Sneessens, I; Veysset, P; Benoit, M; Lamadon, A; Brunschwig, G
2016-11-01
Crop-livestock production is claimed more sustainable than specialized production systems. However, the presence of controversial studies suggests that there must be conditions of mixing crop and livestock productions to allow for higher sustainable performances. Whereas previous studies focused on the impact of crop-livestock interactions on performances, we posit here that crop-livestock organization is a key determinant of farming system sustainability. Crop-livestock organization refers to the percentage of the agricultural area that is dedicated to each production. Our objective is to investigate if crop-livestock organization has both a direct and an indirect impact on mixed crop-livestock (MC-L) sustainability. In that objective, we build a whole-farm model parametrized on representative French sheep and crop farming systems in plain areas (Vienne, France). This model permits simulating contrasted MC-L systems and their subsequent sustainability through the following indicators of performance: farm income, production, N balance, greenhouse gas (GHG) emissions (/kg product) and MJ consumption (/kg product). Two MC-L systems were simulated with contrasted crop-livestock organizations (MC20-L80: 20% of crops; MC80-L20: 80% of crops). A first scenario - constraining no crop-livestock interactions in both MC-L systems - permits highlighting that crop-livestock organization has a significant direct impact on performances that implies trade-offs between objectives of sustainability. Indeed, the MC80-L20 system is showing higher performances for farm income (+44%), livestock production (+18%) and crop GHG emissions (-14%) whereas the MC20-L80 system has a better N balance (-53%) and a lower livestock MJ consumption (-9%). A second scenario - allowing for crop-livestock interactions in both MC20-L80 and MC80-L20 systems - stated that crop-livestock organization has a significant indirect impact on performances. Indeed, even if crop-livestock interactions permit improving performances, crop-livestock organization influences the capacity of MC-L systems to benefit from crop-livestock interactions. As a consequence, we observed a decreasing performance trade-off between MC-L systems for farm income (-4%) and crop GHG emissions (-10%) whereas the gap increases for nitrogen balance (+23%), livestock production (+6%) - MJ consumption (+16%) - GHG emissions (+5%) and crop MJ consumption (+5%). However, the indirect impact of crop-livestock organization doesn't reverse the trend of trade-offs between objectives of sustainability determined by the direct impact of crop-livestock organization. As a conclusion, crop-livestock organization is a key factor that has to be taken into account when studying the sustainability of mixed crop-livestock systems.
Cover crops support ecological intensification of arable cropping systems
NASA Astrophysics Data System (ADS)
Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.
2017-02-01
A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.
Long-term cropping systems study
USDA-ARS?s Scientific Manuscript database
This long-term study has been conducted on the Agronomy Farm at ARDC since the early 1970’s. In the beginning, the objectives were mainly related to crop production as affected by different cropping systems. The cropping systems included in the study are Continuous Corn, Soybean, and Sorghum; 2-year...
A bioenergy feedstock/vegetable double-cropping system
USDA-ARS?s Scientific Manuscript database
Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...
Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Alison E.; Hofmockel, Kirsten S.
2017-03-01
Diversifying biologically simple cropping systems often entails altering other management practices, such as tillage regime or nitrogen (N) source. We hypothesized that the interaction of crop rotation, N source, and tillage in diversified cropping systems would promote microbially-mediated soil C and N cycling while attenuating inorganic N pools. We studied a cropping systems trial in its 10th year in Iowa, USA, which tested a 2-yr cropping system of corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] managed with conventional fertilizer N inputs and conservation tillage, a 3-yr cropping system of corn/soybean/small grain + red clover (Trifolium pratense L.), and amore » 4-yr cropping system of corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa. Three year and 4-yr cropping systems were managed with composted manure, reduced N fertilizer inputs, and periodic moldboard ploughing. We assayed soil microbial biomass carbon (MBC) and N (MBN), soil extractable NH4 and NO3, gross proteolytic activity of native soil, and potential activity of six hydrolytic enzymes eight times during the growing season. At the 0-20cm depth, native protease activity in the 4-yr cropping system was greater than in the 2-yr cropping system by a factor of 7.9, whereas dissolved inorganic N pools did not differ between cropping systems (P = 0.292). At the 0-20cm depth, MBC and MBN the 4-yr cropping system exceeded those in the 2-yr cropping system by factors of 1.51 and 1.57. Our findings suggest that diversified crop cropping systems, even when periodically moldboard ploughed, support higher levels of microbial biomass, greater production of bioavailable N from SOM, and a deeper microbially active layer than less diverse cropping systems.« less
Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya.
Richard, Kyalo; Abdel-Rahman, Elfatih M; Subramanian, Sevgan; Nyasani, Johnson O; Thiel, Michael; Jozani, Hosein; Borgemeister, Christian; Landmann, Tobias
2017-11-03
Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.
USDA-ARS?s Scientific Manuscript database
In the Mid-Atlantic region, there is increasing interest in the use of relay-cropping strategies to establish cover crops in corn cropping systems. Recent studies have demonstrated the potential to establish annual ryegrass and red clover cover crops at the V5 corn growth stage using a high-clearan...
Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems
Reckling, Moritz; Bergkvist, Göran; Watson, Christine A.; Stoddard, Frederick L.; Zander, Peter M.; Walker, Robin L.; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann
2016-01-01
Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870
Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems.
Reckling, Moritz; Bergkvist, Göran; Watson, Christine A; Stoddard, Frederick L; Zander, Peter M; Walker, Robin L; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann
2016-01-01
Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.
Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai
2016-01-01
As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.
NASA Astrophysics Data System (ADS)
Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.
2014-12-01
China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national agriculture adaptation strategy decisions.
Ye, Qing; Yang, Xiaoguang; Dai, Shuwei; ...
2015-06-05
Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.
Mixed crop-livestock systems: an economic and environmental-friendly way of farming?
Ryschawy, J; Choisis, N; Choisis, J P; Joannon, A; Gibon, A
2012-10-01
Intensification and specialisation of agriculture in developed countries enabled productivity to be improved but had detrimental impacts on the environment and threatened the economic viability of a huge number of farms. The combination of livestock and crops, which was very common in the past, is assumed to be a viable alternative to specialised livestock or cropping systems. Mixed crop-livestock systems can improve nutrient cycling while reducing chemical inputs and generate economies of scope at farm level. Most assumptions underlying these views are based on theoretical and experimental evidence. Very few assessments of their environmental and economic advantages have nevertheless been undertaken in real-world farming conditions. In this paper, we present a comparative assessment of the environmental and economic performances of mixed crop-livestock farms v. specialised farms among the farm population of the French 'Coteaux de Gascogne'. In this hilly region, half of the farms currently use a mixed crop-livestock system including beef cattle and cash crops, the remaining farms being specialised in either crops or cattle. Data were collected through an exhaustive survey of farms located in our study area. The economic performances of farming systems were assessed on 48 farms on the basis of (i) overall gross margin, (ii) production costs and (iii) analysis of the sensitivity of gross margins to fluctuations in the price of inputs and outputs. The environmental dimension was analysed through (i) characterisation of farmers' crop management practices, (ii) analysis of farm land use diversity and (iii) nitrogen farm-gate balance. Local mixed crop-livestock farms did not have significantly higher overall gross margins than specialised farms but were less sensitive than dairy and crop farms to fluctuations in the price of inputs and outputs considered. Mixed crop-livestock farms had lower costs than crop farms, while beef farms had the lowest costs as they are grass-based systems. Concerning crop management practices, our results revealed an intensification gradient from low to high input farming systems. Beyond some general trends, a wide range of management practices and levels of intensification were observed among farms with a similar production system. Mixed crop-livestock farms were very heterogeneous with respect to the use of inputs. Nevertheless, our study revealed a lower potential for nitrogen pollution in mixed crop-livestock and beef production systems than in dairy and crop farming systems. Even if a wide variability exists within system, mixed crop-livestock systems appear to be a way for an environmental and economical sustainable agriculture.
Greenhouse gas emissions from traditional and biofuels cropping systems
USDA-ARS?s Scientific Manuscript database
Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...
Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu
2018-01-01
We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.
The century experiment: the first twenty years of UC Davis' Mediterranean agroecological experiment.
Wolf, Kristina M; Torbert, Emma E; Bryant, Dennis; Burger, Martin; Denison, R Ford; Herrera, Israel; Hopmans, Jan; Horwath, Will; Kaffka, Stephen; Kong, Angela Y Y; Norris, R F; Six, Johan; Tomich, Thomas P; Scow, Kate M
2018-02-01
The Century Experiment at the Russell Ranch Sustainable Agriculture Facility at the University of California, Davis provides long-term agroecological data from row crop systems in California's Central Valley starting in 1993. The Century Experiment was initially designed to study the effects of a gradient of water and nitrogen availability on soil properties and crop performance in ten different cropping systems to measure tradeoffs and synergies between agricultural productivity and sustainability. Currently systems include 11 different cropping systems-consisting of four different crops and a cover crop mixture-and one native grass system. This paper describes the long-term core data from the Century Experiment from 1993-2014, including crop yields and biomass, crop elemental contents, aerial-photo-based Normalized Difference Vegetation Index data, soil properties, weather, chemical constituents in irrigation water, winter weed populations, and operational data including fertilizer and pesticide application amounts and dates, planting dates, planting quantity and crop variety, and harvest dates. This data set represents the only known long-term set of data characterizing food production and sustainability in irrigated and rainfed Mediterranean annual cropping systems. There are no copyright restrictions associated with the use of this dataset. © 2018 by the Ecological Society of America.
Network-assisted crop systems genetics: network inference and integrative analysis.
Lee, Tak; Kim, Hyojin; Lee, Insuk
2015-04-01
Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tillage as a tool to manage crop residue: impact on sugar beet production.
NASA Astrophysics Data System (ADS)
Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard
2015-04-01
Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.
NASA Astrophysics Data System (ADS)
Chen, Bin
2018-04-01
Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.
Mohammadzadeh, Arash; Mahdavi Damghani, Abdolmajid; Vafabakhsh, Javad; Deihimfard, Reza
2017-07-01
Efficient use of energy in farming systems is one of the most important implications for decreasing greenhouse gas (GHG) emissions and mitigating global warming (GW). This paper describes the energy use patterns, analyze the economics, and report global warming potential effects of major crop production systems in East Azerbaijan province, Iran. For this purpose, 110 farmers whose main activity was major crop production in the region, including wheat, barley, carrot, tomato, onion, potato, alfalfa, corn silage, canola, and saffron, were surveyed. Some other data was obtained from the Ministry of Agriculture Jihad of Iran. Results showed that, in terms of total energy input, onion (87,556 Mj ha -1 ) and potato (80,869 Mj ha -1 ) production systems were more energy-intensive than other crops. Among the studied crops, the highest values of net return (6563.8 $ ha -1 ) and benefit/cost ratio (1.95) were related to carrot and corn silage production systems, respectively. Studies have also shown that onion and saffron production systems emit the highest (5332.6 kg CO2eq ha -1 ) and lowest (646.24 kg CO 2 eq ha -1 ) CO 2 eq. emission, respectively. When it was averaged across crops, diesel fuel accounted for the greatest GHG contribution with 43% of the total, followed by electric power (28%) and nitrogen fertilizer (21%). In the present study, eco-efficiency was calculated as a ratio of the gross production value and global warming potential effect for the studied crops. Out of all the studied crops, the highest values of eco-efficiency were calculated to be 8.65 $ kg CO 2 eq -1 for the saffron production system followed by the carrot (3.65 $ kg CO 2 eq -1 ) production. Generally, from the aspect of energy balance and use efficiency, the alfalfa production system was the best; however, from an economical point of view, the carrot production system was better than the other crops.
Soler, C M Tojo; Bado, V B; Traore, K; Bostick, W McNair; Jones, J W; Hoogenboom, G
2011-10-01
In recent years, simulation models have been used as a complementary tool for research and for quantifying soil carbon sequestration under widely varying conditions. This has improved the understanding and prediction of soil organic carbon (SOC) dynamics and crop yield responses to soil and climate conditions and crop management scenarios. The goal of the present study was to estimate the changes in SOC for different cropping systems in West Africa using a simulation model. A crop rotation experiment conducted in Farakô-Ba, Burkina Faso was used to evaluate the performance of the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for simulating yield of different crops. Eight crop rotations that included cotton, sorghum, peanut, maize and fallow, and three different management scenarios, one without N (control), one with chemical fertilizer (N) and one with manure applications, were studied. The CSM was able to simulate the yield trends of various crops, with inconsistencies for a few years. The simulated SOC increased slightly across the years for the sorghum-fallow rotation with manure application. However, SOC decreased for all other rotations except for the continuous fallow (native grassland), in which the SOC remained stable. The model simulated SOC for the continuous fallow system with a high degree of accuracy normalized root mean square error (RMSE)=0·001, while for the other crop rotations the simulated SOC values were generally within the standard deviation (s.d.) range of the observed data. The crop rotations that included a supplemental N-fertilizer or manure application showed an increase in the average simulated aboveground biomass for all crops. The incorporation of this biomass into the soil after harvest reduced the loss of SOC. In the present study, the observed SOC data were used for characterization of production systems with different SOC dynamics. Following careful evaluation of the CSM with observed soil organic matter (SOM) data similar to the study presented here, there are many opportunities for the application of the CSM for carbon sequestration and resource management in Sub-Saharan Africa.
NASA Astrophysics Data System (ADS)
Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping
2017-02-01
The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr-1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.
NASA Astrophysics Data System (ADS)
Chen, C. R.; Chen, C. F.; Nguyen, S. T.
2014-12-01
The rice cropping systems in the Vietnamese Mekong Delta (VMD) has been undergoing major changes to cope with developing agro-economics, increasing population and changing climate. Information on rice cropping practices and changes in cropping systems is critical for policymakers to devise successful strategies to ensure food security and rice grain exports for the country. The primary objective of this research is to map rice cropping systems and predict future dynamics of rice cropping systems using the MODIS time-series data of 2002, 2006, and 2010. First, a phenology-based classification approach was applied for the classification and assessment of rice cropping systems in study region. Second, the Cellular Automata-Markov (CA-Markov) models was used to simulate the rice-cropping system map of VMD for 2010. The comparisons between the classification maps and the ground reference data indicated satisfactory results with overall accuracies and Kappa coefficients, respectively, of 81.4% and 0.75 for 2002, 80.6% and 0.74 for 2006 and 85.5% and 0.81 for 2010. The simulated map of rice cropping system for 2010 was extrapolated by CA-Markov model based on the trend of rice cropping systems during 2002~2006. The comparison between predicted scenario and classification map for 2010 presents a reasonably closer agreement. In conclusion, the CA-Markov model performs a powerful tool for the dynamic modeling of changes in rice cropping systems, and the results obtained demonstrate that the approach produces satisfactory results in terms of accuracy, quantitative forecast and spatial pattern changes. Meanwhile, the projections of the future changes would provide useful inputs to the agricultural policy for effective management of the rice cropping practices in VMD.
NASA Astrophysics Data System (ADS)
Bellón, Beatriz; Bégué, Agnès; Lo Seen, Danny; Lebourgeois, Valentine; Evangelista, Balbino Antônio; Simões, Margareth; Demonte Ferraz, Rodrigo Peçanha
2018-06-01
Cropping systems' maps at fine scale over large areas provide key information for further agricultural production and environmental impact assessments, and thus represent a valuable tool for effective land-use planning. There is, therefore, a growing interest in mapping cropping systems in an operational manner over large areas, and remote sensing approaches based on vegetation index time series analysis have proven to be an efficient tool. However, supervised pixel-based approaches are commonly adopted, requiring resource consuming field campaigns to gather training data. In this paper, we present a new object-based unsupervised classification approach tested on an annual MODIS 16-day composite Normalized Difference Vegetation Index time series and a Landsat 8 mosaic of the State of Tocantins, Brazil, for the 2014-2015 growing season. Two variants of the approach are compared: an hyperclustering approach, and a landscape-clustering approach involving a previous stratification of the study area into landscape units on which the clustering is then performed. The main cropping systems of Tocantins, characterized by the crop types and cropping patterns, were efficiently mapped with the landscape-clustering approach. Results show that stratification prior to clustering significantly improves the classification accuracies for underrepresented and sparsely distributed cropping systems. This study illustrates the potential of unsupervised classification for large area cropping systems' mapping and contributes to the development of generic tools for supporting large-scale agricultural monitoring across regions.
NASA Astrophysics Data System (ADS)
Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali
2013-11-01
Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.
Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.
1996-01-01
The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141
Liu, Luo; Xu, Xinliang; Zhuang, Dafang; Chen, Xi; Li, Shuang
2013-01-01
The multiple cropping practice is essential to agriculture because it has been shown to significantly increase the grain yield and promote agricultural economic development. In this study, potential multiple cropping systems in China are calculated based on meteorological observation data by using the Agricultural Ecology Zone (AEZ) model. Following this, the changes in the potential cropping systems in response to climate change between the 1960s and the 2010s were subsequently analyzed. The results indicate that the changes of potential multiple cropping systems show tremendous heterogeneity in respect to the spatial pattern in China. A key finding is that the magnitude of change of the potential cropping systems showed a pattern of increase both from northern China to southern China and from western China to eastern China. Furthermore, the area found to be suitable only for single cropping decreased, while the area suitable for triple cropping increased significantly from the 1960s to the 2000s. During the studied period, the potential multiple cropping index (PMCI) gap between rain-fed and irrigated scenarios increased from 18% to 24%, which indicated noticeable growth of water supply limitations under the rain-fed scenario. The most significant finding of this research was that from the 1960s to the 2000s climate change had led to a significant increase of PMCI by 13% under irrigated scenario and 7% under rain-fed scenario across the whole of China. Furthermore, the growth of the annual mean temperature is identified as the main reason underlying the increase of PMCI. It has also been noticed that across China the changes of potential multiple cropping systems under climate change were different from region to region.
Estimating yield gaps at the cropping system level.
Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G
2017-05-01
Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.
Oates, Lawrence G.; Duncan, David S.; Sanford, Gregg R.; ...
2016-10-03
The choice of crops and their management can strongly influence soil microbial communities and their processes. Here, we used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and four perennial crops (switchgrass, miscanthus, hybrid poplar, and restored prairie). Partial- and no-stover removal were compared for the corn system, while N-additions were compared to unfertilized plots for the perennial cropping systems. Arbuscular mycorrhizal fungi (AMF) and Gram-negative biomass was higher inmore » unfertilized perennial grass systems, especially in switchgrass and prairie. Gram-positive bacterial biomass decreased in all systems relative to baseline values in surface soils (0–10 cm), but not subsurface soils (10–25 cm). Overall microbial composition was similar between the two soil depths. Our findings demonstrate the capacity of unfertilized perennial cropping systems to recreate microbial composition found in undisturbed soil environments and indicate how strongly agroecosystem management decisions such as N addition and plant community composition can influence soil microbial assemblages.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oates, Lawrence G.; Duncan, David S.; Sanford, Gregg R.
The choice of crops and their management can strongly influence soil microbial communities and their processes. Here, we used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and four perennial crops (switchgrass, miscanthus, hybrid poplar, and restored prairie). Partial- and no-stover removal were compared for the corn system, while N-additions were compared to unfertilized plots for the perennial cropping systems. Arbuscular mycorrhizal fungi (AMF) and Gram-negative biomass was higher inmore » unfertilized perennial grass systems, especially in switchgrass and prairie. Gram-positive bacterial biomass decreased in all systems relative to baseline values in surface soils (0–10 cm), but not subsurface soils (10–25 cm). Overall microbial composition was similar between the two soil depths. Our findings demonstrate the capacity of unfertilized perennial cropping systems to recreate microbial composition found in undisturbed soil environments and indicate how strongly agroecosystem management decisions such as N addition and plant community composition can influence soil microbial assemblages.« less
Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping
2017-01-01
The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) –summer maize system. The M-M system improved yield by 14–31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr−1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions. PMID:28155860
Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health
Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt
2012-01-01
Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739
Increasing cropping system diversity balances productivity, profitability and environmental health.
Davis, Adam S; Hill, Jason D; Chase, Craig A; Johanns, Ann M; Liebman, Matt
2012-01-01
Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003-2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems.
USDA-ARS?s Scientific Manuscript database
Producers in the northern Plains are diversifying and intensifying traditional wheat-based cropping systems by reducing summer fallow and including legume and oilseed crops. This study examined the influence of diversification and intensification on spring wheat yield and quality, and associated ins...
Integrating sheep grazing into cereal-based crop rotations: spring wheat yields and weed communities
USDA-ARS?s Scientific Manuscript database
Crop diversification and integration of livestock into cropping systems may improve the economic and environmental sustainability of agricultural systems. However, few studies have examined the integration of these practices in the semiarid areas of the Northern Great Plains (NGP). A 3-yr experiment...
Good, J M; Murphy, W S; Brodie, B B
1973-04-01
During a 6-year study of 1-, 2-, and 3-year crop rotations, population densities of Pratylenchus brachyurus, Trichodorus christiei, and Meloidogyne incognita were significantly affected by the choice of crops but not by length of crop rotation. The density of P. brachyurus and T. christiei increased rapidly on milo (Sorghum vulgate). In addition, populations of P. brachyurus increased significantly in cropping systems that involved crotalaria (C. rnucronata), millet (Setaria italica), and sudangrass (Sorghum sudanense). Lowest numbers of P. brachyurus occurred where okra (Hibiscus esculentus) was grown or where land was fallow. The largest increase in populations of T. christiei occurred in cropping systems that involved millet, sudangrass, and okra whereas the smallest increase occurred in cropping systems that involved crotalaria or fallow. A winter cover of rye (Secale cereale) had no distinguishable effect on population densities of P. brachyurus or T. christiei. Meloidogyne incognita was detected during the fourth year in both newly cleared and old agricultural land when okra was included in the cropping system. Detectable populations of M. incognita did not develop in any of the other cropping systems. Yields of tomato transplants were higher on the newly cleared land than on the old land. Highest yields were obtained when crotalaria was included in the cropping system. Lowest yields were obtained when milo, or fallow were included in the cropping system. Length of rotation had no distinguishable effect on yields of tomato transplants.
NASA Technical Reports Server (NTRS)
Pitts, D. E.; Badhwar, G.
1980-01-01
The development of agricultural remote sensing systems requires knowledge of agricultural field size distributions so that the sensors, sampling frames, image interpretation schemes, registration systems, and classification systems can be properly designed. Malila et al. (1976) studied the field size distribution for wheat and all other crops in two Kansas LACIE (Large Area Crop Inventory Experiment) intensive test sites using ground observations of the crops and measurements of their field areas based on current year rectified aerial photomaps. The field area and size distributions reported in the present investigation are derived from a representative subset of a stratified random sample of LACIE sample segments. In contrast to previous work, the obtained results indicate that most field-size distributions are not log-normally distributed. The most common field size observed in this study was 10 acres for most crops studied.
Proteomics and plant disease: advances in combating a major threat to the global food supply.
Rampitsch, Christof; Bykova, Natalia V
2012-02-01
The study of plant disease and immunity is benefiting tremendously from proteomics. Parallel streams of research from model systems, from pathogens in vitro and from the relevant pathogen-crop interactions themselves have begun to reveal a model of how plants succumb to invading pathogens and how they defend themselves without the benefit of a circulating immune system. In this review, we discuss the contribution of proteomics to these advances, drawing mainly on examples from crop-fungus interactions, from Arabidopsis-bacteria interactions, from elicitor-based model systems and from pathogen studies, to highlight also the important contribution of non-crop systems to advancing crop protection. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Timely precipitation drives cover crop outcomes
USDA-ARS?s Scientific Manuscript database
Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...
Ward, M.H.; Nuckols, J.R.; Weigel, S. J.; Cantor, K.P.; Miller, Roger S.
2000-01-01
Pesticides used in agriculture may cause adverse health effects among the population living near agricultural areas. However, identifying the populations most likely to be exposed is difficult. We conducted a feasibility study to determine whether satellite imagery could be used to reconstruct historical crop patterns. We used historical Farm Service Agency records as a source of ground reference data to classify a late summer 1984 satellite image into crop species in a three-county area in south central Nebraska. Residences from a population-based epidemiologic study of non-Hodgkin lymphoma were located on the crop maps using a geographic information system (GIS). Corn, soybeans, sorghum, and alfalfa were the major crops grown in the study area. Eighty-five percent of residences could be located, and of these 22% had one of the four major crops within 500 m of the residence, an intermediate distance for the range of drift effects from pesticides applied in agriculture. We determined the proximity of residences to specific crop species and calculated crop-specific probabilities of pesticide use based on available data. This feasibility study demonstrated that remote sensing data and historical records on crop location can be used to create historical crop maps. The crop pesticides that were likely to have been applied can be estimated when information about crop-specific pesticide use is available. Using a GIS, zones of potential exposure to agricultural pesticides and proximity measures can be determined for residences in a study.
Adapting crop rotations to climate change in regional impact modelling assessments.
Teixeira, Edmar I; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank
2018-03-01
The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used to develop improved regional impact assessments for situations where multi-crop rotations better represent predominant agricultural systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Mobile Phenotyping System Using an Aeromotively Stabilized Cable-Driven Robot
NASA Astrophysics Data System (ADS)
Newman, M. B.; Zygielbaum, A. I.
2017-12-01
Agricultural researchers are constantly attempting to generate superior agricultural crops. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering with their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of Nebraska - Lincoln (UNL), uses a system of poles, cables, and winches to support and maneuver a sensor platform above the crops at an outdoor phenotyping site. In this work, we improve upon the UNL outdoor phenotyping system presenting the concept design for a mobile, cable-driven phenotyping system as opposed to a permanent phenotyping facility. One major challenge in large-scale, cable-driven robots is stability of the end-effector. As a result, this mobile system seeks to use a novel method of end-effector stabilization using an onboard rotor drive system, herein referred to as the Instrument Platform Aeromotive Stabilization System (IPASS). A prototype system is developed and analyzed to determine the viability of IPASS.
Diversifying crop rotations with pulses enhances system productivity
Gan, Yantai; Hamel, Chantal; O’Donovan, John T.; Cutforth, Herb; Zentner, Robert P.; Campbell, Con A.; Niu, Yining; Poppy, Lee
2015-01-01
Agriculture in rainfed dry areas is often challenged by inadequate water and nutrient supplies. Summerfallowing has been used to conserve rainwater and promote the release of nitrogen via the N mineralization of soil organic matter. However, summerfallowing leaves land without any crops planted for one entire growing season, creating lost production opportunity. Additionally, summerfallowing has serious environmental consequences. It is unknown whether alternative systems can be developed to retain the beneficial features of summerfallowing with little or no environmental impact. Here, we show that diversifying cropping systems with pulse crops can enhance soil water conservation, improve soil N availability, and increase system productivity. A 3-yr cropping sequence study, repeated for five cycles in Saskatchewan from 2005 to 2011, shows that both pulse- and summerfallow-based systems enhances soil N availability, but the pulse system employs biological fixation of atmospheric N2, whereas the summerfallow-system relies on ‘mining’ soil N with depleting soil organic matter. In a 3-yr cropping cycle, the pulse system increased total grain production by 35.5%, improved protein yield by 50.9%, and enhanced fertilizer-N use efficiency by 33.0% over the summerfallow system. Diversifying cropping systems with pulses can serve as an effective alternative to summerfallowing in rainfed dry areas. PMID:26424172
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Qing; Yang, Xiaoguang; Dai, Shuwei
Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.
RF-CLASS: A Remote-sensing-based Interoperable Web service system for Flood Crop Loss Assessment
NASA Astrophysics Data System (ADS)
Di, L.; Yu, G.; Kang, L.
2014-12-01
Flood is one of the worst natural disasters in the world. Flooding often causes significant crop loss over large agricultural areas in the United States. Two USDA agencies, the National Agricultural Statistics Service (NASS) and Risk Management Agency (RMA), make decisions on flood statistics, crop insurance policy, and recovery management by collecting, analyzing, reporting, and utilizing flooded crop acreage and crop loss information. NASS has the mandate to report crop loss after all flood events. RMA manages crop insurance policy and uses crop loss information to guide the creation of the crop insurance policy and the aftermath compensation. Many studies have been conducted in the recent years on monitoring floods and assessing the crop loss due to floods with remote sensing and geographic information technologies. The Remote-sensing-based Flood Crop Loss Assessment Service System (RF-CLASS), being developed with NASA and USDA support, aims to significantly improve the post-flood agricultural decision-making supports in USDA by integrating and advancing the recently developed technologies. RF-CLASS will operationally provide information to support USDA decision making activities on collecting and archiving flood acreage and duration, recording annual crop loss due to flood, assessing the crop insurance rating areas, investigating crop policy compliance, and spot checking of crop loss claims. This presentation will discuss the remote sensing and GIS based methods for deriving the needed information to support the decision making, the RF-CLASS cybersystem architecture, the standards and interoperability arrangements in the system, and the current and planned capabilities of the system.
USDA-ARS?s Scientific Manuscript database
Integrated crop-livestock systems can help achieve greater environmental quality from disparate crop and livestock systems by recycling nutrients and taking advantage of synergies between systems. We investigated crop and animal production responses in integrated crop-livestock systems with two typ...
Islam, Md. Monirul; Hasanuzzaman, Mirza
2014-01-01
This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702
Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.
Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan
2015-12-01
Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.
NASA Astrophysics Data System (ADS)
Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.
2013-02-01
The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).
Climate change impacts on dryland cropping systems in the central Great Plains, USA
USDA-ARS?s Scientific Manuscript database
Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of GCM projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) at Akro...
USDA-ARS?s Scientific Manuscript database
Integration and synthesis of data accruing from complex alternative crop rotation experiments across locations and climates is a challenge to agriculturists. System simulation models are potential tools to address this challenge. In this study, we simulated three long-term (1991 to 2008) dryland c...
NASA Technical Reports Server (NTRS)
Sand, F.; Christie, R.
1975-01-01
Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.
Production versus environmental impact trade-offs for Swiss cropping systems: a model-based approach
NASA Astrophysics Data System (ADS)
Necpalova, Magdalena; Lee, Juhwan; Six, Johan
2017-04-01
There is a growing need to improve sustainability of agricultural systems. The key focus remains on optimizing current production systems in order to deliver food security at low environmental costs. It is therefore essential to identify and evaluate agricultural management practices for their potential to maintain or increase productivity and mitigate climate change and N pollution. Previous research on Swiss cropping systems has been concentrated on increasing crop productivity and soil fertility. Thus, relatively little is known about management effects on net soil greenhouse gas (GHG) emissions and environmental N losses in the long-term. The aim of this study was to extrapolate findings from Swiss long-term field experiments and to evaluate the system-level sustainability of a wide range of cropping systems under conditions beyond field experimentation by comparing their crop productivity and impacts on soil carbon, net soil GHG emissions, NO3 leaching and soil N balance over 30 years. The DayCent model was previously parameterized for common Swiss crops and crop-specific management practices and evaluated for productivity, soil carbon dynamics and N2O emissions from Swiss cropping systems. Based on a prediction uncertainty criterion for crop productivity and soil carbon (rRMSE<0.3), in total 39 cropping systems were selected. Each system was evaluated under soil and climate conditions representative of Therwil, Frick, Reckenholz and Changins sites with four replications. Soil inputs were sampled from normal probability distributions defined by available site-specific data using the Latin hypercube sampling method. Net soil GHG emissions were derived from changes in soil carbon, N2O emissions and CH4 oxidation and the annual net global warming potential (GWP) was calculated using IPCC (2014). For statistical analyses, the systems were grouped into the following categories: (a) farming system: organic (ORG), integrated (IN) and mineral (MIN); (b) tillage: conventional (CT), reduced (RT) and no-till (NT); (c) cover cropping: no cover cropping (NCC), winter cover cropping (CC) and winter green manuring (GM). The productivity of Swiss cropping systems was mainly driven by total N inputs to the systems. The GWP of systems ranged from -450 to 1309 kg CO2 eq ha-1 yr-1. All studied systems, except for ORG-RT-GM systems, acted as a source of net soil GHG emissions with the relative contribution of soil N2O emissions to GWP of more than 60%. The GWP of systems with CT decreased consistently with increasing use of organic manures (MIN>IN>ORG). NT relative to RT management showed to be more effective in reducing GWP from MIN systems due to reduced soil N2O emissions and positive effects on soil C sequestration. GM relative to CC management was shown to be more effective in mitigating NO3 leaching and overall N losses from MIN systems; particularly in combination with NT management. GM management also increased soil N balance of MIN and ORG systems relative to CC management, which caused an additional N removal through CC harvest. Our results suggest that there is a substantial potential for improvement and optimizing the sustainability of Swiss cropping systems across sites especially in the context of climate change mitigation and adaptation.
Organic management systems to enhance ecosystem services
USDA-ARS?s Scientific Manuscript database
Organic grain cropping systems can enhance a number of ecosystem services compared to conventional tilled systems. Recent results from a limited number of long-term agricultural research (LTAR) studies suggest that organic grain cropping systems can also increase several ecosystem services relative...
Modeling and control for closed environment plant production systems
NASA Technical Reports Server (NTRS)
Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)
2002-01-01
A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.
Semu, Ernest; Mrema, Jerome P.; Nalivata, Patson C.
2017-01-01
Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM) fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2) as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher (P < 0.05) VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies. PMID:28584528
Njira, Keston O W; Semu, Ernest; Mrema, Jerome P; Nalivata, Patson C
2017-01-01
Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM) fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2) as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher ( P < 0.05) VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies.
HERBICIDE SENSITIVITY OF ECHINOCHLOA CRUS-GALLI POPULATIONS: A COMPARISON BETWEEN CROPPING SYSTEMS.
Claerhout, S; De Cauwer, B; Reheul, D
2014-01-01
Echinochloa crus-galli populations exhibit high morphological variability and their response to herbicides varies from field to field. Differential response to herbicides could reflect differences in selection pressure, caused by years of cropping system related herbicide usage. This study investigates the relation between herbicide sensitivity of Echinochloa crus-galli populations and the cropping system to which they were subjected. The herbicide sensitivity of Echinochloa crus-galli was evaluated for populations collected on 18 fields, representing three cropping systems, namely (1) a long-term organic cropping system, (2) a conventional cropping system with corn in crop rotation or (3) a conventional cropping system with long-term monoculture of corn. Each cropping system was represented by 6 E. crus-galli populations. All fields were located on sandy soils. Dose-response pot experiments were conducted in the greenhouse to assess the effectiveness of three foliar-applied corn herbicides: nicosulfuron (ALS-inhibitor), cycloxydim (ACCase-inhibitor) and topramezone (HPPD-inhibitor), and two soil-applied corn herbicides: S-metolachlor and dimethenamid-P (both VLCFA-inhibitors). Foliar-applied herbicides were tested at a quarter, half and full recommended doses. Soil-applied herbicides were tested within a dose range of 0-22.5 g a.i. ha(-1) for S-metolachlor and 0-45 g a.i. ha(-1) for dimethenamid-P. Foliar-applied herbicides were applied at the three true leaves stage. Soil-applied herbicides were treated immediately after sowing the radicle-emerged seeds. All experiments were performed twice. The foliage dry weight per pot was determined four weeks after treatment. Plant responses to herbicides were expressed as biomass reduction (%, relative to the untreated control). Sensitivity to foliar-applied herbicides varied among cropping systems. Compared to populations from monoculture corn fields, populations originating from organic fields were significantly more sensitive to cycloxydim, topramezone and nicosulfuron (resp. 5.3%, 5.9% and 12.3%). Populations from the conventional crop rotation system showed intermediate sensitivity levels. Contrary to foliar-applied herbicides, the effectiveness of soil-applied herbicides was not affected by cropping system. Integrated weed management may be necessary to preserve herbicide efficacy on the long term.
Short-term soil responses to late-seeded cover crops in a semi-arid environment
USDA-ARS?s Scientific Manuscript database
Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...
Reconciling pesticide reduction with economic and environmental sustainability in arable farming.
Lechenet, Martin; Bretagnolle, Vincent; Bockstaller, Christian; Boissinot, François; Petit, Marie-Sophie; Petit, Sandrine; Munier-Jolain, Nicolas M
2014-01-01
Reducing pesticide use is one of the high-priority targets in the quest for a sustainable agriculture. Until now, most studies dealing with pesticide use reduction have compared a limited number of experimental prototypes. Here we assessed the sustainability of 48 arable cropping systems from two major agricultural regions of France, including conventional, integrated and organic systems, with a wide range of pesticide use intensities and management (crop rotation, soil tillage, cultivars, fertilization, etc.). We assessed cropping system sustainability using a set of economic, environmental and social indicators. We failed to detect any positive correlation between pesticide use intensity and both productivity (when organic farms were excluded) and profitability. In addition, there was no relationship between pesticide use and workload. We found that crop rotation diversity was higher in cropping systems with low pesticide use, which would support the important role of crop rotation diversity in integrated and organic strategies. In comparison to conventional systems, integrated strategies showed a decrease in the use of both pesticides and nitrogen fertilizers, they consumed less energy and were frequently more energy efficient. Integrated systems therefore appeared as the best compromise in sustainability trade-offs. Our results could be used to re-design current cropping systems, by promoting diversified crop rotations and the combination of a wide range of available techniques contributing to pest management.
Reconciling Pesticide Reduction with Economic and Environmental Sustainability in Arable Farming
Lechenet, Martin; Bretagnolle, Vincent; Bockstaller, Christian; Boissinot, François; Petit, Marie-Sophie; Petit, Sandrine; Munier-Jolain, Nicolas M.
2014-01-01
Reducing pesticide use is one of the high-priority targets in the quest for a sustainable agriculture. Until now, most studies dealing with pesticide use reduction have compared a limited number of experimental prototypes. Here we assessed the sustainability of 48 arable cropping systems from two major agricultural regions of France, including conventional, integrated and organic systems, with a wide range of pesticide use intensities and management (crop rotation, soil tillage, cultivars, fertilization, etc.). We assessed cropping system sustainability using a set of economic, environmental and social indicators. We failed to detect any positive correlation between pesticide use intensity and both productivity (when organic farms were excluded) and profitability. In addition, there was no relationship between pesticide use and workload. We found that crop rotation diversity was higher in cropping systems with low pesticide use, which would support the important role of crop rotation diversity in integrated and organic strategies. In comparison to conventional systems, integrated strategies showed a decrease in the use of both pesticides and nitrogen fertilizers, they consumed less energy and were frequently more energy efficient. Integrated systems therefore appeared as the best compromise in sustainability trade-offs. Our results could be used to re-design current cropping systems, by promoting diversified crop rotations and the combination of a wide range of available techniques contributing to pest management. PMID:24887494
Benchmark study on glyphosate-resistant crop systems in the United States. Part 2: Perspectives.
Owen, Micheal D K; Young, Bryan G; Shaw, David R; Wilson, Robert G; Jordan, David L; Dixon, Philip M; Weller, Stephen C
2011-07-01
A six-state, 5 year field project was initiated in 2006 to study weed management methods that foster the sustainability of genetically engineered (GE) glyphosate-resistant (GR) crop systems. The benchmark study field-scale experiments were initiated following a survey, conducted in the winter of 2005-2006, of farmer opinions on weed management practices and their views on GR weeds and management tactics. The main survey findings supported the premise that growers were generally less aware of the significance of evolved herbicide resistance and did not have a high recognition of the strong selection pressure from herbicides on the evolution of herbicide-resistant (HR) weeds. The results of the benchmark study survey indicated that there are educational challenges to implement sustainable GR-based crop systems and helped guide the development of the field-scale benchmark study. Paramount is the need to develop consistent and clearly articulated science-based management recommendations that enable farmers to reduce the potential for HR weeds. This paper provides background perspectives about the use of GR crops, the impact of these crops and an overview of different opinions about the use of GR crops on agriculture and society, as well as defining how the benchmark study will address these issues. Copyright © 2011 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...
Madzaric, Suzana; Ceglie, F G; Depalo, L; Al Bitar, L; Mimiola, G; Tittarelli, F; Burgio, G
2017-11-23
Organic greenhouse (OGH) production is characterized by different systems and agricultural practices with diverse environmental impact. Soil arthropods are widely used as bioindicators of ecological sustainability in open field studies, while there is a lack of research on organic production for protected systems. This study assessed the soil arthropod abundance and diversity over a 2-year crop rotation in three systems of OGH production in the Mediterranean. The systems under assessment differed in soil fertility management: SUBST - a simplified system of organic production, based on an input substitution approach (use of guano and organic liquid fertilizers), AGROCOM - soil fertility mainly based on compost application and agroecological services crops (ASC) cultivation (tailored use of cover crops) as part of crop rotation, and AGROMAN - animal manure and ASC cultivation as part of crop rotation. Monitoring of soil fauna was performed by using pitfall traps and seven taxa were considered: Carabidae, Staphylinidae, Araneae, Opiliones, Isopoda, Myriapoda, and Collembola. Results demonstrated high potential of ASC cultivation as a technique for beneficial soil arthropod conservation in OGH conditions. SUBST system was dominated by Collembola in all crops, while AGROMAN and AGROCOM had more balanced relative abundance of Isopoda, Staphylinidae, and Aranea. Opiliones and Myriapoda were more affected by season, while Carabidae were poorly represented in the whole monitoring period. Despite the fact that all three production systems are in accordance with the European Union regulation on organic farming, findings of this study displayed significant differences among them and confirmed the suitability of soil arthropods as bioindicators in protected systems of organic farming.
Yun, Lei; Bi, Hua-Xing; Tian, Xiao-Ling; Cui, Zhe-Wei; Zhou, Hui-Zi; Gao, Lu-Bo; Liu, Li-Xia
2011-05-01
Taking the four typical fruit-crop intercropping models, i.e., walnut-peanut, walnut-soybean, apple-peanut, and apple-soybean, in the Loess Region of western Shanxi Province as the objects, this paper analyzed the crop (peanut and soybean) photosynthetic active radiation (PAR), net photosynthetic rate (P(n)), yield, and soil moisture content. Comparing with crop monoculture, fruit-crop intercropping decreased the crop PAR and P(n). The smaller the distance from tree rows, the smaller the crop PAR and P(n). There was a significantly positive correlation between the P(n) and crop yield, suggesting that illumination was one of the key factors affecting crop yield. From the whole trend, the 0-100 cm soil moisture content had no significant differences between walnut-crop intercropping systems and corresponding monoculture cropping systems, but had significant differences between apple-crop intercropping systems and corresponding monoculture cropping systems, indicating that the competition for soil moisture was more intense in apple-crop intercropping systems than in walnut-crop intercropping systems. Comparing with monoculture, fruit-crop intercropping increased the land use efficiency and economic benefit averagely by 70% and 14%, respectively, and walnut-crop intercropping was much better than apple-crop intercropping. To increase the crop yield in fruit-crop intercropping systems, the following strategies should be taken: strengthening the management of irrigation and fertilization, increasing the distances or setting root barriers between crop and tree rows, regularly and properly pruning, and planting shade-tolerant crops in intercropping.
Advanced Life Support Food Subsystem Salad Crop Requirements
NASA Technical Reports Server (NTRS)
Perchonok, Michele H.; Stevens, Irene; Swango, Beverly E.; Toerne, Mary E.; Lane, Helen W. (Technical Monitor)
2002-01-01
As the National Aeronautics and Space Administration (NASA) begins to look towards longer duration space flights, the importance of fresh foods and varied menu choices increases. Long duration space missions require development of both a Transit Food System and a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions while the second will be used in conditions of partial gravity (hypogravity). The Transit Food System will consist of prepackaged food of extended shelf life. Microgravity imposes significant limitations on the ability of the crew to handle food and allows only for minimal processing. Salad crops will be available for the planetary mission. Supplementing the transit food system with salad crops is also being considered. These crops will include carrots, tomatoes, lettuce, radish, spinach, chard, cabbage, and onion. The crops will be incorporated in the menu along with the prepackaged food. The fresh tasting salad crops will provide variety, texture, and color in the menu. This variety should provide increased psychological benefit. Preliminary studies on spinach, tomatoes, and bok choy have been completed. Sensory and analytical tests, including color and moisture were conducted on the chamber grown crops and compared to store bought spinach, tomatoes, and bok choy. Preliminary studies of the appropriate serving sizes and number of servings per week have also been conducted.
NASA Technical Reports Server (NTRS)
Hadipriono, Fabian C.; Diaz, Carlos F.; Merritt, Earl S.
1989-01-01
The research project results in a powerful yet user friendly CROPCAST expert system for use by a client to determine the crop yield production of a certain crop field. The study is based on the facts that heuristic assessment and decision making in agriculture are significant and dominate much of agribusiness. Transfer of the expert knowledge concerning remote sensing based crop yield production into a specific expert system is the key program in this study. A knowledge base consisting of a root frame, CROP-YIELD-FORECAST, and four subframes, namely, SATELLITE, PLANT-PHYSIOLOGY, GROUND, and MODEL were developed to accommodate the production rules obtained from the domain expert. The expert system shell Personal Consultant Plus version 4.0. was used for this purpose. An external geographic program was integrated to the system. This project is the first part of a completely built expert system. The study reveals that much effort was given to the development of the rules. Such effort is inevitable if workable, efficient, and accurate rules are desired. Furthermore, abundant help statements and graphics were included. Internal and external display routines add to the visual capability of the system. The work results in a useful tool for the client for making decisions on crop yield production.
NASA Technical Reports Server (NTRS)
van Iersel, M. W.; Bugbee, B.
2000-01-01
Long-term, whole crop CO2 exchange measurements can be used to study factors affecting crop growth. These factors include daily carbon gain, cumulative carbon gain, and carbon use efficiency, which cannot be determined from short-term measurements. We describe a system that measures semicontinuously crop CO2 exchange in 10 chambers over a period of weeks or months. Exchange of CO2 in every chamber can be measured at 5 min intervals. The system was designed to be placed inside a growth chamber, with additional environmental control provided by the individual gas exchange chambers. The system was calibrated by generating CO2 from NaHCO3 inside the chambers, which indicated that accuracy of the measurements was good (102% and 98% recovery for two separate photosynthesis systems). Since the systems measure net photosynthesis (P-net, positive) and dark respiration(R-dark, negative), the data can be used to estimate gross photosynthesis, daily carbon gain, cumulative carbon gain, and carbon use efficiency. Continuous whole-crop measurements are a valuable tool that complements leaf photosynthesis measurements. Multiple chambers allow for replication and comparison among several environmental or cultural treatments that may affect crop growth. Example data from a 2 week study with petunia (Petunia x hybrida Hort. Vilm.-Andr.) are presented to illustrate some of the capabilities of this system.
Xiong, Wu; Zhao, Qingyun; Xue, Chao; Xun, Weibing; Zhao, Jun; Wu, Huasong; Li, Rong; Shen, Qirong
2016-01-01
Long-term vanilla monocropping often results in the occurrence of vanilla Fusarium wilt disease, seriously affecting its production all over the world. In the present study, vanilla exhibited significantly less Fusarium wilt disease in the soil of a long-term continuously cropped black pepper orchard. The entire fungal communities of bulk and rhizosphere soils between the black pepper-vanilla system (i.e., vanilla cropped in the soil of a continuously cropped black pepper orchard) and vanilla monoculture system were compared through the deep pyrosequencing. The results showed that the black pepper-vanilla system revealed a significantly higher fungal diversity than the vanilla monoculture system in both bulk and rhizosphere soils. The UniFrac-weighted PCoA analysis revealed significant differences in bulk soil fungal community structures between the two cropping systems, and fungal community structures were seriously affected by the vanilla root system. In summary, the black pepper-vanilla system harbored a lower abundance of Fusarium oxysporum in the vanilla rhizosphere soil and increased the putatively plant-beneficial fungal groups such as Trichoderma and Penicillium genus, which could explain the healthy growth of vanilla in the soil of the long-term continuously cropped black pepper field. Thus, cropping vanilla in the soil of continuously cropped black pepper fields for maintaining the vanilla industry is executable and meaningful as an agro-ecological system.
