar, Chandrashekhar; Fliemann, Elisabeth; Lamers, John P. A.; Conrad, Christopher

    2017-07-01

    Improving crop area and/or crop yields in agricultural regions is one of the foremost scientific challenges for the next decades. This is especially true in irrigated areas because sustainable intensification of irrigated crop production is virtually the sole means to enhance food supply and contribute to meeting food demands of a growing population. Yet, irrigated crop production worldwide is suffering from soil degradation and salinity, reduced soil fertility, and water scarcity rendering the performance of irrigation schemes often below potential. On the other hand, the scope for improving irrigated agricultural productivity remains obscure also due to the lack of spatial data on agricultural production (e.g. crop acreage and yield). To fill this gap, satellite earth observations and a replicable methodology were used to estimate crop yields at the field level for the period 2010/2014 in the Fergana Valley, Central Asia, to understand the response of agricultural productivity to factors related to the irrigation and drainage infrastructure and environment. The results showed that cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and spatial diversity of crops had the most persistent effects on crop yields across observation years suggesting the need for introducing sustainable cropping systems. On the other hand, areas with a lower crop diversity or abundance of crop rotation tended to have lower crop yields, with differences of partly more than one t/ha yield. It is argued that factors related to the infrastructure, for example, the distance of farms to the next settlement or the density of roads, had a persistent effect on crop yield dynamics over time. The improvement potential of cotton and wheat yields were estimated at 5%, compared to crop yields of farms in the direct vicinity of settlements or roads. In this study it is highlighted how remotely sensed estimates of crop production in combination with geospatial technologies provide a unique perspective that, when combined with field surveys, can support planners to identify management priorities for improving regional production and/or reducing environmental impacts.

  17. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  18. Camelina Seed Yield and Fatty Acids as Influenced by Genotype and Environment

    DOE PAGES

    Obour, Augustine K.; Obeng, Eric; Mohammed, Yesuf A.; ...

    2017-05-05

    Camelina (Camelina sativa L. Crantz) is an alternative oilseed crop with potential for fallow replacement in dryland cereal-based crop production systems in the semiarid Great Plains. The interaction between genotype and environment was investigated on camelina seed yield, oil content, and fatty acid composition across two locations in the U.S. Great Plains. Treatments were three spring camelina genotypes (cultivars Blaine Creek, Pronghorn, and Shoshone), three growing seasons (2013, 2014, and 2015) and two locations (at Hays, KS, and Moccasin, MT). Our results showed camelina grown at Hays yielded 54% less than that at Moccasin. Blaine Creek yielded 17 and 42%more » more than Pronghorn and Shoshone at Hays but yields were not different among genotypes at Moccasin. Oil content ranged from 262 g kg -1 at Hays to 359 g kg -1 at Moccasin. The proportion of polyunsaturated fatty acids (PUFAs) ranged from 51% at Hays to 55% at Moccasin, whereas monounsaturated fatty acid (MUFA) and saturated fatty acid (SFA) contents were greater at Hays. The linolenic acid content ranged from 26% when Pronghorn was planted at Hays to 35% when planted at Moccasin. In general, the variations in seed yield and fatty acid profile corresponded well with growing season precipitation and temperatures at each environment.« less

  19. Integrated model for predicting rice yield with climate change

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ki; Das, Amrita; Park, Jong-Hwa

    2018-04-01

    Rice is the chief agricultural product and one of the primary food source. For this reason, it is of pivotal importance for worldwide economy and development. Therefore, in a decision-support-system both for the farmers and in the planning and management of the country's economy, forecasting yield is vital. However, crop yield, which is a dependent of the soil-bio-atmospheric system, is difficult to represent in statistical language. This paper describes a novel approach for predicting rice yield using artificial neural network, spatial interpolation, remote sensing and GIS methods. Herein, the variation in the yield is attributed to climatic parameters and crop health, and the normalized difference vegetation index from MODIS is used as an indicator of plant health and growth. Due importance was given to scaling up the input parameters using spatial interpolation and GIS and minimising the sources of error in every step of the modelling. The low percentage error (2.91) and high correlation (0.76) signifies the robust performance of the proposed model. This simple but effective approach is then used to estimate the influence of climate change on South Korean rice production. As proposed in the RCP8.5 scenario, an upswing in temperature may increase the rice yield throughout South Korea.

  20. Camelina Seed Yield and Fatty Acids as Influenced by Genotype and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obour, Augustine K.; Obeng, Eric; Mohammed, Yesuf A.

    Camelina (Camelina sativa L. Crantz) is an alternative oilseed crop with potential for fallow replacement in dryland cereal-based crop production systems in the semiarid Great Plains. The interaction between genotype and environment was investigated on camelina seed yield, oil content, and fatty acid composition across two locations in the U.S. Great Plains. Treatments were three spring camelina genotypes (cultivars Blaine Creek, Pronghorn, and Shoshone), three growing seasons (2013, 2014, and 2015) and two locations (at Hays, KS, and Moccasin, MT). Our results showed camelina grown at Hays yielded 54% less than that at Moccasin. Blaine Creek yielded 17 and 42%more » more than Pronghorn and Shoshone at Hays but yields were not different among genotypes at Moccasin. Oil content ranged from 262 g kg -1 at Hays to 359 g kg -1 at Moccasin. The proportion of polyunsaturated fatty acids (PUFAs) ranged from 51% at Hays to 55% at Moccasin, whereas monounsaturated fatty acid (MUFA) and saturated fatty acid (SFA) contents were greater at Hays. The linolenic acid content ranged from 26% when Pronghorn was planted at Hays to 35% when planted at Moccasin. In general, the variations in seed yield and fatty acid profile corresponded well with growing season precipitation and temperatures at each environment.« less

  1. Investment risk in bioenergy crops

    DOE PAGES

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia; ...

    2015-11-18

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  2. Investment risk in bioenergy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  3. Tradeoffs between vigor and yield for crops grown under different management systems

    NASA Astrophysics Data System (ADS)

    Simic Milas, Anita; Keller Vincent, Robert; Romanko, Matthew; Feitl, Melina; Rupasinghe, Prabha

    2016-04-01

    Remote sensing can provide an effective means for rapid and non-destructive monitoring of crop status and biochemistry. Monitoring pattern of traditional vigor algorithms generated from Landsat 8 OLI satellite data represents a robust method that can be widely used to differentiate the status of crops, as well as to monitor nutrient uptake functionality of differently treated seeds grown under different managements. This study considers 24 factorial parcels of winter wheat in 2013, corn in 2014, and soybeans in 2015, grown under four different types of agricultural management. The parcels are located at the Kellogg Biological Station, Long-Term Ecological Research site in the State of Michigan USA. At maturity, the organic crops exhibit significantly higher vigor and significantly lower yield than conventionally managed crops under different treatments. While organic crops invest in their metabolism at the expense of their yield, the conventional crops manage to increase their yield at the expense of their vigor. Landsat 8 OLI is capable of 1) differentiating the biochemical status of crops under different treatments at maturity, and 2) monitoring the tradeoff between crop yield and vigor that can be controlled by the seed treatments and proper conventional applications, with the ultimate goal of increasing food yield and food availability, and 3) distinguishing between organic and conventionally treated crops. Timing, quantity and types of herbicide applications have a great impact on early and pre-harvest vigor, maturity and yield of conventionally treated crops. Satellite monitoring using Landsat 8 is an optimal tool for coordinating agricultural applications, soil practices and genetic coding of the crop to produce higher yield as well as have early crop maturity, desirable in northern climates.

  4. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions.

    PubMed

    Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L

    2013-03-01

    Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.

  5. Diverse rotations and poultry litter improves soybean yield

    USDA-ARS?s Scientific Manuscript database

    Continuous cropping systems without rotations or cover crops are perceived as unsustainable for long-term yield and soil health. Continuous systems, defined as continually producing a crop on the same parcel of land for more than three years, is thought to reduce yields. Given that crop rotations a...

  6. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq.

    PubMed

    Qader, Sarchil Hama; Dash, Jadunandan; Atkinson, Peter M

    2018-02-01

    Crop production and yield estimation using remotely sensed data have been studied widely, but such information is generally scarce in arid and semi-arid regions. In these regions, inter-annual variation in climatic factors (such as rainfall) combined with anthropogenic factors (such as civil war) pose major risks to food security. Thus, an operational crop production estimation and forecasting system is required to help decision-makers to make early estimates of potential food availability. Data from NASA's MODIS with official crop statistics were combined to develop an empirical regression-based model to forecast winter wheat and barley production in Iraq. The study explores remotely sensed indices representing crop productivity over the crop growing season to find the optimal correlation with crop production. The potential of three different remotely sensed indices, and information related to the phenology of crops, for forecasting crop production at the governorate level was tested and their results were validated using the leave-one-year-out approach. Despite testing several methodological approaches, and extensive spatio-temporal analysis, this paper depicts the difficulty in estimating crop yield on an annual base using current satellite low-resolution data. However, more precise estimates of crop production were possible. The result of the current research implies that the date of the maximum vegetation index (VI) offered the most accurate forecast of crop production with an average R 2 =0.70 compared to the date of MODIS EVI (Avg R 2 =0.68) and a NPP (Avg R 2 =0.66). When winter wheat and barley production were forecasted using NDVI, EVI and NPP and compared to official statistics, the relative error ranged from -20 to 20%, -45 to 28% and -48 to 22%, respectively. The research indicated that remotely sensed indices could characterize and forecast crop production more accurately than simple cropping area, which was treated as a null model against which to evaluate the proposed approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    DOE PAGES

    Blanc, Elodie; Caron, Justin; Fant, Charles; ...

    2017-06-27

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climatemore » change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.« less

  8. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, Elodie; Caron, Justin; Fant, Charles

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climatemore » change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.« less

  9. Root-knot nematode management in double-cropped plasticulture vegetables.

    PubMed

    Desaeger, J A; Csinos, A S

    2006-03-01

    Combination treatments of chisel-injected fumigants (methyl bromide, 1,3-D, metam sodium, and chloropicrin) on a first crop, followed by drip-applied fumigants (metam sodium and 1,3-D +/- chloropicrin) on a second crop, with and without oxamyl drip applications were evaluated for control of Meloidogyne incognita in three different tests (2002 to 2004) in Tifton, GA. First crops were eggplant or tomato, and second crops were cantaloupe, squash, or jalapeno pepper. Double-cropped vegetables suffered much greater root-knot nematode (RKN) pressure than first crops, and almost-total yield loss occurred when second crops received no nematicide treatment. On a first crop of eggplant, all fumigants provided good nematode control and average yield increases of 10% to 15 %. On second crops, higher application rates and fumigant combinations (metam sodium and 1,3-D +/- chloropicrin) improved RKN control and increased yields on average by 20% to 35 % compared to the nonfumigated control. Oxamyl increased yields of the first crop in 2003 on average by 10% to 15% but had no effect in 2004 when RKN failed to establish itself. On double-cropped squash in 2003, oxamyl following fumigation provided significant additional reduction in nematode infection and increased squash yields on average by 30% to 75%.

  10. Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model

    PubMed Central

    Yin, Yunxing; Jiang, Sanyuan; Pers, Charlotta; Yang, Xiaoying; Liu, Qun; Yuan, Jin; Yao, Mingxing; He, Yi; Luo, Xingzhang; Zheng, Zheng

    2016-01-01

    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006–2008) and validation (2009–2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands. PMID:26999184

  11. Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars.

    PubMed

    Pallotta, Margaret; Schnurbusch, Thorsten; Hayes, Julie; Hay, Alison; Baumann, Ute; Paull, Jeff; Langridge, Peter; Sutton, Tim

    2014-10-02

    Environmental constraints severely restrict crop yields in most production environments, and expanding the use of variation will underpin future progress in breeding. In semi-arid environments boron toxicity constrains productivity, and genetic improvement is the only effective strategy for addressing the problem. Wheat breeders have sought and used available genetic diversity from landraces to maintain yield in these environments; however, the identity of the genes at the major tolerance loci was unknown. Here we describe the identification of near-identical, root-specific boron transporter genes underlying the two major-effect quantitative trait loci for boron tolerance in wheat, Bo1 and Bo4 (ref. 2). We show that tolerance to a high concentration of boron is associated with multiple genomic changes including tetraploid introgression, dispersed gene duplication, and variation in gene structure and transcript level. An allelic series was identified from a panel of bread and durum wheat cultivars and landraces originating from diverse agronomic zones. Our results demonstrate that, during selection, breeders have matched functionally different boron tolerance alleles to specific environments. The characterization of boron tolerance in wheat illustrates the power of the new wheat genomic resources to define key adaptive processes that have underpinned crop improvement.

  12. Linking Field and Satellite Observations to Reveal Differences in Single vs. Double-Cropped Soybean Yields in Central Brazil

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.

    2016-12-01

    Soy-corn double cropping (DC) has been widely adopted in Central Brazil alongside single cropped (SC) soybean production. DC involves different cropping calendars, soy varieties, and may be associated with different crop yield patterns and volatility than SC. Study of the performance of the region's agriculture in a changing climate depends on tracking differences in the productivity of SC vs. DC, but has been limited by crop yield data that conflate the two systems. We predicted SC and DC yields across Central Brazil, drawing on field observations and remotely sensed data. We first modeled field yield estimates as a function of remotely sensed DC status and vegetation index (VI) metrics, and other management and biophysical factors. We then used the statistical model estimated to predict SC and DC soybean yields at each 500 m2 grid cell of Central Brazil for harvest years 2001 - 2015. The yield estimation model was constructed using 1) a repeated cross-sectional survey of soybean yields and management factors for years 2007-2015, 2) a custom agricultural land cover classification dataset which assimilates earlier datasets for the region, and 3) 500m 8-day MODIS image composites used to calculate the wide dynamic range vegetation index (WDRVI) and derivative metrics such as area under the curve for WDRVI values in critical crop development periods. A statistical yield estimation model which primarily entails WDRVI metrics, DC status, and spatial fixed effects was developed on a subset of the yield dataset. Model validation was conducted by predicting previously withheld yield records, and then assessing error and goodness-of-fit for predicted values with metrics including root mean squared error (RMSE), mean squared error (MSE), and R2. We found a statistical yield estimation model which incorporates WDRVI and DC status to be way to estimate crop yields over the region. Statistical properties of the resulting gridded yield dataset may be valuable for understanding linkages between crop yields, farm management factors, and climate.

  13. Simulating the effects of climate and agricultural management practices on global crop yield

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Sacks, W. J.; Barford, C. C.; Ramankutty, N.

    2011-06-01

    Climate change is expected to significantly impact global food production, and it is important to understand the potential geographic distribution of yield losses and the means to alleviate them. This study presents a new global crop model, PEGASUS 1.0 (Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat. PEGASUS combines carbon dynamics for crops with a surface energy and soil water balance model. It also benefits from the recent development of a suite of global data sets and analyses that serve as model inputs or as calibration data. These include data on crop planting and harvesting dates, crop-specific irrigated areas, a global analysis of yield gaps, and harvested area and yield of major crops. Model results for present-day climate and farm management compare reasonably well with global data. Simulated planting and harvesting dates are within the range of crop calendar observations in more than 75% of the total crop-harvested areas. Correlation of simulated and observed crop yields indicates a weighted coefficient of determination, with the weighting based on crop-harvested area, of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes in temperature and precipitation as predicted by global climate models for the 2050s lead to a global yield reduction if planting and harvesting dates remain unchanged. However, adapting planting dates and cultivar choices increases yield in temperate regions and avoids 7-18% of global losses.

  14. Benchmark Data Set for Wheat Growth Models: Field Experiments and AgMIP Multi-Model Simulations.

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.J.; Rotter, R. P.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario.

  15. Analysis of factors which limited the spatial variation of barley yield on the forest-steppe chernozems of Kursk region

    NASA Astrophysics Data System (ADS)

    Belik, Anton; Vasenev, Ivan; Jablonskikh, Lidia; Bozhko, Svetlana

    2017-04-01

    The crop yield is the most important indicator of the efficiency of agricultural production. It is the function that depends on a large number of groups of independent variables, such as the weather, soil fertility and overall culture agriculture. A huge number of combinations of these factors contribute to the formation of high spatial variety of crop yields within small areas, includes the slope agrolandscapes in Kursk region. Spatial variety of yield leads to a significant reduction in the efficiency of agriculture. In this connection, evaluation and analysis of the factors, which limits the yield of field crops is a very urgent proble in agroecology. The research was conducted in the period of 2003-2004 on a representative field. The typical and leached chernozems with the varying thickness and of erosion degree are dominated in soil cover. At the time of field research studied areas were busy by barley. The reseached soils have an average and increased fertility level. Chernozem typical full-face, and the leached contain an average of 4.5-6% humus, close to neutral pH, favorable values of physico-chemical parameters, medium and high content of nutrients. The eroded chernozems differs agrogenic marked declining in fertility parameters. The diversity of meso- and micro-relief in the fields and soil cover influence to significant spatial variety of fertility. For example the content of nutrients in the soil variation can be up to 5-fold level. High spatial heterogeneity of soils fertility ifluence to barley yield variety. During research on the productivity of the field varied in the range of 20-43 c/ha, and 7-44 c/ha (2004). Analysis of the factors, which limited the yield of barley, showed that the first priorities occupy unregulated characterises: slope angle and the classification of soils (subtype and race of chernozem and the difference in the degree of erosion), which determines the development of erosion processes and redistribution available to plants form of moisture. As a rule, the maximum yield of barley is marked on most flat areas covered with chernozem leached and typical with the full profile. The contain of nutrients usually takes 3-4 levels of limitation. The significance of a particular element is determined by the characteristics of the particular agro-ecological homogeneous area. Most, however, the value in the 2003 - 2004's. plants were available forms of phosphorus and potassium Thus, in terms of slope agricultural landscapes of the Kursk region, there is increased spatial varety of fertility and barley yields. This priority among the limiting factors are soils and agro-ecological conditions. Significant influence of agrochemical parameters are shown within the homogeneous agroecological regions. In this regard system of precision agriculture has a great prospects for acquiring practical, and must to imply the adaptation of existing agricultural technologies to change the conditions of cultivation of field crops within fields.

  16. A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model.

    PubMed

    Wang, Qianfeng; Wu, Jianjun; Li, Xiaohan; Zhou, Hongkui; Yang, Jianhua; Geng, Guangpo; An, Xueli; Liu, Leizhen; Tang, Zhenghong

    2017-04-01

    The quantitative evaluation of the impact of drought on crop yield is one of the most important aspects in agricultural water resource management. To assess the impact of drought on wheat yield, the Environmental Policy Integrated Climate (EPIC) crop growth model and daily Standardized Precipitation Evapotranspiration Index (SPEI), which is based on daily meteorological data, are adopted in the Huang Huai Hai Plain. The winter wheat crop yields are estimated at 28 stations, after calibrating the cultivar coefficients based on the experimental site data, and SPEI data was taken 11 times across the growth season from 1981 to 2010. The relationship between estimated yield and multi-scale SPEI were analyzed. The optimum time scale SPEI to monitor drought during the crop growth period was determined. The reference yield was determined by averaging the yields from numerous non-drought years. From this data, we propose a comprehensive quantitative method which can be used to predict the impact of drought on wheat yields by combining the daily multi-scale SPEI and crop growth process model. This method was tested in the Huang Huai Hai Plain. The results suggested that estimation of calibrated EPIC was a good predictor of crop yield in the Huang Huai Hai Plain, with lower RMSE (15.4 %) between estimated yield and observed yield at six agrometeorological stations. The soil moisture at planting time was affected by the precipitation and evapotranspiration during the previous 90 days (about 3 months) in the Huang Huai Hai Plain. SPEI G90 was adopted as the optimum time scale SPEI to identify the drought and non-drought years, and identified a drought year in 2000. The water deficit in the year 2000 was significant, and the rate of crop yield reduction did not completely correspond with the volume of water deficit. Our proposed comprehensive method which quantitatively evaluates the impact of drought on crop yield is reliable. The results of this study further our understanding why the adoption of counter measures against drought is important and direct farmers to choose drought-resistant crops.

  17. Climate Change, Agricultural Innovation and Exchange across Asia

    NASA Astrophysics Data System (ADS)

    DAlpoim Guedes, J. A.; Bocinsky, R. K.

    2017-12-01

    Ancient farmers experienced climate change at the local level: through variations in the yields of their staple crops. However, archaeologists have had difficulty in determining where, when and how changes in climate impacted ancient farmers. We model how several key transitions in climate impacted the productivity of five rain-fed crops across Eurasia. Cooling events between 3750 and 3000 cal. BP lead humans in parts of the Tibetan Plateau and in Central Asia to diversify their crops. A second event at 2000 cal. BP lead farmers in Central China to also diversify their cropping systems and to develop man-made systems that allowed transport of grains from Southern to Northern China. In other areas where crop returns fared even worse, humans reduced their risk by increasing investment in nomadic pastoralism and developing long distance networks of trade that coalesced into the Silk Road. By translating changes in climatic variables into factors that mattered to ancient farmers, we situate the adaptive strategies they developed to deal with variance in crop returns in the context of environmental and climatic changes.

  18. Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide

    PubMed Central

    Ziska, Lewis H.; Bunce, James A.; Shimono, Hiroyuki; Gealy, David R.; Baker, Jeffrey T.; Newton, Paul C. D.; Reynolds, Matthew P.; Jagadish, Krishna S. V.; Zhu, Chunwu; Howden, Mark; Wilson, Lloyd T.

    2012-01-01

    Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently needed to ensure both the stability and continued increase of the global food supply. Although potential adaption options often consider regional or sectoral variations of existing risk management (e.g. earlier planting dates, choice of crop), there may be a global-centric strategy for increasing productivity. In spite of the recognition that atmospheric carbon dioxide (CO2) is an essential plant resource that has increased globally by approximately 25 per cent since 1959, efforts to increase the biological conversion of atmospheric CO2 to stimulate seed yield through crop selection is not generally recognized as an effective adaptation measure. In this review, we challenge that viewpoint through an assessment of existing studies on CO2 and intraspecific variability to illustrate the potential biological basis for differential plant response among crop lines and demonstrate that while technical hurdles remain, active selection and breeding for CO2 responsiveness among cereal varieties may provide one of the simplest and direct strategies for increasing global yields and maintaining food security with anthropogenic change. PMID:22874755

  19. Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide.

    PubMed

    Ziska, Lewis H; Bunce, James A; Shimono, Hiroyuki; Gealy, David R; Baker, Jeffrey T; Newton, Paul C D; Reynolds, Matthew P; Jagadish, Krishna S V; Zhu, Chunwu; Howden, Mark; Wilson, Lloyd T

    2012-10-22

    Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently needed to ensure both the stability and continued increase of the global food supply. Although potential adaption options often consider regional or sectoral variations of existing risk management (e.g. earlier planting dates, choice of crop), there may be a global-centric strategy for increasing productivity. In spite of the recognition that atmospheric carbon dioxide (CO(2)) is an essential plant resource that has increased globally by approximately 25 per cent since 1959, efforts to increase the biological conversion of atmospheric CO(2) to stimulate seed yield through crop selection is not generally recognized as an effective adaptation measure. In this review, we challenge that viewpoint through an assessment of existing studies on CO(2) and intraspecific variability to illustrate the potential biological basis for differential plant response among crop lines and demonstrate that while technical hurdles remain, active selection and breeding for CO(2) responsiveness among cereal varieties may provide one of the simplest and direct strategies for increasing global yields and maintaining food security with anthropogenic change.

  20. Estimating the Impact and Spillover Effect of Climate Change on Crop Yield in Northern Ghana.

    NASA Astrophysics Data System (ADS)

    Botchway, E.

    2016-12-01

    In tropical regions of the world human-induced climate change is likely to impact negatively on crop yields. To investigate the impact of climate change and its spillover effect on mean and variance of crop yields in northern Ghana, the Just and Pope stochastic production function and the Spatial Durbin model were adopted. Surprisingly, the results suggest that both precipitation and average temperature have positive effects on mean crop yield during the wet season. Wet season average temperature has a significant spillover effect in the region, whereas precipitation during the wet season has only one significant spillover effect on maize yield. Wet season precipitation does not have a strong significant effect on crop yield despite the rainfed nature of agriculture in the region. Thus, even if there are losers and winners as a result of future climate change at the regional level, future crop yield would largely depend on future technological development in agriculture, which may improve yields over time despite the changing climate. We argue, therefore, that technical improvement in farm management such as improved seeds and fertilizers, conservation tillage and better pest control, may have a more significant role in increasing observed crop productivity levels over time. So investigating the relative importance of non-climatic factors on crop yield may shed more light on where appropriate interventions can help in improving crop yields. Climate change, also, needs to be urgently assessed at the level of the household, so that poor and vulnerable people dependent on agriculture can be appropriately targeted in research and development activities whose object is poverty alleviation.

  1. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    USDA-ARS?s Scientific Manuscript database

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  2. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability.

    PubMed

    Williams, Alwyn; Jordan, Nicholas R; Smith, Richard G; Hunter, Mitchell C; Kammerer, Melanie; Kane, Daniel A; Koide, Roger T; Davis, Adam S

    2018-05-31

    Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.

  3. Integrated crop management practices for maximizing grain yield of double-season rice crop.

    PubMed

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-12

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  4. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    PubMed Central

    Potts, Simon G.; Steffan-Dewenter, Ingolf; Vaissière, Bernard E.; Woyciechowski, Michal; Krewenka, Kristin M.; Tscheulin, Thomas; Roberts, Stuart P.M.; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations. PMID:24749007

  5. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    PubMed

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.

  6. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield

    USDA-ARS?s Scientific Manuscript database

    Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...

  7. Long-term Tillage and Cropping Sequence Effect on Dryland Crop Yields and Carbon and Nitrogen Cycling

    USDA-ARS?s Scientific Manuscript database

    Improved management practices are needed to increase dryland crop yields and soil organic matter compared with conventional farming practices in the northern Great Plains. We evaluated the 21-yr effect of tillage and cropping sequence on dryland grain and biomass (stems + leaves) yields and N uptake...

  8. Development of a European Ensemble System for Seasonal Prediction: Application to crop yield

    NASA Astrophysics Data System (ADS)

    Terres, J. M.; Cantelaube, P.

    2003-04-01

    Western European agriculture is highly intensive and the weather is the main source of uncertainty for crop yield assessment and for crop management. In the current system, at the time when a crop yield forecast is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of uncertainty. The use of seasonal weather forecast would bring additional information for the remaining crop season and has valuable benefit for improving the management of agricultural markets and environmentally sustainable farm practices. An innovative method for supplying seasonal forecast information to crop simulation models has been developed in the frame of the EU funded research project DEMETER. It consists in running a crop model on each individual member of the seasonal hindcasts to derive a probability distribution of crop yield. Preliminary results of cumulative probability function of wheat yield provides information on both the yield anomaly and the reliability of the forecast. Based on the spread of the probability distribution, the end-user can directly quantify the benefits and risks of taking weather-sensitive decisions.

  9. Identification of saline soils with multi-year remote sensing of crop yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D; Ortiz-Monasterio, I; Gurrola, F C

    2006-10-17

    Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions or its impact on regional crop productivity remains sparse. We evaluated the relationships between remotely sensed wheat yields and salinity in an irrigation district in the Colorado River Delta Region. The goals of this study were to (1) document the relative importance of salinity as a constraint to regional wheat production and (2) develop techniques to accurately identify saline fields. Estimates of wheat yield from six years of Landsat data agreed well with ground-based records on individual fields (R{sup 2} = 0.65).more » Salinity measurements on 122 randomly selected fields revealed that average 0-60 cm salinity levels > 4 dS m{sup -1} reduced wheat yields, but the relative scarcity of such fields resulted in less than 1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years. However, temporal analysis of yield images showed a significant fraction of fields exhibited consistently low yields over the six year period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30-60 cm depth than the control group (p = 0.02). These results suggest that high subsurface salinity is associated with consistently low yields in this region, and that multi-year yield maps derived from remote sensing therefore provide an opportunity to map salinity across agricultural regions.« less

  10. Benefits of seasonal forecasts of crop yields

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  11. Changes in crop yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  12. Past and future weather-induced risk in crop production

    NASA Astrophysics Data System (ADS)

    Elliott, J. W.; Glotter, M.; Russo, T. A.; Sahoo, S.; Foster, I.; Benton, T.; Mueller, C.

    2016-12-01

    Drought-induced agricultural loss is one of the most costly impacts of extreme weather and may harm more people than any other consequence of climate change. Improvements in farming practices have dramatically increased crop productivity, but yields today are still tightly linked to climate variation. We report here on a number of recent studies evaluating extreme event risk and impacts under historical and near future conditions, including studies conducted as part of the Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP) and the UK-US Taskforce on Extreme Weather and Global Food System Resilience.

