Sample records for cross bridges contribute

  1. Cross-bridge kinetics, cooperativity, and negatively strained cross- bridges in vertebrate smooth muscle. A laser-flash photolysis study

    PubMed Central

    1988-01-01

    . Cooperative reattachment of dephosphorylated cross-bridges may contribute to force maintenance at low energy cost and low cross-bridge cycling rates in smooth muscle. PMID:3373178

  2. Cross-bridge elasticity in single smooth muscle cells

    PubMed Central

    1983-01-01

    In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross- bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge. PMID:6413640

  3. Increased cross-bridge recruitment contributes to transient increase in force generation beyond maximal capacity in human myocardium.

    PubMed

    Milani-Nejad, Nima; Chung, Jae-Hoon; Canan, Benjamin D; Fedorov, Vadim V; Whitson, Bryan A; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L

    2018-01-01

    Cross-bridge attachment allows force generation to occur, and rate of tension redevelopment (k tr ) is a commonly used index of cross-bridge cycling rate. Tension overshoots have been observed briefly after a slack-restretch k tr maneuver in various species of animal models and humans. In this study, we set out to determine the properties of these overshoots and their possible underlying mechanism. Utilizing human cardiac trabeculae, we have found that tension overshoots are temperature-dependent and that they do not occur at resting states. In addition, we have found that myosin cross-bridge cycle is vital to these overshoots as inhibition of the cycle results in the blunting of the overshoots and the magnitude of the overshoots are dependent on the level of myofilament activation. Lastly, we show that the number of cross-bridges transiently increase during tension overshoots. These findings lead us to conclude that tension overshoots are likely due to a transient enhancement of the recruitment of myosin heads into the cross-bridge cycling, regulated by the myocardium, and with potential physiological significance in determining cardiac output. We show that isolated human myocardium is capable of transiently increasing its maximal force generation capability by increasing cross-bridge recruitment following slack-restretch maneuver. This process can potentially have important implications and significance in cardiac contraction in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely. Bridges...

  5. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely. Bridges...

  6. 2. DETAIL OF KLINGLE ROAD BRIDGE AND PATHWAY BRIDGE CROSSINGS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL OF KLINGLE ROAD BRIDGE AND PATHWAY BRIDGE CROSSINGS. AERIAL VIEW OF BEACH DRIVE AT INTERSECTION OF KLINGLE ROAD AND PORTER STREET. VIEW NE. - Rock Creek Park Road System, Washington, District of Columbia, DC

  7. Field performance of timber bridges. 4, Graves Crossing stress-laminated deck bridge

    Treesearch

    J. P. Wacker; M. A. Ritter

    The Graves Crossing bridge was constructed October 1991 in Antrim County, Michigan, as part of the demonstration timber bridge program sponsored by the USDA Forest Service. The bridge is a two-span continuous, stress-laminated deck superstructure and it is 36-ft long and 26-ft wide. The bridge is one of the first stress-laminated deck bridges to be built of sawn lumber...

  8. High ionic strength depresses muscle contractility by decreasing both force per cross-bridge and the number of strongly attached cross-bridges.

    PubMed

    Wang, Li; Bahadir, Anzel; Kawai, Masataka

    2015-06-01

    An increase in ionic strength (IS) lowers Ca(2+) activated tension in muscle fibres, however, its molecular mechanism is not well understood. In this study, we used single rabbit psoas fibres to perform sinusoidal analyses. During Ca(2+) activation, the effects of ligands (ATP, Pi, and ADP) at IS ranging 150-300 mM were studied on three rate constants to characterize elementary steps of the cross-bridge cycle. The IS effects were studied because a change in IS modifies the inter- and intra-molecular interactions, hence they may shed light on the molecular mechanisms of force generation. Both the ATP binding affinity (K1) and the ADP binding affinity (K 0) increased to 2-3x, and the Pi binding affinity (K5) decreased to 1/2, when IS was raised from 150 to 300 mM. The effect on ATP/ADP can be explained by stereospecific and hydrophobic interaction, and the effect on Pi can be explained by the electrostatic interaction with myosin. The increase in IS increased cross-bridge detachment steps (k2 and k-4), indicating that electrostatic repulsion promotes these steps. However, IS did not affect attachment steps (k-2 and k4). Consequently, the equilibrium constant of the detachment step (K2) increased by ~100%, and the force generation step (K4) decreased by ~30%. These effects together diminished the number of force-generating cross-bridges by 11%. Force/cross-bridge (T56) decreased by 26%, which correlates well with a decrease in the Debye length that limits the ionic atmosphere where ionic interactions take place. We conclude that the major effect of IS is a decrease in force/cross-bridge, but a decrease in the number of force generating cross-bridge also takes place. The stiffness during rigor induction did not change with IS, demonstrating that in-series compliance is not much affected by IS.

  9. High Ionic Strength Depresses Muscle Contractility by Decreasing both Force per Cross-bridge and the Number of Strongly Attached Cross-bridges

    PubMed Central

    Wang, Li; Bahadir, Anzel; Kawai, Masataka

    2015-01-01

    An increase in ionic strength (IS) lowers Ca2+ activated tension in muscle fibres, however, its molecular mechanism is not well understood. In this study, we used single rabbit psoas fibres to perform sinusoidal analyses. During Ca2+ activation, the effects of ligands (ATP, Pi, and ADP) at IS ranging 150 mM – 300 mM were studied on three rate constants to characterize elementary steps of the cross-bridge cycle. The IS effects were studied because a change in IS modifies the inter- and intra-molecular interactions, hence they may shed light on the molecular mechanisms of force generation. Both the ATP binding affinity (K1) and the ADP binding affinity (K0) increased to 2-3x, and the Pi binding affinity (K5) decreased to 1/2, when IS was raised from 150 mM to 300 mM. The effect on ATP/ADP can be explained by stereospecific and hydrophobic interaction, and the effect on Pi can be explained by the electrostatic interaction with myosin. The increase in IS increased cross-bridge detachment steps (k2 and k−4), indicating that electrostatic repulsion promotes these steps. However, IS did not affect attachment steps (k−2 and k4). Consequently, the equilibrium constant of the detachment step (K2) increased by ~100%, and the force generation step (K4) decreased by ~30%. These effects together diminished the number of force-generating cross-bridges by 11%. Force/cross-bridge (T56) decreased by 26%, which correlates well with a decrease in the Debye length that limits the ionic atmosphere where ionic interactions take place. We conclude that the major effect of IS is a decrease in force/cross-bridge, but a decrease in the number of force generating cross-bridge also takes place. The stiffness during rigor induction did not change with IS, demonstrating that in-series compliance is not much affected by IS. PMID:25836331

  10. Contributions of Diesel Truck Emissions to Indoor Elemental Carbon Concentrations in Home Proximate to Ambassador Bridge

    EPA Science Inventory

    Ambassador Bridge, connecting Detroit, Michigan and Windsor, Ontario, is the busiest international commercial vehicle crossing in North America, with a large percentage of heavy duty diesel trucks. This study seeks to examine the contribution of diesel truck traffic across Ambass...

  11. Equilibrium muscle cross-bridge behavior. Theoretical considerations.

    PubMed Central

    Schoenberg, M

    1985-01-01

    We have developed a model for the equilibrium attachment and detachment of myosin cross-bridges to actin that takes into account the possibility that a given cross-bridge can bind to one of a number of actin monomers, as seems likely, rather than to a site on only a single actin monomer, as is often assumed. The behavior of this multiple site model in response to constant velocity, as well as instantaneous stretches, was studied and the influence of system parameters on the force response explored. It was found that in the multiple site model the detachment rate constant has considerably greater influence on the mechanical response than the attachment rate constant. It is shown that one can obtain information about the detachment rate constants either by examining the relationship between the apparent stiffness and duration of stretch for constant velocity stretches or by examining the force-decay rate constants following an instantaneous stretch. The main effect of the attachment rate constant is to scale the mechanical response by influencing the number of attached cross-bridges. The significance of the modeling for the interpretation of experimental results is discussed. PMID:4041539

  12. Aerial view of the entire bridge crossing the Tennessee River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial view of the entire bridge crossing the Tennessee River looking up river. The swing bridge, when open, permits river navigational traffic to ply the river. Construction of a replacement bridge, to be located 93.27 feet down river, has now started. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  13. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output

    PubMed Central

    Fenwick, Axel J.; Wood, Alexander M.