Xiong, Wu; Zhao, Qingyun; Xue, Chao; Xun, Weibing; Zhao, Jun; Wu, Huasong; Li, Rong; Shen, Qirong
2016-01-01
Long-term vanilla monocropping often results in the occurrence of vanilla Fusarium wilt disease, seriously affecting its production all over the world. In the present study, vanilla exhibited significantly less Fusarium wilt disease in the soil of a long-term continuously cropped black pepper orchard. The entire fungal communities of bulk and rhizosphere soils between the black pepper-vanilla system (i.e., vanilla cropped in the soil of a continuously cropped black pepper orchard) and vanilla monoculture system were compared through the deep pyrosequencing. The results showed that the black pepper-vanilla system revealed a significantly higher fungal diversity than the vanilla monoculture system in both bulk and rhizosphere soils. The UniFrac-weighted PCoA analysis revealed significant differences in bulk soil fungal community structures between the two cropping systems, and fungal community structures were seriously affected by the vanilla root system. In summary, the black pepper-vanilla system harbored a lower abundance of Fusarium oxysporum in the vanilla rhizosphere soil and increased the putatively plant-beneficial fungal groups such as Trichoderma and Penicillium genus, which could explain the healthy growth of vanilla in the soil of the long-term continuously cropped black pepper field. Thus, cropping vanilla in the soil of continuously cropped black pepper fields for maintaining the vanilla industry is executable and meaningful as an agro-ecological system. PMID:26903995
NASA Astrophysics Data System (ADS)
Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani
2016-04-01
Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.
NASA Astrophysics Data System (ADS)
Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan
2017-08-01
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.
Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan
2017-08-01
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.
Mall, David; Larsen, Ashley E; Martin, Emily A
2018-01-05
Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture.
Larsen, Ashley E.
2018-01-01
Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture. PMID:29304005
Effect of Mixed Systems on Crop Productivity
NASA Astrophysics Data System (ADS)
Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric
2017-04-01
The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.
Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian
2017-01-01
Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wagner, M.; Wang, M.; Miguez-Macho, G.; Miller, J. N.; Bagley, J. E.; Bernacchi, C.; Georgescu, M.
2016-12-01
Perennial bioenergy crops, such as switchgrass and miscanthus, have been posed as a more sustainable energy pathway relative to annual bioenergy crops due to their reduced carbon footprint and ability to grow on abandoned and degraded land, thereby, avoiding competition with food crops. Previous studies that replaced annual bioenergy crops with perennial crops noted regional cooling associated with enhanced ET due to their deeper rooting systems extracting deeper soil moisture. This study provides a more realistic assessment by (1) analyzing perennial bioenergy expansion only in suitable abandoned and degraded farmlands, and (2) using field scale measurements of albedo in conjunction with known vegetation fraction and leaf area index (LAI) values. High-resolution (2 km grid spacing) simulations were performed using a state-of-the-art atmospheric model (Weather Research and Forecasting system) dynamically coupled to a land surface model system over the Southern Plains of the U.S., during a normal precipitation year (2007) and a drought year (2011). Our results show that perennial bioenergy crop expansion leads to regional cooling (1-2 oC), that is driven primarily by enhanced reflection of shortwave radiation, and secondarily, by enhanced ET. Perennial bioenergy crop expansion was also shown to mitigate drought impacts through moistening and cooling of the near-surface environment. These impacts, however, were reduced during the drought year as a result of differential environmental conditions, when compared to those of the normal cimate year. This study serves as a major step towards assessing the sustainability of perennial bioenergy crop expansion under diverse hydrometeorological conditions by highlighting the driving mechanisms and processes associated with this energy pathway.
Climate change and biofuel wheat: A case study of Southern Saskatchewan
USDA-ARS?s Scientific Manuscript database
This study assessed potential impacts of climate change on wheat production as a biofuel crop in southern Saskatchewan, Canada. The Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) was used to simulate biomass and grain yield under three climate change scenarios ...
Productivity and nutrient cycling in bioenergy cropping systems
NASA Astrophysics Data System (ADS)
Heggenstaller, Andrew Howard
One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem (Andropogon geradii Vitman), switchgrass (Panicum virgatum L.), indiangrass [ Sorghastrum nutans (L.) Nash], and eastern gamagrass (Tripsacum dactyloides L.). Generally, the optimum rate of fertilization for biomass yield by the grasses was 140 kg N ha-1. Nitrogen inputs also had pronounced but grass-specific effects on biomass and nutrient partitioning, and on carbon storage. For big bluestem and switchgrass, 140 kg N ha -1. maximized root biomass, favored allocation of nutrients to roots over shoots, and led to net increases in carbon storage over the study duration. In contrast, for indiangrass and eastern gamagrass, root biomass and root nutrient allocation were generally adversely affected by N fertilization and carbon storage increased only with 0 or 65 kg N ha-1. For all grasses, 220 kg N ha -1 tended to shift allocation of nutrients to shoots over roots and resulted in no net increase in carbon storage. Optimal nitrogen management strategies for perennial, warm-season grass energy crops should take into consideration the effects of N on biomass yield as well as factors such as nutrient and carbon balance that will also impact economic feasibility and environmental sustainability.
Naab, Jesse B.; Mahama, George Y.; Yahaya, Iddrisu; Prasad, P. V. V.
2017-01-01
Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean–maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers’ managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20–29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean along with crop residue retention presents a win–win scenario due to improved crop yield, increased economic return, and trends of increasing soil fertility. The biggest challenge, however, remains with producing enough biomass and retaining same on the field. PMID:28680427
USDA-ARS?s Scientific Manuscript database
Increased emphasis has been placed on developing agroecosystems that are inherently resistant and resilient to external stressors, yet are highly productive, economically competitive, and environmentally benign. As part of a long-term study to evaluate effects of crop sequence and tillage on crop yi...
Gabrielle E. Roesch-McNally; J.G. Arbuckle; John C. Tyndall
2018-01-01
Cropping system diversity can help build greater agroecosystem resilience by suppressing insect, weed, and disease pressures while also mitigating effects of extreme and more variable weather. Despite the potential benefits of cropping systems diversity, few farmers in the US Corn Belt use diverse rotations. This study examines factors that may influence farmersâ...
Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems
NASA Astrophysics Data System (ADS)
Williard, K.; Swanberg, S.; Schoonover, J.
2013-05-01
Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.
Development, implementation and evaluation of satellite-aided agricultural monitoring systems
NASA Technical Reports Server (NTRS)
Cicone, R. C.; Crist, E. P.; Metzler, M.; Nuesch, D.
1982-01-01
Research activities in support of AgRISTARS Inventory Technology Development Project in the use of aerospace remote sensing for agricultural inventory described include: (1) corn and soybean crop spectral temporal signature characterization; (2) efficient area estimation techniques development; and (3) advanced satellite and sensor system definition. Studies include a statistical evaluation of the impact of cultural and environmental factors on crop spectral profiles, the development and evaluation of an automatic crop area estimation procedure, and the joint use of SEASAT-SAR and LANDSAT MSS for crop inventory.
Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder
2016-03-15
Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed in genetically modified crops. Copyright © 2015 Elsevier B.V. All rights reserved.
Blanc, Elodie; Caron, Justin; Fant, Charles; ...
2017-06-27
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climatemore » change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Elodie; Caron, Justin; Fant, Charles
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climatemore » change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.« less
Shahzad, Muhammad; Hussain, Mubshar; Farooq, Muhammad; Farooq, Shahid; Jabran, Khawar; Nawaz, Ahmad
2017-11-01
Wheat productivity and profitability is low under conventional tillage systems as they increase the production cost, soil compaction, and the weed infestation. Conservation tillage could be a pragmatic option to sustain the wheat productivity and enhance the profitability on long term basis. This study was aimed to evaluate the economics of different wheat-based cropping systems viz. fallow-wheat, rice-wheat, cotton-wheat, mung bean-wheat, and sorghum-wheat, with zero tillage, conventional tillage, deep tillage, bed sowing (60/30 cm beds and four rows), and bed sowing (90/45 cm beds and six rows). Results indicated that the bed sown wheat had the maximum production cost than other tillage systems. Although both bed sowing treatments incurred the highest production cost, they generated the highest net benefits and benefit: cost ratio (BCR). Rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) had the highest net income (4129.7 US$ ha -1 ), BCR (2.87), and marginal rate of return compared with rest of the cropping systems. In contrast, fallow-wheat cropping system incurred the lowest input cost, but had the least economic return. In crux, rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) was the best option for getting the higher economic returns. Moreover, double cropping systems within a year are more profitable than sole planting of wheat under all tillage practices.
NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Sager, J. C.; Yorio, N. C.; Ruffe, L. M.; Fortson, R. E.; Dreschel, T. W.; Knott, W. M.; Corey, K. A.
1996-01-01
The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.
Soil microbial communities under cacao agroforestry and cover crop systems in Peru
USDA-ARS?s Scientific Manuscript database
Cacao (Theobroma cacao) trees are grown in tropical regions worldwide for chocolate production. We studied the effects of agroforestry management systems and cover cropping on soil microbial communities under cacao in two different replicated field experiments in Peru. Two agroforestry systems, Imp...
NASA Astrophysics Data System (ADS)
Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.
2015-12-01
The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that climate change could justify the investment in new irrigation systems during this century, but the timing of a farmer's response is likely to depend on a variety of factors, including changes in the frequency and magnitude of drought events, current irrigation systems, climatological characteristics within the basin, and crop type.
Kirkegaard, J A; Hunt, J R
2010-10-01
Improvements in water productivity and yield arise from interactions between varieties (G) and their management (M). Most G×M interactions considered by breeders and physiologists focus on in-crop management (e.g. sowing time, plant density, N management). However, opportunities exist to capture more water and use it more effectively that involve judicious management of prior crops and fallows (e.g. crop sequence, weed control, residue management). The dry-land wheat production system of southern Australia, augmented by simulation studies, is used to demonstrate the relative impacts and interactions of a range of pre-crop and in-crop management decisions on water productivity. A specific case study reveals how a novel genetic trait, long coleoptiles that enable deeper sowing, can interact with different management options to increase the water-limited yield of wheat from 1.6 t ha(-1) to 4.5 t ha(-1), reflecting the experience of leading growers. Understanding such interactions will be necessary to capture benefits from new varieties within the farming systems of the future.
Life-cycle phosphorus management of the crop production-consumption system in China, 1980-2012.
Wu, Huijun; Yuan, Zengwei; Gao, Liangmin; Zhang, Ling; Zhang, Yongliang
2015-01-01
Phosphorus (P) is an essential resource for agriculture and also a pollutant capable of causing eutrophication. The possibility of a future P scarcity and the requirement to improve the environment quality necessitate P management to increase the efficiency of P use. This study applied a substance flow analysis (SFA) to implement a P management procedure in a crop production-consumption (PMCPC) system model. This model determined the life-cycle P use efficiency (PUE) of the crop production-consumption system in China during 1980-2012. The system includes six subsystems: fertilizer manufacturing, crop cultivation, crop processing, livestock breeding, rural consumption, and urban consumption. Based on this model, the P flows and PUEs of the subsystems were identified and quantified using data from official statistical databases, published literature, questionnaires, and interviews. The results showed that the total PUE of the crop production-consumption system in China was low, notably from 1980 to 2005, and increased from 7.23% in 1980 to 20.13% in 2012. Except for fertilizer manufacturing, the PUEs of the six subsystems were also low. The PUEs in the urban consumption subsystem and the crop cultivation subsystem were less than 40%. The PUEs of other subsystems, such as the rural consumption subsystem and the livestock breeding subsystem, were also low and even decreased during these years. Measures aimed to improve P management practices in China have been proposed such as balancing fertilization, disposing livestock excrement, adjusting livestock feed, changing the diet of residents, and raising the waste disposal level, etc. This study also discussed several limitations related with the model and data. Conducting additional related studies on other regions and combining the analysis of risks with opportunities may be necessary to develop effective management strategies. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Volk, Tyler
1992-01-01
The goal of this research is to develop a progressive series of mathematical models for the CELSS hydroponic crops. These models will systematize the experimental findings from the crop researchers in the CELSS Program into a form useful to investigate system-level considerations, for example, dynamic studies of the CELSS Initial Reference Configurations. The crop models will organize data from different crops into a common modeling framework. This is the fifth semiannual report for this project. The following topics are discussed: (1) use of field crop models to explore phasic control of CELSS crops for optimizing yield; (2) seminar presented at Purdue CELSS NSCORT; and (3) paper submitted on analysis of bioprocessing of inedible plant materials.
Allnutt, T R; Roper, K; Henry, C
2008-01-23
A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed.
Patterson, Sara E.; Bolivar-Medina, Jenny L.; Falbel, Tanya G.; Hedtcke, Janet L.; Nevarez-McBride, Danielle; Maule, Andrew F.; Zalapa, Juan E.
2016-01-01
As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered. PMID:26858730
Patterson, Sara E; Bolivar-Medina, Jenny L; Falbel, Tanya G; Hedtcke, Janet L; Nevarez-McBride, Danielle; Maule, Andrew F; Zalapa, Juan E
2015-01-01
As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered.
NASA Astrophysics Data System (ADS)
Zarina, Livija; Zarina, Liga
2017-04-01
The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.
Coupling Cover Crops with Alternative Swine Manure Application Strategies: Manure-15N Tracer Studies
USDA-ARS?s Scientific Manuscript database
Integration of rye cover crops with alternative liquid swine (Sus scrofa L.) manure application strategies may enhance retention of manure N in corn (Zea mays L.) - soybean [Glycine max (L.) Merr] cropping systems. The objective of this study was to quantify uptake of manure derived-N by a rye (Seca...
Using observed warming to identify hazards to Mozambique maize production
Funk, Christopher C.; Harrison, Laura; Eilerts, Gary
2011-01-01
New Perspectives on Crop Yield Constraints because of Climate Change. Climate change impact assessments usually focus on changes to precipitation because most global food production is from rainfed cropping systems; however, other aspects of climate change may affect crop growth and potential yields.A recent (2011) study by the University of California, Santa Barbara (UCSB) Climate Hazards Group, determined that climate change may be affecting Mozambique's primary food crop in a usually overlooked, but potentially significant way (Harrison and others, 2011). The study focused on the direct relation between maize crop development and growing season temperature. It determined that warming during the past three decades in Mozambique may be causing more frequent crop stress and yield reductions in that country's maize crop, independent of any changes occurring in rainfall. This report summarizes the findings and conclusions of that study.
Machine-assisted analysis of Landsat data in the study of crop-soils relationships
Draeger, William C.
1976-01-01
To date, relatively few studies have dealt with crop-soil interactions as they affect the appearance of agricultural areas on Landsat imagery, and hence crop and soil classification or the analysis of agricultural land use.The Image 100, a computer-based data analysis system which allows an interpreter to interact directly and rapidly with Landsat computer compatible tape data, provided a tool to assist in the evaluation of the extent and significance of these interactions. Used with timely and accurate ground data, the system made possible a determination of the variability in crop spectral appearance, from soil type to soil type, as recorded on Landsat data. Information was provided in the form of spectral distribution histrograms for each crop-soil class on each Landsat band. Several crop categories in a test area in rookings County, South Dakota, were classified using training fields that were selected to be representative of each major crop-soil class. Accuracies in each case, on a total acreage basis, were greater than 90 percent.
Yang, Bin-Juan; Huang, Guo-Qin; Xu, Ning; Wang, Shu-Bin
2013-09-01
Based on a long term field experiment, this paper studied the effects of different multiple cropping systems on the weed community composition and species diversity under paddy-upland rotation. The multiple cropping rotation systems could significantly decrease weed density and inhibited weed growth. Among the rotation systems, the milk vetch-early rice-late maize --> milk vetchearly maize intercropped with early soybean-late rice (CCSR) had the lowest weed species dominance, which inhibited the dominant weeds and decreased their damage. Under different multiple cropping systems, the main weed community was all composed of Monochoia vaginalis, Echinochloa crusgalli, and Sagittaria pygmae, and the similarity of weed community was higher, with the highest similarity appeared in milk vetch-early rice-late maize intercropped with late soybean --> milk vetch-early maize-late rice (CSCR) and in CCSR. In sum, the multiple cropping rotations in paddy field could inhibit weeds to a certain extent, but attentions should be paid to the damage of some less important weeds.
Differences in CH4 and N2O emissions between rice nurseries in Chinese major rice cropping areas
NASA Astrophysics Data System (ADS)
Zhang, Yi; Li, Zhijie; Feng, Jinfei; Zhang, Xin; Jiang, Yu; Chen, Jin; Zhang, Mingqian; Deng, Aixing; Zhang, Weijian
2014-10-01
Studies on greenhouse gas (GHG) emissions from paddy field have primarily focused on the post-transplanting period, however, recent researches raise new concerns about GHGs emission from rice nursery. In this study, CH4 and N2O fluxes were determined from different nurseries under major rice cropping systems in China. The tested nurseries included flooded nursery (FN), moist nursery (MN) and dry nursery (DN). Methane emissions from FN were significantly higher than those from MN and DN under all the rice cropping systems. When comparing with FN, MN decreased total CH4 emissions by 74.2%, 72.1% and 49.6% under the rice-upland rotation cropping system (RUR), and the double rice cropping system for the early rice (EDR) and the late rice (LDR), respectively. DN decreased CH4 emissions by 99.2%, 92.0%, 99.0% and 78.6% compared to FN under the single rice cropping system (SR), RUR, EDR and LDR, respectively. When comparing with FN, MN and DN increased N2O emissions by 58.1-134.1% and 28.2-332.7%, respectively. Ultimately, compared with FN across the cropping systems, MN and DN decreased net global warming potentials (GWPs) of CH4 and N2O by 33-68% and 43-86%, respectively. The mitigating effect of MN and DN on total GWPs varied greatly across the systems, ranging from 30.8% in the LDR to 86.5% in the SR. Chinese actual emission from rice nurseries was reduced to 956.66 × 103 t CO2 eq from the theoretical estimate of 2242.59 × 103 t CO2 eq if under the flooded nursery scenario in 2012. Taking into account the large rice nursery area (2032.52 × 103 ha) in China, the results of this study clearly indicate the importance to estimate and mitigate GHGs emission from flooded rice nursery. Being effective to reduce GHG emissions and increase rice yield, dry nursery technique is a promising candidate for climate smart rice cropping.
Fates of Setaria faberi and Abutilon theophrasti seeds in three crop rotation systems
USDA-ARS?s Scientific Manuscript database
Weed seeds in and on the soil are the primary cause of weed infestations in arable fields. Previous studies have documented reductions in weed seedbanks due to cropping system diversification through extended rotation sequences, but the impacts of different rotation systems on additions to and losse...
Grain yield response to poultry litter application under a wheat-soybean double cropping system
USDA-ARS?s Scientific Manuscript database
Poultry litter application and double cropping are management practices that could be used with conservation tillage systems to increase yields compared to conventional monocropping systems. The objective of this study was to evaluate wheat (Triticum aestivum L.) and soybean [Glycine max (L.) Merr.]...
Impact of cover crops on soil nitrate, crop yield and quality
USDA-ARS?s Scientific Manuscript database
There are multiple benefits of incorporating cover crops into current production systems including decreasing erosion, improving water infiltration, increasing soil organic matter and biological activity but in water limited areas caution should be utilized. A field study was established in the fal...
Cropping system effects on wind erosion potential
USDA-ARS?s Scientific Manuscript database
Wind erosion of soil is a destructive process impacting crop productivity and human health and safety. The mechanics of wind erosion and soil properties that influence erosion are well understood. Less well-studied are the effects that cropping intensity has upon those soil properties. We collected ...
Pathways to sustainable intensification through crop water management
NASA Astrophysics Data System (ADS)
MacDonald, Graham K.; D'Odorico, Paolo; Seekell, David A.
2016-09-01
How much could farm water management interventions increase global crop production? This is the central question posed in a global modelling study by Jägermeyr et al (2016 Environ. Res. Lett. 11 025002). They define the biophysical realm of possibility for future gains in crop production related to agricultural water practices—enhancing water availability to crops and expanding irrigation by reducing non-productive water consumption. The findings of Jägermeyr et al offer crucial insight on the potential for crop water management to sustainably intensify agriculture, but they also provide a benchmark to consider the broader role of sustainable intensification targets in the global food system. Here, we reflect on how the global crop water management simulations of Jägermeyr et al could interact with: (1) farm size at more local scales, (2) downstream water users at the river basin scale, as well as (3) food trade and (4) demand-side food system strategies at the global scale. Incorporating such cross-scale linkages in future research could highlight the diverse pathways needed to harness the potential of farm-level crop water management for a more productive and sustainable global food system.
Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*
Fang, Bin; Wang, Guang-huo; Van den berg, Marrit; Roetter, Reimund
2005-01-01
This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops. PMID:16187411
Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang.
Fang, Bin; Wang, Guang-Huo; Van, Den Berg Marrit; Roetter, Reimund
2005-10-01
This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China's Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops.
Enhancing Soil Productivity Using a Multi-Crop Rotation and Beef Cattle Grazing
NASA Astrophysics Data System (ADS)
Şentürklü, Songül; Landblom, Douglas; Cihacek, Larry; Brevik, Eric
2016-04-01
Agricultural production systems that include complimentary plant, soil and animal interaction contribute to sustainability. In sustainable livestock systems integrated with crop production, the soil resource is impacted positively. The goal of this research was to maximize beef cattle and crop economic yield, while improving the soil resource by increasing soil organic matter (SOM) and subsequently seasonal soil nitrogen fertility over a 5-year period (2011-2015). Each experimental crop field used in the study was 1.74 ha. Small-seeded crops were planted using a JD 1590 No-Till drill. Corn (C) and sunflowers (SF) were planted using a JD 7000 No-Till planter. The cropping sequence used in the study was SF, hard red spring wheat (HRSW), fall seeded winter triticale-hairy vetch (T-HV), spring harvested for hay/mid-June seeded 7-species cover crop (CC; SF, Everleaf Oat, Flex Winter Pea, HV, Winfred Forage Rape, Ethiopian Cabbage, Hunter Leaf Turnip), C (85-day var.), and field pea-barley intercrop (PBY). The HRSW and SF were harvested as cash crops and the PBY, C, and CC were harvested by grazing cattle. In the system, yearling beef steers grazed PBY and unharvested C before feedlot entry, and after weaning, gestating cows grazed CC. Seasonal soil nitrogen fertility was measured at 0-15, 15-30, and 30-61 cm depths approximately every two weeks from June to October, 2014. The regression illustrating the relationship between SOM and average seasonal available mineral nitrogen shows that for each percentage increase in SOM there is a corresponding N increase of 1.47 kg/ha. Nitrogen fertilizer applications for the 5-year period of the study were variable; however, the overall trend was for reduced fertilizer requirement as SOM increased. At the same time, grain, oilseed, and annual forage crop yields increased year over year (2011-2015) except for the 2014 crop year, when above average precipitation delayed seeding and early frost killed the C and SF crops prematurely. Crop yields were as follows for the 5 crop years in the study (2011-2015): (1) CC was 0.25, 10.5, 8.03, 1.53, and 7.22t/ha, (2) C silage was 4.08, 9.04, 9.91, 8.65, and 14.4 t/ha, (3) C grain was 1.04, 3.81, 6.09, 3.11, and 5.1 t/ha, (4) SF was 1.10, 1.96, 2.42, 1.31, and 2.29 t/ha, (5) PBY forage was 0.0, 7.68, 11.2, 9.3, and 8.72 t/ha. When cattle grazed annual forage crops (C, PBY, and CC), animal manure and trampling contributed to the overall improvement of soil fertility. These data suggest that the combined effect of a multi-crop rotation that includes animal grazing enhances soil fertility and subsequently crop yields, and animal production for a sustainable integrated agricultural system.
Freitag, Sabine; Verrall, Susan R; Pont, Simon D A; McRae, Diane; Sungurtas, Julia A; Palau, Raphaëlle; Hawes, Cathy; Alexander, Colin J; Allwood, J William; Foito, Alexandre; Stewart, Derek; Shepherd, Louise V T
2018-01-31
The reduction of the environmental footprint of crop production without compromising crop yield and their nutritional value is a key goal for improving the sustainability of agriculture. In 2009, the Balruddery Farm Platform was established at The James Hutton Institute as a long-term experimental platform for cross-disciplinary research of crops using two agricultural ecosystems. Crops representative of UK agriculture were grown under conventional and integrated management systems and analyzed for their water-soluble vitamin content. Integrated management, when compared with the conventional system, had only minor effects on water-soluble vitamin content, where significantly higher differences were seen for the conventional management practice on the levels of thiamine in field beans (p < 0.01), Spring barley (p < 0.05), and Winter wheat (p < 0.05), and for nicotinic acid in Spring barley (p < 0.05). However, for all crops, variety and year differences were of greater importance. These results indicate that the integrated management system described in this study does not significantly affect the water-soluble vitamin content of the crops analyzed here.
NASA Astrophysics Data System (ADS)
Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.
2015-12-01
The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.
NASA Technical Reports Server (NTRS)
Volk, Tyler
1993-01-01
During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center.
Soil microbial biomass and function are altered by 12 years of crop rotation
NASA Astrophysics Data System (ADS)
McDaniel, Marshall D.; Grandy, A. Stuart
2016-11-01
Declines in plant diversity will likely reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity in agroecosystems (by rotating crops) can partially reverse these trends and enhance soil microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W. K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a 3-year rotation cycle, but all soils were sampled under a corn year. We hypothesized that crop diversity would increase microbial biomass, activity, and catabolic evenness (a measure of functional diversity). Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28-112 % and N by 18-58 % compared to low-diversity systems. Rotations increased potential C mineralization by as much as 53 %, and potential N mineralization by 72 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the soil microbial community showed no, or slightly lower, catabolic evenness in more diverse rotations. However, the catabolic potential indicated that soil microbial communities were functionally distinct, and microbes from monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems, relatively small increases in crop diversity can have large impacts on microbial community size and function, with cover crops appearing to facilitate the largest increases.
NASA Astrophysics Data System (ADS)
Melton, F. S.; Johnson, L.; Post, K. M.; Guzman, A.; Zaragoza, I.; Spellenberg, R.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Frame, K.; Temesgen, B.; Eching, S.
2016-12-01
Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water managers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. The timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present a system for irrigation scheduling and management support in California and describe lessons learned from the development and implementation of the system. The Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web data services. SIMS also provides an application programming interface (API) that facilitates integration with other irrigation decision support tools, estimation of total crop evapotranspiration (ETc) and calculation of on-farm water use efficiency metrics. Accuracy assessments conducted in commercial fields for more than a dozen crop types to date have shown that SIMS seasonal ETcb estimates are within 10% mean absolute error (MAE) for well-watered crops and within 15% across all crop types studied, and closely track daily ETc and running totals of ETc measured in each field. Use of a soil water balance model to correct for soil evaporation and crop water stress reduces this error to less than 8% MAE across all crop types studied to date relative to field measurements of ETc. Results from irrigation trials conducted by the project for four vegetable crops have also demonstrated the potential for use of ET-based irrigation management strategies to reduce total applied water by 20-40% relative to grower standard practices while maintaining crop yields and quality.
Performance of the CELSS Antarctic Analog Project (CAAP) crop production system.
Bubenheim, D L; Schlick, G; Wilson, D; Bates, M
2003-01-01
Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.
Performance of the CELSS Antarctic Analog Project (CAAP) crop production system
NASA Astrophysics Data System (ADS)
Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.
Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility.
Performance of the CELSS Antarctic Analog Project (CAAP) crop production system
NASA Technical Reports Server (NTRS)
Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.
2003-01-01
Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.
Energy requirements in pressure irrigation systems
NASA Astrophysics Data System (ADS)
Sánchez, R.; Rodríguez-Sinobas, L.; Juana, L.; Laguna, F. V.; Castañón, G.; Gil, M.; Benítez, J.
2012-04-01
Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.
USDA-ARS?s Scientific Manuscript database
Cropping systems over the past century have developed greater crop specialization, more effectively conserve our soil and water resources, and are more resilient. The purpose of this chapter is to discuss the evolution of cropping systems in the Northern Great Plains and provide an approach to crop...
Impact of management strategies on the global warming potential at the cropping system level.
Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S
2014-08-15
Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Lammoglia, Sabine-Karen; Kennedy, Marc C; Barriuso, Enrique; Alletto, Lionel; Justes, Eric; Munier-Jolain, Nicolas; Mamy, Laure
2017-08-01
Reducing the risks and impacts of pesticide use on human health and on the environment is one of the objectives of the European Commission Directive 2009/128/EC in the quest for a sustainable use of pesticides. This Directive, developed through European national plans such as Ecophyto plan in France, promotes the introduction of innovative cropping systems relying, for example, on integrated pest management. Risk assessment for human health of the overall pesticide use in these innovative systems is required before the introduction of those systems to avoid that an innovation becomes a new problem. The objectives of this work were to assess and to compare (1) the human exposure to pesticides used in conventional and innovative cropping systems designed to reduce pesticide needs, and (2) the corresponding risks for human health. Humans (operator and residents) exposure to pesticides and risks for human health were assessed for each pesticide with the BROWSE model. Then, a method was proposed to represent the overall risk due to all pesticides used in one system. This study considers 3 conventional and 9 associated innovative cropping systems, and 116 plant protection products containing 89 different active substances (i.e. pesticides). The modelling results obtained with BROWSE showed that innovative cropping systems such as low input or no herbicide systems would reduce the risk for human health in comparison to the corresponding conventional cropping systems. On the contrary, BROWSE showed that conservation tillage system would lead to unacceptable risks in the conditions of our study, because of a high number of pesticide applications, and especially of some herbicides. For residents, the dermal absorption was the main exposure route while ingestion was found to be negligible. For operators, inhalation was also a predominant route of exposure. In general, human exposure to pesticides and human health risks were found to be correlated to the treatment frequency index TFI (number of registered doses of pesticides used per hectare for one copping season), confirming the relationship between the reduction of pesticide use and the reduction of risks. Assessment with the BROWSE model helped to identify cropping systems with decreased risks from pesticides for human health and to propose some improvements to the cropping systems by identifying the pesticides that led to unacceptable risks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems
USDA-ARS?s Scientific Manuscript database
Conversion of annual grain crop systems to biofuel production systems can restore soil hydrologic function; however, information on these effects is limited. Hence, the objective of this study was to evaluate the influence of topsoil thickness on water infiltration in claypan soils for grain and swi...
USDA-ARS?s Scientific Manuscript database
The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...
NASA Astrophysics Data System (ADS)
Helmers, M.; Zhou, X.; Qi, Z.; Christianson, R.; Pederson, C.
2011-12-01
Subsurface drainage systems are widely used throughout the upper Midwest corn-belt. While the use of these drainage systems has greatly increased crop production, they have also increased nitrate-nitrogen export to downstream waterbodies. As a result, there is a need to evaluate and implement management practices that have potential to reduce nitrate-nitrogen loss. A twenty year study in Iowa has shown that major factors in nitrate-nitrogen loss are land use and hydrology. Studies from north-central Iowa have also indicated that nitrogen application rate and to a lesser degree timing of nitrogen application important factors for nitrate-nitrogen loss. A four-year (2007-2010) drainage management study in southeast Iowa indicates that shallow and controlled drainage systems have potential to decrease subsurface drainage and thereby reduce nitrate-N loss from drain water but the level of implementation of controlled drainage may be limited by topography. Cropping practices through cover crops or perennial biomass crops have also been documented to have potential to reduce downstream nitrate-nitrogen export but the level of implementation may be limited by management and economic considerations. To achieve reduction goals for protection of local and regional water quality will require a combination of these practices at the landscape scale.
Stenberg, Maria; Ulén, Barbro; Söderström, Mats; Roland, Björn; Delin, Karl; Helander, Carl-Anders
2012-09-15
In order to explore the influence of site-specific soil properties on nitrogen (N) and phosphorus (P) losses between individual fields and crop sequences, 16 drained fields with clay soils were investigated in a four-year study. Mean total N (TN) loss was 6.6-11.1 from a conventional, 14.3-21.5 from an organic and 13.1-23.9 kg ha(-1) year(-1) from an integrated cropping system across a 4 year period, with 75% in nitrate form (NO(3)-N). Mean total P (TP) loss was 0.96-3.03, 0.99-4.63 and 0.76-2.67 kg ha(-1) year(-1), from the three systems respectively during the same period, with 25% in dissolved reactive form (DRP). Median N efficiency was calculated to be 70% including gains from estimated N fixation. According to principal component factor (PCA) analysis, field characteristics and cropping system were generally more important for losses of N and P than year. Accumulation of soil mineral N in the autumn and (estimated) N fixation was important for N leaching. No P fertilisers were used at the site in either cropping system. Total P concentration in drainage water from each of the fields was marginally significantly (p<0.05) correlated to TP concentration in the topsoil (r=0.52), measured in hydrochloric acid extract (P-HCl). Mean DRP concentrations were significantly (p<0.01) correlated to degree of P saturation (DPS-AL) and soil carbon (C) content in the topsoil (r=0.63). Good establishment of a crop with efficient nutrient uptake and good soil structure was general preconditions for low nutrient leaching. Incorporation of ley by tillage operations in the summer before autumn crop establishment and repeated operations in autumn as well, increased N leaching. Crop management in sequences with leguminous crops needs to be considered carefully when designing cropping systems high efficiency in N utilisation and low environmental impact. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gopalakrishnan, G.; Negri, C. M.
2010-12-01
There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to corn fields. The bioenergy crops used in this study were miscanthus, switchgrass and native prairie grasses. Results indicated that growing bioenergy crops in buffer strips mitigated nutrient runoff and reduced nitrate concentrations in groundwater to below EPA’s mandated drinking water limit (10 mg/l). Additionally, nitrous oxide emissions in these systems were reduced by 50-90% when compared to corn fields without the bioenergy buffer strips. While all the bioenergy crop buffers had significant positive environmental benefits, switchgrass performed the best with respect to minimizing nutrient runoff and nitrous oxide emissions. The findings of this research have important implications with respect to land management for agriculture and bioenergy.
NASA Technical Reports Server (NTRS)
Huffaker, R. C.; Rains, D. W.; Qualset, C. O.
1982-01-01
The utilization of nitrogen compounds by crop plants is studied. The selection of crop varieties for efficient production using urea, ammonia, nitrite, and nitrate, and the assimilation of mixed nitrogen sources by cereal leaves and roots are discussed.
USDA-ARS?s Scientific Manuscript database
The Agricultural Policy Environmental Extender (APEX) model can simulate crop yields, runoff, and the transport of sediment and nutrients in small watersheds that have combinations of farm level landscapes, cropping systems and/or management practices. The objectives of the study were to parameteri...
NASA Technical Reports Server (NTRS)
Schwingel, W. R.; Sager, J. C.
1996-01-01
An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.
Increasing crop diversity mitigates weather variations and improves yield stability.
Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William
2015-01-01
Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments.
FT-IR and C-13 NMR analysis of soil humic fractions from a long term cropping systems study
USDA-ARS?s Scientific Manuscript database
Increased knowledge of humic fractions is important due to its involvement in many soil ecosystem processes. Soil humic acid (HA) and fulvic acid (FA) from a nine-year agroecosystem study with different tillage, cropping system, and N source treatments were characterized using FT-IR andsolid-state ...
NASA Astrophysics Data System (ADS)
Chinnayakanahalli, K.; Adam, J. C.; Stockle, C.; Nelson, R.; Brady, M.; Rajagopalan, K.; Barber, M. E.; Dinesh, S.; Malek, K.; Yorgey, G.; Kruger, C.; Marsh, T.; Yoder, J.
2011-12-01
For better management and decision making in the face of climate change, earth system models must explicitly account for natural resource and agricultural management activities. Including crop system, water management, and economic models into an earth system modeling framework can help in answering questions related to the impacts of climate change on irrigation water and crop productivity, how agricultural producers can adapt to anticipated climate change, and how agricultural practices can mitigate climate change. Herein we describe the coupling of the Variability Infiltration Capacity (VIC) land surface model, which solves the water and energy balances of the hydrologic cycle at regional scales, with a crop-growth model, CropSyst. This new model, VIC-CropSyst, is the land surface model that will be used in a new regional-scale model development project focused on the Pacific Northwest, termed BioEarth. Here we describe the VIC-CropSyst coupling process and its application over the Columbia River basin (CRB) using agricultural-specific land cover information. The Washington State Department of Agriculture (WSDA) and U. S. Department of Agriculture (USDA) cropland data layers were used to identify agricultural land use patterns, in which both irrigated and dry land crops were simulated. The VIC-CropSyst model was applied over the CRB for the historical period of 1976 - 2006 to establish a baseline for surface water availability, irrigation demand, and crop production. The model was then applied under future (2030s) climate change scenarios derived from statistically-downscaled Global Circulation Models output under two emission scenarios (A1B and B1). Differences between simulated future and historical irrigation demand, irrigation water availability, and crop production were used in an economics model to identify the most economically-viable future cropping pattern. The economics model was run under varying scenarios of regional growth, trade, water pricing, and water capacity providing a spectrum of possible future cropping patterns. The resulting cropping patterns were then used in VIC-CropSyst to quantify the impacts of climate change, economic, and water management scenarios on crop production, and water resources availability. This modeling framework provides opportunities to study the interactions between human activities and complex natural processes and is a valuable tool for inclusion in an earth system model with the goal of informing land use and water management.
Radio/antenna mounting system for wireless networking under row-crop agriculture conditions
USDA-ARS?s Scientific Manuscript database
Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...
The crop growth research chamber
NASA Technical Reports Server (NTRS)
Wagenbach, Kimberly
1993-01-01
The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.
NASA Astrophysics Data System (ADS)
Winans, K. S.
2013-12-01
Canadian agricultural operations contribute approximately 8% of national GHG emissions each year, mainly from fertilizers, enteric fermentation, and manure management (Environment Canada, 2010). With improved management of cropland and forests, it is possible to mitigate GHG emissions through carbon (C) sequestration while enhancing soil and crop productivity. Tree-based intercropped (TBI) systems, consisting of a fast-growing woody species such as poplar (Populus spp.) planted in widely-spaced rows with crops cultivated between tree rows, were one of the technologies prioritized for investigation by the Agreement for the Agricultural Greenhouse Gases Program (AAGGP), because fast growing trees can be a sink for atmospheric carbon-dioxide (CO2) as well as a long-term source of farm income (Montagnini and Nair, 2004). However, there are relatively few estimates of the C sequestration in the trees or due to tree inputs (e.g., fine root turnover, litterfall that gets incorporated into SOC), and hybrid poplars grow exponentially in the first 8-10 years after planting. With the current study, our objectives were (1) to evaluate spatial variation in soil C and nitrogen (N) storage, CO2 and nitrogen oxide (N20), and tree and crop productivity for two hybrid poplar-hay intercrop systems at year 9, comparing TBI vs. non-TBI systems, and (2) to evaluate TBI systems in the current context of C trading markets, which value C sequestration in trees, unharvested crop components, and soils of TBI systems. The study results will provide meaningful measures that indicate changes due to TBI systems in the short-term and in the long-term, in terms of GHG mitigation, enhanced soil and crop productivity, as well as the expected economic returns in TBI systems.
Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin
2016-03-15
Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.
Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang
2013-01-01
Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems. PMID:23936246
Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang
2013-01-01
Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems.
Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat
USDA-ARS?s Scientific Manuscript database
Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...
The review of dynamic monitoring technology for crop growth
NASA Astrophysics Data System (ADS)
Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong
2010-10-01
In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.
NASA Astrophysics Data System (ADS)
Setiyono, T. D.
2014-12-01
Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.
Effects of dynamic agricultural decision making in an ecohydrological model
NASA Astrophysics Data System (ADS)
Reichenau, T. G.; Krimly, T.; Schneider, K.
2012-04-01
Due to various interdependencies between the cycles of water, carbon, nitrogen, and energy the impacts of climate change on ecohydrological systems can only be investigated in an integrative way. Furthermore, the human intervention in the environmental processes makes the system even more complex. On the one hand human impact affects natural systems. On the other hand the changing natural systems have a feedback on human decision making. One of the most important examples for this kind of interaction can be found in the agricultural sector. Management dates (planting, fertilization, harvesting) are chosen based on meteorological conditions and yield expectations. A faster development of crops under a warmer climate causes shorter cropping seasons. The choice of crops depends on their profitability, which is mainly determined by market prizes, the agro-political framework, and the (climate dependent) crop yield. This study investigates these relations for the district Günzburg located in the Upper Danube catchment in southern Germany. The modeling system DANUBIA was used to perform dynamically coupled simulations of plant growth, surface and soil hydrological processes, soil nitrogen transformations, and agricultural decision making. The agro-economic model simulates decisions on management dates (based on meteorological conditions and the crops' development state), on fertilization intensities (based on yield expectations), and on choice of crops (based on profitability). The environmental models included in DANUBIA are to a great extent process based to enable its use in a climate change scenario context. Scenario model runs until 2058 were performed using an IPCC A1B forcing. In consecutive runs, dynamic crop management, dynamic crop selection, and a changing agro-political framework were activated. Effects of these model features on hydrological and ecological variables were analyzed separately by comparing the results to a model run with constant crop distribution and constant management. Results show that the influence of the modeled dynamic management adaptation on variables like transpiration, carbon uptake, or nitrate leaching from the vadose zone is stronger than the influence of a dynamic choice of crops. Climate change was found to have a stronger impact on this modeled choice of crops than the agro-political framework. These results suggest that scenario studies in areas with a large share of arable land should take into account management adaptations to changing climate.
Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J
2015-01-01
Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Soil quality and the solar corridor crop system
USDA-ARS?s Scientific Manuscript database
The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...
Soil Quality and the Solar Corridor Crop System
USDA-ARS?s Scientific Manuscript database
The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...
Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt
NASA Astrophysics Data System (ADS)
Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.
2013-09-01
While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.
Tatzber, Michael; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian; Landstetter, Claudia; Haberhauer, Georg; Gerzabek, Martin H.
2012-01-01
Knowledge about the stabilization of organic matter input to soil is essential for understanding the influence of different agricultural practices on turnover characteristics in agricultural soil systems. In this study, soil samples from a long-term field experiment were separated into silt- and clay-sized particles. In 1967, 14C labeled farmyard manure was applied to three different cropping systems: crop rotation, monoculture and permanent bare fallow. Humic acids (HAs) were extracted from silt- and clay-sized fractions and characterized using photometry, mid-infrared and fluorescence spectroscopy. Remaining 14C was determined in size fractions as well as in their extracted HAs. Yields of carbon and remaining 14C in HAs from silt-sized particles and Corg in clay-sized particles decreased significantly in the order: crop rotation > monoculture ≫ bare fallow. Thus, crop rotation not only had the largest overall C-pool in the experiment, but it also best stabilized the added manure. Mid-infrared spectroscopy could distinguish between HAs from different particle size soil fractions. With spectroscopic methods significant differences between the cropping systems were detectable in fewer cases compared to quantitative results of HAs (yields, 14C, Corg and Nt). The trends, however, pointed towards increased humification of HAs from bare fallow systems compared to crop rotation and monoculture as well as of HAs from clay-sized particles compared to silt-sized particles. Our study clearly shows that the largest differences were observed between bare fallow on one hand and monoculture and crop rotation on the other. PMID:23482702
Tatzber, Michael; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian; Landstetter, Claudia; Haberhauer, Georg; Gerzabek, Martin H
2012-05-01
Knowledge about the stabilization of organic matter input to soil is essential for understanding the influence of different agricultural practices on turnover characteristics in agricultural soil systems. In this study, soil samples from a long-term field experiment were separated into silt- and clay-sized particles. In 1967, 14 C labeled farmyard manure was applied to three different cropping systems: crop rotation, monoculture and permanent bare fallow. Humic acids (HAs) were extracted from silt- and clay-sized fractions and characterized using photometry, mid-infrared and fluorescence spectroscopy. Remaining 14 C was determined in size fractions as well as in their extracted HAs. Yields of carbon and remaining 14 C in HAs from silt-sized particles and C org in clay-sized particles decreased significantly in the order: crop rotation > monoculture ≫ bare fallow. Thus, crop rotation not only had the largest overall C-pool in the experiment, but it also best stabilized the added manure. Mid-infrared spectroscopy could distinguish between HAs from different particle size soil fractions. With spectroscopic methods significant differences between the cropping systems were detectable in fewer cases compared to quantitative results of HAs (yields, 14 C, C org and N t ). The trends, however, pointed towards increased humification of HAs from bare fallow systems compared to crop rotation and monoculture as well as of HAs from clay-sized particles compared to silt-sized particles. Our study clearly shows that the largest differences were observed between bare fallow on one hand and monoculture and crop rotation on the other.
GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations.
Van Eenennaam, Alison L
2013-09-25
In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems.
GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations
2013-01-01
In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems. PMID:24066781
USDA-ARS?s Scientific Manuscript database
Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...
Soil quality differences in a mature alley cropping system in temperate North America
USDA-ARS?s Scientific Manuscript database
Alley cropping in agroforestry practices has been shown to improve soil quality, however information on long-term effects (>10 years) of alley cropping on soils in the temperate zone is very limited. The objective of this study was to examine effects of management, landscape, and soil depth on soil...
González, Ezequiel; Salvo, Adriana; Defagó, María Teresa; Valladares, Graciela
2016-01-01
Edges have become prevailing habitats, mainly as a result of habitat fragmentation and agricultural expansion. The interchange of functionally relevant organisms like insects occurs through these edges and can influence ecosystem functioning in both crop and non-crop habitats. However, very few studies have focused on the directionality of insect movement through edges, and the role of crop and non-crop amount has been ignored. Using bi-directional flight interception traps we investigated interchange of herbivore, natural enemy, pollinator and detritivore insects between native forest fragments and soybean crops, simultaneously considering movement direction, forest cover in the landscape and crop phenology. In total, 52,173 specimens and 877 morphospecies were collected. We found that, within most functional and taxonomic groups, movement intensity was similar (richness and/or abundance) between directions, whereas a predominantly forest-to-crop movement characterized natural enemies. Insect movement was extensively affected by crop phenology, decreasing during crop senescence, and was enhanced by forest cover particularly at senescence. Mainly the same herbivore species moved to and from the forest, but different natural enemy species predominated in each direction. Finally, our analyses revealed greater forest contribution to natural enemy than to herbivore communities in the crop, fading with distance to the forest in both groups. By showing that larger amounts of forest lead to richer insect interchange, in both directions and in four functional groups, our study suggests that allocation to natural and cultivated habitats at landscape level could influence functioning of both systems. Moreover, natural enemies seemed to benefit more than pests from natural vegetation, with natural enemy spillover from forests likely contributing to pest control in soybean fields. Thus consequences of insect interchange seem to be mostly positive for the agroecosystem, although consequences for the natural system deserve further study.
NASA Astrophysics Data System (ADS)
Torres-Rua, A. F.; Walker, W. R.; McKee, M.