  13. Quasi 3D modelling of water flow in the sandy soil

    NASA Astrophysics Data System (ADS)

    Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim

    2016-04-01

    Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic parameters showed that changes in soil water content are mainly affected by the soil saturated hydraulic conductivity Ks in a two-layered soil. Results demonstrated the large spatial variability of Ks (CV = 86.21%). A significant negative correlation was found between ln Ks and ECa (r = 0.83; P≤0.01). This site-specific relation between ln Ks and ECa was used to predict Ks for the whole field after validation using an independent dataset of measured Ks. Result showed that this approach can accurately determine the field scale irrigation requirements, taking into account variations in boundary conditions and spatial variations of model parameters across the field. We found that uniform distribution of water using standard gun sprinkler irrigation is not an efficient approach since at locations with shallow groundwater, the amount of water applied will be excessive as compared to the crop requirements, while in locations with a deeper groundwater table, the crop irrigation requirements will not be met during crop water stress. Numerical results showed that optimal irrigation scheduling using the aforementioned water stress calculations can save up to ~25% irrigation water as compared to the current irrigation regime. This resulted in a yield increase of ~7%, simulated by the crop growth model.

  14. Wildlife-friendly farming increases crop yield: evidence for ecological intensification.

    PubMed

    Pywell, Richard F; Heard, Matthew S; Woodcock, Ben A; Hinsley, Shelley; Ridding, Lucy; Nowakowski, Marek; Bullock, James M

    2015-10-07

    Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50-60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained--and, indeed, enhanced for some crops--despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields. © 2015 The Authors.

  15. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  16. Root-Knot Nematode Management in Double-Cropped Plasticulture Vegetables

    PubMed Central

    Desaeger, J. A.; Csinos, A. S.

    2006-01-01

    Combination treatments of chisel-injected fumigants (methyl bromide, 1,3-D, metam sodium, and chloropicrin) on a first crop, followed by drip-applied fumigants (metam sodium and 1,3-D ± chloropicrin) on a second crop, with and without oxamyl drip applications were evaluated for control of Meloidogyne incognita in three different tests (2002 to 2004) in Tifton, GA. First crops were eggplant or tomato, and second crops were cantaloupe, squash, or jalapeno pepper. Double-cropped vegetables suffered much greater root-knot nematode (RKN) pressure than first crops, and almost-total yield loss occurred when second crops received no nematicide treatment. On a first crop of eggplant, all fumigants provided good nematode control and average yield increases of 10% to 15 %. On second crops, higher application rates and fumigant combinations (metam sodium and 1,3-D ± chloropicrin) improved RKN control and increased yields on average by 20% to 35 % compared to the nonfumigated control. Oxamyl increased yields of the first crop in 2003 on average by 10% to 15% but had no effect in 2004 when RKN failed to establish itself. On double-cropped squash in 2003, oxamyl following fumigation provided significant additional reduction in nematode infection and increased squash yields on average by 30% to 75%. PMID:19259431

  17. Plant-microbe genomic systems optimization for energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Samuel P.

    The overall objective of this project was to identify genetic variation within grasses that results in increased biomass yield and biofuel conversion efficiency. Improving energy crops hinges on identifying the genetic mechanisms underlying traits that benefit energy production. The exploitation of natural variation in plant species is an ideal approach to identify both the traits and the genes of interest in the production of biofuels. The specific goals of this project were to (1) quantify relevant genetic diversity for biofuel feedstock bioconversion efficiency and biomass accumulation, (2) identify genetic loci that control these traits, and (3) characterize genes for improvedmore » energy crop systems. Determining the key genetic contributors influencing biofuel traits is required in order to determine the viability of these traits as targets for improvement; only then will we be able to apply modern breeding practices and genetic engineering for the rapid improvement of feedstocks.« less

  18. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content.

    PubMed

    Silva, K B; Bruzi, A T; Zuffo, A M; Zambiazzi, E V; Soares, I O; de Rezende, P M; Fronza, V; Vilela, G D L; Botelho, F B S; Teixeira, C M; de O Coelho, M A

    2016-04-25

    The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.

  19. Impact of plastic mulching on nitrous oxide emissions in China's arid agricultural region under climate change conditions

    NASA Astrophysics Data System (ADS)

    Yu, Yongxiang; Tao, Hui; Jia, Hongtao; Zhao, Chengyi

    2017-06-01

    The denitrification-decomposition (DNDC) model is a useful tool for integrating the effects of agricultural practices and climate change on soil nitrous oxide (N2O) emissions from agricultural ecosystems. In this study, the DNDC model was evaluated against observations and used to simulate the effect of plastic mulching on soil N2O emissions and crop growth. The DNDC model performed well in simulating temporal variations in N2O emissions and plant growth during the observation period, although it slightly underestimated the cumulative N2O emissions, and was able to simulate the effects of plastic mulching on N2O emissions and crop yield. Both the observations and simulations demonstrated that the application of plastic film increased cumulative N2O emissions and cotton lint yield compared with the non-mulched treatment. The sensitivity test showed that the N2O emissions and lint yield were sensitive to changes in climate and management practices, and the application of plastic film made the N2O emissions and lint yield less sensitive to changes in temperature and irrigation. Although the simulations showed that the beneficial impacts of plastic mulching on N2O emissions were not gained under high fertilizer and irrigation scenarios, our simulations suggest that the application of plastic film effectively reduced soil N2O emissions while promoting yields under suitable fertilizer rates and irrigation. Compared with the baseline scenario, future climate change significantly increased N2O emissions by 15-17% without significantly influencing the lint yields in the non-mulched treatment; in the mulched treatment, climate change significantly promoted the lint yield by 5-6% and significantly reduced N2O emissions by 14% in the RCP4.5 and RCP8.5 scenarios. Overall, our results demonstrate that the application of plastic film is an efficient way to address increased N2O emissions and simultaneously enhance crop yield in the future.

  20. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].

    PubMed

    Wang, Xiao-yu; Yang, Xiao-guang; Sun, Shuang; Xie, Wen-juan

    2015-10-01

    Based on the daily data of 65 meteorological stations from 1961 to 2010 and the crop phenology data in the potential cultivation zones of thermophilic and chimonophilous crops in Northeast China, the crop potential yields were calculated through step-by-step correction method. The spatio-temporal distribution of the crop potential yields at different levels was analyzed. And then we quantified the limitations of temperature and precipitation on the crop potential yields and compared the differences in the climatic resource utilization efficiency. The results showed that the thermal potential yields of six crops (including maize, rice, spring wheat, sorghum, millet and soybean) during the period 1961-2010 deceased from west to east. The climatic potential yields of the five crops (spring wheat not included) were higher in the south than in the north. The potential yield loss rate due to temperature limitations of the six crops presented a spatial distribution pattern and was higher in the east than in the west. Among the six main crops, the yield potential loss rate due to temperature limitation of the soybean was the highest (51%), and those of the other crops fluctuated within the range of 33%-41%. The potential yield loss rate due to water limitation had an obvious regional difference, and was high in Songnen Plain and Changbai Mountains. The potential yield loss rate of spring wheat was the highest (50%), and those of the other four rainfed crops fluctuated within the range of 8%-10%. The solar energy utilization efficiency of the six main crops ranged from 0.9% to 2.7%, in the order of maize> sorghum>rice>millet>spring wheat>soybean. The precipitation utilization efficiency of the maize, sorghum, spring wheat, millet and soybean under rainfed conditions ranged from 8 to 35 kg . hm-2 . mm-1, in the order of maize>sorghum>spring wheat>millet>soybean. In those areas with lower efficiency of solar energy utilization and precipitation utilization, such as Changbai Mountains and the south of Lesser Khingan Mountains, measures could be taken to increase the efficiency of resource utilization such as rational close-planting, selection of droughtresistant varieties, proper and timely fertilization, farming for soil water storage, optimization of crop layout and so on.

  1. Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects

    NASA Technical Reports Server (NTRS)

    Makowski, David; Asseng, Senthold; Ewert, Frank; Bassu, Simona; Durand, Jean-Louis; Martre, Pierre; Adam, Myriam; Aggarwal, Pramod K.; Angulo, Carlos; Baron, Chritian; hide

    2015-01-01

    Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex process-based crop models is a rather new idea. We demonstrate herewith that statistical methods can play an important role in analyzing simulated yield data sets obtained from the ensembles of process-based crop models. Formal statistical analysis is helpful to estimate the effects of different climatic variables on yield, and to describe the between-model variability of these effects.

  2. Spatial and Temporal Uncertainty of Crop Yield Aggregations

    NASA Technical Reports Server (NTRS)

    Porwollik, Vera; Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Iizumi, Toshichika; Ray, Deepak K.; Ruane, Alex C.; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; hide

    2016-01-01

    The aggregation of simulated gridded crop yields to national or regional scale requires information on temporal and spatial patterns of crop-specific harvested areas. This analysis estimates the uncertainty of simulated gridded yield time series related to the aggregation with four different harvested area data sets. We compare aggregated yield time series from the Global Gridded Crop Model Inter-comparison project for four crop types from 14 models at global, national, and regional scale to determine aggregation-driven differences in mean yields and temporal patterns as measures of uncertainty. The quantity and spatial patterns of harvested areas differ for individual crops among the four datasets applied for the aggregation. Also simulated spatial yield patterns differ among the 14 models. These differences in harvested areas and simulated yield patterns lead to differences in aggregated productivity estimates, both in mean yield and in the temporal dynamics. Among the four investigated crops, wheat yield (17% relative difference) is most affected by the uncertainty introduced by the aggregation at the global scale. The correlation of temporal patterns of global aggregated yield time series can be as low as for soybean (r = 0.28).For the majority of countries, mean relative differences of nationally aggregated yields account for10% or less. The spatial and temporal difference can be substantial higher for individual countries. Of the top-10 crop producers, aggregated national multi-annual mean relative difference of yields can be up to 67% (maize, South Africa), 43% (wheat, Pakistan), 51% (rice, Japan), and 427% (soybean, Bolivia).Correlations of differently aggregated yield time series can be as low as r = 0.56 (maize, India), r = 0.05*Corresponding (wheat, Russia), r = 0.13 (rice, Vietnam), and r = -0.01 (soybean, Uruguay). The aggregation to sub-national scale in comparison to country scale shows that spatial uncertainties can cancel out in countries with large harvested areas per crop type. We conclude that the aggregation uncertainty can be substantial for crop productivity and production estimations in the context of food security, impact assessment, and model evaluation exercises.

  3. Towards a Solid Foundation of Using Remotely Sensed Solar-Induced Chlorophyll Fluorescence for Crop Monitoring and Yield Forecast

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Sun, Y.; You, L.; Liu, Y.

    2017-12-01

    The growing demand for food production due to population increase coupled with high vulnerability to volatile environmental changes poses a paramount challenge for mankind in the coming century. Real-time crop monitoring and yield forecasting must be a key part of any solution to this challenge as these activities provide vital information needed for effective and efficient crop management and for decision making. However, traditional methods of crop growth monitoring (e.g., remotely sensed vegetation indices) do not directly relate to the most important function of plants - photosynthesis and therefore crop yield. The recent advance in the satellite remote sensing of Solar-Induced chlorophyll Fluorescence (SIF), an integrative photosynthetic signal from molecular origin and a direct measure of plant functions holds great promise for real-time monitoring of crop growth conditions and forecasting yields. In this study, we use satellite measurements of SIF from both the Global Ozone Monitoring Experiment-2 (GOME-2) onboard MetOp-A and the Orbiting Carbon Observatory-2 (OCO-2) satellites to estimate crop yield using both process-based and statistical models. We find that SIF-based crop yield well correlates with the global yield product Spatial Production Allocation Model (SPAM) derived from ground surveys for all major crops including maize, soybean, wheat, sorghum, and rice. The potential and challenges of using upcoming SIF satellite missions for crop monitoring and prediction will also be discussed.

  4. Impact of Crop Conversions on Runoff and Sediment Output in the Lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Momm, H.; Bingner, R. L.; Elkadiri, R.; Yaraser, L.; Porter, W.

    2017-12-01

    Farming management practices influence sediment and agrochemical loads exiting fields and entering downstream water bodies. These practices impact multiple physical processes responsible for sediment and nutrient detachment, transport, and deposition. Recent changes in farming practices in the Southern United States coincide with increased grain production, replacing traditional crops such as cotton with corn and soybeans. To grow these crops in the South, adapted crop management practices are needed (irrigation, fertilizer, etc.). In this study, the impact of grain crop adoption on hydrologic processes and non-point source pollutant production is quantified. A watershed located in the Big Sunflower River drainage basin (14,179 km2) - a part of the greater Lower Mississippi River basin - was selected due to its economic relevance, historical agricultural output, and depiction of recent farming management trends. Estimates of runoff and sediment loads were produced using the U.S. Department of Agriculture supported Annualized Agriculture Non-Point Source Pollution (AnnAGNPS) watershed pollution and management model. Existing physical conditions during a 16-year period (2000-2015) were characterized using 3,992 sub-catchments and 1,602 concentrated flow paths. Algorithms were developed to integrate continuous land use/land cover information, variable spatio-temporal irrigation practices, and crop output yield in order to generate a total of 2,922 unique management practices and corresponding soil-disturbing operations. A simulation representing existing conditions was contrasted with simulations depicting alternatives of management, irrigation practices, and temporal variations in crop yield. Quantification of anthropogenic impacts to water quality and water availability at a watershed scale supports the development of targeted pollution mitigation and custom conservation strategies.

  5. Modeling perceptions of climatic risk in crop production.

    PubMed

    Reinmuth, Evelyn; Parker, Phillip; Aurbacher, Joachim; Högy, Petra; Dabbert, Stephan

    2017-01-01

    In agricultural production, land-use decisions are components of economic planning that result in the strategic allocation of fields. Climate variability represents an uncertainty factor in crop production. Considering yield impact, climatic influence is perceived during and evaluated at the end of crop production cycles. In practice, this information is then incorporated into planning for the upcoming season. This process contributes to attitudes toward climate-induced risk in crop production. In the literature, however, the subjective valuation of risk is modeled as a risk attitude toward variations in (monetary) outcomes. Consequently, climatic influence may be obscured by political and market influences so that risk perceptions during the production process are neglected. We present a utility concept that allows the inclusion of annual risk scores based on mid-season risk perceptions that are incorporated into field-planning decisions. This approach is exemplified and implemented for winter wheat production in the Kraichgau, a region in Southwest Germany, using the integrated bio-economic simulation model FarmActor and empirical data from the region. Survey results indicate that a profitability threshold for this crop, the level of "still-good yield" (sgy), is 69 dt ha-1 (regional mean Kraichgau sample) for a given season. This threshold governs the monitoring process and risk estimators. We tested the modeled estimators against simulation results using ten projected future weather time series for winter wheat production. The mid-season estimators generally proved to be effective. This approach can be used to improve the modeling of planning decisions by providing a more comprehensive evaluation of field-crop response to climatic changes from an economic risk point of view. The methodology further provides economic insight in an agrometeorological context where prices for crops or inputs are lacking, but farmer attitudes toward risk should still be included in the analysis.

  6. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    NASA Astrophysics Data System (ADS)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of groundnut, threefold of wheat, twofold of onion during rabi season and was sevenfold of sugarcane. Analysis suggests that maximization of the area by provision of supplemental irrigation to rainfed areas as well as better on-farm water management practices can provide opportunities for improving water productivity.

  7. Detection of meteorological extreme effect on historical crop yield anomaly

    NASA Astrophysics Data System (ADS)

    Kim, W.; Iizumi, T.; Nishimori, M.

    2017-12-01

    Meteorological extremes of temperature and precipitation are a critical issue in the global climate change, and some studies investigating how the extreme changes in accordance with the climate change are continuously reported. However, it is rarely understandable that the extremes affect crop yield worldwide as heatwave, coolwave, drought, and flood, albeit some local or national reports are available. Therefore, we globally investigated the extremes effects on the variability of historical yield of maize, rice, soy, and wheat with a standardized index and a historical yield anomaly. For the regression analysis, the standardized index is annually aggregated in the consideration of a crop calendar, and the historical yield is detrended with 5-year moving average. Throughout this investigation, we found that the relationship between the aggregated standardized index and the historical yield anomaly shows not merely positive correlation but also negative correlation in all crops in the globe. Namely, the extremes cause decrease of crop yield as a matter of course, but increase in some regions contrastingly. These results help us to quantify the extremes effect on historical crop yield anomaly.

  8. The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm.

    PubMed

    Krishnamurthy, Lakshmanan; Upadhyaya, Hari Deo; Purushothaman, Ramamoorthy; Gowda, Cholenahalli Lakkegowda Laxmipathi; Kashiwagi, Junichi; Dwivedi, Sangam Lal; Singh, Sube; Vadez, Vincent

    2014-10-01

    Finger millet (Eleusine coracana L. Gaertn.) ranks third in production among the dry land cereals. It is widely cultivated in Africa and South Asia where soil salinization is a major production constraint. It is a potential crop for salt affected soils. To identify salt tolerant germplasm, the minicore finger millet germplasm (n=80) was screened for grain yield performance in a soil saturated with NaCl solution of 100 or 125mM. Genotype effect was significant for most traits, while salinity×genotype interaction was significant only in one year. Salinity delayed phenology, marginally reduced shoot biomass and grain yield. There was a large range of genotypic variation in grain yield under salinity and other traits. The yield loss was higher in accessions with prolific growth and yield potential was associated with saline yields. Based on saline yields, accessions were grouped in to four groups and the top tolerant group had 22 accessions with IE 4797 remaining at the top. Salinity had no adverse impact on grain yield of five accessions. Root anatomy in selected genotype of pearl and finger millet showed presence of porous cortex and well fortified endodermis in finger millet that can exclude Na(+) and enhance N absorption. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    NASA Astrophysics Data System (ADS)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  10. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize.

    PubMed

    Chenu, Karine; Chapman, Scott C; Hammer, Graeme L; McLean, Greg; Salah, Halim Ben Haj; Tardieu, François

    2008-03-01

    Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.

  11. Large Area Crop Inventory Experiment (LACIE). Feasibility of assessing crop condition and yield from LANDSAT data

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. Yield modelling for crop production estimation derived a means of predicting the within-a-year yield and the year-to-year variability of yield over some fixed or randomly located unit of area. Preliminary studies indicated that the requirements for interpreting LANDSAT data for yield may be sufficiently similar to those of signature extension that it is feasible to investigate the automated estimation of production. The concept of an advanced yield model consisting of both spectral and meteorological components was endorsed. Rationale for using meteorological parameters originated from known between season and near harvest dynamics in crop environmental-condition-yield relationships.

  12. Yield model development project implementation plan

    NASA Technical Reports Server (NTRS)

    Ambroziak, R. A.

    1982-01-01

    Tasks remaining to be completed are summarized for the following major project elements: (1) evaluation of crop yield models; (2) crop yield model research and development; (3) data acquisition processing, and storage; (4) related yield research: defining spectral and/or remote sensing data requirements; developing input for driving and testing crop growth/yield models; real time testing of wheat plant process models) and (5) project management and support.

  13. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress

    PubMed Central

    Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila

    2017-01-01

    Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association (r2 = 0.3–0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association (P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H9 will help us to identify significant loci and alleles that made H9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions. PMID:28878785

  14. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress.

    PubMed

    Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila

    2017-01-01

    Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H 9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association ( r 2 = 0.3-0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association ( P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H 9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H 9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H 9 will help us to identify significant loci and alleles that made H 9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions.

  15. Understanding the Impact of Extreme Temperature on Crop Production in Karnataka in India

    NASA Astrophysics Data System (ADS)

    Mahato, S.; Murari, K. K.; Jayaraman, T.

    2017-12-01

    The impact of extreme temperature on crop yield is seldom explored in work around climate change impact on agriculture. Further, these studies are restricted mainly to crops such as wheat and maize. Since different agro-climatic zones bear different crops and cropping patterns, it is important to explore the nature of the impact of changes in climate variables in agricultural systems under differential conditions. The study explores the effects of temperature rise on the major crops paddy, jowar, ragi and tur in the state of Karnataka of southern India. The choice of the unit of study to understand impact of climate variability on crop yields is largely restricted to availability of data for the unit. While, previous studies have dealt with this issue by replacing yield with NDVI at finer resolution, the use of an index in place of yield data has its limitations and may not reflect the true estimates. For this study, the unit considered is taluk, i.e. sub-district level. The crop yield for taluk is obtained between the year the 1995 to 2011 by aggregating point yield data from crop cutting experiments for each year across the taluks. The long term temperature data shows significantly increasing trend that ranges between 0.6 to 0.75 C across Karnataka. Further, the analysis suggests a warming trend in seasonal average temperature for Kharif and Rabi seasons across districts. The study also found that many districts exhibit the tendency of occurrence of extreme temperature days, which is of particular concern in terms of crop yield, since exposure of crops to extreme temperature has negative consequences for crop production and productivity. Using growing degree days GDD, extreme degree days EDD and total season rainfall as predictor variables, the fixed effect model shows that EDD is a more influential parameter as compared to GDD and rainfall. Also it has a statistically significant negative effect in most cases. Further, quantile regression was used to evaluate the robustness of the estimates of EDD in relation to crop yield. This showed the estimates to be robust across quantiles for most of the crops studied. Thus indicating a strong negative influence of exposure to extreme temperature on crop yield in the region.

  16. Biomass yield and heterosis of crosses within and between European winter cultivars of turnip rape (Brassica rapa L.).

    PubMed

    Ofori, Atta; Schierholt, Antje; Becker, Heiko C

    2012-02-01

    Because of its high growth rate at low temperatures in early spring, there is renewed interest in Brassica rapa as a winter crop for biomass production in Europe. The available cultivars are not developed for this purpose however. An approach for breeding bioenergy cultivars of B. rapa could be to establish populations from two or more different cultivars with high combining ability. The objective of this study was to evaluate the heterosis for biomass yield in the European winter B. rapa genepool. The genetic variation and heterosis of the biomass parameters: dry matter content, fresh and dry biomass yields were investigated in three cultivars representing different eras of breeding by comparing full-sibs-within and full-sibs-between the cultivars. Field trials were performed at two locations in Germany in 2005-2006. Mean mid-parent heterosis was low with 2.5% in fresh and 3.0% in dry biomass yield in full-sibs-between cultivars. Mean values of individual crosses revealed a higher variation in mid-parent heterosis ranging from 14.6% to -7.5% in fresh biomass yield and from 19.7% to -12.7% in dry biomass yield. The low heterosis observed in hybrids between European winter cultivars can be explained by the low genetic variation between these cultivars as shown earlier with molecular markers. In conclusion, a B. rapa breeding program for biomass production in Europe should not only use European genetic resources, but should also utilize the much wider worldwide variation in this species.

  17. Regional crop yield forecasting: a probabilistic approach

    NASA Astrophysics Data System (ADS)

    de Wit, A.; van Diepen, K.; Boogaard, H.

    2009-04-01

    Information on the outlook on yield and production of crops over large regions is essential for government services dealing with import and export of food crops, for agencies with a role in food relief, for international organizations with a mandate in monitoring the world food production and trade, and for commodity traders. Process-based mechanistic crop models are an important tool for providing such information, because they can integrate the effect of crop management, weather and soil on crop growth. When properly integrated in a yield forecasting system, the aggregated model output can be used to predict crop yield and production at regional, national and continental scales. Nevertheless, given the scales at which these models operate, the results are subject to large uncertainties due to poorly known weather conditions and crop management. Current yield forecasting systems are generally deterministic in nature and provide no information about the uncertainty bounds on their output. To improve on this situation we present an ensemble-based approach where uncertainty bounds can be derived from the dispersion of results in the ensemble. The probabilistic information provided by this ensemble-based system can be used to quantify uncertainties (risk) on regional crop yield forecasts and can therefore be an important support to quantitative risk analysis in a decision making process.

  18. The limits of crop productivity: validating theoretical estimates and determining the factors that limit crop yields in optimal environments

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.

    1992-01-01

    Plant scientists have sought to maximize the yield of food crops since the beginning of agriculture. There are numerous reports of record food and biomass yields (per unit area) in all major crop plants, but many of the record yield reports are in error because they exceed the maximal theoretical rates of the component processes. In this article, we review the component processes that govern yield limits and describe how each process can be individually measured. This procedure has helped us validate theoretical estimates and determine what factors limit yields in optimal environments.

  19. Spatial Sampling of Weather Data for Regional Crop Yield Simulations

    NASA Technical Reports Server (NTRS)

    Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian; hide

    2016-01-01

    Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.

  20. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.

    PubMed

    Amon, Thomas; Amon, Barbara; Kryvoruchko, Vitaliy; Machmüller, Andrea; Hopfner-Sixt, Katharina; Bodiroza, Vitomir; Hrbek, Regina; Friedel, Jürgen; Pötsch, Erich; Wagentristl, Helmut; Schreiner, Matthias; Zollitsch, Werner

    2007-12-01

    Biogas production is of major importance for the sustainable use of agrarian biomass as renewable energy source. Economic biogas production depends on high biogas yields. The project aimed at optimising anaerobic digestion of energy crops. The following aspects were investigated: suitability of different crop species and varieties, optimum time of harvesting, specific methane yield and methane yield per hectare. The experiments covered 7 maize, 2 winter wheat, 2 triticale varieties, 1 winter rye, and 2 sunflower varieties and 6 variants with permanent grassland. In the course of the vegetation period, biomass yield and biomass composition were measured. Anaerobic digestion was carried out in eudiometer batch digesters. The highest methane yields of 7500-10200 m(N)(3)ha(-1) were achieved from maize varieties with FAO numbers (value for the maturity of the maize) of 300 to 600 harvested at "wax ripeness". Methane yields of cereals ranged from 3200 to 4500 m(N)(3)ha(-1). Cereals should be harvested at "grain in the milk stage" to "grain in the dough stage". With sunflowers, methane yields between 2600 and 4550 m(N)(3)ha(-1) were achieved. There were distinct differences between the investigated sunflower varieties. Alpine grassland can yield 2700-3500 m(N)(3)CH(4)ha(-1). The methane energy value model (MEVM) was developed for the different energy crops. It estimates the specific methane yield from the nutrient composition of the energy crops. Energy crops for biogas production need to be grown in sustainable crop rotations. The paper outlines possibilities for optimising methane yield from versatile crop rotations that integrate the production of food, feed, raw materials and energy. These integrated crop rotations are highly efficient and can provide up to 320 million t COE which is 96% of the total energy demand of the road traffic of the EU-25 (the 25 Member States of the European Union).

  1. Towards a Local-Scale Climate Service for Colombian Agriculture: Findings and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Ramirez-Villegas, J.; Prager, S.; Llanos, L.; Agudelo, D.; Esquivel, A.; Sotelo, S.; Guevara, E.; Howland, F. C.; Munoz, A.; Rodriguez, J.; Ordonez, L.; Fernandes, K.

    2017-12-01

    Globally, interannual climate variability explains roughly a third of the yield variation for major crops. In Colombia, interannual climate variations and specially those driven by ENSO can disrupt production, lower farmers' incomes and increase market prices for both urban and rural consumers alike. Farmers in Colombia, however, often plan for the cropping season based on the immediately prior year's experience, which is unlikely to result in successful crops under high climate variability events. Critical decisions for avoiding total investment loss or to ensure successful harvests, including issues related to planting date, what variety to plant, or whether to plant, are made, at best, intuitively. Here, we demonstrate that the combination of better data, skillful seasonal climate forecasts, calibrated crop models, and a web-based climate services platform tailored to users' needs can prove successful in establishing a sustained climate service for agriculture. Rainfall predictability analyses indicate that statistical seasonal climate forecasts are skillful enough for issuing forecasts reliably in virtually all areas, with dry periods generally showing greater predictability than wet periods. Importantly, we find that a better specification of predictor regions significantly enhances seasonal forecast skill. Rice and maize crop models capture well the growth and development of rice and maize crops in experimental settings, and ably simulate historical (1980-2014) variations in productivity. With skillful climate and crop models, we developed a climate services platform that produces seasonal climate forecasts, and connects these with crop models. A usability study of the forecast platform revealed that, from a population of ca. 200 farmers and professionals, roughly two thirds correctly interpreted information and felt both confident and encouraged to use the platform. Nevertheless, capacity strengthening on key agro-climatology concepts was highlighted by farmers as a crucial need. Challenges also arose in certain zones due to limited access to electricity, computers or Internet. Based on our results, we conclude that for a climate service to be truly sustainable, well-calibrated and skillful models are as critical as the co-creation of the service itself with the stakeholder community.

  2. [Main interspecific competition and land productivity of fruit-crop intercropping in Loess Region of West Shauxi].