    2017-01-01

    Muscles produce force and power by utilizing chemical energy through ATP hydrolysis. During concentric contractions (shortening), muscles generate less force compared to isometric contractions, but consume greater amounts of energy as shortening velocity increases. Conversely, more force is generated and less energy is consumed during eccentric muscle contractions (lengthening). This relationship between force, energy use, and the velocity of contraction has important implications for understanding muscle efficiency, but the molecular mechanisms underlying this behavior remain poorly understood. Here we used spatially-explicit, multi-filament models of Ca2+-regulated force production within a half-sarcomere to simulate how force production, energy utilization, and the number of bound cross-bridges are affected by dynamic changes in sarcomere length. These computational simulations show that cross-bridge binding increased during slow-velocity concentric and eccentric contractions, compared to isometric contractions. Over the full ranges of velocities that we simulated, cross-bridge cycling and energy utilization (i.e. ATPase rates) increased during shortening, and decreased during lengthening. These findings are consistent with the Fenn effect, but arise from a complicated relationship between velocity-dependent cross-bridge recruitment and cross-bridge cycling kinetics. We also investigated how force production, power output, and energy utilization varied with cross-bridge and myofilament compliance, which is impossible to address under typical experimental conditions. These important simulations show that increasing cross-bridge compliance resulted in greater cross-bridge binding and ATPase activity, but less force was generated per cross-bridge and throughout the sarcomere. These data indicate that the efficiency of force production decreases in a velocity-dependent manner, and that this behavior is sensitive to cross-bridge compliance. In contrast, significant

  14. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output.

    PubMed

    Fenwick, Axel J; Wood, Alexander M; Tanner, Bertrand C W

    2017-01-01

    Muscles produce force and power by utilizing chemical energy through ATP hydrolysis. During concentric contractions (shortening), muscles generate less force compared to isometric contractions, but consume greater amounts of energy as shortening velocity increases. Conversely, more force is generated and less energy is consumed during eccentric muscle contractions (lengthening). This relationship between force, energy use, and the velocity of contraction has important implications for understanding muscle efficiency, but the molecular mechanisms underlying this behavior remain poorly understood. Here we used spatially-explicit, multi-filament models of Ca2+-regulated force production within a half-sarcomere to simulate how force production, energy utilization, and the number of bound cross-bridges are affected by dynamic changes in sarcomere length. These computational simulations show that cross-bridge binding increased during slow-velocity concentric and eccentric contractions, compared to isometric contractions. Over the full ranges of velocities that we simulated, cross-bridge cycling and energy utilization (i.e. ATPase rates) increased during shortening, and decreased during lengthening. These findings are consistent with the Fenn effect, but arise from a complicated relationship between velocity-dependent cross-bridge recruitment and cross-bridge cycling kinetics. We also investigated how force production, power output, and energy utilization varied with cross-bridge and myofilament compliance, which is impossible to address under typical experimental conditions. These important simulations show that increasing cross-bridge compliance resulted in greater cross-bridge binding and ATPase activity, but less force was generated per cross-bridge and throughout the sarcomere. These data indicate that the efficiency of force production decreases in a velocity-dependent manner, and that this behavior is sensitive to cross-bridge compliance. In contrast, significant

  15. 25. VIEW OF McGREGOR BRIDGE (18811936), CROSSING THE MERRIMACK RIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF McGREGOR BRIDGE (1881-1936), CROSSING THE MERRIMACK RIVER AT BRIDGE STREET, LOOKING SOUTHEAST. NORTH ELEVATION OF DOUBLE-DECKED, THREE-SPAN DOUGLAS PATENT PARABOLIC IRON TRUSS ERECTED BY CORRUGATED METAL COMPANY (BERLIN IRON BRIDGE COMPANY, BERLIN, CT) From 'Bridge Street Bridge', photographer and date unknown. - Notre Dame Bridge, Spanning Merrimack River on Bridge Street, Manchester, Hillsborough County, NH

  16. 20. View southwest under bridge showing steel girder, cross beams, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View southwest under bridge showing steel girder, cross beams, and bracing of bascule leaves. - Yellow Mill Bridge, Spanning Yellow Mill Channel at Stratford Avenue, Bridgeport, Fairfield County, CT

  17. View of Steel Flume Bridge #2 crossing over wash. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Steel Flume Bridge #2 crossing over wash. Looking downstream, southwest - Childs-Irving Hydroelectric Project, Childs System, Flume Bridge No. 2, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  18. Two Salt Bridges Differentially Contribute to the Maintenance of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channel Function*

    PubMed Central

    Cui, Guiying; Freeman, Cody S.; Knotts, Taylor; Prince, Chengyu Z.; Kuang, Christopher; McCarty, Nael A.

    2013-01-01

    Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg352-Asp993 and Arg347-Asp924, that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg347 not only interacts with Asp924 but also interacts with Asp993. The tripartite interaction Arg347-Asp924-Asp993 mainly contributes to maintaining a stable s2 open subconductance state. The Arg352-Asp993 salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg352 and Asp993, channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle. PMID:23709221

  19. View of Steel Flume Bridge #3 crossing over Sally May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Steel Flume Bridge #3 crossing over Sally May Wash. Looking northwest - Childs-Irving Hydroelectric Project, Childs System, Flume Bridge No. 3, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  20. Contributions of diesel truck emissions to indoor elemental carbon concentrations in homes in proximity to Ambassador Bridge

    NASA Astrophysics Data System (ADS)

    Baxter, Lisa K.; Barzyk, Timothy M.; Vette, Alan F.; Croghan, Carry; Williams, Ronald W.

    Ambassador Bridge, connecting Detroit, Michigan and Windsor, Ontario, is the busiest international commercial vehicle crossing in North America, with a large percentage of heavy duty diesel trucks. This study seeks to examine the contribution of diesel truck traffic across Ambassador Bridge to indoor exposure patterns of elemental carbon (EC), a common surrogate for diesel exhaust particles, in homes in close proximity to the bridge. We also aim to understand the relative importance of home ventilation characteristics and wind speed. Measurements were collected as part of the Detroit Exposure and Aerosol Research Study (DEARS). Residential indoor and outdoor EC measurements were collected over five consecutive 24 h periods in both the summer and winter at 16 homes in close proximity to Ambassador Bridge. Ambient concentrations and meteorological data were collected at a central-site monitor, and home air exchange rates were estimated using a perfluorocarbon tracer. The contributions of ambient concentrations and Ambassador Bridge, and potential effect modification by wind speed and home ventilation status were quantified with regression analyses. Both ambient concentrations and the percentage of time a home was downwind from the bridge were associated with an increase in indoor concentrations. Ambient concentrations significantly contributed to indoor concentrations regardless of wind speed category but were a greater influence in home experiencing calm winds. The effect of the percent of time downwind variable on indoor levels was only significant in homes where the ventilation status was high. The distance a home was from the bridge tollbooth complex was not significantly associated with indoor concentrations. We conclude that diesel traffic emissions related to Ambassador Bridge may have an impact on indoor EC exposures. Given that people spend the majority of their time indoors, it is important to evaluate the impact of traffic-related pollution in the home

  1. Nonlinear Cross-Bridge Elasticity and Post-Power-Stroke Events in Fast Skeletal Muscle Actomyosin

    PubMed Central

    Persson, Malin; Bengtsson, Elina; ten Siethoff, Lasse; Månsson, Alf

    2013-01-01

    Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28–29°C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP]-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle. PMID:24138863