2013-12-01
The last century has seen a large number of innovations in agriculture such as better policies for water control and management, upgraded water conveyance, irrigation, distribution, and monitoring systems, and better weather forecasting products. In spite of this, irrigation management and irrigation water deliveries by farmers/water managers is still based on factors like water share amounts, tradition, and past experience on irrigation. These factors are not necessarily related to the actual crop water use; they are followed because of the absence of related information provided in a timely manner at an affordable cost. Thus, it is necessary to develop means to deliver continuous and personalized information about crop water requirements to water users/managers at the field and irrigation system levels so managers at these levels can better quantify the required versus available water for irrigation during the irrigation season. This study presents a new decision support system (DSS) platform that addresses the absence of information on actual crop water requirements and crop performance by providing continuous updated farm-based crop water use along with other farm performance indicators such as crop yield and farm management to irrigators and water managers. This DSS exploits the periodicity of the Landsat Satellite Mission (8 to 16 days, depending on the period of interest) to provide remote monitoring at the individual field and irrigation system levels. The Landsat satellite images are converted into information about crop water use, yield performance and field management through application of state-of-the-art semi-physical and statistical algorithms that provide this information at a pixel basis that are ultimately aggregated to field and irrigation system levels. A version of the DSS has been implemented for the agricultural lands in the Lower Sevier River, Utah, and has been operational since the beginning of the 2013 irrigation season. The main goal of this DSS implementation is to provide continuous and personalized information to farmers and water managers regarding crops in fields and the irrigation delivery system throughout the irrigation season so that decisions related to agricultural water use can result in water savings while not diminishing crop yields.
Integrated crop-livestock system effects on soil N, P, and pH in a semiarid region
USDA-ARS?s Scientific Manuscript database
Integrated crop-livestock systems (ICLS) represent a potential means to sustainably intensify agriculture. Developing ICLS that concurrently achieve production and environmental goals is contingent upon efficiently managing plant nutrients in time and space. In this study, we sought to quantify re...
Simulation of Climate Change Impacts on Wheat-Fallow Cropping Systems
USDA-ARS?s Scientific Manuscript database
Agricultural system simulation models are predictive tools for assessing climate change impacts on crop production. In this study, RZWQM2 that contains the DSSAT 4.0-CERES model was evaluated for simulating climate change impacts on wheat growth. The model was calibrated and validated using data fro...
Performance of a wireless sensor network for crop monitoring and irrigation control
USDA-ARS?s Scientific Manuscript database
Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael
2015-04-01
Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under cover crop management had lower N2O fluxes than soils that did not have a cover crop. Results from this study concluded that it is important to allow crop residues to return to the soil as they help to improve soil quality indicators. The presence of cover crops also will contribute to the improvement of these indicators once established and may help mitigate greenhouse gas emissions.
Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip
2015-01-01
Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3 —N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462
Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip
2015-01-01
Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems.
Transgenes sustain epigeal insect biodiversity in diversified vegetable farm systems.
Leslie, T W; Hoheisel, G A; Biddinger, D J; Rohr, J R; Fleischer, S J
2007-02-01
Many ecological studies have focused on the effects of transgenes in field crops, but few have considered multiple transgenes in diversified vegetable systems. We compared the epigeal, or soil surface-dwelling, communities of Coleoptera and Formicidae between transgenic and isoline vegetable systems consisting of sweet corn, potato, and acorn squash, with transgenic cultivars expressing Cry1(A)b, Cry3, or viral coat proteins. Vegetables were grown in replicated split plots over 2 yr with integrated pest management (IPM) standards defining insecticide use patterns. More than 77.6% of 11,925 insects from 1,512 pitfall traps were identified to species, and activity density was used to compare dominance distribution, species richness, and community composition. Measures of epigeal biodiversity were always equal in transgenic vegetables, which required fewer insecticide applications than their near isolines. There were no differences in species richness between transgenic and isoline treatments at the farm system and individual crop level. Dominance distributions were also similar between transgenic and isoline farming systems. Crop type, and not genotype, had a significant influence on Carabidae and Staphylinidae community composition in the first year, but there were no treatment effects in the second year, possibly because of homogenizing effects of crop rotations. Communities were more influenced by crop type, and possibly crop rotation, than by genotype. The heterogeneity of crops and rotations in diversified vegetable farms seems to aid in preserving epigeal biodiversity, which may be supplemented by reductions in insecticide use associated with transgenic cultivars.
Chellemi, D O; Gamliel, A; Katan, J; Subbarao, K V
2016-03-01
Biological suppression of soilborne diseases with minimal use of outside interventive actions has been difficult to achieve in high input conventional crop production systems due to the inherent risk of pest resurgence. This review examines previous approaches to the management of soilborne disease as precursors to the evolution of a systems-based approach, in which plant disease suppression through natural biological feedback mechanisms in soil is incorporated into the design and operation of cropping systems. Two case studies are provided as examples in which a systems-based approach is being developed and deployed in the production of high value crops: lettuce/strawberry production in the coastal valleys of central California (United States) and sweet basil and other herb crop production in Israel. Considerations for developing and deploying system-based approaches are discussed and operational frameworks and metrics to guide their development are presented with the goal of offering a credible alternative to conventional approaches to soilborne disease management.
Improving irrigation management in L'Horta Nord (Valencia, Spain)
NASA Astrophysics Data System (ADS)
Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, Jose Vicente; Pascual, Bernardo
2014-05-01
L'Horta Nord is an important irrigation district in Valencia (Spain), especially for vegetable crops. The traditional cropping pattern in the region consists of a rotation of chufa with crops such as potato, onion, lettuce, escarole and red cabbage, being all these crops furrow irrigated. Currently, the quality of the water used is acceptable, water is not expensive and there are no limitations on supply. Consequently, growers are not aware of the volumes of water used, application efficiencies, nor water productivity for any of the crops cited. The European Framework Directive 2000/60, based on the precautionary principle, considers preventive action for measures to be taken; moreover, drought periods are becoming more frequent and extended, and water is being diverted to other uses. Thus, water use is an issue to improve. In this sense, the current situation of the irrigation in the area is analysed using chufa (Cyperus esculentus L. var. sativus Boeck.) as representative of the crops, since most of the crops in the area have shallow root systems, as chufa, which are irrigated in similar patterns. In order to analyse the irrigation performance of the traditional chufa crop as well as to achieve more sustainable results, different studies have been carried out, during the last decade. Efforts have been directed to increase water productivity, increasing yield and minimising the volumes of water applied. Different planting configurations and different irrigation thresholds, not only in furrow irrigation but also in drip irrigation, are examples of how the irrigation performance could be improved. Herein is presented a two-year study, comparing, in both furrow and drip irrigation, two irrigation schedules based on the volumetric soil water content, which was continuously monitored using capacitance sensors. Yield was significantly affected by the growing season, the irrigation system and by the irrigation schedule, and by the second order interactions of the irrigation system with the other studied variables. Greater yields (p≤0.01) were obtained in the first growing season, drip irrigation and maintaining a higher soil moisture level. When considering the irrigation water use efficiency, the irrigation system showed significant differences (p≤0.01) with greater efficiencies for drip irrigation. Considering the homogeneity of the plots in the area and the similarities of the irrigation managements of chufa with the other crops, the results could be extended to most of the plots and crops in the area.
Assessing environmental impacts of constructed wetland effluents for vegetable crop irrigation.
Castorina, A; Consoli, S; Barbagallo, S; Branca, F; Farag, A; Licciardello, F; Cirelli, G L
2016-01-01
The objective of this study was to monitor and assess environmental impacts of reclaimed wastewater (RW), used for irrigation of vegetable crops, on soil, crop quality and irrigation equipment. During 2013, effluents of a horizontal sub-surface flow constructed treatment wetland (TW) system, used for tertiary treatment of sanitary wastewater from a small rural municipality located in Eastern Sicily (Italy), were reused by micro-irrigation techniques to irrigate vegetable crops. Monitoring programs, based on in situ and laboratory analyses were performed for assessing possible adverse effects on water-soil-plant systems caused by reclaimed wastewater reuse. In particular, experimental results evidenced that Escherichia coli content found in RW would not present a risk for rotavirus infection following WHO (2006) standards. Irrigated soil was characterized by a certain persistence of microbial contamination and among the studied vegetable crops, lettuce responds better, than zucchini and eggplants, to the irrigation with low quality water, evidencing a bettering of nutraceutical properties and production parameters.
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Lathuilliere, M. J.; Morillas, L.; Dalmagro, H. J.; D'Acunha, B.; Kim, Y.; Suarez, A.; Couto, E. G.
2017-12-01
In this talk, we will summarize results obtained using three tropical agricultural water observatories in Guanacaste, Costa Rica and Mato Grosso, Brazil. These flux towers and associated sensors enable detailed assessments of carbon use and water use efficiencies for crops under rain-fed and irrigated conditions. In addition to directly assessing water consumption from crops via eddy covariance, determination of water footprints and water use efficiencies using sensors and integrating it with remotely sensed data make it possible to (i) evaluate and compare different irrigation systems used in the study regions (drip, pivot and flood irrigation), (ii) assess the effect of irrigation over the local water balance to identify vulnerabilities associated with intensive water extraction for irrigation, and (iii) study the effect of inter-annual water availability fluctuations on crop water use. We conclude by comparing volumetric water footprints for crops, their carbon footprints, and water and carbon use efficiencies of crops produced under business-as-usual and alternative soil and water management scenarios.
AgMIP: Next Generation Models and Assessments
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2014-12-01
Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6 that involves the key modeling groups from around the world including North America, Europe, South America, Sub-Saharan Africa, South Asia, East Asia, and Australia and Oceania. This community process will lead to mutually agreed protocols for coordinated global and regional assessments.
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) is the most important crop for food security in several regions of Ecuador. Small farmers are using nitrogen (N) fertilizer without technical advice based on soil, crop and climatological data. The scientific literature lacks studies where tools are validated that can be used to q...
Agronomic responses to late-seeded cover crops in a semiarid region
USDA-ARS?s Scientific Manuscript database
Intensification of cropping systems in the Great Plains beyond annual cropping practices may be limited by inadequate precipitation, short growing seasons, and highly variable climatic conditions. Inclusion of cover crops in dryland cropping systems may serve as an effective intensification strateg...
Root system-based limits to agricultural productivity and efficiency: the farming systems context
Thorup-Kristensen, Kristian; Kirkegaard, John
2016-01-01
Background There has been renewed global interest in both genetic and management strategies to improve root system function in order to improve agricultural productivity and minimize environmental damage. Improving root system capture of water and nutrients is an obvious strategy, yet few studies consider the important interactions between the genetic improvements proposed, and crop management at a system scale that will influence likely success. Scope To exemplify these interactions, the contrasting cereal-based farming systems of Denmark and Australia were used, where the improved uptake of water and nitrogen from deeper soil layers has been proposed to improve productivity and environmental outcomes in both systems. The analysis showed that water and nitrogen availability, especially in deeper layers (>1 m), was significantly affected by the preceding crops and management, and likely to interact strongly with deeper rooting as a specific trait of interest. Conclusions In the semi-arid Australian environment, grain yield impacts from storage and uptake of water from depth (>1 m) could be influenced to a stronger degree by preceding crop choice (0·42 t ha–1), pre-crop fallow management (0·65 t ha–1) and sowing date (0·63 t ha–1) than by current genetic differences in rooting depth (0·36 t ha–1). Matching of deep-rooted genotypes to management provided the greatest improvements related to deep water capture. In the wetter environment of Denmark, reduced leaching of N was the focus. Here the amount of N moving below the root zone was also influenced by previous crop choice or cover crop management (effects up to 85 kg N ha–1) and wheat crop sowing date (up to 45 kg ha–1), effects which over-ride the effects of differences in rooting depth among genotypes. These examples highlight the need to understand the farming system context and important G × E × M interactions in studies on proposed genetic improvements to root systems for improved productivity or environmental outcomes. PMID:27411680
Cost-benefit trade-offs of bird activity in apple orchards.
Peisley, Rebecca K; Saunders, Manu E; Luck, Gary W
2016-01-01
Birds active in apple orchards in south-eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south-eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems.
USDA-ARS?s Scientific Manuscript database
Potato cropping system practices substantially affect soil microbial communities and the development of soilborne diseases. Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can potentially...
High Resolution Modelling of Crop Response to Climate Change
NASA Astrophysics Data System (ADS)
Mirmasoudi, S. S.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.
2014-12-01
Crop production is one of the most vulnerable sectors to climatic variability and change. Increasing atmospheric CO2 concentration and other greenhouse gases are causing increases in global temperature. In western North America, water supply is largely derived from mountain snowmelt. Climate change will have a significant impact on mountain snowpack and subsequently, the snow-derived water supply. This will strain water supplies and increase water demand in areas with substantial irrigation agriculture. Increasing temperatures may create heat stress for some crops regardless of soil water supply, and increasing surface O3 and other pollutants may damage crops and ecosystems. CO2 fertilization may or may not be an advantage in future. This work is part of a larger study that will address a series of questions based on a range of future climate scenarios for several watersheds in western North America. The key questions are: (1) how will snowmelt and rainfall runoff vary in future; (2) how will seasonal and inter-annual soil water supply vary, and how might that impacts food supplies; (3) how might heat stress impact (some) crops even with adequate soil water; (4) will CO2 fertilization alter crop yields; and (5) will pollution loads, particularly O3, cause meaningful changes to crop yields? The Generate Earth Systems Science (GENESYS) Spatial Hydrometeorological Model is an innovative, efficient, high-resolution model designed to assess climate driven changes in mountain snowpack derived water supplies. We will link GENESYS to the CROPWAT crop model system to assess climate driven changes in water requirement and associated crop productivity for a range of future climate scenarios. Literature bases studies will be utilised to develop approximate crop response functions for heat stress, CO2 fertilization and for O3 damages. The overall objective is to create modeling systems that allows meaningful assessment of agricultural productivity at a watershed scale under a range of climate scenarios.
Coles, Graeme D; Wratten, Stephen D; Porter, John R
2016-01-01
Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.
Tabatabaie, Seyed Mohammad Hossein; Bolte, John P; Murthy, Ganti S
2018-06-01
The goal of this study was to integrate a crop model, DNDC (DeNitrification-DeComposition), with life cycle assessment (LCA) and economic analysis models using a GIS-based integrated platform, ENVISION. The integrated model enables LCA practitioners to conduct integrated economic analysis and LCA on a regional scale while capturing the variability of soil emissions due to variation in regional factors during production of crops and biofuel feedstocks. In order to evaluate the integrated model, the corn-soybean cropping system in Eagle Creek Watershed, Indiana was studied and the integrated model was used to first model the soil emissions and then conduct the LCA as well as economic analysis. The results showed that the variation in soil emissions due to variation in weather is high causing some locations to be carbon sink in some years and source of CO 2 in other years. In order to test the model under different scenarios, two tillage scenarios were defined: 1) conventional tillage (CT) and 2) no tillage (NT) and analyzed with the model. The overall GHG emissions for the corn-soybean cropping system was simulated and results showed that the NT scenario resulted in lower soil GHG emissions compared to CT scenario. Moreover, global warming potential (GWP) of corn ethanol from well to pump varied between 57 and 92gCO 2 -eq./MJ while GWP under the NT system was lower than that of the CT system. The cost break-even point was calculated as $3612.5/ha in a two year corn-soybean cropping system and the results showed that under low and medium prices for corn and soybean most of the farms did not meet the break-even point. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla
2015-10-01
For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.
The status of parametric studies in radar agriculture
NASA Technical Reports Server (NTRS)
Morain, S. A.
1972-01-01
Outlined is an information system based on the use of remote sensor data and the design, testing, and implementation of interpretation keys for agriculture. The task of crop identification from radar imagery emphasizes dichotomous keys and the effects of frequency, angular and other microwave dependencies of crops for use in discrimination. A mosaic is formulated from imagery and used to study acres in wheat for spread of circular irrigation, spread of crops, and other phenomena.
Crop diversity effects on productivity and economic returns under dryland agriculture
USDA-ARS?s Scientific Manuscript database
Increasing crop diversity has been identified as a method to improve agronomic performance of cropping systems and increase provision of ecosystem services. However, there is a need to understand the economic performance of more diverse cropping systems. Crop productivity and economic net returns we...
Statistical modeling of yield and variance instability in conventional and organic cropping systems
USDA-ARS?s Scientific Manuscript database
Cropping systems research was undertaken to address declining crop diversity and verify competitiveness of alternatives to the predominant conventional cropping system in the northern Corn Belt. To understand and capitalize on temporal yield variability within corn and soybean fields, we quantified ...
Pradhan, Aliza; Idol, Travis; Roul, Pravat K.
2016-01-01
Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508
Pradhan, Aliza; Idol, Travis; Roul, Pravat K
2016-01-01
Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.
Research in biomass production and utilization: Systems simulation and analysis
NASA Astrophysics Data System (ADS)
Bennett, Albert Stewart
There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept of a mobile juice harvester is not economically viable due to low sugar recovery. The addition of front-end stalk processing/pressing equipment into existing ethanol facilities was found to be economically viable when combined with the plants' use of residuals as a natural gas fuel replacement. Because of high loss of fermentable carbohydrates during ensilage, storage of sweet sorghum in bunkers was not found to be economically viable. The fourth section looks at double cropping winter triticale with late-planted summer corn and compares these scenarios to traditional single cropped corn. Double cropping systems show particular promise for co-production of grain and biomass feedstocks and potentially can allow for greater utilization of grain crop residues. However, additional costs and risks associated with producing two crops instead of one could make biomass-double crops less attractive for producers despite productivity advantages. Detailed evaluation and comparisons show double cropped triticale-corn to be at a significant economic disadvantage relative to single crop corn. The cost benefits associated with using less equipment combined with availability of risk mitigating crop insurance and government subsidies will likely limit farmer interest and clearly indicate that traditional single-crop corn will provide greater financial returns to management. To evaluate the various sweet sorghum, single crop corn and double cropped triticale-corn production scenarios, a detailed but generic model was developed. The primary goal of this generic approach was to develop a modeling foundation that can be rapidly adapted, by an experienced user, to describe new and existing biomass and crop production scenarios that may be of interest to researchers. The foundation model allows input of management practices, crop production characteristics and utilizes standardized machinery performance and cost information, including farm-owned machinery and implements, and machinery and farm production operations provided by custom operators. (Abstract shortened by UMI.)
Perspectives on genetically modified crops and food detection.
Lin, Chih-Hui; Pan, Tzu-Ming
2016-01-01
Genetically modified (GM) crops are a major product of the global food industry. From 1996 to 2014, 357 GM crops were approved and the global value of the GM crop market reached 35% of the global commercial seed market in 2014. However, the rapid growth of the GM crop-based industry has also created controversies in many regions, including the European Union, Egypt, and Taiwan. The effective detection and regulation of GM crops/foods are necessary to reduce the impact of these controversies. In this review, the status of GM crops and the technology for their detection are discussed. As the primary gap in GM crop regulation exists in the application of detection technology to field regulation, efforts should be made to develop an integrated, standardized, and high-throughput GM crop detection system. We propose the development of an integrated GM crop detection system, to be used in combination with a standardized international database, a decision support system, high-throughput DNA analysis, and automated sample processing. By integrating these technologies, we hope that the proposed GM crop detection system will provide a method to facilitate comprehensive GM crop regulation. Copyright © 2015. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Optimal utilization of animal manures as a plant nutrient source should also prevent adverse impacts on water quality. The objective of this study was to evaluate long-term poultry litter and N fertilizer application on nutrient cycling following establishment of an alley cropping system with easter...
Cropping and tillage systems effects on soil erosion under climate change in Oklahoma
USDA-ARS?s Scientific Manuscript database
Soil erosion under future climate change is very likely to increase due to projected increases in frequency and magnitude of heavy storms. The objective of this study is to quantify the effects of common cropping and tillage systems on soil erosion and surface runoff during 2010-2039 in central Okl...
Impact of preceding crop on alfalfa competitiveness with weeds
USDA-ARS?s Scientific Manuscript database
Organic producers would like to include no-till practices in their farming systems. We are seeking to develop a continuous no-till system for organic farming, based on a complex rotation that includes a 3-year sequence of alfalfa. In this study, we evaluated impact of preceding crop on weed infest...
Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability
Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William
2015-01-01
Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments. PMID:25658914
Integrated crop-livestock systems and cover crop grazing in the Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Integrating crops and livestock has been identified as an approach to sustainably intensify agricultural systems, increasing production while reducing the need for external inputs, building soil health, and increasing economic returns. Cover crops and grazing these cover crops are a natural fit with...
Recycling crop residues for use in recirculating hydroponic crop production
NASA Technical Reports Server (NTRS)
Mackowiak, C. L.; Garland, J. L.; Sager, J. C.
1996-01-01
As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.
The use of seasonal forecasts in a crop failure early warning system for West Africa
NASA Astrophysics Data System (ADS)
Nicklin, K. J.; Challinor, A.; Tompkins, A.
2011-12-01
Seasonal rainfall in semi-arid West Africa is highly variable. Farming systems in the region are heavily dependent on the monsoon rains leading to large variability in crop yields and a population that is vulnerable to drought. The existing crop yield forecasting system uses observed weather to calculate a water satisfaction index, which is then related to expected crop yield (Traore et al, 2006). Seasonal climate forecasts may be able to increase the lead-time of yield forecasts and reduce the humanitarian impact of drought. This study assesses the potential for a crop failure early warning system, which uses dynamic seasonal forecasts and a process-based crop model. Two sets of simulations are presented. In the first, the crop model is driven with observed weather as a control run. Observed rainfall is provided by the GPCP 1DD data set, whilst observed temperature and solar radiation data are given by the ERA-Interim reanalysis. The crop model used is the groundnut version of the General Large Area Model for annual crops (GLAM), which has been designed to operate on the grids used by seasonal weather forecasts (Challinor et al, 2004). GLAM is modified for use in West Africa by allowing multiple planting dates each season, replanting failed crops and producing parameter sets for Spanish- and Virginia- type West African groundnut. Crop yields are simulated for three different assumptions concerning the distribution and relative abundance of Spanish- and Virginia- type groundnut. Model performance varies with location, but overall shows positive skill in reproducing observed crop failure. The results for the three assumptions are similar, suggesting that the performance of the system is limited by something other than information on the type of groundnut grown. In the second set of simulations the crop model is driven with observed weather up to the forecast date, followed by ECMWF system 3 seasonal forecasts until harvest. The variation of skill with forecast date is assessed along with the extent to which forecasts can be improved by bias correction of the rainfall data. Two forms of bias correction are applied: a novel method of spatially bias correcting daily data, and statistical bias correction of the frequency and intensity distribution. Results are presented using both observed yields and the control run as the reference for verification. The potential for current dynamic seasonal forecasts to form part of an operational system giving timely and accurate warnings of crop failure is discussed. Traore S.B. et al., 2006. A Review of Agrometeorological Monitoring Tools and Methods Used in the West African Sahel. In: Motha R.P. et al., Strengthening Operational Agrometeorological Services at the National Level. Technical Bulletin WAOB-2006-1 and AGM-9, WMO/TD No. 1277. Pages 209-220. www.wamis.org/agm/pubs/agm9/WMO-TD1277.pdf Challinor A.J. et al., 2004. Design and optimisation of a large-area process based model for annual crops. Agric. For. Meteorol. 124, 99-120.
Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo
2013-03-01
Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.
Effect of intercropping period management on runoff and erosion in a maize cropping system.
Laloy, Eric; Bielders, C L
2010-01-01
The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.
Bosch, J; Bosch, J; Kemp, W P
2002-02-01
The development of a bee species as a new crop pollinator starts with the identification of a pollination-limited crop production deficit and the selection of one or more candidate pollinator species. The process continues with a series of studies on the developmental biology, pollinating efficacy, nesting behaviour, preference for different nesting substrates, and population dynamics of the candidate pollinator. Parallel studies investigate the biology of parasites, predators and pathogens. The information gained in these studies is combined with information on the reproductive biology of the crop to design a management system. Complete management systems should provide guidelines on rearing and releasing methods, bee densities required for adequate pollination, nesting materials, and control against parasites, predators and pathogens. Management systems should also provide methods to ensure a reliable pollinator supply. Pilot tests on a commercial scale are then conducted to test and eventually refine the management system. The process culminates with the delivery of a viable system to manage and sustain the new pollinator on a commercial scale. The process is illustrated by the development of three mason bees, Osmia cornifrons (Radoszkowski), O. lignaria Say and O. cornuta (Latreille) as orchard pollinators in Japan, the USA and Europe, respectively.
Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation.
Villarrubia, Gabriel; Paz, Juan F De; Iglesia, Daniel H De La; Bajo, Javier
2017-08-02
Monitoring mechanisms that ensure efficient crop growth are essential on many farms, especially in certain areas of the planet where water is scarce. Most farmers must assume the high cost of the required equipment in order to be able to streamline natural resources on their farms. Considering that many farmers cannot afford to install this equipment, it is necessary to look for more effective solutions that would be cheaper to implement. The objective of this study is to build virtual organizations of agents that can communicate between each other while monitoring crops. A low cost sensor architecture allows farmers to monitor and optimize the growth of their crops by streamlining the amount of resources the crops need at every moment. Since the hardware has limited processing and communication capabilities, our approach uses the PANGEA architecture to overcome this limitation. Specifically, we will design a system that is capable of collecting heterogeneous information from its environment, using sensors for temperature, solar radiation, humidity, pH, moisture and wind. A major outcome of our approach is that our solution is able to merge heterogeneous data from sensors and produce a response adapted to the context. In order to validate the proposed system, we present a case study in which farmers are provided with a tool that allows us to monitor the condition of crops on a TV screen using a low cost device.
Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation
Villarrubia, Gabriel; De Paz, Juan F.; De La Iglesia, Daniel H.; Bajo, Javier
2017-01-01
Monitoring mechanisms that ensure efficient crop growth are essential on many farms, especially in certain areas of the planet where water is scarce. Most farmers must assume the high cost of the required equipment in order to be able to streamline natural resources on their farms. Considering that many farmers cannot afford to install this equipment, it is necessary to look for more effective solutions that would be cheaper to implement. The objective of this study is to build virtual organizations of agents that can communicate between each other while monitoring crops. A low cost sensor architecture allows farmers to monitor and optimize the growth of their crops by streamlining the amount of resources the crops need at every moment. Since the hardware has limited processing and communication capabilities, our approach uses the PANGEA architecture to overcome this limitation. Specifically, we will design a system that is capable of collecting heterogeneous information from its environment, using sensors for temperature, solar radiation, humidity, pH, moisture and wind. A major outcome of our approach is that our solution is able to merge heterogeneous data from sensors and produce a response adapted to the context. In order to validate the proposed system, we present a case study in which farmers are provided with a tool that allows us to monitor the condition of crops on a TV screen using a low cost device. PMID:28767089
USDA-ARS?s Scientific Manuscript database
Few studies have assessed the common, yet unproven, hypothesis that an increase of plant nitrogen (N) uptake and/or recovery efficiency (NRE) will reduce nitrous oxide (N2O) emission during crop production. Understanding the relationships between N2O emissions and crop N uptake and use efficiency p...
USDA-ARS?s Scientific Manuscript database
The increased use of conservation tillage in vegetable production requires more information be developed on the role of cover crops in weed control, tomato quality and yield. Three conservation-tillage systems utilizing crimson clover, brassica and cereal rye as winter cover crops were compared to ...
Field Note: A Disease Specific Expert System for the Indian Mango Crop
ERIC Educational Resources Information Center
Chakrabarti, Dilip Kumar; Chakraborty, Pinaki
2007-01-01
Mango ("Mangifera indica") is a popular fruit and an important cash crop of southeast Asia. The mango malformation disease has been responsible for the degraded yield of the crop now for a long time (Kumar and Chakrabarti, 1997). The disease is difficult to cure and often takes the shape of an epidemic. Though much study has been done…
USDA-ARS?s Scientific Manuscript database
As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abs...
Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair
2017-03-01
Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.
Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling system
NASA Astrophysics Data System (ADS)
Liu, X.; Chen, F.; Barlage, M. J.; Zhou, G.; Niyogi, D.
2015-12-01
Croplands are important in land-atmosphere interactions and in modifying local and regional weather and climate. Despite their importance, croplands are poorly represented in the current version of the coupled Weather Research and Forecasting (WRF)/ Noah land-surface modeling system, resulting in significant surface temperature and humidity biases across agriculture- dominated regions of the United States. This study aims to improve the WRF weather forecasting and regional climate simulations during the crop growing season by enhancing the representation of cropland in the Noah-MP land model. We introduced dynamic crop growth parameterization into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at both the field and regional scales with multiple crop biomass datasets, surface fluxes and soil moisture/temperature observations. We also integrated a detailed cropland cover map into WRF, enabling the model to simulate corn and soybean field across the U.S. Great Plains. Results show marked improvement in the Noah-MP-Crop performance in simulating leaf area index (LAI), crop biomass, soil temperature, and surface fluxes. Enhanced cropland representation is not only crucial for improving weather forecasting but can also help assess potential impacts of weather variability on regional hydrometeorology and crop yields. In addition to its applications to WRF, Noah-MP-Crop can be applied in high-spatial-resolution regional crop yield modeling and drought assessments
Plants for space plantations. [crops for closed life support systems
NASA Technical Reports Server (NTRS)
Nikishanova, T. I.
1978-01-01
Criteria for selection of candidate crops for closed life support systems are presented and discussed, and desired characteristics of candidate higher plant crops are given. Carbohydrate crops, which are most suitable, grown worldwide are listed and discussed. The sweet potato, ipomoea batatas Poir., is shown to meet the criteria to the greatest degree, and the criteria are recommended as suitable for initial evaluation of candidate higher plant crops for such systems.
Shelton, Rebecca E.; Jacobsen, Krista L.; McCulley, Rebecca L.
2018-01-01
Agroecosystem nitrogen (N) loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1) an unfertilized, organic system with cover crops hairy vetch (Vicia villosa), winter wheat (Triticum aestivum), or a mix of the two (bi-culture); (2) an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach); and (3) a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N). In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat) and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat). Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit) and the timing of loss (organic N delayed N2O-N loss vs. urea) and NO3-N leaching (urea >> organic N) in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems. PMID:29403512
NASA Astrophysics Data System (ADS)
Malard, J. J.; Rojas, M.; Adamowski, J. F.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.
2015-12-01
While cropping models represent the biophysical aspects of agricultural systems, system dynamics modelling offers the possibility of representing the socioeconomic (including social and cultural) aspects of these systems. The two types of models can then be coupled in order to include the socioeconomic dimensions of climate change adaptation in the predictions of cropping models.We develop a dynamically coupled socioeconomic-biophysical model of agricultural production and its repercussions on food security in two case studies from Guatemala (a market-based, intensive agricultural system and a low-input, subsistence crop-based system). Through the specification of the climate inputs to the cropping model, the impacts of climate change on the entire system can be analysed, and the participatory nature of the system dynamics model-building process, in which stakeholders from NGOs to local governmental extension workers were included, helps ensure local trust in and use of the model.However, the analysis of climate variability's impacts on agroecosystems includes uncertainty, especially in the case of joint physical-socioeconomic modelling, and the explicit representation of this uncertainty in the participatory development of the models is important to ensure appropriate use of the models by the end users. In addition, standard model calibration, validation, and uncertainty interval estimation techniques used for physically-based models are impractical in the case of socioeconomic modelling. We present a methodology for the calibration and uncertainty analysis of coupled biophysical (cropping) and system dynamics (socioeconomic) agricultural models, using survey data and expert input to calibrate and evaluate the uncertainty of the system dynamics as well as of the overall coupled model. This approach offers an important tool for local decision makers to evaluate the potential impacts of climate change and their feedbacks through the associated socioeconomic system.
Higo, Masao; Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori
2018-01-01
Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans ( Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha -1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance.
Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori
2018-01-01
Background Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans (Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. Methods In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha−1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. Results The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Discussion Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance. PMID:29682413
Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems
NASA Astrophysics Data System (ADS)
Mendez, Mariano J.; Buschiazzo, Daniel E.
2015-03-01
The effectiveness of wind erosion control by soil surface conditions and crop and weed canopy has been well studied in wind tunnel experiments. The aim of this study is to assess the combined effects of these variables under field conditions. Soil surface conditions, crop and weed coverage, plant residue, and non-erodible aggregates (NEA) were measured in the field between the fallow start and the growth period of sunflower (Helianthus annuus) and corn (Zea mays). Both crops were planted on a sandy-loam Entic Haplustoll with conventional-(CT), vertical-(VT) and no-till (NT) tillage systems. Wind erosion was estimated by means of the spreadsheet version the Revised Wind Erosion Equation and the soil coverage was measured each 15 days. Results indicated that wind erosion was mostly negligible in NT, exceeding the tolerable levels (estimated between 300 and 1400 kg ha-1 year-1 by Verheijen et al. (2009)) only in an year with high climatic erosivity. Wind erosion exceeded the tolerable levels in most cases in CT and VT, reaching values of 17,400 kg ha-1. Wind erosion was 2-10 times higher after planting of both crops than during fallows. During the fallows, the soil was mostly well covered with plant residues and NEA in CT and VT and with residues and weeds in NT. High wind erosion amounts occurring 30 days after planting in all tillage systems were produced by the destruction of coarse aggregates and the burying of plant residues during planting operations and rains. Differences in soil protection after planting were given by residues of previous crops and growing weeds. The growth of weeds 2-4 weeks after crop planting contributed to reduce wind erosion without impacting in crops yields. An accurate weeds management in semiarid lands can contribute significantly to control wind erosion. More field studies are needed in order to develop management strategies to reduce wind erosion.
NASA Astrophysics Data System (ADS)
Jarvis, I.; Gilliams, S. J. B.; Defourny, P.
2016-12-01
Globally there is significant convergence on agricultural monitoring research questions. The focus of interest usually revolves around crop type, crop area estimation and near real time crop condition and yield forecasting. Notwithstanding this convergence, agricultural systems differ significantly throughout the world, reflecting the diversity of ecosystems they are located in. Consequently, a global system of systems for operational monitoring must be based on multiple approaches. Research is required to compare and assess these approaches to identify which are most appropriate for any given location. To this end the Joint Experiments for Crop Assessment and Monitoring (JECAM) was established in 2009 to as a research platform to allow the global agricultural monitoring community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. The results of JECAM optical inter-comparison research taking place in the Stimulating Innovation for Global Monitoring of Agriculture (SIGMA) project and the Sentinel-2 for Agriculture project will be discussed. The presentation will also highlight upcoming work on a Synthetic Aperture Radar (SAR) inter-comparison study. The outcome of these projects will result in a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the R&D foundation for GEOGLAM and will help to inform the development of the GEOGLAM system of systems for global agricultural monitoring.
Crop Species Diversity Changes in the United States: 1978–2012
Aguilar, Jonathan; Gramig, Greta G.; Hendrickson, John R.; Archer, David W.; Forcella, Frank; Liebig, Mark A.
2015-01-01
Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability. PMID:26308552
Rainwater harvesting potential for farming system development in a hilly watershed of Bangladesh
NASA Astrophysics Data System (ADS)
Tariqul Islam, Md.; Mohabbat Ullah, Md.; Mostofa Amin, M. G.; Hossain, Sahadat
2017-09-01
Water resources management is an important part in farming system development. Agriculture in Chittagong Hill Tracts of Bangladesh is predominantly rainfed with an average 2210 mm monsoonal rain, but rainfall during dry winter period (December-February) is inadequate for winter crop production. The natural soil water content (as low as 7 %) of hillslope and hilltop during the dry season is not suitable for shallow-rooted crop cultivation. A study was conducted to investigate the potential of monsoonal rainwater harvesting and its impact on local cropping system development. Irrigation facilities provided by the managed rainwater harvesting reservoir increased research site's cropping intensity from 155 to 300 %. Both gravity flow irrigation of valley land and low lift pumping to hillslope and hilltop from rainwater harvesting reservoir were much more economical compared to forced mode pumping of groundwater because of the installation and annual operating cost of groundwater pumping. To abstract 7548 m3 of water, equivalent to the storage capacity of the studied reservoirs, from aquifer required 2174 kWh energy. The improved water supply system enabled triple cropping system for valley land and permanent horticultural intervention at hilltop and hillslope. The perennial vegetation in hilltop and hillslope would also conserve soil moisture. Water productivity and benefit-cost ratio analysis show that vegetables and fruit production were more profitable than rice cultivation under irrigation with harvested rainwater. Moreover, the reservoir showed potentiality of integrated farming in such adverse area by facilitating fish production. The study provides water resource managers and government officials working with similar problems with valuable information for formulation of plan, policy, and strategy.
Remote sensing to monitor cover crop adoption in southeastern Pennsylvania
Hively, Wells; Sjoerd Duiker,; Greg McCarty,; Prabhakara, Kusuma
2015-01-01
In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d’ Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery showed consistent increases in vegetative groundcover over the four-year study period and determined that trends did not result from annual weather variability, indicating that farmers are increasing adoption of practices such as cover cropping that promote wintertime vegetation. Between 2010 and 2013, the occurrence of wintertime vegetation on agricultural fields increased from 36% to 67% of corn fields in Berks County, from 53% to 75% in Lancaster County, from 42% to 65% in Lebanon County, and from 26% to 52% in York County. Apparently, efforts to promote cover crop use in the Chesapeake Bay Watershed have coincided with a rapid increase in the occurrence of wintertime vegetation following corn harvest in southeastern Pennsylvania. However, despite these increases, between 25% and 48% of corn fields remained without substantial green vegetation over the wintertime, indicating further opportunity for cover crop adoption.
USDA-ARS?s Scientific Manuscript database
Findings and interpretations generated from long-term cropping system studies serve to inform the status and trajectory of ecosystem services, while concurrently providing opportunities for further inquiry related to basic/fundamental research. Recent calls for increased investment in long-term cro...
USDA-ARS?s Scientific Manuscript database
Long-term crop-livestock integration enables constant and high nutrient cycling because animal, pasture and crop residues release nutrients at different rates. Therefore, appropriate management of these systems is needed to maximize the benefits of nutrient cycling. The objective of this study was t...
Field Evaluation of Open System Chambers for Measuring Whole Canopy Gas Exchanges
USDA-ARS?s Scientific Manuscript database
The ability to monitor whole canopy CO2 and H2O fluxes of crop plants in the field is needed for many research efforts ranging from plant breeding to the study of Climate Change effects on crops. Four portable, transparent, open system chambers for measuring canopy gas exchanges were field tested on...
Effects of cropping and tillage systems on soil erosion under climate change in Oklahoma
USDA-ARS?s Scientific Manuscript database
Soil erosion under future climate change is very likely to increase due to projected increases in frequency and magnitude of heavy storms. The objective of this study is to quantify the effects of common cropping and tillage systems on soil erosion and surface runoff during 2010-2039 in central Okl...
The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems
NASA Astrophysics Data System (ADS)
Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.
2014-12-01
The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern institutions established to evaluate how conservation practices, including cover crops, improve the resilience of Midwest agriculture to future change. Such collaborations can help better quantify long term impacts of conservation practices on the landscape that ultimately lead to more climate-smart management of such agricultural systems.
Effects of input uncertainty on cross-scale crop modeling
NASA Astrophysics Data System (ADS)
Waha, Katharina; Huth, Neil; Carberry, Peter
2014-05-01
The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input data from very little to very detailed information, and compare the models' abilities to represent the spatial variability and temporal variability in crop yields. We display the uncertainty in crop yield simulations from different input data and crop models in Taylor diagrams which are a graphical summary of the similarity between simulations and observations (Taylor, 2001). The observed spatial variability can be represented well from both models (R=0.6-0.8) but APSIM predicts higher spatial variability than LPJmL due to its sensitivity to soil parameters. Simulations with the same crop model, climate and sowing dates have similar statistics and therefore similar skill to reproduce the observed spatial variability. Soil data is less important for the skill of a crop model to reproduce the observed spatial variability. However, the uncertainty in simulated spatial variability from the two crop models is larger than from input data settings and APSIM is more sensitive to input data then LPJmL. Even with a detailed, point-scale crop model and detailed input data it is difficult to capture the complexity and diversity in maize cropping systems.
Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques.
Schöneberg, Torsten; Martin, Charlotte; Wettstein, Felix E; Bucheli, Thomas D; Mascher, Fabio; Bertossa, Mario; Musa, Tomke; Keller, Beat; Vogelgsang, Susanne
2016-10-01
Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination.
Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques
Schöneberg, Torsten; Martin, Charlotte; Wettstein, Felix E.; Bucheli, Thomas D.; Mascher, Fabio; Bertossa, Mario; Musa, Tomke; Keller, Beat; Vogelgsang, Susanne
2016-01-01
ABSTRACT Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination. PMID:27491813
Climate Change and Dryland Wheat Systems in the US Pacific Northwest
NASA Astrophysics Data System (ADS)
Stockle, C.; Karimi, T.; Huggins, D. R.; Nelson, R.
2015-12-01
A regional assessment of historical and future yields, and components of the water, nitrogen, and carbon soil balance of dryland wheat-based cropping systems in the US Pacific Northwest is being conducted (Regional Approaches to Climate Change project funded by USDA-NIFA). All these elements intertwines and are important to understand the future of these systems in the region. A computer simulation methodology was used based on the CropSyst model and historic and projected daily weather data downscaled to a 4x4 km grid including 14 general circulation models (GCMs) and two representative concentration pathways of future atmospheric CO2 (RCP 4.5 and RCP 8.5). The study region was divided in 3 agro-ecological zones (AEZ) based on precipitation amount: low (<300 mm/year), intermediate (300-460 mm/year) and high (>460 mm/year), with a change from crop-fallow, to transition fallow (crop-crop-fallow) to annual cropping, respectively. Typical wheat-based rotations included winter wheat (WW)-Summer fallow (SF) for the low AEZ, WW-spring wheat (SW)-SF for the intermediate AEZ, and WW-SW-spring peas for the high AEZ, all under conventional and no tillage management. Alternative systems incorporating canola were also evaluated. Results suggest that, in most cases, these dryland systems may fare well in the future (31-year periods centered around 2030, 2050, and 2070), with potential gains in productivity. Also, a trend towards increased fallow in the intermediate AEZ appears possible for higher productivity, and the inclusion of less water demanding crops may help sustain cropping intensity. Uncertainties in these projections arise from large discrepancies among climate models regarding the warming rate, compounded by different possible future CO2 emission scenarios, the degree of change in frequency and severity of extreme events and associated potential damages to crop canopies due to cold weather and grain set reduction due to extreme heat events. Furthermore, there is little understanding of the impact of climate change on pests, diseases and weeds that could affect crop production and management costs. Finally, there is also uncertainty on the speed of technological innovation allowing producers to adapt to changing conditions.
Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J; Owen, Micheal D K; Tillie, Pascal; Messéan, Antoine; Kudsk, Per
2017-06-01
Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.
Shtull-Trauring, Eliav; Aviani, Ido; Avisar, Dror; Bernstein, Nirit
2016-01-01
Addressing the global challenges to water security requires a better understanding of humanity's use of water, especially the agricultural sector that accounts for 70% of global withdrawals. This study combined high resolution-data with a GIS system to analyze the impact of agricultural practices, crop type, and spatial factors such as drainage basins, climate, and soil type on the Water Footprint (WF) of agricultural crops. The area of the study, the northern Lower Jordan Valley, covers 1121 ha in which three main plantation crops are grown: banana (cultivated in open-fields or net-houses), avocado and palm-dates. High-resolution data sources included GIS layers of the cultivated crops and a drainage pipe-system installed in the study area; meteorological data (2000–2013); and crop parameters (yield and irrigation recommendations). First, the study compared the WF of the different crops on the basis of yield and energy produced as well as a comparison to global values and local irrigation recommendations. The results showed that net-house banana has the lowest WF based on all different criteria. However, while palm-dates showed the highest WF for the yield criteria, it had the second lowest WF for energy produced, emphasizing the importance of using multiple parameters for low and high yield crop comparisons. Next, the regional WF of each drainage basin in the study area was calculated, demonstrating the strong influence of the Gray WF, an indication of the amount of freshwater required for pollution assimilation. Finally, the benefits of integrating GIS and WF were demonstrated by computing the effect of adopting net-house cultivation throughout the area of study with a result a reduction of 1.3 MCM irrigation water per year. Integrating the WF methodology and local high-resolution data using GIS can therefore promote and help quantify the benefits of adopting site-appropriate crops and agricultural practices that lower the WF by increasing yield, reducing water consumption, and minimizing negative environmental impacts. PMID:28018408
Shtull-Trauring, Eliav; Aviani, Ido; Avisar, Dror; Bernstein, Nirit
2016-01-01
Addressing the global challenges to water security requires a better understanding of humanity's use of water, especially the agricultural sector that accounts for 70% of global withdrawals. This study combined high resolution-data with a GIS system to analyze the impact of agricultural practices, crop type, and spatial factors such as drainage basins, climate, and soil type on the Water Footprint (WF) of agricultural crops. The area of the study, the northern Lower Jordan Valley, covers 1121 ha in which three main plantation crops are grown: banana (cultivated in open-fields or net-houses), avocado and palm-dates. High-resolution data sources included GIS layers of the cultivated crops and a drainage pipe-system installed in the study area; meteorological data (2000-2013); and crop parameters (yield and irrigation recommendations). First, the study compared the WF of the different crops on the basis of yield and energy produced as well as a comparison to global values and local irrigation recommendations. The results showed that net-house banana has the lowest WF based on all different criteria. However, while palm-dates showed the highest WF for the yield criteria, it had the second lowest WF for energy produced, emphasizing the importance of using multiple parameters for low and high yield crop comparisons. Next, the regional WF of each drainage basin in the study area was calculated, demonstrating the strong influence of the Gray WF, an indication of the amount of freshwater required for pollution assimilation. Finally, the benefits of integrating GIS and WF were demonstrated by computing the effect of adopting net-house cultivation throughout the area of study with a result a reduction of 1.3 MCM irrigation water per year. Integrating the WF methodology and local high-resolution data using GIS can therefore promote and help quantify the benefits of adopting site-appropriate crops and agricultural practices that lower the WF by increasing yield, reducing water consumption, and minimizing negative environmental impacts.
Model development for prediction of soil water dynamics in plant production.
Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng
2015-09-01
Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.
VoPham, Trang; Wilson, John P; Ruddell, Darren; Rashed, Tarek; Brooks, Maria M; Yuan, Jian-Min; Talbott, Evelyn O; Chang, Chung-Chou H; Weissfeld, Joel L
2015-08-01
Accurate pesticide exposure estimation is integral to epidemiologic studies elucidating the role of pesticides in human health. Humans can be exposed to pesticides via residential proximity to agricultural pesticide applications (drift). We present an improved geographic information system (GIS) and remote sensing method, the Landsat method, to estimate agricultural pesticide exposure through matching pesticide applications to crops classified from temporally concurrent Landsat satellite remote sensing images in California. The image classification method utilizes Normalized Difference Vegetation Index (NDVI) values in a combined maximum likelihood classification and per-field (using segments) approach. Pesticide exposure is estimated according to pesticide-treated crop fields intersecting 500 m buffers around geocoded locations (e.g., residences) in a GIS. Study results demonstrate that the Landsat method can improve GIS-based pesticide exposure estimation by matching more pesticide applications to crops (especially temporary crops) classified using temporally concurrent Landsat images compared to the standard method that relies on infrequently updated land use survey (LUS) crop data. The Landsat method can be used in epidemiologic studies to reconstruct past individual-level exposure to specific pesticides according to where individuals are located.