    PubMed

    Yun, Lei; Bi, Hua-Xing; Tian, Xiao-Ling; Cui, Zhe-Wei; Zhou, Hui-Zi; Gao, Lu-Bo; Liu, Li-Xia

    2011-05-01

    Taking the four typical fruit-crop intercropping models, i.e., walnut-peanut, walnut-soybean, apple-peanut, and apple-soybean, in the Loess Region of western Shanxi Province as the objects, this paper analyzed the crop (peanut and soybean) photosynthetic active radiation (PAR), net photosynthetic rate (P(n)), yield, and soil moisture content. Comparing with crop monoculture, fruit-crop intercropping decreased the crop PAR and P(n). The smaller the distance from tree rows, the smaller the crop PAR and P(n). There was a significantly positive correlation between the P(n) and crop yield, suggesting that illumination was one of the key factors affecting crop yield. From the whole trend, the 0-100 cm soil moisture content had no significant differences between walnut-crop intercropping systems and corresponding monoculture cropping systems, but had significant differences between apple-crop intercropping systems and corresponding monoculture cropping systems, indicating that the competition for soil moisture was more intense in apple-crop intercropping systems than in walnut-crop intercropping systems. Comparing with monoculture, fruit-crop intercropping increased the land use efficiency and economic benefit averagely by 70% and 14%, respectively, and walnut-crop intercropping was much better than apple-crop intercropping. To increase the crop yield in fruit-crop intercropping systems, the following strategies should be taken: strengthening the management of irrigation and fertilization, increasing the distances or setting root barriers between crop and tree rows, regularly and properly pruning, and planting shade-tolerant crops in intercropping.

  3. Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications

    NASA Astrophysics Data System (ADS)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2011-02-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro river basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  4. A potato model intercomparison across varying climates and productivity levels.

    PubMed

    Fleisher, David H; Condori, Bruno; Quiroz, Roberto; Alva, Ashok; Asseng, Senthold; Barreda, Carolina; Bindi, Marco; Boote, Kenneth J; Ferrise, Roberto; Franke, Angelinus C; Govindakrishnan, Panamanna M; Harahagazwe, Dieudonne; Hoogenboom, Gerrit; Naresh Kumar, Soora; Merante, Paolo; Nendel, Claas; Olesen, Jorgen E; Parker, Phillip S; Raes, Dirk; Raymundo, Rubi; Ruane, Alex C; Stockle, Claudio; Supit, Iwan; Vanuytrecht, Eline; Wolf, Joost; Woli, Prem

    2017-03-01

    A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with interannual variability, and predictions for all agronomic variables were significantly different from one model to another (P < 0.001). Uncertainty averaged 15% higher for low- vs. high-input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41% and 23% for yield and ET, respectively, as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for nonirrigated sites). Differences in predictions due to model representation of light utilization were significant (P < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach. © 2016 John Wiley & Sons Ltd.

  5. Yield and Economic Responses of Peanut to Crop Rotation Sequence

    USDA-ARS?s Scientific Manuscript database

    National Peanut Research Laboratory, Dawson, GA 39842. Proper crop rotation is essential to maintaining high peanut yield and quality. However, the economic considerations of maintaining or altering crop rotation sequences must incorporate the commodity prices, production costs, and yield responses...

  6. Hyperspectral imagery for mapping crop yield for precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Crop yield is perhaps the most important piece of information for crop management in precision agriculture. It integrates the effects of various spatial variables such as soil properties, topographic attributes, tillage, plant population, fertilization, irrigation, and pest infestations. A yield map...

  7. Salience Assignment for Multiple-Instance Data and Its Application to Crop Yield Prediction

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Lane, Terran

    2010-01-01

    An algorithm was developed to generate crop yield predictions from orbital remote sensing observations, by analyzing thousands of pixels per county and the associated historical crop yield data for those counties. The algorithm determines which pixels contain which crop. Since each known yield value is associated with thousands of individual pixels, this is a multiple instance learning problem. Because individual crop growth is related to the resulting yield, this relationship has been leveraged to identify pixels that are individually related to corn, wheat, cotton, and soybean yield. Those that have the strongest relationship to a given crop s yield values are most likely to contain fields with that crop. Remote sensing time series data (a new observation every 8 days) was examined for each pixel, which contains information for that pixel s growth curve, peak greenness, and other relevant features. An alternating-projection (AP) technique was used to first estimate the "salience" of each pixel, with respect to the given target (crop yield), and then those estimates were used to build a regression model that relates input data (remote sensing observations) to the target. This is achieved by constructing an exemplar for each crop in each county that is a weighted average of all the pixels within the county; the pixels are weighted according to the salience values. The new regression model estimate then informs the next estimate of the salience values. By iterating between these two steps, the algorithm converges to a stable estimate of both the salience of each pixel and the regression model. The salience values indicate which pixels are most relevant to each crop under consideration.

  8. Cover crops support ecological intensification of arable cropping systems

    NASA Astrophysics Data System (ADS)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  9. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2018-06-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  10. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2017-12-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  11. Future possible crop yield scenarios under multiple SSP and RCP scenarios.

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Yokozawa, M.; Nishimori, M.; Okada, M.

    2016-12-01

    Understanding the effect of future climate change on global crop yields is one of the most important tasks for global food security. Future crop yields would be influenced by climatic factors such as the changes of temperature, precipitation and atmospheric carbon dioxide concentration. On the other hand, the effect of the changes of agricultural technologies such as crop varieties, pesticide and fertilizer input on crop yields have large uncertainty. However, not much is available on the contribution ratio of each factor under the future climate change scenario. We estimated the future global yields of four major crops (maize, soybean, rice and wheat) under three Shared Socio Economic Pathways (SSPs) and four Representative Concentration Pathways (RCPs). For this purpose, firstly, we estimated a parameter of a process based model (PRYSBI2) using a Bayesian method for each 1.125 degree spatial grid. The model parameter is relevant to the agricultural technology (we call "technological parameter" here after). Then, we analyzed the relationship between the values of technological parameter and GDP values. We found that the estimated values of the technological parameter were positively correlated with the GDP. Using the estimated relationship, we predicted future crop yield during 2020 and 2100 under SSP1, SSP2 and SSP3 scenarios and RCP 2.6, 4.5, 6.0 and 8.5. The estimated crop yields were different among SSP scenarios. However, we found that the yield difference attributable to SSPs were smaller than those attributable to CO2 fertilization effects and climate change. Particularly, the estimated effect of the change of atmospheric carbon dioxide concentration on global yields was more than four times larger than that of GDP for C3 crops.

  12. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

    NASA Astrophysics Data System (ADS)

    Tai, Amos P. K.; Val Martin, Maria

    2017-11-01

    Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation as well as ozone and climate change adaptation (e.g., selecting heat- and ozone-tolerant cultivars, irrigation) as possible strategies to enhance future food security in response to imminent environmental threats.

  13. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production.

    PubMed

    Kukal, Meetpal S; Irmak, Suat

    2018-02-22

    Climate variability and trends affect global crop yields and are characterized as highly dependent on location, crop type, and irrigation. U.S. Great Plains, due to its significance in national food production, evident climate variability, and extensive irrigation is an ideal region of investigation for climate impacts on food production. This paper evaluates climate impacts on maize, sorghum, and soybean yields and effect of irrigation for individual counties in this region by employing extensive crop yield and climate datasets from 1968-2013. Variability in crop yields was a quarter of the regional average yields, with a quarter of this variability explained by climate variability, and temperature and precipitation explained these in singularity or combination at different locations. Observed temperature trend was beneficial for maize yields, but detrimental for sorghum and soybean yields, whereas observed precipitation trend was beneficial for all three crops. Irrigated yields demonstrated increased robustness and an effective mitigation strategy against climate impacts than their non-irrigated counterparts by a considerable fraction. The information, data, and maps provided can serve as an assessment guide for planners, managers, and policy- and decision makers to prioritize agricultural resilience efforts and resource allocation or re-allocation in the regions that exhibit risk from climate variability.

  14. Random Forests for Global and Regional Crop Yield Predictions.

    PubMed

    Jeong, Jig Han; Resop, Jonathan P; Mueller, Nathaniel D; Fleisher, David H; Yun, Kyungdahm; Butler, Ethan E; Timlin, Dennis J; Shim, Kyo-Moon; Gerber, James S; Reddy, Vangimalla R; Kim, Soo-Hyung

    2016-01-01

    Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison with multiple linear regressions (MLR) serving as a benchmark. We used crop yield data from various sources and regions for model training and testing: 1) gridded global wheat grain yield, 2) maize grain yield from US counties over thirty years, and 3) potato tuber and maize silage yield from the northeastern seaboard region. RF was found highly capable of predicting crop yields and outperformed MLR benchmarks in all performance statistics that were compared. For example, the root mean square errors (RMSE) ranged between 6 and 14% of the average observed yield with RF models in all test cases whereas these values ranged from 14% to 49% for MLR models. Our results show that RF is an effective and versatile machine-learning method for crop yield predictions at regional and global scales for its high accuracy and precision, ease of use, and utility in data analysis. RF may result in a loss of accuracy when predicting the extreme ends or responses beyond the boundaries of the training data.

  15. Analysis of the trade-off between high crop yield and low yield instability at the global scale

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2016-10-01

    Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.

  16. Remote-sensing-based rapid assessment of flood crop loss to support USDA flooding decision-making

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Yang, Z.; Hipple, J.; Shrestha, R.

    2016-12-01

    Floods often cause significant crop loss in the United States. Timely and objective assessment of flood-related crop loss is very important for crop monitoring and risk management in agricultural and disaster-related decision-making in USDA. Among all flood-related information, crop yield loss is particularly important. Decision on proper mitigation, relief, and monetary compensation relies on it. Currently USDA mostly relies on field surveys to obtain crop loss information and compensate farmers' loss claim. Such methods are expensive, labor intensive, and time consumptive, especially for a large flood that affects a large geographic area. Recent studies have demonstrated that Earth observation (EO) data are useful in post-flood crop loss assessment for a large geographic area objectively, timely, accurately, and cost effectively. There are three stages of flood damage assessment, including rapid assessment, early recovery assessment, and in-depth assessment. EO-based flood assessment methods currently rely on the time-series of vegetation index to assess the yield loss. Such methods are suitable for in-depth assessment but are less suitable for rapid assessment since the after-flood vegetation index time series is not available. This presentation presents a new EO-based method for the rapid assessment of crop yield loss immediately after a flood event to support the USDA flood decision making. The method is based on the historic records of flood severity, flood duration, flood date, crop type, EO-based both before- and immediate-after-flood crop conditions, and corresponding crop yield loss. It hypotheses that a flood of same severity occurring at the same pheonological stage of a crop will cause the similar damage to the crop yield regardless the flood years. With this hypothesis, a regression-based rapid assessment algorithm can be developed by learning from historic records of flood events and corresponding crop yield loss. In this study, historic records of MODIS-based flood and vegetation products and USDA/NASS crop type and crop yield data are used to train the regression-based rapid assessment algorithm. Validation of the rapid assessment algorithm indicates it can predict the yield loss at 90% accuracy, which is accurate enough to support USDA on flood-related quick response and mitigation.

  17. Organic wastes from bioenergy and ecological sanitation as a soil fertility improver: a field experiment in a tropical Andosol

    NASA Astrophysics Data System (ADS)

    Krause, Ariane; Nehls, Thomas; George, Eckhard; Kaupenjohann, Martin

    2016-04-01

    Andosols require the regular application of phosphorus (P) to sustain crop productivity. On an Andosol in NW Tanzania, we studied the short-term effects of amending standard compost, biogas slurry and CaSa compost (containing biochar and sanitized human excreta) on (i) the soil's physico-chemical properties, on (ii) biomass growth and crop productivity, and on (iii) the plants' nutrient status. The practice-oriented experiment design included the intercropping of seven locally grown crop species planted on 9 m2 plots with five repetitions arranged as a Latin rectangle. Differences in plant growth (biomass production and crop yield, e.g., of Zea mays) and crop nutrition (total C, N, P, K, Ca, Mg, Zn, etc.) were related to pH, CEC (cation exchange capacity), total C and the availability of nutrients (N, P, K, etc.) and water (water retention characteristics, bulk density, etc.) in the soil. None of the amendments had any significant effect on soil water availability, so the observed variations in crop yield and plant nutrition are attributed to nutrient availability. Applying CaSa compost increased the soil pH from 5.3 to 5.9 and the level of available P from 0.5 to 4.4 mg per kg. Compared to the control, adding biogas slurry, standard compost and CaSa compost increased the aboveground biomass of Zea mays by, respectively, 140, 154 and 211 %. The grain yields of maize on soil treated with biogas slurry, standard compost and CaSa compost were, respectively, 2.63, 3.18 and 4.40 t ha-1, compared to only 1.10 t ha-1 on unamended plots. All treatments enhanced crop productivity and increased the uptake of nutrients into the maize grains. The CaSa compost was most effective in mitigating P deficiency and soil acidification. We conclude that all treatments are viable as a substitute for synthetic fertilizers. Nevertheless, further steps are required to integrate the tested soil amendments into farm-scale nutrient management and to balance the additions and removals of nutrients, so that the cycle can be closed.

  18. Changes in rainfed and irrigated crop yield response to climate in the western US

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T. J.

    2018-06-01

    As the global population increases and the climate changes, ensuring a secure food supply is increasingly important. One strategy is irrigation, which allows for crops to be grown outside their optimal climate growing regions and which buffers against climate variability. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources as it can lead to groundwater depletion and diminished surface water supplies. This study quantifies how crop yields are affected by climate variability and extremes and the impact of irrigation on crop yield increases under various growing-season climate conditions. To do this, we use historical climate data and county-level rainfed and irrigated crop yields for maize, soybean, winter and spring wheat over the US to analyze the relationship between climate, crop yields, and irrigation. We find that there are optimal climates, specific to each crop, where irrigation provides a benefit and other conditions where irrigation proves to have marginal, if any, benefits. Furthermore, the relationship between crop yields and climate has changed over the last decades, with a changing sensitivity in the relationship of soybean and winter wheat yields to certain climate variables, like crop reference evapotranspiration. These two conclusions have important implications for agricultural and water resource system planning, as it implies there are more optimal climate conditions where irrigation is particularly productive and regions where irrigation should be reconsidered as there is not a significant agricultural benefit and the water could be used more productively.

  19. The implication of irrigation in climate change impact assessment: a European-wide study.

    PubMed

    Zhao, Gang; Webber, Heidi; Hoffmann, Holger; Wolf, Joost; Siebert, Stefan; Ewert, Frank

    2015-11-01

    This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on crop growth and transpiration, and different climate change scenarios in climate change impact assessments is quantified. Net irrigation requirement (NIR) and yields of the six crops were simulated for a baseline (1982-2006) and three SRES scenarios (B1, B2 and A1B, 2040-2064) under rainfed and irrigated conditions, using a process-based crop model, SIMPLACE . We found that projected climate change decreased NIR of the three winter crops in northern Europe (up to 81 mm), but increased NIR of all the six crops in the Mediterranean regions (up to 182 mm yr(-1) ). Climate change increased yields of the three winter crops and sugar beet in middle and northern regions (up to 36%), but decreased their yields in Mediterranean countries (up to 81%). Consideration of CO2 effects can alter the direction of change in NIR for irrigated crops in the south and of yields for C3 crops in central and northern Europe. Constraining the model to rainfed conditions for spring crops led to a negative bias in simulating climate change impacts on yields (up to 44%), which was proportional to the irrigation ratio of the simulation unit. Impacts on NIR and yields were generally consistent across the three SRES scenarios for the majority of regions in Europe. We conclude that due to the magnitude of irrigation and CO2 effects, they should both be considered in the simulation of climate change impacts on crop production and water availability, particularly for crops and regions with a high proportion of irrigated crop area. © 2015 John Wiley & Sons Ltd.

  20. Characterization of the ecological interactions of Roundup Ready 2 Yield® soybean, MON 89788, for use in ecological risk assessment

    PubMed Central

    Horak, Michael J; Rosenbaum, Eric W; Phillips, Samuel L; Kendrick, Daniel L; Carson, David; Clark, Pete L; Nickson, Thomas E

    2015-01-01

    Abstract As part of an ecological risk assessment, Roundup Ready 2 Yield® soybean (MON 89788) was compared to a conventional control soybean variety, A3244, for disease and arthropod damage, plant response to abiotic stress and cold, effects on succeeding plant growth (allelopathic effects), plant response to a bacterial symbiont, and effects on the ability of seed to survive and volunteer in a subsequent growing season. Statistically significant differences between MON 89788 and A3244 were considered in the context of the genetic variation known to occur in soybean and were assessed for their potential impact on plant pest (weed) potential and adverse environmental impact. The results of these studies revealed no effects of the genetic modification that would result in increased pest potential or adverse environmental impact of MON 89788 compared with A3244. This paper illustrates how such characterization studies conducted in a range of environments where the crop is grown are used in an ecological risk assessment of the genetically modified (GM) crop. Furthermore, risk assessors and decision makers use this information when deciding whether to approve a GM crop for cultivation in—or grain import into—their country. PMID:26177011

  1. Quantifying yield gaps in wheat production in Russia

    NASA Astrophysics Data System (ADS)

    Schierhorn, Florian; Faramarzi, Monireh; Prishchepov, Alexander V.; Koch, Friedrich J.; Müller, Daniel

    2014-08-01

    Crop yields must increase substantially to meet the increasing demands for agricultural products. Crop yield increases are particularly important for Russia because low crop yields prevail across Russia’s widespread and fertile land resources. However, reliable data are lacking regarding the spatial distribution of potential yields in Russia, which can be used to determine yield gaps. We used a crop growth model to determine the yield potentials and yield gaps of winter and spring wheat at the provincial level across European Russia. We modeled the annual yield potentials from 1995 to 2006 with optimal nitrogen supplies for both rainfed and irrigated conditions. Overall, the results suggest yield gaps of 1.51-2.10 t ha-1, or 44-52% of the yield potential under rainfed conditions. Under irrigated conditions, yield gaps of 3.14-3.30 t ha-1, or 62-63% of the yield potential, were observed. However, recurring droughts cause large fluctuations in yield potentials under rainfed conditions, even when the nitrogen supply is optimal, particularly in the highly fertile black soil areas of southern European Russia. The highest yield gaps (up to 4 t ha-1) under irrigated conditions were detected in the steppe areas in southeastern European Russia along the border of Kazakhstan. Improving the nutrient and water supply and using crop breeds that are adapted to the frequent drought conditions are important for reducing yield gaps in European Russia. Our regional assessment helps inform policy and agricultural investors and prioritize research that aims to increase crop production in this important region for global agricultural markets.

  2. Anticipating on amplifying water stress: Optimal crop production supported by anticipatory water management

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Simons, Gijs

    2015-04-01

    Agricultural crop yields depend largely on the soil moisture conditions in the root zone. Drought but especially an excess of water in the root zone and herewith limited availability of soil oxygen reduces crop yield. With ongoing climate change, more prolonged dry periods alternate with more intensive rainfall events, which changes soil moisture dynamics. With unaltered water management practices, reduced crop yield due to both drought stress and waterlogging will increase. Therefore, both farmers and water management authorities need to be provided with opportunities to reduce risks of decreasing crop yields. In The Netherlands, agricultural production of crops represents a market exceeding 2 billion euros annually. Given the increased variability in meteorological conditions and the resulting larger variations in soil moisture contents, it is of large economic importance to provide farmers and water management authorities with tools to mitigate risks of reduced crop yield by anticipatory water management, both at field and at regional scale. We provide the development and the field application of a decision support system (DSS), which allows to optimize crop yield by timely anticipation on drought and waterlogging situations. By using this DSS, we will minimize plant water stress through automated drainage and irrigation management. In order to optimize soil moisture conditions for crop growth, the interacting processes in the soil-plant-atmosphere system need to be considered explicitly. Our study comprises both the set-up and application of the DSS on a pilot plot in The Netherlands, in order to evaluate its implementation into daily agricultural practice. The DSS focusses on anticipatory water management at the field scale, i.e. the unit scale of interest to a farmer. We combine parallel field measurements ('observe'), process-based model simulations ('predict'), and the novel Climate Adaptive Drainage (CAD) system ('adjust') to optimize soil moisture conditions. CAD is used both for controlled drainage practices and for sub-irrigation. The DSS has a core of the plot-scale SWAP model (soil-water-atmosphere-plant), extended with a process-based module for the simulation of oxygen stress for plant roots. This module involves macro-scale and micro-scale gas diffusion, as well as the plant physiological demand of oxygen, to simulate transpiration reduction due to limited oxygen availability. Continuous measurements of soil moisture content, groundwater level, and drainage level are used to calibrate the SWAP model each day. This leads to an optimal reproduction of the actual soil moisture conditions by data assimilation in the first step in the DSS process. During the next step, near-future (+10 days) soil moisture conditions and drought and oxygen stress are predicted using weather forecasts. Finally, optimal drainage levels to minimize stress are simulated, which can be established by CAD. Linkage to a grid-based hydrological simulation model (SPHY) facilitates studying the spatial dynamics of soil moisture and associated implications for management at the regional scale. Thus, by using local-scale measurements, process-based models and weather forecasts to anticipate on near-future conditions, not only field-scale water management but also regional surface water management can be optimized both in space and time.

  3. Monitoring Crop Yield in USA Using a Satellite-Based Climate-Variability Impact Index

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Anderson, Bruce; Tan, Bin; Barlow, Mathew; Myneni, Ranga

    2011-01-01

    A quantitative index is applied to monitor crop growth and predict agricultural yield in continental USA. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to overall anomalies in growth during a given year, is derived from 1-km MODIS Leaf Area Index. The growing-season integrated CVII can provide an estimate of the fractional change in overall growth during a given year. In turn these estimates can provide fine-scale and aggregated information on yield for various crops. Trained from historical records of crop production, a statistical model is used to produce crop yield during the growing season based upon the strong positive relationship between crop yield and the CVII. By examining the model prediction as a function of time, it is possible to determine when the in-season predictive capability plateaus and which months provide the greatest predictive capacity.

  4. The impact of Global Warming on global crop yields due to changes in pest pressure

    NASA Astrophysics Data System (ADS)

    Battisti, D. S.; Tewksbury, J. J.; Deutsch, C. A.

    2011-12-01

    A billion people currently lack reliable access to sufficient food and almost half of the calories feeding these people come from just three crops: rice, maize, wheat. Insect pests are among the largest factors affecting the yield of these three crops, but models assessing the effects of global warming on crops rarely consider changes in insect pest pressure on crop yields. We use well-established relationships between temperature and insect physiology to project climate-driven changes in pest pressure, defined as integrated population metabolism, for the three major crops. By the middle of this century, under most scenarios, insect pest pressure is projected to increase by more than 50% in temperate areas, while increases in tropical regions will be more modest. Yield relationships indicate that the largest increases in insect pest pressure are likely to occur in areas where yield is greatest, suggesting increased strain on global food markets.

  5. Epi-fingerprinting and epi-interventions for improved crop production and food quality

    PubMed Central

    Rodríguez López, Carlos M.; Wilkinson, Mike J.

    2015-01-01

    Increasing crop production at a time of rapid climate change represents the greatest challenge facing contemporary agricultural research. Our understanding of the genetic control of yield derives from controlled field experiments designed to minimize environmental variance. In spite of these efforts there is substantial residual variability among plants attributable to Genotype × Environment interactions. Recent advances in the field of epigenetics have revealed a plethora of gene control mechanisms that could account for much of this unassigned variation. These systems act as a regulatory interface between the perception of the environment and associated alterations in gene expression. Direct intervention of epigenetic control systems hold the enticing promise of creating new sources of variability that could enhance crop performance. Equally, understanding the relationship between various epigenetic states and responses of the crop to specific aspects of the growing environment (epigenetic fingerprinting) could allow for a more tailored approach to plant agronomy. In this review, we explore the many ways in which epigenetic interventions and epigenetic fingerprinting can be deployed for the improvement of crop production and quality. PMID:26097484

  6. Assessing the environmental impacts of soil compaction in Life Cycle Assessment.

    PubMed

    Stoessel, Franziska; Sonderegger, Thomas; Bayer, Peter; Hellweg, Stefanie

    2018-07-15

    Maintaining biotic capacity is of key importance with regard to global food and biomass provision. One reason for productivity loss is soil compaction. In this paper, we use a statistical empirical model to assess long-term yield losses through soil compaction in a regionalized manner, with global coverage and for different agricultural production systems. To facilitate the application of the model, we provide an extensive dataset including crop production data (with 81 crops and corresponding production systems), related machinery application, as well as regionalized soil texture and soil moisture data. Yield loss is modeled for different levels of soil depth (0-25cm, 25-40cm and >40cm depth). This is of particular relevance since compaction in topsoil is classified as reversible in the short term (approximately four years), while recovery of subsoil layers takes much longer. We derive characterization factors quantifying the future average annual yield loss as a fraction of the current yield for 100years and applicable in Life Cycle Assessment studies of agricultural production. The results show that crops requiring enhanced machinery inputs, such as potatoes, have a major influence on soil compaction and yield losses, while differences between mechanized production systems (organic and integrated production) are small. The spatial variations of soil moisture and clay content are reflected in the results showing global hotspot regions especially susceptible to soil compaction, e.g. the South of Brazil, the Caribbean Islands, Central Africa, and the Maharashtra district of India. The impacts of soil compaction can be substantial, with highest annual yield losses in the range of 0.5% (95% percentile) due to one year of potato production (cumulated over 100y this corresponds to a one-time loss of 50% of the present yield). These modeling results demonstrate the necessity for including soil compaction effects in Life Cycle Impact Assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Mapping intra-field yield variation using high resolution satellite imagery to integrate bioenergy and environmental stewardship in an agricultural watershed

    DOE PAGES

    Hamada, Yuki; Ssegane, Herbert; Negri, Maria Cristina

    2015-07-31

    Biofuels are important alternatives for meeting our future energy needs. Successful bioenergy crop production requires maintaining environmental sustainability and minimum impacts on current net annual food, feed, and fiber production. The objectives of this study were to: (1) determine under-productive areas within an agricultural field in a watershed using a single date; high resolution remote sensing and (2) examine impacts of growing bioenergy crops in the under-productive areas using hydrologic modeling in order to facilitate sustainable landscape design. Normalized difference indices (NDIs) were computed based on the ratio of all possible two-band combinations using the RapidEye and the National Agriculturalmore » Imagery Program images collected in summer 2011. A multiple regression analysis was performed using 10 NDIs and five RapidEye spectral bands. The regression analysis suggested that the red and near infrared bands and NDI using red-edge and near infrared that is known as the red-edge normalized difference vegetation index (RENDVI) had the highest correlation (R 2 = 0.524) with the reference yield. Although predictive yield map showed striking similarity to the reference yield map, the model had modest correlation; thus, further research is needed to improve predictive capability for absolute yields. Forecasted impact using the Soil and Water Assessment Tool model of growing switchgrass ( Panicum virgatum) on under-productive areas based on corn yield thresholds of 3.1, 4.7, and 6.3 Mg·ha -1 showed reduction of tile NO 3-N and sediment exports by 15.9%–25.9% and 25%–39%, respectively. Corresponding reductions in water yields ranged from 0.9% to 2.5%. While further research is warranted, the study demonstrated the integration of remote sensing and hydrologic modeling to quantify the multifunctional value of projected future landscape patterns in a context of sustainable bioenergy crop production.« less

  8. Mapping intra-field yield variation using high resolution satellite imagery to integrate bioenergy and environmental stewardship in an agricultural watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; Ssegane, Herbert; Negri, Maria Cristina

    Biofuels are important alternatives for meeting our future energy needs. Successful bioenergy crop production requires maintaining environmental sustainability and minimum impacts on current net annual food, feed, and fiber production. The objectives of this study were to: (1) determine under-productive areas within an agricultural field in a watershed using a single date; high resolution remote sensing and (2) examine impacts of growing bioenergy crops in the under-productive areas using hydrologic modeling in order to facilitate sustainable landscape design. Normalized difference indices (NDIs) were computed based on the ratio of all possible two-band combinations using the RapidEye and the National Agriculturalmore » Imagery Program images collected in summer 2011. A multiple regression analysis was performed using 10 NDIs and five RapidEye spectral bands. The regression analysis suggested that the red and near infrared bands and NDI using red-edge and near infrared that is known as the red-edge normalized difference vegetation index (RENDVI) had the highest correlation (R 2 = 0.524) with the reference yield. Although predictive yield map showed striking similarity to the reference yield map, the model had modest correlation; thus, further research is needed to improve predictive capability for absolute yields. Forecasted impact using the Soil and Water Assessment Tool model of growing switchgrass ( Panicum virgatum) on under-productive areas based on corn yield thresholds of 3.1, 4.7, and 6.3 Mg·ha -1 showed reduction of tile NO 3-N and sediment exports by 15.9%–25.9% and 25%–39%, respectively. Corresponding reductions in water yields ranged from 0.9% to 2.5%. While further research is warranted, the study demonstrated the integration of remote sensing and hydrologic modeling to quantify the multifunctional value of projected future landscape patterns in a context of sustainable bioenergy crop production.« less

  9. Impacts of extreme heat and drought on crop yields in China: an assessment by using the DLEM-AG2 model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yang, J.; Pan, S.; Tian, H.