  2. Mutation of the myosin converter domain alters cross-bridge elasticity

    PubMed Central

    Köhler, Jan; Winkler, Gerhard; Schulte, Imke; Scholz, Tim; McKenna, William; Brenner, Bernhard; Kraft, Theresia

    2002-01-01

    Elastic distortion of a structural element of the actomyosin complex is fundamental to the ability of myosin to generate motile forces. An elastic element allows strain to develop within the actomyosin complex (cross-bridge) before movement. Relief of this strain then drives filament sliding, or more generally, movement of a cargo. Even with the known crystal structure of the myosin head, however, the structural element of the actomyosin complex in which elastic distortion occurs remained unclear. To assign functional relevance to various structural elements of the myosin head, e.g., to identify the elastic element within the cross-bridge, we studied mechanical properties of muscle fibers from patients with familial hypertrophic cardiomyopathy with point mutations in the head domain of the β-myosin heavy chain. We found that the Arg-719 → Trp (Arg719Trp) mutation, which is located in the converter domain of the myosin head fragment, causes an increase in force generation and fiber stiffness under isometric conditions by 48–59%. Under rigor and relaxing conditions, fiber stiffness was 45–47% higher than in control fibers. Yet, kinetics of active cross-bridge cycling were unchanged. These findings, especially the increase in fiber stiffness under rigor conditions, indicate that cross-bridges with the Arg719Trp mutation are more resistant to elastic distortion. The data presented here strongly suggest that the converter domain that forms the junction between the catalytic and the light-chain-binding domain of the myosin head is not only essential for elastic distortion of the cross-bridge, but that the main elastic distortion may even occur within the converter domain itself. PMID:11904418

  3. Ambassador Bridge Border Crossing System (ABBCS) : field operational test

    DOT National Transportation Integrated Search

    2000-05-01

    The purpose of the Ambassador Bridge Border Crossing System (ABBCS) field operational test (FOT) was to demonstrate the ability of ITS technology to expedite safe and legal international border crossings between Detroit, Michigan, and Windsor, Ontari...

  4. Cross-bridge blocker BTS permits direct measurement of SR Ca2+ pump ATP utilization in toadfish swimbladder muscle fibers.

    PubMed

    Young, Iain S; Harwood, Claire L; Rome, Lawrence C

    2003-10-01

    Because the major processes involved in muscle contraction require rapid utilization of ATP, measurement of ATP utilization can provide important insights into the mechanisms of contraction. It is necessary, however, to differentiate between the contribution made by cross-bridges and that of the sarcoplasmic reticulum (SR) Ca2+ pumps. Specific and potent SR Ca2+ pump blockers have been used in skinned fibers to permit direct measurement of cross-bridge ATP utilization. Up to now, there was no analogous cross-bridge blocker. Recently, N-benzyl-p-toluene sulfonamide (BTS) was found to suppress force generation at micromolar concentrations. We tested whether BTS could be used to block cross-bridge ATP utilization, thereby permitting direct measurement of SR Ca2+ pump ATP utilization in saponin-skinned fibers. At 25 microM, BTS virtually eliminates force and cross-bridge ATP utilization (both <4% of control value). By taking advantage of the toadfish swimbladder muscle's unique right shift in its force-Ca2+ concentration ([Ca2+]) relationship, we measured SR Ca2+ pump ATP utilization in the presence and absence of BTS. At 25 microM, BTS had no effect on SR pump ATP utilization. Hence, we used BTS to make some of the first direct measurements of ATP utilization of intact SR over a physiological range of [Ca2+]at 15 degrees C. Curve fits to SR Ca2+ pump ATP utilization vs. pCa indicate that they have much lower Hill coefficients (1.49) than that describing cross-bridge force generation vs. pCa (approximately 5). Furthermore, we found that BTS also effectively eliminates force generation in bundles of intact swimbladder muscle, suggesting that it will be an important tool for studying integrated SR function during normal motor behavior.

  5. Resting myosin cross-bridge configuration in frog muscle thick filaments.

    PubMed

    Cantino, M; Squire, J

    1986-02-01

    Clear images of myosin filaments have been seen in shadowed freeze-fracture replicas of single fibers of relaxed frog semitendinosus muscles rapidly frozen using a dual propane jet freezing device. These images have been analyzed by optical diffraction and computer averaging and have been modelled to reveal details of the myosin head configuration on the right-handed, three-stranded helix of cross-bridges. Both the characteristic 430-A and 140-150-A repeats of the myosin cross-bridge array could be seen. The measured filament backbone diameter was 140-160 A, and the outer diameter of the cross-bridge array was 300 A. Evidence is presented that suggests that the observed images are consistent with a model in which both of the heads of one myosin molecule tilt in the same direction at an angle of approximately 50-70 degrees to the normal to the filament long axis and are slewed so that they lie alongside each other and their radially projected density lies along the three right-handed helical tracks. Any perturbation of the myosin heads away from their ideal lattice sites needed to account for x-ray reflections not predicted for a perfect helix must be essentially along the three helical tracks of cross-bridges. Little trace of the presence of non-myosin proteins could be seen.

  6. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    PubMed Central

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S.

    2012-01-01

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (ton) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, ton decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts ton varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle. PMID:22995500

  7. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.

    2012-09-19

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion propertiesmore » (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.« less

  8. Cross-frame connection details for skewed steel bridges.

    DOT National Transportation Integrated Search

    2010-10-30

    This report documents a research investigation on connection details and bracing layouts for stability : bracing of steel bridges with skewed supports. Cross-frames and diaphragms play an important role in stabilizing : steel girders, particularly du...

  9. Volume balance and toxicity analysis of highway storm water discharge from Cross Lake Bridge.

    DOT National Transportation Integrated Search

    2009-06-01

    The Cross Lake Bridge in Shreveport, Louisiana, spans Cross Lake that serves as the citys water supply. Concern : about accidents on the bridge contaminating the lake prompted the Louisiana Department of Transportation and : Development (LADOTD) t...

  10. Three Bridge Fryer's Ford Bridge, Nimrod Bridge, and Ward's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Three Bridge - Fryer's Ford Bridge, Nimrod Bridge, and Ward's Crossing Bridge - Fryer's Ford Bridge, Spanning East Fork of Point Remove Creek at Fryer Bridge Road (CR 67), Solgohachia, Conway County, AR

  11. The Frank-Starling mechanism involves deceleration of cross-bridge kinetics and is preserved in failing human right ventricular myocardium.

    PubMed

    Milani-Nejad, Nima; Canan, Benjamin D; Elnakish, Mohammad T; Davis, Jonathan P; Chung, Jae-Hoon; Fedorov, Vadim V; Binkley, Philip F; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L

    2015-12-15

    Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients. Copyright © 2015 the American Physiological Society.

  12. Optimal cross-sectional sampling for river modelling with bridges: An information theory-based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridolfi, E.; Napolitano, F., E-mail: francesco.napolitano@uniroma1.it; Alfonso, L.

    2016-06-08

    The description of river topography has a crucial role in accurate one-dimensional (1D) hydraulic modelling. Specifically, cross-sectional data define the riverbed elevation, the flood-prone area, and thus, the hydraulic behavior of the river. Here, the problem of the optimal cross-sectional spacing is solved through an information theory-based concept. The optimal subset of locations is the one with the maximum information content and the minimum amount of redundancy. The original contribution is the introduction of a methodology to sample river cross sections in the presence of bridges. The approach is tested on the Grosseto River (IT) and is compared to existingmore » guidelines. The results show that the information theory-based approach can support traditional methods to estimate rivers’ cross-sectional spacing.« less

  13. Volume balance and toxicity analysis of highway stormwater discharge from the cross lake bridge.

    DOT National Transportation Integrated Search

    2009-06-01

    The Cross Lake Bridge in Shreveport, Louisiana, spans Cross Lake that serves as the citys water supply. Concern about accidents on the bridge contaminating the lake prompted the Louisiana Department of Transportation and Development (LADOTD) to co...