Edwards, C Blake; Jordan, David L; Owen, Michael Dk; Dixon, Philip M; Young, Bryan G; Wilson, Robert G; Weller, Steven C; Shaw, David R
2014-12-01
Since the introduction of glyphosate-resistant (GR) crops, growers have often relied on glyphosate-only weed control programs. As a result, multiple weeds have evolved resistance to glyphosate. A 5 year study including 156 growers from Illinois, Iowa, Indiana, Nebraska, North Carolina and Mississippi in the United States was conducted to compare crop yields and net returns between grower standard weed management programs (SPs) and programs containing best management practices (BMPs) recommended by university weed scientists. The BMPs were designed to prevent or mitigate/manage evolved herbicide resistance. Weed management costs were greater for the BMP approach in most situations, but crop yields often increased sufficiently for net returns similar to those of the less expensive SPs. This response was similar across all years, geographical regions, states, crops and tillage systems. Herbicide use strategies that include a diversity of herbicide mechanisms of action will increase the long-term sustainability of glyphosate-based weed management strategies. Growers can adopt herbicide resistance BMPs with confidence that net returns will not be negatively affected in the short term and contribute to resistance management in the long term. © 2014 Society of Chemical Industry.
Cost-benefit trade-offs of bird activity in apple orchards
Saunders, Manu E.; Luck, Gary W.
2016-01-01
Birds active in apple orchards in south–eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south–eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems. PMID:27413639
NASA Astrophysics Data System (ADS)
Ban, Yifang
Acquisition of timely information is a critical requirement for successful management of an agricultural monitoring system. Crop identification and crop-area estimation can be done fairly successfully using satellite sensors operating in the visible and near-infrared (VIR) regions of the spectrum. However, data collection can be unreliable due to problems of cloud cover at critical stages of the growing season. The all-weather capability of synthetic aperture radar (SAR) imagery acquired from satellites provides data over large areas whenever crop information is required. At the same time, SAR is sensitive to surface roughness and should be able to provide surface information such as tillage-system characteristics. With the launch of ERS-1, the first long-duration SAR system became available. The analysis of airborne multipolarization SAR data, multitemporal ERS-1 SAR data, and their combinations with VIR data, is necessary for the development of image-analysis methodologies that can be applied to RADARSAT data for extracting agricultural crop information. The overall objective of this research is to evaluate multipolarization airborne SAR data, multitemporal ERS-1 SAR data, and combinations of ERS-1 SAR and satellite VIR data for crop classification using non-conventional algorithms. The study area is situated in Norwich Township, an agricultural area in Oxford County, southern Ontario, Canada. It has been selected as one of the few representative agricultural 'supersites' across Canada at which the relationships between radar data and agriculture are being studied. The major field crops are corn, soybeans, winter wheat, oats, barley, alfalfa, hay, and pasture. Using airborne C-HH and C-HV SAR data, it was found that approaches using contextual information, texture information and per-field classification for improving agricultural crop classification proved to be effective, especially the per-field classification method. Results show that three of the four best per-field classification accuracies (\\ K=0.91) are achieved using combinations of C-HH and C-VV SAR data. This confirms the strong potential of multipolarization data for crop classification. The synergistic effects of multitemporal ERS-1 SAR and Landsat TM data are evaluated for crop classification using an artificial neural network (ANN) approach. The results show that the per-field approach using a feed-forward ANN significantly improves the overall classification accuracy of both single-date and multitemporal SAR data. Using the combination of TM3,4,5 and Aug. 5 SAR data, the best per-field ANN classification of 96.8% was achieved. It represents an 8.5% improvement over a single TM3,4,5 classification alone. Using multitemporal ERS-1 SAR data acquired during the 1992 and 1993 growing seasons, the radar backscatter characteristics of crops and their underlying soils are analyzed. The SAR temporal backscatter profiles were generated for each crop type and the earliest times of the year for differentiation of individual crop types were determined. Orbital (incidence-angle) effects were also observed on all crops. The average difference between the two orbits was about 3 dB. Thus attention should be given to the local incidence-angle effects when using ERS-1 SAR data, especially when comparing fields from different scenes or different areas within the same scene. Finally, early- and mid-season multitemporal SAR data for crop classification using sequential-masking techniques are evaluated, based on the temporal backscatter profiles. It was found that all crops studied could be identified by July 21.
USDA-ARS?s Scientific Manuscript database
Cover crops are a key component of conservation cropping systems. They can also be a key component of integrated crop-livestock systems by offering high-quality forage during short periods between cash crops. The impact of cattle grazing on biologically active soil C and N fractions has not receiv...
Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?
NASA Astrophysics Data System (ADS)
Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea
2017-04-01
In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips reduced the wind speed, hence lowering evapotranspiration in the crop strip. The plot was not aligned directly to North and we observed steeper soil water potential gradients in the part of the crop strip more exposed to sunlight. The two tree species behaved differently. The poplar strips showed more marked diurnal changes in soil water potential, with fast drying during daytime and rewetting during nighttime. We suppose that the rewetting during nighttime was caused by hydraulic lift, which supports passively the drier upper soil with water from the wetter, lower soil layers. This experimental study shows the importance of above- and belowground tree-crop interactions and demonstrate the positive effect of tree strips in reducing drought stress in crops.
Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System.
Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang
2017-03-03
In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R²) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively.
Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System
Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang
2017-01-01
In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R2) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively. PMID:28273815
A, Ramachandran; Praveen, Dhanya; R, Jaganathan; D, RajaLakshmi; K, Palanivelu
2017-01-01
India's dependence on a climate sensitive sector like agriculture makes it highly vulnerable to its impacts. However, agriculture is highly heterogeneous across the country owing to regional disparities in exposure, sensitivity, and adaptive capacity. It is essential to know and quantify the possible impacts of changes in climate on crop yield for successful agricultural management and planning at a local scale. The Hadley Centre Global Environment Model version 2-Earth System (HadGEM-ES) was employed to generate regional climate projections for the study area using the Regional Climate Model (RCM) RegCM4.4. The dynamics in potential impacts at the sub-district level were evaluated using the Representative Concentration Pathway 4.5 (RCPs). The aim of this study was to simulate the crop yield under a plausible change in climate for the coastal areas of South India through the end of this century. The crop simulation model, the Decision Support System for Agrotechnology Transfer (DSSAT) 4.5, was used to understand the plausible impacts on the major crop yields of rice, groundnuts, and sugarcane under the RCP 4.5 trajectory. The findings reveal that under the RCP 4.5 scenario there will be decreases in the major C3 and C4 crop yields in the study area. This would affect not only the local food security, but the livelihood security as well. This necessitates timely planning to achieve sustainable crop productivity and livelihood security. On the other hand, this situation warrants appropriate adaptations and policy intervention at the sub-district level for achieving sustainable crop productivity in the future. PMID:28753605
A, Ramachandran; Praveen, Dhanya; R, Jaganathan; D, RajaLakshmi; K, Palanivelu
2017-01-01
India's dependence on a climate sensitive sector like agriculture makes it highly vulnerable to its impacts. However, agriculture is highly heterogeneous across the country owing to regional disparities in exposure, sensitivity, and adaptive capacity. It is essential to know and quantify the possible impacts of changes in climate on crop yield for successful agricultural management and planning at a local scale. The Hadley Centre Global Environment Model version 2-Earth System (HadGEM-ES) was employed to generate regional climate projections for the study area using the Regional Climate Model (RCM) RegCM4.4. The dynamics in potential impacts at the sub-district level were evaluated using the Representative Concentration Pathway 4.5 (RCPs). The aim of this study was to simulate the crop yield under a plausible change in climate for the coastal areas of South India through the end of this century. The crop simulation model, the Decision Support System for Agrotechnology Transfer (DSSAT) 4.5, was used to understand the plausible impacts on the major crop yields of rice, groundnuts, and sugarcane under the RCP 4.5 trajectory. The findings reveal that under the RCP 4.5 scenario there will be decreases in the major C3 and C4 crop yields in the study area. This would affect not only the local food security, but the livelihood security as well. This necessitates timely planning to achieve sustainable crop productivity and livelihood security. On the other hand, this situation warrants appropriate adaptations and policy intervention at the sub-district level for achieving sustainable crop productivity in the future.
NASA Astrophysics Data System (ADS)
Sawant, S. A.; Chakraborty, M.; Suradhaniwar, S.; Adinarayana, J.; Durbha, S. S.
2016-06-01
Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (http://earthexplorer.usgs.gov/). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system observed relevant weather parameters for crop ET estimation. The results show that time series EO based crop growth stage estimates provide better information about geographically separated citrus orchards. Attempts are being made to estimate regional variations in citrus crop water requirement for effective irrigation planning. In future high resolution Sentinel 2 observations from European Space Agency (ESA) will be used to fill the time gaps and to get better understanding about citrus crop canopy parameters.
To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd
2010-09-08
Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.
Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model
NASA Astrophysics Data System (ADS)
Liu, Xing; Chen, Fei; Barlage, Michael; Zhou, Guangsheng; Niyogi, Dev
2016-12-01
Croplands are important in land-atmosphere interactions and in the modification of local and regional weather and climate; however, they are poorly represented in the current version of the coupled Weather Research and Forecasting/Noah with multiparameterization (Noah-MP) land surface modeling system. This study introduced dynamic corn (Zea mays) and soybean (Glycine max) growth simulations and field management (e.g., planting date) into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at field scales using crop biomass data sets, surface heat fluxes, and soil moisture observations. Compared to the generic dynamic vegetation and prescribed-leaf area index (LAI)-driven methods in Noah-MP, the Noah-MP-Crop showed improved performance in simulating leaf area index (LAI) and crop biomass. This model is able to capture the seasonal and annual variability of LAI and to differentiate corn and soybean in peak values of LAI as well as the length of growing seasons. Improved simulations of crop phenology in Noah-MP-Crop led to better surface heat flux simulations, especially in the early period of growing season where current Noah-MP significantly overestimated LAI. The addition of crop yields as model outputs expand the application of Noah-MP-Crop to regional agriculture studies. There are limitations in the use of current growing degree days (GDD) criteria to predict growth stages, and it is necessary to develop a new method that combines GDD with other environmental factors, to more accurately define crop growth stages. The capability introduced in Noah-MP allows further crop-related studies and development.
Impacts of climate change on cropping patterns in a tropical, sub-humid watershed
Zwart, Sander J.; Hein, Lars
2018-01-01
In recent decades, there have been substantial increases in crop production in sub-Saharan Africa (SSA) as a result of higher yields, increased cropping intensity, expansion of irrigated cropping systems, and rainfed cropland expansion. Yet, to date much of the research focus of the impact of climate change on crop production in the coming decades has been on crop yield responses. In this study, we analyse the impact of climate change on the potential for increasing rainfed cropping intensity through sequential cropping and irrigation expansion in central Benin. Our approach combines hydrological modelling and scenario analysis involving two Representative Concentration Pathways (RCPs), two water-use scenarios for the watershed based on the Shared Socioeconomic Pathways (SSPs), and environmental water requirements leading to sustained streamflow. Our analyses show that in Benin, warmer temperatures will severely limit crop production increases achieved through the expansion of sequential cropping. Depending on the climate change scenario, between 50% and 95% of cultivated areas that can currently support sequential cropping or will need to revert to single cropping. The results also show that the irrigation potential of the watershed will be at least halved by mid-century in all scenario combinations. Given the urgent need to increase crop production to meet the demands of a growing population in SSA, our study outlines challenges and the need for planned development that need to be overcome to improve food security in the coming decades. PMID:29513753
Tian, Shenzhong; Wang, Yu; Ning, Tangyuan; Zhao, Hongxiang; Wang, Bingwen; Li, Na; Li, Zengjia; Chi, Shuyun
2013-01-01
Appropriate tillage plays an important role in mitigating the emissions of greenhouse gases (GHG) in regions with higher crop yields, but the emission situations of some reduced tillage systems such as subsoiling, harrow tillage and rotary tillage are not comprehensively studied. The objective of this study was to evaluate the emission characteristics of GHG (CH4 and N2O) under four reduced tillage systems from October 2007 to August 2009 based on a 10-yr tillage experiment in the North China Plain, which included no-tillage (NT) and three reduced tillage systems of subsoil tillage (ST), harrow tillage (HT) and rotary tillage (RT), with the conventional tillage (CT) as the control. The soil under the five tillage systems was an absorption sink for CH4 and an emission source for N2O. The soil temperature positive impacted on the CH4 absorption by the soils of different tillage systems, while a significant negative correlation was observed between the absorption and soil moisture. The main driving factor for increased N2O emission was not the soil temperature but the soil moisture and the content of nitrate. In the two rotation cycle of wheat-maize system (10/2007-10/2008 and 10/2008-10/2009), averaged cumulative uptake fluxes of CH4 under CT, ST, HT, RT and NT systems were approximately 1.67, 1.72, 1.63, 1.77 and 1.17 t ha(-1) year(-1), respectively, and meanwhile, approximately 4.43, 4.38, 4.47, 4.30 and 4.61 t ha(-1) year(-1) of N2O were emitted from soil of these systems, respectively. Moreover, they also gained 33.73, 34.63, 32.62, 34.56 and 27.54 t ha(-1) yields during two crop-rotation periods, respectively. Based on these comparisons, the rotary tillage and subsoiling mitigated the emissions of CH4 and N2O as well as improving crop productivity of a wheat-maize cropping system.
Tian, Shenzhong; Wang, Yu; Ning, Tangyuan; Zhao, Hongxiang; Wang, Bingwen; Li, Na; Li, Zengjia; Chi, Shuyun
2013-01-01
Appropriate tillage plays an important role in mitigating the emissions of greenhouse gases (GHG) in regions with higher crop yields, but the emission situations of some reduced tillage systems such as subsoiling, harrow tillage and rotary tillage are not comprehensively studied. The objective of this study was to evaluate the emission characteristics of GHG (CH4 and N2O) under four reduced tillage systems from October 2007 to August 2009 based on a 10-yr tillage experiment in the North China Plain, which included no-tillage (NT) and three reduced tillage systems of subsoil tillage (ST), harrow tillage (HT) and rotary tillage (RT), with the conventional tillage (CT) as the control. The soil under the five tillage systems was an absorption sink for CH4 and an emission source for N2O. The soil temperature positive impacted on the CH4 absorption by the soils of different tillage systems, while a significant negative correlation was observed between the absorption and soil moisture. The main driving factor for increased N2O emission was not the soil temperature but the soil moisture and the content of nitrate. In the two rotation cycle of wheat-maize system (10/2007–10/2008 and 10/2008–10/2009), averaged cumulative uptake fluxes of CH4 under CT, ST, HT, RT and NT systems were approximately 1.67, 1.72, 1.63, 1.77 and 1.17 t ha−1 year−1, respectively, and meanwhile, approximately 4.43, 4.38, 4.47, 4.30 and 4.61 t ha−1 year−1 of N2O were emitted from soil of these systems, respectively. Moreover, they also gained 33.73, 34.63, 32.62, 34.56 and 27.54 t ha−1 yields during two crop-rotation periods, respectively. Based on these comparisons, the rotary tillage and subsoiling mitigated the emissions of CH4 and N2O as well as improving crop productivity of a wheat-maize cropping system. PMID:24019923
An integrated soil-crop system model for water and nitrogen management in North China
Liang, Hao; Hu, Kelin; Batchelor, William D.; Qi, Zhiming; Li, Baoguo
2016-01-01
An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China. PMID:27181364
Loeb, Gregory M.
2018-01-01
Invasive, polyphagous crop pests subsist on a number of crop and non-crop resources. While knowing the full range of host species is important, a seasonal investigation into the use of non-crop plants adjacent to cropping systems provide key insights into some of the factors determining local population dynamics. This study investigated the infestation of non-crop plants by the invasive Drosophila suzukii (Matsumura), a pest of numerous economically important stone and small fruit crops, by sampling fruit-producing non-crop hosts adjacent to commercial plantings weekly from June through November in central New York over a two-year period. We found D. suzukii infestation rates (number of flies emerged/kg fruit) peaked mid-August through early September, with Rubus allegheniensis Porter and Lonicera morrowii Asa Gray showing the highest average infestation in both years. Interannual infestation patterns were similar despite a lower number of adults caught in monitoring traps the second year, suggesting D. suzukii host use may be density independent. PMID:29301358
NASA Astrophysics Data System (ADS)
Huang, G.
2016-12-01
Currently, studying crop-water response mechanism has become an important part in the development of new irrigation technology and optimal water allocation in water-scarce regions, which is of great significance to crop growth guidance, sustainable utilization of agricultural water, as well as the sustainable development of regional agriculture. Using multiple crop models(AquaCrop,SWAP,DNDC), this paper presents the results of simulating crop growth and agricultural water consumption of the winter-wheat and maize cropping system in north china plain. These areas are short of water resources, but generates about 23% of grain production for China. By analyzing the crop yields and the water consumption of the traditional flooding irrigation, the paper demonstrates quantitative evaluation of the potential amount of water use that can be reduced by using high-efficient irrigation approaches, such as drip irrigation. To maintain food supply and conserve water resources, the research concludes sustainable irrigation methods for the three provinces for sustainable utilization of agricultural water.
Gibson, David J; Young, Bryan G; Owen, Micheal D K; Gage, Karla L; Matthews, Joseph L; Jordan, David L; Shaw, David R; Weller, Stephen C; Wilson, Robert G
2016-04-01
Shifts in weed species composition and richness resulting from near-exclusive reliance on herbicides in glyphosate-resistant (GR) cropping systems has necessitated the implementation of alternative weed management tactics to reduce selection pressures of herbicides. We contrasted the response of the weed soil seedbank to effects of weed management strategy, comparing grower practices with academic recommendations for best management practices (BMPs) over 6 years and across five weed hardiness zones in the US Midwest at sites subject to GR cropping systems. Total weed population density and species richness varied according to cropping system, location and prior year's crop, but less so to weed management strategy. The seedbank population density for 11 of the 14 most frequent weed species was affected by weed management strategy either alone or in an interaction with hardiness zone or year, or both. In only 29% of comparisons was weed population density lower following academic recommendations, and this depended upon prior crop and cropping system. The population density of high-risk weed species was reduced by academic recommendations, but only in two of six years and under continuous GR maize. Overall, the weed population density was decreasing in field halves subject to the BMPs in the academic recommendations relative to grower practices. The soil seedbank is slow to respond to academic recommendations to mitigate glyphosate-resistant weeds, but represents a biological legacy that growers need to keep in mind even when management practices reduce emerged field weed population densities. © 2015 Society of Chemical Industry.
Soil Modification by Native Shrubs Boosts Crop Productivity in Sudano-Sahelian Agroforestry System
NASA Astrophysics Data System (ADS)
Bogie, N. A.; Bayala, R.; Diedhiou, I.; Ghezzehei, T. A.; Dick, R.
2014-12-01
A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively.We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture and water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. Hydraulic redistribution is thought to exist in this system and we found diurnal fluctuations in water potential within the intercropped system that increased in magnitude of to 0.4 Mpa per day as the soil dried below 1.0 Mpa during the stress treatment. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting labeled water into shrub roots and sampling shrubs and nearby crops for isotopic analysis of plant water. These findings build on work that was completed in 2004 at the site, but point to lower overall magnitude of diurnal soil water potential fluctuations in dry soils. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.
Systems biology-based approaches toward understanding drought tolerance in food crops.
Jogaiah, Sudisha; Govind, Sharathchandra Ramsandra; Tran, Lam-Son Phan
2013-03-01
Economically important crops, such as maize, wheat, rice, barley, and other food crops are affected by even small changes in water potential at important growth stages. Developing a comprehensive understanding of host response to drought requires a global view of the complex mechanisms involved. Research on drought tolerance has generally been conducted using discipline-specific approaches. However, plant stress response is complex and interlinked to a point where discipline-specific approaches do not give a complete global analysis of all the interlinked mechanisms. Systems biology perspective is needed to understand genome-scale networks required for building long-lasting drought resistance. Network maps have been constructed by integrating multiple functional genomics data with both model plants, such as Arabidopsis thaliana, Lotus japonicus, and Medicago truncatula, and various food crops, such as rice and soybean. Useful functional genomics data have been obtained from genome-wide comparative transcriptome and proteome analyses of drought responses from different crops. This integrative approach used by many groups has led to identification of commonly regulated signaling pathways and genes following exposure to drought. Combination of functional genomics and systems biology is very useful for comparative analysis of other food crops and has the ability to develop stable food systems worldwide. In addition, studying desiccation tolerance in resurrection plants will unravel how combination of molecular genetic and metabolic processes interacts to produce a resurrection phenotype. Systems biology-based approaches have helped in understanding how these individual factors and mechanisms (biochemical, molecular, and metabolic) "interact" spatially and temporally. Signaling network maps of such interactions are needed that can be used to design better engineering strategies for improving drought tolerance of important crop species.
Zhao, Yu-xin; Lu, Jiao-yun; Yang, Hui-min
2015-04-01
A field study was conducted to investigate the influences of no-tillage, stubble retention and crop type on weed density, species composition and community feature in a rotation system (winter wheat-common vetch-maize) established 12 years ago on the Loess Plateau of eastern Gansu. This study showed that the weed species composition, density and community feature varied with the change of crop phases. No-tillage practice increased the weed density at maize phase, while rotation with common vetch decreased the density in the no-tillage field. Stubble retention reduced the weed density under maize phase and the lowest density was observed in the no-tillage plus stubble retention field. No-tillage practice significantly increased the weed species diversity under winter wheat phase and decreased the diversity under common vetch phase. At maize phase, a greater species diversity index was observed in the no-tillage field. These results suggested that no-tillage practice and stubble retention possibly suppress specific weeds with the presence of some crops and crop rotation is a vital way to controlling weeds in a farming system.
Lammoglia, Sabine-Karen; Moeys, Julien; Barriuso, Enrique; Larsbo, Mats; Marín-Benito, Jesús-María; Justes, Eric; Alletto, Lionel; Ubertosi, Marjorie; Nicolardot, Bernard; Munier-Jolain, Nicolas; Mamy, Laure
2017-03-01
The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.
González-Chávez, Ma Del Carmen A; Torres-Cruz, Terry J; Sánchez, Samantha Albarrán; Carrillo-González, Rogelio; Carrillo-López, Luis Manuel; Porras-Alfaro, Andrea
2018-02-01
Vanilla is an orchid of economic importance widely cultivated in tropical regions and native to Mexico. We sampled three species of Vanilla (V. planifolia, V. pompona, and V. insignis) in different crop systems. We studied the effect of crop system on the abundance, type of fungi, and quality of pelotons found in the roots using light and electron microscopy and direct sequencing of mycorrhizal structures. Fungi were identified directly from pelotons obtained from terrestrial roots of vanilla plants in the flowering stage. Root samples were collected from plants in crop systems located in the Totonacapan area in Mexico (states of Puebla and Veracruz). DNA was extracted directly from 40 pelotons and amplified using ITS rRNA sequencing. Peloton-like structures were observed, presenting a combination of active pelotons characterized by abundant hyphal coils and pelotons in various stages of degradation. The most active pelotons were observed in crop systems throughout living tutors (host tree) in comparison with roots collected from dead or artificial tutors. Fungi identified directly from pelotons included Scleroderma areolatum, a common ectomycorrhizal fungus that has not been reported as a mycorrhizal symbiont in orchids. Direct amplification of pelotons also yielded common plant pathogens, including Fusarium and Pyrenophora seminiperda, especially in those sites with low colonization rates, and where large numbers of degraded pelotons were observed. This research reports for the first time the potential colonization of Vanilla by Scleroderma, as a putative orchid mycorrhizal symbiont in four sites in Mexico and the influence of crop system on mycorrhizal colonization on this orchid.
NASA Astrophysics Data System (ADS)
Grandy, S.
2013-12-01
Plant diversity is known to strongly influence aboveground ecosystem functions, but our understanding of its effects on belowground carbon (C) cycling has not kept pace. We know in broad terms that the belowground implications of reducing plant diversity include changes in soil nutrient cycling and biological communities, but remain uncertain about the specific links between plant diversity, soil microbial communities, and soil C cycling. Our knowledge gap is especially wide in agricultural systems, which comprise ~50% of the contiguous U.S. and differ from non-managed systems because diversity: (1) occurs primarily over time (i.e. crop rotations) rather than in space (i.e. inter-cropping); (2) exists as one of multiple management factors that potentially regulates soil C dynamics; and (3) is almost always low, with the addition or subtraction of a single plant species often representing a substantial change in diversity. I have been addressing the uncertain relationships between agricultural plant diversity and soil C cycling with a multi-tiered approach that includes a global meta-analysis, site-specific field manipulations, and intensive laboratory analyses. The meta-analysis using 122 studies shows that compared to single-crop monocultures, rotations increased soil microbial biomass C by 20.7% and microbial biomass N by 26.1% as well as total soil C and N. In a complimentary field study at the W.K. Kellogg Biological Station LTER Cropping Biodiversity Gradient Experiment we examined microbial communities, C cycling processes, and trace gas emissions in five rotation sequences varying in complexity from continuous corn monoculture to a five crop three-year rotation. Finding striking differences between monocultures and systems with more complex plant communities, these results confirm our meta-analysis, and highlight the strong effects of diversifying plant communities in agricultural systems. A complimentary lab study examining decomposition processes in monocultures and more diverse rotations shows that rotation soils process chemically complex C more rapidly. My studies point to complex relationships between the chemistry of substrate inputs and their fate in soils, while also emphasizing an important management consideration: maintaining soil biological functions and ecosystem services in managed agricultural systems requires the rotation of different crops, rather than the production of single crop monocultures.
USDA-ARS?s Scientific Manuscript database
High residue conservation agriculture systems have the potential to maximize environmental benefits achieved when practicing reduced tillage. A greenhouse study was conducted in 2006 through 2008 to determine the effects of cover crop residue on weed seed density within the soil seedbank under varyi...
NASA Astrophysics Data System (ADS)
Rasul, Golam; Thapa, Gopal B.
2007-08-01
As in other mountain regions of Asia, agricultural lands in the Chittagong Hill Tracts (CHT) of Bangladesh are undergoing degradation due primarily to environmentally incompatible land-use systems such as shifting cultivation ( jhum) and annual cash crops. The suitable land-use systems such as agroforestry and timber tree plantation provide benefit to the society at large, but they might not provide attractive economic benefits to farmers, eventually constraining a wide-scale adoption of such land-use systems. Therefore, it is essential to evaluate agricultural land-use systems from both societal and private perspectives in the pursuit of promoting particularly environmentally sustainable systems. This article evaluated five major land-use systems being practiced in CHT, namely jhum, annual cash crops, horticulture, agroforestry, and timber plantation. The results of the financial analysis revealed the annual cash crops as the most attractive land use and jhum as the least attractive of the five land-use systems considered under the study. Horticulture, timber plantation, and agroforestry, considered to be suitable land-use systems particularly for mountainous areas, held the middle ground between these two systems. Annual cash crops provided the highest financial return at the cost of a very high rate of soil erosion. When the societal cost of soil erosion is considered, annual cash crops appear to be the most costly land-use system, followed by jhum and horticulture. Although financially less attractive compared to annual cash crops and horticulture, agroforestry and timber plantation are the socially most beneficial land-use systems. Findings of the alternative policy analyses indicate that there is a good prospect for making environmentally sustainable land-use systems, such as agroforestry and timber plantation, attractive for the farmers by eliminating existing legal and institutional barriers, combined with the provision of necessary support services and facilities.
Rasul, Golam; Thapa, Gopal B
2007-08-01
As in other mountain regions of Asia, agricultural lands in the Chittagong Hill Tracts (CHT) of Bangladesh are undergoing degradation due primarily to environmentally incompatible land-use systems such as shifting cultivation (jhum) and annual cash crops. The suitable land-use systems such as agroforestry and timber tree plantation provide benefit to the society at large, but they might not provide attractive economic benefits to farmers, eventually constraining a wide-scale adoption of such land-use systems. Therefore, it is essential to evaluate agricultural land-use systems from both societal and private perspectives in the pursuit of promoting particularly environmentally sustainable systems. This article evaluated five major land-use systems being practiced in CHT, namely jhum, annual cash crops, horticulture, agroforestry, and timber plantation. The results of the financial analysis revealed the annual cash crops as the most attractive land use and jhum as the least attractive of the five land-use systems considered under the study. Horticulture, timber plantation, and agroforestry, considered to be suitable land-use systems particularly for mountainous areas, held the middle ground between these two systems. Annual cash crops provided the highest financial return at the cost of a very high rate of soil erosion. When the societal cost of soil erosion is considered, annual cash crops appear to be the most costly land-use system, followed by jhum and horticulture. Although financially less attractive compared to annual cash crops and horticulture, agroforestry and timber plantation are the socially most beneficial land-use systems. Findings of the alternative policy analyses indicate that there is a good prospect for making environmentally sustainable land-use systems, such as agroforestry and timber plantation, attractive for the farmers by eliminating existing legal and institutional barriers, combined with the provision of necessary support services and facilities.
Ranking agricultural practices on soil water improvements: a meta-analysis
NASA Astrophysics Data System (ADS)
Basche, A.; DeLonge, M. S.; Gonzalez, J.
2016-12-01
Increased rainfall variability is well documented in the historic record and predicted to intensify with future climate change. Managing excess water in periods of heavy rain and a lack of water in periods of inadequate precipitation will continue to be a challenge. Improving soil resiliency through increased water storage is a promising strategy to combat effects of both rainfall extremes. The goal of this research is to quantify to what extent various conservation and ecological practices can improve soil hydrology. We are conducting a global meta-analysis focused on studies where conservation and ecological practices are compared to more conventional management. To date we have analyzed 100 studies with more than 450 paired comparisons to understand the effect of management on water infiltration rates, a critical process that ensures water enters the soil profile for crop use, water storage and runoff prevention. The database will be expanded to include studies measuring soil porosity and the water retained at field capacity. Statistical analysis has been done both with both a bootstrap method and a mixed model that weights studies based on precision while accounting for between-study variation. We find that conservation and ecological practices, ranging from no-till, cover crops, crop rotation, perennial crops and agroforestry, on average significantly increased water infiltration rates relative to more conventional practice controls (mean of 75%, standard error 25%). There were significant differences between practices, where perennial and agroforestry systems show the greatest potential for improving water infiltration rates (> 100% increase). Cover crops also lead to a significant increase in water infiltration rates (> 60%) while crop rotations and no-till systems did not consistently demonstrate increases. We also found that studies needed to include alternative management for more than two years to detect a significant increase. Overall this global meta-analysis improves understanding of how alternative management, notably the use of continuous cover in agricultural systems, improves water dynamics. Policies should be designed in a way that allows agricultural producers to prioritize and implement practices that offer greater water conservation while maintaining crop productivity.
An Integrated Biogeochemical and Biophysical Analysis of Bioenergy Crops
NASA Astrophysics Data System (ADS)
Liang, M.; Song, Y.; Barman, R.; Jain, A. K.
2010-12-01
Bioenergy crops are becoming increasingly important with growing concerns about the energy demand and climate change and the need to replace fossil fuels with carbon-neutral renewable sources of energy. The transition to a biofuel-based energy supply raises many questions such as: how and where to grow energy crops, what will be the impacts of growing large scale biofuel crops on climate system, the hydrological cycle and soil biogeochemistry. We are developing and applying an integrated system modeling framework to investigate the biophysical, physiological, and biogeochemical systems governing important processes that regulate crop growth such as water, energy and nutrient cycles. The framework has a two-big-leaf canopy scheme for photosynthesis, stomatal conductance, leaf temperature and energy fluxes. The soil/snow hydrology consists of 10 layers for soil and up to 5 layers for snow. The biogeochemistry component explicitly accounts for coupled carbon and nitrogen dynamics. The feedstocks currently considered include corn stover, Miscanthus and switchgrass. The parameters used for simulation of each crop have been calibrated using field experimental data from the US. The use of this modeling capability will be demonstrated through its applications to study the environmental effects (through changes in albedo and evapotranspiration) of biofuel production as well as the effective management practice in the United States.
Wheat yield and yield stability of eight dryland crop rotations
USDA-ARS?s Scientific Manuscript database
The winter wheat (Triticum aestivum L.)-fallow (WF) dryland production system employed in the Central Great Plains has evolved in the past 40 years to include a diversity of other crops, with a reduction in fallow frequency. Wheat remains the base crop for essentially all cropping systems. Decisions...
Intensifying a semi-arid dryland crop rotation by replacing fallow with pea
USDA-ARS?s Scientific Manuscript database
Increasing dryland cropping system intensity in the semi-arid central Great Plains by reducing frequency of fallow can add diversity to cropping systems and decrease erosion potential. However elimination of the periodic fallow phase has been shown to reduce yields of subsequent crops in this region...
Diverse rotations and poultry litter improves soybean yield
USDA-ARS?s Scientific Manuscript database
Continuous cropping systems without rotations or cover crops are perceived as unsustainable for long-term yield and soil health. Continuous systems, defined as continually producing a crop on the same parcel of land for more than three years, is thought to reduce yields. Given that crop rotations a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chescheir, George M.; Nettles, Jami E,; Youssef, Mohamed
Growing switchgrass (Panicum virgatum L.) as an intercrop in managed loblolly pine (Pinus taeda L.) plantations has emerged as a potential source of bioenergy feedstock. Utilizing land resources between pine trees to produce an energy crop can potentially reduce the demand for land resources used to produce food; however, converting conventionally managed forest land to this new intercropping system constitutes changes in land use and associated management practices, which may affect the environmental and economic sustainability of the land. The overall objective of this project is to evaluate the environmental effects of large-scale forest bioenergy crop production and utilize thesemore » results to optimize cropping systems in a manner that protects the important ecosystem services provided by forests while contributing to the development of a sustainable and economically-viable biomass industry in the southeastern United States. Specific objectives are to: Quantify the hydrology of different energy crop production systems in watershed scale experiments on different landscapes in the southeast. Quantify the nutrient dynamics of energy crop production systems in watershed scale experiments to determine the impact of these systems on water quality. Evaluate the impacts of energy crop production on soil structure, fertility, and organic matter. Evaluate the response of flora and fauna populations and habitat quality to energy crop production systems. Develop watershed and regional scale models to evaluate the environmental sustainability and productivity of energy crop and woody biomass operations. Quantify the production systems in terms of bioenergy crop yield versus the energy and economic costs of production. Develop and evaluate best management practice guidelines to ensure the environmental sustainability of energy crop production systems. Watershed and plot scale studies formed the core of this research platform. Matched-watershed studies were established in North Carolina, Mississippi and Alabama. A plot scale study was also established in North Carolina to more intensive examination of the effects of biomass production on hydrology, soil properties, productivity wildlife habitat, and biodiversity on replicate 0.8 ha plots. Studies were also conducted on selected sites to define and quantify the environmental effects of biomass production on wildlife habitat, biodiversity, soil properties and productivity, and carbon storage and flux. Treatments on the sub-watersheds and plots included potential operational systems ranging from monoculture switchgrass to interplanted switchgrass to conventional managed forests as a controls. The hydrology, water quality, soil property, and productivity data collected in the watershed and plot scale experiments were used to develop process based watershed scale models. Existing models (DRAINMOD and APEX) were modified to more effectively simulate the intercropped systems. More regional scale models (DRAINMOD-INTERCROP) with GIS interface and SWAT) were used to simulate the impacts of intercropping switchgrass in pine plantations on the hydrology and water quality of larger scale watersheds. Results from the watershed and plot scale studies, and the modeling studies were used to develop Best Management Practice (BMP) guidelines to ensure environmentally sustainable bioenergy production in the forestry setting. While the results of the environmental sustainability research for this project have become publically available, many of the planning decisions and operational trial results were not public. Personnel in management, planning, operations, and logistics were interviewed to capture the important economic and operational lessons from internal operational research on approximately 30 full-scale operational tracts. This project produced a very large database documenting the impact of interplanting switchgrass with pine trees on hydrology, water quality, soil quality, and biodiversity. Some environmental impacts were observed in response to additional operations required for interplanting, but these impacts were small and short lived. Given that existing forestry BMPs provide a flexible system that can be adapted to protect water quality and biodiversity in forestry settings, interplanting switchgrass with pine trees can be considered environmentally sustainable. The project also developed models that can simulate switchgrass growth when it is in competition with pine trees as well as the hydrology and nutrient dynamics that result from this interplanted system. The models predicted switchgrass production, water use, and the quality of the water leaving the system over a range of climatological and geographic conditions. These models can be used to guide decisions toward sustainability. The project also documented the limitations of switchgrass production in the forestry setting and the challenges and increased costs arising from this practice. These challenges led to the conclusion that intercropping switchgrass with pine trees is not economically feasible in the current economic climate. Despite the barriers obstructing use of this system at this point in time, economic and technological changes may occur that will make this a feasible system for bioenergy production in the future. The data, models, BMPs and experiences documented in this report and in publications resulting from this project will be highly valuable to those implementing this system.« less
NASA Astrophysics Data System (ADS)
Dhungel, S.; Barber, M. E.
2016-12-01
The objectives of this paper are to use an automated satellite-based remote sensing evapotranspiration (ET) model to assist in parameterization of a cropping system model (CropSyst) and to examine the variability of consumptive water use of various crops across the watershed. The remote sensing model is a modified version of the Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC™) energy balance model. We present the application of an automated python-based implementation of METRIC to estimate ET as consumptive water use for agricultural areas in three watersheds in Eastern Washington - Walla Walla, Lower Yakima and Okanogan. We used these ET maps with USDA crop data to identify the variability of crop growth and water use for the major crops in these three watersheds. Some crops, such as grapes and alfalfa, showed high variability in water use in the watershed while others, such as corn, had comparatively less variability. The results helped us to estimate the range and variability of various crop parameters that are used in CropSyst. The paper also presents a systematic approach to estimate parameters of CropSyst for a crop in a watershed using METRIC results. Our initial application of this approach was used to estimate irrigation application rate for CropSyst for a selected farm in Walla Walla and was validated by comparing crop growth (as Leaf Area Index - LAI) and consumptive water use (ET) from METRIC and CropSyst. This coupling of METRIC with CropSyst will allow for more robust parameters in CropSyst and will enable accurate predictions of changes in irrigation practices and crop rotation, which are a challenge in many cropping system models.
NASA Technical Reports Server (NTRS)
Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.
1996-01-01
Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.
NASA Astrophysics Data System (ADS)
Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.
Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO_2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainability of a CELSS that will enable management of diverse complex systems on Earth.
Mitchell, C; Sherman, L; Nielsen, S; Nelson, P; Trumbo, P; Hodges, T; Hasegawa, P; Bressan, R; Ladisch, M; Auslander, D
1996-01-01
Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad; Lamy, Isabelle; Bermond, Alain
2014-05-01
Presently changes in the land use of contaminated and marginal agricultural lands from conventional annual food crops to perennial non-food bionergy crops are being encouraged globally. This is being done to avoid food chain contamination with metal and organic contaminants and to meet world energy needs without disturbing normal fertile agricultural lands. Changes in land use from the annual cropping systems to the perennial cropping systems are known to modify organic matter quality and quantity in case of non contaminated soils. In the case of contaminated soils such changes are susceptible to alter trace metal availabilities but studies reporting such changes are scarce. Different single extraction protocols are used to assess the trace element availability in soils. The efficiency of these extractants depends upon soil conditions and may vary case to case. The objective of the present work was to assess the changes in trace metal availability of contaminated soils when annual crops system is replaced by a perennial crop system using different single extraction protocols. A strategy of studying Cd and Zn availabilities of two sites differing in the soil texture and origin of pollution was adopted i.e. the site of Metaleurop (North of France) and the site of Pierrelaye (Paris Region). They differed in the degree of metal pollution (for Cu, Pb, Cd and Zn) and in the quantity and nature of organic matter (different C/N values). The samples used for this study involved the soils under annual crops and the perennial crop i.e. miscanthus. We investigated the trace metal availabilities of the soils using different single extraction protocols involving chemical metal extractions with EDTA, DTPA and NH4NO3 at equilibrium and kinetic EDTA extractions. The results for the soil under miscanthus compared to annual crop soil showed that single extraction schemes using chelating agents like EDTA and DTPA, however, failed to show if the metal availability can be impacted by land use. The differences in metal availability in the soils under miscanthus and annual crops were highlighted by the weaker extractant NH4NO3 and by kinetic extractions using EDTA. For the Metaleurop site, a trend of decrease in Cd and Zn availability in the soil under perennial miscanthus crop compared to the soil under annual crop was observed. For the organic matter rich sandy soils of Pierrelaye labile Zn increased while Cd was decreased. These results showed little impact on trace metal availabilities at the earlier stage of changes in land use (3 years after conversion). However, on longer terms, the impact can be more remarkable. The study also highlighted the efficacy of the use of combination of metal availability assessment approaches instead of relying on single approaches. In addition the type of changes being occurred in metal availability can be predicted using combined extraction approaches because the mechanisms behind each extraction scheme and their target metal pools being different.
Using dual-purpose crops in sheep-grazing systems.
Dove, Hugh; Kirkegaard, John
2014-05-01
The utilisation of dual-purpose crops, especially wheat and canola grown for forage and grain production in sheep-grazing systems, is reviewed. When sown early and grazed in winter before stem elongation, later-maturing wheat and canola crops can be grazed with little impact on grain yield. Recent research has sought to develop crop- and grazing-management strategies for dual-purpose crops. Aspects examined have been grazing effects on crop growth, recovery and yield development along with an understanding of the grazing value of the crop fodder, its implications for animal nutrition and grazing management to maximise live-weight gain. By alleviating the winter 'feed gap', the increase in winter stocking rate afforded by grazing crops allows crop and livestock production to be increased simultaneously on the same farm. Integration of dual-purpose wheat with canola on mixed farms provides further systems advantages related to widened operational windows, weed and disease control and risk management. Dual-purpose crops are an innovation that has potential to assist in addressing the global food-security challenge. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Calitri, Francesca; Necpalova, Magdalena; Lee, Juhwan; Zaccone, Claudio; Spiess, Ernst; Herrera, Juan; Six, Johan
2016-04-01
Organic cropping systems have been promoted as a sustainable alternative to minimize the environmental impacts of conventional practices. Relatively little is known about the potential to reduce NO3-N leaching through the large-scale adoption of organic practices. Moreover, the potential to mitigate NO3-N leaching and thus the N pollution under future climate change through organic farming remain unknown and highly uncertain. Here, we compared regional NO3-N leaching from organic and conventional cropping systems in Switzerland using a terrestrial biogeochemical process-based model DayCent. The objectives of this study are 1) to calibrate and evaluate the model for NO3-N leaching measured under various management practices from three experiments at two sites in Switzerland; 2) to estimate regional NO3-N leaching patterns and their spatial uncertainty in conventional and organic cropping systems (with and without cover crops) for future climate change scenario A1B; 3) to explore the sensitivity of NO3-N leaching to changes in soil and climate variables; and 4) to assess the nitrogen use efficiency for conventional and organic cropping systems with and without cover crops under climate change. The data for model calibration/evaluation were derived from field experiments conducted in Liebefeld (canton Bern) and Eschikon (canton Zürich). These experiments evaluated effects of various cover crops and N fertilizer inputs on NO3-N leaching. The preliminary results suggest that the model was able to explain 50 to 83% of the inter-annual variability in the measured soil drainage (RMSE from 12.32 to 16.89 cm y-1). The annual NO3-N leaching was also simulated satisfactory (RMSE = 3.94 to 6.38 g N m-2 y-1), although the model had difficulty to reproduce the inter-annual variability in the NO3-N leaching losses correctly (R2 = 0.11 to 0.35). Future climate datasets (2010-2099) from the 10 regional climate models (RCM) were used in the simulations. Regional NO3-N leaching predictions for conventional cropping system with a three years rotation (silage maize, potatoes and winter wheat) in Zurich and Bern cantons varied from 6.30 to 16.89 g N m-2 y-1 over a 30-years period. Further simulations and analyses will follow to provide insights into understanding of driving variables and patterns of N losses by leaching in response to changes from conventional to organic cropping systems, and climate change.
Understanding the Impact of Extreme Temperature on Crop Production in Karnataka in India
NASA Astrophysics Data System (ADS)
Mahato, S.; Murari, K. K.; Jayaraman, T.
2017-12-01
The impact of extreme temperature on crop yield is seldom explored in work around climate change impact on agriculture. Further, these studies are restricted mainly to crops such as wheat and maize. Since different agro-climatic zones bear different crops and cropping patterns, it is important to explore the nature of the impact of changes in climate variables in agricultural systems under differential conditions. The study explores the effects of temperature rise on the major crops paddy, jowar, ragi and tur in the state of Karnataka of southern India. The choice of the unit of study to understand impact of climate variability on crop yields is largely restricted to availability of data for the unit. While, previous studies have dealt with this issue by replacing yield with NDVI at finer resolution, the use of an index in place of yield data has its limitations and may not reflect the true estimates. For this study, the unit considered is taluk, i.e. sub-district level. The crop yield for taluk is obtained between the year the 1995 to 2011 by aggregating point yield data from crop cutting experiments for each year across the taluks. The long term temperature data shows significantly increasing trend that ranges between 0.6 to 0.75 C across Karnataka. Further, the analysis suggests a warming trend in seasonal average temperature for Kharif and Rabi seasons across districts. The study also found that many districts exhibit the tendency of occurrence of extreme temperature days, which is of particular concern in terms of crop yield, since exposure of crops to extreme temperature has negative consequences for crop production and productivity. Using growing degree days GDD, extreme degree days EDD and total season rainfall as predictor variables, the fixed effect model shows that EDD is a more influential parameter as compared to GDD and rainfall. Also it has a statistically significant negative effect in most cases. Further, quantile regression was used to evaluate the robustness of the estimates of EDD in relation to crop yield. This showed the estimates to be robust across quantiles for most of the crops studied. Thus indicating a strong negative influence of exposure to extreme temperature on crop yield in the region.
2016-01-01
Research on perennial staple crops has increased in the past ten years due to their potential to improve ecosystem services in agricultural systems. However, multiple past breeding efforts as well as research on traditional ratoon systems mean there is already a broad body of literature on perennial crops. In this review, we compare the development of research on perennial staple crops, including wheat, rice, rye, sorghum, and pigeon pea. We utilized the advanced search capabilities of Web of Science, Scopus, ScienceDirect, and Agricola to gather a library of 914 articles published from 1930 to the present. We analyzed the metadata in the entire library and in collections of literature on each crop to understand trends in research and publishing. In addition, we applied topic modeling to the article abstracts, a type of text analysis that identifies frequently co-occurring terms and latent topics. We found: 1.) Research on perennials is increasing overall, but individual crops have each seen periods of heightened interest and research activity; 2.) Specialist journals play an important role in supporting early research efforts. Research often begins within communities of specialists or breeders for the individual crop before transitioning to a more general scientific audience; 3.) Existing perennial agricultural systems and their domesticated crop material, such as ratoon rice systems, can provide a useful foundation for breeding efforts, accelerating the development of truly perennial crops and farming systems; 4.) Primary research is lacking for crops that are produced on a smaller scale globally, such as pigeon pea and sorghum, and on the ecosystem service benefits of perennial agricultural systems. PMID:27213283
NASA Astrophysics Data System (ADS)
Mo, W.; Fang, W.
2015-12-01
Vulnerability which quantifies the loss ratio under different hazard intensity is an important feature of the natural disaster system and has important significance to natural disaster risk assessment. Agriculture is an outdoor industry with high risk of meteorological disasters. The strong winds, heavy rain and storm surge are main typhoon hazard factors to crops. To provide a quantitative research method for the loss evaluation of crops due to typhoon disaster we first revised two vulnerability curves for crops under comprehensive intensity of typhoon based on the simulated hazard data and loss data related to historical typhoon events landing on China from 1949 to 2014;and then established a storm surge vulnerability matrix of crops regarding Zhanjiang City of Guangdong Province as the study area ; finally, we put forward three storm surge fragility curves for crops representing different states of loss. The results can effectively describe the typhoon vulnerability for crops in China coastal areas so as to provide the input to post-disaster loss assessments and catastrophe modeling applications.