    2016-12-01

    China is not only one of the major agricultural production countries with the largest population in the world, but it is also the most susceptible to climate change and extreme events. Much concern has been raised about how extreme climate has affected crop yield, which is crucial for China's food supply security. However, the quantitative assessment of extreme heat and drought impacts on crop yield in China has rarely been investigated. By using the Dynamic Land Ecosystem Model (DLEM-AG2), a highly integrated process-based ecosystem model with crop-specific simulation, here we quantified spatial and temporal patterns of extreme climatic heat and drought stress and their impacts on the yields of major food crops (rice, wheat, maize, and soybean) across China during 1981-2015, and further investigated the underlying mechanisms. Simulated results showed that extreme heat and drought stress significantly reduced national cereal production and increased the yield gaps between potential yield and rain-fed yield. The drought stress was the primary factor to reduce crop yields in the semi-arid and arid regions, and extreme heat stress slightly aggravated the yield loss. The yield gap between potential yield and rain-fed yield was larger at locations with lower precipitation. Our results suggest that a large exploitable yield gap in response to extreme climatic heat-drought stress offers an opportunity to increase productivity in China by optimizing agronomic practices, such as irrigation, fertilizer use, sowing density, and sowing date.

  10. Crop yield response to increasing biochar rates

    USDA-ARS?s Scientific Manuscript database

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  11. Combining satellite remote sensing and surveys to understand persistent yield variation--- a case study in North China Plain

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Lobell, D. B.; Chen, X.

    2015-12-01

    A large gap between maize yields on average farmers' fields and the highest yields achieved by either experiment or farmers is typical throughout the developing world, including in the North China Plain (NCP). This maize yield gap as identified by previous studies indicates large opportunities for raising yield by improving agronomy. Quzhou county is typical of the winter-wheat summer-maize system in NCP where the average plot size is as small as 0.25 hectares. To analyze this cropping system amidst the challenge of substantial heterogeneity, we identified fields that were either persistently higher or lower yielding according to the remote sensing yield estimates, and then conducted detailed field surveys. We found irrigation facility to be a major constraint to yield both in terms of irrigation water quality and farmers' access to wells. In total, improving the access to unsalty water would be associated with a 0.32t/ha (4.2%) increase in multi-year average yield. In addition, farmers' method of choosing cultivar, which likely relates to their overall knowledge level, significantly explained yield variation. In particular, those choosing cultivars according to technician advice, personal experiences and high yielding neighbors' advice had on average higher yield than farmers that either followed seed sellers' advice or collectively purchased seeds. Overall, the study presents a generalizable methodology of assessing yield gap as well as its persistent factors using a combination of satellite and survey data.

  12. From Observation to Information: Data-Driven Understanding of on Farm Yield Variation

    PubMed Central

    Jiménez, Daniel; Dorado, Hugo; Cock, James; Prager, Steven D.; Delerce, Sylvain; Grillon, Alexandre; Andrade Bejarano, Mercedes; Benavides, Hector; Jarvis, Andy

    2016-01-01

    Agriculture research uses “recommendation domains” to develop and transfer crop management practices adapted to specific contexts. The scale of recommendation domains is large when compared to individual production sites and often encompasses less environmental variation than farmers manage. Farmers constantly observe crop response to management practices at a field scale. These observations are of little use for other farms if the site and the weather are not described. The value of information obtained from farmers’ experiences and controlled experiments is enhanced when the circumstances under which it was generated are characterized within the conceptual framework of a recommendation domain, this latter defined by Non-Controllable Factors (NCFs). Controllable Factors (CFs) refer to those which farmers manage. Using a combination of expert guidance and a multi-stage analytic process, we evaluated the interplay of CFs and NCFs on plantain productivity in farmers’ fields. Data were obtained from multiple sources, including farmers. Experts identified candidate variables likely to influence yields. The influence of the candidate variables on yields was tested through conditional forests analysis. Factor analysis then clustered harvests produced under similar NCFs, into Homologous Events (HEs). The relationship between NCFs, CFs and productivity in intercropped plantain were analyzed with mixed models. Inclusion of HEs increased the explanatory power of models. Low median yields in monocropping coupled with the occasional high yields within most HEs indicated that most of these farmers were not using practices that exploited the yield potential of those HEs. Varieties grown by farmers were associated with particular HEs. This indicates that farmers do adapt their management to the particular conditions of their HEs. Our observations confirm that the definition of HEs as recommendation domains at a small-scale is valid, and that the effectiveness of distinct management practices for specific micro-recommendation domains can be identified with the methodologies developed. PMID:26930552

  13. Assessing the impact of climate variability on cropping patterns in Kenya

    NASA Astrophysics Data System (ADS)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2017-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.

  14. Crop Model Improvement Reduces the Uncertainty of the Response to Temperature of Multi-Model Ensembles

    NASA Technical Reports Server (NTRS)

    Maiorano, Andrea; Martre, Pierre; Asseng, Senthold; Ewert, Frank; Mueller, Christoph; Roetter, Reimund P.; Ruane, Alex C.; Semenov, Mikhail A.; Wallach, Daniel; Wang, Enli

    2016-01-01

    To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT worldwide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures greater than 24 C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.

  15. Tuber yield and quality characteristics of potatoes for off-season crops in a Mediterranean environment.

    PubMed

    Ierna, Anita

    2010-01-15

    There is little research on evaluating the compatibility of potatoes for double cropping in southern Italy. The aim of this investigation was to assess tuber yield and some qualitative traits of tubers such as skin colour, tuber dry matter content and tuber nitrate content, both in winter-spring and in summer-autumn crops, as influenced by genotype and harvest time. Yield, skin colour and dry matter content of tubers were higher in the winter-spring crop than in the summer-autumn crop, attributable to the advantageous lag time in spring between solar radiation and temperatures and the disadvantageous lag in autumn. Spunta and Arinda performed well within each crop season, whereas Ninfa showed an important yield loss in autumn. In both off-season crops, delaying tuber harvest until leaf senescence increased yield and improved quality attributes such as tuber dry matter content and skin colour, whereas nitrate contents significantly decreased in the winter-spring crop and increased in the summer-autumn crop. Ninfa showed less tendency than Arinda and Spunta to accumulate nitrate in tubers in both off-season crops. It might be advantageous to examine in further research which mechanisms sustain compatibility to the autumn and assess other quality characteristics for the fresh market in the contrasting climatic conditions of the two off-season crops. Copyright (c) 2009 Society of Chemical Industry.

  16. Wildlife-friendly farming increases crop yield: evidence for ecological intensification

    PubMed Central

    Pywell, Richard F.; Heard, Matthew S.; Woodcock, Ben A.; Hinsley, Shelley; Ridding, Lucy; Nowakowski, Marek; Bullock, James M.

    2015-01-01

    Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50–60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained—and, indeed, enhanced for some crops—despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields. PMID:26423846

  17. Nitrogen Recycling and Flowering Time in Perennial Bioenergy Crops

    PubMed Central

    Schwartz, Christopher; Amasino, Richard

    2013-01-01

    Perennials have a number of traits important for profitability and sustainability of a biofuel crop. Perennialism is generally defined as the ability to grow and reproduce in multiple years. In temperate climates, many perennial plants enter dormancy during winter and recycle nutrients, such as nitrogen, to below ground structures for the next growing season. Nitrogen is expensive to produce and application of nitrogen increases the potent greenhouse gas NOx. Perennial bioenergy crops have been evaluated for biomass yields with nitrogen fertilization, location, year, and genotype as variables. Flowering time and dormancy are closely related to the N recycling program. Substantial variation for flowering time and dormancy has been identified in the switchgrass (Panicum virgatum L.) species, which provides a source to identify the genetic components of N recycling, and for use in breeding programs. Some studies have addressed recycling specifically, but flowering time and developmental differences were largely ignored, complicating interpretation of the results. Future studies on recycling need to appreciate plant developmental stage to allow comparison between experiments. A perennial/annual model(s) and more environmentally controlled experiments would be useful to determine the genetic components of nitrogen recycling. Increasing biomass yield per unit of nitrogen by maximizing recycling might mean the difference for profitability of a biofuel crop and has the added benefit of minimizing negative environmental effects from agriculture. PMID:23626592

  18. 7 CFR 400.651 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... unadjusted transitional yields and dividing the sum by the number of yields contained in the database, which will always contain at least four yields. The database may contain up to 10 consecutive crop years of... catastrophic risk protection. Crop of economic significance. A crop that has either contributed in the previous...

  19. 7 CFR 400.651 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... unadjusted transitional yields and dividing the sum by the number of yields contained in the database, which will always contain at least four yields. The database may contain up to 10 consecutive crop years of... catastrophic risk protection. Crop of economic significance. A crop that has either contributed in the previous...

  20. 7 CFR 400.651 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... unadjusted transitional yields and dividing the sum by the number of yields contained in the database, which will always contain at least four yields. The database may contain up to 10 consecutive crop years of... catastrophic risk protection. Crop of economic significance. A crop that has either contributed in the previous...

  1. 7 CFR 400.651 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... unadjusted transitional yields and dividing the sum by the number of yields contained in the database, which will always contain at least four yields. The database may contain up to 10 consecutive crop years of... catastrophic risk protection. Crop of economic significance. A crop that has either contributed in the previous...

  2. 7 CFR 400.651 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... unadjusted transitional yields and dividing the sum by the number of yields contained in the database, which will always contain at least four yields. The database may contain up to 10 consecutive crop years of... catastrophic risk protection. Crop of economic significance. A crop that has either contributed in the previous...

  3. What's holding us back? Raising the alfalfa yield bar

    USDA-ARS?s Scientific Manuscript database

    Measuring yield of commodity crops is easy – weight and moisture content are determined on delivery. Consequently, reports of production or yield for grain crops can be made reliably to the agencies that track crop production, such as the USDA-National Agricultural Statistics Service (NASS). The s...

  4. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops

    PubMed Central

    Grab, Heather; Blitzer, Eleanor J.; Danforth, Bryan; Loeb, Greg; Poveda, Katja

    2017-01-01

    One of the greatest challenges in sustainable agricultural production is managing ecosystem services, such as pollination, in ways that maximize crop yields. Most efforts to increase services by wild pollinators focus on management of natural habitats surrounding farms or non-crop habitats within farms. However, mass flowering crops create resource pulses that may be important determinants of pollinator dynamics. Mass bloom attracts pollinators and it is unclear how this affects the pollination and yields of other co-blooming crops. We investigated the effects of mass flowering apple on the pollinator community and yield of co-blooming strawberry on farms spanning a gradient in cover of apple orchards in the landscape. The effect of mass flowering apple on strawberry was dependent on the stage of apple bloom. During early and peak apple bloom, pollinator abundance and yield were reduced in landscapes with high cover of apple orchards. Following peak apple bloom, pollinator abundance was greater on farms with high apple cover and corresponded with increased yields on these farms. Spatial and temporal overlap between mass flowering and co-blooming crops alters the strength and direction of these dynamics and suggests that yields can be optimized by designing agricultural systems that avoid competition while maximizing facilitation. PMID:28345653

  5. Assimilation of remote sensing data into a process-based ecosystem model for monitoring changes of soil water content in croplands

    NASA Astrophysics Data System (ADS)

    Ju, Weimin; Gao, Ping; Wang, Jun; Li, Xianfeng; Chen, Shu

    2008-10-01

    Soil water content (SWC) is an important factor affecting photosynthesis, growth, and final yields of crops. The information on SWC is of importance for mitigating the reduction of crop yields caused by drought through proper agricultural water management. A variety of methodologies have been developed to estimate SWC at local and regional scales, including field sampling, remote sensing monitoring and model simulations. The reliability of regional SWC simulation depends largely on the accuracy of spatial input datasets, including vegetation parameters, soil and meteorological data. Remote sensing has been proved to be an effective technique for controlling uncertainties in vegetation parameters. In this study, the vegetation parameters (leaf area index and land cover type) derived from the Moderate Resolution Imaging Spectrometer (MODIS) were assimilated into a process-based ecosystem model BEPS for simulating the variations of SWC in croplands of Jiangsu province, China. Validation shows that the BEPS model is able to capture 81% and 83% of across-site variations of SWC at 10 and 20 cm depths during the period from September to December, 2006 when a serous autumn drought occurred. The simulated SWC responded the events of rainfall well at regional scale, demonstrating the usefulness of our methodology for SWC and practical agricultural water management at large scales.

  6. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  7. Land Use, Yield and Quality Changes of Minor Field Crops: Is There Superseded Potential to Be Reinvented in Northern Europe?

    PubMed

    Peltonen-Sainio, Pirjo; Jauhiainen, Lauri; Lehtonen, Heikki

    2016-01-01

    Diversification of agriculture was one of the strengthened aims of the greening payment of European Agricultural Policy (CAP) as diversification provides numerous ecosystems services compared to cereal-intensive crop rotations. This study focuses on current minor crops in Finland that have potential for expanded production and considers changes in their cropping areas, yield trends, breeding gains, roles in crop rotations and potential for improving resilience. Long-term datasets of Natural Resources Institute Finland and farmers' land use data from the Agency of Rural Affairs were used to analyze the above-mentioned trends and changes. The role of minor crops in rotations declined when early and late CAP periods were compared and that of cereal monocultures strengthened. Genetic yield potentials of minor crops have increased as also genetic improvements in quality traits, although some typical trade-offs with improved yields have also appeared. However, the gap between potential and attained yields has expanded, depending on the minor crop, as national yield trends have either stagnated or declined. When comparing genetic improvements of minor crops to those of the emerging major crop, spring wheat, breeding achievements in minor crops were lower. It was evident that the current agricultural policies in the prevailing market and the price environment have not encouraged cultivation of minor crops but further strengthened the role of cereal monocultures. We suggest optimization of agricultural land use, which is a core element of sustainable intensification, as a future means to couple long-term environmental sustainability with better success in economic profitability and social acceptability. This calls for development of effective policy instruments to support farmer's diversification actions.

  8. Land Use, Yield and Quality Changes of Minor Field Crops: Is There Superseded Potential to Be Reinvented in Northern Europe?

    PubMed Central

    Peltonen-Sainio, Pirjo; Jauhiainen, Lauri; Lehtonen, Heikki

    2016-01-01

    Diversification of agriculture was one of the strengthened aims of the greening payment of European Agricultural Policy (CAP) as diversification provides numerous ecosystems services compared to cereal-intensive crop rotations. This study focuses on current minor crops in Finland that have potential for expanded production and considers changes in their cropping areas, yield trends, breeding gains, roles in crop rotations and potential for improving resilience. Long-term datasets of Natural Resources Institute Finland and farmers’ land use data from the Agency of Rural Affairs were used to analyze the above-mentioned trends and changes. The role of minor crops in rotations declined when early and late CAP periods were compared and that of cereal monocultures strengthened. Genetic yield potentials of minor crops have increased as also genetic improvements in quality traits, although some typical trade-offs with improved yields have also appeared. However, the gap between potential and attained yields has expanded, depending on the minor crop, as national yield trends have either stagnated or declined. When comparing genetic improvements of minor crops to those of the emerging major crop, spring wheat, breeding achievements in minor crops were lower. It was evident that the current agricultural policies in the prevailing market and the price environment have not encouraged cultivation of minor crops but further strengthened the role of cereal monocultures. We suggest optimization of agricultural land use, which is a core element of sustainable intensification, as a future means to couple long-term environmental sustainability with better success in economic profitability and social acceptability. This calls for development of effective policy instruments to support farmer’s diversification actions. PMID:27870865

  9. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    NASA Astrophysics Data System (ADS)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  10. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.

    PubMed

    Mishra, Ashok; Singh, R; Raghuwanshi, N S; Chatterjee, C; Froebrich, Jochen

    2013-12-01

    Indian Ganga Basin (IGB), one of the most densely populated areas in the world, is facing a significant threat to food grain production, besides increased yield gap between actual and potential production, due to climate change. We have analyzed the spatial variability of climate change impacts on rice and wheat yields at three different locations representing the upper, middle and lower IGB. The DSSAT model is used to simulate the effects of climate variability and climate change on rice and wheat yields by analyzing: (i) spatial crop yield response to current climate, and (ii) impact of a changing climate as projected by two regional climate models, REMO and HadRM3, based on SRES A1B emission scenarios for the period 2011-2040. Results for current climate demonstrate a significant gap between actual and potential yield for upper, middle and lower IGB stations. The analysis based on RCM projections shows that during 2011-2040, the largest reduction in rice and wheat yields will occur in the upper IGB (reduction of potential rice and wheat yield respectively by 43.2% and 20.9% by REMO, and 24.8% and 17.2% by HadRM3). In the lower IGB, however, contrasting results are obtained, with HadRM3 based projections showing an increase in the potential rice and wheat yields, whereas, REMO based projections show decreased potential yields. We discuss the influence of agro-climatic factors; variation in temperature, length of maturity period and leaf area index which are responsible for modeled spatial variability in crop yield response within the IGB. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Influence of poultry litter and double cropping on soybean yield

    USDA-ARS?s Scientific Manuscript database

    Continuous cultivation of mono-cropping systems coupled with inorganic fertilizer consumption has led to a decline in soil fertility, negatively influencing crop yields. Poultry litter application and double cropping are two management practices that could be used with conservation tillage to increa...

  12. Soil total carbon and crop yield affected by crop rotation and cultural practice

    USDA-ARS?s Scientific Manuscript database

    Stacked crop rotation and improved cultural practice have been used to control pests, but their impact on soil organic C (SOC) and crop yield are lacking. We evaluated the effects of stacked vs. alternate-year rotations and cultural practices on SOC at the 0- to 125-cm depth and annualized crop yiel...

  13. Cura Annonae-Chemically Boosting Crop Yields Through Metabolic Feeding of a Plant Signaling Precursor.

    PubMed

    Vocadlo, David J

    2017-05-22

    The cream of the crop: With the world facing a projected shortfall of crops by 2050, new approaches are needed to boost crop yields. Metabolic feeding of plants with photocaged trehalose-6-phosphate (Tre6P) can increase levels of the signaling metabolite Tre6P in the plant. Reprogramming of cellular metabolism by Tre6P stimulates a program of plant growth and enhanced crop yields, while boosting starch content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Management of Lesion Nematodes and Potato Early Dying with Rotation Crops

    PubMed Central

    LaMondia, J.A.

    2006-01-01

    Soil-incorporated rotation/green manure crops were evaluated for management of potato early dying caused by Verticillium dahliae and Pratylenchus penetrans. After two years of rotation/green manure and a subsequent potato crop, P. penetrans numbers were less after ‘Saia’ oat/‘Polynema’ marigold, ‘Triple S’ sorghum-sudangrass, or ‘Garry’ oat than ‘Superior’ potato or ‘Humus’ rapeseed. The area under the disease progress curve (AUDPC) for early dying was lowest after Saia oat/marigold, and tuber yields were greater than continuous potato after all crops except sorghum-sudangrass. Saia oat/marigold crops resulted in the greatest tuber yields. After one year of rotation/green manure, a marigold crop increased tuber yields and reduced AUDPC and P. penetrans. In the second potato crop after a single year of rotation, plots previously planted to marigolds had reduced P. penetrans densities and AUDPC and increased tuber yield. Rapeseed supported more P. penetrans than potato, but had greater yields. After two years of rotation/green manure crops and a subsequent potato crop, continuous potato had the highest AUDPC and lowest tuber weight. Rotation with Saia oats (2 yr) and Rudbeckia hirta (1 yr) reduced P. penetrans and increased tuber yields. AUDPC was lowest after R. hirta. Two years of sorghum-sudangrass did not affect P. penetrans, tuber yield or AUDPC. These results demonstrate that P. penetrans may be reduced by one or two years of rotation to non-host or antagonistic plants such as Saia oat, Polynema marigold, or R. hirta and that nematode control may reduce the severity of potato early dying. PMID:19259461

  15. [Winter wheat yield gap between field blocks based on comparative performance analysis].

    PubMed

    Chen, Jian; Wang, Zhong-Yi; Li, Liang-Tao; Zhang, Ke-Feng; Yu, Zhen-Rong

    2008-09-01

    Based on a two-year household survey data, the yield gap of winter wheat in Quzhou County of Hebei Province, China in 2003-2004 was studied through comparative performance analysis (CPA). The results showed that there was a greater yield gap (from 4.2 to 7.9 t x hm(-2)) between field blocks, with a variation coefficient of 0.14. Through stepwise forward linear multiple regression, it was found that the yield model with 8 selected variables could explain 63% variability of winter wheat yield. Among the variables selected, soil salinity, soil fertility, and irrigation water quality were the most important limiting factors, accounting for 52% of the total yield gap. Crop variety was another important limiting factor, accounting for 14%; while planting date, fertilizer type, disease and pest, and water press accounted for 7%, 14%, 10%, and 3%, respectively. Therefore, besides soil and climate conditions, management practices occupied the majority of yield variability in Quzhou County, suggesting that the yield gap could be reduced significantly through optimum field management.

  16. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi

    2017-05-03

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  17. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  18. Statistical modeling of yield and variance instability in conventional and organic cropping systems

    USDA-ARS?s Scientific Manuscript database

    Cropping systems research was undertaken to address declining crop diversity and verify competitiveness of alternatives to the predominant conventional cropping system in the northern Corn Belt. To understand and capitalize on temporal yield variability within corn and soybean fields, we quantified ...

  19. Simulating canopy temperature for modelling heat stress in cereals

    USDA-ARS?s Scientific Manuscript database

    Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...

  20. Mapping Crop Yield and Sow Date Using High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Royal, K.

    2015-12-01

    Keitasha Royal, Meha Jain, Ph.D., David Lobell, Ph.D Mapping Crop Yield and Sow Date Using High Resolution ImageryThe use of satellite imagery in agriculture is becoming increasingly more significant and valuable. Due to the emergence of new satellites, such as Skybox, these satellites provide higher resolution imagery (e.g 1m) therefore improving the ability to map smallholder agriculture. For the smallholder farm dominated area of northern India, Skybox high-resolution satellite imagery can aid in understanding how to improve farm yields. In particular, we are interested in mapping winter wheat in India, as this region produces approximately 80% of the country's wheat crop, which is important given that wheat is a staple crop that provides approximately 20% of household calories. In northeast India, the combination of increased heat stress, limited irrigation access, and the difficulty for farmers to access advanced farming technologies results in farmers only producing about 50% of their potential crop yield. The use of satellite imagery can aid in understanding wheat yields through time and help identify ways to increase crop yields in the wheat belt of India. To translate Skybox satellite data into meaningful information about wheat fields, we examine vegetation indices, such as the normalized difference vegetation index (NDVI), to measure the "greenness" of plants to help determine the health of the crops. We test our ability to predict crop characteristics, like sow date and yield, using vegetation indices of 59 fields for which we have field data in Bihar, India.

  1. Tropical rotation crops influence nematode densities and vegetable yields.

    PubMed

    McSorley, R; Dickson, D W; de Brito, J A; Hochmuth, R C

    1994-09-01

    The effects of eight summer rotation crops on nematode densities and yields of subsequent spring vegetable crops were determined in field studies conducted in north Florida from 1991 to 1993. The crop sequence was as follows: (i) rotation crops during summer 1991; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) 'Lemondrop L' squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) 'Classic' eggplant (Solanum melongena) during spring 1993. The eight summer crop rotation treatments were as follows: 'Hale' castor (Ricinus communis), velvetbean (Mucuna deeringiana), sesame (Sesamum indicum), American jointvetch (Aeschynomene americana), weed fallow, 'SX- 17' sorghum-sudangrass (Sorghum bicolor x S. sudanense), 'Kirby' soybean (Glycine max), and 'Clemson Spineless' okra (Hibiscus esculentus) as a control. Rotations with castor, velvetbean, American jointvetch, and sorghum-sudangrass were most effective in maintaining the lowest population densities of Meloidogyne spp. (a mixture of M. incognita race 1 and M. arenaria race 1), but Paratrichodorus minor built up in the sorghum-sudangrass rotation. Yield of squash was lower (P

  2. Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain

    NASA Astrophysics Data System (ADS)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2010-08-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  3. Comparative analysis of maize (Zea mays) crop performance: natural variation, incremental improvements and economic impacts.

    PubMed

    Leibman, Mark; Shryock, Jereme J; Clements, Michael J; Hall, Michael A; Loida, Paul J; McClerren, Amanda L; McKiness, Zoe P; Phillips, Jonathan R; Rice, Elena A; Stark, Steven B

    2014-09-01

    Grain yield from maize hybrids continues to improve through advances in breeding and biotechnology. Despite genetic improvements to hybrid maize, grain yield from distinct maize hybrids is expected to vary across growing locations due to numerous environmental factors. In this study, we examine across-location variation in grain yield among maize hybrids in three case studies. The three case studies examine hybrid improvement through breeding, introduction of an insect protection trait or introduction of a transcription factor trait associated with increased yield. In all cases, grain yield from each hybrid population had a Gaussian distribution. Across-location distributions of grain yield from each hybrid partially overlapped. The hybrid with a higher mean grain yield typically outperformed its comparator at most, but not all, of the growing locations (a 'win rate'). These results suggest that a broad set of environmental factors similarly impacts grain yields from both conventional- and biotechnology-derived maize hybrids and that grain yields among two or more hybrids should be compared with consideration given to both mean yield performance and the frequency of locations at which each hybrid 'wins' against its comparators. From an economic standpoint, growers recognize the value of genetically improved maize hybrids that outperform comparators in the majority of locations. Grower adoption of improved maize hybrids drives increases in average U.S. maize grain yields and contributes significant value to the economy. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Measurement of physiological traits of paddy rice in temperature gradient chamber using Normalized Difference Vegetation Index and Photochemical Reflectance Index

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Oh, D.; Cho, J.

    2017-12-01

    Global warming has been affecting the phenological and physiological conditions of crop plants due to heat stress. Thus, the scientific understanding of not only crop-yield change, but also growth progress during high temperature condition is necessary. In this study, growth response and yield of paddy rice depending on air temperature (Ta) has been studied in a Temperature Gradient Chamber (TGC) that is composed of higher Ta than actual Ta (ambient temperature). The results on imitating experiment of global warming provided the reduced production of crop by heat stress. Therefore, it is important to quickly detect the condition of a plant in order to minimize damage to heat stress on global warming. Phenological and physiological changes depending on Ta was detected using optical spectroscopy sensors because remote sensing is useful and efficient technology to monitor quickly and continually. Two vegetation indices, Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI), were applied to monitor paddy rice growth using hyperspectral and multispectral radiometer. Ta in TGC was gradually set from actual Ta + 0 ° to actual Ta + 3 °. The variations of NDVI and PRI were different during rice growth period, and also these patterns were changed depending on Ta condition. NDVI and PRI under +3 ° condition increase faster than ambient temperature. After heading stage, the values of NDVI and PRI were dropped. However, the NDVI and PRI of rice under heat stress were relatively slowly decreased. In addition, we found that the yield of rice decreased in the case of delayed drop patterns of NDVI and PRI after heading stage. Our results will be useful to understand crop plant conditions using vegetation index under global warming situations.

  5. Interference and economic threshold level of little seed canary grass in wheat under different sowing times.

    PubMed

    Hussain, Saddam; Khaliq, Abdul; Matloob, Amar; Fahad, Shah; Tanveer, Asif

    2015-01-01

    Little seed canary grass (LCG) is a pernicious weed of wheat crop causing enormous yield losses. Information on the interference and economic threshold (ET) level of LCG is of prime significance to rationalize the use of herbicide for its effective management in wheat fields. The present study was conducted to quantify interference and ET density of LCG in mid-sown (20 November) and late-sown (10 December) wheat. Experiment was triplicated in randomized split-plot design with sowing dates as the main plots and LCG densities (10, 20, 30, and 40 plants m(-2)) as the subplots. Plots with two natural infestations of weeds including and excluding LCG were maintained for comparing its interference in pure stands with designated densities. A season-long weed-free treatment was also run. Results indicated that composite stand of weeds, including LCG, and density of 40 LCG plants m(-2) were more competitive with wheat, especially when crop was sown late in season. Maximum weed dry biomass was attained by composite stand of weeds including LCG followed by 40 LCG plants m(-2) under both sowing dates. Significant variations in wheat growth and yield were observed under the influence of different LCG densities as well as sowing dates. Presence of 40 LCG plants m(-2) reduced wheat yield by 28 and 34% in mid- and late-sown wheat crop, respectively. These losses were much greater than those for infestation of all weeds, excluding LCG. Linear regression model was effective in simulating wheat yield losses over a wide range of LCG densities, and the regression equations showed good fit to observed data. The ET levels of LCG were 6-7 and 2.2-3.3 plants m(-2) in mid- and late-sown wheat crop, respectively. Herbicide should be applied in cases when LCG density exceeds these levels under respective sowing dates.