  14. Commercial border crossing and wait time measurement at Laredo World Trade Bridge and the Colombia-Solidarity Bridge.

    DOT National Transportation Integrated Search

    2012-03-01

    This research is to establish a baseline and on-going measurement of border crossing times and : delay by measuring travel times for commercial trucks crossing the port of entry (POE) from : Mexico into Texas at the Laredo World Trade Bridge and the ...

  15. Formation of lamellar cross bridges in the annulus fibrosus of the intervertebral disc is a consequence of vascular regression.

    PubMed

    Smith, Lachlan J; Elliott, Dawn M

    2011-05-01

    Cross bridges are radial structures within the highly organized lamellar structure of the annulus fibrosus of the intervertebral disc that connect two or more non-consecutive lamellae. Their origin and function are unknown. During fetal development, blood vessels penetrate deep within the AF and recede during postnatal growth. We hypothesized that cross bridges are the pathways left by these receding blood vessels. Initially, the presence of cross bridges was confirmed in cadaveric human discs aged 25 and 53 years. Next, L1-L2 intervertebral discs (n=4) from sheep ranging in age from 75 days fetal gestation to adult were processed for paraffin histology. Mid-sagittal sections were immunostained for endothelial cell marker PECAM-1. The anterior and posterior AF were imaged using differential interference contrast microscopy, and the following parameters were quantified: total number of distinct lamellae, total number of cross bridges, percentage of cross bridges staining positive for PECAM-1, cross bridge penetration depth (% total lamellae), and PECAM-1 positive cross bridge penetration depth. Cross bridges were first observed at 100 days fetal gestation. The overall number peaked in neonates then remained relatively unchanged. The percentage of PECAM-1 positive cross bridges declined progressively from almost 100% at 100 days gestation to less than 10% in adults. Cross bridge penetration depth peaked in neonates then remained unchanged at subsequent ages. Depth of PECAM-1 positive cross bridges decreased progressively after birth. Findings were similar for both the anterior and posterior. The AF lamellar architecture is established early in development. It later becomes disrupted as a consequence of vascularization. Blood vessels then recede, perhaps due to increasing mechanical stresses in the surrounding matrix. In this study we present evidence that the pathways left by receding blood vessels remain as lamellar cross bridges. It is unclear whether the presence

  16. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  17. Cardiac Myosin Binding Protein C Phosphorylation Affects Cross-Bridge Cycle's Elementary Steps in a Site-Specific Manner

    PubMed Central

    Wang, Li; Sadayappan, Sakthivel; Kawai, Masakata

    2014-01-01

    Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases. PMID:25420047

  18. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    PubMed

    Wang, Li; Sadayappan, Sakthivel; Kawai, Masakata

    2014-01-01

    Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  19. The cross-bridge dynamics is determined by two length-independent kinetics: Implications on muscle economy and Frank-Starling Law.

    PubMed

    Amiad Pavlov, Daria; Landesberg, Amir

    2016-01-01

    The cellular mechanisms underlying the Frank-Starling Law of the heart and the skeletal muscle force-length relationship are not clear. This study tested the effects of sarcomere length (SL) on the average force per cross-bridge and on the rate of cross-bridge cycling in intact rat cardiac trabeculae (n=9). SL was measured by laser diffraction and controlled with a fast servomotor to produce varying initial SLs. Tetanic contractions were induced by addition of cyclopiazonic acid, to maintain a constant activation. Stress decline and redevelopment in response to identical ramp shortenings, starting at various initial SLs, was analyzed. Both stress decline and redevelopment responses revealed two distinct kinetics: a fast and a slower phase. The duration of the rapid phases (4.2 ± 0.1 msec) was SL-independent. The second slower phase depicted a linear dependence of the rate of stress change on the instantaneous stress level. Identical slopes (70.5 ± 1.6 [1/s], p=0.33) were obtained during ramp shortening at all initial SLs, indicating that the force per cross-bridge and cross-bridge cycling kinetics are length-independent. A decrease in the slope at longer SLs was obtained during stress redevelopment, due to internal shortening. The first phase is attributed to rapid changes in the average force per cross-bridge. The second phase is ascribed to both cross-bridge cycling between its strong and weak conformations and to changes in the number of strong cross-bridges. Cross-bridge cycling kinetics and muscle economy are length-independent and the Frank-Starling Law cannot be attributed to changes in the force per cross-bridge or in the single cross-bridge cycling rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of negative mechanical stress on the orientation of myosin cross-bridges in muscle fibers.

    PubMed Central

    Burghardt, T P; Ajtai, K

    1989-01-01

    The effect of positive and negative stress on myosin cross-bridge orientation in glycerinated muscle fibers was investigated by using fluorescence polarization spectroscopy of the emission from the covalent label tetramethyl-rhodamine-5-(and -6)-iodoacetamide (IATR) specifically modifying sulfhydryl one (SH1) on the myosin heavy chain. Positive tension was applied by stretching the fiber in rigor. Negative tension was applied in two steps by using a protocol introduced by Goldman et al. [Goldman, Y. E., McCray, J. A. & Vallette, D. P. (1988) J. Physiol. (London) 398, 75P]: relaxing a fiber at resting length and stretching it until the relaxed tension is appreciable and then placing the fiber in rigor and releasing the tension onto the rigor cross-bridges. We found, as have others, that positive tension has no effect on the fluorescence polarization spectrum from the SH1-bound probe, indicating that the cross-bridge does not rotate under these conditions. Negative tension, however, causes a change in the fluorescence polarization spectrum that indicates a probe rotation. The changes in the polarization spectrum from negative stress are partially reversed by the subsequent application of positive stress. It appears that negative tension strains the cross-bridge, or the cross-bridge domain containing SH1, and causes it to rotate. Images PMID:2526336

  1. Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle.

    PubMed

    Tamura, Youjiro

    2018-01-01

    A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.

  2. Crossing Bridges That Connect the Arts, Cognitive Development, and the Brain

    ERIC Educational Resources Information Center

    Peterson, Rita

    2005-01-01

    Crossing high bridges offers the opportunity to ponder views from a distance: to see connections between places at the ground level or ideas that are familiar, and to capture an overview of places or ideas that are yet to be explored. The purpose of this essay is to explore the figural bridges that connect the arts with cognitive development and…

  3. Three Dimensional Mesoscale Analysis of Translamellar Cross-Bridge Morphologies in the Annulus Fibrosus using Optical Coherence Tomography

    PubMed Central

    Han, Sang Kuy; Chen, Chao-Wei; Wierwille, Jerry; Chen, Yu; Hsieh, Adam H.

    2014-01-01

    The defining characteristic of the annulus fibrosus (AF) of the intervertebral disc (IVD) has long been the lamellar structures that consist of highly ordered collagen fibers arranged in alternating oblique angles from one layer to the next. However, a series of recent histologic studies have demonstrated that AF lamellae contain elastin- and type VI collagen-rich secondary “cross-bridge” structures across lamellae. In this study, we use optical coherence tomography (OCT) to elucidate the three-dimensional (3D) morphologies of these translamellar cross-bridge in AF tissues. Mesoscale volumetric images by OCT reveal a highly heterogeneous spatial network and distribution of 3-D translamellar cross-bridges. The results of this study confirm the translamellar cross-bridge is identified as a distinguishable structure, which is laid in the interbundle space of adjacent lamellae and crisscrosses multiple lamellae in the radial direction. In contrast to previously proposed models extrapolated from 2-D sections, results from this current study show that translamellar cross-bridges exist as a complex, interconnected network. We also found much greater variation in lengths of cross-bridges within the interbundle space of lamellae (0.8-1.4 mm from the current study versus 0.3-0.6 mm from 2-D sections). OCT-based 3-D morphology of translamellar cross-bridge provides novel insight into the AF structure. PMID:25564974