Iannetta, Pietro P. M.; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J.; Monti, Michele; Pappa, Valentini A.; Reckling, Moritz; Topp, Cairistiona F. E.; Walker, Robin L.; Rees, Robert M.; Watson, Christine A.; James, Euan K.; Squire, Geoffrey R.; Begg, Graham S.
2016-01-01
The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha−1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6–0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output. PMID:27917178
Iannetta, Pietro P M; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J; Monti, Michele; Pappa, Valentini A; Reckling, Moritz; Topp, Cairistiona F E; Walker, Robin L; Rees, Robert M; Watson, Christine A; James, Euan K; Squire, Geoffrey R; Begg, Graham S
2016-01-01
The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume-based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha -1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.
NASA Astrophysics Data System (ADS)
Kloss, Sebastian; Schuetze, Niels; Schmitz, Gerd H.
2010-05-01
The strong competition for fresh water in order to fulfill the increased demand for food worldwide has led to a renewed interest in techniques to improve water use efficiency (WUE) such as controlled deficit irrigation. Furthermore, as the implementation of crop models into complex decision support systems becomes more and more common, it is imperative to reliably predict the WUE as ratio of water consumption and yield. The objective of this paper is the assessment of the problems the crop models - such as FAO-33, DAISY, and APSIM in this study - face when maximizing the WUE. We applied these crop models for calculating the risk in yield reduction in view of different sources of uncertainty (e.g. climate) employing a stochastic framework for decision support for the planning of water supply in irrigation. The stochastic framework consists of: (i) a weather generator for simulating regional impacts of climate change; (ii) a new tailor-made evolutionary optimization algorithm for optimal irrigation scheduling with limited water supply; and (iii) the above mentioned models for simulating water transport and crop growth in a sound manner. The results present stochastic crop water production functions (SCWPF) for different crops which can be used as basic tools for assessing the impact of climate variability on the risk for the potential yield. Case studies from India, Oman, Malawi, and France are presented to assess the differences in modeling water stress and yield response for the different crop models.
USDA-ARS?s Scientific Manuscript database
Diversification of farm enterprises is important to maintain sustainable production systems. Systems that integrate crops and livestock may prove beneficial to each enterprise. Our objectives were to determine the effects of annual crops grazed in the fall and early-winter period on cow and calf gro...
USDA-ARS?s Scientific Manuscript database
Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...
Ebanyat, Peter; de Ridder, Nico; de Jager, Andre; Delve, Robert J; Bekunda, Mateete A; Giller, Ken E
2010-07-01
Smallholder farming systems in sub-Saharan Africa have undergone changes in land use, productivity and sustainability. Understanding of the drivers that have led to changes in land use in these systems and factors that influence the systems' sustainability is useful to guide appropriate targeting of intervention strategies for improvement. We studied low input Teso farming systems in eastern Uganda from 1960 to 2001 in a place-based analysis combined with a comparative analysis of similar low input systems in southern Mali. This study showed that policy-institutional factors next to population growth have driven land use changes in the Teso systems, and that nutrient balances of farm households are useful indicators to identify their sustainability. During the period of analysis, the fraction of land under cultivation increased from 46 to 78%, and communal grazing lands nearly completely disappeared. Cropping diversified over time; cassava overtook cotton and millet in importance, and rice emerged as an alternative cash crop. Impacts of political instability, such as the collapse of cotton marketing and land management institutions, of communal labour arrangements and aggravation of cattle rustling were linked to the changes. Crop productivity in the farming systems is poor and nutrient balances differed between farm types. Balances of N, P and K were all positive for larger farms (LF) that had more cattle and derived a larger proportion of their income from off-farm activities, whereas on the medium farms (MF), small farms with cattle (SF1) and without cattle (SF2) balances were mostly negative. Sustainability of the farming system is driven by livestock, crop production, labour and access to off-farm income. Building private public partnerships around market-oriented crops can be an entry point for encouraging investment in use of external nutrient inputs to boost productivity in such African farming systems. However, intervention strategies should recognise the diversity and heterogeneity between farms to ensure efficient use of these external inputs.
E-precision agriculture for small scale cash crops in Tobasa regency
NASA Astrophysics Data System (ADS)
Putra Simanjuntak, Panca; Tiurniari Napitupulu, Pangeran; Pratama Silalahi, Soni; Kisno; Pasaribu, Norlina; Valešová, Libuše
2017-09-01
Cash crop is a promising sector in Tobasa regency; however, the trend showed a negative change of the cash crop production in. This research aims to develop an application which is based on Arduino for watering and fertilizing corn land. The result of using e-precision agriculture based on embedded system is 100% higher than the conventional one and the risk of harvesting failure using the embedded system decreased to 50%. Embedded system in this study acquired critical environment measurements which at last affected the yield raising and risk reduction. As the result, the use of e-precision agriculture provided a framework to be used by different stakeholders to implement e-agriculture platform that supports marketing of agricultural production since the system is proven to save the material and time which finally reduces the risk of harvesting failure and increases the yield. In other words, the system is able to economize the use of water and fertilizer on a small corn land. The system will be developed for more efficiency in material loss and the mobile-based application development to reach sustainable rural development particularly for cash-crop farmers.
The beginnings of crop phosphoproteomics: exploring early warning systems of stress
Rampitsch, Christof; Bykova, Natalia V.
2012-01-01
This review examines why a knowledge of plant protein phosphorylation events is important in devising strategies to protect crops from both biotic and abiotic stresses, and why proteomics should be included when studying stress pathways. Most of the achievements in elucidating phospho-signaling pathways in biotic and abiotic stress are reported from model systems: while these are discussed, this review attempts mainly to focus on work done with crops, with examples of achievements reported from rice, maize, wheat, grape, Brassica, tomato, and soy bean after cold acclimation, hormonal and oxidative hydrogen peroxide treatment, salt stress, mechanical wounding, or pathogen challenge. The challenges that remain to transfer this information into a format that can be used to protect crops against biotic and abiotic stresses are enormous. The tremendous increase in the speed and ease of DNA sequencing is poised to reveal the whole genomes of many crop species in the near future, which will facilitate phosphoproteomics and phosphogenomics research. PMID:22783265
Smart LED lighting for major reductions in power and energy use for plant lighting in space
NASA Astrophysics Data System (ADS)
Poulet, Lucie
Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (
Legacy Phosphorus Effect and Need to Re-calibrate Soil Test P Methods for Organic Crop Production.
NASA Astrophysics Data System (ADS)
Dao, Thanh H.; Schomberg, Harry H.; Cavigelli, Michel A.
2015-04-01
Phosphorus (P) is a required nutrient for the normal development and growth of plants and supplemental P is needed in most cultivated soils. Large inputs of cover crop residues and nutrient-rich animal manure are added to supply needed nutrients to promote the optimal production of organic grain crops and forages. The effects of crop rotations and tillage management of the near-surface zone on labile phosphorus (P) forms were studied in soil under conventional and organic crop management systems in the mid-Atlantic region of the U.S. after 18 years due to the increased interest in these alternative systems. Soil nutrient surpluses likely caused by low grain yields resulted in large pools of exchangeable phosphate-P and equally large pools of enzyme-labile organic P (Po) in soils under organic management. In addition, the difference in the P loading rates between the conventional and organic treatments as guided by routine soil test recommendations suggested that overestimating plant P requirements contributed to soil P surpluses because routine soil testing procedures did not account for the presence and size of the soil enzyme-labile Po pool. The effect of large P additions is long-lasting as they continued to contribute to elevated soil total bioactive P concentrations 12 or more years later. Consequently, accurate estimates of crop P requirements, P turnover in soil, and real-time plant and soil sensing systems are critical considerations to optimally manage manure-derived nutrients in organic crop production.
NASA Astrophysics Data System (ADS)
Rodríguez-Carretero, María Teresa; Lorite, Ignacio J.; Ruiz-Ramos, Margarita; Dosio, Alessandro; Gómez, José A.
2013-04-01
The rainfed olive orchards in Southern Spain constitute the main socioeconomic system of the Mediterranean Spanish agriculture. These systems have an elevated level of complexity and require the accurate characterization of crop, climate and soil components for a correct management. It is common the inclusion of cover crops (usually winter cereals or natural cover) intercalated between the olive rows in order to reduce water erosion. Saving limited available water requires specific management, mowing or killing these cover crops in early spring. Thus, under the semi-arid conditions in Southern Spain the management of the cover crops in rainfed olive orchards is essential to avoid a severe impact to the olive orchards yield through depletion of soil water. In order to characterize this agricultural system, a complete water balance model has been developed, calibrated and validated for the semi-arid conditions of Southern Spain, called WABOL (Abazi et al., 2013). In this complex and fragile system, the climate change constitutes a huge threat for its sustainability, currently limited by the availability of water resources, and its forecasted reduction for Mediterranean environments in Southern Spain. The objective of this study was to simulate the impact of climate change on the different components of the water balance in these representative double cropping systems: transpiration of the olive orchard and cover crop, runoff, deep percolation and soil water content. Four climatic scenarios from the FP6 European Project ENSEMBLES were first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) and, subsequently, used as inputs for the WABOL model for five olive orchard fields located in Southern Spain under different conditions of crop, climate, soils and management, in order to consider as much as possible of the variability detected in the Spanish olive orchards. The first results indicate the significant effect of the cover crop on the transpiration of the olive orchard, indicating that a correct water and soil management is crucial for these systems especially under climate change conditions. Thus, a significant reduction of transpiration was detected when the cover crops were implanted. When the climatic conditions were more limited (reductions of around 21% for the annual precipitation and increases around 13% for reference evapotranspiration), the impact on olive orchards were critical, affecting seriously the profitability of the olive orchards. In this context, cover crops can be considered as part of adaptation strategies. Further studies will be required for the determination of optimal species and varieties to be used as cover crops to reduce the impact of climate change on olive orchards under semi-arid conditions. References Abazi U, Lorite IJ, Cárceles B, Martínez-Raya A, Durán VH, Francia JR, Gómez JA (2013) WABOL: A conceptual water balance model for analyzing rainfall water use in olive orchards under different soil and cover crop Management strategies. Computers and Electronics in Agriculture 91:35-48 Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, V 116, D16106, doi:10.1029/2011JD015934 Dosio A, Paruolo P, Rojas R (2012) Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, V 117, D17, doi: 10.1029/2012JD017968
CFD Simulation of Aerial Crop Spraying
NASA Astrophysics Data System (ADS)
Omar, Zamri; Qiang, Kua Yong; Mohd, Sofian; Rosly, Nurhayati
2016-11-01
Aerial crop spraying, also known as crop dusting, is made for aerial application of pesticides or fertilizer. An agricultural aircraft which is converted from an aircraft has been built to combine with the aerial crop spraying for the purpose. In recent years, many studies on the aerial crop spraying were conducted because aerial application is the most economical, large and rapid treatment for the crops. The main objective of this research is to study the airflow of aerial crop spraying system using Computational Fluid Dynamics. This paper is focus on the effect of aircraft speed and nozzle orientation on the distribution of spray droplet at a certain height. Successful and accurate of CFD simulation will improve the quality of spray during the real situation and reduce the spray drift. The spray characteristics and efficiency are determined from the calculated results of CFD. Turbulence Model (k-ɛ Model) is used for the airflow in the fluid domain to achieve a more accurate simulation. Furthermore, spray simulation is done by setting the Flat-fan Atomizer Model of Discrete Phase Model (DPM) at the nozzle exit. The interaction of spray from each flat-fan atomizer can also be observed from the simulation. The evaluation of this study is validation and grid dependency study using field data from industry.
Volatile Organic Compound Emissions by Agricultural Crops
NASA Astrophysics Data System (ADS)
Ormeno, E.; Farres, S.; Gentner, D.; Park, J.; McKay, M.; Karlik, J.; Goldstein, A.
2008-12-01
Biogenic Volatile Organic Compounds (BVOCs) participate in ozone and aerosol formation, and comprise a substantial fraction of reactive VOC emission inventories. In the agriculturally intensive Central Valley of California, emissions from crops may substantially influence regional air quality, but emission potentials have not been extensively studied with advanced instrumentation for many important crops. Because crop emissions may vary according to the species, and California emission inventories are constructed via a bottom-up approach, a better knowledge of the emission rate at the species-specific level is critical for reducing uncertainties in emission inventories and evaluating emission model performance. In the present study we identified and quantified the BVOCs released by dominant agricultural crops in California. A screening study to investigate both volatile and semivolatile BVOC fractions (oxygenated VOCs, isoprene, monoterepenes, sesquiterpenes, etc.) was performed for 25 crop species (at least 3 replicates plants each), including branch enclosures of woody species (e.g. peach, mandarin, grape, pistachio) and whole plant enclosures for herbaceous species (e.g. onion, alfalfa, carrot), through a dynamic cuvette system with detection by PTRMS, in-situ GCMS/FID, and collection on carbon-based adsorbents followed by extraction and GCMS analysis. Emission data obtained in this study will allow inclusion of these crops in BVOC emission inventories and air quality simulations.
The Role of Crop Systems Simulation in Agriculture and Environment
USDA-ARS?s Scientific Manuscript database
Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...
Patterns of crop cover under future climates.
Porfirio, Luciana L; Newth, David; Harman, Ian N; Finnigan, John J; Cai, Yiyong
2017-04-01
We study changes in crop cover under future climate and socio-economic projections. This study is not only organised around the global and regional adaptation or vulnerability to climate change but also includes the influence of projected changes in socio-economic, technological and biophysical drivers, especially regional gross domestic product. The climatic data are obtained from simulations of RCP4.5 and 8.5 by four global circulation models/earth system models from 2000 to 2100. We use Random Forest, an empirical statistical model, to project the future crop cover. Our results show that, at the global scale, increases and decreases in crop cover cancel each other out. Crop cover in the Northern Hemisphere is projected to be impacted more by future climate than the in Southern Hemisphere because of the disparity in the warming rate and precipitation patterns between the two Hemispheres. We found that crop cover in temperate regions is projected to decrease more than in tropical regions. We identified regions of concern and opportunities for climate change adaptation and investment.
Low-disturbance manure application methods in a corn silage-rye cover crop system
USDA-ARS?s Scientific Manuscript database
Incorporation of manure by tillage can conserve manure N by reducing ammonia volatilization losses, but tillage also incorporates crop residue, which increases erosion potential. This study compared several low-disturbance manure application methods, designed to incorporate manure while still mainta...
Although earthworms are known to influence agroecosystem processes, there are relatively few long-term studies addressing population dynamics under cropping systems in which earthworm populations were intentionally altered. We assessed earthworm communities from fall 1994 to spr...
Development of a PCR Diagnostic System for Iris yellow spot tospovirus in Quarantine
Shin, Yong-Gil; Rho, Jae-Young
2014-01-01
Iris yellow spot virus (IYSV) is a plant pathogenic virus which has been reported to continuously occur in onion bulbs, allium field crops, seed crops, lisianthus, and irises. In South Korea, IYSV is a “controlled” virus that has not been reported, and inspection is performed when crops of the genus Iris are imported into South Korea. In this study, reverse-transcription polymerase chain reaction (RT-PCR) and nested PCR inspection methods, which can detect IYSV, from imported crops of the genus Iris at quarantine sites, were developed. In addition, a modified positive plasmid, which can be used as a positive control during inspection, was developed. This modified plasmid can facilitate a more accurate inspection by enabling the examination of a laboratory contamination in an inspection system. The inspection methods that were developed in this study are expected to contribute, through the prompt and accurate inspection of IYSV at quarantine sites to the plant quarantine in South Korea. PMID:25506310
Singh, Raman Jeet; Meena, Roshan Lal; Sharma, N K; Kumar, Suresh; Kumar, Kuldeep; Kumar, Dileep
2016-02-01
Reducing the carbon footprint and increasing energy use efficiency of crop rotations are the two most important sustainability issues of the modern agriculture. Present study was undertaken to assess economics, energy, and environmental parameters of common diversified crop rotations (maize-tomato, and maize-toria-wheat) vis-a-vis traditional crop rotations like maize-wheat, maize + ginger and rice-wheat of the north-western Himalayan region of India. Results revealed that maize-tomato and maize + ginger crop rotations being on par with each other produced significantly higher system productivity in terms of maize equivalent yield (30.2-36.2 t/ha) than other crop rotations (5.04-7.68 t/ha). But interestingly in terms of energy efficiencies, traditional maize-wheat system (energy efficiency 7.9, human energy profitability of 177.8 and energy profitability of 6.9 MJ/ha) was significantly superior over other systems. Maize + ginger rotation showed greater competitive advantage over other rotations because of less consumption of non-renewable energy resources. Similarly, maize-tomato rotation had ability of the production process to exploit natural resources due to 14-38% less use of commercial or purchased energy sources over other crop rotations. Vegetable-based crop rotations (maize + ginger and maize-tomato) maintained significantly the least carbon footprint (0.008 and 0.019 kg CO2 eq./kg grain, respectively) and the highest profitability (154,322 and 274,161 Rs./ha net return, respectively) over other crop rotations. As the greatest inputs of energy and carbon across the five crop rotations were nitrogen fertilizer (15-29% and 17-28%, respectively), diesel (14-24% and 8-19%, respectively) and irrigation (10-27% and 11-44%, respectively), therefore, alternative sources like organic farming, conservation agriculture practices, soil and water conservation measures, rain water harvesting etc. should be encouraged to reduce dependency of direct energy and external carbon inputs particularly in sub-Himalayas of India.
Panda, B. B.; Raja, R.; Singh, Teekam; Tripathi, R.; Shahid, M.; Nayak, A. K.
2017-01-01
Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June–September) and land leftovers fallow after rice harvest in the post-rainy season (November–May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November–March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate remobilization efficiency, which may be responsible for the reduced grain yield. PMID:28437487
Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K
2017-01-01
Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate remobilization efficiency, which may be responsible for the reduced grain yield.
A National Crop Progress Monitoring and Decision Support System Based on NASA Earth Science Results
NASA Astrophysics Data System (ADS)
di, L.; Yang, Z.
2009-12-01
Timely and accurate information on weekly crop progress and development is essential to a dynamic agricultural industry in the U. S. and the world. By law, the National Agricultural Statistics Service (NASS) of the U. S. Department of Agriculture’s (USDA) is responsible for monitoring and assessing U.S. agricultural production. Currently NASS compiles and issues weekly state and national crop progress and development reports based on reports from knowledgeable state and county agricultural officials and farmers. Such survey-based reports are subjectively estimated for an entire county, lack spatial coverage, and are labor intensive. There has been limited use of remote sensing data to assess crop conditions. NASS produces weekly 1-km resolution un-calibrated AVHRR-based NDVI static images to represent national vegetation conditions but there is no quantitative crop progress information. This presentation discusses the early result for developing a National Crop Progress Monitoring and Decision Support System. The system will overcome the shortcomings of the existing systems by integrating NASA satellite and model-based land surface and weather products, NASS’ wealth of internal crop progress and condition data and Cropland Data Layers (CDL), and the Farm Service Agency’s (FSA) Common Land Units (CLU). The system, using service-oriented architecture and web service technologies, will automatically produce and disseminate quantitative national crop progress maps and associated decision support data at 250-m resolution, as well as summary reports to support NASS and worldwide users in their decision-making. It will provide overall and specific crop progress for individual crops from the state level down to CLU field level to meet different users’ needs on all known croplands. This will greatly enhance the effectiveness and accuracy of the NASS aggregated crop condition data and charts of and provides objective and scientific evidence and guidance for the adjustment of NASS survey data. This presentation will discuss the architecture, Earth observation data, and the crop progress model used in the decision support system.
USDA-ARS?s Scientific Manuscript database
The characterization of organic matter in agroecosystems is important due to its involvement in many soil ecosystem processes. Humic acid, fulvic acid, and water-extractable organic matter from a nine-year agroecosystem study investigating the effects of tillage, cropping system, and N source were c...
A Biophysical Modeling Framework for Assessing the Environmental Impact of Biofuel Production
NASA Astrophysics Data System (ADS)
Zhang, X.; Izaurradle, C.; Manowitz, D.; West, T. O.; Post, W. M.; Thomson, A. M.; Nichols, J.; Bandaru, V.; Williams, J. R.
2009-12-01
Long-term sustainability of a biofuel economy necessitates environmentally friendly biofuel production systems. We describe a biophysical modeling framework developed to understand and quantify the environmental value and impact (e.g. water balance, nutrients balance, carbon balance, and soil quality) of different biomass cropping systems. This modeling framework consists of three major components: 1) a Geographic Information System (GIS) based data processing system, 2) a spatially-explicit biophysical modeling approach, and 3) a user friendly information distribution system. First, we developed a GIS to manage the large amount of geospatial data (e.g. climate, land use, soil, and hydrograhy) and extract input information for the biophysical model. Second, the Environmental Policy Integrated Climate (EPIC) biophysical model is used to predict the impact of various cropping systems and management intensities on productivity, water balance, and biogeochemical variables. Finally, a geo-database is developed to distribute the results of ecosystem service variables (e.g. net primary productivity, soil carbon balance, soil erosion, nitrogen and phosphorus losses, and N2O fluxes) simulated by EPIC for each spatial modeling unit online using PostgreSQL. We applied this framework in a Regional Intensive Management Area (RIMA) of 9 counties in Michigan. A total of 4,833 spatial units with relatively homogeneous biophysical properties were derived using SSURGO, Crop Data Layer, County, and 10-digit watershed boundaries. For each unit, EPIC was executed from 1980 to 2003 under 54 cropping scenarios (eg. corn, switchgrass, and hybrid poplar). The simulation results were compared with historical crop yields from USDA NASS. Spatial mapping of the results show high variability among different cropping scenarios in terms of the simulated ecosystem services variables. Overall, the framework developed in this study enables the incorporation of environmental factors into economic and life-cycle analysis in order to optimize biomass cropping production scenarios.
NASA Astrophysics Data System (ADS)
Koo, J.; Wood, S.; Cenacchi, N.; Fisher, M.; Cox, C.
2012-12-01
HarvestChoice (harvestchoice.org) generates knowledge products to guide strategic investments to improve the productivity and profitability of smallholder farming systems in sub-Saharan Africa (SSA). A keynote component of the HarvestChoice analytical framework is a grid-based overlay of SSA - a cropping simulation platform powered by process-based, crop models. Calibrated around the best available representation of cropping production systems in SSA, the simulation platform engages the DSSAT Crop Systems Model with the CENTURY Soil Organic Matter model (DSSAT-CENTURY) and provides a virtual experimentation module with which to explore the impact of a range of technological, managerial and environmental metrics on future crop productivity and profitability, as well as input use. For each of 5 (or 30) arc-minute grid cells in SSA, a stack of model input underlies it: datasets that cover soil properties and fertility, historic and future climate scenarios and farmers' management practices; all compiled from analyses of existing global and regional databases and consultations with other CGIAR centers. Running a simulation model is not always straightforward, especially when certain cropping systems or management practices are not even practiced by resource-poor farmers yet (e.g., precision agriculture) or they were never included in the existing simulation framework (e.g., water harvesting). In such cases, we used DSSAT-CENTURY as a function to iteratively estimate relative responses of cropping systems to technology-driven changes in water and nutrient balances compared to zero-adoption by farmers, while adjusting model input parameters to best mimic farmers' implementation of technologies in the field. We then fed the results of the simulation into to the economic and food trade model framework, IMPACT, to assess the potential implications on future food security. The outputs of the overall simulation analyses are packaged as a web-accessible database and published on the web with an interface that allows users to explore the simulation results in each country with user-defined baseline and what-if scenarios. The results are dynamically presented on maps, charts, and tables. This paper discusses the development of the simulation platform and its underlying data layers, a case study that assessed the role of potential crop management technology development, and the development of a web-based application that visualizes the simulation results.
NASA Astrophysics Data System (ADS)
Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.
2011-02-01
The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro river basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.
Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain
NASA Astrophysics Data System (ADS)
Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.
2010-08-01
The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.
Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt.
Jayaraman, Prem Prakash; Yavari, Ali; Georgakopoulos, Dimitrios; Morshed, Ahsan; Zaslavsky, Arkady
2016-11-09
Improving farm productivity is essential for increasing farm profitability and meeting the rapidly growing demand for food that is fuelled by rapid population growth across the world. Farm productivity can be increased by understanding and forecasting crop performance in a variety of environmental conditions. Crop recommendation is currently based on data collected in field-based agricultural studies that capture crop performance under a variety of conditions (e.g., soil quality and environmental conditions). However, crop performance data collection is currently slow, as such crop studies are often undertaken in remote and distributed locations, and such data are typically collected manually. Furthermore, the quality of manually collected crop performance data is very low, because it does not take into account earlier conditions that have not been observed by the human operators but is essential to filter out collected data that will lead to invalid conclusions (e.g., solar radiation readings in the afternoon after even a short rain or overcast in the morning are invalid, and should not be used in assessing crop performance). Emerging Internet of Things (IoT) technologies, such as IoT devices (e.g., wireless sensor networks, network-connected weather stations, cameras, and smart phones) can be used to collate vast amount of environmental and crop performance data, ranging from time series data from sensors, to spatial data from cameras, to human observations collected and recorded via mobile smart phone applications. Such data can then be analysed to filter out invalid data and compute personalised crop recommendations for any specific farm. In this paper, we present the design of SmartFarmNet, an IoT-based platform that can automate the collection of environmental, soil, fertilisation, and irrigation data; automatically correlate such data and filter-out invalid data from the perspective of assessing crop performance; and compute crop forecasts and personalised crop recommendations for any particular farm. SmartFarmNet can integrate virtually any IoT device, including commercially available sensors, cameras, weather stations, etc., and store their data in the cloud for performance analysis and recommendations. An evaluation of the SmartFarmNet platform and our experiences and lessons learnt in developing this system concludes the paper. SmartFarmNet is the first and currently largest system in the world (in terms of the number of sensors attached, crops assessed, and users it supports) that provides crop performance analysis and recommendations.
NASA Astrophysics Data System (ADS)
Bhardwaj, A. K.; Hamilton, S. K.; van Dam, R. L.; Diker, K.; Basso, B.; Glbrc-Sustainability Thrust-4. 3 Biogeochemistry
2010-12-01
Root-zone soil moisture constitutes an important variable for hydrological and agronomic models. In agriculture, crop yields are directly related to soil moisture, levels that are most important in the root zone area of the soil. One of the most accurate in-situ methods that has established itself as a recognized standard around the world uses Time Domain Reflectometry (TDR) to determine volumetric water content of the soil. We used automated field-to-desk TDR based systems to monitor temporal (1-hr interval) soil moisture variability in 10 different bioenergy cropping systems at the Great Lakes Bioenergy Research Center’s (GLBRC) sustainability research site in south western Michigan, U.S.A. These crops range from high-diversity, low-input grass mixes to low-diversity, high-input crop monocultures. We equipped the 28 x 40 m vegetation plots with 30 cm long TDR probes at seven depths from 10 cm to 1.25 m below surface. The parent material at the site consists of coarse sandy glacial tills in which a soil with an approximately 50cm thick A-Bt horizon has developed. Additional equipment permanently installed for each system includes soil moisture access tubes, multi-depth temperature sensors, and multi-electrode resistivity arrays. The access tubes were monitored using a portable TDR system at bi-weekly intervals. 2D dipole-dipole electrical resistivity tomography (ERT) data are collected in 4-week intervals, while a subset of the electrodes is used for bi-hourly monitoring. The continuous scans (1 hr) provided us the real time changes in water content, replenishment and depletion, providing indications of water uptake by plant roots and potential seasonal water limitation of biomass accumulation. The results show significant seasonal variations between the crops and cropping systems. Significant relationships were observed between soil moisture stress, above-ground biomass and rooting characteristics. The overall goal of the study is to quantify the components of water balance, and identify water quality and water use implications of these cropping systems.Key Words
Priority regions for research on dryland cereals and legumes
Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge
2016-01-01
Dryland cereals and legumes are important crops in farming systems across the world. Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632
The Challenges in the Development of a Long Duration Space Mission Food System
NASA Technical Reports Server (NTRS)
Perchonok, Michele H.; Swango, Beverly; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)
2001-01-01
The Advanced Food System at Johnson Space Center/NASA will be responsible for supplying food to the crew for long duration exploratory missions. These missions require development of both a Transit Food System and of a Planetary Food System. The Transit Food System will consist of pre-packaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. The challenge is to develop a food system with a shelf life of 3 - 5 years that will use minimal power and create minimal waste from the food packaging. The Planetary Food System will allow for food processing of crops grown on the planetary surface due to the presence of some gravitational force. Crops will be processed to final products to provide a nutritious and acceptable diet for the crew. The food system must be flexible due to crop variation, availability, and shelf life. Crew meals, based on thesc: crops, must be nutritious, high quality, safe, and contain variety. The Advanced Food System becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safety, waste production, volumes, water usage, etc.).
Using cover crops and cropping systems for nitrogen management
USDA-ARS?s Scientific Manuscript database
The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...
Evaluation of Learning Group Approaches for Fostering Integrated Cropping Systems Management
ERIC Educational Resources Information Center
Blissett, Hana; Simmons, Steve; Jordan, Nicholas; Nelson, Kristen
2004-01-01
Cropping systems management requires integration of multiple forms of knowledge, practice, and learning by farmers, extension educators, and researchers. We evaluated the outcomes of participation in collaborative learning groups organized to address cropping systems and, specifically, challenges of integrated weed management. Groups were…
Experimental evidence that wildflower strips increase pollinator visits to crops.
Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave
2015-08-01
Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time.
Experimental evidence that wildflower strips increase pollinator visits to crops
Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave
2015-01-01
Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time. PMID:26380683
Mustard catch crop enhances denitrification in shallow groundwater beneath a spring barley field.
Jahangir, M M R; Minet, E P; Johnston, P; Premrov, A; Coxon, C E; Hackett, R; Richards, K G
2014-05-01
Over-winter green cover crops have been reported to increase dissolved organic carbon (DOC) concentrations in groundwater, which can be used as an energy source for denitrifiers. This study investigates the impact of a mustard catch crop on in situ denitrification and nitrous oxide (N2O) emissions from an aquifer overlain by arable land. Denitrification rates and N2O-N/(N2O-N+N2-N) mole fractions were measured in situ with a push-pull method in shallow groundwater under a spring barley system in experimental plots with and without a mustard cover crop. The results suggest that a mustard cover crop could substantially enhance reduction of groundwater nitrate NO3--N via denitrification without significantly increasing N2O emissions. Mean total denitrification (TDN) rates below mustard cover crop and no cover crop were 7.61 and 0.002 μg kg(-1) d(-1), respectively. Estimated N2O-N/(N2O-N+N2-N) ratios, being 0.001 and 1.0 below mustard cover crop and no cover crop respectively, indicate that denitrification below mustard cover crop reduces N2O to N2, unlike the plot with no cover crop. The observed enhanced denitrification under the mustard cover crop may result from the higher groundwater DOC under mustard cover crop (1.53 mg L(-1)) than no cover crop (0.90 mg L(-1)) being added by the root exudates and root masses of mustard. This study gives insights into the missing piece in agricultural nitrogen (N) balance and groundwater derived N2O emissions under arable land and thus helps minimise the uncertainty in agricultural N and N2O-N balances. Copyright © 2013 Elsevier Ltd. All rights reserved.
de Ridder, Nico; de Jager, Andre; Delve, Robert J.; Bekunda, Mateete A.; Giller, Ken E.
2010-01-01
Smallholder farming systems in sub-Saharan Africa have undergone changes in land use, productivity and sustainability. Understanding of the drivers that have led to changes in land use in these systems and factors that influence the systems’ sustainability is useful to guide appropriate targeting of intervention strategies for improvement. We studied low input Teso farming systems in eastern Uganda from 1960 to 2001 in a place-based analysis combined with a comparative analysis of similar low input systems in southern Mali. This study showed that policy-institutional factors next to population growth have driven land use changes in the Teso systems, and that nutrient balances of farm households are useful indicators to identify their sustainability. During the period of analysis, the fraction of land under cultivation increased from 46 to 78%, and communal grazing lands nearly completely disappeared. Cropping diversified over time; cassava overtook cotton and millet in importance, and rice emerged as an alternative cash crop. Impacts of political instability, such as the collapse of cotton marketing and land management institutions, of communal labour arrangements and aggravation of cattle rustling were linked to the changes. Crop productivity in the farming systems is poor and nutrient balances differed between farm types. Balances of N, P and K were all positive for larger farms (LF) that had more cattle and derived a larger proportion of their income from off-farm activities, whereas on the medium farms (MF), small farms with cattle (SF1) and without cattle (SF2) balances were mostly negative. Sustainability of the farming system is driven by livestock, crop production, labour and access to off-farm income. Building private public partnerships around market-oriented crops can be an entry point for encouraging investment in use of external nutrient inputs to boost productivity in such African farming systems. However, intervention strategies should recognise the diversity and heterogeneity between farms to ensure efficient use of these external inputs. PMID:20628448
Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D
2017-02-01
Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.
Clustering Module in OLAP for Horticultural Crops using SpagoBI
NASA Astrophysics Data System (ADS)
Putri, D.; Sitanggang, I. S.
2017-03-01
Horticultural crops data are organized by the Ministry of Agriculture, Republic of Indonesia. The data are presented annually in a tabular form and result a large data set. This situation makes users difficult to obtain summaries of horticultural crops data. This study aims to develop a clustering module in the SOLAP system for the distribution of horticultural crops in Indonesia and to visualize the results of clustering in a map using SpagoBI. The algorithm used for clustering is K-Means. Horticultural crops data include vegetables, ornamental plants, medicinal plants, and fruits from 2000 to 2013. The clustering module displays clustering results of horticultural crops in the form of text and table on SpagoBI. This module can also visualize the distribution of horticultural crops in the form of map on the HTML page. The application is expected to be useful for users in order to easily obtain summaries of the horticultural crops distribution data and its clusters. The summaries and clusters can be beneficial for the stakeholders to determine potential areas in Indonesia for horticultural crops.
Rueda-Ayala, Victor; Weis, Martin; Keller, Martina; Andújar, Dionisio; Gerhards, Roland
2013-01-01
Harrowing is often used to reduce weed competition, generally using a constant intensity across a whole field. The efficacy of weed harrowing in wheat and barley can be optimized, if site-specific conditions of soil, weed infestation and crop growth stage are taken into account. This study aimed to develop and test an algorithm to automatically adjust the harrowing intensity by varying the tine angle and number of passes. The field variability of crop leaf cover, weed density and soil density was acquired with geo-referenced sensors to investigate the harrowing selectivity and crop recovery. Crop leaf cover and weed density were assessed using bispectral cameras through differential images analysis. The draught force of the soil opposite to the direction of travel was measured with electronic load cell sensor connected to a rigid tine mounted in front of the harrow. Optimal harrowing intensity levels were derived in previously implemented experiments, based on the weed control efficacy and yield gain. The assessments of crop leaf cover, weed density and soil density were combined via rules with the aforementioned optimal intensities, in a linguistic fuzzy inference system (LFIS). The system was evaluated in two field experiments that compared constant intensities with variable intensities inferred by the system. A higher weed density reduction could be achieved when the harrowing intensity was not kept constant along the cultivated plot. Varying the intensity tended to reduce the crop leaf cover, though slightly improving crop yield. A real-time intensity adjustment with this system is achievable, if the cameras are attached in the front and at the rear or sides of the harrow. PMID:23669712
Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D
2017-02-01
Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.
Dias, Teresa; Dukes, Angela; Antunes, Pedro M
2015-02-01
There is an urgent need for novel agronomic improvements capable of boosting crop yields while alleviating environmental impacts. One such approach is the use of optimized crop rotations. However, a set of measurements that can serve as guiding principles for the design of crop rotations is lacking. Crop rotations take advantage of niche complementarity, enabling the optimization of nutrient use and the reduction of pests and specialist pathogen loads. However, despite the recognized importance of plant-soil microbial interactions and feedbacks for crop yield and soil health, this is ignored in the selection and management of crops for rotation systems. We review the literature and propose criteria for the design of crop rotations focusing on the roles of soil biota and feedback on crop productivity and soil health. We consider that identifying specific key organisms or consortia capable of influencing plant productivity is more important as a predictor of soil health and crop productivity than assessing the overall soil microbial diversity per se. As such, we propose that setting up soil feedback studies and applying genetic sequencing tools towards the development of soil biotic community databases has a strong potential to enable the establishment of improved soil health indicators for optimized crop rotations. © 2014 Society of Chemical Industry.
Rice production in relation to soil quality under different rice-based cropping systems
NASA Astrophysics Data System (ADS)
Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim
2016-04-01
Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal soil depth without restriction for rice root elongation was at least 25 cm from the soil surface. We suggest these values as indicative for optimal physical soil quality when growing rice in fine-textured alluvial soils and their definition as a first step towards presenting real threshold values.
Agriculture, forestry, range, and soils, chapter 2, part C
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility of using microwave systems in agriculture, forestry, range, and soil moisture measurements was studied. Theory and preliminary results show the feasibility of measuring moisture status in the soil. For vegetational resources, crop identification for inventory and for yield and production estimates is most feasible. Apart from moisture- and water-related phenomena, microwave systems are also used to record structural and spatial data related to crops and forests.
Effects of alternative cropping systems on globe artichoke qualitative traits.
Spanu, Emanuela; Deligios, Paola A; Azara, Emanuela; Delogu, Giovanna; Ledda, Luigi
2018-02-01
Traditionally, globe artichoke cultivation in the Mediterranean basin is based on monoculture and on use of high amounts of nitrogen fertiliser. This raises issues regarding its compatibility with sustainable agriculture. We studied the effect of one typical conventional (CONV) and two alternative cropping systems [globe artichoke in sequence with French bean (NCV1), or in biannual rotation (NCV2) with cauliflower and with a leguminous cover crop in inter-row spaces] on yield, polyphenol and mineral content of globe artichoke heads over two consecutive growing seasons. NCV2 showed statistical differences in terms of fresh product yield with respect to the monoculture systems. In addition, the dihydroxycinnamic acids and dicaffeoylquinic acids of non-conventional samples were one-fold significantly higher than the conventional one. All the samples reported good mineral content, although NCV2 achieved a higher Fe content than conventional throughout the two seasons. After two and three dates of sampling, the CONV samples showed the highest levels of K content. In our study, an acceptable commercial yield and quality of 'Spinoso sardo' were achieved by shifting the common conventional agronomic management to more sustainable ones, by means of an accurate choice of cover crop species and rotations introduced in the systems. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Cover crop biomass harvest for bioenergy: implications for crop productivity
USDA-ARS?s Scientific Manuscript database
Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...
Origins of food crops connect countries worldwide
Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.
2016-01-01
Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.
Soil profile organic carbon as affected by tillage and cropping systems
USDA-ARS?s Scientific Manuscript database
Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...
A low-cost microcontroller-based system to monitor crop temperature and water status
USDA-ARS?s Scientific Manuscript database
A prototype microcontroller-based system was developed to automate the measurement and recording of soil-moisture status and canopy-, air-, and soil-temperature levels in cropped fields. Measurements of these conditions within the cropping system are often used to assess plant stress, and can assis...
Evaluation of carbon saturation across gradients of cropping systems diversity and soil depth
NASA Astrophysics Data System (ADS)
Castellano, Michael; Poffenbarger, Hanna; Cambardella, Cindy; Liebman, Matt; Mallarino, Antonio; Olk, Dan; Russell, Ann; Six, Johan
2017-04-01
Growing evidence indicates arable soils in the US Maize Belt are effectively carbon-saturated. We hypothesized that: 1) surface soil mineral-associated soil organic carbon (SOC) stocks in these systems are effectively carbon-saturated and 2) diverse cropping systems with greater belowground C inputs would increase subsoil SOC stocks because subsoils have large C saturation deficit. Using three long-term field trials in Iowa (study durations of 60, 35, and 12 years), we examined the effects of cropping system diversity (maize-soybean-oat/alfalfa-alfalfa or corn-corn-oat/alfalfa-alfalfa vs. maize-soybean rotation) on SOC content at different depths (0-100 cm) throughout the soil profile. Average annual C inputs were similar for both cropping systems, but the proportion of C delivered belowground was approximately twice as great in the extended rotations. Within and across cropping systems and the three field trial locations, there was a positive linear relationship between total SOC and the concentration of SOC in the mineral-associated fraction, indicating mineral-associated SOC stocks are not saturated. Organic C accumulation was observed at depth (15-100 cm) but not at the surface (0-15 cm) across all sites and rotations. These data suggest surface SOC stocks may have reached equilibrium rather than effective C saturation. In the absence of experiments that manipulate C inputs, the relationship between total SOC and the concentration of SOC in the mineral-associated fraction is frequently used as a proxy for C-saturation, and this relationship should be further explored.
Integration of lessons from recent research for “Earth to Mars” life support systems
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Allen, J. P.
Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced ("Mars on Earth ®") in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An "Earth to Mars" project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process.
P.B. Parajuli; P. Jayakody; G.F. Sassenrath; Y. Ouyang
2016-01-01
This study evaluated climate change impacts on stream flow, crop and sediment yields from three differ-ent tillage systems (conventional, reduced 1âclose to conservation, and reduced 2âclose to no-till), in theBig Sunflower River Watershed (BSRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) modelwas applied to the BSRW using observed stream flow and crop...
Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments.
Feng, Zhaozhong; Uddling, Johan; Tang, Haoye; Zhu, Jianguo; Kobayashi, Kazuhiko
2018-02-02
Assessments of the impacts of ozone (O 3 ) on regional and global food production are currently based on results from experiments using open-top chambers (OTCs). However, there are concerns that these impact estimates might be biased due to the environmental artifacts imposed by this enclosure system. In this study, we collated O 3 exposure and yield data for three major crop species-wheat, rice, and soybean-for which O 3 experiments have been conducted with OTCs as well as the ecologically more realistic free-air O 3 elevation (O 3 -FACE) exposure system; both within the same cultivation region and country. For all three crops, we found that the sensitivity of crop yield to the O 3 metric AOT40 (accumulated hourly O 3 exposure above a cut-off threshold concentration of 40 ppb) significantly differed between OTC and O 3 -FACE experiments. In wheat and rice, O 3 sensitivity was higher in O 3 -FACE than OTC experiments, while the opposite was the case for soybean. In all three crops, these differences could be linked to factors influencing stomatal conductance (manipulation of water inputs, passive chamber warming, and cultivar differences in gas exchange). Our study thus highlights the importance of accounting for factors that control stomatal O 3 flux when applying experimental data to assess O 3 impacts on crops at large spatial scales. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhu, L.; Radeloff, V.; Ives, A. R.; Barton, B.
2015-12-01
Deriving crop pattern with high accuracy is of great importance for characterizing landscape diversity, which affects the resilience of food webs in agricultural systems in the face of climatic and land cover changes. Landsat sensors were originally designed to monitor agricultural areas, and both radiometric and spatial resolution are optimized for monitoring large agricultural fields. Unfortunately, few clear Landsat images per year are available, which has limited the use of Landsat for making crop classification, and this situation is worse in cloudy areas of the Earth. Meanwhile, the MODerate Resolution Imaging Spectroradiometer (MODIS) data has better temporal resolution but cannot capture fine spatial heterogeneity of agricultural systems. Our question was to what extent fusing imagery from both sensors could improve crop classifications. We utilized the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to simulate Landsat-like images at MODIS temporal resolution. Based on Random Forests (RF) classifier, we tested whether and by what degree crop maps from 2000 to 2014 of the Arlington Agricultural Research Station (Wisconsin, USA) were improved by integrating available clear Landsat images each year with synthetic images. We predicted that the degree to which classification accuracy can be improved by incorporating synthetic imagery depends on the number and acquisition time of clear Landsat images. Moreover, multi-season data are essential for mapping crop types by capturing their phenological dynamics, and STARFM-simulated images can be used to compensate for missing Landsat observations. Our study is helpful for eliminating the limits of the use of Landsat data in mapping crop patterns, and can provide a benchmark of accuracy when choosing STARFM-simulated images to make crop classification at broader scales.
NASA Astrophysics Data System (ADS)
Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.
2016-12-01
Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.
NASA Astrophysics Data System (ADS)
Upton, R.; Bach, E.; Hofmockel, K. S.
2017-12-01
Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system provides increased C cycling activity. Our results showed that diverse cropping systems still benefit from N fertilization to confer resiliency to abiotic stress factors. Long-term studies for microbial mediation of soil C are necessary for modeling the impacts of restoration on SOC to assure inclusion of sustainability and resiliency.
NASA Astrophysics Data System (ADS)
Esnault, Laurent; Gleeson, Tom; Wada, Yoshihide; Heinke, Jens; Gerten, Dieter; Flanary, Elizabeth; Bierkens, Marc F. P.; van Beek, Ludovicus P. H.
2014-06-01
A number of aquifers worldwide are being depleted, mainly by agricultural activities, yet groundwater stress has not been explicitly linked to specific agricultural crops. Using the newly developed concept of the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services), we develop a methodology to derive crop-specific groundwater footprints. We illustrate this method by calculating high-resolution groundwater footprint estimates of crops in two heavily used aquifer systems: the Central Valley and High Plains, U.S. In both aquifer systems, hay and haylage, corn, and cotton have the largest groundwater footprints, which highlights that most of the groundwater stress is induced by crops meant for cattle feed. Our results are coherent with other studies in the High Plains but suggest lower groundwater stress in the Central Valley, likely due to artificial recharge from surface water diversions which were not taken into account in previous estimates. Uncertainties of recharge and irrigation application efficiency contribute the most to the total relative uncertainty of the groundwater footprint to aquifer area ratios. Our results and methodology will be useful for hydrologists, water resource managers, and policy makers concerned with which crops are causing the well-documented groundwater stress in semiarid to arid agricultural regions around the world.
NASA Astrophysics Data System (ADS)
Wada, Y.; Esnault, L.; Gleeson, T.; Heinke, J.; Gerten, D.; Flanary, E.; Bierkens, M. F.; Van Beek, L. P.
2014-12-01
A number of aquifers worldwide are being depleted, mainly by agricultural activities, yet groundwater stress has not been explicitly linked to specific agricultural crops. Using the newly-developed concept of the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services), we develop a methodology to derive crop-specific groundwater footprints. We illustrate this method by calculating high resolution groundwater footprint estimates of crops in two heavily used aquifer systems: the Central Valley and High Plains, U.S. In both aquifer systems, hay and haylage, corn and cotton have the largest groundwater footprints, which highlights that most of the groundwater stress is induced by crops meant for cattle feed. Our results are coherent with other studies in the High Plains but suggest lower groundwater stress in the Central Valley, likely due to artificial recharge from surface water diversions which were not taken into account in previous estimates. Uncertainties of recharge and irrigation application efficiency contribute the most to the total relative uncertainty of the groundwater footprint to aquifer area ratios. Our results and methodology will be useful for hydrologists, water resource managers, and policy makers concerned with which crops are causing the well-documented groundwater stress in semiarid to arid agricultural regions around the world.