  6. Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV).

    PubMed

    Zhang, Jinshui; Basso, Bruno; Price, Richard F; Putman, Gregory; Shuai, Guanyuan

    2018-01-01

    Distance between rows and plants are essential parameters that affect the final grain yield in row crops. This paper presents the results of research intended to develop a novel method to quantify the distance between maize plants at field scale using an Unmanned Aerial Vehicle (UAV). Using this method, we can recognize maize plants as objects and calculate the distance between plants. We initially developed our method by training an algorithm in an indoor facility with plastic corn plants. Then, the method was scaled up and tested in a farmer's field with maize plant spacing that exhibited natural variation. The results of this study demonstrate that it is possible to precisely quantify the distance between maize plants. We found that accuracy of the measurement of the distance between maize plants depended on the height above ground level at which UAV imagery was taken. This study provides an innovative approach to quantify plant-to-plant variability and, thereby final crop yield estimates.

  7. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and maximum temperature), beyond which the yields were negatively affected. These results are now being used for further regional-scale yield analysis as the aforementioned framework is adaptable to multiple geographic regions and crop types.

  8. Land Husbandry: Biochar application to reduce land degradation and erosion on cassava production

    NASA Astrophysics Data System (ADS)

    Yuniwati, E. D.

    2017-12-01

    This field experiment was carried out to examine the effect of increasing crop yield on land degradation and erosion in cassava-based cropping systems. The experiment was also aimed at showing that with proper crop management, the planting of cassava does not result in land degradation, and therefore, a sustainable production system can be obtained. The experiment was done in a farmer's fields in Batu, about 15 km south east of Malang, East Java, Indonesia. The soils are Alfisols with a surface slope of about 8%. There were 8 experimental treatments with two replications. The experiment results show that biochar applications reduce of soil erosion rate of the cassava field were not necessarily higher than those of maize in terms of crop yield and crop management. At low-to-medium yield, also observed the nutrient uptake of cassava was lower than that of maize. At high yield, only the K uptake of cassava was higher than that of maize, whereas the N and P uptake was more or less similar. Soil erosion on the cassava field was significantly higher than that on the maize field; however, this only occurred when there was no suitable crop management. Simple crop managements, such as ridging, biochar application, or manure application could significantly reduce soil erosion. The results also revealed that proper management could prevent land degradation and increase crop yield. In turn, the increase in crop yield could decrease soil erosion and plant nutrient depletion.

  9. Effects of fragmentation, supplementation and the addition of phase II compost to 2nd break compost on mushroom (Agaricus bisporus) yield.

    PubMed

    Royse, Daniel J

    2010-01-01

    Double-cropping offers growers an opportunity to increase production efficiency while reducing costs. We evaluated degree of fragmentation, supplementation, and addition of phase II compost (PIIC) to 2nd break compost (2BkC) on mushroom yield and biological efficiency (BE%). One crop was extended as a triple crop in which we evaluated effect of compost type, and addition of phase II compost and supplement. All crops involved removing the casing layer after 2nd break and then using 2BkC for the various treatments. Simple fragmentation of the compost increased mushroom yield by 30% compared to non-fragmented compost. Addition of a commercial supplement to fragmented compost increased mushroom yield by 53-56% over non-supplemented, fragmented 2BkC. Fragmented, supplemented 2BkC resulted in a 99% and 108% yield increase over the non-fragmented control depending on degree of fragmentation (3x, 1x, respectively). A 3rd crop of mushrooms was produced from 2BkC, but yields were about one-half that of the 1st and 2nd crops. Double-cropping (and even triple-cropping) offers growers an opportunity to increase bio-efficiency, reduce production costs, and increase profitability. The cost of producing Agaricus bisporus continues to rise due to increasing expenses including materials, energy, and labor. Optimizing production practices, through double- or triple-cropping, could help growers become more efficient and competitive, and ensure the availability of mushrooms for consumers.

  10. Wheat yield and yield stability of eight dryland crop rotations

    USDA-ARS?s Scientific Manuscript database

    The winter wheat (Triticum aestivum L.)-fallow (WF) dryland production system employed in the Central Great Plains has evolved in the past 40 years to include a diversity of other crops, with a reduction in fallow frequency. Wheat remains the base crop for essentially all cropping systems. Decisions...

  11. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    PubMed Central

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; Lovell, John T.; Moyers, Brook T.; Baraoidan, Marietta; Naredo, Maria Elizabeth B.; McNally, Kenneth L.; Poland, Jesse; Bush, Daniel R.; Leung, Hei; Leach, Jan E.; McKay, John K.

    2017-01-01

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution. PMID:28220807

  12. Effects of Management Practices on Meloidogyne incognita and Snap Bean Yield.

    PubMed

    Smittle, D A; Johnson, A W

    1982-01-01

    Phenamiphos applied at 6.7 kg ai/ha through a solid set or a center pivot irrigation system with 28 mm of water effectively controlled root-knot nematodes, Meloidogyne incognita, and resulted in greater snap bean growth and yields irrespective of growing season, tillage method, or cover crop system. The percentage yield increases attributed to this method of M. incognita control over nontreated controls were 45% in the spring crop, and 90% and 409% in the fall crops following winter rye and fallow, respectively. Root galling was not affected by tillage systems or cover crop, but disk tillage resulted in over 50% reduction in bean yield compared with yields from the subsoil-bed tillage system.

  13. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    PubMed

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This review identifies gaps in our understanding of yield decline, particularly with respect to the complex interactions occurring between the different components of agro-ecosystems, which may well influence food security in the 21(st) Century. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.

  14. Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.

    NASA Technical Reports Server (NTRS)

    Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; hide

    2017-01-01

    Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.

  15. Crop insurance evaluation in response to extreme events

    NASA Astrophysics Data System (ADS)

    Moriondo, Marco; Ferrise, Roberto; Bindi, Marco

    2013-04-01

    Crop yield insurance has been indicated as a tool to manage the uncertainties of crop yields (Sherrick et al., 2004) but the changes in crop yield variability as expected in the near future should be carefully considered for a better quantitative assessment of farmer's revenue risk and insurance values in a climatic change regime (Moriondo et al., 2011). Under this point of view, mechanistic crop growth models coupled to the output of General/Regional Circulation Models (GCMs, RCMs) offer a valuable tool to evaluate crop responses to climatic change and this approach has been extensively used to describe crop yield distribution in response to climatic change considering changes in both mean climate and variability. In this work, we studied the effect of a warmer climate on crop yield distribution of durum wheat (Triticum turgidum L. subsp durum) in order to assess the economic significance of climatic change in a risk decision context. Specifically, the outputs of 6 RCMs (Tmin, Tmax, Rainfall, Global Radiation) (van der Linden and Mitchell 2009) have been statistically downscaled by a stochastic weather generator over eight sites across the Mediterranean basin and used to feed the crop growth model Sirius Quality. Three time slices were considered i) the present period PP (average of the period 1975-1990, [CO2]=350 ppm), 2020 (average of the period 2010-2030, SRES scenario A1b, [CO2]=415 ppm) and 2040 (average of the period 2030-2050, SRES scenario A1b, [CO2]=480 ppm). The effect of extreme climate events (i.e. heat stress at anthesis stage) was also considered. The outputs of these simulations were used to estimate the expected payout per hectare from insurance triggered when yields fall below a specific threshold defined as "the insured yield". For each site, the threshold was calculated as a fraction (70%) of the median of yield distribution under PP that represents the percentage of median yield above which indemnity payments are triggered. The results indicated that when the effect of extreme events was not considered, climate change had a low or no impact on crop yield distribution in 2020 and 2040. This resulted into an expected payout close to what observed in the present period. Conversely, the simulation of the effect of extreme events highly affected the PDFs by reducing the expected yield. This highlights that insured yield in future projections may be overestimated when not considering the impact of extremes, leading to distortions in the risk management of crop insurance companies. References Moriondo M, Giannakopoulos C, Bindi M (2011) Climate ch'ange impact assessment: the role of climate extremes in crop yield simulation. Clim Change 104:679-701 Sherrick BJ, Zanini FC, Schnitkey GD, Irwin SH (2004) Crop Insurance Valuation under Alternative Yield Distributions. American Journal of Agricultural Economics, 86:406-419. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK. 160 pp

  16. Improving Snow Process Modeling with Satellite-Based Estimation of Near-Surface-Air-Temperature Lapse Rate

    NASA Astrophysics Data System (ADS)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2016-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.

  17. Patterns of Cereal Yield Growth across China from 1980 to 2010 and Their Implications for Food Production and Food Security

    PubMed Central

    Li, Xiaoyun; Liu, Nianjie; You, Liangzhi; Ke, Xinli; Liu, Haijun; Huang, Malan; Waddington, Stephen R.

    2016-01-01

    After a remarkable 86% increase in cereal production from 1980 to 2005, recent crop yield growth in China has been slow. County level crop production data between 1980 and 2010 from eastern and middle China were used to analyze spatial and temporal patterns of rice, wheat and maize yield in five major farming systems that include around 90% of China's cereal production. Site-specific yield trends were assessed in areas where those crops have experienced increasing yield or where yields have stagnated or declined. We find that rice yields have continued to increase on over 12.3 million hectares (m. ha) or 41.8% of the rice area in China between 1980 and 2010. However, yields stagnated on 50% of the rice area (around 14.7 m. ha) over this time period. Wheat yields increased on 13.8 m. ha (58.2% of the total harvest area), but stagnated on around 3.8 m. ha (15.8% of the harvest area). Yields increased on a smaller proportion of the maize area (17.7% of harvest area, 5.3 m. ha), while yields have stagnated on over 54% (16.3 m. ha). Many parts of the lowland rice and upland intensive sub-tropical farming systems were more prone to stagnation with rice, the upland intensive sub-tropical system with wheat, and maize in the temperate mixed system. Large areas where wheat yield continues to rise were found in the lowland rice and temperate mixed systems. Land and water constraints, climate variability, and other environmental limitations undermine increased crop yield and agricultural productivity in these systems and threaten future food security. Technology and policy innovations must be implemented to promote crop yields and the sustainable use of agricultural resources to maintain food security in China. In many production regions it is possible to better match the crop with input resources to raise crop yields and benefits. Investments may be especially useful to intensify production in areas where yields continue to improve. For example, increased support to maize production in southern China, where yields are still rising, seems justified. PMID:27404110

  18. A network-based approach for semi-quantitative knowledge mining and its application to yield variability

    NASA Astrophysics Data System (ADS)

    Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph

    2016-12-01

    Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.

  19. Application of wheat yield model to United States and India. [Great Plains

    NASA Technical Reports Server (NTRS)

    Feyerherm, A. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The wheat yield model was applied to the major wheat-growing areas of the US and India. In the US Great Plains, estimates from the winter and spring wheat models agreed closely with USDA-SRS values in years with the lowest yields, but underestimated in years with the highest yields. Application to the Eastern Plains and Northwest indicated the importance of cultural factors, as well as meteorological ones in the model. It also demonstrated that the model could be used, in conjunction with USDA-SRRS estimates, to estimate yield losses due to factors not included in the model, particularly diseases and freezes. A fixed crop calendar for India was built from a limited amount of available plot data from that country. Application of the yield model gave measurable evidence that yield variation from state to state was due to different mixes of levels of meteorological and cultural factors.

  20. Developmental Pathways Are Blueprints for Designing Successful Crops

    PubMed Central

    Trevaskis, Ben

    2018-01-01

    Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene–gene or gene–environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted. PMID:29922318

  1. Developmental Pathways Are Blueprints for Designing Successful Crops.

    PubMed

    Trevaskis, Ben

    2018-01-01

    Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.

  2. The Impact of Changing Snowmelt Timing on Non-Irrigated Crop Yield in Idaho

    NASA Astrophysics Data System (ADS)

    Murray, E. M.; Cobourn, K.; Flores, A. N.; Pierce, J. L.; Kunkel, M. L.

    2013-12-01

    The impacts of climate change on water resources have implications for both agricultural production and grower welfare. Many mountainous regions in the western U.S. rely on snowmelt as the dominant surface water source, and in Idaho, reconstructions of spring snowmelt timing have demonstrated a trend toward earlier, more variable snowmelt dates within the past 20 years. This earlier date and increased variability in snowmelt timing have serious implications for agriculture, but there is considerable uncertainty about how agricultural impacts vary by region, crop-type, and practices like irrigation vs. dryland farming. Establishing the relationship between snowmelt timing and agricultural yield is important for understanding how changes in large-scale climatic indices (like snowmelt date) may be associated with changes in agricultural yield. This is particularly important where local practitioner behavior is influenced by historically observed relationships between these climate indices and yield. In addition, a better understanding of the influence of changes in snowmelt on non-irrigated crop yield may be extrapolated to better understand how climate change may alter biomass production in non-managed ecosystems. To investigate the impact of snowmelt date on non-irrigated crop yield, we developed a multiple linear regression model to predict historical wheat and barley yield in several Idaho counties as a function of snowmelt date, climate variables (precipitation and growing degree-days), and spatial differences between counties. The relationship between snowmelt timing and non-irrigated crop yield at the county level is strong in many of the models, but differs in magnitude and direction for the two different crops. Results show interesting spatial patterns of variability in the correlation between snowmelt timing and crop yield. In four southern counties that border the Snake River Plain and one county bordering Oregon, non-irrigated wheat and/or barley yield are significantly lower in years with early snowmelt timing, on average (P < 0.10). In contrast, in northern Idaho, barley yield is significantly higher in years with early snowmelt timing. Overall, this statistical modeling exercise indicates that the trend toward earlier snowmelt date may positively impact non-irrigated crop yield in some regions of Idaho, while negatively impacting yield in other areas. Additional research is necessary to identify spatial controls on the variable relationship between snowmelt timing and yield. Regional variability in the response of crops to changes in snowmelt timing may indicate that external factors (e.g. higher amounts of summer rain in northern vs. southern Idaho) may play an important role in crop yield. This study indicates that targeted regional analysis is necessary to determine the influence of climate change on agriculture, as local variability can cause the same forcing to produce opposite results.

  3. Crop response to deep tillage - a meta-analysis

    NASA Astrophysics Data System (ADS)

    Schneider, Florian; Don, Axel; Hennings, Inga; Schmittmann, Oliver; Seidel, Sabine J.

    2017-04-01

    Subsoil, i.e. the soil layer below the topsoil, stores tremendous stocks of nutrients and can keep water even under drought conditions. Deep tillage may be a method to enhance the plant-availability of subsoil resources. However, in field trials, deep tillage effects on crop yields were inconsistent. Therefore, we conducted a meta-analysis of crop yield response to subsoiling, deep ploughing and deep mixing of soil profiles. Our search resulted in 1530 yield comparisons following deep and conventional control tillage on 67 experimental cropping sites. The vast majority of the data derived from temperate latitudes, from trials conducted in the USA (679 observations) and Germany (630 observations). On average, crop yield response to deep tillage was slightly positive (6% increase). However, individual deep tillage effects were highly scattered including about 40% yield depressions after deep tillage. Deep tillage on soils with root restrictive layers increased crop yields about 20%, while soils containing >70% silt increased the risk of yield depressions following deep tillage. Generally, deep tillage effects increased with drought intensity indicating deep tillage as climate adaptation measure at certain sites. Our results suggest that deep tillage can facilitate the plant-availability of subsoil nutrients, which increases crop yields if (i) nutrients in the topsoil are growth limiting, and (ii) deep tillage does not come at the cost of impairing topsoil fertility. On sites with root restrictive soil layers, deep tillage can be an effective measure to mitigate drought stress and improve the resilience of crops. However, deep tillage should only be performed on soils with a stable structure, i.e. <70% silt content. We will discuss the contribution of deep tillage options to enhance the sustainability of agricultural production by facilitating the uptake of nutrients and water from the subsoil.

  4. Possible changes to arable crop yields by 2050

    PubMed Central

    Jaggard, Keith W.; Qi, Aiming; Ober, Eric S.

    2010-01-01

    By 2050, the world population is likely to be 9.1 billion, the CO2 concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2°C. In these conditions, what contribution can increased crop yield make to feeding the world? CO2 enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO2-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations. PMID:20713388

  5. Possible changes to arable crop yields by 2050.

    PubMed

    Jaggard, Keith W; Qi, Aiming; Ober, Eric S

    2010-09-27

    By 2050, the world population is likely to be 9.1 billion, the CO(2) concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2 degrees C. In these conditions, what contribution can increased crop yield make to feeding the world? CO(2) enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO(2)-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations.

  6. Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes

    NASA Astrophysics Data System (ADS)

    Zipper, Samuel C.; Qiu, Jiangxiao; Kucharik, Christopher J.

    2016-09-01

    Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.

  7. Effects of variety, cropping year, location and fertilizer application on nutritive value of durum wheat straw.

    PubMed

    Tolera, A; Tsegaye, B; Berg, T

    2008-04-01

    This study was carried out to assess the effects of variety, year, location and level of fertilizer application on chemical composition and in sacco dry matter (DM) degradability of durum wheat straw as well as to understand the relationship between straw quality and agronomic traits of the crop and to assess the possibilities of selecting wheat varieties that combine high grain yield with desirable straw quality. Two local (Arendeto and Tikur sinde) and two improved (Boohai and Gerardo) varieties of durum wheat (Triticum turgidum Desf.) were used in the experiment. The four varieties were grown at two locations (Akaki and Ejere) in the years 2001/2002 and 2002/2003 in 5 x 5 m plots in three replications. Diammonium phosphate and urea fertilizers were applied at four levels (0/0, 32/23, 41/23 and 64/46 kg/ha of nitrogen/phosphorus). Straw quality was assessed based on chemical composition and in sacco DM degradability. Correlation of straw quality with grain and straw yield and with other agronomic characteristics of the crop was determined. The potential utility index (a measure that integrates grain and digestible straw yield) was used for ranking of the varieties. The local varieties had higher crude protein (CP) and lower neutral detergent fibre contents and higher digestibility than the improved varieties. The cropping year and location had significant effect on CP content and degradability of the straw, which could be due to climatic variation. However, the fertilizer level did not have any significant effect on straw quality except that the CP content of the straw tended to increase with increasing level of fertilizer application. Based on the potential utility index the varieties ranked, in a decreasing order, as Tikur sinde > Arendeto > Gerardo > Boohai and the ranking was consistent across years and locations. Except the CP content, straw quality was not negatively correlated with grain and straw yield. This indicates that there is a possibility of selecting varieties of wheat that combine high grain and straw yield with desirable straw quality.

  8. Diversity pattern in Sesamum mutants selected for a semi-arid cropping system.

    PubMed

    Murty, B R; Oropeza, F

    1989-02-01

    Due to the complex requirements of moisture stress, substantial genetic diversity with a wide array of character combinations and effective simultaneous selection for several variables is necessary for improving the productivity and adaptation of a component crop in order for it to fit into a cropping system under semi-arid tropical conditions. Sesamum indicum L. is grown in Venezuela after rice/sorghum/or maize under such conditions. A mutation breeding program was undertaken using six locally adapted varieties to develop genotypes suitable for the above system. The diversity pattern for nine variables was assessed by multivariate analysis in 301 M4 progenies. Analysis of the characteristic roots and principal components in three methods of selection, i.e., M2 bulks (A), individual plant selection throughout (B), and selection in M3 for single variable (C), revealed differences in the pattern of variation between varieties, selection methods, and varieties x methods interactions. Method B was superior to the others and gave 17 of the 21 best M5 progenies. 'Piritu' and 'CF' varieties yielded the most productive progenies in M5 and M6. Diversity was large and selection was effective for such developmental traits as earliness and synchrony, combined with multiple disease resistance, which could be related to their importance by multivariate analyses. Considerable differences in the variety of character combinations among the high yielding. M5 progenies of 'CF' and 'Piritu' suggested possible further yield improvement. The superior response of 'Piritu' and 'CF' over other varieties in yield and adaptation was due to major changes in plant type and character associations. Multilocation testing of M5 generations revealed that the mutant progenies had a 40%-100% yield superiority over the parents; this was combined with earliness, synchrony, and multiple disease resistance, and was confirmed in the M6 generation grown on a commercial scale. This study showed that multivariate analysis is an effective tool for assessing diversity patterns, choice of appropriate variety, and selection methodology in order to make rapid progress in meeting the complex requirements of semi-arid cropping systems.

  9. What aspects of future rainfall changes matter for crop yields in West Africa?

    NASA Astrophysics Data System (ADS)

    Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.

    2015-10-01

    How rainfall arrives, in terms of its frequency, intensity, the timing and duration of rainy season, may have a large influence on rainfed agriculture. However, a thorough assessment of these effects is largely missing. This study combines a new synthetic rainfall model and two independently validated crop models (APSIM and SARRA-H) to assess sorghum yield response to possible shifts in seasonal rainfall characteristics in West Africa. We find that shifts in total rainfall amount primarily drive the rainfall-related crop yield change, with less relevance to intraseasonal rainfall features. However, dry regions (total annual rainfall below 500 mm/yr) have a high sensitivity to rainfall frequency and intensity, and more intense rainfall events have greater benefits for crop yield than more frequent rainfall. Delayed monsoon onset may negatively impact yields. Our study implies that future changes in seasonal rainfall characteristics should be considered in designing specific crop adaptations in West Africa.

  10. Aerobic Decomposition and Organic Amendments Effects on Grain Yield of Triple-Cropped Rice in the Mekong Delta, Vietnam

    USDA-ARS?s Scientific Manuscript database

    Soil aeration during decomposition of incorporated crop residues and application of organic amendments might help improve soil quality and rice yield for sustainable intensive rice production. A field experiment was conducted on triple-cropped rice during three consecutive crops with five treatments...

  11. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    PubMed

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P

  12. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Battisti, R.; Sentelhas, P. C.; Boote, K. J.

    2017-12-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha-1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.

  13. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Battisti, R.; Sentelhas, P. C.; Boote, K. J.

    2018-05-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha-1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.

  14. Climate Effects on Corn Yield in Missouri(.

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Buyanovsky, Gregory

    2003-11-01

    Understanding climate effects on crop yield has been a continuous endeavor aiming at improving farming technology and management strategy, minimizing negative climate effects, and maximizing positive climate effects on yield. Many studies have examined climate effects on corn yield in different regions of the United States. However, most of those studies used yield and climate records that were shorter than 10 years and were for different years and localities. Although results of those studies showed various influences of climate on corn yield, they could be time specific and have been difficult to use for deriving a comprehensive understanding of climate effects on corn yield. In this study, climate effects on corn yield in central Missouri are examined using unique long-term (1895 1998) datasets of both corn yield and climate. Major results show that the climate effects on corn yield can only be explained by within-season variations in rainfall and temperature and cannot be distinguished by average growing-season conditions. Moreover, the growing-season distributions of rainfall and temperature for high-yield years are characterized by less rainfall and warmer temperature in the planting period, a rapid increase in rainfall, and more rainfall and warmer temperatures during germination and emergence. More rainfall and cooler-than-average temperatures are key features in the anthesis and kernel-filling periods from June through August, followed by less rainfall and warmer temperatures during the September and early October ripening time. Opposite variations in rainfall and temperature in the growing season correspond to low yield. Potential applications of these results in understanding how climate change may affect corn yield in the region also are discussed.

  15. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  16. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain.

    PubMed

    Zhang, Yitao; Wang, Hongyuan; Lei, Qiuliang; Luo, Jiafa; Lindsey, Stuart; Zhang, Jizong; Zhai, Limei; Wu, Shuxia; Zhang, Jingsuo; Liu, Xiaoxia; Ren, Tianzhi; Liu, Hongbin

    2018-03-15

    Optimizing the nitrogen (N) application rate can increase crop yield while reducing the environmental risks. However, the optimal N rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. Taking the wheat-maize rotation cropping system on the North China Plain as a case study, we quantified the variation of N application rates when targeting constraints on yield, economic performance, N uptake and N utilization, by conducting field experiments between 2011 and 2013. Results showed that the optimal N application rate was highest when targeting N uptake (240kgha -1 for maize, and 326kgha -1 for wheat), followed by crop yield (208kgha -1 for maize, and 277kgha -1 for wheat) and economic income (191kgha -1 for maize, and 253kgha -1 for wheat). If environmental costs were considered, the optimal N application rates were further reduced by 20-30% compared to those when targeting maximum economic income. However, the optimal N rate, with environmental cost included, may result in soil nutrient mining under maize, and an extra input of 43kgNha -1 was needed to make the soil N balanced and maintain soil fertility in the long term. To obtain a win-win situation for both yield and environment, the optimal N rate should be controlled at 179kgha -1 for maize, which could achieve above 99.5% of maximum yield and have a favorable N balance, and at 202kgha -1 for wheat to achieve 97.4% of maximum yield, which was about 20kgNha -1 higher than that when N surplus was nil. Although these optimal N rates vary on spatial and temporal scales, they are still effective for the North China Plain where 32% of China's total maize and 45% of China's total wheat are produced. More experiments are still needed to determine the optimal N application rates in other regions. Use of these different optimal N rates would contribute to improving the sustainability of agricultural development in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India

    PubMed Central

    Panda, B. B.; Raja, R.; Singh, Teekam; Tripathi, R.; Shahid, M.; Nayak, A. K.

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June–September) and land leftovers fallow after rice harvest in the post-rainy season (November–May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November–March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate remobilization efficiency, which may be responsible for the reduced grain yield. PMID:28437487

  18. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    PubMed

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate remobilization efficiency, which may be responsible for the reduced grain yield.

  19. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana

    PubMed Central

    Naab, Jesse B.; Mahama, George Y.; Yahaya, Iddrisu; Prasad, P. V. V.

    2017-01-01

    Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean–maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers’ managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20–29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean along with crop residue retention presents a win–win scenario due to improved crop yield, increased economic return, and trends of increasing soil fertility. The biggest challenge, however, remains with producing enough biomass and retaining same on the field. PMID:28680427

  20. Farmers Extension Program Effects on Yield Gap in North China Plain

    NASA Astrophysics Data System (ADS)

    Sum, N.; Zhao, Y.

    2015-12-01

    Improving crop yield of the lowest yielding smallholder farmers in developing countries is essential to both food security of the country and the farmers' livelihood. Although wheat and maize production in most developed countries have reached 80% or greater of yield potential determined by simulated models, yield gap remains high in the developing world. One of these cases is the yield gap of maize in the North China Plain (NCP), where the average farmer's yield is 41% of his or her potential yield. This large yield gap indicates opportunity to raise yields substantially by improving agronomy, especially in nutrition management, irrigation facility, and mechanization issues such as technical services. Farmers' agronomic knowledge is essential to yield performance. In order to propagate such knowledge to farmers, agricultural extension programs, especially in-the-field guidance with training programs at targeted demonstration fields, have become prevalent in China. Although traditional analyses of the effects of the extension program are done through surveys, they are limited to only one to two years and to a small area. However, the spatial analysis tool Google Earth Engine (GEE) and its extensive satellite imagery data allow for unprecedented spatial temporal analysis of yield variation. We used GEE to analyze maize yield in Quzhou county in the North China Plain from 2007 to 2013. We based our analysis on the distance from a demonstration farm plot, the source of the farmers' agronomic knowledge. Our hypothesis was that the farther the farmers' fields were from the demonstration plot, the less access they would have to the knowledge, and the less increase in yield over time. Testing this hypothesis using GEE helps us determine the effectiveness of the demonstration plot in disseminating optimal agronomic practices in addition to evaluating yield performance of the demonstration field itself. Furthermore, we can easily extend this methodology to analyze the whole NCP and any other parts of the world for any type of crop.

  1. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates

    NASA Technical Reports Server (NTRS)

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; hide

    2017-01-01

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  2. Development of transgenic crops based on photo-biotechnology.

    PubMed

    Ganesan, Markkandan; Lee, Hyo-Yeon; Kim, Jeong-Il; Song, Pill-Soon

    2017-11-01

    The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses. © 2016 John Wiley & Sons Ltd.

  3. Temperature increase reduces global yields of major crops in four independent estimates

    PubMed Central

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A.; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Peng, Shushi; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold

    2017-01-01

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population. PMID:28811375

  4. Temperature increase reduces global yields of major crops in four independent estimates.

    PubMed

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold

    2017-08-29

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO 2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  5. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    USGS Publications Warehouse

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently, in the response of agricultural systems.