  4. 24. Elevated SEPTA subway Bridge crossing NEC. Philadelphia, Philadelphia Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Elevated SEPTA subway Bridge crossing NEC. Philadelphia, Philadelphia Co., PA. Sec. 1101, MP 81.69. - Northeast Railroad Corridor, Amtrak route between Delaware-Pennsylvania & Pennsylvania-New Jersey state lines, Philadelphia, Philadelphia County, PA

  5. 26. Elevated SEPTA subway Bridge crossing NEC. Philadelphia, Philadelphia Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Elevated SEPTA subway Bridge crossing NEC. Philadelphia, Philadelphia Co., PA. Sec. 1101, MP 81.69. - Northeast Railroad Corridor, Amtrak route between Delaware-Pennsylvania & Pennsylvania-New Jersey state lines, Philadelphia, Philadelphia County, PA

  6. 25. Elevated SEPTA subway Bridge crossing NEC. Philadelphia, Philadelphia Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Elevated SEPTA subway Bridge crossing NEC. Philadelphia, Philadelphia Co., PA. Sec. 1101, MP 81.69. - Northeast Railroad Corridor, Amtrak route between Delaware-Pennsylvania & Pennsylvania-New Jersey state lines, Philadelphia, Philadelphia County, PA

  7. Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm (20ΔRRM) Mice.

    PubMed

    Pulcastro, Hannah C; Awinda, Peter O; Methawasin, Mei; Granzier, Henk; Dong, Wenji; Tanner, Bertrand C W

    2016-01-01

    Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20 (ΔRRM) ) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20 (ΔRRM) animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20 (ΔRRM) on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca(2+)-activated, skinned papillary muscle strips from Rbm20 (ΔRRM) and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca(2+)-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20 (ΔRRM) vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20 (ΔRRM) myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the

  8. COOH-terminal truncation of flightin decreases myofilament lattice organization, cross-bridge binding, and power output in Drosophila indirect flight muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Bertrand C.W.; Miller, Mark S.; Miller, Becky M.

    2011-08-26

    The indirect flight muscle (IFM) of insects is characterized by a near crystalline myofilament lattice structure that likely evolved to achieve high power output. In Drosophila IFM, the myosin rod binding protein flightin plays a crucial role in thick filament organization and sarcomere integrity. Here we investigate the extent to which the COOH terminus of flightin contributes to IFM structure and mechanical performance using transgenic Drosophila expressing a truncated flightin lacking the 44 COOH-terminal amino acids (fln{sup {Delta}C44}). Electron microscopy and X-ray diffraction measurements show decreased myofilament lattice order in the fln{sup {Delta}C44} line compared with control, a transgenic flightin-nullmore » rescued line (fln{sup +}). fln{sup {Delta}C44} fibers produced roughly 1/3 the oscillatory work and power of fln{sup +}, with reduced frequencies of maximum work (123 Hz vs. 154 Hz) and power (139 Hz vs. 187 Hz) output, indicating slower myosin cycling kinetics. These reductions in work and power stem from a slower rate of cross-bridge recruitment and decreased cross-bridge binding in fln{sup {Delta}C44} fibers, although the mean duration of cross-bridge attachment was not different between both lines. The decreases in lattice order and myosin kinetics resulted in fln{sup {Delta}C44} flies being unable to beat their wings. These results indicate that the COOH terminus of flightin is necessary for normal myofilament lattice organization, thereby facilitating the cross-bridge binding required to achieve high power output for flight.« less

  9. Surviving track through Bridge No. 1601, Third B&O Crossing, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Surviving track through Bridge No. 1601, Third B&O Crossing, looking west. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  10. A cross-bridge based model of force depression: Can a single modification address both transient and steady-state behaviors?

    PubMed

    Corr, David T; Herzog, Walter

    2016-03-21

    Force depression (FD), the reduction of isometric force following active shortening, is a phenomenon of skeletal muscle that has received significant attention in biomechanical and physiological literature, yet the mechanisms underlying FD remain unknown. Recent experiments identified a slower rate of force redevelopment with increasing amounts of steady-state FD, suggesting that FD may be caused, at least in part, by a decrease in cross-bridge binding rate (Corr and Herzog, 2005; Koppes et al., 2014). Herein, we develop a cross-bridge based model of FD in which the binding rate function, f, decreases with the mechanical work performed during shortening. This modification incorporates a direct relationship between steady-state FD and muscle mechanical work (Corr and Herzog, 2005; Herzog et al., 2000; Kosterina et al., 2008), and is consistent with a proposed mechanism attributing FD to stress-induced inhibition of cross-bridge attachments (Herzog, 1998; Maréchal and Plaghki, 1979). Thus, for an increase in mechanical work, the model should predict a slower force redevelopment (decreased attachment rate) to a more depressed steady-state force (fewer attached cross-bridges), and a reduction in contractile element stiffness (Ford et al., 1981). We hypothesized that since this modification affects the cross-bridge kinetics, a corresponding model would be able to account for both transient and steady-state FD behaviors. Comparisons to prior experiments (Corr and Herzog, 2005; Herzog et al., 2000; Kosterina et al., 2008) show that both steady-state and transient aspects of FD, as well as the relationship of FD with respect to speed and amplitude of shortening, are well captured by this model. Thus, this relatively simple cross-bridge based model of FD lends support to a mechanism involving the inhibition of cross-bridge binding, and indicates that cross-bridge kinetics may play a critical role in FD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Phosphonate Pendant Armed Propylene Cross-Bridged Cyclam: Synthesis and Evaluation as a Chelator for Cu-64

    PubMed Central

    2015-01-01

    A propylene cross-bridged macrocyclic chelator with two phosphonate pendant arms (PCB-TE2P) was synthesized from cyclam. Various properties of the synthesized chelator, including Cu-complexation, Cu-complex stability, 64Cu-radiolabeling, and in vivo behavior, were studied and compared with those of a previously reported propylene cross-bridged chelator (PCB-TE2A). PMID:26617972

  12. 13. I95 bridge crossing corridor with Providence Station in background. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. I-95 bridge crossing corridor with Providence Station in background. Providence, Providence County, RI. sec. 4116, mp 185.15. - Northeast Railroad Corridor, Amtrak route between CT & MA state lines, Providence, Providence County, RI

  13. Investigation and Taguchi Optimization of Microbial Fuel Cell Salt Bridge Dimensional Parameters

    NASA Astrophysics Data System (ADS)

    Sarma, Dhrupad; Barua, Parimal Bakul; Dey, Nabendu; Nath, Sumitro; Thakuria, Mrinmay; Mallick, Synthia

    2018-01-01

    One major problem of two chamber salt bridge microbial fuel cells (MFCs) is the high resistance offered by the salt bridge to anion flow. Many researchers who have studied and optimized various parameters related to salt bridge MFC, have not shed much light on the effect of salt bridge dimensional parameters on the MFC performance. Therefore, the main objective of this research is to investigate the effect of length and cross sectional area of salt bridge and the effect of solar radiation and atmospheric temperature on MFC current output. An experiment has been designed using Taguchi L9 orthogonal array, taking length and cross sectional area of salt bridge as factors having three levels. Nine MFCs were fabricated as per the nine trial conditions. Trials were conducted for 3 days and output current of each of the MFCs along with solar insolation and atmospheric temperature were recorded. Analysis of variance shows that salt bridge length has significant effect both on mean (with 53.90% contribution at 95% CL) and variance (with 56.46% contribution at 87% CL), whereas the effect of cross sectional area of the salt bridge and the interaction of these two factors is significant on mean only (with 95% CL). Optimum combination was found at 260 mm salt bridge length and 506.7 mm2 cross sectional area with 4.75 mA of mean output current. The temperature and solar insolation data when correlated with each of the MFCs average output current, revealed that both external factors have significant impact on MFC current output but the correlation coefficient varies from MFC to MFC depending on salt bridge dimensional parameters.