NASA Astrophysics Data System (ADS)
Xiao, Dengpan; Qi, Yongqing; Shen, Yanjun; Tao, Fulu; Moiwo, Juana P.; Liu, Jianfeng; Wang, Rede; Zhang, He; Liu, Fengshan
2016-05-01
As climate change could significantly influence crop phenology and subsequent crop yield, adaptation is a critical mitigation process of the vulnerability of crop growth and production to climate change. Thus, to ensure crop production and food security, there is the need for research on the natural (shifts in crop growth periods) and artificial (shifts in crop cultivars) modes of crop adaptation to climate change. In this study, field observations in 18 stations in North China Plain (NCP) are used in combination with Agricultural Production Systems Simulator (APSIM)-Maize model to analyze the trends in summer maize phenology in relation to climate change and cultivar shift in 1981-2008. Apparent warming in most of the investigated stations causes early flowering and maturity and consequently shortens reproductive growth stage. However, APSIM-Maize model run for four representative stations suggests that cultivar shift delays maturity and thereby prolongs reproductive growth (flowering to maturity) stage by 2.4-3.7 day per decade (d 10a-1). The study suggests a gradual adaptation of maize production process to ongoing climate change in NCP via shifts in high thermal cultivars and phenological processes. It is concluded that cultivation of maize cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production and food security in the NCP study area and beyond.
USDA-ARS?s Scientific Manuscript database
Trap cropping is a behaviorally-based pest management approach that functions by planting highly attractive plants next to a higher value crop so as to attract the pest to the trap crop plants, thus preventing or making less likely the arrival of the pest to the main crop (= cash crop). In 2012, a s...
NASA Astrophysics Data System (ADS)
Chellasamy, Menaka; Ferré, Ty Paul Andrew; Greve, Mogens Humlekrog
2016-07-01
Beginning in 2015, Danish farmers are obliged to meet specific crop diversification rules based on total land area and number of crops cultivated to be eligible for new greening subsidies. Hence, there is a need for the Danish government to extend their subsidy control system to verify farmers' declarations to warrant greening payments under the new crop diversification rules. Remote Sensing (RS) technology has been used since 1992 to control farmers' subsidies in Denmark. However, a proper RS-based approach is yet to be finalised to validate new crop diversity requirements designed for assessing compliance under the recent subsidy scheme (2014-2020); This study uses an ensemble classification approach (proposed by the authors in previous studies) for validating the crop diversity requirements of the new rules. The approach uses a neural network ensemble classification system with bi-temporal (spring and early summer) WorldView-2 imagery (WV2) and includes the following steps: (1) automatic computation of pixel-based prediction probabilities using multiple neural networks; (2) quantification of the classification uncertainty using Endorsement Theory (ET); (3) discrimination of crop pixels and validation of the crop diversification rules at farm level; and (4) identification of farmers who are violating the requirements for greening subsidies. The prediction probabilities are computed by a neural network ensemble supplied with training samples selected automatically using farmers declared parcels (field vectors containing crop information and the field boundary of each crop). Crop discrimination is performed by considering a set of conclusions derived from individual neural networks based on ET. Verification of the diversification rules is performed by incorporating pixel-based classification uncertainty or confidence intervals with the class labels at the farmer level. The proposed approach was tested with WV2 imagery acquired in 2011 for a study area in Vennebjerg, Denmark, containing 132 farmers, 1258 fields, and 18 crops. The classification results obtained show an overall accuracy of 90.2%. The RS-based results suggest that 36 farmers did not follow the crop diversification rules that would qualify for the greening subsidies. When compared to the farmers' reported crop mixes, irrespective of the rule, the RS results indicate that false crop declarations were made by 8 farmers, covering 15 fields. If the farmers' reports had been submitted for the new greening subsidies, 3 farmers would have made a false claim; while remaining 5 farmers obey the rules of required crop proportion even though they have submitted the false crop code due to their small holding size. The RS results would have supported 96 farmers for greening subsidy claims, with no instances of suggesting a greening subsidy for a holding that the farmer did not report as meeting the required conditions. These results suggest that the proposed RS based method shows great promise for validating the new greening subsidies in Denmark.
Grand challenges for crop science
USDA-ARS?s Scientific Manuscript database
Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...
NASA Astrophysics Data System (ADS)
Amiro, B. D.; Tenuta, M.; Gao, X.; Gervais, M.
2016-12-01
The Fluxnet database has over 100 cropland sites, some of which have long-term (over a decade) measurements. Carbon neutrality is one goal of sustainable agriculture, although measurements over many annual cropping systems have indicated that soil carbon is often lost. Croplands are complex systems because the CO2 exchange depends on the type of crop, soil, weather, and management decisions such as planting date, nutrient fertilization and pest management strategy. Crop rotations are often used to decrease pest pressure, and can range from a simple 2-crop system, to have 4 or more crops in series. Carbon dioxide exchange has been measured using the flux-gradient technique since 2006 in agricultural systems in Manitoba, Canada. Two cropping systems are being followed: one that is a rotation of annual crops (corn, faba bean, spring wheat, rapeseed, barley, spring wheat, corn, soybean, spring wheat, soybean); and the other with a perennial phase of alfalfa/grass in years 3 to 6. Net ecosystem production ranged from a gain of 330 g C m-2 y-1 in corn to a loss of 75 g C m-2 y-1 in a poor spring-wheat crop. Over a decade, net ecosystem production for the annual cropping system was not significantly different from zero (carbon neutral), but the addition of the perennial phase increased the sink to 130 g C m-2 y-1. Once harvest removals were included, there was a net loss of carbon ranging from 77 g C m-2 y-1 in the annual system to 52 g C m-2 y-1 in the annual-perennial system; but neither of these were significantly different from zero. Termination of the perennial phase of the rotation only caused short-term increases in respiration. We conclude that both these systems were close to carbon-neutral over a decade even though they were tilled with a short growing season (90 to 130 days). We discuss the need for more datasets on agricultural systems to inform management options to increase the soil carbon sink.
NASA Astrophysics Data System (ADS)
Pérès, Guénola; Menasseri, Safya; Hallaire, Vincent; Cluzeau, Daniel; Heddadj, Djilali; Cotinet, Patrice; Manceau, Olivier; Pulleman, Mirjam
2017-04-01
In the current context of soil degradation, reduced tillage systems (including reduced soil disturbance, use of cover crops and crop rotation, and improved organic matter management) are expected to be good alternatives to conventional system which have led to a decrease of soil multi-functionality. Many studies worldwide have analysed the impact of tillage systems on different soil functions, but overran integrated view of the impact of these systems is still lacking. The SUSTAIN project (European SNOWMAN programme), performed in France and the Netherlands, proposes an interdisciplinary collaboration. The goals of SUSTAIN are to assess the multi-functionality of soil and to study how reduced-tillage systems impact on multiple ecosystem services such as soil biodiversity regulation (earthworms, nematodes, microorganisms), soil structure maintenance (aggregate stability, compaction, soil erosion), water regulation (run-off, transfer of pesticides) and food production. Moreover, a socio-economic study on farmer networks has been carried out to identify the drivers of adoption of reduced-tillage systems. Data have been collected in long-term experimental fields (5 - 13 years), representing conventional and organic farming strategies, and were complemented with data from farmer networks. The impact of different reduced tillage systems (direct seeding, minimum tillage, non-inverse tillage, superficial ploughing) were analysed and compared to conventional ploughing. Measurements (biological, chemical, physical, agronomical, water and element transfer) have been done at several dates which allow an overview of the evolution of the soil properties according to climate variation and crop rotation. A sociological approach was performed on several farms covering different production types, different courses (engagement in reduced tillage systems) and different geographical locations. Focusing on French trials, this multiple ecosystem services approach clearly showed that reduced tillage systems improved soil ecosystem services such as soil biodiversity, water regulation (quantity, quality), carbon storage and soil stability; however, the effects on crop production were more variable (-10% to +7 % range), strongly depending on crop type and agricultural practices (fertilisation, rotation, cover crop). Sociological approach showed that saving labour time and fuel costs were the main motivations for change. Agronomic and environmental benefits are not the trigger but are increasingly recognized and contribute to the maintenance of the practice. Farmers also expressed a need for stronger networking and technical advice, which plays a crucial role. Scientists and experts raise awareness, support collective learning and provide instrumental. Recommendations were provided for sustainable soil management aiming at ecological intensification of agricultural land.
Long-term effects of conservation systems on productivity for the old rotation
USDA-ARS?s Scientific Manuscript database
Winter legumes in cotton (Gossypium hirsutum L.) production is not new to the Southeast. In 1896, the Old Rotation experiment at Auburn University was established to study the feasibility of producing cotton in crop rotations with winter legumes managed as a green manure crop. Throughout the experim...
Simulating soil organic carbon in a wheat–fallow system using the Daycent model
USDA-ARS?s Scientific Manuscript database
Crop management practices that contribute to soil organic carbon (SOC) sequestration can improve productivity and long-term sustainability. We present a modeling study on influence of (>80 years) various long-term crop residue and nutrient management practices on SOC dynamics under conventional and ...
Crop water production functions of grain sorghum and winter wheat in Kansas and Texas
USDA-ARS?s Scientific Manuscript database
Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. Our study objective was to develop relationships among weather variables, water use, and grain productivity to produce production functions for forecasting grain yields of...
Simulating soil organic carbon changes across toposequences under dryland agriculture using CQESTR
USDA-ARS?s Scientific Manuscript database
Soil organic carbon (SOC) and its management under dryland cropping systems are very critical for both crop productivity and environment health. The objective of this study was to evaluate the performance of CQESTR, a process-based C model, in simulating SOC changes across toposequences of selected ...
Soil quality parameters for row-crop and grazed pasture systems with agroforestry buffers
USDA-ARS?s Scientific Manuscript database
Incorporation of trees and establishment of buffers are practices that can improve soil quality. Soil enzyme activities and water stable aggregates are sensitive indices for assessing soil quality by detecting early changes in soil management. However, studies comparing grazed pasture and row crop...
Impact of tillage and fertilizer application method on gas emissions in a corn cropping system
USDA-ARS?s Scientific Manuscript database
Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil. This study was conducted to determine the impact of fertilizer sources, land management practices, and fertilizer placement methods on greenhouse gas emissions. A new prototype i...
NASA Astrophysics Data System (ADS)
Al-Ghobari, Hussein M.; Mohammad, Fawzi S.
2011-12-01
Intelligent irrigation technologies have been developed in recent years to apply irrigation to turf and landscape plants. These technologies are an evapotranspiration (ET)-based irrigation controller, which calculates ET for local microclimate. Then, the controller creates a program for loading and communicating automatically with drip or sprinkler system controllers. The main objective of this study was to evaluate the effectiveness of the new ET sensors in ability to irrigate agricultural crops and to conserve water use for crop in arid climatic conditions. This paper presents the case for water conservation using intelligent irrigation system (IIS) application technology. The IIS for automating irrigation scheduling was implemented and tested with sprinkle and drip irrigation systems to irrigate wheat and tomato crops. Another irrigation scheduling system was also installed and operated as another treatment, which is based on weather data that retrieved from an automatic weather station. This irrigation control system was running in parallel to the former system (IIS) to be control experiments for comparison purposes. However, this article discusses the implementation of IIS, its installation, testing and calibration of various components. The experiments conducted for one growing season 2009-2010 and the results were represented and discussed herein. Data from all plots were analyzed, which were including soil water status, water consumption, and crop yield. The initial results indicate that up to 25% water saving by intelligent irrigation compared to control method, while maintaining competing yield. Results show that the crop evapotranspiration values for control experiments were higher than that of ET-System in consistent trend during whole growth season. The analysis points out that the values of the two treatments were somewhat close to each other's only in the initial development stages. Generally, the ET-System, with some modification was precise in controlling irrigation water and has been proven to be a good mean to determine the water requirements for crops and to schedule irrigation automatically.
NASA Astrophysics Data System (ADS)
Pratibha, G.; Srinivas, I.; Rao, K. V.; Shanker, Arun K.; Raju, B. M. K.; Choudhary, Deepak K.; Srinivas Rao, K.; Srinivasarao, Ch.; Maheswari, M.
2016-11-01
Agriculture has been considered as one of the contributors to greenhouse gas (GHG) emissions and it continues to increase with increase in crop production. Hence development of sustainable agro techniques with maximum crop production, and low global warming potential is need of the hour. Quantifying net global warming potential (NGWP) and greenhouse gas intensity (GHGI) of an agricultural activity is a method to assess the mitigation potential of the activity. But there is dearth of information on NGWP of conservation agriculture under rainfed conditions. Hence in this study two methods such as crop based (NGWPcrop) and soil based (NGWPsoil) were estimated from the data of the experiment initiated in 2009 in rainfed semiarid regions of Hyderabad, India with different tillage practices like conventional tillage (CT), reduced tillage (RT), zero tillage (ZT) and residue retention levels by harvesting at different heights which includes 0, 10 and 30 cm anchored residue in pigeonpea-castor systems. The results of the study revealed that under rainfed conditions CT recorded 24% higher yields over ZT, but CT and RT were on par with each other. However, the yield gap between the tillage treatments is narrowing down over 5 years of study. ZT and RT recorded 26 and 11% lower indirect GHG emissions (emissions from farm operations and input use) over CT, respectively. The percent contribution of CO2 eq. N2O emission is higher to total GHG emissions in both the crops. Both NGWPcrop, NGWPsoil, GHGIcrop, and GHGIsoil based were influenced by tillage and residue treatments. Further, castor grown on pigeonpea residue recorded 20% higher GHG emissions over pigeonpea grown on castor residues. The fuel consumption in ZT was reduced by 58% and 81% as compared to CT in pigeonpea and castor, respectively. Lower NGWP and GHGI based on crop and soil was observed with increase in crop residues and decrease in tillage intensity in both the crops. The results of the study indicate that, there is scope to reduce the NGWP emissions by reducing one tillage operation as in RT and increase in crop residue by harvesting at 10 and 30 cm height with minimal impact on the crop yields. However, the trade-off between higher yield and soil health versus GHG emissions should be considered while promoting conservation agriculture. The NGWPcrop estimation method indicated considerable benefits of residues to the soil and higher potential of GHG mitigation than by the NGWPsoil method and may overestimate the potential of GHG mitigation in agriculture system.
Operational seasonal forecasting of crop performance.
Stone, Roger C; Meinke, Holger
2005-11-29
Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production.
Operational seasonal forecasting of crop performance
Stone, Roger C; Meinke, Holger
2005-01-01
Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production. PMID:16433097
Impact of crop rotation and soil amendments on long-term no-tilled soybean yields
USDA-ARS?s Scientific Manuscript database
Continuous cropping systems without cover crops are perceived as unsustainable for long-term yield and soil health. To test this, cropping sequence and cover crop effects on soybean (Glycine max L.) yields were assessed. Main effects were 10 cropping sequences of soybean, corn (Zea mays L.), and co...
Gu, Yingxin; Wylie, Bruce K.
2016-01-01
Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn-based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts on global food supplies. The main goal of this study was to identify high-risk marginal croplands that are potentially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite-derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that croplands with relatively low crop yield but high productivity potential for switchgrass may be suitable for converting to switchgrass. Areas with relatively low crop indemnity (crop indemnity <$2 157 068) were excluded from the suitable areas based on low probability of crop failures. Results show that approximately 650 000 ha of marginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be cultivated in either lowland or upland regions in the GP depending on the local soil and environmental conditions. This study improves our understanding of ecosystem services and the sustainability of cropland systems in the GP. Results from this study provide useful information to land managers for making informed decisions regarding switchgrass development in the GP.
NASA Astrophysics Data System (ADS)
Lucciani, Roberto; Laneve, Giovanni; Jahjah, Munzer; Mito, Collins
2016-08-01
The crop growth stage represents essential information for agricultural areas management. In this study we investigate the feasibility of a tool based on remotely sensed satellite (Landsat 8) imagery, capable of automatically classify crop fields and how much resolution enhancement based on pan-sharpening techniques and phenological information extraction, useful to create decision rules that allow to identify semantic class to assign to an object, can effectively support the classification process. Moreover we investigate the opportunity to extract vegetation health status information from remotely sensed assessment of the equivalent water thickness (EWT). Our case study is the Kenya's Great Rift valley, in this area a ground truth campaign was conducted during August 2015 in order to collect crop fields GPS measurements, leaf area index (LAI) and chlorophyll samples.
Expert system for controlling plant growth in a contained environment
NASA Technical Reports Server (NTRS)
May, George A. (Inventor); Lanoue, Mark Allen (Inventor); Bethel, Matthew (Inventor); Ryan, Robert E. (Inventor)
2011-01-01
In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an "expert system" which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the "expert system" remotely, to assess activity within the growth chamber, and can override the "expert system".
Expert system for controlling plant growth in a contained environment
NASA Technical Reports Server (NTRS)
May, George A. (Inventor); Lanoue, Mark Allen (Inventor); Bethel, Matthew (Inventor); Ryan, Robert E. (Inventor)
2009-01-01
In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an ''expert system'' which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the ''expert system'' remotely, to assess activity within the growth chamber, and can override the ''expert system''.
Sediment and PM10 flux from no-tillage cropping systems in the Pacific Northwest
USDA-ARS?s Scientific Manuscript database
Wind erosion is a concern in the Inland Pacific Northwest (PNW) United States where the emission of fine particulates from winter wheat – summer fallow (WW/SF) dryland cropping systems during high winds degrade air quality. Although no-tillage cropping systems are not yet economically viable, these ...
USDA-ARS?s Scientific Manuscript database
Cover crops often provide many short- and long-term benefits to cropping systems. Legume cover crops can significantly reduce the N fertilizer requirement of non-legume cash crops that follow. The objectives of this presentation were to: I) educate stakeholders about the potential benefits of cover ...
NASA Astrophysics Data System (ADS)
Bogie, N. A.; Bayala, R.; Fogel, M. L.; Diedhiou, I.; Dick, R.; Ghezzehei, T. A.
2015-12-01
A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively. We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture, transpiration rate, crop growth and soil and leaf water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting deuterated water into the roots of three shrubs at one meter depth and sampling shrubs and nearby crops for isotopic analysis of plant water. Deuterium Enriched water was found in the shrubs of two out of three plots. Deuterium enriched water was found in the crops and shrubs in all three plots. These findings build on work that was completed in 2004 at the site, but point to larger differences in crop growth and strong evidence for the sharing of hydraulically redistributed water. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.
NASA Technical Reports Server (NTRS)
Baker, T. C. (Principal Investigator)
1982-01-01
A general methodology is presented for estimating a stratum's at-harvest crop acreage proportion for a given crop year (target year) from the crop's estimated acreage proportion for sample segments from within the stratum. Sample segments from crop years other than the target year are (usually) required for use in conjunction with those from the target year. In addition, the stratum's (identifiable) crop acreage proportion may be estimated for times other than at-harvest in some situations. A by-product of the procedure is a methodology for estimating the change in the stratum's at-harvest crop acreage proportion from crop year to crop year. An implementation of the proposed procedure as a statistical analysis system routine using the system's matrix language module, PROC MATRIX, is described and documented. Three examples illustrating use of the methodology and algorithm are provided.
Zhao, ZiHua; Shi, PeiJian; Men, XingYuan; Ouyang, Fang; Ge, Feng
2013-08-01
The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.
NASA Astrophysics Data System (ADS)
Szymanski, L. M.; Sanford, G. R.; Heckman, K. A.; Jackson, R. D.; Marin-Spiotta, E.
2016-12-01
In the face of climate change, the global production of bioenergy crops has increased in response to policies calling for non-fossil energy sources as a means to mitigate rising atmospheric carbon (C) concentrations. To provide overall C sequestration benefits, identifying biomass crops that can maintain or enhance soil resources is desirable for sustainable bioenergy production. The objective of our study was to compare the effects of four bioenergy cropping systems on SOM dynamics in two agricultural soils: Mollisols at the University of Wisconsin Agricultural Research Station in Arlington, Wisconsin and Alfisols at Kellogg Biological Station in Hickory Corners, Michigan, USA. We used fresh soils collected in 2013 and archived soils collected in 2008 to measure differences among biofuel crops after 5 years of management. Using a 365-day laboratory soil incubation and radiocarbon measurements of bulk soil and respired C, we separated soils into three SOM pools and determined their corresponding turnover times. Total soil C respired from surface soils increased in the order: mixed species perennials > monoculture perennials > monoculture annuals. More C was associated with the active fraction in the sandy loam Alfisol and with the slow-cycling fraction in the silt loam Mollisol. Radiocarbon content of respired CO2 did not differ between corn and switchgrass, but did differ between 2008 and 2013. The respiration of more radiocarbon-depleted C after 5 years of cultivation may be due to an initial flux of young C following tillage in 2008 or to depletion of labile plant inputs with continued harvest. All bioenergy cropping systems lost soil C after 5 years. Monoculture perennial switchgrass systems did not provide significant C sequestration benefits, as expected, compared to monoculture annual corn systems. Bioenergy crop land-use change affects soil C dynamics, with implications for assessing C costs associated with biofuel production.
Intelligent Planning and Scheduling for Controlled Life Support Systems
NASA Technical Reports Server (NTRS)
Leon, V. Jorge
1996-01-01
Planning in Controlled Ecological Life Support Systems (CELSS) requires special look ahead capabilities due to the complex and long-term dynamic behavior of biological systems. This project characterizes the behavior of CELSS, identifies the requirements of intelligent planning systems for CELSS, proposes the decomposition of the planning task into short-term and long-term planning, and studies the crop scheduling problem as an initial approach to long-term planning. CELSS is studied in the realm of Chaos. The amount of biomass in the system is modeled using a bounded quadratic iterator. The results suggests that closed ecological systems can exhibit periodic behavior when imposed external or artificial control. The main characteristics of CELSS from the planning and scheduling perspective are discussed and requirements for planning systems are given. Crop scheduling problem is identified as an important component of the required long-term lookahead capabilities of a CELSS planner. The main characteristics of crop scheduling are described and a model is proposed to represent the problem. A surrogate measure of the probability of survival is developed. The measure reflects the absolute deviation of the vital reservoir levels from their nominal values. The solution space is generated using a probability distribution which captures both knowledge about the system and the current state of affairs at each decision epoch. This probability distribution is used in the context of an evolution paradigm. The concepts developed serve as the basis for the development of a simple crop scheduling tool which is used to demonstrate its usefulness in the design and operation of CELSS.
Colombi, Tino; Torres, Lorena Chagas; Walter, Achim; Keller, Thomas
2018-06-01
Water is the most limiting resource for global crop production. The projected increase of dry spells due to climate change will further increase the problem of water limited crop yields. Besides low water abundance and availability, water limitations also occur due to restricted water accessibility. Soil penetration resistance, which is largely influenced by soil moisture, is the major soil property regulating root elongation and water accessibility. Until now the interactions between soil penetration resistance, root system properties, water uptake and crop productivity are rarely investigated. In the current study we quantified how interactive effects between soil penetration resistance, root architecture and water uptake affect water accessibility and crop productivity in the field. Maize was grown on compacted and uncompacted soil that was either tilled or remained untilled after compaction, which resulted in four treatments with different topsoil penetration resistance. Higher topsoil penetration resistance caused root systems to be shallower. This resulted in increased water uptake from the topsoil and hence topsoil drying, which further increased the penetration resistance in the uppermost soil layer. As a consequence of this feedback, root growth into deeper soil layers, where water would have been available, was reduced and plant growth decreased. Our results demonstrate that soil penetration resistance, root architecture and water uptake are closely interrelated and thereby determine the potential of plants to access soil water pools. Hence, these interactions and their feedbacks on water accessibility and crop productivity have to be accounted for when developing strategies to alleviate water limitations in cropping systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Pollinators, pests, and predators: Recognizing ecological trade-offs in agroecosystems.
Saunders, Manu E; Peisley, Rebecca K; Rader, Romina; Luck, Gary W
2016-02-01
Ecological interactions between crops and wild animals frequently result in increases or declines in crop yield. Yet, positive and negative interactions have mostly been treated independently, owing partly to disciplinary silos in ecological and agricultural sciences. We advocate a new integrated research paradigm that explicitly recognizes cost-benefit trade-offs among animal activities and acknowledges that these activities occur within social-ecological contexts. Support for this paradigm is presented in an evidence-based conceptual model structured around five evidence statements highlighting emerging trends applicable to sustainable agriculture. The full range of benefits and costs associated with animal activities in agroecosystems cannot be quantified by focusing on single species groups, crops, or systems. Management of productive agroecosystems should sustain cycles of ecological interactions between crops and wild animals, not isolate these cycles from the system. Advancing this paradigm will therefore require integrated studies that determine net returns of animal activity in agroecosystems.
Global crop production forecasting: An analysis of the data system problems and their solutions
NASA Technical Reports Server (NTRS)
Neiers, J.; Graf, H.
1978-01-01
Data related problems in the acquisition and use of satellite data necessary for operational forecasting of global crop production are considered for the purpose of establishing a measurable baseline. For data acquisition the world was divided into 37 crop regions in 22 countries. These regions represent approximately 95 percent of the total world production of the selected crops of interest, i.e., wheat, corn, soybeans, and rice. Targets were assigned to each region. Limited time periods during which data could be taken (windows) were assigned to each target. Each target was assigned to a cloud region. The DSDS was used to measure the success of obtaining data for each target during the specified windows for the regional cloud conditions and the specific alternatives being analyzed. The results of this study suggest several approaches for an operational system that will perform satisfactorily with two LANDSAT type satellites.
NASA Astrophysics Data System (ADS)
Dimov, D.; Kuhn, J.; Conrad, C.
2016-06-01
In the transitioning agricultural societies of the world, food security is an essential element of livelihood and economic development with the agricultural sector very often being the major employment factor and income source. Rapid population growth, urbanization, pollution, desertification, soil degradation and climate change pose a variety of threats to a sustainable agricultural development and can be expressed as agricultural vulnerability components. Diverse cropping patterns may help to adapt the agricultural systems to those hazards in terms of increasing the potential yield and resilience to water scarcity. Thus, the quantification of crop diversity using indices like the Simpson Index of Diversity (SID) e.g. through freely available remote sensing data becomes a very important issue. This however requires accurate land use classifications. In this study, the focus is set on the cropping system diversity of garden plots, summer crop fields and orchard plots which are the prevalent agricultural systems in the test area of the Fergana Valley in Uzbekistan. In order to improve the accuracy of land use classification algorithms with low or medium resolution data, a novel processing chain through the hitherto unique fusion of optical and SAR data from the Landsat 8 and Sentinel-1 platforms is proposed. The combination of both sensors is intended to enhance the object's textural and spectral signature rather than just to enhance the spatial context through pansharpening. It could be concluded that the Ehlers fusion algorithm gave the most suitable results. Based on the derived image fusion different object-based image classification algorithms such as SVM, Naïve Bayesian and Random Forest were evaluated whereby the latter one achieved the highest classification accuracy. Subsequently, the SID was applied to measure the diversification of the three main cropping systems.
NASA Astrophysics Data System (ADS)
Dogaru, Diana
2016-04-01
Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies/institutes, providing the data at fine resolutions. The increased irrigated area was accounted according to the reported increased percentages of the irrigated area out of the total area equipped for irrigation, as an expected outcome of public irrigation systems rehabilitation schemes (MADR, 2011), while the optimum Nitrogen fertilizer rates for wheat and maize were established according to several field experiments made on irrigated and rain-fed wheat and maize plots in south Romania (Hera and Borlan, 1980). The effects of such farming measures on yields were compared to a baseline condition given by actual irrigated area and fertilization rates. The preliminary results show that potential gains in CWP could be obtained through improved fertilizer management and water allocation in winter wheat cropping systems, particularly in the dry periods, while in maize cropping systems CWP is more sensitive to water than to optimum fertilization rates. Irrigation water supply increases the stability of yields in both cropping systems, although regional differences can be observed across the study area, thus augmenting the relevance and the need for investigations on sustainable use of irrigation water in Romania. As such, this study could represent an information base for further analyses on yield potential under current and future climatic conditions, on impacts of land use patterns and farming practices on crop production in Romania, etc. Keywords: agricultural water use, crop water productivity, irrigation water, GEPIC, Romania References: Molden, D.J., Sakthivadivel, R., Perry, C.J., de Fraiture, C., Kloezen, W.H. (1998). Indicators for comparing performance of irrigated agricultural systems, Research Report 20, IWMI: Colombo, Sri Lanka. Sandu, I., Mateescu E. (2014). Current and prospective climate changes in Romania (in Romanian), in vol. Climate change: a major challenge for research in agriculture (ed. Saulescu, N.), Romanian Academy Publishing House, 17-36. Williams, J.R., Jones, C.A., Kiniry, J.R., Spanel, D.A. (1989). The EPIC crop growth model. Trans. ASAE 32 (2), 497-511. Liu, J. (2009). A GIS-based tool for modelling large-scale crop-water relations, Environmental Modelling & Software, 24, 411-422. MADR (Ministry of Agriculture and Rural Development), (2011). Rehabilitation and reform in the irrigation sector. Strategy of investment in the irrigation sector (in Romanian), Fidman Merk at., Bucharest, http://old.madr.ro/pages/strategie/strategie-investitii-irigatii.pdf. Hera, C., Borlan, Z. (1980). Guide for fertilization planning (in Romanian), 2nd edition, CERES Publishing House, Bucharest, Romania, 341p.
NASA Astrophysics Data System (ADS)
Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.
2012-12-01
Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In particular, canola production resulted in less overall water use but increased farm profits. Most crop substitutions were resource neutral. If future climate is drier, more winter annual crops like canola are likely to be adopted. Crop displacement is also important for determining market-mediated effects of biomass crop production. Correctly estimating crop displacement at the local scale greatly improves upon estimates for indirect land use change derived from the macro-scale PE and CGE models currently used by US EPA and the California Air Resources Board.
NASA Technical Reports Server (NTRS)
Blackwell, C. C.; Blackwell, A. L.
1992-01-01
The details of our initial study of the control problem of the crop shoot environment of a hypothetical closed crop growth research chamber (CGRC) are presented in this report. The configuration of the CGRC is hypothetical because neither a physical subject nor a design existed at the time the study began, a circumstance which is typical of large scale systems control studies. The basis of the control study is a mathematical model which was judged to adequately mimic the relevant dynamics of the system components considered necessary to provide acceptable realism in the representation. Control of pressure, temperature, and flow rate of the crop shoot environment, along with its oxygen, carbon dioxide, and water concentration is addressed. To account for mass exchange, the group of plants is represented in the model by a source of oxygen, a source of water vapor, and a sink for carbon dioxide. In terms of the thermal energy exchange, the group of plants is represented by a surface with an appropriate temperature. Most of the primitive equations about an experimental operating condition and a state variable representation which was extracted from the linearized equations are presented. Next, we present the results of a real Jordan decomposition and the repositioning of an undesirable eigenvalue via full state feedback. The state variable representation of the modeling system is of the nineteenth order and reflects the eleven control variables and eight system disturbances. Five real eigenvalues are very near zero, with one at zero, three having small magnitude positive values, and one having a small magnitude negative value. A Singular Value Decomposition analysis indicates that these non-zero eigenvalues are not results of numerical error.
Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion
NASA Astrophysics Data System (ADS)
Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.
2012-12-01
Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.
NASA Technical Reports Server (NTRS)
1979-01-01
Satellites provide an excellent platform from which to observe crops on the scale and frequency required to provide accurate crop production estimates on a worldwide basis. Multispectral imaging sensors aboard these platforms are capable of providing data from which to derive acreage and production estimates. The issue of sensor swath width was examined. The quantitative trade trade necessary to resolve the combined issue of sensor swath width, number of platforms, and their orbits was generated and are included. Problems with different swath width sensors were analyzed and an assessment of system trade-offs of swath width versus number of satellites was made for achieving Global Crop Production Forecasting.
Assessment of the biological activity of soils in the subtropical zone of Azerbaijan
NASA Astrophysics Data System (ADS)
Babaev, M. P.; Orujova, N. I.
2009-10-01
The enzymatic activity; the microbial population; and the intensities of the nitrification, ammonification, CO2emission, and cellulose decomposition were studied in gray-brown, meadow-sierozemic, meadow-forest alluvial, and yellow (zheltozem) gley soils in the subtropical zone of Azerbaijan under natural vegetation, crop rotation systems with vegetables, and permanent vegetable crops. On this basis, the biological diagnostics of these soils were suggested and the soil ecological health was evaluated. It was shown that properly chosen crop rotation systems on irrigated lands make it possible to preserve the fertility of the meadow-forest alluvial and zheltozem-gley soils and to improve the fertility of the gray-brown and meadow-sierozemic soils.
Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A.; Martínez, Sebastián; Casales, Luis; Caraballo, María P.; Laborda, Álvaro; Simo, Miguel
2018-01-01
Abstract The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country. PMID:29755261
Summer Flowering Cover Crops Support Wild Bees in Vineyards.
Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A
2018-02-08
Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bao, Leticia; Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A; Martínez, Sebastián; Casales, Luis; Caraballo, María P; Laborda, Álvaro; Simo, Miguel
2018-01-01
The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country.
Systems study of fuels from grains and grasses. Phase I. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, W.; Allen, A.; Athey, R.
1978-02-24
The program reported on herein consists of a first phase analysis of the potential for significant and economically viable contributions to U.S. energy needs from grasses and grains by the photosynthetic production of biomass. The study does not include other cultivated crops such as sugar cane, sugar beets, cotton, tobacco, vegetables, fruits, etc. The scope of the study encompasses grain crop residues, whole plant biomass from grain crops and nongrain crops on cropland, and whole plant biomass from grasses on pasture, rangeland, and federal range. The basic approach to the study involves first an assessment of current total biomass generationmore » from the various grasses and grains on cropland, pasture, range, and federal range, and aggregating the production by combinations of crop residues and whole plant biomass; second, evaluation of possibilities for introduction of new crops and expanding production to marginal or presently idle land; third, development of proposed reasonable scenarios for actually harvesting biomass from selected combinations of crop residues, forages and hays, and new crops from land now in production, plus additional marginal or underutilized land brought into production; and finally, assessment on national and regional or local scales of the production that might be affected by reasonable scenarios. This latter effort includes analysis of tentative possibilities for reallocating priorities and needs with regard to production of grain for export or for livestock production. The overall program includes a case study analysis of production economics for a representative farm of about 1,000 acres (405 ha) located in Iowa.« less
Integrated Systems Mitigate Land Degradation and Improve Agricultural System Sustainability
NASA Astrophysics Data System (ADS)
Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric
2017-04-01
Rain-fed agricultural production supported by exogenous inputs is not sustainable because a continuous influx of expensive inputs (fertilizer, chemicals, fossil fuel, labor, tillage, and other) is required. Alternatives to traditional management allow natural occurring dynamic soil processes to provide the necessary microbial activity that supports nutrient cycling in balance with nature. Research designed to investigate the potential for integrated systems to replace expensive inputs has shown that healthy soils rich in soil organic matter (SOM) are the foundation upon which microbial nutrient cycling can reduce and eventually replace expensive fertilizer. No-till seed placement technology effectively replaces multiple-pass cultivation conserving stored soil water in semi-arid farming systems. In multi-crop rotations, cool- and warm-season crops are grown in sequence to meet goals of the integrated farming and ranching system, and each crop in the rotation complements the subsequent crop by supplying a continuous flow of essential SOM for soil nutrient cycling. Grazing animals serve an essential role in the system's sustainability as non-mechanized animal harvesters that reduce fossil fuel consumption and labor, and animal waste contributes soil nutrients to the system. Integrated systems' complementarity has contributed to greater soil nutrient cycling and crop yields, fertilizer reduction or elimination, greater yearling steer grazing net return, reduced cow wintering costs grazing crop residues, increased wildlife sightings, and reduced environmental footprint. Therefore, integrating crop and animal systems can reverse soil quality decline and adopting non-traditional procedures has resulted in a wider array of opportunities for sustainable agriculture and profitability.
Smith, Richard G.; Atwood, Lesley W.; Warren, Nicholas D.
2014-01-01
Cover crops provide a variety of important agroecological services within cropping systems. Typically these crops are grown as monocultures or simple graminoid-legume bicultures; however, ecological theory and empirical evidence suggest that agroecosystem services could be enhanced by growing cover crops in species-rich mixtures. We examined cover crop productivity, weed suppression, stability, and carryover effects to a subsequent cash crop in an experiment involving a five-species annual cover crop mixture and the component species grown as monocultures in SE New Hampshire, USA in 2011 and 2012. The mean land equivalent ratio (LER) for the mixture exceeded 1.0 in both years, indicating that the mixture over-yielded relative to the monocultures. Despite the apparent over-yielding in the mixture, we observed no enhancement in weed suppression, biomass stability, or productivity of a subsequent oat (Avena sativa L.) cash crop when compared to the best monoculture component crop. These data are some of the first to include application of the LER to an analysis of a cover crop mixture and contribute to the growing literature on the agroecological effects of cover crop diversity in cropping systems. PMID:24847902
9 CFR 205.101 - Certification-request and processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... system will interpret the term “crop year” and how it will classify as to crop year an EFS not showing crop year; (10) Show what fee will be charged and explain how the costs of the system will be covered...
9 CFR 205.101 - Certification-request and processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system will interpret the term “crop year” and how it will classify as to crop year an EFS not showing crop year; (10) Show what fee will be charged and explain how the costs of the system will be covered...
Impacts of Stratospheric Black Carbon on Agriculture
NASA Astrophysics Data System (ADS)
Xia, L.; Robock, A.; Elliott, J. W.
2017-12-01
A regional nuclear war between India and Pakistan could inject 5 Tg of soot into the stratosphere, which would absorb sunlight, decrease global surface temperature by about 1°C for 5-10 years and have major impacts on precipitation and the amount of solar radiation reaching Earth's surface. Using two global gridded crop models forced by one global climate model simulation, we investigate the impacts on agricultural productivity in various nations. The crop model in the Community Land Model 4.5 (CLM-crop4.5) and the parallel Decision Support System for Agricultural Technology (pDSSAT) in the parallel System for Integrating Impact Models and Sectors are participating in the Global Gridded Crop Model Intercomparison. We force these two crop models with output from the Whole Atmospheric Community Climate Model to characterize the global agricultural impact from climate changes due to a regional nuclear war. Crops in CLM-crop4.5 include maize, rice, soybean, cotton and sugarcane, and crops in pDSSAT include maize, rice, soybean and wheat. Although the two crop models require a different time frequency of weather input, we downscale the climate model output to provide consistent temperature, precipitation and solar radiation inputs. In general, CLM-crop4.5 simulates a larger global average reduction of maize and soybean production relative to pDSSAT. Global rice production shows negligible change with climate anomalies from a regional nuclear war. Cotton and sugarcane benefit from a regional nuclear war from CLM-crop4.5 simulation, and global wheat production would decrease significantly in the pDSSAT simulation. The regional crop yield responses to a regional nuclear conflict are different for each crop, and we present the changes in production on a national basis. These models do not include the crop responses to changes in ozone, ultraviolet radiation, or diffuse radiation, and we would like to encourage more modelers to improve crop models to account for those impacts. We present these results as a demonstration of using different crop models to study this problem, and we invite more global crop modeling groups to use the same climate forcing, which we would be happy to provide, to gain a better understanding of global agricultural responses under different future climate scenarios with stratospheric aerosols.
Aliyu, Siise; Massawe, Festo; Mayes, Sean
2014-10-01
The potential for underutilized crops (also known as minor, neglected or orphan crops) to improve food and nutrition security has been gaining prominence within the research community in recent years. This is due to their significance for diversified agricultural systems which is a necessary component of future agriculture to address food and nutritional security concerns posed by changing climate and a growing world population. Developing workable value chain systems for underutilized crop species, coupled with comparative trait studies with major crops, potentially allows us to identify suitable agricultural modalities for such species. Bambara groundnut (Vigna subterranea L. Verdc.), an underutilized leguminous species, is of interest for its reported high levels of drought tolerance in particular, which contributes to environmental resilience in semi-arid environments. Here, we present a synopsis of suitable strategies for the genetic improvement of Bambara groundnut as a guide to other underutilized crop species. Underutilized crops have often been adapted over thousands of years in particular regions by farmers and largely still exist as landraces with little or no genetic knowledge of key phenotypic traits. Breeding in these species is fundamentally different to breeding in major crops, where significant pedigree structures and history allow highly directed improvement. In this regard, deploying new integrated germplasm development approaches for variety development and genetic analysis, such as multi-parent advance generation inter-crosses (MAGIC), within breeding programmes of underutilized species will be important to be able to fully utilize such crops.
Soybean Physiology Calibration in the Community Land Model
NASA Astrophysics Data System (ADS)
Drewniak, B. A.; Bilionis, I.; Constantinescu, E. M.
2014-12-01
With the large influence of agricultural land use on biophysical and biogeochemical cycles, integrating cultivation into Earth System Models (ESMs) is increasingly important. The Community Land Model (CLM) was augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. However, the strong nonlinearity of ESMs makes parameter fitting a difficult task. In this study, our goal is to calibrate ten of the CLM-Crop parameters for one crop type, soybean, in order to improve model projection of plant development and carbon fluxes. We used measurements of gross primary productivity, net ecosystem exchange, and plant biomass from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). Our scheme can perform model calibration using very few evaluations and, by exploiting parallelism, at a fraction of the time required by plain vanilla Markov Chain Monte Carlo (MCMC). We present the results from a twin experiment (self-validation) and calibration results and validation using real observations from an AmeriFlux tower site in the Midwestern United States, for the soybean crop type. The improved model will help researchers understand how climate affects crop production and resulting carbon fluxes, and additionally, how cultivation impacts climate.
Khan, Muhammad Usman; Malik, Riffat Naseem; Muhammad, Said
2013-11-01
The current study was designed to investigate the potential human health risks associated with consumption of food crops contaminated with toxic heavy metals. Cadmium (Cd) concentration in surface soils; Cd, lead (Pb) and chromium (Cr) in the irrigation water and food crops were above permissible limits. The accumulation factor (AF) was >1 for manganese (Mn) and Pb in different food crops. The Health Risk Index (HRI) was >1 for Pb in all food crops irrigated with wastewater and tube well water. HRI >1 was also recorded for Cd in all selected vegetables; and for Mn in Spinacia oleracea irrigated with wastewater. All wastewater irrigated samples (soil and food crops) exhibited high relative contamination level as compared to samples irrigated with tube well water. Our results emphasized the need for pretreatment of wastewater and routine monitoring in order to avoid contamination of food crops from the wastewater irrigation system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Asia’s Indigenous Horticultural Crops: An Introduction
USDA-ARS?s Scientific Manuscript database
Crop diversity is an urgent issue today in horticulture, which is faced with an erosion of crop variability as monoculture systems dominate crop production throughout the world, particularly in Europe and North America. At the same time there is great interest in indigenous horticultural crops aroun...
Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P
2015-01-01
Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Key Points Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands PMID:26709335
Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P
2015-06-01
Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands.
Qader, Sarchil Hama; Dash, Jadunandan; Atkinson, Peter M
2018-02-01
Crop production and yield estimation using remotely sensed data have been studied widely, but such information is generally scarce in arid and semi-arid regions. In these regions, inter-annual variation in climatic factors (such as rainfall) combined with anthropogenic factors (such as civil war) pose major risks to food security. Thus, an operational crop production estimation and forecasting system is required to help decision-makers to make early estimates of potential food availability. Data from NASA's MODIS with official crop statistics were combined to develop an empirical regression-based model to forecast winter wheat and barley production in Iraq. The study explores remotely sensed indices representing crop productivity over the crop growing season to find the optimal correlation with crop production. The potential of three different remotely sensed indices, and information related to the phenology of crops, for forecasting crop production at the governorate level was tested and their results were validated using the leave-one-year-out approach. Despite testing several methodological approaches, and extensive spatio-temporal analysis, this paper depicts the difficulty in estimating crop yield on an annual base using current satellite low-resolution data. However, more precise estimates of crop production were possible. The result of the current research implies that the date of the maximum vegetation index (VI) offered the most accurate forecast of crop production with an average R 2 =0.70 compared to the date of MODIS EVI (Avg R 2 =0.68) and a NPP (Avg R 2 =0.66). When winter wheat and barley production were forecasted using NDVI, EVI and NPP and compared to official statistics, the relative error ranged from -20 to 20%, -45 to 28% and -48 to 22%, respectively. The research indicated that remotely sensed indices could characterize and forecast crop production more accurately than simple cropping area, which was treated as a null model against which to evaluate the proposed approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical modeling of the agricultural-hydrologic system in Punjab, India
NASA Astrophysics Data System (ADS)
Nyblade, M.; Russo, T. A.; Zikatanov, L.; Zipp, K.
2017-12-01
The goal of food security for India's growing population is threatened by the decline in freshwater resources due to unsustainable water use for irrigation. The issue is acute in parts of Punjab, India, where small landholders produce a major quantity of India's food with declining groundwater resources. To further complicate this problem, other regions of the state are experiencing groundwater logging and salinization, and are reliant on canal systems for fresh water delivery. Due to the lack of water use records, groundwater consumption for this study is estimated with available data on crop yields, climate, and total canal water delivery. The hydrologic and agricultural systems are modeled using appropriate numerical methods and software. This is a state-wide hydrologic numerical model of Punjab that accounts for multiple aquifer layers, agricultural water demands, and interactions between the surface canal system and groundwater. To more accurately represent the drivers of agricultural production and therefore water use, we couple an economic crop optimization model with the hydrologic model. These tools will be used to assess and optimize crop choice scenarios based on farmer income, food production, and hydrologic system constraints. The results of these combined models can be used to further understand the hydrologic system response to government crop procurement policies and climate change, and to assess the effectiveness of possible water conservation solutions.
NASA Astrophysics Data System (ADS)
Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre
2010-05-01
This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize the type of vegetation and its state of development in a more accurate way than using the ECOCLIMAP database. Finally, the CASA method was applied using the evapotranspiration images with FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) images from LSA-SAF to obtain Dry Matter Productivity (DMP) and crop yield. The potential of using evapotranspiration obtained from remote sensing in crop growth modeling is studied and discussed. Results of comparing the evapotranspiration obtained with ground truth data are shown as well as the influence of using high resolution information to characterize the vegetation in the evapotranspiration estimation. The values of DMP and yield obtained with the CASA method are compared with those obtained using crop growth modeling and field data, showing the potential of using this simplified remote sensing method for crop monitoring and yield forecasting. This methodology could be applied in an operative way to the entire MSG disk, allowing the continuous crop growth monitoring.
Wilson, Michael E; Skinner, John A; Wszelaki, Annette L; Drummond, Frank
2016-04-01
This study investigated bee visitation on 10 agricultural crops grown on diverse small farms in Tennessee to determine the abundance of native bees and honey bees and the partitioning of visitation among crops. Summaries for each crop are used to generate mean proportions of bee visitation by categories of bees. This shows that native bee visits often occur as frequently, or in greater proportions than non-native honey bee visits. Visitation across multiple crops is then analyzed together with nonmetric multidimensional scaling to show how communities of bees that provide crop pollination change depending on the crop. Within squash and pumpkin plantings, continuous and discrete factors, such as "time of day" and "organic practices," further explain shifts in the community composition of flower visitors. Results from this study show that native bees frequently visit flowers on various crops, indicating that they are likely contributing to pollination services in addition to honey bees. Furthermore, the community of bees visiting flowers changes based on crop type, phenology, and spatial-temporal factors. Results suggest that developing pollinator conservation for farms that grow a wide variety of crops will likely require multiple conservation strategies. Farms that concentrate on a single crop may be able to tailor conservation practices toward the most important bees in their system and geographic locale. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell
2015-01-01
The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...
Development and implementation of a GEOGLAM Crop Monitor web interface
NASA Astrophysics Data System (ADS)
Oliva, P.; Sanchez, A.; Humber, M. L.; Becker-Reshef, I.; Justice, C. J.; McGaughey, K.; Barker, B.