  6. Yield variability prediction by remote sensing sensors with different spatial resolution

    NASA Astrophysics Data System (ADS)

    Kumhálová, Jitka; Matějková, Štěpánka

    2017-04-01

    Currently, remote sensing sensors are very popular for crop monitoring and yield prediction. This paper describes how satellite images with moderate (Landsat satellite data) and very high (QuickBird and WorldView-2 satellite data) spatial resolution, together with GreenSeeker hand held crop sensor, can be used to estimate yield and crop growth variability. Winter barley (2007 and 2015) and winter wheat (2009 and 2011) were chosen because of cloud-free data availability in the same time period for experimental field from Landsat satellite images and QuickBird or WorldView-2 images. Very high spatial resolution images were resampled to worse spatial resolution. Normalised difference vegetation index was derived from each satellite image data sets and it was also measured with GreenSeeker handheld crop sensor for the year 2015 only. Results showed that each satellite image data set can be used for yield and plant variability estimation. Nevertheless, better results, in comparison with crop yield, were obtained for images acquired in later phenological phases, e.g. in 2007 - BBCH 59 - average correlation coefficient 0.856, and in 2011 - BBCH 59-0.784. GreenSeeker handheld crop sensor was not suitable for yield estimation due to different measuring method.

  7. Educational Software for Illustration of Drainage, Evapotranspiration, and Crop Yield.

    ERIC Educational Resources Information Center

    Khan, A. H.; And Others

    1996-01-01

    Describes a study that developed a software package for illustrating drainage, evapotranspiration, and crop yield as influenced by water conditions. The software is a tool for depicting water's influence on crop production in western Kansas. (DDR)

  8. Projected changes in crop yield mean and variability over West Africa in a world 1.5 K warmer than the pre-industrial era

    NASA Astrophysics Data System (ADS)

    Parkes, Ben; Defrance, Dimitri; Sultan, Benjamin; Ciais, Philippe; Wang, Xuhui

    2018-02-01

    The ability of a region to feed itself in the upcoming decades is an important issue. The West African population is expected to increase significantly in the next 30 years. The responses of crops to short-term climate change is critical to the population and the decision makers tasked with food security. This leads to three questions: how will crop yields change in the near future? What influence will climate change have on crop failures? Which adaptation methods should be employed to ameliorate undesirable changes? An ensemble of near-term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent historic period (1986-2005) and a near-term future when global temperatures are 1.5 K above pre-industrial levels to assess the change in yield, yield variability and crop failure rate. Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic and future climates. Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the regions where yields increase, the variability also increases. This increase in variability increases the likelihood of crop failures, which are defined as yield negative anomalies beyond 1 standard deviation during the historic period. The increasing variability increases the frequency of crop failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to 5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively. The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated using one crop model as an idealized sensitivity test. The generalized doption of a cultivar resistant to high-temperature stress during flowering is shown to be more beneficial than using rainwater harvesting.

  9. Spatial and Temporal Variations of Crop Fertilization and Soil Fertility in the Loess Plateau in China from the 1970s to the 2000s

    PubMed Central

    Wang, Xiaoying; Tong, Yanan; Gao, Yimin; Gao, Pengcheng; Liu, Fen; Zhao, Zuoping; Pang, Yan

    2014-01-01

    Increased fertilizer input in agricultural systems during the last few decades has resulted in large yield increases, but also in environmental problems. We used data from published papers and a soil testing and fertilization project in Shaanxi province during the years 2005 to 2009 to analyze chemical fertilizer inputs and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) on the farmers' level, and soil fertility change from the 1970s to the 2000s in the Loess Plateau in China. The results showed that in different regions of the province, chemical fertilizer NPK inputs and yields of wheat and maize increased. With regard to soil nutrient balance, N and P gradually changed from deficit to surplus levels, while K deficiency became more severe. In addition, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium increased during the same period. The PFP of N, NP and NPK on wheat and maize all decreased from the 1970s to the 2000s as a whole. With the increase in N fertilizer inputs, both soil total nitrogen and alkali-hydrolysis nitrogen increased; P fertilizer increased soil available phosphorus and K fertilizer increased soil available potassium. At the same time, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium all had positive impacts on crop yields. In order to promote food safety and environmental protection, fertilizer requirements should be assessed at the farmers' level. In many cases, farmers should be encouraged to reduce nitrogen and phosphate fertilizer inputs significantly, but increase potassium fertilizer and organic manure on cereal crops as a whole. PMID:25380401

  10. Drought mitigation in perennial crops by fertilization and adjustments of regional yield models for future climate variability

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Blanc-Betes, E.; Gomez-Casanovas, N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2017-12-01

    Increased variability and intensity of precipitation in the Midwest agricultural belt due to climate change is a major concern. The success of perennial bioenergy crops in replacing maize for bioethanol production is dependent on sustained yields that exceed maize, and the marketing of perennial crops often emphasizes the resilience of perennial agriculture to climate stressors. Land conversion from maize for bioethanol to Miscanthus x giganteus (miscanthus) increases yields and annual evapotranspiration rates (ET). However, establishment of miscanthus also increases biome water use efficiency (the ratio between net ecosystem productivity after harvest and ET), due to greater belowground biomass in miscanthus than in maize or soybean. In 2012, a widespread drought reduced the yield of 5-year-old miscanthus plots in central Illinois by 36% compared to the previous two years. Eddy covariance data indicated continued soil water deficit during the hydrologically-normal growing season in 2013 and miscanthus yield failed to rebound as expected, lagging behind pre-drought yields by an average of 53% over the next three years. In early 2014, nitrogen fertilizer was applied to half of mature (7-year-old) miscanthus plots in an effort to improve yields. In plots with annual post-emergence application of 60 kg ha-1 of urea, peak biomass was 29% greater than unfertilized miscanthus in 2014, and 113% greater in 2015, achieving statistically similar yields to the pre-drought average. Regional-scale models of perennial crop productivity use 30-year climate averages that are inadequate for predicting long-term effects of short-term extremes on perennial crops. Modeled predictions of perennial crop productivity incorporating repeated extreme weather events, observed crop response, and the use of management practices to mitigate water deficit demonstrate divergent effects on predicted yields.

  11. Molecular and systems approaches towards drought-tolerant canola crops.

    PubMed

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    PubMed

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  13. Design and analysis of mixed cropping experiments for indigenous Pacific Islands

    Treesearch

    Mareko P. Tofinga

    1993-01-01

    Mixed cropping (including agroforestry) often gives yield advan-tages as opposed to monocropping. Many criteria have been used to assess yield advantage in crop mixtures. Some of these are presented. In addition, the relative merits of replacement, additive and bivariate factorial designs are discussed. The concepts of analysis of mixed cropping are applied to an...

  14. How changes of climate extremes affect summer and winter crop yields and water productivity in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, D.; Cammarano, D.

    2017-12-01

    Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature extremes. We found the effects of precipitation changes on both yields are relatively uncertain.

  15. Photosynthetic Energy Conversion Efficiency: Setting a Baseline for Gauging Future Improvements in Important Food and Biofuel Crops1

    PubMed Central

    2015-01-01

    The conversion efficiency (εc) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve εc, but a statistical analysis to establish baseline εc levels across different crop functional types is lacking. Data from 164 published εc studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in εc across important food and biofuel crop species. εc was greatest in biofuel crops (0.049–0.066), followed by C4 food crops (0.046–0.049), C3 nonlegumes (0.036–0.041), and finally C3 legumes (0.028–0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of εc variability. Genetic improvements in εc, when present, were less than 0.7% per year, revealing the unrealized potential of improving εc as a promising contributing strategy to meet projected future agricultural demand. PMID:25829463

  16. Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate.

    PubMed

    Broussard, Melissa Ann; Mas, Flore; Howlett, Brad; Pattemore, David; Tylianakis, Jason M

    2017-01-01

    Approximately one-third of our food globally comes from insect-pollinated crops. The dependence on pollinators has been linked to yield instability, which could potentially become worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of fruit and vegetable production globally) are especially at risk as they are even more reliant on pollinators than open-pollinated plants. We already observe a wide range of fruit and seed yields between different cultivars of the same crop species, and it is unknown how existing variation will be affected in a changing climate. In this study, we examined how three hybrid carrot varieties with differential performance in the field responded to three temperature regimes (cooler than the historical average, average, and warmer that the historical average). We tested how temperature affected the plants' ability to set seed (seed set, pollen viability) as well as attract pollinators (nectar composition, floral volatiles). We found that there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set between the carrot varieties, and that higher temperatures did not exaggerate those differences. However, elevated temperature did negatively affect several characteristics relating to the attraction and reward of pollinators (lower volatile production and higher nectar sugar concentration) across all varieties, which may decrease the attractiveness of this already pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer climate, reduced attractiveness would add yet another challenge to future food production.

  17. Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate

    PubMed Central

    Mas, Flore; Howlett, Brad; Pattemore, David; Tylianakis, Jason M.

    2017-01-01

    Approximately one-third of our food globally comes from insect-pollinated crops. The dependence on pollinators has been linked to yield instability, which could potentially become worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of fruit and vegetable production globally) are especially at risk as they are even more reliant on pollinators than open-pollinated plants. We already observe a wide range of fruit and seed yields between different cultivars of the same crop species, and it is unknown how existing variation will be affected in a changing climate. In this study, we examined how three hybrid carrot varieties with differential performance in the field responded to three temperature regimes (cooler than the historical average, average, and warmer that the historical average). We tested how temperature affected the plants' ability to set seed (seed set, pollen viability) as well as attract pollinators (nectar composition, floral volatiles). We found that there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set between the carrot varieties, and that higher temperatures did not exaggerate those differences. However, elevated temperature did negatively affect several characteristics relating to the attraction and reward of pollinators (lower volatile production and higher nectar sugar concentration) across all varieties, which may decrease the attractiveness of this already pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer climate, reduced attractiveness would add yet another challenge to future food production. PMID:28665949

  18. Projected Climate Impacts to South African Maize and Wheat Production in 2055: A Comparison of Empirical and Mechanistic Modeling Approaches

    NASA Technical Reports Server (NTRS)

    Estes, Lyndon D.; Beukes, Hein; Bradley, Bethany A.; Debats, Stephanie R.; Oppenheimer, Michael; Ruane, Alex C.; Schulze, Roland; Tadross, Mark

    2013-01-01

    Crop model-specific biases are a key uncertainty affecting our understanding of climate change impacts to agriculture. There is increasing research focus on intermodel variation, but comparisons between mechanistic (MMs) and empirical models (EMs) are rare despite both being used widely in this field. We combined MMs and EMs to project future (2055) changes in the potential distribution (suitability) and productivity of maize and spring wheat in South Africa under 18 downscaled climate scenarios (9 models run under 2 emissions scenarios). EMs projected larger yield losses or smaller gains than MMs. The EMs' median-projected maize and wheat yield changes were 3.6% and 6.2%, respectively, compared to 6.5% and 15.2% for the MM. The EM projected a 10% reduction in the potential maize growing area, where the MM projected a 9% gain. Both models showed increases in the potential spring wheat production region (EM = 48%, MM = 20%), but these results were more equivocal because both models (particularly the EM) substantially overestimated the extent of current suitability. The substantial water-use efficiency gains simulated by the MMs under elevated CO2 accounted for much of the EMMM difference, but EMs may have more accurately represented crop temperature sensitivities. Our results align with earlier studies showing that EMs may show larger climate change losses than MMs. Crop forecasting efforts should expand to include EMMM comparisons to provide a fuller picture of crop-climate response uncertainties.

  19. Midwest Agriculture: A comparison of AVHRR NDVI3g data and crop yields in Corn Belt region of the United States from 1982 to 2014

    NASA Astrophysics Data System (ADS)

    Glennie, E.; Anyamba, A.; Eastman, R.

    2016-12-01

    A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) images was compared to National Agricultural Statistics Service (NASS) corn yield data in the Corn Belt of the United States from 1982 to 2014. The relationship between NDVI and crop yields under El Nino, neutral, and La Nina conditions was used to assess 1) the reliability of using NDVI as an indicator of crop productivity, and 2) the response of the Corn Belt to El Nino/ Southern Oscillation (ENSO) teleconnection effects. First, bi-monthly NDVI data were combined into monthly data using the maximum value compositing technique to reduce cloud contamination and other effects. The most representative seasonal curve of NDVI values over the course of the study period was extracted to define the growing season in the region - May to October. Standardized NDVI anomalies were calculated and averaged to produce a growing season NDVI metrics to represent each Agricultural Statistics Division (ASD) for each year in the study period. The corn yields were detrended in order to remove effects of technological advancements on crop productivity (use of genetically modified seeds, fertilizer, herbicides). Correlation (R) values between the NDVI anomalies and detrended corn yields varied across the Corn Belt, with a maximum of 0.81 and mean of 0.49. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be accounted for by an increase in soy yield for a given year due to crop rotation practices. The 10 El Nino events and 9 La Nina events that occurred between 1982 and 2014 are not reflected in a consistent manner in NDVI or corn yield data. However, composites of NDVI and crop yields for all El Nino events indicate there is a tendency for higher than normal NDVI and increased corn yields. Conversely, the composite crop yield image for La Nina events shows a slight decrease in productivity.

  20. Rice crop risk map in Babahoyo canton (Ecuador)

    NASA Astrophysics Data System (ADS)

    Valverde Arias, Omar; Tarquis, Ana; Garrido, Alberto

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, making agricultural and livestock production riskier. In order to reduce hazards and economic loses that could jeopardize farmer's incomes and even its business continuity, it is very important to implement agriculture risk management plans by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has a significant growth in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. Crop production risk is related with yield variation of crops and livestock, due to weather, pests, diseases, and other factors that affect both the quantity and quality of commodities produced. This is the risk which farmers invest more time managing, and it is completely under their control. The aim of this study is generate a crop risk map of rice that can provide risk manager important information about the status of crop facing production risks. Then, based on this information, it will be possible to make best decisions to deal with production risk. The rice crop risk map was generated qualifying a 1:25000 scale soil and climatic map of Babahoyo canton, which is located in coast region of Ecuador, where rice is one of the main crops. The methodology to obtain crop risk map starts by establishing rice crop requirements and indentifying the risks associated with this crop. A second step is to evaluate soil and climatic conditions of the study area related to optimal crop requirements. Based on it, we can determinate which level of rice crop requirement is met. Finally we have established rice crop zones classified as: suitable, moderate suitable, marginal suitable and unsuitable. Several methods have been used to estimate the degree with which crop requirements are satisfied, pondering weights of limiting factors to adequate crop conditions. Better conditions for cropping in a specific area imply less risk in production. In this case, crop will be less affected by pests and disease, although this closely depends on crop management. Farmers have to invest less money to produce and could increase their benefit. Results are showed and discussed with the aim to study the efficiency and potential of this risk map.

  1. Nation-wide assessment of climate change impacts on crops in the Philippines and Peru as part of multi-disciplinary modelling framework

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio-economic perspective). In our presentation we will show the cases of Peru and the Philippines, and discuss the implications for agriculture policies and risk management.

  2. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment--A Comparison with Terrestrial Laser Scanning Data.

    PubMed

    Marx, Sabrina; Hämmerle, Martin; Klonner, Carolin; Höfle, Bernhard

    2016-01-01

    The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS) is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS) results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM) derived from PS and TLS data is 10.45 cm (GPS devices) and 14.69 cm (smartphones). Furthermore, the results indicate that incorporating participants' cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development.

  3. Using observed warming to identify hazards to Mozambique maize production

    USGS Publications Warehouse

    Funk, Christopher C.; Harrison, Laura; Eilerts, Gary

    2011-01-01

    New Perspectives on Crop Yield Constraints because of Climate Change. Climate change impact assessments usually focus on changes to precipitation because most global food production is from rainfed cropping systems; however, other aspects of climate change may affect crop growth and potential yields.A recent (2011) study by the University of California, Santa Barbara (UCSB) Climate Hazards Group, determined that climate change may be affecting Mozambique's primary food crop in a usually overlooked, but potentially significant way (Harrison and others, 2011). The study focused on the direct relation between maize crop development and growing season temperature. It determined that warming during the past three decades in Mozambique may be causing more frequent crop stress and yield reductions in that country's maize crop, independent of any changes occurring in rainfall. This report summarizes the findings and conclusions of that study.

  4. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land.

    PubMed

    West, Paul C; Gibbs, Holly K; Monfreda, Chad; Wagner, John; Barford, Carol C; Carpenter, Stephen R; Foley, Jonathan A

    2010-11-16

    Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced carbon stocks in natural vegetation and soils. Here, we present a spatially explicit global analysis of tradeoffs between carbon stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much carbon (∼120 tons·ha(-1) vs. ∼63 tons·ha(-1)) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha(-1)·y(-1) vs. 3.84 tons·ha(-1)·y(-1)). Therefore, newly cleared land in the tropics releases nearly 3 tons of carbon for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between carbon stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions.

  5. Network Candidate Genes in Breeding for Drought Tolerant Crops

    PubMed Central

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-01-01

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance. PMID:26193269

  6. Network Candidate Genes in Breeding for Drought Tolerant Crops.

    PubMed

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-07-17

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  7. Development of a decision support system for crop disease monitoring, surveillance and prediction in Bomet county, Kenya

    NASA Astrophysics Data System (ADS)

    Otieno, O. M.

    2015-12-01

    The study proposes to use Geographic Information Systems and Remote Sensing techniques to spatially model Maize Lethal Necrosis (MLN) disease in maize growing areas in Kenya. Results from this work will be used for prediction, monitoring and to guide intervention on MLN. This will minimize maize yield losses resulting from MLN infestation and thus safeguard the livelihoods of maize farmers in Kenya. MLN was first reported in Kenya in September 2011 in Bomet county. It then subsequently spread to other parts in Kenya. Maize crops are susceptible to MLN at all growth stages. Once infected the only option left for the farmers is to burn their maize plantations. Infection rate and damage is very high affecting yields and sometimes causing complete loss of maize yield.The modelling exercise will cover the period prior to and after the incidence of MLN. Specifically, the analysis will integrate spatio-temporal information on maize phenology and field surveys with the intention of delineating the extent of MLN infestation and the degree of damage as a result of MLN. Additionally, the task will identify potential predisposing factors leading to MLN resurgence and spread and to predict potential areas where MLN is likely to spread and to estimate the potential impact of MLN on the farm holders. The area of study for this task will be Bomet County. Historical and current environmental and spatial indicators including temperature, rainfall, soil moisture, vegetation health and crop cover will be fed into a model in order to determine the main factors that aide the occurrence and the spread of MLN. Multi-spectral image processing will be used to produce indices to study maize crop health whilst image classification techniques will be used to identify crop cover clusters by differentiating the variations in spectral signatures in the area of study and hence distinguish infected, unaffected maize crops and other crop cover classes. Variables from these indicators will then be weighted in a spatial model and be used as a basis for generating site-specific MLN prediction maps that will guide policy on MLN management in Kenya. The broaderobjective is to document a model that can be up-scaled and replicated in other maize producing areas in Kenya affected by MLN.

  8. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis.

    PubMed

    Masle, Josette; Gilmore, Scott R; Farquhar, Graham D

    2005-08-11

    Assimilation of carbon by plants incurs water costs. In the many parts of the world where water is in short supply, plant transpiration efficiency, the ratio of carbon fixation to water loss, is critical to plant survival, crop yield and vegetation dynamics. When challenged by variations in their environment, plants often seem to coordinate photosynthesis and transpiration, but significant genetic variation in transpiration efficiency has been identified both between and within species. This has allowed plant breeders to develop effective selection programmes for the improved transpiration efficiency of crops, after it was demonstrated that carbon isotopic discrimination, Delta, of plant matter was a reliable and sensitive marker negatively related to variation in transpiration efficiency. However, little is known of the genetic controls of transpiration efficiency. Here we report the isolation of a gene that regulates transpiration efficiency, ERECTA. We show that ERECTA, a putative leucine-rich repeat receptor-like kinase (LRR-RLK) known for its effects on inflorescence development, is a major contributor to a locus for Delta on Arabidopsis chromosome 2. Mechanisms include, but are not limited to, effects on stomatal density, epidermal cell expansion, mesophyll cell proliferation and cell-cell contact.

  9. Modelling crop yield in Iberia under drought conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia

    2017-04-01

    The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining vegetation and hydro-meteorological drought indices for the assessment of cereal yield. Moreover, the present study will provide some guidance on user's decision making process in agricultural practices in the IP, assisting farmers in deciding whether to purchase crop insurance. Acknowledgements: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project IMDROFLOOD (WaterJPI/0004/2014). Ana Russo thanks FCT for granted support (SFRH/BPD/99757/2014). Andreia Ribeiro also thanks FCT for grant PD/BD/114481/2016.

  10. Roguing with replacement in perennial crops: conditions for successful disease management.

    PubMed

    Sisterson, Mark S; Stenger, Drake C

    2013-02-01

    Replacement of diseased plants with healthy plants is commonly used to manage spread of plant pathogens in perennial cropping systems. This strategy has two potential benefits. First, removing infected plants may slow pathogen spread by eliminating inoculum sources. Second, replacing infected plants with uninfected plants may offset yield losses due to disease. The extent to which these benefits are realized depends on multiple factors. In this study, sensitivity analyses of two spatially explicit simulation models were used to evaluate how assumptions concerning implementation of a plant replacement program and pathogen spread interact to affect disease suppression. In conjunction, effects of assumptions concerning yield loss associated with disease and rates of plant maturity on yields were simultaneously evaluated. The first model was used to evaluate effects of plant replacement on pathogen spread and yield on a single farm, consisting of a perennial crop monoculture. The second model evaluated effects of plant replacement on pathogen spread and yield in a 100 farm crop growing region, with all farms maintaining a monoculture of the same perennial crop. Results indicated that efficient replacement of infected plants combined with a high degree of compliance among farms effectively slowed pathogen spread, resulting in replacement of few plants and high yields. In contrast, inefficient replacement of infected plants or limited compliance among farms failed to slow pathogen spread, resulting in replacement of large numbers of plants (on farms practicing replacement) with little yield benefit. Replacement of infected plants always increased yields relative to simulations without plant replacement provided that infected plants produced no useable yield. However, if infected plants produced useable yields, inefficient removal of infected plants resulted in lower yields relative to simulations without plant replacement for perennial crops with long maturation periods in some cases.

  11. Strengths and Limitations of Operational Use of 1 Km EO Biophysical Products for Regional Prediction of Grain Yelds in Europe (wheat, barley and maize)

    NASA Astrophysics Data System (ADS)

    Meroni, M.; LEO, O.; Lopez-Lozano, R.; Baruth, B.; Duveiller, G.; Garcia-Condado, S.; Hooker, J.; Seguini, L.

    2014-12-01

    The site-specific relationship between EO indicators and actual crop yields has been explored in many different studies, describing semi-empirical regression models between spatially aggregated biophysical parameters or vegetation indices and observed yields (from field measurements or official statistics). However, when considering larger extensions -from countries to continents- agro-climatic conditions and crop management may differ substantially among regions, and these differences may greatly influence the relationship between biophysical indicators and the observed yields, which may be also driven by limiting factors other than green biomass formation. The present study aims to better assess the contribution of EO indicators within an operational crop yield forecasting system in Europe and neighbouring countries, by evaluating how these above mentioned geographic differences influence the relationship between biophysical indicators and crop yield. We therefore explore, as a first step, the correspondence between fAPAR time-series (1999-2013) and the inter-annual yield variability of wheat, barley and grain maize, at sub-national level across Europe (270-450 Administrative Units, depending on crop). In a second step, we map the agro-climatic contexts in which EO indicators better explain the observed yield inter-annual variability, identify the influence of some meteorological events on the fAPAR -yield relationship and provide some recommendations for further investigation. The results indicate that in water-limited environments (e.g. Mediterranean and Black Sea areas), fAPAR is highly correlated with yields whereas in northern Europe, crop yield appears much less limited by leaf area expansion along the season, and the relationship between yield and EO products becomes more difficult to interpret.

  12. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil.

    PubMed

    Battisti, R; Sentelhas, P C; Boote, K J

    2018-05-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO 2 ] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha -1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO 2 ] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO 2 .

  13. Genetic structure and isolation by distance in a landrace of Thai rice

    PubMed Central

    Pusadee, Tonapha; Jamjod, Sansanee; Chiang, Yu-Chung; Rerkasem, Benjavan; Schaal, Barbara A.

    2009-01-01

    Rice is among the 3 most important crops worldwide. While much of the world's rice harvest is based on modern high-yield varieties, traditional varieties of rice grown by indigenous groups have great importance as a resource for future crop improvement. These local landraces represent an intermediate stage of domestication between a wild ancestor and modern varieties and they serve as reservoirs of genetic variation. Such genetic variation is influenced both by natural processes such as selection and drift, and by the agriculture practices of local farmers. How these processes interact to shape and change the population genetics of landrace rice is unknown. Here, we determine the population genetic structure of a single variety of landrace rice, Bue Chomee, cultivated by Karen people of Thailand. Microsatellite markers reveal high level of genetic variation despite predominant inbreeding in the crop. Bue Chomee rice shows slight but significant genetic differentiation among Karen villages. Moreover, genetically determined traits such as flowering time can vary significantly among villages. An unanticipated result was the overall pattern of genetic differentiation across villages which conforms to an isolation by distance model of differentiation. Isolation by distance is observed in natural plant species where the likelihood of gene flow is inversely related to distance. In Karen rice, gene flow is the result of farmers' seed sharing networks. Taken together, these data suggest that landrace rice is a dynamic genetic system that responds to evolutionary forces, both natural and those imposed by humans. PMID:19651617

  14. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Zhao; Tao, Fulu

    2018-05-01

    A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice) in China during 2106-2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop-Weather relationship over a Large Area (MCWLA) family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6), +4.1 (+9.4) and +0.2 % (-1.7 %), respectively, in a warming scenario of 1.5 °C (2.0 °C). In general, the warming scenarios would bring more opportunities than risks for crop development and food security in China. Moreover, although the variability of crop yield would increase from 1.5 °C warming to 2.0 °C warming, the probability of a crop yield decrease would decrease. Our findings highlight that the 2.0 °C warming scenario would be more suitable for crop production in China, but more attention should be paid to the expected increase in extreme event impacts.

  15. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1976-01-01

    One phase of the large area crop inventory project is presented. Wheat yield models based on the input of environmental variables potentially obtainable through the use of space remote sensing were developed and demonstrated. By the use of a unique method for visually qualifying daily plant development and subsequent multifactor computer analyses, it was possible to develop practical models for predicting crop development and yield. Development of wheat yield prediction models was based on the discovery that morphological changes in plants are detected and quantified on a daily basis, and that this change during a portion of the season was proportional to yield.

  16. Climate change impacts on crop yield: evidence from China.

    PubMed

    Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi

    2014-11-15

    When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Recent patterns of crop yield growth and stagnation.

    PubMed

    Ray, Deepak K; Ramankutty, Navin; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A

    2012-01-01

    In the coming decades, continued population growth, rising meat and dairy consumption and expanding biofuel use will dramatically increase the pressure on global agriculture. Even as we face these future burdens, there have been scattered reports of yield stagnation in the world's major cereal crops, including maize, rice and wheat. Here we study data from ∼2.5 million census observations across the globe extending over the period 1961-2008. We examined the trends in crop yields for four key global crops: maize, rice, wheat and soybeans. Although yields continue to increase in many areas, we find that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse. This result underscores the challenge of meeting increasing global agricultural demands. New investments in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.

  18. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus.

    PubMed

    Schiessl, Sarah; Iniguez-Luy, Federico; Qian, Wei; Snowdon, Rod J

    2015-09-29

    Flowering time, plant height and seed yield are strongly influenced by climatic and day-length adaptation in crop plants. To investigate these traits under highly diverse field conditions in the important oilseed crop Brassica napus, we performed a genome-wide association study using data from diverse agroecological environments spanning three continents. A total of 158 European winter-type B.napus inbred lines were genotyped with 21,623 unique, single-locus single-nucleotide polymorphism (SNP) markers using the Brassica 60 K-SNP Illumina® Infinium consortium array. Phenotypic associations were calculated in the panel over the years 2010-2012 for flowering time, plant height and seed yield in 5 highly diverse locations in Germany, China and Chile, adding up to 11 diverse environments in total. We identified 101 genome regions associating with the onset of flowering, 69 with plant height, 36 with seed yield and 68 cross-trait regions with potential adaptive value. Within these regions, B.napus orthologs for a number of candidate adaptation genes were detected, including central circadian clock components like CIRCADIAN CLOCK- ASSOCIATED 1 (Bna.CCA1) and the important flowering-time regulators FLOWERING LOCUS T (Bna.FT) and FRUITFUL (Bna.FUL). Gene ontology (GO) enrichment analysis of candidate regions suggested that selection of genes involved in post-transcriptional and epigenetic regulation of flowering time may play a potential role in adaptation of B. napus to highly divergent environments. The classical flowering time regulators Bna.FLC and Bna.CO were not found among the candidate regions, although both show functional variation. Allelic effects were additive for plant height and yield, but not for flowering time. The scarcity of positive minor alleles for yield in this breeding pool points to a lack of diversity for adaptation that could restrict yield gain in the face of environmental change. Our study provides a valuable framework to further improve the adaptability and yield stability of this recent allopolyploid crop under changing environments. The results suggest that flowering time regulation within an adapted B. napus breeding pool is driven by a high number of small modulating processes rather than major transcription factors like Bna.CO. In contrast, yield regulation appears highly parallel, therefore yield could be increased by pyramiding positively associated haplotypes.