  14. Faster cross-bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q MYH7 mutation.

    PubMed

    Witjas-Paalberends, E Rosalie; Ferrara, Claudia; Scellini, Beatrice; Piroddi, Nicoletta; Montag, Judith; Tesi, Chiara; Stienen, Ger J M; Michels, Michelle; Ho, Carolyn Y; Kraft, Theresia; Poggesi, Corrado; van der Velden, Jolanda

    2014-08-01

    The first mutation associated with hypertrophic cardiomyopathy (HCM) is the R403Q mutation in the gene encoding β-myosin heavy chain (β-MyHC). R403Q locates in the globular head of myosin (S1), responsible for interaction with actin, and thus motor function of myosin. Increased cross-bridge relaxation kinetics caused by the R403Q mutation might underlie increased energetic cost of tension generation; however, direct evidence is absent. Here we studied to what extent cross-bridge kinetics and energetics are related in single cardiac myofibrils and multicellular cardiac muscle strips of three HCM patients with the R403Q mutation and nine sarcomere mutation-negative HCM patients (HCMsmn). Expression of R403Q was on average 41 ± 4% of total MYH7 mRNA. Cross-bridge slow relaxation kinetics in single R403Q myofibrils was significantly higher (P < 0.0001) than in HCMsmn myofibrils (0.47 ± 0.02 and 0.30 ± 0.02 s(-1), respectively). Moreover, compared to HCMsmn, tension cost was significantly higher in the muscle strips of the three R403Q patients (2.93 ± 0.25 and 1.78 ± 0.10 μmol l(-1) s(-1) kN(-1) m(-2), respectively) which showed a positive linear correlation with relaxation kinetics in the corresponding myofibril preparations. This correlation suggests that faster cross-bridge relaxation kinetics results in an increase in energetic cost of tension generation in human HCM with the R403Q mutation compared to HCMsmn. Therefore, increased tension cost might contribute to HCM disease in patients carrying the R403Q mutation. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  15. Bridge No. 1601, Third B&O Crossing, over CSX (former B&O) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge No. 1601, Third B&O Crossing, over CSX (former B&O) tracks and North Branch Road, looking northwest. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  16. Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature.

    PubMed

    Milani-Nejad, Nima; Xu, Ying; Davis, Jonathan P; Campbell, Kenneth S; Janssen, Paul M L

    2013-01-01

    Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank-Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (k(tr); which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K(+) contractures to induce a tonic level of force, we showed the k(tr) was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of k(tr) in rat muscle at optimal length (L(opt)) and 90% of optimal length (L(90)) revealed that k(tr) was significantly slower at L(opt) (27.7 ± 3.3 and 27.8 ± 3.0 s(-1) in duplicate analyses) than at L(90) (45.1 ± 7.6 and 47.5 ± 9.2 s(-1)). We therefore show that k(tr) can be measured in intact rat and rabbit cardiac trabeculae, and that the k(tr) decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank-Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.

  17. Skewed steel bridges, part ii : cross-frame and connection design to ensure brace effectiveness : technical summary.

    DOT National Transportation Integrated Search

    2017-08-01

    Skewed bridges in Kansas are often designed such that the cross-frames are carried parallel to the skew angle up to 40, while many other states place cross-frames perpendicular to the girder for skew angles greater than 20. Skewed-parallel cross-...

  18. Skewed steel bridges, part ii : cross-frame and connection design to ensure brace effectiveness : final report.

    DOT National Transportation Integrated Search

    2017-08-01

    Skewed bridges in Kansas are often designed such that the cross-frames are carried parallel to the skew angle up to 40, while many other states place cross-frames perpendicular to the girder for skew angles greater than 20. Skewed-parallel cross-...

  19. No Bridge Too High: Infants Decide Whether to Cross Based on the Probability of Falling not the Severity of the Potential Fall

    ERIC Educational Resources Information Center

    Kretch, Kari S.; Adolph, Karen E.

    2013-01-01

    Do infants, like adults, consider both the probability of falling and the severity of a potential fall when deciding whether to cross a bridge? Crawling and walking infants were encouraged to cross bridges varying in width over a small drop-off, a large drop-off, or no drop-off. Bridge width affects the probability of falling, whereas drop-off…

  20. The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle.

    PubMed Central

    Nishiye, E; Somlyo, A V; Török, K; Somlyo, A P

    1993-01-01

    1. The effects of MgADP on cross-bridge kinetics were investigated using laser flash photolysis of caged ATP (P3-1(2-nitrophenyl) ethyladenosine 5'-triphosphate), in guinea-pig portal vein smooth muscle permeabilized with Staphylococcus aureus alpha-toxin. Isometric tension and in-phase stiffness transitions from rigor state were monitored upon photolysis of caged ATP. The estimated concentration of ATP released from caged ATP by high-pressure liquid chromatography (HPLC) was 1.3 mM. 2. The time course of relaxation initiated by photolysis of caged ATP in the absence of Ca2+ was well fitted during the initial 200 ms by two exponential functions with time constants of, respectively, tau 1 = 34 ms and tau 2 = 1.2 s and relative amplitudes of 0.14 and 0.86. Multiple exponential functions were needed to fit longer intervals; the half-time of the overall relaxation was 0.8 s. The second order rate constant for cross-bridge detachment by ATP, estimated from the rate of initial relaxation, was 0.4-2.3 x 10(4) M-1 s-1. 3. MgADP dose dependently reduced both the relative amplitude of the first component and the rate constant of the second component of relaxation. Conversely, treatment of muscles with apyrase, to deplete endogenous ADP, increased the relative amplitude of the first component. In the presence of MgADP, in-phase stiffness decreased during force maintenance, suggesting that the force per cross-bridge increased. The apparent dissociation constant (Kd) of MgADP for the cross-bridge binding site, estimated from its concentration-dependent effect on the relative amplitude of the first component, was 1.3 microM. This affinity is much higher than the previously reported values (50-300 microM for smooth muscle; 18-400 microM for skeletal muscle; 7-10 microM for cardiac muscle). It is possible that the high affinity reflects the properties of a state generated during the co-operative reattachment cycle, rather than that of the rigor bridge. 4. The rate constant of Mg

  1. Bridge No. 1601, Third B&O Crossing, over CSX tracks in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge No. 1601, Third B&O Crossing, over CSX tracks in North Branch, Maryland, looking northwest. The Pittsburgh Plate Glass Plant can be seen in the background. NPS property boundary is out of view at lower right. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  2. Force transients and minimum cross-bridge models in muscular contraction.

    PubMed

    Kawai, Masataka; Halvorson, Herbert R

    2007-01-01

    Two- and three-state cross-bridge models are considered and examined with respect to their ability to predict three distinct phases of the force transients that occur in response to step change in muscle fiber length. Particular attention is paid to satisfying the Le Châtelier-Brown Principle. This analysis shows that the two-state model can account for phases 1 and 2 of a force transient, but is barely adequate to account for phase 3 (delayed force) unless a stretch results in a sudden increase in the number of cross-bridges in the detached state. The three-state model (A-->B-->C-->A) makes it possible to account for all three phases if we assume that the A-->B transition is fast (corresponding to phase 2), the B-->A transition is of intermediate speed (corresponding to phase 3), and the C-->A transition is slow; in such a scenario, states A and C can support or generate force (high force states) but state B cannot (detached, or low-force state). This model involves at least one ratchet mechanism. In this model, force can be generated by either of two transitions: B-->A or B-->C. To determine which of these is the major force-generating step that consumes ATP and transduces energy, we examine the effects of ATP, ADP, and phosphate (Pi) on force transients. In doing so, we demonstrate that the fast transition (phase 2) is associated with the nucleotide-binding step, and that the intermediate-speed transition (phase 3) is associated with the Pi-release step. To account for all the effects of ligands, it is necessary to expand the three-state model into a six-state model that includes three ligand-bound states. The slowest phase of a force transient (phase 4) cannot be explained by any of the models described unless an additional mechanism is introduced. Here we suggest a role of series compliance to account for this phase, and propose a model that correlates the slowest step of the cross-bridge cycle (transition C-->A) to: phase 4 of step analysis, the rate

  3. Volume balance and toxicity analysis of highway storm water discharge from Cross Lake Bridge : technical summary report.