2016-12-01
Beginning in September 2013, the GEOGLAM Crop Monitor activity has provided earth observation (EO) data to a network of partners and collected crop assessments on a subnational basis through a web interface known as the Crop Assessment Tool. Based on the collection of monthly crop assessments, a monthly crop condition bulletin is published in the Agricultural Market Information System (AMIS) Market Monitor report. This workflow has been successfully applied to food security applications through the Early Warning Crop Monitor activity. However, a lack of timely and accurate information on crop conditions and prospects at the national scale is a critical issue in the majority of southern and eastern African countries and some South American countries. Such information is necessary for informed and prompt decision making in the face of emergencies, food insecurity and planning requirements for agricultural markets. This project addresses these needs through the development of relevant, user-friendly remote sensing monitor systems, collaborative internet technology, and collaboration with national and regional agricultural monitoring networks. By building on current projects and relationships established through the various GEOGLAM Crop Monitor activities, this project aims to ultimately provide EO-informed crop condition maps and charts designed for economics and policy oriented audiences, thereby providing quick and easy to understand products on crop conditions as the season progresses. Integrating these data and assessments vertically throughout the system provides a basis for regional sharing and collaboration in food security applications.
Using radar imagery for crop discrimination: a statistical and conditional probability study
Haralick, R.M.; Caspall, F.; Simonett, D.S.
1970-01-01
A number of the constraints with which remote sensing must contend in crop studies are outlined. They include sensor, identification accuracy, and congruencing constraints; the nature of the answers demanded of the sensor system; and the complex temporal variances of crops in large areas. Attention is then focused on several methods which may be used in the statistical analysis of multidimensional remote sensing data.Crop discrimination for radar K-band imagery is investigated by three methods. The first one uses a Bayes decision rule, the second a nearest-neighbor spatial conditional probability approach, and the third the standard statistical techniques of cluster analysis and principal axes representation.Results indicate that crop type and percent of cover significantly affect the strength of the radar return signal. Sugar beets, corn, and very bare ground are easily distinguishable, sorghum, alfalfa, and young wheat are harder to distinguish. Distinguishability will be improved if the imagery is examined in time sequence so that changes between times of planning, maturation, and harvest provide additional discriminant tools. A comparison between radar and photography indicates that radar performed surprisingly well in crop discrimination in western Kansas and warrants further study.
NASA Astrophysics Data System (ADS)
Monaco, Eugenia; Alfieri, Silvia Maria; Basile, Angelo; Menenti, Massimo; Bonfante, Antonello; De Lorenzi, Fracesca
2014-05-01
Climate evolution may lead to changes in the amount and distribution of precipitations and to reduced water availability, with constraints on the cultivation of some crops. Recently, foreseen crop responses to climate change raise a crucial question for the agricultural stakeholders: are the current production systems resilient to this change? An active debate is in progress about the definition of adaptation of agricultural systems, particularly about the integrated assessment of climate stressors, vulnerability and resilece towards the evaluation of climate impact on agricultural systems. Climate change represents a risk for rain-fed agricultural systems, where irrigations cannot compensate reductions in precipitations. The intra-specific biodiversity of crops can be a resource towards adaptation. The knowledge of the responses to environmental conditions (temperature and water availability) of different cultivars can allow to identify options for adaptation to future climate. Simulation models of water flow in the soil-plant-atmosphere system, driven by different climate scenarios, can describe present and foreseen soil water regime. The present work deals with a case-study on the adaptive capacity of durum wheat to climate change. The selected study area is a hilly region in Southern Italy (Fortore Beneventano, Campania Region). Two climate cases were studied: "reference" (1961-1990) and "future" (2021-2050). A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was run to determine the water regime in some soil units, representative of the soil variability in the study area. From model output, the Relative Evapotranspiration Deficit (RETD) was determined as an indicator of hydrological conditions during the crop growing period for each year and climate case; and periods with higher frequencies of soil water deficits were identified. The timing of main crop development stages was calculated. The occurrence of water deficit at different development stages was thus assessed. Moreover, the yield response functions to water availability of several durum wheat cultivars were determined; cultivars' hydrologic requirements were thus defined and compared with the simulated values of RETD. The latter was evaluated against requirements for each soil unit, cultivar and year in both climate cases to assess adaptability. In the future climate scenario a significant reduction (about 80 mm) of rainfall is foreseen. The analyses of inter- and intra-annual courses of the indicator (RETD) showed higher RETD in one soil unit, which resulted less suitable for durum wheat cultivation. According to the soils' water regime and to the cultivar-specific yield responses, the adaptability of durum wheat cultivars was assessed. The difference between the two climate cases was significant; the adaptability of the cultivars was strongly influenced by the different rainfall regime and by the soil physical properties, which strongly affected the soil water balance. The case study showed how in the future climate case, for rainfed durum wheat, the intra-specific variability will allow to maintain the current crop production system. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)
The Mating System of the Wild-to-Domesticated Complex of Gossypium hirsutum L. Is Mixed
Velázquez-López, Rebeca; Wegier, Ana; Alavez, Valeria; Pérez-López, Javier; Vázquez-Barrios, Valeria; Arroyo-Lambaer, Denise; Ponce-Mendoza, Alejandro; Kunin, William E.
2018-01-01
The domestication syndrome of many plants includes changes in their mating systems. The evolution of the latter is shaped by ecological and genetic factors that are particular to an area. Thus, the reproductive biology of wild relatives must be studied in their natural distribution to understand the mating system of a crop species as a whole. Gossypium hirsutum (upland cotton) includes both domesticated varieties and wild populations of the same species. Most studies on mating systems describe cultivated cotton as self-pollinated, while studies on pollen dispersal report outcrossing; however, the mating system of upland cotton has not been described as mixed and little is known about its wild relatives. In this study we selected two wild metapopulations for comparison with domesticated plants and one metapopulation with evidence of recent gene flow between wild relatives and the crop to evaluate the mating system of cotton’s wild-to-domesticated complex. Using classic reproductive biology methods, our data demonstrate that upland cotton presents a mixed mating system throughout the complex. Given cotton’s capacity for outcrossing, differences caused by the domestication process in cultivated individuals can have consequences for its wild relatives. This characterization of the diversity of the wild relatives in their natural distribution, as well as their interactions with the crop, will be useful to design and implement adequate strategies for conservation and biosecurity. PMID:29868048
Assessing methods for developing crop forecasting in the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Ines, A. V. M.; Capa Morocho, M. I.; Baethgen, W.; Rodriguez-Fonseca, B.; Han, E.; Ruiz Ramos, M.
2015-12-01
Seasonal climate prediction may allow predicting crop yield to reduce the vulnerability of agricultural production to climate variability and its extremes. It has been already demonstrated that seasonal climate predictions at European (or Iberian) scale from ensembles of global coupled climate models have some skill (Palmer et al., 2004). The limited predictability that exhibits the atmosphere in mid-latitudes, and therefore de Iberian Peninsula (PI), can be managed by a probabilistic approach based in terciles. This study presents an application for the IP of two methods for linking tercile-based seasonal climate forecasts with crop models to improve crop predictability. Two methods were evaluated and applied for disaggregating seasonal rainfall forecasts into daily weather realizations: 1) a stochastic weather generator and 2) a forecast tercile resampler. Both methods were evaluated in a case study where the impacts of two seasonal rainfall forecasts (wet and dry forecast for 1998 and 2015 respectively) on rainfed wheat yield and irrigation requirements of maize in IP were analyzed. Simulated wheat yield and irrigation requirements of maize were computed with the crop models CERES-wheat and CERES-maize which are included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at several locations in Spain where the crop model was calibrated and validated with independent field data. These methodologies would allow quantifying the benefits and risks of a seasonal climate forecast to potential users as farmers, agroindustry and insurance companies in the IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse ones. ReferencesPalmer, T. et al., 2004. Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bulletin of the American Meteorological Society, 85(6): 853-872.
NASA Astrophysics Data System (ADS)
Ledo, Alicia; Heathcote, Richard; Hastings, Astley; Smith, Pete; Hillier, Jonathan
2017-04-01
Agriculture is essential to maintain humankind but is, at the same time, a substantial emitter of greenhouse gas (GHG) emissions. With a rising global population, the need for agriculture to provide secure food and energy supply is one of the main human challenges. At the same time, it is the only sector which has significant potential for negative emissions through the sequestration of carbon and offsetting via supply of feedstock for energy production. Perennial crops accumulate carbon during their lifetime and enhance organic soil carbon increase via root senescence and decomposition. However, inconsistency in accounting for this stored biomass undermines efforts to assess the benefits of such cropping systems when applied at scale. A consequence of this exclusion is that efforts to manage this important carbon stock are neglected. Detailed information on carbon balance is crucial to identify the main processes responsible for greenhouse gas emissions in order to develop strategic mitigation programs. Perennial crops systems represent 30% in area of total global crop systems, a considerable amount to be ignored. Furthermore, they have a major standing both in the bioenergy and global food industries. In this study, we first present a generic model to calculate the carbon balance and GHGs emissions from perennial crops, covering both food and bioenergy crops. The model is composed of two simple process-based sub-models, to cover perennial grasses and other perennial woody plants. The first is a generic individual based sub-model (IBM) covering crops in which the yield is the fruit and the plant biomass is an unharvested residue. Trees, shrubs and climbers fall into this category. The second model is a generic area based sub-model (ABM) covering perennial grasses, in which the harvested part includes some of the plant parts in which the carbon storage is accounted. Most second generation perennial bioenergy crops fall into this category. Both generic sub-models presented in this paper can be parametrized for different crops. Quantifying CO2 capture by plants and biomass accumulation and changes in soil carbon, are key in evaluating the impacts of perennial crops in life cycle analysis. We then use this model to illustrate the importance of biomass in the overall GHG estimation from four important perennial crops - sugarcane, Miscanthus, coffee, and apples - which were chosen to cover tropical and temperate regions, trees and grasses, and energy and food supply.
V. Hernandez-Santana; X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M. Tomer
2013-01-01
Intensively managed annual cropping systems have produced high crop yields but have often produced significant ecosystem services alteration, in particular hydrologic regulation loss. Reconversion of annual agricultural systems to perennial vegetation can lead to hydrologic function restoration, but its effect is still not well understood. Therefore, our objective was...
Cui, Jiaqi; Bai, Li; Liu, Xiaorui; Jie, Weiguang; Cai, Baiyan
Arbuscular mycorrhizae (AM) fungi play a crucial role in the growth of soybean; however, the planting system employed is thought to have an effect on AM fungal communities in the rhizosphere. This study was performed to explore the influence of continuous soybean cropping on the diversity of Arbuscular mycorrhizal (AM) fungi, and to identify the dominant AM fungus during the seedling stage. Three soybean cultivars were planted under two and three years continuous cropping, respectively. The diversity of AM fungi in the rhizosphere soil at the seedling stage was subsequently analyzed using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). The results showed that an increase in cropping years improved the colonization rate of AM in all three soybean cultivars. Moreover, the dominant species were found to be Funneliformis mosseae and Glomus species. The results of cluster analysis further confirmed that the number of years of continuous cropping significantly affected the composition of rhizospheric AM fungal communities in different soybean cultivars. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
NASA Astrophysics Data System (ADS)
Pillai, S. N.; Singh, H.; Panwar, A. S.; Meena, M. S.; Singh, S. V.; Singh, B.; Paudel, G. P.; Baigorria, G. A.; Ruane, A. C.; McDermid, S.; Boote, K. J.; Porter, C.; Valdivia, R. O.
2016-12-01
Integrated assessment of climate change impact on agricultural productivity is a challenge to the scientific community due to uncertainties of input data, particularly the climate, soil, crop calibration and socio-economic dataset. However, the uncertainty due to selection of GCMs is the major source due to complex underlying processes involved in initial as well as the boundary conditions dealt in solving the air-sea interactions. Under Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Indo-Gangetic Plains Regional Research Team investigated the uncertainties caused due to selection of GCMs through sub-setting based on annual as well as crop-growth period of rice-wheat systems in AgMIP Integrated Assessment methodology. The AgMIP Phase II protocols were used to study the linking of climate-crop-economic models for two study sites Meerut and Karnal to analyse the sensitivity of current production systems to climate change. Climate Change Projections were made using 29 CMIP5 GCMs under RCP4.5 and RCP 8.5 during mid-century period (2040-2069). Two crop models (APSIM & DSSAT) were used. TOA-MD economic model was used for integrated assessment. Based on RAPs (Representative Agricultural Pathways), some of the parameters, which are not possible to get through modeling, derived from literature and interactions with stakeholders incorporated into the TOA-MD model for integrated assessment.
NASA Astrophysics Data System (ADS)
Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas
2015-06-01
An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.
PCPPI: a comprehensive database for the prediction of Penicillium-crop protein-protein interactions.
Yue, Junyang; Zhang, Danfeng; Ban, Rongjun; Ma, Xiaojing; Chen, Danyang; Li, Guangwei; Liu, Jia; Wisniewski, Michael; Droby, Samir; Liu, Yongsheng
2017-01-01
Penicillium expansum , the causal agent of blue mold, is one of the most prevalent post-harvest pathogens, infecting a wide range of crops after harvest. In response, crops have evolved various defense systems to protect themselves against this and other pathogens. Penicillium -crop interaction is a multifaceted process and mediated by pathogen- and host-derived proteins. Identification and characterization of the inter-species protein-protein interactions (PPIs) are fundamental to elucidating the molecular mechanisms underlying infection processes between P. expansum and plant crops. Here, we have developed PCPPI, the Penicillium -Crop Protein-Protein Interactions database, which is constructed based on the experimentally determined orthologous interactions in pathogen-plant systems and available domain-domain interactions (DDIs) in each PPI. Thus far, it stores information on 9911 proteins, 439 904 interactions and seven host species, including apple, kiwifruit, maize, pear, rice, strawberry and tomato. Further analysis through the gene ontology (GO) annotation indicated that proteins with more interacting partners tend to execute the essential function. Significantly, semantic statistics of the GO terms also provided strong support for the accuracy of our predicted interactions in PCPPI. We believe that all the PCPPI datasets are helpful to facilitate the study of pathogen-crop interactions and freely available to the research community. : http://bdg.hfut.edu.cn/pcppi/index.html. © The Author(s) 2017. Published by Oxford University Press.
Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa
2016-01-01
To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659
Regenerative Life Support Systems Test Bed performance - Lettuce crop characterization
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Edeen, Marybeth A.; Eckhardt, Bradley D.
1992-01-01
System performance in terms of human life support requirements was evaluated for two crops of lettuce (Lactuca sative cv. Waldmann's Green) grown in the Regenerative Life Support Systems Test Bed. Each crop, grown in separate pots under identical environmental and cultural conditions, was irrigated with half-strength Hoagland's nutrient solution, with the frequency of irrigation being increased as the crop aged over the 30-day crop tests. Averaging over both crop tests, the test bed met the requirements of 2.1 person-days of oxygen production, 2.4 person-days of CO2 removal, and 129 person-days of potential potable water production. Gains in the mass of water and O2 produced and CO2 removed could be achieved by optimizing environmental conditions to increase plant growth rate and by optimizing cultural management methods.
Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.
Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng
2017-08-01
Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt
Jayaraman, Prem Prakash; Yavari, Ali; Georgakopoulos, Dimitrios; Morshed, Ahsan; Zaslavsky, Arkady
2016-01-01
Improving farm productivity is essential for increasing farm profitability and meeting the rapidly growing demand for food that is fuelled by rapid population growth across the world. Farm productivity can be increased by understanding and forecasting crop performance in a variety of environmental conditions. Crop recommendation is currently based on data collected in field-based agricultural studies that capture crop performance under a variety of conditions (e.g., soil quality and environmental conditions). However, crop performance data collection is currently slow, as such crop studies are often undertaken in remote and distributed locations, and such data are typically collected manually. Furthermore, the quality of manually collected crop performance data is very low, because it does not take into account earlier conditions that have not been observed by the human operators but is essential to filter out collected data that will lead to invalid conclusions (e.g., solar radiation readings in the afternoon after even a short rain or overcast in the morning are invalid, and should not be used in assessing crop performance). Emerging Internet of Things (IoT) technologies, such as IoT devices (e.g., wireless sensor networks, network-connected weather stations, cameras, and smart phones) can be used to collate vast amount of environmental and crop performance data, ranging from time series data from sensors, to spatial data from cameras, to human observations collected and recorded via mobile smart phone applications. Such data can then be analysed to filter out invalid data and compute personalised crop recommendations for any specific farm. In this paper, we present the design of SmartFarmNet, an IoT-based platform that can automate the collection of environmental, soil, fertilisation, and irrigation data; automatically correlate such data and filter-out invalid data from the perspective of assessing crop performance; and compute crop forecasts and personalised crop recommendations for any particular farm. SmartFarmNet can integrate virtually any IoT device, including commercially available sensors, cameras, weather stations, etc., and store their data in the cloud for performance analysis and recommendations. An evaluation of the SmartFarmNet platform and our experiences and lessons learnt in developing this system concludes the paper. SmartFarmNet is the first and currently largest system in the world (in terms of the number of sensors attached, crops assessed, and users it supports) that provides crop performance analysis and recommendations. PMID:27834862
[Impacts of climate change on food production in Gansu: A review].
Yang, Feng-ke; He, Bao-lin; Gao, Shi-ming
2015-03-01
The climate of Gansu turned to be overall warming-drying and partly warming-wetting since 1986. In contrast to that of 1960, the average annual temperature had raised by 1.1°C with the average annual precipitation decreased by 28 mm correspondingly, which made the arid region expanded southward by 50 km in 2010. Climate warming increased the growth period effective accumulated temperature of main food grain crops and lengthened the crop growth period. It changed crop maturity, crop disposition, cropping system and generally increased the cultivatable area and planting altitude above the sea level of major crops and expanded northward the multiple cropping system, which further resulted in expansion of autumn grain crop sown area, shrink of summer grain crop sown area, and replacement of strong winter early maturing varieties by weak winter middle late maturing varieties. It benefited the crop yield by increasing the use efficiency of photo-thermal resources. Warming-wetting climate increased the climate productivity of oasis crop while warming-drying weather decreased the climate productivity of rainfed crops, which were mostly determined by the precipitation regimes and water conditions. Any advanced technique that can increase precipitation use ratio and water use efficiency as well as improve and promote soil quality and fertility should be regarded as an effective countermeasure to increase food grain production under climate change in Gsansu. So, selecting and breeding new crop varieties with the characteristics of strong resistance, weak winter, middle-late mature and high water use efficiency, establishing new planting structure and cropping system that suitable to the precipitation and temperature features of changed climate, are the development direction of food grain production in Gansu to cope with the climate change.
Mishra, Abhinav; Pang, Hao; Buchanan, Robert L; Schaffner, Donald W; Pradhan, Abani K
2017-01-15
The majority of foodborne outbreaks in the United States associated with the consumption of leafy greens contaminated with Escherichia coli O157:H7 have been reported during the period of July to November. A dynamic system model consisting of subsystems and inputs to the system (soil, irrigation, cattle, wild pig, and rainfall) simulating a hypothetical farm was developed. The model assumed two crops of lettuce in a year and simulated planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. As predicted by the baseline model for crops harvested in different months from conventional fields, an estimated 13 out of 257 (5.05%) first crops harvested in July would have at least one plant with at least 1 CFU of E. coli O157:H7. Predictions indicate that no first crops would be contaminated with at least 1 CFU of E. coli O157:H7 for other months (April to June). The maximum E. coli O157:H7 concentration in a plant was higher in the second crop (27.10 CFU) than in the first crop (9.82 CFU). For the second crop, the probabilities of having at least one plant with at least 1 CFU of E. coli O157:H7 in a crop were predicted as 15/228 (6.6%), 5/333 (1.5%), 14/324 (4.3%), and 6/115 (5.2%) in August, September, October, and November, respectively. For organic fields, the probabilities of having at least one plant with ≥1 CFU of E. coli O157:H7 in a crop (3.45%) were predicted to be higher than those for the conventional fields (2.15%). This study is the first attempt toward developing a mathematical system model to understand the pathway of E. coli O157:H7 in the production of leafy greens. Results of the presented system model indicate that the seasonality of outbreaks of E. coli O157:H7-associated contamination of leafy greens was in good agreement with the prevalence of this pathogen in cattle and wild pig feces in a major leafy greens-producing region in California. On the basis of comparisons among the results of different scenarios, it can be recommended that the concentration of E. coli O157:H7 in leafy greens can be reduced considerably if contamination of soil with wild pig and cattle feces is mitigated. Copyright © 2016 American Society for Microbiology.
Mishra, Abhinav; Pang, Hao; Buchanan, Robert L.
2016-01-01
ABSTRACT The majority of foodborne outbreaks in the United States associated with the consumption of leafy greens contaminated with Escherichia coli O157:H7 have been reported during the period of July to November. A dynamic system model consisting of subsystems and inputs to the system (soil, irrigation, cattle, wild pig, and rainfall) simulating a hypothetical farm was developed. The model assumed two crops of lettuce in a year and simulated planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. As predicted by the baseline model for crops harvested in different months from conventional fields, an estimated 13 out of 257 (5.05%) first crops harvested in July would have at least one plant with at least 1 CFU of E. coli O157:H7. Predictions indicate that no first crops would be contaminated with at least 1 CFU of E. coli O157:H7 for other months (April to June). The maximum E. coli O157:H7 concentration in a plant was higher in the second crop (27.10 CFU) than in the first crop (9.82 CFU). For the second crop, the probabilities of having at least one plant with at least 1 CFU of E. coli O157:H7 in a crop were predicted as 15/228 (6.6%), 5/333 (1.5%), 14/324 (4.3%), and 6/115 (5.2%) in August, September, October, and November, respectively. For organic fields, the probabilities of having at least one plant with ≥1 CFU of E. coli O157:H7 in a crop (3.45%) were predicted to be higher than those for the conventional fields (2.15%). IMPORTANCE This study is the first attempt toward developing a mathematical system model to understand the pathway of E. coli O157:H7 in the production of leafy greens. Results of the presented system model indicate that the seasonality of outbreaks of E. coli O157:H7-associated contamination of leafy greens was in good agreement with the prevalence of this pathogen in cattle and wild pig feces in a major leafy greens-producing region in California. On the basis of comparisons among the results of different scenarios, it can be recommended that the concentration of E. coli O157:H7 in leafy greens can be reduced considerably if contamination of soil with wild pig and cattle feces is mitigated. PMID:27836846
Campbell-Smith, Gail; Simanjorang, Hubert V P; Leader-Williams, Nigel; Linkie, Matthew
2010-09-01
Human-wildlife conflicts, such as crop-raiding, increase as people expand their agricultural activities into wildlife habitats. Crop-raiding can reduce tolerance toward species that are already threatened, whereas potential dangers posed by conflicts with large-bodied species may also negatively influence local attitudes. Across Asia, wild pigs and primates, such as macaques, tend to be the most commonly reported crop raiders. To date, reports of crop-raiding incidents involving great apes have been less common, but incidents involving orangutans are increasingly emerging in Indonesia. To investigate the interplay of factors that might explain attitudes toward crop-raiding by orangutans (Pongo abelii), focal group discussions and semi-structured interviews were conducted among 822 farmers from 2 contrasting study areas in North Sumatra. The first study area of Batang Serangan is an agroforest system containing isolated orangutans that crop-raid. In contrast, the second area of Sidikalang comprises farmlands bordering extensive primary forest where orangutans are present but not reported to crop-raid. Farmers living in Batang Serangan thought that orangutans were dangerous, irrespective of earlier experience of crop-raiding. Farmers placed orangutans as the third most frequent and fourth most destructive crop pest, after Thomas' leaf monkey (Presbytis thomasi), wild boar (Sus scrofa), and long-tailed macaque (Macaca fascicularis). Although most (57%) farmers across both study areas were not scared of wildlife species, more than a quarter (28%) of the farmers' feared orangutans. Farmers in Batang Serangan were generally more tolerant toward crop-raiding orangutans, if they did not perceive them to present a physical threat. Most (67%) Batang Serangan farmers said that the local Forestry Department staff should handle crop-raiding orangutans, and most (81%) said that these officials did not care about such problems. Our results suggest that efforts to mitigate human-orangutan conflict may not, per se, change negative perceptions of those who live with the species, because these perceptions are often driven by fear. 2010 Wiley-Liss, Inc.
USDA-ARS?s Scientific Manuscript database
Incorporation of manure by tillage can conserve manure N by reducing ammonia volatilization losses, but tillage also incorporates crop residue, which may increase erosion potential. This study compared several low-disturbance manure application methods, designed to incorporate manure while maintaini...
Soil quality indicators of a mature alley-cropping agroforestry system in temperate North America
USDA-ARS?s Scientific Manuscript database
Although agroforestry practices are believed to improve soil quality, reports on long-term effects of alley cropping on soils within agroforestry in the temperate zone are limited. The objective of this study was to examine effects of management, landscape, and soil depth of an established agrofores...
Annual warm-season grasses vary for forage yield, quality, and competitiveness with weeds
USDA-ARS?s Scientific Manuscript database
Warm-season annual grasses may be suitable as herbicide-free forage crops. A two-year field study was conducted to determine whether tillage system and nitrogen (N) fertilizer application method influenced crop and weed biomass, water use, water use efficiency (WUE), and forage quality of three war...
USDA-ARS?s Scientific Manuscript database
Soil organic C and N are important indicators of agricultural sustainability, yet numerous field studies have revealed a multitude of responses in the extent and rate of change imposed by conservation management, and therefore, a lack of clarity on responses. We conducted an evaluation of total and...
USDA-ARS?s Scientific Manuscript database
Enhanced-efficiency nitrogen fertilizers (EENFs) have the potential to increase crop yield while also decreasing N loss from agricultural fields. However, effects of EENFs on emissions of greenhouse gases (GHGs) need to be studied at a variety of locations and cropping systems. The effects of these ...
A mowing strategy to convert red clover to annual crops in organic farming
USDA-ARS?s Scientific Manuscript database
Organic producers are interested in no-till cropping systems. In this study, we found that perennial clover can be converted to corn without tillage. Conversion tactics involved fall mowing in the third year of red clover, followed by between-row mowing of weeds and volunteer red clover in corn gr...
Development of an irrigation scheduling software based on model predicted crop water stress
USDA-ARS?s Scientific Manuscript database
Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...
USDA-ARS?s Scientific Manuscript database
Omnivores are important consumers of both weed seeds and insect pests, and habitat provisions like cover crops are suggested to promote their ecosystem services in agricultural systems. However, few studies establish direct links between cover, food, and pest suppression because they are entangled a...
Diazotroph community structure and abundance in wheat-fallow and wheat-pea crop rotations
USDA-ARS?s Scientific Manuscript database
Biological input of nitrogen (N) from the atmosphere either through free-living diazotrophs or legume-associated rhizobia can help alleviate fertilizer use in agricultural systems. In this study, we investigated the effect of N fertilizer and winter pea (Pisum sativum L.) crop on the diversity and a...
USDA-ARS?s Scientific Manuscript database
Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, a...
USDA-ARS?s Scientific Manuscript database
Accounting of N inputs and outputs and N retention in the soil provides N balance that measures agroecosystem performance and environmental sustainability. Because of the complexity of measurements of some N inputs and outputs, studies on N balance in long-term experiments are scanty. We examined th...
USDA-ARS?s Scientific Manuscript database
Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, ...
Matching soil salinization and cropping systems in communally managed irrigation schemes
NASA Astrophysics Data System (ADS)
Malota, Mphatso; Mchenga, Joshua
2018-03-01
Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi < 2 dS/m), the irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.
H.D. Stevenson; D.J. Robison; F.W. Cubbage; J.P. Mueller; M.G. Burton; M.H. Gocke
2013-01-01
Alley cropping may prove useful in the Southeast United States, providing multiple products and income streams, as well as affording sustainable land use alternatives to conventional farming. An alley-cropping system may be a good alternative in agriculture because of the benefits provided by trees to crops and soils, as well as the income generated from wood products...
The benefits of herbicide-resistant crops.
Green, Jerry M
2012-10-01
Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry.
Williams, Alwyn; Jordan, Nicholas R; Smith, Richard G; Hunter, Mitchell C; Kammerer, Melanie; Kane, Daniel A; Koide, Roger T; Davis, Adam S
2018-05-31
Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.
Suppression of soilborne diseases of soybean with cover crops
USDA-ARS?s Scientific Manuscript database
Cover crops can foster the development of disease suppressive soils, and it has become common to use cover crops to manage soilborne diseases in high value crops. There is increasing interest in incorporating cover crops into agronomic systems in the Midwestern US for improving soil health. However,...
USDA-ARS?s Scientific Manuscript database
Cover crops influence soil nitrogen (N) mineralization-immobilization-turnover cycles (MIT), thus influencing N availability to a subsequent crop. Dynamic simulation models of the soil/crop system, if properly calibrated and tested, can simulate carbon (C) and N dynamics of a terminated cover crop a...
NASA Astrophysics Data System (ADS)
Wang, Weiqin; Chen, Qian; Hussain, Saddam; Mei, Junhao; Dong, Huanglin; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao
2016-01-01
Double direct-seeding for double rice cropping is a simplified, labor saving, and efficient cropping system to improve multiple-crop index and total rice production in central China. However, poor crop establishment of direct-seeded early rice due to chilling stress is the main obstacle to wide spread of this system. A series of experiments were conducted to unravel the effects of pre-sowing seed treatments on emergence, seedling growth and associated metabolic events of direct-seeded early rice under chilling stress. Two seed priming treatments and two seed coating treatments were used in all the experiments. A non-treated control treatment was also maintained for comparison. In both the field and growth chamber studies, seed priming with selenium or salicylic acid significantly enhanced the emergence and seedling growth of rice compared with non-treated control. Nevertheless, such positive effects were not apparent for seed coating treatments. Better emergence and vigorous seedling growth of rice after seed priming was associated with enhanced α-amylase activity, higher soluble sugars contents, and greater respiration rate in primed rice seedlings under chilling stress. Taking together, these findings may provide new avenues for understanding and advancing priming-induced chilling tolerance in direct-seeded early rice in double rice cropping system.
Rosa, Melissa F; Bonham, Curan A; Dempewolf, Jan; Arakwiye, Bernadette
2017-01-01
Maintaining the long-term sustainability of human and natural systems across agricultural landscapes requires an integrated, systematic monitoring system that can track crop productivity and the impacts of agricultural intensification on natural resources. This study presents the design and practical implementation of a monitoring framework that combines satellite observations with ground-based biophysical measurements and household surveys to provide metrics on ecosystem services and agricultural production at multiple spatial scales, reaching from individual households and plots owned by smallholder farmers to 100-km 2 landscapes. We developed a set of protocols for monitoring and analyzing ecological and agricultural household parameters within two 10 × 10-km landscapes in Rwanda, including soil fertility, crop yield, water availability, and fuelwood sustainability. Initial results suggest providing households that rely on rainfall for crop irrigation with timely climate information and improved technical inputs pre-harvest could help increase crop productivity in the short term. The value of the monitoring system is discussed as an effective tool for establishing a baseline of ecosystem services and agriculture before further change in land use and climate, identifying limitations in crop production and soil fertility, and evaluating food security, economic development, and environmental sustainability goals set forth by the Rwandan government.
USDA-ARS?s Scientific Manuscript database
Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can substantially affect soil microbial communities, and potentially reduce soilborne potato diseases and increase productivity, but long-t...
Crop species diversity changes in the United States: 1978-2012
USDA-ARS?s Scientific Manuscript database
Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which is collected on 5-year intervals, we qua...
The impact of fall cover crops on soil nitrate and corn growth
USDA-ARS?s Scientific Manuscript database
Incorporating cover crops into current production systems can have many beneficial impacts on the current cropping system including decreasing erosion, improving water infiltration, increasing soil organic matter and biological activity but in water limited areas caution should be utilized. A fiel...
Opportunities and challenges for harvest weed seed control in global cropping systems.
Walsh, Michael J; Broster, John C; Schwartz-Lazaro, Lauren M; Norsworthy, Jason K; Davis, Adam S; Tidemann, Breanne D; Beckie, Hugh J; Lyon, Drew J; Soni, Neeta; Neve, Paul; Bagavathiannan, Muthukumar V
2017-11-28
The opportunity to target weed seeds during grain harvest was established many decades ago following the introduction of mechanical harvesting and the recognition of high weed-seed retention levels at crop maturity; however, this opportunity remained largely neglected until more recently. The introduction and adoption of harvest weed seed control (HWSC) systems in Australia has been in response to widespread occurrence of herbicide-resistant weed populations. With diminishing herbicide resources and the need to maintain highly productive reduced tillage and stubble-retention practices, growers began to develop systems that targeted weed seeds during crop harvest. Research and development efforts over the past two decades have established the efficacy of HWSC systems in Australian cropping systems, where widespread adoption is now occurring. With similarly dramatic herbicide resistance issues now present across many of the world's cropping regions, it is timely for HWSC systems to be considered for inclusion in weed-management programs in these areas. This review describes HWSC systems and establishing the potential for this approach to weed control in several cropping regions. As observed in Australia, the inclusion of HWSC systems can reduce weed populations substantially reducing the potential for weed adaptation and resistance evolution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Tako, Elad; Bar, Haim; Glahn, Raymond P.
2016-01-01
Research methods that predict Fe bioavailability for humans can be extremely useful in evaluating food fortification strategies, developing Fe-biofortified enhanced staple food crops and assessing the Fe bioavailability of meal plans that include such crops. In this review, research from four recent poultry (Gallus gallus) feeding trials coupled with in vitro analyses of Fe-biofortified crops will be compared to the parallel human efficacy studies which used the same varieties and harvests of the Fe-biofortified crops. Similar to the human studies, these trials were aimed to assess the potential effects of regular consumption of these enhanced staple crops on maintenance or improvement of iron status. The results demonstrate a strong agreement between the in vitro/in vivo screening approach and the parallel human studies. These observations therefore indicate that the in vitro/Caco-2 cell and Gallus gallus models can be integral tools to develop varieties of staple food crops and predict their effect on iron status in humans. The cost-effectiveness of this approach also means that it can be used to monitor the nutritional stability of the Fe-biofortified crop once a variety has released and integrated into the food system. These screening tools therefore represent a significant advancement to the field for crop development and can be applied to ensure the sustainability of the biofortification approach. PMID:27869705
Chandra, Suman; Khan, Shabana; Avula, Bharathi; Lata, Hemant; Yang, Min Hye; ElSohly, Mahmoud A.; Khan, Ikhlas A.
2014-01-01
A comparison of the product yield, total phenolics, total flavonoids, and antioxidant properties was done in different leafy vegetables/herbs (basil, chard, parsley, and red kale) and fruit crops (bell pepper, cherry tomatoes, cucumber, and squash) grown in aeroponic growing systems (AG) and in the field (FG). An average increase of about 19%, 8%, 65%, 21%, 53%, 35%, 7%, and 50% in the yield was recorded for basil, chard, red kale, parsley, bell pepper, cherry tomatoes, cucumber, and squash, respectively, when grown in aeroponic systems, compared to that grown in the soil. Antioxidant properties of AG and FG crops were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DDPH) and cellular antioxidant (CAA) assays. In general, the study shows that the plants grown in the aeroponic system had a higher yield and comparable phenolics, flavonoids, and antioxidant properties as compared to those grown in the soil. PMID:24782905
Dwivedi, Sangam L; Perotti, Enrico; Upadhyaya, Hari D; Ortiz, Rodomiro
2010-12-01
Arabidopsis, Mimulus and tomato have emerged as model plants in researching genetic and molecular basis of differences in mating systems. Variations in floral traits and loss of self-incompatibility have been associated with mating system differences in crops. Genomics research has advanced considerably, both in model and crop plants, which may provide opportunities to modify breeding systems as evidenced in Arabidopsis and tomato. Mating system, however, not recombination per se, has greater effect on the level of polymorphism. Generating targeted recombination remains one of the most important factors for crop genetic enhancement. Asexual reproduction through seeds or apomixis, by producing maternal clones, presents a tremendous potential for agriculture. Although believed to be under simple genetic control, recent research has revealed that apomixis results as a consequence of the deregulation of the timing of sexual events rather than being the product of specific apomixis genes. Further, forward genetic studies in Arabidopsis have permitted the isolation of novel genes reported to control meiosis I and II entry. Mutations in these genes trigger the production of unreduced or apomeiotic megagametes and are an important step toward understanding and engineering apomixis.
NASA Astrophysics Data System (ADS)
Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei
2017-09-01
Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelfand, Ilya; Shcherbak, Iurii; Millar, Neville
Differences in soil nitrous oxide (N 2O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N 2O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn–soybean–wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N 2O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N 2O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30–80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop 9 management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N 2O-N ha -1 yr -1 and were best predicted by IPCC Tier 1 and DEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NOmore » $$-\\atop{3}$$ pools (r 2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N 2O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.« less
NASA Astrophysics Data System (ADS)
Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm-2 mm-1, 2.07 kg hm-2 mm-1 and 1.92 kg hm-2 mm-1 during 2011-2040, 2041-2070 and 2071-2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future.
NASA Astrophysics Data System (ADS)
Löw, Fabian; Biradar, Chandrashekhar; Fliemann, Elisabeth; Lamers, John P. A.; Conrad, Christopher
2017-07-01
Improving crop area and/or crop yields in agricultural regions is one of the foremost scientific challenges for the next decades. This is especially true in irrigated areas because sustainable intensification of irrigated crop production is virtually the sole means to enhance food supply and contribute to meeting food demands of a growing population. Yet, irrigated crop production worldwide is suffering from soil degradation and salinity, reduced soil fertility, and water scarcity rendering the performance of irrigation schemes often below potential. On the other hand, the scope for improving irrigated agricultural productivity remains obscure also due to the lack of spatial data on agricultural production (e.g. crop acreage and yield). To fill this gap, satellite earth observations and a replicable methodology were used to estimate crop yields at the field level for the period 2010/2014 in the Fergana Valley, Central Asia, to understand the response of agricultural productivity to factors related to the irrigation and drainage infrastructure and environment. The results showed that cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and spatial diversity of crops had the most persistent effects on crop yields across observation years suggesting the need for introducing sustainable cropping systems. On the other hand, areas with a lower crop diversity or abundance of crop rotation tended to have lower crop yields, with differences of partly more than one t/ha yield. It is argued that factors related to the infrastructure, for example, the distance of farms to the next settlement or the density of roads, had a persistent effect on crop yield dynamics over time. The improvement potential of cotton and wheat yields were estimated at 5%, compared to crop yields of farms in the direct vicinity of settlements or roads. In this study it is highlighted how remotely sensed estimates of crop production in combination with geospatial technologies provide a unique perspective that, when combined with field surveys, can support planners to identify management priorities for improving regional production and/or reducing environmental impacts.
NASA Astrophysics Data System (ADS)
Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.
2015-04-01
Soil, water, soil microbes, and solar energy are the main sources that sustain life on this planet. Without them working in concert, neither plants nor animals would survive. Considering the efficiency of animal production targets, soil must be protected and improved. Therefore, through our sustainable integrated crop and livestock research, we are studying animal and soil interactions from the soil to the plate. Integrating beef cattle systems into a diverse cropping system is providing a living laboratory for education beyond the traditional classroom setting. To establish the living learning laboratory at the Dickinson Research Extension Center, a five-crop rotation was established that included adapted cool and warm season grasses and broadleaf crops. The crop rotation is: sunflower > hard red spring wheat > fall seeded winter triticale-hairy vetch (hay)/spring seeded 7-species cover crop > Corn (85-95 day varieties) > field pea-barley intercrop. Sunflower and spring wheat are harvested for cash crop income in the rotation. Livestock integration occurs when yearling steers that had previously grazed perennial pastures until mid-August graze field pea-barley and subsequently unharvested corn. Average grazing days for field pea-barley and unharvested corn is 30 and 70 days, respectively. At the end of the grazing period, the yearling steers average 499-544 kg and are moved to a feedlot and fed an additional 75 days until slaughter. Maximizing grazing days and extending the grazing season through integration with the cropping system reduces custom feeding costs and enhances animal profit. Beef cows do not require high quality feed after their calves have been weaned. Therefore, gestating beef cows are an ideal animal to graze cover crops and crop aftermath (residue) after yearling steer grazing and farming operations have been completed. Extending the grazing season for beef cows by grazing cover crops and residues reduces winter feed cost, which is one of the highest expenses in beef cattle production. Senior research investigating the impact of livestock integration and multi-species cover crop grown within the crop rotation is studying changes in soil attributes resulting from the crop-animal integration by measuring bulk density and in-season soil fertility in the crop rotation. These responses are further contrasted with results from within the crop rotation and responses from perennial native range. Students that become engaged in the research represent a broad cross section of the consuming public and include high school junior and senior students, college undergraduate students that conduct research projects, postdoctoral research scientists engaged in senior level research, agricultural extension educators, and finally, farmer and rancher businessmen. The integrated nature of the research provides a wealth of learning opportunities for these various groups. For the high school students, visits to the living laboratory increase awareness and introduces students to a potential career path in agriculture, natural resource fields, and the many allied vocational fields that support agriculture. When college undergraduate students visit the living laboratory, they seek to address a researchable question or a problem in agriculture, while fulfilling requirements for graduation by conducting a research project. Because postdoctoral students want to be actively engaged in research and advanced learning, they are interested in conducting research in the living laboratory that can be published in peer reviewed journals. Agricultural extension educators, who advise farmers and ranchers, are looking for research results from the living laboratory that can be convey to their constituents. Farmers and ranchers participate in workshop events that give them face-to-face learning opportunities that they can use to effect change in their farm and ranch businesses. Each of these demographic groups are unique in their interest in the interaction between agricultural production and soil science. The authors will describe and discuss how each of these very different research consumers have been assisted during their experience and involvement in the living laboratory.
Zhang, Peng Peng; Pu, Xiao Zhen; Zhang, Wang Feng
2018-03-01
To reveal the regulatory mechanism of agricultural management practices on soil quality, an experiment was carried out to study the different cropping system and straw management on soil organic carbon and fractions and soil enzyme activity in farmland of arid oasis region, which would provide a scientific basic for enhancing agricultural resources utilization and sustainable development. In crop planting planning area, we took the mainly crop (cotton, wheat, maize) as research objects and designed long-term continues cropping and crop rotation experiments. The results showed that the soil organic carbon (SOC), soil microbial biomass C, labile C, water-soluble organic C, and hot-water-soluble organic C content were increased by 3.6%-9.9%, 41.8%-98.9%, 3.3%-17.0%, 11.1%-32.4%, 4.6%-27.5% by crop rotation compared to continues cropping, and 12%-35.9%, 22.4%-49.7%, 30.7%-51.0%, 10.6%-31.9%, 41.0%-96.4% by straw incorporated compared to straw removed, respectively. The soil catalase, dehydrogenase, β-glucosidase, invertase glucose, cellulase glucose activity were increased by 6.4%-10.9%, 6.6%-18.8%, 5.9%-15.3%, 10.0%-27.4%, 28.1%-37.5% by crop rotation compared to continues cropping, and 31.4%-47.5%, 19.9%-46.6%, 13.8%-20.7%, 19.8%-55.6%, 54.1%-70.9% by straw incorporated compared to straw removed, respectively. There were significant positive linear correlations among SOC, labile SOC fractions and soil enzyme. Therefore, we concluded that labile SOC fractions and soil enzyme were effective index for evaluating the change of SOC and soil quality. Based on factor analysis, in arid region, developing agricultural production using cropland management measures, such as straw-incorporated and combined short-term continues cotton and crop rotation, could enhance SOC and labile SOC fractions contents and soil enzyme activity, which could improve soil quality and be conducive to agricultural sustainable development.
NASA Astrophysics Data System (ADS)
Bolten, J.; Crow, W.; Zhan, X.; Reynolds, C.
2008-08-01
Timely and accurate monitoring of global weather anomalies and drought conditions is essential for assessing global crop conditions. Soil moisture observations are particularly important for crop yield fluctuations provided by the US Department of Agriculture (USDA) Production Estimation and Crop Assessment Division (PECAD). The current system utilized by PECAD estimates soil moisture from a 2-layer water balance model based on precipitation and temperature data from World Meteorological Organization (WMO) and US Air Force Weather Agency (AFWA). The accuracy of this system is highly dependent on the data sources used; particularly the accuracy, consistency, and spatial and temporal coverage of the land and climatic data input into the models. However, many regions of the globe lack observations at the temporal and spatial resolutions required by PECAD. This study incorporates NASA's soil moisture remote sensing product provided by the EOS Advanced Microwave Scanning Radiometer (AMSR-E) into the U.S. Department of Agriculture Crop Assessment and Data Retrieval (CADRE) decision support system. A quasi-global-scale operational data assimilation system has been designed and implemented to provide CADRE a daily product of integrated AMSR-E soil moisture observations with the PECAD two-layer soil moisture model forecasts. A methodology of the system design and a brief evaluation of the system performance over the Conterminous United States (CONUS) is presented.
Managing manure nutrients through multi-crop forage production.
Newton, G L; Bernard, J K; Hubbard, R K; Allison, J R; Lowrance, R R; Gascho, G J; Gates, R N; Vellidis, G
2003-06-01
Concentrated sources of dairy manure represent significant water pollution potential. The southern United States may be more vulnerable to water quality problems than some other regions because of climate, typical farm size, and cropping practices. Dairy manure can be an effective source of plant nutrients and large quantities of nutrients can be recycled through forage production, especially when multi-cropping systems are utilized. Linking forage production with manure utilization is an environmentally sound approach for addressing both of these problems. Review of two triple-crop systems revealed greater N and P recoveries for a corn silage-bermudagrass hay-rye haylage system, whereas forage yields and quality were greater for a corn silage-corn silage-rye haylage system, when manure was applied at rates to supply N. Nutrient uptake was lower than application during the autumn-winter period, and bermudagrass utilized more of the remaining excess than a second crop of corn silage. Economic comparison of these systems suggests that the added value of the two corn silage crop system was not enough to off-set its increased production cost. Therefore, the system that included bermudagrass demonstrated both environmental and economic advantages. Review of the N and P uptake and calculated crop value of various single, double, and triple crop forage systems indicated that the per hectare economic value as well as the N and P uptakes tended to follow DM yields, and grasses tended to out-perform broadleaf forages. Taken across all systems, systems that included bermudagrass tended to have some of the highest economic values and uptakes of N and P. Manure applied at rates to supply N results in application of excess P, and production will not supply adequate quantities of forage to meet the herd's needs. Systems that lower manure application and supply supplemental N to produce all necessary forage under manure application will likely be less economically attractive due to additional costs of moving manure further and, applying it to greater land areas, but will be environmentally necessary in most cases. Intensive forage systems can produce acceptable to high quality forage, protect the environment, and be economically attractive. The optimal manure-forage system will depend on the farm characteristics and specific local conditions. Buffers and nutrient sinks can protect streams and water bodies from migrating nutrients and should be included as a part of crop production systems.
USDA-ARS?s Scientific Manuscript database
Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...
Soil Quality in a Pecan Agroforestry System is Improved with Intercropped Kura Clover
USDA-ARS?s Scientific Manuscript database
Intercropping alleys of agroforestry systems provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial crops maintain a continuous soil cover, m...
Alternative cropping systems for sugarcane
USDA-ARS?s Scientific Manuscript database
Planting cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Research was conducted at the USDA, ARS, Sugarcane Research Unit at Houma, LA to determine the impac...
USDA-ARS?s Scientific Manuscript database
An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...