  19. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    NASA Astrophysics Data System (ADS)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  20. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence.

    PubMed

    Guan, Kaiyu; Berry, Joseph A; Zhang, Yongguang; Joiner, Joanna; Guanter, Luis; Badgley, Grayson; Lobell, David B

    2016-02-01

    Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change. © 2015 John Wiley & Sons Ltd.

  1. Improving the Monitoring of Crop Productivity Using Spaceborne Solar-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Guan, Kaiyu; Berry, Joseph A.; Zhang, Yongguang; Joiner, Joanna; Guanter, Luis; Badgley, Grayson; Lobell, David B.

    2015-01-01

    Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.

  2. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions

    PubMed Central

    Islam, Md. Monirul; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702

  3. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice.

    PubMed

    Wang, Qing; Nian, Jinqiang; Xie, Xianzhi; Yu, Hong; Zhang, Jian; Bai, Jiaoteng; Dong, Guojun; Hu, Jiang; Bai, Bo; Chen, Lichao; Xie, Qingjun; Feng, Jian; Yang, Xiaolu; Peng, Juli; Chen, Fan; Qian, Qian; Li, Jiayang; Zuo, Jianru

    2018-02-21

    In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10-20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition.

  4. Climate analogues suggest limited potential for intensification of production on current croplands under climate change

    PubMed Central

    Pugh, T.A.M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.

    2016-01-01

    Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand. PMID:27646707

  5. Climate Analogues Suggest Limited Potential for Intensification of Production on Current Croplands Under Climate Change

    NASA Technical Reports Server (NTRS)

    Pugh, T. A. M.; Mueller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.

    2016-01-01

    Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.

  6. Climate analogues suggest limited potential for intensification of production on current croplands under climate change

    NASA Astrophysics Data System (ADS)

    Pugh, T. A. M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.

    2016-09-01

    Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.

  7. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Anderson, M. C.; Gao, F.; Wardlow, B.; Hain, C.; Otkin, J.; Sun, L.; Dulaney, W.

    2017-12-01

    In agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability and vegetation health and thus has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) describes temporal anomalies in a normalized evapotranspiration metric (fRET) as derived from satellite remote sensing and has demonstrated capacity to explain regional yield variability in water limited crop growing regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded. In this study we generated maps of ET, fRET, and ESI at high spatiotemporal resolution (30-m pixels, daily timesteps) using a multi-sensor data fusion method, integrating information from satellite platforms with good temporal coverage and other platforms that provide field-scale spatial detail. The study was conducted over the period 2010-2014, covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of corn yield are investigated at both the field and county level to assess the value of ESI as a yield forecasting tool. To examine the role of phenology in ESI-yield correlations, annual input fRET timeseries were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). Results demonstrate that mapping of fRET and ESI at 30-m has the advantage of being able to resolve different crop types with varying phenology. The study also suggests that incorporating phenological information significantly improves yield-correlations by accounting for effects of phenology such as variable planting date and emergence date. The yield-ESI relationship in this study well captures the inter-annual variability of yields and thus has potential to be used for yield prediction, or for ingestion into a crop simulation model as a crop-specific moisture stress function.

  8. Interactive effects of pests increase seed yield.

    PubMed

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  9. Application of Thermal Infrared Remote Sensing for Quantitative Evaluation of Crop Characteristics

    NASA Technical Reports Server (NTRS)

    Shaw, J.; Luvall, J.; Rickman, D.; Mask, P.; Wersinger, J.; Sullivan, D.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Evidence suggests that thermal infrared emittance (TIR) at the field-scale is largely a function of the integrated crop/soil moisture continuum. Because soil moisture dynamics largely determine crop yields in non-irrigated farming (85 % of Alabama farms are non-irrigated), TIR may be an effective method of mapping within field crop yield variability, and possibly, absolute yields. The ability to map yield variability at juvenile growth stages can lead to improved soil fertility and pest management, as well as facilitating the development of economic forecasting. Researchers at GHCC/MSFC/NASA and Auburn University are currently investigating the role of TIR in site-specific agriculture. Site-specific agriculture (SSA), or precision farming, is a method of crop production in which zones and soils within a field are delineated and managed according to their unique properties. The goal of SSA is to improve farm profits and reduce environmental impacts through targeted agrochemical applications. The foundation of SSA depends upon the spatial and temporal characterization of soil and crop properties through the creation of management zones. Management zones can be delineated using: 1) remote sensing (RS) data, 2) conventional soil testing and soil mapping, and 3) yield mapping. Portions of this research have concentrated on using remote sensing data to map yield variability in corn (Zea mays L.) and soybean (Glycine max L.) crops. Remote sensing data have been collected for several fields in the Tennessee Valley region at various crop growth stages during the last four growing seasons. Preliminary results of this study will be presented.

  10. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining

    2017-11-01

    Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.

  11. Opposing effects of different soil organic matter fractions on crop yields.

    PubMed

    Wood, Stephen A; Sokol, Noah; Bell, Colin W; Bradford, Mark A; Naeem, Shahid; Wallenstein, Matthew D; Palm, Cheryl A

    2016-10-01

    Soil organic matter is critical to sustainable agriculture because it provides nutrients to crops as it decomposes and increases nutrient- and water-holding capacity when built up. Fast- and slow-cycling fractions of soil organic matter can have different impacts on crop production because fast-cycling fractions rapidly release nutrients for short-term plant growth and slow-cycling fractions bind nutrients that mineralize slowly and build up water-holding capacity. We explored the controls on these fractions in a tropical agroecosystem and their relationship to crop yields. We performed physical fractionation of soil organic matter from 48 farms and plots in western Kenya. We found that fast-cycling, particulate organic matter was positively related to crop yields, but did not have a strong effect, while slower-cycling, mineral-associated organic matter was negatively related to yields. Our finding that slower-cycling organic matter was negatively related to yield points to a need to revise the view that stabilization of organic matter positively impacts food security. Our results support a new paradigm that different soil organic matter fractions are controlled by different mechanisms, potentially leading to different relationships with management outcomes, like crop yield. Effectively managing soils for sustainable agriculture requires quantifying the effects of specific organic matter fractions on these outcomes. © 2016 by the Ecological Society of America.

  12. Optimization of grapevine yield by applying mathematical models to obtain quality wine products

    NASA Astrophysics Data System (ADS)

    Alina, Dobrei; Alin, Dobrei; Eleonora, Nistor; Teodor, Cristea; Marius, Boldea; Florin, Sala

    2016-06-01

    Relationship between the crop load and the grape yield and quality is a dynamic process, specific for wine cultivars and for fresh consumption varieties. Modeling these relations is important for the improvement of technological works. This study evaluated the interrelationship of crop load (B - buds number) and several production parameters (Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric index; AP - alcoholic potential; F - flavorings, WA - wine alcohol; SR - sugar residue, in Muscat Ottonel wine cultivar and Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric Index; CP - commercial production; BS - berries size in the Victoria table grape cultivar). In both varieties have been identified correlations between the independent variable (B - buds number as a result of pruning and training practices) and quality parameters analyzed (r = -0.699 for B vsY relationship; r = 0.961 for the relationship B vs S; r = -0.959 for B vs AP relationship; r = 0.743 for the relationship Y vs S, p <0.01, in the Muscat Ottonel cultivar, respectively r = -0.907 for relationship B vs Y; r = -0.975 for B vs CP relationship; r = -0.971 for relationship B vs BS; r = 0.990 for CP vs BS relationship in the Victoria cultivar. Through regression analysis were obtained models that describe the variation concerning production and quality parameters in relation to the independent variable (B - buds number) with statistical significance results.

  13. Contrasting effects of landscape composition on crop yield mediated by specialist herbivores.

    PubMed

    Perez-Alvarez, Ricardo; Nault, Brian A; Poveda, Katja

    2018-04-01

    Landscape composition not only affects a variety of arthropod-mediated ecosystem services, but also disservices, such as herbivory by insect pests that may have negative effects on crop yield. Yet, little is known about how different habitats influence the dynamics of multiple herbivore species, and ultimately their collective impact on crop production. Using cabbage as a model system, we examined how landscape composition influenced the incidence of three specialist cruciferous pests (aphids, flea beetles, and leaf-feeding Lepidoptera), lepidopteran parasitoids, and crop yield across a gradient of landscape composition in New York, USA. We expected that landscapes with a higher proportion of cropland and lower habitat diversity would lead to an increase in pest pressure of the specialist herbivores and a reduction in crop yield. However, results indicated that neither greater cropland area nor lower landscape diversity influenced pest pressure or yield. Rather, pest pressure and yield were best explained by the presence of non-crop habitats (i.e., meadows) in the landscape. Specifically, cabbage was infested with fewer Lepidoptera in landscapes with a higher proportion of meadows likely resulting from increased parasitism. Conversely, cabbage was infested with more flea beetles and aphids as the proportion of meadows in the landscape increased, suggesting that these pests benefit from non-crop habitats. Furthermore, path analysis confirmed that these landscape-mediated effects on pest populations can have either positive or negative cascading effects on crop yield. Our findings illustrate how different pest species within the same cropping system show contrasting responses to landscape composition with respect to both the direction and spatial scale of the relationship. Such tradeoffs resulting from the complex interaction between multiple-pests, natural enemies, and landscape composition must be considered, if we are to manage landscapes for pest suppression benefits. © 2018 by the Ecological Society of America.

  14. Characterizing drought stress and trait influence on maize yield under current and future conditions.

    PubMed

    Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L

    2014-03-01

    Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses. © 2013 John Wiley & Sons Ltd.

  15. The impacts of data constraints on the predictive performance of a general process-based crop model (PeakN-crop v1.0)

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Purves, Drew W.; Smith, Matthew J.

    2017-04-01

    Improving international food security under a changing climate and increasing human population will be greatly aided by improving our ability to modify, understand and predict crop growth. What we predominantly have at our disposal are either process-based models of crop physiology or statistical analyses of yield datasets, both of which suffer from various sources of error. In this paper, we present a generic process-based crop model (PeakN-crop v1.0) which we parametrise using a Bayesian model-fitting algorithm to three different sources: data-space-based vegetation indices, eddy covariance productivity measurements and regional crop yields. We show that the model parametrised without data, based on prior knowledge of the parameters, can largely capture the observed behaviour but the data-constrained model greatly improves both the model fit and reduces prediction uncertainty. We investigate the extent to which each dataset contributes to the model performance and show that while all data improve on the prior model fit, the satellite-based data and crop yield estimates are particularly important for reducing model error and uncertainty. Despite these improvements, we conclude that there are still significant knowledge gaps, in terms of available data for model parametrisation, but our study can help indicate the necessary data collection to improve our predictions of crop yields and crop responses to environmental changes.

  16. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    PubMed

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. Copyright © 2014. Published by Elsevier Ltd.

  17. Use of vegetation health data for estimation of aus rice yield in bangladesh.

    PubMed

    Rahman, Atiqur; Roytman, Leonid; Krakauer, Nir Y; Nizamuddin, Mohammad; Goldberg, Mitch

    2009-01-01

    Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991-2005). A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March-April (weeks 8-13 of the year), several months in advance of the rice harvest. Stepwise principal component regression (PCR) was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost.

  18. Use of Vegetation Health Data for Estimation of Aus Rice Yield in Bangladesh

    PubMed Central

    Rahman, Atiqur; Roytman, Leonid; Krakauer, Nir Y.; Nizamuddin, Mohammad; Goldberg, Mitch

    2009-01-01

    Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991–2005). A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March–April (weeks 8–13 of the year), several months in advance of the rice harvest. Stepwise principal component regression (PCR) was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost. PMID:22574057

  19. Rice Crop Monitoring and Yield Assessment with MODIS 250m Gridded Vegetation Products: A Case Study of Sa Kaeo Province, Thailand

    NASA Astrophysics Data System (ADS)

    Wijesingha, J. S. J.; Deshapriya, N. L.; Samarakoon, L.

    2015-04-01

    Billions of people in the world depend on rice as a staple food and as an income-generating crop. Asia is the leader in rice cultivation and it is necessary to maintain an up-to-date rice-related database to ensure food security as well as economic development. This study investigates general applicability of high temporal resolution Moderate Resolution Imaging Spectroradiometer (MODIS) 250m gridded vegetation product for monitoring rice crop growth, mapping rice crop acreage and analyzing crop yield, at the province-level. The MODIS 250m Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) time series data, field data and crop calendar information were utilized in this research in Sa Kaeo Province, Thailand. The following methodology was used: (1) data pre-processing and rice plant growth analysis using Vegetation Indices (VI) (2) extraction of rice acreage and start-of-season dates from VI time series data (3) accuracy assessment, and (4) yield analysis with MODIS VI. The results show a direct relationship between rice plant height and MODIS VI. The crop calendar information and the smoothed NDVI time series with Whittaker Smoother gave high rice acreage estimation (with 86% area accuracy and 75% classification accuracy). Point level yield analysis showed that the MODIS EVI is highly correlated with rice yield and yield prediction using maximum EVI in the rice cycle predicted yield with an average prediction error 4.2%. This study shows the immense potential of MODIS gridded vegetation product for keeping an up-to-date Geographic Information System of rice cultivation.

  20. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems.

    PubMed

    Bass, Adrian M; Bird, Michael I; Kay, Gavin; Muirhead, Brian

    2016-04-15

    The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO3, NH4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Changes in yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Childers, Katelin

    2015-04-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the political discussion about mitigation targets as well as for the inclusion of climate change impacts in Integrated Assessment Models (IAMs) that generally only provide global mean temperature change as an indicator of climate change. While there is a well-established framework for the scalability of regional temperature and precipitation changes with global mean temperature change we provide an assessment of the extent to which impacts such as crop yield changes can also be described in terms of global mean temperature changes without accounting for the specific underlying emissions scenario. Based on multi-crop-model simulations of the four major cereal crops (maize, rice, soy, and wheat) on a 0.5 x 0.5 degree global grid generated within ISI-MIP, we show the average spatial patterns of projected crop yield changes at one half degree warming steps. We find that emissions scenario dependence is a minor component of the overall variance of projected yield changes at different levels of global warming. Furthermore, scenario dependence can be reduced by accounting for the direct effects of CO2 fertilization in each global climate model (GCM)/impact model combination through an inclusion of the global atmospheric CO2 concentration as a second predictor. The choice of GCM output used to force the crop model simulations accounts for a slightly larger portion of the total yield variance, but the greatest contributor to variance in both global and regional crop yields and at all levels of warming, is the inter-crop-model spread. The unique multi impact model ensemble available with ISI-MIP data also indicates that the overall variability of crop yields is projected to increase in conjunction with increasing global mean temperature. This result is consistent throughout the ensemble of impact models and across many world regions. Such a hike in yield volatility could have significant policy implications by affecting food prices and supplies.

  2. Coping with climate variability and long-term climate trends for Nicaraguan maize-bean farmers (Invited)

    NASA Astrophysics Data System (ADS)

    Gourdji, S.; Zelaya Martinez, C.; Martinez Valle, A.; Mejia, O.; Laderach, P.; Lobell, D. B.

    2013-12-01

    Climate variability and change impact farmers at different timescales, but both are of concern for livelihoods and long-term viability of small farms in tropical, rain-fed agricultural systems. This study uses a historical dataset to analyze the impact of 40-year climate trends in Nicaragua on bean production, a staple crop that is an important source of calories and protein in the local diet, particularly in rural areas and in lower income classes. Bean yields are sensitive to rising temperatures, but also frequently limited by seasonal drought and low soil fertility. We use an empirical model to relate department-level yields to spatial variation and inter-annual fluctuations in historical precipitation, temperature and extreme rain events. We then use this model to quantify the impact on yields of long-term observed warming in day and night temperatures, increases in rainfall intensity, longer gaps between rain events, a shorter rainy season and overall drying in certain regions of the country. Preliminary results confirm the negative impacts of warming night temperatures, higher vapor pressure deficits, and longer gaps between rain events on bean yields, although some drying at harvest time has helped to reduce rotting. Across all bean-growing areas, these climate trends have led to a ~10% yield decline per decade relative to a stationary climate and production system, with this decline reaching up to ~20% in the dry northern highlands. In regions that have been particularly impacted by these trends, we look for evidence of farm abandonment, increases in off-farm employment, or on-farm adaptation solutions through crop diversification, use of drought or heat-tolerant seed, and adoption of rainwater harvesting. We will also repeat the modeling exercise for maize, another staple crop providing ~25% of daily calories at the national scale, but which is projected to be more resilient to climate trends.

  3. The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use

    NASA Astrophysics Data System (ADS)

    Souty, F.; Brunelle, T.; Dumas, P.; Dorin, B.; Ciais, P.; Crassous, R.; Müller, C.; Bondeau, A.

    2012-02-01

    Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i) a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii) a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii) a spatially explicit distribution of potential (maximal) crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL). The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. The land-use modelling approach described in this paper entails several advantages. Firstly, it makes it possible to explore interactions among different types of biomass demand for food and animal feed, in a consistent approach, including indirect effects on land-use change resulting from international trade. Secondly, yield variations induced by the possible expansion of croplands on less suitable marginal lands are modelled by using regional land area distributions of potential yields, and a calculated boundary between intensive and extensive production. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.

  4. Estimating the responses of winter wheat yields to moisture variations in the past 35 years in Jiangsu Province of China

    PubMed Central

    Ding, Jinfeng; Li, Chunyan

    2018-01-01

    Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI). The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen’s Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June) had a closer linkage to the yields than in the seedling stage (October-November) and the over-wintering stage (December-February). Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu. PMID:29329353

  5. Estimating the responses of winter wheat yields to moisture variations in the past 35 years in Jiangsu Province of China.

    PubMed

    Xu, Xiangying; Gao, Ping; Zhu, Xinkai; Guo, Wenshan; Ding, Jinfeng; Li, Chunyan

    2018-01-01

    Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI). The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June) had a closer linkage to the yields than in the seedling stage (October-November) and the over-wintering stage (December-February). Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.

  6. 7 CFR 760.602 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... territory or possession of the United States. Subsequent crop means any crop planted after an initial crop... itself to the greatest level of accuracy, as determined by the FSA State committee. USDA means United... history yield means the average of the actual production history yields for each insurable or noninsurable...

  7. 7 CFR 760.602 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... territory or possession of the United States. Subsequent crop means any crop planted after an initial crop... itself to the greatest level of accuracy, as determined by the FSA State committee. USDA means United... history yield means the average of the actual production history yields for each insurable or noninsurable...

  8. Crop damage and livestock depredation by wildlife: a case study from Nanda Devi Biosphere Reserve, India.

    PubMed

    Rao, K S; Maikhuri, R K; Nautiyal, S; Saxena, K G

    2002-11-01

    The success of conserving biological resources in any Biosphere Reserve or protected area depends on the extent of support and positive attitudes and perceptions of local people have towards such establishments. Ignoring the dependence of the local people for their subsistence needs on resources of such areas leads to conflicts between protected area managers and the local inhabitants. Crop yield losses and livestock depredation were serious problems observed in most buffer zone villages of Nanda Devi Biosphere Reserve. In the present study 10 villages situated in the buffer zone of Nanada Devi Biosphere Reserve (1612 km2 area) in Chamoli district of Uttaranchal, India were studied during 1996-97 using a questionnaire survey of each household (419 = households; 2253 = total population in 1991; 273 ha = cultivated area). Estimates of crop yield losses were made using paired plots technique in four representative villages for each crop species. The magnitude of crop yield losses varied significantly with the distance of agricultural field from forest boundary. The total crop yield losses were high for wheat and potato in all the villages. The spatial distribution of total crop yield losses in any village indicated that they were highest in the area near to forest and least in the area near to village for all crops. Losses from areas near to forest contributed to more than 50% of total losses for each crop in all villages. However, in Lata, Peng and Tolma villages, the losses are high for kidney bean and chemmi (local variety of kidney bean) which varied between 18.5% to 30% of total losses in those villages. Potato alone represents 43.6% of total crop yield loss due to wildlife in Dronagiri village in monetary terms. Among the crops, the monetary value of yield losses are least for amaranth and highest for kidney bean. The projected total value of crop yield losses due to wildlife damage for buffer zone villages located in Garhwal Himalaya is about Rs. 538,620 (US$ 15,389). Besides food grains, horticultural crops i.e. apple, also suffered maximum damage. Major wildlife agents responsible for crop damage were wild boar, bear, porcupine, monkey, musk deer and partridge (chokor). Monkey and wild boar alone accounted for about 50% to 60% of total crop damage in the study villages. Goat and sheep are the major livestock killed by leopard. The total value of livestock losses at prevailing market rates is about Rs. 1,024,520 (US$ 29,272) in the study villages. Due to existing conservation policies and laxity in implementation of preventive measures, the problems for local inhabitants are increasing. Potential solutions discussed emphasize the need to undertake suitable and appropriate protective measures to minimize the crop losses. Change in cropping and crop composition, particularly cultivation of medicinal plants (high value low volume crops), were also suggested. Besides, fair and quick disbursement of compensation for crop loss and livestock killing need to be adopted. Local people of the buffer zone area already have a negative attitude towards park/reserve establishment due to socio-political changes inducing major economic losses and this attitude may lead to clashes and confrontations if proper ameliorative measures are not taken immediately.

  9. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  10. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE PAGES

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  11. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderwende, Brian; Lundquist, Julie K.

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  12. Morphological Variation and Inter-Relationships of Quantitative Traits in Enset (Ensete ventricosum (welw.) Cheesman) Germplasm from South and South-Western Ethiopia

    PubMed Central

    Yemataw, Zerihun; Chala, Alemayehu; Grant, Murray R.

    2017-01-01

    Enset (Ensete ventricosum (Welw.) Cheesman) is Ethiopia’s most important root crop. A total of 387 accessions collected from nine different regions of Ethiopia were evaluated for 15 quantitative traits at Areka Agricultural Research Centre to determine the extent and pattern of distribution of morphological variation. The variations among the accessions and regions were significant (p ≤ 0.01) for all the 15 traits studied. Mean for plant height, central shoot weight before grating, and fermented squeezed kocho yield per hectare per year showed regional variation along an altitude gradient and across cultural differences related to the origin of the collection. Furthermore, there were significant correlations among most of the characters. This included the correlation among agronomic characteristics of primary interest in enset breeding such as plant height, pseudostem height, and fermented squeezed kocho yield per hectare per year. Altitude of the collection sites also significantly impacted the various characteristics studied. These results reveal the existence of significant phenotypic variations among the 387 accessions as a whole. Regional differentiations were also evident among the accessions. The implication of the current results for plant breeding, germplasm collection, and in situ and ex situ genetic resource conservation are discussed. PMID:29210979

  13. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    PubMed

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2018-03-01

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Simulated Near-term Climate Change Impacts on Major Crops across Latin America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Gourdji, S.; Mesa-Diez, J.; Obando-Bonilla, D.; Navarro-Racines, C.; Moreno, P.; Fisher, M.; Prager, S.; Ramirez-Villegas, J.

    2016-12-01

    Robust estimates of climate change impacts on agricultural production can help to direct investments in adaptation in the coming decades. In this study commissioned by the Inter-American Development Bank, near-term climate change impacts (2020-2049) are simulated relative to a historical baseline period (1971-2000) for five major crops (maize, rice, wheat, soybean and dry bean) across Latin America and the Caribbean (LAC) using the DSSAT crop model. No adaptation or technological change is assumed, thereby providing an analysis of existing climatic stresses on yields in the region and a worst-case scenario in the coming decades. DSSAT is run across irrigated and rain-fed growing areas in the region at a 0.5° spatial resolution for each crop. Crop model inputs for soils, planting dates, crop varieties and fertilizer applications are taken from previously-published datasets, and also optimized for this study. Results show that maize and dry bean are the crops most affected by climate change, followed by wheat, with only minimal changes for rice and soybean. Generally, rain-fed production sees more severe yield declines than irrigated production, although large increases in irrigation water are needed to maintain yields, reducing the yield-irrigation productivity in most areas and potentially exacerbating existing supply limitations in watersheds. This is especially true for rice and soybean, the two crops showing the most neutral yield changes. Rain-fed yields for maize and bean are projected to decline most severely in the sub-tropical Caribbean, Central America and northern South America, where climate models show a consistent drying trend. Crop failures are also projected to increase in these areas, necessitating switches to other crops or investment in adaptation measures. Generally, investment in agricultural adaptation to climate change (such as improved seed and irrigation infrastructure) will be needed throughout the LAC region in the 21st century.

  15. Tracking historical increases in nitrogen-driven crop production possibilities

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Lassaletta, L.; Billen, G.; Garnier, J.; Gerber, J. S.

    2015-12-01

    The environmental costs of nitrogen use have prompted a focus on improving the efficiency of nitrogen use in the global food system, the primary source of nitrogen pollution. Typical approaches to improving agricultural nitrogen use efficiency include more targeted field-level use (timing, placement, and rate) and modification of the crop mix. However, global efficiency gains can also be achieved by improving the spatial allocation of nitrogen between regions or countries, due to consistent diminishing returns at high nitrogen use. This concept is examined by constructing a tradeoff frontier (or production possibilities frontier) describing global crop protein yield as a function of applied nitrogen from all sources, given optimal spatial allocation. Yearly variation in country-level input-output nitrogen budgets are utilized to parameterize country-specific hyperbolic yield-response models. Response functions are further characterized for three ~15-year eras beginning in 1961, and series of calculations uses these curves to simulate optimal spatial allocation in each era and determine the frontier. The analyses reveal that excess nitrogen (in recent years) could be reduced by ~40% given optimal spatial allocation. Over time, we find that gains in yield potential and in-country nitrogen use efficiency have led to increases in the global nitrogen production possibilities frontier. However, this promising shift has been accompanied by an actual spatial distribution of nitrogen use that has become less optimal, in an absolute sense, relative to the frontier. We conclude that examination of global production possibilities is a promising approach to understanding production constraints and efficiency opportunities in the global food system.

  16. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se; Escobar, Federico; Fu Xinmei

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competitionmore » for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.« less

  17. An energy balance approach for mapping crop waterstress and yield impacts over the Czech Republic

    USDA-ARS?s Scientific Manuscript database

    There is a growing demand for timely, spatially distributed information regarding crop condition and water use to inform agricultural decision making and yield forecasting efforts. Remote sensing of land-surface temperature has proven valuable for mapping evapotranspiration (ET) and crop stress from...

  18. Independent Peer Evaluation of the Large Area Crop Inventory Experiment (LACIE): The LACIE Symposium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Yield models and crop estimate accuracy are discussed within the Large Area Crop Inventory Experiment. The wheat yield estimates in the United States, Canada, and U.S.S.R. are emphasized. Experimental results design, system implementation, data processing systems, and applications were considered.

  19. Row and forage crop rotation effects on maize mineral nutrition and yield

    USDA-ARS?s Scientific Manuscript database

    Extended crop rotations provide many attributes in support of sustainable agriculture. Objectives were to investigate rotations that included row crops and forages in terms of their effects on soil characteristics as well as on maize (Zea mays L.) stover biomass, grain yield, and mineral components...

  20. 7 CFR 760.602 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... history yield means the average of the actual production history yields for each insurable or noninsurable..., excluding value loss crops, the product obtained by multiplying: (i) 100 percent of the per unit price for... established price for the crop, times (ii) The relevant per unit quantity of the crop produced on the farm...

  1. Climate driven crop planting date in the ACME Land Model (ALM): Impacts on productivity and yield

    NASA Astrophysics Data System (ADS)

    Drewniak, B.

    2017-12-01

    Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical crops will be explored. Those impacts include discussions on productivity, yield, and influences on carbon and energy fluxes.

  2. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    NASA Astrophysics Data System (ADS)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of climate change on crop productivity in a watershed. The first was carried out by the large-scale crop model alone. The second was carried out by the integrated model of the large-scale crop model and the H08 model. The former projected that changes in temperature and precipitation due to future climate change would give rise to increasing the water stress in crops. Nevertheless, the latter projected that the increasing amount of agricultural water resources in the watershed would supply sufficient amount of water for irrigation, consequently reduce the water stress. The integrated model demonstrated the importance of taking into account the water circulation in watershed when predicting the regional crop production.

  3. Separating out the influence of climatic trend, fluctuations, and extreme events on crop yield: a case study in Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei

    2017-09-01

    Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.