    DOT National Transportation Integrated Search

    2009-09-01

    The Cross Lake Bridge is approximately 10,000 feet long and spans Cross Lake. It is part of : Interstate 220 that bypasses Shreveport, Louisiana from Interstate 20, the longest interstate : highway in the country and heavily traveled by both car and ...

  4. Bridging the Divide: Cross-Cultural Mediation

    ERIC Educational Resources Information Center

    Mahan, Laura N.; Mahuna, Joshua M.

    2017-01-01

    The article strives to contribute to the growing field of conflict resolution by analyzing contrasting cross-cultural perceptions through insights from multiple areas to resolve intercultural conflicts and disputes. Western-centric mediation techniques are dissected in juxtaposition to indigenous methodologies in degrees of (1) substantiality and…

  5. Ca2+-pumping impairment during repetitive fatiguing contractions in single myofibers: role of cross-bridge cycling

    PubMed Central

    Shiah, Amy A.; Gandra, Paulo G.; Hogan, Michael C.

    2013-01-01

    The energy cost of contractions in skeletal muscle involves activation of both actomyosin and sarcoplasmic reticulum (SR) Ca2+-pump (SERCA) ATPases, which together determine the overall ATP demand. During repetitive contractions leading to fatigue, the relaxation rate and Ca2+ pumping become slowed, possibly because of intracellular metabolite accumulation. The role of the energy cost of cross-bridge cycling during contractile activity on Ca2+-pumping properties has not been investigated. Therefore, we inhibited cross-bridge cycling by incubating isolated Xenopus single fibers with N-benzyl-p-toluene sulfonamide (BTS) to study the mechanisms by which SR Ca2+ pumping is impaired during fatiguing contractions. Fibers were stimulated in the absence (control) and presence of BTS and cytosolic calcium ([Ca2+]c) transients or intracellular pH (pHi) changes were measured. BTS treatment allowed normal [Ca2+]c transients during stimulation without cross-bridge activation. At the time point that tension was reduced to 50% in the control condition, the fall in the peak [Ca2+]c and the increase in basal [Ca2+]c did not occur with BTS incubation. The progressively slower Ca2+ pumping rate and the fall in pHi during repetitive contractions were reduced during BTS conditions. However, when mitochondrial ATP supply was blocked during contractions with BTS present (BTS + cyanide), there was no further slowing in SR Ca2+ pumping during contractions compared with the BTS-alone condition. Furthermore, the fall in pHi was significantly less during the BTS + cyanide condition than in the control conditions. These results demonstrate that factors related to the energetic cost of cross-bridge cycling, possibly the accumulation of metabolites, inhibit the Ca2+ pumping rate during fatiguing contractions. PMID:23678027

  6. Social capital among migrating doctors: the "bridge" over troubled water.

    PubMed

    Terry, Daniel R; Quynh, Lê

    2014-01-01

    The purpose of this paper is to examine the concept of social capital among International Medical Graduates (IMGs). It will specifically examine bridging social capital and greater intercultural communication which provides IMGs access to the wider community and plays a key role in cross-cultural adaptation and acculturation. A review of the literature. An Australian wide shortage of doctors has led to an increased reliance on the recruitment of IMGs. As IMGs migrate, they may encounter different meanings of illness, models of care and a number of social challenges. Nevertheless, greater cross-cultural adaptation and acculturation occurs through bridging social capital, where intercultural communication, new social networks and identity aids integration. This process produces more opportunities for economic capital growth and upward mobility than bonding social capital. Concerns regarding immigration, appropriate support and on-going examination processes have been expressed by IMGs in a number of studies and policy papers. However, there is very little insight into what contributes cross-cultural adaptation of IMGs. As IMGs migrate to not only a new country, but also a new health system and workplace they arrive with different cultural meanings of illness and models of care. These differences may be in contrast to the dominant western medical model, but often bring positive contributions to patient care in the new environment. In addition, improving bridging social capital provides IMGs access to the wider community and has been demonstrated to play a key role in cross-cultural adaptation and ultimately acculturation.

  7. Measurement of bridge scour at the SR-32 crossing of the Sacramento River at Hamilton City, California, 1987-92

    USGS Publications Warehouse

    Blodgett, J.C.; Harris, Carroll D.; ,

    1993-01-01

    A study of the State Route 32 crossing of the Sacramento River near Hamilton City, California, is being made to determine those channel and bridge factors that contribute to scour at the site. Three types of scour data have been measured-channel bed (natural) scour, constriction (general) scour, and local (bridge-pier induced) scour. During the years 1979-93, a maximum of 3.4 ft of channel bed scour, with a mean of 1.4 ft, has been measured. Constriction scour, which may include channel bed scour, has been measured at the site nine times during the years 1987-92. The calculated amount of constriction scour ranged from 0.2 to 3.0 ft, assuming the reference is the mean bed elevation. Local scour was measured four times at the site in 1991 and 1992 and ranged from -2.1 (fill) to 11.6 ft , with the calculated amounts dependent on the bed reference elevation and method of computation used. Surveys of the channel bed near the bridge piers indicate the horizontal location of lowest bed elevation (maximum depth of scour) may vary at least 17 ft between different surveys at the same pier and most frequently is located downstream from the upstream face of the pier.

  8. Force transients and minimum cross-bridge models in muscular contraction

    PubMed Central

    Halvorson, Herbert R.

    2010-01-01

    Two- and three-state cross-bridge models are considered and examined with respect to their ability to predict three distinct phases of the force transients that occur in response to step change in muscle fiber length. Particular attention is paid to satisfying the Le Châtelier–Brown Principle. This analysis shows that the two-state model can account for phases 1 and 2 of a force transient, but is barely adequate to account for phase 3 (delayed force) unless a stretch results in a sudden increase in the number of cross-bridges in the detached state. The three-state model (A → B → C → A) makes it possible to account for all three phases if we assume that the A → B transition is fast (corresponding to phase 2), the B → C transition is of intermediate speed (corresponding to phase 3), and the C → A transition is slow; in such a scenario, states A and C can support or generate force (high force states) but state B cannot (detached, or low-force state). This model involves at least one ratchet mechanism. In this model, force can be generated by either of two transitions: B → A or B → C. To determine which of these is the major force-generating step that consumes ATP and transduces energy, we examine the effects of ATP, ADP, and phosphate (Pi) on force transients. In doing so, we demonstrate that the fast transition (phase 2) is associated with the nucleotide-binding step, and that the intermediate-speed transition (phase 3) is associated with the Pi-release step. To account for all the effects of ligands, it is necessary to expand the three-state model into a six-state model that includes three ligand-bound states. The slowest phase of a force transient (phase 4) cannot be explained by any of the models described unless an additional mechanism is introduced. Here we suggest a role of series compliance to account for this phase, and propose a model that correlates the slowest step of the cross-bridge cycle (transition C → A) to: phase 4 of step

  9. trans-Methylpyridine cyclen versus cross-bridged trans-methylpyridine cyclen. Synthesis, acid-base and metal complexation studies (metal = Co2+, Cu2+, and Zn2+).