Beneduce, Luciano; Gatta, Giuseppe; Bevilacqua, Antonio; Libutti, Angela; Tarantino, Emanuele; Bellucci, Micol; Troiano, Eleonora; Spano, Giuseppe
2017-11-02
In order to evaluate if the reuse of food industry treated wastewater is compatible for irrigation of food crops, without increased health risk, in the present study a cropping system, in which ground water and treated wastewater were used for irrigation of tomato and broccoli, during consecutive crop seasons was monitored. Water, crop environment and final products were monitored for microbial indicators and pathogenic bacteria, by conventional and molecular methods. The microbial quality of the irrigation waters influenced sporadically the presence of microbial indicators in soil. No water sample was found positive for pathogenic bacteria, independently from the source. Salmonella spp. and Listeria monocytogenes were detected in soil samples, independently from the irrigation water source. No pathogen was found to contaminate tomato plants, while Listeria monocytogenes and E. coli O157:H7 were detected on broccoli plant, but when final produce were harvested, no pathogen was detected on edible part. The level of microbial indicators and detection of pathogenic bacteria in field and plant was not dependent upon wastewater used. Our results, suggest that reuse of food industry wastewater for irrigation of agricultural crop can be applied without significant increase of potential health risk related to microbial quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Satellite Estimation of Fractional Cover in Several California Specialty Crops
NASA Technical Reports Server (NTRS)
Johnson, Lee; Cahn, Michael; Rosevelt, Carolyn; Guzman, Alberto; Farrara, Barry; Melton, Forrest S.
2016-01-01
Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.
Irrigation Trials for ET Estimation and Water Management in California Specialty Crops
NASA Astrophysics Data System (ADS)
Johnson, L.; Cahn, M.; Martin, F.; Lund, C.; Melton, F. S.
2012-12-01
Accurate estimation of crop evapotranspiration (ETc) can support efficient irrigation water management, which in turn brings benefits including surface water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality assurance. Past research in California has revealed strong relationships between canopy fractional cover (Fc) and ETc of certain specialty crops, while additional research has shown the potential of monitoring Fc by satellite remote sensing. California's Central Coast is the leading region of cool season vegetable production in the U.S. Monterey County alone produces more than 80,000 ha of lettuce and broccoli (about half of U.S. production), valued at $1.5 billion in 2009. Under this study, we are conducting ongoing irrigation trials on these crops at the USDA Agricultural Research Station (Salinas) to compare irrigation scheduling via plant-based ETc approaches, by way of Fc, with current industry standard-practice. The following two monitoring approaches are being evaluated - 1) a remote sensing model employed by NASA's prototype Satellite Irrigation Management System, and 2) an online irrigation scheduling tool, CropManage, recently developed by U.C. Cooperative Extension. Both approaches utilize daily grass-reference ETo data as provided by the California Irrigation Management Irrigation System (CIMIS). A sensor network is deployed to monitor applied irrigation, volumetric soil water content, soil water potential, deep drainage, and standard meteorologic variables in order to derive ETc by a water balance approach. Evaluations of crop yield and crop quality are performed by the research team and by commercial growers. Initial results to-date indicate that applied water reductions based on Fc measurements are possible with little-to-no impact on yield of crisphead lettuce (Lactuca sativa). Additional results for both lettuce and broccoli trials, conducted during summer-fall 2012, are presented with respect to nutrient management and crop viability.
Satellite Estimation of Fractional Cover in Several California Specialty Crops
NASA Astrophysics Data System (ADS)
Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Lockhart, T.; Farrara, B.; Melton, F. S.
2016-12-01
Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.
Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine
2017-05-01
Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.
NASA Astrophysics Data System (ADS)
Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Maunahan, A. A.; Gatti, L.; Quicho, E. D.; Pazhanivelan, S.; Campos-Taberner, M.; Collivignarelli, F.; Haro, J. G.; Intrman, A.; Phuong, D.; Boschetti, M.; Prasadini, P.; Busetto, L.; Minh, V. Q.; Tuan, V. Q.
2017-12-01
This study uses multi-temporal SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations in South and South Asian countries and assimilate the information into ORYZA Crop Growth Simulation Model (CGSM) to monitor rice yield. The study demonstrates examples of operational application of this rice monitoring system in: (1) detecting drought impact on rice planting in Central Thailand and Tamil Nadu, India, (2) mapping heat stress impact on rice yield in Andhra Pradesh, India, and (3) generating historical rice yield data for districts in Red River Delta, Vietnam.
NASA's Contributions to Controlled Environment Agriculture
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2016-01-01
It may come as a surprise, but NASA has been a long-standing sponsor of controlled environment agriculture (CEA) research. This is based on the potential for using plants (crops) for life support systems in space. Through photosynthesis, crops could produce food and oxygen for humans, while removing CO2. In addition, plant transpiration could help purify waste water. NASAs interest in bioregenerative life support dates back to the late 1950s. At that time, much of the testing focused on algae, but over the years moved toward higher plants as CEA techniques improved. Throughout the 1980s and 90s, extensive testing was carried out at different universities to gather horticultural data for a range of crops, including wheat, soybean, lettuce, potato, sweet potato, cowpea, rice and more. These studies examined different electric light sources, mineral nutrition, recirculating hydroponics, effects of CO2, temperature, photosynthetic photon flux (PPF), and photoperiod on the crops, and identified cultivars that would be useful for space. Findings from these studies were then used to conduct large scale (20 sq m), closed atmosphere tests at Kennedy Space Center, and later at NASA Johnson Space Center, where plant growth chambers were linked to human habitats. Results showed that with high light input and careful horticultural management, about 20-25 sq m of crops under continuous cultivation could produce the O2 for one person, and about 40-50 sq m could produce enough dietary calories. The ability to sustain these production levels and accurately assess system costs and failures needs further study. In all likelihood, the use of plants for life support will evolve, where for early missions like the International Space Station, crops will be grown in small chambers to provide supplemental fresh foods. As mission durations and distances increase, the systems could expand to assume more of the life support burden. But the constraints of space travel require that these approaches be efficient in terms of mass, volume, and energy, which are similar to challenges facing terrestrial CEA, such as vertical agriculture systems.
Developing a Graphical User Interface for the ALSS Crop Planning Tool
NASA Technical Reports Server (NTRS)
Koehlert, Erik
1997-01-01
The goal of my project was to create a graphical user interface for a prototype crop scheduler. The crop scheduler was developed by Dr. Jorge Leon and Laura Whitaker for the ALSS (Advanced Life Support System) program. The addition of a system-independent graphical user interface to the crop planning tool will make the application more accessible to a wider range of users and enhance its value as an analysis, design, and planning tool. My presentation will demonstrate the form and functionality of this interface. This graphical user interface allows users to edit system parameters stored in the file system. Data on the interaction of the crew, crops, and waste processing system with the available system resources is organized and labeled. Program output, which is stored in the file system, is also presented to the user in performance-time plots and organized charts. The menu system is designed to guide the user through analysis and decision making tasks, providing some help if necessary. The Java programming language was used to develop this interface in hopes of providing portability and remote operation.
NASA Astrophysics Data System (ADS)
Huang, Qing; Zhou, Qing-bo; Zhang, Li
2009-07-01
China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.
Targeting the right input data to improve crop modeling at global level
NASA Astrophysics Data System (ADS)
Adam, M.; Robertson, R.; Gbegbelegbe, S.; Jones, J. W.; Boote, K. J.; Asseng, S.
2012-12-01
Designed for location-specific simulations, the use of crop models at a global level raises important questions. Crop models are originally premised on small unit areas where environmental conditions and management practices are considered homogeneous. Specific information describing soils, climate, management, and crop characteristics are used in the calibration process. However, when scaling up for global application, we rely on information derived from geographical information systems and weather generators. To run crop models at broad, we use a modeling platform that assumes a uniformly generated grid cell as a unit area. Specific weather, specific soil and specific management practices for each crop are represented for each of the cell grids. Studies on the impacts of the uncertainties of weather information and climate change on crop yield at a global level have been carried out (Osborne et al, 2007, Nelson et al., 2010, van Bussel et al, 2011). Detailed information on soils and management practices at global level are very scarce but recognized to be of critical importance (Reidsma et al., 2009). Few attempts to assess the impact of their uncertainties on cropping systems performances can be found. The objectives of this study are (i) to determine sensitivities of a crop model to soil and management practices, inputs most relevant to low input rainfed cropping systems, and (ii) to define hotspots of sensitivity according to the input data. We ran DSSAT v4.5 globally (CERES-CROPSIM) to simulate wheat yields at 45arc-minute resolution. Cultivar parameters were calibrated and validated for different mega-environments (results not shown). The model was run for nitrogen-limited production systems. This setting was chosen as the most representative to simulate actual yield (especially for low-input rainfed agricultural systems) and assumes crop growth to be free of any pest and diseases damages. We conducted a sensitivity analysis on contrasting management practices, initial soil conditions, and soil characteristics information. Management practices were represented by planting date and the amount of fertilizer, initial conditions estimates for initial nitrogen, soil water, and stable soil carbon, and soil information is based on a simplified version of the WISE database, characterized by soil organic matter, texture and soil depth. We considered these factors as the most important determinants of nutrient supply to crops during their growing season. Our first global results demonstrate that the model is most sensitive to the initial conditions in terms of soil carbon and nitrogen (CN): wheat yields decreased by 45% when soil CN is null and increase by 15% when twice the soil CN content of the reference run is used. The yields did not appear to be very sensitive to initial soil water conditions, varying from 0% yield increase when initial soil water is set to wilting point to 6% yield increase when it was set to field capacity. They are slightly sensitive to nitrogen application: 8% yield decrease when no N is applied to 9% yield increase when 150 kg.ha-1 is applied. However, with closer examination of results, the model is more sensitive to nitrogen application than to initial soil CN content in Vietnam, Thailand and Japan compared to the rest of the world. More analyses per region and results on the planting dates and soil properties will be presented.
Historical and simulated ecosystem carbon dynamics in Ghana: Land use, management, and climate
Tan, Z.; Tieszen, L.L.; Tachie-Obeng, E.; Liu, S.; Dieye, A.M.
2009-01-01
We used the General Ensemble biogeochemical Modeling System (GEMS) to simulate responses of natural and managed ecosystems to changes in land use and land cover, management, and climate for a forest/savanna transitional zone in central Ghana. Model results show that deforestation for crop production during the 20th century resulted in a substantial reduction in ecosystem carbon (C) stock from 135.4 Mg C ha−1 in 1900 to 77.0 Mg C ha−1 in 2000, and in soil organic C stock within the top 20 cm of soil from 26.6 Mg C ha−1 to 21.2 Mg C ha−1. If no land use change takes place from 2000 through 2100, low and high climate change scenarios (increase in temperature and decrease in precipitation over time) will result in losses of soil organic C stock by 16% and 20%, respectively. A low nitrogen (N) fertilization rate is the principal constraint on current crop production. An increase in N fertilization under the low climate change scenario would lead to an increase in the average crop yield by 21% with 30 kg N ha−1 and by 42% with 60 kg N ha−1 (varying with crop species), accordingly, the average soil C stock would decrease by 2% and increase by 17%, in all cropping systems by 2100. The results suggest that a reasonable N fertilization rate is critical to achieve food security and agricultural sustainability in the study area through the 21st century. Adaptation strategies for climate change in this study area require national plans to support policies and practices that provide adequate N fertilizers to sustain soil C and crop yields and to consider high temperature tolerant crop species if these temperature projections are exceeded.
Historical and simulated ecosystem carbon dynamics in Ghana: land use, management, and climate
NASA Astrophysics Data System (ADS)
Tan, Z.; Tieszen, L. L.; Tachie-Obeng, E.; Liu, S.; Dieye, A. M.
2009-01-01
We used the General Ensemble biogeochemical Modeling System (GEMS) to simulate responses of natural and managed ecosystems to changes in land use and land cover, management, and climate for a forest/savanna transitional zone in central Ghana. Model results show that deforestation for crop production during the 20th century resulted in a substantial reduction in ecosystem carbon (C) stock from 135.4 Mg C ha-1 in 1900 to 77.0 Mg C ha-1 in 2000, and in soil organic C stock within the top 20 cm of soil from 26.6 Mg C ha-1 to 21.2 Mg C ha-1. If no land use change takes place from 2000 through 2100, low and high climate change scenarios (increase in temperature and decrease in precipitation over time) will result in losses of soil organic C stock by 16% and 20%, respectively. A low nitrogen (N) fertilization rate is the principal constraint on current crop production. An increase in N fertilization under the low climate change scenario would lead to an increase in the average crop yield by 21% with 30 kg N ha-1 and by 42% with 60 kg N ha-1 (varying with crop species), accordingly, the average soil C stock would decrease by 2% and increase by 17%, in all cropping systems by 2100. The results suggest that a reasonable N fertilization rate is critical to achieve food security and agricultural sustainability in the study area through the 21st century. Adaptation strategies for climate change in this study area require national plans to support policies and practices that provide adequate N fertilizers to sustain soil C and crop yields and to consider high temperature tolerant crop species if these temperature projections are exceeded.
Effect of non-crop vegetation types on conservation biological control of pests in olive groves
Cayuela, Luis; Gurr, Geoff M.; Campos, Mercedes
2013-01-01
Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina) and the olive moth (Prays oleae). Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems. PMID:23904994
Evolution of the vegetation system in the Heihe River basin in the last 2000 years
NASA Astrophysics Data System (ADS)
Li, Shoubo; Zhao, Yan; Wei, Yongping; Zheng, Hang
2017-08-01
The response of vegetation systems to the long-term changes in climate, hydrology, and social-economic conditions in river basins is critical for sustainable river basin management. This study aims to investigate the evolution of natural and crop vegetation systems in the Heihe River basin (HRB) over the past 2000 years. Archived Landsat images, historical land use maps and hydrological records were introduced to derive the long-term spatial distribution of natural and crop vegetation and the corresponding biomass levels. The major findings are that (1) both natural and crop vegetation experienced three development stages: a pre-development stage (before the Republic of China), a rapid development stage (Republic of China - 2000), and a post-development stage (after 2000). Climate and hydrological conditions did not show significant impacts over crop vegetation, while streamflow presented synchronous changes with natural vegetation in the first stage. For the second stage, warmer temperature and increasing streamflow were found to be important factors for the increase in both natural and crop vegetation in the middle reaches of the HRB. For the third stage, positive climate and hydrological conditions, together with policy interventions, supported the overall vegetation increase in both the middle and lower HRB; (2) there was a significantly faster increase in crop biomass than that of native vegetation since 1949, which could be explained by the technological development; and (3) the ratio of natural vegetation to crop vegetation decreased from 16 during the Yuan Dynasty to about 2.2 since 2005. This ratio reflects the reaction of land and water development to a changing climate and altering social-economic conditions at the river basin level; therefore, it could be used as an indicator of water and land management at river basins.
A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth
Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai
2017-01-01
State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production. PMID:28848565
A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.
Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai
2017-01-01
State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern greenhouse production.
Structure of the knowledge base for an expert labeling system
NASA Technical Reports Server (NTRS)
Rajaram, N. S.
1981-01-01
One of the principal objectives of the NASA AgRISTARS program is the inventory of global crop resources using remotely sensed data gathered by Land Satellites (LANDSAT). A central problem in any such crop inventory procedure is the interpretation of LANDSAT images and identification of parts of each image which are covered by a particular crop of interest. This task of labeling is largely a manual one done by trained human analysts and consequently presents obstacles to the development of totally automated crop inventory systems. However, development in knowledge engineering as well as widespread availability of inexpensive hardware and software for artificial intelligence work offers possibilities for developing expert systems for labeling of crops. Such a knowledge based approach to labeling is presented.
Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.
Strock, J S; Porter, P M; Russelle, M P
2004-01-01
Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.
Rye cover crop effects on soil quality in no-till corn silage-soybean cropping systems
USDA-ARS?s Scientific Manuscript database
Corn and soybean farmers in the upper Midwest are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion prevention, and weed suppression; however, the effects of winter cover crops on soil quality in this region have ...
Makate, Clifton; Wang, Rongchang; Makate, Marshall; Mango, Nelson
2016-01-01
This paper demonstrates how crop diversification impacts on two outcomes of climate smart agriculture; increased productivity (legume and cereal crop productivity) and enhanced resilience (household income, food security, and nutrition) in rural Zimbabwe. Using data from over 500 smallholder farmers, we jointly estimate crop diversification and each of the outcome variables within a conditional (recursive) mixed process framework that corrects for selectivity bias arising due to the voluntary nature of crop diversification. We find that crop diversification depends on the land size, farming experience, asset wealth, location, access to agricultural extension services, information on output prices, low transportation costs and general information access. Our results also indicate that an increase in the rate of adoption improves crop productivity, income, food security and nutrition at household level. Overall, our results are indicative of the importance of crop diversification as a viable climate smart agriculture practice that significantly enhances crop productivity and consequently resilience in rural smallholder farming systems. We, therefore, recommend wider adoption of diversified cropping systems notably those currently less diversified for greater adaptation to the ever-changing climate.
Use of remote sensing for land use policy formulation
NASA Technical Reports Server (NTRS)
1981-01-01
Progress in studies for using remotely sensed data for assessing crop stress and in crop estimation is reported. The estimation of acreage of small forested areas in the southern lower peninsula of Michigan using LANDSAT data is evaluated. Damage to small grains caused by the cereal leaf beetle was assessed through remote sensing. The remote detection of X-disease of peach and cherry trees and of fire blight of pear and apple trees was investigated. The reliability of improving on standard methods of crop production estimation was demonstrated. Areas of virus infestation in vineyards and blueberry fields in western and southwestern Michigan were identified. The installation and systems integration of a microcomputer system for processing and making available remotely sensed data are described.
Regional crop yield forecasting: a probabilistic approach
NASA Astrophysics Data System (ADS)
de Wit, A.; van Diepen, K.; Boogaard, H.
2009-04-01
Information on the outlook on yield and production of crops over large regions is essential for government services dealing with import and export of food crops, for agencies with a role in food relief, for international organizations with a mandate in monitoring the world food production and trade, and for commodity traders. Process-based mechanistic crop models are an important tool for providing such information, because they can integrate the effect of crop management, weather and soil on crop growth. When properly integrated in a yield forecasting system, the aggregated model output can be used to predict crop yield and production at regional, national and continental scales. Nevertheless, given the scales at which these models operate, the results are subject to large uncertainties due to poorly known weather conditions and crop management. Current yield forecasting systems are generally deterministic in nature and provide no information about the uncertainty bounds on their output. To improve on this situation we present an ensemble-based approach where uncertainty bounds can be derived from the dispersion of results in the ensemble. The probabilistic information provided by this ensemble-based system can be used to quantify uncertainties (risk) on regional crop yield forecasts and can therefore be an important support to quantitative risk analysis in a decision making process.
An AgMIP framework for improved agricultural representation in integrated assessment models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold
Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agriculturalmore » Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.« less
An AgMIP framework for improved agricultural representation in integrated assessment models
NASA Astrophysics Data System (ADS)
Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold; Boote, Kenneth J.; Elliott, Joshua; Ewert, Frank; Jones, James W.; Martre, Pierre; McDermid, Sonali P.; Müller, Christoph; Snyder, Abigail; Thorburn, Peter J.
2017-12-01
Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.
Proximity to crops and residential to agricultural herbicides in Iowa
Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R.
2006-01-01
Rural residents can be exposed to agricultural pesticides through the proximity of their homes to crop fields. Previously, we developed a method to create historical crop maps using a geographic information system. The aim of the present study was to determine whether crop maps are useful for predicting levels of crop herbicides in carpet dust samples from residences. From homes of participants in a case-control study of non-Hodgkin lymphoma in Iowa (1998-2000), we collected vacuum cleaner dust and measured 14 herbicides with high use on corn and soybeans in Iowa. Of 112 homes, 58% of residences had crops within 500 m of their home, an intermediate distance for primary drift from aerial and ground applications. Detection rates for herbicides ranged from 0% for metribuzin and cyanazine to 95% for 2,4-dichlorophenoxyacetic acid. Six herbicides used almost exclusively in agriculture were detected in 28% of homes. Detections and concentrations were highest in homes with an active farmer. Increasing acreage of corn and soybean fields within 750 m of homes was associated with significantly elevated odds of detecting agricultural herbicides compared with homes with no crops within 750 m (adjusted odds ratio per 10 acres = 1.06; 95% confidence interval, 1.02-1.11). Herbicide concentrations also increased significantly with increasing acreage within 750 m. We evaluated the distance of crop fields from the home at < 100, 101-250, 251-500, and 501-750 m. Including the crop buffer distance parameters in the model did not significantly improve the fit compared with a model with total acres within 750 m. Our results indicate that crop maps may be a useful method for estimating levels of herbicides in homes from nearby crop fields.
Assessment of water use in the Spanish irrigation district "Río Adaja"
NASA Astrophysics Data System (ADS)
Naroua, Illiassou; Rodriguez-Sinobas, Leonor; Sánchez Calvo, Raúl
2013-04-01
Intensive agricultural practices combined with the increasing pressure of urbanization and the changing lifestyles, have strengthened the problems of competing users over limited water resources in a fragile and already stressed environment. Sustainable irrigated agriculture is prescribed as a policy approach that maximizes economic benefits while maintaining environmental quality. Within this framework a proper management of irrigation systems saving water is required. On the other hand, crops with high tolerance to water stress and deficit irrigation are recommended. However, crop yield, among other factors, is very sensitive to water Thus, studies addressing the relations among crop water requirements, irrigation depth and crop yield are necessary. This type of study has been carried out in the Spanish irrigation District "Río Adaja" in the year 2010-2011 with the crops: wheat, barley, sugarbeet, corn, onion, potato, sunflower, clover and carrot. A soil hydrology balance model was applied taking into account climatic data for the nearby weather station and soil characteristics. Effective precipitation was calculated by the index curve number. Crop water requirements were calculated by the FAO Penman-Monteith with the application of the dual crop coefficient. Likewise, productivity was measured by the following indexes: annual relative irrigation supply (ARIS), relative water supply (RWS), relative rainfall supply (RS) and water productivity (WP). Results show that water applied with the irrigation of clover, sugarbeet, corn and onion was less than their water requirements There was a 35 % difference between the amount of water simulated with the model and the gross amount applied during the irrigation period by the irrigation district. WP values differed among crops depending, mainly, on the crop`s market price and the amount of irrigation water. The highest values corresponded to potato and onion crops.
An overview of CERES-Sorghum as implemented in the cropping systems model version 4.5
USDA-ARS?s Scientific Manuscript database
Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important grain crop globally. It stands out for its diversity of plant types, end-uses, and roles in cropping systems. This diversity presents opportunities but also complicates evaluation of production options, especially under climate uncert...
Usman Anwar; Lisa A. Schulte; Matthew Helmers; Randall K. Kolka
2017-01-01
Understanding the environmental impact of bioenergy crops is needed to inform bioenergy policy development. We determined the effects of five biomass cropping systemsâcontinuous maize (Zea mays), soybean (Glycine max)-triticale (Triticosecale Ã)/soybean-maize, maize-switchgrass (Panicum virgatum...
Independent Peer Evaluation of the Large Area Crop Inventory Experiment (LACIE): The LACIE Symposium
NASA Technical Reports Server (NTRS)
1978-01-01
Yield models and crop estimate accuracy are discussed within the Large Area Crop Inventory Experiment. The wheat yield estimates in the United States, Canada, and U.S.S.R. are emphasized. Experimental results design, system implementation, data processing systems, and applications were considered.
Center pivot mounted infrared sensors: Retrieval of ET and interface with satellite systems
USDA-ARS?s Scientific Manuscript database
Infrared sensors mounted aboard cener pivot irrigation systems can remotely sense the surface temperatures of the crops and soils, which provides important information on crop water status. This can be used for irrigation management and irrigation automation, which can increase crop water productivi...
Soil phosphatase and urease activities impacted by cropping systems and water management
USDA-ARS?s Scientific Manuscript database
Soil enzymes can play an important role in nutrient availability to plants. Consequently, soil enzyme measurements can provide useful information on soil fertility for crop production. We examined the impact of cropping system and water management on phosphatase, urease, and microbial biomass C in s...
Agroforestry Systems in Zimbabwe: Promoting Trees in Agriculture.
ERIC Educational Resources Information Center
Vukasin, Helen L., Ed.
Agroforestry has been defined as a sustainable crop management system which combines the production of forest crops with field crops. In June, 1987, an agroforestry workshop took place in Nyanga, Manicaland, Zimbabwe. This document was prepared to share the information presented at this workshop with other non-government organizations around the…
The effect of cropping systems and irrigation management on development of potato early blight
USDA-ARS?s Scientific Manuscript database
Crop and soil management may modify canopy and belowground microclimate. However, their effects on potential development and control of early blight are not well documented. Crop management systems [Status Quo (SQ), Soil Conserving (SC), Soil Improving (SI), Disease Suppressive (DS), and Continuou...
What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?
USDA-ARS?s Scientific Manuscript database
Civilian applications of unmanned aircraft systems (UAS, also called drones) are rapidly expanding into crop production. UAS acquire high spatial resolution remote sensing imagery that can be used three different ways in agriculture. One is to assist crop scouts looking for problems in crop fields....
USDA-ARS?s Scientific Manuscript database
Dryland crop production in the semi-arid Great Plains is limited by both the quantity and timing of precipitation. Sustainable dryland cropping systems maximize precipitation use efficiency by managing precipitation capture, storage, and use. Pest management approaches are also critical for efficie...
NASA Astrophysics Data System (ADS)
Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.
2012-04-01
Field experiments were conducted over three rainy seasons of 2005-06 to 2007-08 on a Vertisol at Dharwad, Karnataka, India to study the effect of intercropping and plant protection schedules on productivity, soil microflora and enzyme activities in the rhizosphere of transgenic Bt cotton hybrid. The experiment consisted of four intercropping systems namely, Bt cotton + okra, Bt cotton + chilli, Bt cotton + onion + chilli and Bt cotton + redgram with four plant protection schedules (zero protection, protection for Bt cotton, protection for intercrop and protection for both crops). Observations on microbial populations and enzyme activities were recorded at 45, 90, 135 and 185 (at harvest) days after sowing (DAS). Averaged over years, Bt cotton + okra intercropping had significantly higher total productivity than Bt cotton + chilli and Bt cotton + redgram intercropping system and was similar to Bt cotton + chilli + onion intercropping system. With respect to plant protection schedules for bollworms, protection for both cotton and intercrops recorded significantly higher yield than the rest of the treatments. Population of total bacteria, fungi, actinomycetes, P-solubilizers, free-living N2 fixers as well as urease, phosphatase and dehydrogenase enzyme activities increased up to 135 days of crop growth followed by a decline. Among the intercropping systems, Bt cotton + chilli recorded significantly higher population of microorganisms and enzyme activities than other cropping systems. While Bt cotton with okra as intercrop recorded the least population of total bacteria and free-living N2 fixers as well as urease activity. Intercropping with redgram resulted in the least population of actinomycetes, fungi and P-solubilizers, whereas Bt cotton with chilli and onion recorded least activities of dehydrogenase and phosphatase. Among the plant protection schedules, zero protection recorded maximum population of microorganisms and enzyme activities. This was followed by the plant protection schedule taken up for main crop and for intercrops, but was least in the insecticide sprayed to both the crops. Data on interaction of intercropping and plant protection schedules indicated that Bt cotton with chilli as intercrop and with zero plant protection showed the highest population of P-solubilizers, N2 fixers as well as urease and phosphatase activities at 135 days of crop growth. Similarly, population of total bacteria, fungi and actinomycetes were highest in the treatment of Bt cotton + chilli + onion with zero protection but were on par with the treatment Bt cotton + chilli with zero protection at 135 days of crop growth. Dehydrogenase activity was found to be the highest in the treatment of Bt cotton + redgram with zero protection at 135 days of crop growth. Our studies showed harmful effects of insecticide sprays on soil microflora and enzyme activities.
Ladha, Jagdish Kumar; Rao, Adusumilli Narayana; Raman, Anitha K; Padre, Agnes Tirol; Dobermann, Achim; Gathala, Mahesh; Kumar, Virender; Saharawat, Yashpal; Sharma, Sheetal; Piepho, Hans Peter; Alam, Md Mursedul; Liak, Ranjan; Rajendran, Ramasamy; Reddy, Chinnagangannagari Kesava; Parsad, Rajender; Sharma, Parbodh C; Singh, Sati Shankar; Saha, Abhijit; Noor, Shamsoon
2016-03-01
South Asian countries will have to double their food production by 2050 while using resources more efficiently and minimizing environmental problems. Transformative management approaches and technology solutions will be required in the major grain-producing areas that provide the basis for future food and nutrition security. This study was conducted in four locations representing major food production systems of densely populated regions of South Asia. Novel production-scale research platforms were established to assess and optimize three futuristic cropping systems and management scenarios (S2, S3, S4) in comparison with current management (S1). With best agronomic management practices (BMPs), including conservation agriculture (CA) and cropping system diversification, the productivity of rice- and wheat-based cropping systems of South Asia increased substantially, whereas the global warming potential intensity (GWPi) decreased. Positive economic returns and less use of water, labor, nitrogen, and fossil fuel energy per unit food produced were achieved. In comparison with S1, S4, in which BMPs, CA and crop diversification were implemented in the most integrated manner, achieved 54% higher grain energy yield with a 104% increase in economic returns, 35% lower total water input, and a 43% lower GWPi. Conservation agriculture practices were most suitable for intensifying as well as diversifying wheat-rice rotations, but less so for rice-rice systems. This finding also highlights the need for characterizing areas suitable for CA and subsequent technology targeting. A comprehensive baseline dataset generated in this study will allow the prediction of extending benefits to a larger scale. © 2015 John Wiley & Sons Ltd.
Chu, Jiashu; Zhang, Tianzhe; Chang, Weidong; Zhang, Dan; Zulfiqar, Saman; Fu, Aigen; Hao, Yaqi
2016-01-01
The effect of cropping system on the distribution of organic carbon (OC) and nitrogen (N) in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0–40 cm) at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0–20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the <0.053 mm size class and N stocks in the <0.25 mm size class. The increases in OC and N stocks in these aggregates accounted for 99.5 and 98.7% of the total increases, respectively, in the continuous alfalfa system. The increases in the OC and N stocks associated with the >0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm. PMID:27764209
Xu, Na; Wilson, Henry F; Saiers, James E; Entz, Martin
2013-01-01
Water-extractable organic matter (WEOM) in soil affects contaminant mobility and toxicity, heterotrophic production, and nutrient cycling in terrestrial and aquatic ecosystems. This study focuses on the influences of land use history and agricultural management practices on the water extractability of organic matter and nutrients from soils. Water-extractable organic matter was extracted from soils under different crop rotations (an annual rotation of wheat-pea/bean-wheat-flax or a perennial-based rotation of wheat-alfalfa-alfalfa-flax) and management systems (organic or conventional) and examined for its concentration, composition, and biodegradability. The results show that crop rotations including perennial legumes increased the concentration of water-extractable organic carbon (WEOC) and water-extractable organic nitrogen (WEON) and the biodegradability of WEOC in soil but depleted the quantity of water-extractable organic phosphorus (WEOP) and water-extractable reactive phosphorus. The 30-d incubation experiments showed that bioavailable WEOC varied from 12.5% in annual systems to 22% for perennial systems. The value of bioavailable WEOC was found to positively correlate with WEON concentrations and to negatively correlate with C:N ratio and the specific ultraviolet absorbance of WEOM. No significant treatment effect was present with the conventional and organic management practices, which suggested that WEOM, as the relatively labile pool in soil organic matter, is more responsive to the change in crop rotation than to mineral fertilizer application. Our results indicated that agricultural landscapes with contrasting crop rotations are likely to differentially affect rates of microbial cycling of organic matter leached to soil waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis
NASA Astrophysics Data System (ADS)
Levers, L. R.; Schwabe, K. A.
2017-04-01
Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.
Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori
2018-03-01
Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.
2015-04-01
Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation pipes were pressed into the soil as enclosures to restrict root access to soil nitrogen. Soil samples were taken as close to 2-week intervals as possible from both inside and outside the enclosures. The crop rotation N values were also compared to triple replicated perennial native grassland plot areas (predominate sp. Western wheatgrass - Pascopyrum smithii, Blue grama - Bouteloua gracilis, Little bluestem - Schizachyrium scoparium, Switchgrass - Panicum virgatum). Trends identified for both NH4-N and NO3-N indicate that the values are relatively similar with respect to seasonal change over time. There was a greater amount of soil nitrogen accumulation inside the enclosures indicating that outside the enclosures roots scavenge nitrogen for plant growth and production. Seasonally, comparing the cropping system crops, NO3-N declined mid-July and then rebounded by mid-August and continued to increase until leveling off in September. Corn NO3-N, however, did not follow this pattern, but increased from early June to the end of June and remained high until the first of September. We will present the results of bulk density data and seasonal N fertility data providing evidence for the impact of previous CC on corn production. Probable explanation for the mid-summer nitrogen decline will be presented and justification for reduced fertilizer application will be discussed.
Impacts of climate change on paddy rice yield in a temperate climate.
Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John
2013-02-01
The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.
Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology
NASA Astrophysics Data System (ADS)
Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.
2015-04-01
Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.
NASA Astrophysics Data System (ADS)
Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain
2014-05-01
Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (<15 cm) tillage. - Introducing cover crops in cropping systems: sown between two cash crops on arable farms, in orchards and vineyards (permanent or temporary cover cropping) . - Expanding agroforestry systems; planting of tree lines in cultivated fields and grasslands, and hedges around the field edges. - Increasing the life time of temporary sown grasslands: increase of life time to 5 years. The recent literature was reviewed in order to determine long term (>20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when associated with vineyards. Hedges (i.e 60 m ha-1) stored 0.15 (0.05-0.26) Mg C ha-1 y-1. Very few estimates were available for temperate agroforestry system, and we proposed a value of 1.01 (0.11-1.36) Mg C ha-1 y-1for C stored in soil and in the tree biomass for systems comprising 30-50 trees ha-1. Increasing the life time of temporary sown grassland increased C stocls by 0.11 (0.07-0.22) Mg C ha-1 y-1. In general, practices with increased C inputs to soil through additional plant biomass (agroforestry, hedges and cover crops) resulted in higher additional C storage rates, while the reduction of soil organic matter mineralisation through reduced tillage seemed less effective. When applied to the French agricultural sector, excluding areas with soils with major technical constraints or negative environmental consequences (e.g. poorly aerated soils with high N2O emissions), the measures considered here allowed to increase French soil C stocks by 0 to more than 1 Tg C y-1. However, our estimates are associated with high uncertainties, due to the high variability in soil C storage associated with pedo-climatic conditions and cropping systems, and on the very few studies available for some practices such as agroforestry under temperate conditions.
NASA Astrophysics Data System (ADS)
Sharma, S.
2012-12-01
Accurate estimation of water content in the crop root zone is most important for water conservation and management practices like irrigation. The objective of this study is to use the FA0-56 dual crop cefficients: basal crop coefficient Kcb and the soil evaporation coefficient Ke for a large corn/soybean field in the year 2005 at the Mead Turf Farm in the state of Nebraska, USA..Dual crop coefficients can be used to estimate both transpiration from crops and evaporation from soil. The Kcb has a low value of 0.15(K cb, in) during the initial period, increases rapidly to a maximum of 1.14 (K cb, mid) for the entire midseason and decreases rapidly to 0.5 at the end of the corn growing season (K cb,end). When examined together with precipitation, the dual crop coefficient was higher following rainfall or irrigation, as expected. The data suggests that the dual crop coefficient approach is a good estimation of water loss from well-watered crops. Irrigation can be scheduled to replace the loss of water from the crop/soil system. Similarly, when we compared the measured daily ET and the ET calculated from dual crop coefficients, it gives 98 % R2.; Comparision of calculated ET from dual crop coefficient appraoch with Weather Station ET
Large scale maps of cropping intensity in Asia from MODIS
NASA Astrophysics Data System (ADS)
Gray, J. M.; Friedl, M. A.; Frolking, S. E.; Ramankutty, N.; Nelson, A.
2013-12-01
Agricultural systems are geographically extensive, have profound significance to society, and also affect regional energy, carbon, and water cycles. Since most suitable lands worldwide have been cultivated, there is growing pressure to increase yields on existing agricultural lands. In tropical and sub-tropical regions, multi-cropping is widely used to increase food production, but regional-to-global information related to multi-cropping practices is poor. Such information is of critical importance to ensure sustainable food production while mitigating against negative environmental impacts associated with agriculture such as contamination and depletion of freshwater resources. Unfortunately, currently available large-area inventory statistics are inadequate because they do not capture important spatial patterns in multi-cropping, and are generally not available in a timeframe that can be used to help manage cropping systems. High temporal resolution sensors such as MODIS provide an excellent source of information for addressing this need. However, relative to studies that document agricultural extensification, systematic assessment of agricultural intensification via multi-cropping has received relatively little attention. The goal of this work is to help close this methodological and information gap by developing methods that use multi-temporal remote sensing to map multi-cropping systems in Asia. Image time series analysis is especially challenging in Asia because atmospheric conditions including clouds and aerosols lead to high frequencies of missing or low quality remote sensing observations, especially during the Asian Monsoon. The methodology that we use for this work builds upon the algorithm used to produce the MODIS Land Cover Dynamics product (MCD12Q2), but employs refined methods to segment, smooth, and gap-fill 8-day EVI time series calculated from MODIS BRDF corrected surface reflectances. Crop cycle segments are identified based on changes in slope for linear regressions estimated for local windows, and constrained by the EVI amplitude and length of crop cycles that are identified. The procedure can be used to map seasonal or long-term average cropping strategies, and to characterize changes in cropping intensity over longer time periods. The datasets produced using this method therefore provide information related to global cropping systems, and more broadly, provide important information that is required to ensure sustainable management of Earth's resources and ensure food security. To test our algorithm, we applied it to time series of MODIS EVI images over Asia from 2000-2012. Our results demonstrate the utility of multi-temporal remote sensing for characterizing multi-cropping practices in some of the most important and intensely agricultural regions in the world. To evaluate our approach, we compared results from MODIS to field-scale survey data at the pixel scale, and agricultural inventory statistics at sub-national scales. We then mapped changes in multi-cropped area in Asia from the early MODIS period (2001-2004) to present (2009-2012), and characterizes the magnitude and location of changes in cropping intensity over the last 12 years. We conclude with a discussion of the challenges, future improvements, and broader impacts of this work.
NASA Astrophysics Data System (ADS)
Kumari, S.; Sharma, P.; Srivastava, A.; Rastogi, D.; Sehgal, V. K.; Dhakar, R.; Roy, S. B.
2017-12-01
Vegetation dynamics and surface meteorology are tightly coupled through the exchange of momentum, moisture and heat between the land surface and the atmosphere. In this study, we use a recently developed coupled atmosphere-crop growth dynamics model to study these exchanges and their effects in a spring wheat cropland in northern India. In particular, we investigate the role of irrigation in controlling crop growth rates, surface meteorology, and sensible and latent heat fluxes. The model is developed by implementing a crop growth module based on the Simple and Universal Crop growth Simulator (SUCROS) model in the Weather Research Forecasting (WRF) mesoscale atmospheric model. The crop module calculates photosynthesis rates, carbon assimilation, and biomass partitioning as a function of environmental factors and crop development stage. The leaf area index (LAI) and root depth calculated by the crop module is then fed to the Noah-MP land module of WRF to calculate land-atmosphere fluxes. The crop model is calibrated using data from an experimental spring wheat crop site in the Indian Agriculture Research Institute. The coupled model is capable of simulating the observed spring wheat phenology. Irrigation is simulated by changing the soil moisture levels from 50% - 100% of field capacity. Results show that the yield first increases with increasing soil moisture and then starts decreasing as we further increase the soil moisture. Yield attains its maximum value with soil moisture at the level of 60% water of FC. At this level, high LAI values lead to a decrease in the Bowen Ratio because more energy is transferred to the atmosphere as latent heat rather than sensible heat resulting in a cooling effect on near-surface air temperatures. Apart from improving simulation of land-atmosphere interactions, this coupled modeling approach can form the basis for the seamless crop yield and seasonal scale weather outlook prediction system.
Detecting crop population growth using chlorophyll fluorescence imaging.
Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu
2017-12-10
For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45 cm×34 cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.
USDA-ARS?s Scientific Manuscript database
The DAYCENT biogeochemical model was used to investigate how the use of fertilisers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and N2O emissions. The model was validated using comprehensive multi-seasonal, high-f...
Performance of the CELSS Antarctic Analog Project (CAAP) Crop Production System
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)
1998-01-01
Regenerative life support systems potentially offer a level of self-sufficiency and a concomitant decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant based, regenerative life support requires resources in excess of resource allocations proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system to achieve enhanced performance efficiency. Both single crop, batch production, and continuous cultivation of mixed crops Product ion scenarios have been completed. The crop productivity as well as engineering performance of the chamber will be described. For each scenario, energy required and partitioned for lighting, cooling, pumps, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with up to 25 different crops under cultivation, 17 sq m of crop area provided a mean of 515 g edible biomass per day (83% of the approximately 620 g required for one person). Lighting efficiency (moles on photons kWh-1) approached 4 and the conversion efficiency of light energy to biomass was greatly enhanced compared with conventional growing systems. Engineering and biological performance achieved place plant-based life support systems at the threshold of feasibility.
Ramesh, Kulasekaran; Matloob, Amar; Aslam, Farhena; Florentine, Singarayer K.; Chauhan, Bhagirath S.
2017-01-01
Whilst it is agreed that climate change will impact on the long-term interactions between crops and weeds, the results of this impact are far from clear. We suggest that a thorough understanding of weed dominance and weed interactions, depending on crop and weed ecosystems and crop sequences in the ecosystem, will be the key determining factor for successful weed management. Indeed, we claim that recent changes observed throughout the world within the weed spectrum in different cropping systems which were ostensibly related to climate change, warrant a deeper examination of weed vulnerabilities before a full understanding is reached. For example, the uncontrolled establishment of weeds in crops leads to a mixed population, in terms of C3 and C4 pathways, and this poses a considerable level of complexity for weed management. There is a need to include all possible combinations of crops and weeds while studying the impact of climate change on crop-weed competitive interactions, since, from a weed management perspective, C4 weeds would flourish in the increased temperature scenario and pose serious yield penalties. This is particularly alarming as a majority of the most competitive weeds are C4 plants. Although CO2 is considered as a main contributing factor for climate change, a few Australian studies have also predicted differing responses of weed species due to shifts in rainfall patterns. Reduced water availability, due to recurrent and unforeseen droughts, would alter the competitive balance between crops and some weed species, intensifying the crop-weed competition pressure. Although it is recognized that the weed pressure associated with climate change is a significant threat to crop production, either through increased temperatures, rainfall shift, and elevated CO2 levels, the current knowledge of this effect is very sparse. A few models that have attempted to predict these interactions are discussed in this paper, since these models could play an integral role in developing future management programs for future weed threats. This review has presented a comprehensive discussion of the recent research in this area, and has identified key deficiencies which need further research in crop-weed eco-systems to formulate suitable control measures before the real impacts of climate change set in. PMID:28243245
Ramesh, Kulasekaran; Matloob, Amar; Aslam, Farhena; Florentine, Singarayer K; Chauhan, Bhagirath S
2017-01-01
Whilst it is agreed that climate change will impact on the long-term interactions between crops and weeds, the results of this impact are far from clear. We suggest that a thorough understanding of weed dominance and weed interactions, depending on crop and weed ecosystems and crop sequences in the ecosystem, will be the key determining factor for successful weed management. Indeed, we claim that recent changes observed throughout the world within the weed spectrum in different cropping systems which were ostensibly related to climate change, warrant a deeper examination of weed vulnerabilities before a full understanding is reached. For example, the uncontrolled establishment of weeds in crops leads to a mixed population, in terms of C 3 and C 4 pathways, and this poses a considerable level of complexity for weed management. There is a need to include all possible combinations of crops and weeds while studying the impact of climate change on crop-weed competitive interactions, since, from a weed management perspective, C 4 weeds would flourish in the increased temperature scenario and pose serious yield penalties. This is particularly alarming as a majority of the most competitive weeds are C 4 plants. Although CO 2 is considered as a main contributing factor for climate change, a few Australian studies have also predicted differing responses of weed species due to shifts in rainfall patterns. Reduced water availability, due to recurrent and unforeseen droughts, would alter the competitive balance between crops and some weed species, intensifying the crop-weed competition pressure. Although it is recognized that the weed pressure associated with climate change is a significant threat to crop production, either through increased temperatures, rainfall shift, and elevated CO 2 levels, the current knowledge of this effect is very sparse. A few models that have attempted to predict these interactions are discussed in this paper, since these models could play an integral role in developing future management programs for future weed threats. This review has presented a comprehensive discussion of the recent research in this area, and has identified key deficiencies which need further research in crop-weed eco-systems to formulate suitable control measures before the real impacts of climate change set in.
Effect of different cover crops on C and N cycling in sorghum NT systems.
Frasier, Ileana; Quiroga, Alberto; Noellemeyer, Elke
2016-08-15
In many no-till (NT) systems, residue input is low and fallow periods excessive, for which reasons soil degradation occurs. Cover crops could improve organic matter, biological activity, and soil structure. In order to study changes in soil carbon, nitrogen and microbial biomass a field experiment (2010-2012) was set up with sorghum (Sorghum bicolor Moench.) monoculture and with cover crops. Treatments were control (NT with bare fallow), rye (Secale cereale L.) (R), rye with nitrogen fertilization (R+N), vetch (Vicia villosa Roth.) (V), and rye-vetch mixture (VR) cover crops. A completely randomized block design with 4 replicates was used. Soil was sampled once a year at 0.06 and 0.12m depth for total C, microbial biomass carbon (MBC) and-nitrogen (MBN) determinations. Shoot and root biomass of sorghum and cover crops, litter biomass, and their respective carbon and nitrogen contents were determined. Soil temperatures at 0.06 and 0.12m depth, volumetric water contents and nitrate concentrations were determined at sowing, and harvest of each crop, and during sorghum's vegetative phase. NT led to a small increase in MBC and MBN, despite low litter and root biomass residue. Cover crops increased litter, root biomass, total C, MBC, and MBN. Relationships between MBC, MBN, and root-C and -N adjusted to logistic models (R(2)=0.61 and 0.43 for C and N respectively). Litter cover improved soil moisture to 45-50% water filled pore space and soil temperatures not exceeding 25°C during the warmest month. Microbial biomass stabilized at 20.1gCm(-2) and 1.9gNm(-2) in the upper 0.06m. Soil litter disappearance was a good indicator of mineral N availability. These findings support the view that cover crops, specifically legumes in NT systems can increase soil ecosystem services related to water and carbon storage, habitat for biodiversity, and nutrient availability. Copyright © 2016 Elsevier B.V. All rights reserved.
Agricultural irrigated land-use inventory for Osceola County, Florida, October 2013-April 2014
Marella, Richard L.; Dixon, Joann F.
2014-01-01
A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to increase the accuracy of current water-use estimates or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas within Osceola County for the agricultural growing period October 2013–April 2014. The irrigated areas were first delineated using land-use data and satellite imagery and then field verified between February and April 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 27,450 acres were irrigated during the study period. This includes 4,370 acres of vegetables, 10,970 acres of orchard crops, 1,620 acres of field crops, and 10,490 acres of ornamentals and grasses. Specifically, irrigated acreage included citrus (10,860 acres), sod (5,640 acres), pasture (4,580 acres), and potatoes (3,320 acres). Overall, groundwater was used to irrigate 18,350 acres (67 percent of the total acreage), and surface water was used to irrigate the remaining 9,100 acres (33 percent). Microirrigation systems accounted for 45 percent of the total acreage irrigated, flood systems 30 percent, and sprinkler systems the remaining 25 percent. An accurate, detailed, spatially referenced, and field-verified inventory of irrigated crop acreage can be used to assist resource managers making current and future county-level water-use estimates in Osceola County.