  4. Effects of input uncertainty on cross-scale crop modeling

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input data from very little to very detailed information, and compare the models' abilities to represent the spatial variability and temporal variability in crop yields. We display the uncertainty in crop yield simulations from different input data and crop models in Taylor diagrams which are a graphical summary of the similarity between simulations and observations (Taylor, 2001). The observed spatial variability can be represented well from both models (R=0.6-0.8) but APSIM predicts higher spatial variability than LPJmL due to its sensitivity to soil parameters. Simulations with the same crop model, climate and sowing dates have similar statistics and therefore similar skill to reproduce the observed spatial variability. Soil data is less important for the skill of a crop model to reproduce the observed spatial variability. However, the uncertainty in simulated spatial variability from the two crop models is larger than from input data settings and APSIM is more sensitive to input data then LPJmL. Even with a detailed, point-scale crop model and detailed input data it is difficult to capture the complexity and diversity in maize cropping systems.

  5. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon.

    PubMed

    Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E

    2017-10-01

    Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA.

    PubMed

    Ferrero, Rosana; Lima, Mauricio; Davis, Adam S; Gonzalez-Andujar, Jose L

    2017-01-01

    Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields. Results of our study indicate that through the proactive management of weed diversity, it may be possible to promote both high productivity of crops and environmental sustainability.

  7. Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA

    PubMed Central

    Ferrero, Rosana; Lima, Mauricio; Davis, Adam S.; Gonzalez-Andujar, Jose L.

    2017-01-01

    Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields. Results of our study indicate that through the proactive management of weed diversity, it may be possible to promote both high productivity of crops and environmental sustainability. PMID:28286509

  8. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Buah-Bassuah, Paul K.; Tetteh, Jonathan P.

    2004-07-01

    The use of violet laser-induced chlorophyll fluorescence (LICF) emission spectra to monitor the growth of five varieties of cowpea in the University of Cape Coast Botanical Garden is presented. Radiation from a continuous-wave violet laser diode emitting at 396 nm through a fibre is closely incident on in vivo leaves of cowpea to excite chlorophyll fluorescence, which is detected by an integrated spectrometer with CCD readout. The chlorophyll fluorescence spectra with peaks at 683 and 731 nm were used for growth monitoring of the cowpea plants over three weeks and analysed using Gaussian spectral functions with curve fitted parameters to determine the peak positions, area under the spectral curve and the intensity ratio F683/F731. The variation in the intensity ratio of the chlorophyll bands showed sensitive changes indicating the photosynthetic activity of the cowpea varieties. A discussion of the fluorescence result as compared to conventional assessment is presented with regard to discrimination between the cowpea varieties in terms of crop yield performance.

  9. Spectral considerations for modeling yield of canola

    USDA-ARS?s Scientific Manuscript database

    Conspicuous yellow flowers that are present in a Brassica oilseed crop such as canola require careful consideration when selecting a spectral index for yield estimation. This study evaluated spectral indices for multispectral sensors that correlate with the seed yield of Brassica oilseed crops. A ...

  10. Increasing temperature cuts back crop yields in Hungary over the last 90 years.

    PubMed

    Pinke, Zsolt; Lövei, Gábor L

    2017-12-01

    The transformation of climatic regime has an undeniable impact on plant production, but we rarely have long enough date series to examine the unfolding of such effects. The clarification of the relationship between crop plants and climate has a near-immediate importance due to the impending human-made global change. This study investigated the relationship between temperature, precipitation, drought intensity and the yields of four major cereals in Hungary between 1921 and 2010. The analysis of 30-year segments indicated a monotonously increasing negative impact of temperature on crop yields. A 1°C temperature increase reduced the yield of the four main cereals by 9.6%-14.8% in 1981-2010, which revealed the vulnerability of Eastern European crop farming to recent climate change. Climate accounted for 17%-39% of yield variability over the past 90 years, but this figure reached 33%-67% between 1981 and 2010. Our analysis supports the claim that the mid-20th century green revolution improved yields "at the mercy of the weather": during this period, the impact of increasing fertilization and mechanisation coincided with climatic conditions that were more favourable than today. Crop yields in Eastern Europe have been stagnating or decreasing since the mid-1980s. Although usually attributed to the large socio-economic changes sweeping the region, our analysis indicates that a warming climate is at least partially responsible for this trend. Such a robust impact of increasing temperatures on crop yields also constitutes an obvious warning for this core grain-growing region of the world. © 2017 John Wiley & Sons Ltd.

  11. Crop weather models of corn and soybeans for Agrophysical Units (APU's) in Iowa using monthly meteorological predictors

    NASA Technical Reports Server (NTRS)

    Leduc, S. (Principal Investigator)

    1982-01-01

    Models based on multiple regression were developed to estimate corn and soybean yield from weather data for agrophysical units (APU) in Iowa. The predictor variables are derived from monthly average temperature and monthly total precipitation data at meteorological stations in the cooperative network. The models are similar in form to the previous models developed for crop reporting districts (CRD). The trends and derived variables were the same and the approach to select the significant predictors was similar to that used in developing the CRD models. The APU's were selected to be more homogeneous with respect crop to production than the CRDs. The APU models are quite similar to the CRD models, similar explained variation and number of predictor variables. The APU models are to be independently evaluated and compared to the previously evaluated CRD models. That comparison should indicate the preferred model area for this application, i.e., APU or CRD.

  12. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    DOE PAGES

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; ...

    2017-02-21

    In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less

  13. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.

    In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less

  14. Food for Thought: Crop Yields in the Columbia River Basin in an Altered Future

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Nelson, R.; Stockle, C.; Kruger, C.; Brady, M.; Adam, J. C.

    2013-12-01

    Growth of global population and food consumption in the next several decades is expected to result in a food security challenge. Strategies to address this challenge, such as enhancing agricultural productivity and resiliency, need to be considered within the context of a full range of plausible consequences so as to identify investments that create win-win-win scenarios for the environment, economy, and society. Regional earth systems models can provide the necessary scale-appropriate framework to inform the decision making context for adaptation strategies, especially in the context of global change. In an altered future, changes to climate, technology and socioeconomics affect regional agriculture both directly and indirectly. These effects are not independent and an integrated process-based model may better capture unanticipated non-linear and non-monotonic responses and feedbacks over time . BioEarth is a research initiative designed to explore the coupling of multiple stand-alone earth systems models to generate usable information for agricultural and natural resource decision making at the regional scale at decadal time-steps. This project focuses on the U.S. Pacific Northwest (PNW) region and is a framework that integrates atmospheric, terrestrial, aquatic, and economic models. We apply component models of BioEarth to the Columbia River basin in the PNW to study the direct and indirect impacts of climate change on regional irrigated and dryland crop yields for a variety of annual and perennial crops. Results indicate that the net effect of climate change on crop yields is dependent on the crop type. There is a negative effect of temperature on yields for most crops. Dryland winter wheat is a notable exception. With warming, although the available growing season increases, faster thermal accumulation results in a shorter time to maturity. Precipitation changes in the region have a positive impact on dryland agriculture. Carbon dioxide (CO2) fertilization has a positive impact on crop yields for most crops. This positive impact is minimal for corn which is a C4 crop that is already CO2 efficient. The net response is an increase in yields for dryland agriculture and depends on the crop type for irrigated agriculture. Although, climate change results in increased water shortages and water rights curtailment in the region, this does not translate into an increased negative effect on yields. This could be attributed to higher water use efficiency under elevated CO2 levels as well crops getting through growth stages earlier in the season with wetter spring conditions. The non linear and non monotonic nature of the response of climate change on crop yields is discussed. In accounting for biophysical effects of climate change on crop yields, socio-economic effects cannot be ignored because biophysical effects are nested with the framework of human decision making. We also discuss our results in the context of socioeconomic factors . Current results assume no adaptation strategies and incorporating this is our next step.

  15. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    NASA Technical Reports Server (NTRS)

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2017-01-01

    Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10-30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  16. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system.

    PubMed

    Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin

    2016-03-15

    Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.

  17. Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China.

    PubMed

    Zhang, Jie; Balkovič, Juraj; Azevedo, Ligia B; Skalský, Rastislav; Bouwman, Alexander F; Xu, Guang; Wang, Jinzhou; Xu, Minggang; Yu, Chaoqing

    2018-06-15

    This study analyzes the influence of various fertilizer management practices on crop yield and soil organic carbon (SOC) based on the long-term field observations and modelling. Data covering 11 years from 8 long-term field trials were included, representing a range of typical soil, climate, and agro-ecosystems in China. The process-based model EPIC (Environmental Policy Integrated Climate model) was used to simulate the response of crop yield and SOC to various fertilization regimes. The results showed that the yield and SOC under additional manure application treatment were the highest while the yield under control treatment was the lowest (30%-50% of NPK yield) at all sites. The SOC in northern sites appeared more dynamic than that in southern sites. The variance partitioning analysis (VPA) showed more variance of crop yield could be explained by the fertilization factor (42%), including synthetic nitrogen (N), phosphorus (P), potassium (K) fertilizers, and fertilizer NPK combined with manure. The interactive influence of soil (total N, P, K, and available N, P, K) and climate factors (mean annual temperature and precipitation) determine the largest part of the SOC variance (32%). EPIC performs well in simulating both the dynamics of crop yield (NRMSE = 32% and 31% for yield calibration and validation) and SOC (NRMSE = 13% and 19% for SOC calibration and validation) under diverse fertilization practices in China. EPIC can assist in predicting the impacts of different fertilization regimes on crop growth and soil carbon dynamics, and contribute to the optimization of fertilizer management for different areas in China. Copyright © 2018. Published by Elsevier B.V.

  18. Management of Lignite Fly Ash for Improving Soil Fertility and Crop Productivity

    NASA Astrophysics Data System (ADS)

    Ram, Lal C.; Srivastava, Nishant K.; Jha, Sangeet K.; Sinha, Awadhesh K.; Masto, Reginald E.; Selvi, Vetrivel A.

    2007-09-01

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and biofertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. The highest yield LFA dose was 200 t/ha for one-time and repeat applications, the maximum yield being with crop III (combination treatment). One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy-metal contents and in the level of γ-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  19. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    NASA Astrophysics Data System (ADS)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  20. The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment

    PubMed Central

    Ercoli, Laura; Masoni, Alessandro; Pampana, Silvia; Mariotti, Marco; Arduini, Iduna

    2014-01-01

    Crop sequence is an important management practice that may affect durum wheat (Triticum durum Desf.) production. Field research was conducted in 2007-2008 and 2008-2009 seasons in a rain-fed cold Mediterranean environment to examine the impact of the preceding crops alfalfa (Medicago sativa L.), maize (Zea mays L.), sunflower (Helianthus annuus L.), and bread wheat (Triticum aestivum L.) on yield and N uptake of four durum wheat varieties. The response of grain yield of durum wheat to the preceding crop was high in 2007-2008 and was absent in the 2008-2009 season, because of the heavy rainfall that negatively impacted establishment, vegetative growth, and grain yield of durum wheat due to waterlogging. In the first season, durum wheat grain yield was highest following alfalfa, and was 33% lower following wheat. The yield increase of durum wheat following alfalfa was mainly due to an increased number of spikes per unit area and number of kernels per spike, while the yield decrease following wheat was mainly due to a reduction of spike number per unit area. Variety growth habit and performance did not affect the response to preceding crop and varieties ranked in the order Levante > Saragolla = Svevo > Normanno. PMID:25401153

  1. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.

    PubMed

    Waclawovsky, Alessandro J; Sato, Paloma M; Lembke, Carolina G; Moore, Paul H; Souza, Glaucia M

    2010-04-01

    An increasing number of plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops. Research is increasingly focused on how to design crops specifically for bioenergy production and increased biomass generation for biofuel purposes. The most important biofuel to date is bioethanol produced from sugars (sucrose and starch). Second generation bioethanol is also being targeted for studies to allow the use of the cell wall (lignocellulose) as a source of carbon. If a crop is to be used for bioenergy production, the crop should be high yielding, fast growing, low lignin content and requiring relatively small energy inputs for its growth and harvest. Obtaining high yields in nonprime agricultural land is a key for energy crop development to allow sustainability and avoid competition with food production. Sugarcane is the most efficient bioenergy crop of tropical and subtropical regions, and biotechnological tools for the improvement of this crop are advancing rapidly. We focus this review on the studies of sugarcane genes associated with sucrose content, biomass and cell wall metabolism and the preliminary physiological characterization of cultivars that contrast for sugar and biomass yield.

  2. Alfalfa (Medicago sativa L.) is tolerant to higher levels of salinity than previous guidelines indicated: Implications of field and greenhouse studies

    NASA Astrophysics Data System (ADS)

    Putnam, Daniel H.; Benes, Sharon; Galdi, Giuliano; Hutmacher, Bob; Grattan, Steve

    2017-04-01

    Alfalfa (Medicago sativa L.) is the most widely grown leguminous forage crop in North America and is valued for high productivity, quality, economic value, and for dairy productivity. Alfalfa has historically been classified as moderately sensitive to saline conditions, with yield declines predicted at >2 dS/m in the saturated soil paste extract. However, greenhouse, sand tank, and field studies over the past five years have confirmed that alfalfa can be grown with limited negative effects at much higher salinity levels. A broad collection of alfalfa varieties has exhibited a range of resistance at irrigation water salinities >5 dS/m ECw in greenhouse trials, with significant variation due to variety. USDA-ARS sand tank studies indicated similar or greater tolerances closer to 8 dS/m in the soil water, in addition to confirmation of significant varietal differences. A three-year field study on clay loam soil with applications of 5-7 dS/m ECw irrigation water indicated normal yields and excellent stand survivability. A second field study in the same soil type with levels from 8-10 dS/m ECw showed yield reductions of 10-15% but economic yields were still achieved at those levels. Field and greenhouse studies were conducted with mixed salt saline sodic waters typical of the San Joaquin Valley of California. Field evaluation of variety performance was subject to greater variation due to secondary salinity-soil interactions including water infiltration and crusting problems, not only salinity per-se. Thus, adequate irrigation water availability to the crop may be as important as salinity in impacting yields under field conditions. Once established, the deep-rooted characteristics of alfalfa enable utilization of deeper subsurface moisture, even at moderate to high salinity levels, as documented by USDA lysimeter studies. Significant advantages to salinity-tolerant varieties have been observed. It will be important to consider specific management factors which may enable the successful production of irrigated alfalfa with use of saline (up to 8 dS/m ECw) irrigation water, including careful water management during stand establishment, prevention of crusting, and agronomic practices to promote water infiltration. Irrigated regions looking for economically-viable crop species to grow under saline conditions may consider alfalfa grown utilizing appropriate methodologies, including salt-tolerant varieties and agronomic practices to mitigate the secondary effects of soil salinity and sodicity.

  3. Ensembles modeling approach to study Climate Change impacts on Wheat

    NASA Astrophysics Data System (ADS)

    Ahmed, Mukhtar; Claudio, Stöckle O.; Nelson, Roger; Higgins, Stewart

    2017-04-01

    Simulations of crop yield under climate variability are subject to uncertainties, and quantification of such uncertainties is essential for effective use of projected results in adaptation and mitigation strategies. In this study we evaluated the uncertainties related to crop-climate models using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS and EPIC) and 14 general circulation models (GCMs) for 2 representative concentration pathways (RCP) of atmospheric CO2 (4.5 and 8.5 W m-2) in the Pacific Northwest (PNW), USA. The aim was to assess how different process-based crop models could be used accurately for estimation of winter wheat growth, development and yield. Firstly, all models were calibrated for high rainfall, medium rainfall, low rainfall and irrigated sites in the PNW using 1979-2010 as the baseline period. Response variables were related to farm management and soil properties, and included crop phenology, leaf area index (LAI), biomass and grain yield of winter wheat. All five models were run from 2000 to 2100 using the 14 GCMs and 2 RCPs to evaluate the effect of future climate (rainfall, temperature and CO2) on winter wheat phenology, LAI, biomass, grain yield and harvest index. Simulated time to flowering and maturity was reduced in all models except EPIC with some level of uncertainty. All models generally predicted an increase in biomass and grain yield under elevated CO2 but this effect was more prominent under rainfed conditions than irrigation. However, there was uncertainty in the simulation of crop phenology, biomass and grain yield under 14 GCMs during three prediction periods (2030, 2050 and 2070). We concluded that to improve accuracy and consistency in simulating wheat growth dynamics and yield under a changing climate, a multimodel ensemble approach should be used.

  4. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    PubMed Central

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  5. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    PubMed

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  6. Population dynamics of plant nematodes in cultivated soil: length of rotation in newly cleared and old agricultural land.

    PubMed

    Good, J M; Murphy, W S; Brodie, B B

    1973-04-01

    During a 6-year study of 1-, 2-, and 3-year crop rotations, population densities of Pratylenchus brachyurus, Trichodorus christiei, and Meloidogyne incognita were significantly affected by the choice of crops but not by length of crop rotation. The density of P. brachyurus and T. christiei increased rapidly on milo (Sorghum vulgate). In addition, populations of P. brachyurus increased significantly in cropping systems that involved crotalaria (C. rnucronata), millet (Setaria italica), and sudangrass (Sorghum sudanense). Lowest numbers of P. brachyurus occurred where okra (Hibiscus esculentus) was grown or where land was fallow. The largest increase in populations of T. christiei occurred in cropping systems that involved millet, sudangrass, and okra whereas the smallest increase occurred in cropping systems that involved crotalaria or fallow. A winter cover of rye (Secale cereale) had no distinguishable effect on population densities of P. brachyurus or T. christiei. Meloidogyne incognita was detected during the fourth year in both newly cleared and old agricultural land when okra was included in the cropping system. Detectable populations of M. incognita did not develop in any of the other cropping systems. Yields of tomato transplants were higher on the newly cleared land than on the old land. Highest yields were obtained when crotalaria was included in the cropping system. Lowest yields were obtained when milo, or fallow were included in the cropping system. Length of rotation had no distinguishable effect on yields of tomato transplants.

  7. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.

    PubMed

    Hijri, Mohamed

    2016-04-01

    An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future.

  8. Strategies for soil-based precision agriculture in cotton

    NASA Astrophysics Data System (ADS)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  9. Engineering crop nutrient efficiency for sustainable agriculture.

    PubMed

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  10. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms.

    PubMed

    Garibaldi, Lucas A; Carvalheiro, Luísa G; Vaissière, Bernard E; Gemmill-Herren, Barbara; Hipólito, Juliana; Freitas, Breno M; Ngo, Hien T; Azzu, Nadine; Sáez, Agustín; Åström, Jens; An, Jiandong; Blochtein, Betina; Buchori, Damayanti; Chamorro García, Fermín J; Oliveira da Silva, Fabiana; Devkota, Kedar; Ribeiro, Márcia de Fátima; Freitas, Leandro; Gaglianone, Maria C; Goss, Maria; Irshad, Mohammad; Kasina, Muo; Pacheco Filho, Alípio J S; Kiill, Lucia H Piedade; Kwapong, Peter; Parra, Guiomar Nates; Pires, Carmen; Pires, Viviane; Rawal, Ranbeer S; Rizali, Akhmad; Saraiva, Antonio M; Veldtman, Ruan; Viana, Blandina F; Witter, Sidia; Zhang, Hong

    2016-01-22

    Ecological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America. For fields less than 2 hectares, we found that yield gaps could be closed by a median of 24% through higher flower-visitor density. For larger fields, such benefits only occurred at high flower-visitor richness. Worldwide, our study demonstrates that ecological intensification can create synchronous biodiversity and yield outcomes. Copyright © 2016, American Association for the Advancement of Science.

  11. Estimation of Rice Crop Yields Using Random Forests in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.

    2017-12-01

    Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2.9%, respectively. Although there are several uncertainties attributed to the data quality of input layers, our study demonstrates the promising application of random forests for estimating rice crop yields at the national level in Taiwan. This approach could be transferable to other regions of the world for improving large-scale estimation of rice crop yields.

  12. Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators.

    PubMed

    Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P

    2015-07-01

    Crop yield, vegetative or reproductive, depends on access to an adequate supply of essential mineral nutrients. At the same time, a crop plant's growth and development, and thus yield, also depend on in situ production of plant hormones. Thus optimizing mineral nutrition and providing supplemental hormones are two mechanisms for gaining appreciable yield increases. Optimizing the mineral nutrient supply is a common and accepted agricultural practice, but the co-application of nitrogen-based fertilizers with plant hormones or plant growth regulators is relatively uncommon. Our review discusses possible uses of plant hormones (gibberellins, auxins, cytokinins, abscisic acid and ethylene) and specific growth regulators (glycine betaine and polyamines) to enhance and optimize crop yield when co-applied with nitrogen-based fertilizers. We conclude that use of growth-active gibberellins, together with a nitrogen-based fertilizer, can result in appreciable and significant additive increases in shoot dry biomass of crops, including forage crops growing under low-temperature conditions. There may also be a potential for use of an auxin or cytokinin, together with a nitrogen-based fertilizer, for obtaining additive increases in dry shoot biomass and/or reproductive yield. Further research, though, is needed to determine the potential of co-application of nitrogen-based fertilizers with abscisic acid, ethylene and other growth regulators. © 2014 Society of Chemical Industry.

  13. Wheat seed transcriptome reveals genes controlling key traits for human preference and crop adaptation.

    PubMed

    Henry, Robert J; Furtado, Agnelo; Rangan, Parimalan

    2018-05-17

    Analysis of the transcriptome of the developing wheat grain has associated expression of genes with traits involving production (e.g. yield) and quality (e.g. bread quality). Photosynthesis in the grain may be important in retaining carbon that would be lost in respiration during grain filling and may contribute to yield in the late stages of seed formation under warm and dry environments. A small number of genes have been identified as having been selected by humans to optimize the performance of wheat for foods such as bread. Genes determining flour yield in milling have been discovered. Hardness is explained by variations in expression of pin genes. Knowledge of these genes should dramatically improve the efficiency of breeding better climate adapted wheat genotypes. Copyright © 2018. Published by Elsevier Ltd.

  14. Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-01-01

    In this study we use a high quality dataset of in-situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We inter-compare crop yield loss estimates according to different exposure metrics such as AOT40 and M7 for the two major crop growing seasons of Kharif (June-October) and Rabi (November-April) and establish a new crop yield exposure relationship for South Asian wheat and rice cultivars. These are a factor of two more sensitive to ozone induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27-41% for wheat, 21-26% for rice, 9-11% for maize and 47-58% for cotton. Crop production losses for wheat amounted to 20.8 million t in fiscal year 2012-2013 and 10.3 million t in fiscal year 2013-2014 for Punjab and Haryana jointly. Crop production losses for rice totalled 5.4 million t in fiscal year 2012-2013 and 3.2 million t year 2013-2014 for Punjab and Haryana jointly. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice/wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. Mitigation of ozone related crop production losses in Punjab and Haryana alone could provide >50% of the wheat and ~10% of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 billion in the fiscal year 2012-2013 and USD 3.7 billion in the fiscal year 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone related crop yield losses in entire India currently amounts to 3.5-20% of India's GDP. Mitigation of high surface ozone would require relatively little investment in comparison to economic losses incurred presently. Therefore, ozone mitigation can yield massive benefits in terms of ensuring food security and boosting the economy. Co-benefits of ozone mitigation also include a decrease in the ozone related mortality, morbidity and a reduction of the ozone induced warming in the lower troposphere.

  15. Climate change impacts on crop yield in the Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Ceglar, Andrej; Dentener, Frank; Niemeyer, Stefan; Dosio, Alessandro; Fumagalli, Davide

    2017-04-01

    Agriculture is strongly influenced by climate variability, climate extremes and climate changes. Recent studies on past decades have identified and analysed the effects of climate variability and extremes on crop yields in the Euro-Mediterranean region. As these effects could be amplified in a changing climate context, it is essential to analyse available climate projections and investigate the possible impacts on European agriculture in terms of crop yield. In this study, five model runs from the Euro-CORDEX initiative under two scenarios (RCP4.5 and RCP8.5) have been used. Climate model data have been bias corrected and then used to feed a mechanistic crop growth model. The crop model has been run under different settings to better sample the intrinsic uncertainties. Among the main results, it is worth to report a weak but significant and spatially homogeneous increase in potential wheat yield at mid-century (under a CO2 fertilisation effect scenario). While more complex changes seem to characterise potential maize yield, with large areas in the region showing a weak-to-moderate decrease.

  16. Multiyear high-resolution carbon exchange over European croplands from the integration of observed crop yields into CarbonTracker Europe

    NASA Astrophysics Data System (ADS)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; de Wit, Allard; Peters, Wouter

    2016-04-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily-to-seasonal time scales. Not only do crops occupy one fourth of the European land area, but their photosynthesis and respiration are large and affect CO2 mole fractions at nearly every atmospheric CO2 monitoring site. A better description of this crop carbon exchange in our CarbonTracker Europe data assimilation system - which currently treats crops as unmanaged grasslands - could strongly improve its ability to constrain terrestrial carbon fluxes. Available long-term observations of crop yield, harvest, and cultivated area allow such improvements, when combined with the new crop-modeling framework we present. This framework can model the carbon fluxes of 10 major European crops at high spatial and temporal resolution, on a 12x12 km grid and 3-hourly time-step. The development of this framework is threefold: firstly, we optimize crop growth using the process-based WOrld FOod STudies (WOFOST) agricultural crop growth model. Simulated yields are downscaled to match regional crop yield observations from the Statistical Office of the European Union (EUROSTAT) by estimating a yearly regional parameter for each crop species: the yield gap factor. This step allows us to better represent crop phenology, to reproduce the observed multiannual European crop yields, and to construct realistic time series of the crop carbon fluxes (gross primary production, GPP, and autotrophic respiration, Raut) on a fine spatial and temporal resolution. Secondly, we combine these GPP and Raut fluxes with a simple soil respiration model to obtain the total ecosystem respiration (TER) and net ecosystem exchange (NEE). And thirdly, we represent the horizontal transport of carbon that follows crop harvest and its back-respiration into the atmosphere during harvest consumption. We distribute this carbon using observations of the density of human and ruminant populations from EUROSTAT. We assess the model's ability to represent the seasonal GPP, TER and NEE fluxes using observations at 6 European FluxNet winter wheat and grain maize sites and compare it with the fluxes of the current terrestrial carbon cycle model of CarbonTracker Europe: the Simple Biosphere - Carnegie-Ames-Stanford Approach (SiBCASA) model. We find that the new model framework provides a detailed, realistic, and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal, and serve as a new cropland component in CarbonTracker Europe flux estimates.

  17. Can novel management practice improve soil and environmental quality and sustain crop yield simultaneously?

    USDA-ARS?s Scientific Manuscript database

    Little is known about management practices that can simultaneously improve soil and environmental quality and sustain crop yields. The effect of a combination of tillage, crop rotation, and N fertilization on soil C and N, global warming potential (GWP), greenhouse gas intensity (GHGI), and malt bar...

  18. Long-term conventional and no-tillage effects on field hydrology and yields of a dryland crop rotation

    USDA-ARS?s Scientific Manuscript database

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch, SM, tillage as a result of improved soil conditions and water conservation, but information on long-term tillage effects on field hydrology and sustained crop production are needed. Our objective ...

  19. Cell Number Regulator1 Affects Plant and Organ Size in Maize: Implications for Crop Yield Enhancement and Heterosis[C][W

    PubMed Central

    Guo, Mei; Rupe, Mary A.; Dieter, Jo Ann; Zou, Jijun; Spielbauer, Daniel; Duncan, Keith E.; Howard, Richard J.; Hou, Zhenglin; Simmons, Carl R.

    2010-01-01

    Genes involved in cell number regulation may affect plant growth and organ size and, ultimately, crop yield. The tomato (genus Solanum) fruit weight gene fw2.2, for instance, governs a quantitative trait locus that accounts for 30% of fruit size variation, with increased fruit size chiefly due to increased carpel ovary cell number. To expand investigation of how related genes may impact other crop plant or organ sizes, we identified the maize (Zea mays) gene family of putative fw2.2 orthologs, naming them Cell Number Regulator (CNR) genes. This family represents an ancient eukaryotic family of Cys-rich proteins containing the PLAC8 or DUF614 conserved motif. We focused on native expression and transgene analysis of the two maize members closest to Le-fw2.2, namely, CNR1 and CNR2. We show that CNR1 reduced overall plant size when ectopically overexpressed and that plant and organ size increased when its expression was cosuppressed or silenced. Leaf epidermal cell counts showed that the increased or decreased transgenic plant and organ size was due to changes in cell number, not cell size. CNR2 expression was found to be negatively correlated with tissue growth activity and hybrid seedling vigor. The effects of CNR1 on plant size and cell number are reminiscent of heterosis, which also increases plant size primarily through increased cell number. Regardless of whether CNRs and other cell number–influencing genes directly contribute to, or merely mimic, heterosis, they may aid generation of more vigorous and productive crop plants. PMID:20400678

  20. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density.

    PubMed

    Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability : how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.

Top