    PubMed

    Bernier, Nicolas; Costa, Judite; Delgado, Rita; Félix, Vítor; Royal, Guy; Tripier, Raphaël

    2011-05-07

    The synthesis of the cross-bridged cyclen CRpy(2) {4,10-bis((pyridin-2-yl)methyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane}, a constrained analogue of the previously described trans-methylpyridine cyclen Cpy(2) is reported. The additional ethylene bridge confers to CRpy(2) proton-sponge type behaviour which was explored by NMR and potentiometric studies. Transition metal complexes have been synthesized (by complexation of both ligands with Co(2+), Cu(2+) and Zn(2+)) and characterized in solution and in the solid state. The single crystal X-ray structures of [CoCpy(2)](2+), [CuCpy(2)](2+) and [ZnCpy(2)](2+) complexes were determined. Stability constants of the complexes, including those of the cross-bridged derivative, were determined using potentiometric titration data and the kinetic inertness of the [CuCRpy(2)](2+) complex in an acidic medium (half-life values) was evaluated by spectrophotometry. The pre-organized structure of the cross-bridged ligand imposes an additional strain for the complexation leading to complexes with smaller thermodynamic stability in comparison with the related non-bridged ligand. The electrochemical study involving cyclic voltammetry underlines the importance of the ethylene cross-bridge on the redox properties of the transition metal complexes.

  10. Split-cross-bridge resistor for testing for proper fabrication of integrated circuits

    NASA Technical Reports Server (NTRS)

    Buehler, M. G. (Inventor)

    1985-01-01

    An electrical testing structure and method is described whereby a test structure is fabricated on a large scale integrated circuit wafer along with the circuit components and has a van der Pauw cross resistor in conjunction with a bridge resistor and a split bridge resistor, the latter having two channels each a line width wide, corresponding to the line width of the wafer circuit components, and with the two channels separated by a space equal to the line spacing of the wafer circuit components. The testing structure has associated voltage and current contact pads arranged in a two by four array for conveniently passing currents through the test structure and measuring voltages at appropriate points to calculate the sheet resistance, line width, line spacing, and line pitch of the circuit components on the wafer electrically.

  11. Guidelines for replacement of deficient bridges with low-water stream crossings in the rural Midwest.

    DOT National Transportation Integrated Search

    2017-02-01

    This report provides guidance to public officials and engineers considering the replacement of a deficient or obsolete bridge with a low-water stream crossing (LWSC). An LWSC is a structure that is occasionally overtopped by floodwaters and is likely...

  12. Akashi Kaikyo Bridge, Japan

    NASA Image and Video Library

    2013-03-25

    NASA Terra spacecraft shows the Akashi Kaikyo Bridge or Pearl Bridge, the longest central span of any suspension bridge in the world, at 1991 meters, connecting the city of Kobe, Japan with Iwaja on Awaji Island by crossing the busy Akashi Strait.

  13. Chesapeake City Bridge. Bridge Inspection Report Number 11B.

    DTIC Science & Technology

    1979-12-01

    recommendations for th 1979 inspection of the Chesapeake City Bridge (Route designation , U.S. Route 213) which crosses the Chesappake and Delaware Canal...Los Arg4 .PASN4 . Mrkee. g14neaoos. Nevr,,r DE . Now York Oemnfto, overland PWn KS. Fh ~M% S0.mo- Tamp, TW=. F wia AMot ho d Jl 4O T, - kv Col. James G...1979 inspection of the Chesapeake City Bridge (Route designation , U.S. Route 213) which crosses the Chesapeake and Delaware Canal was undertaken for the

  14. Lower Extremity Limb Salvage with Cross Leg Pedicle Flap, Cross Leg Free Flap, and Cross Leg Vascular Cable Bridge Flap.

    PubMed

    Manrique, Oscar J; Bishop, Sarah N; Ciudad, Pedro; Adabi, Kian; Martinez-Jorge, Jorys; Moran, Steven L; Huang, Tony; Vijayasekaran, Aparna; Chen, Shih-Heng; Chen, Hung-Chi

    2018-05-16

     Lower extremity salvage following significant soft tissue loss can be complicated by lack of recipient vessel for free tissue transfer. We describe our experience in lower limb salvage for patients with no recipient vessels with the use of pedicle, free and cable bridge flaps.  A retrospective review from 1985 to 2017 of patients undergoing lower limb salvage using a contralateral pedicle cross leg (PCL) flaps, free cross leg (FCL) flaps, or free cable bridge (FCB) flaps was conducted. Demographics, etiology of the reconstruction, type of flap used, donor-site vessels, defect size, operating time, time of pedicle division, length of hospital stay, time to ambulation, and complications were analyzed.  A total of 53 patients (48 males and 5 females) with an average age of 35 years (range, 29-38 years) were identified. The etiology for the reconstruction was trauma in 52 patients and oncological resection in 1 patient. There were 18 PCL, 25 FCL, and 10 FCB completed. The recipient vessels for all flaps were the posterior tibial artery and vein. The average operating room times for PCL, FCL, and FCB flaps were 4, 9, and 10 hours, respectively. The average length of hospital stay was 5 weeks and average time to ambulation was 4 weeks. The average follow-up time was 7.5 years (range, 3-12 years). Complications encountered were hematoma (six), prolonged pain (six), total flap loss (two), reoperation (five), and infection (four). Limb salvage rates were 96.2%.  When ipsilateral limb vessels are not available, and other reconstructive options have been exhausted, cross leg flaps can be a viable option for limb salvage in the setting of extensive defects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres.

    PubMed Central

    Dantzig, J A; Hibberd, M G; Trentham, D R; Goldman, Y E

    1991-01-01

    1. The interaction between MgADP and rigor cross-bridges in glycerol-extracted single fibres from rabbit psoas muscle has been investigated using laser pulse photolysis of caged ATP (P3-1(2-nitrophenyl)ethyladenosine 5'-triphosphate) in the presence of MgADP and following small length changes applied to the rigor fibre. 2. Addition of 465 microM-MgADP to a rigor fibre caused rigor tension to decrease by 15.3 +/- 0.7% (S.E.M., n = 24 trials in thirteen fibres). The half-saturation value for this tension reduction was 18 +/- 4 microM (n = 23, thirteen fibres). 3. Relaxation from rigor by photolysis of caged ATP in the absence of Ca2+ was markedly slowed by inclusion of 20 microM-2 mM-MgADP in the photolysis medium. 4. Four phases of tension relaxation occurred with MgADP in the medium: at, a quick partial relaxation (in pre-stretch fibres); bt, a slowing of relaxation or a rise in tension for 50-100 ms; ct, a sudden acceleration of relaxation; and dt, a final, nearly exponential relaxation. 5. Experiments at varied MgATP and MgADP concentrations suggested that phase at is due to MgATP binding to nucleotide-free cross-bridges. 6. Phase bt was abbreviated by including 1-20 mM-orthophosphate (Pi) in the photolysis medium, or by applying quick stretches before photolysis or during phase bt. These results suggest that phases bt and ct are complex processes involving ADP dissociation, cross-bridge reattachment and co-operative detachment involving filament sliding and the Ca(2+)-regulatory system. 7. Stretching relaxed muscle fibres to 3.2-3.4 microns striation spacing followed by ATP removal and release of the rigor fibre until tension fell below the relaxed level allowed investigation of the strain dependence of relaxation in the regions of negative cross-bridge strain. In the presence of 50 microM-2 mM-MgADP and either 10 mM-Pi or 20 mM-2,3-butanedione monoxime, relaxation following photolysis of caged ATP was 6- to 8-fold faster for negatively strained cross-bridges

  16. Using optical tweezers to relate the chemical and mechanical cross-bridge cycles.

    PubMed

    Steffen, Walter; Sleep, John

    2004-12-29

    In most current models of muscle contraction there are two translational steps, the working stroke, whereby an attached myosin cross-bridge moves relative to the actin filament, and the repriming step, in which the cross-bridge returns to its original orientation. The development of single molecule methods has allowed a more detailed investigation of the relationship of these mechanical steps to the underlying biochemistry. In the normal adenosine triphosphate cycle, myosin.adenosine diphosphate.phosphate (M.ADP.Pi) binds to actin and moves it by ca. 5 nm on average before the formation of the end product, the rigor actomyosin state. All the other product-like intermediate states tested were found to give no net movement indicating that M.ADP.Pi alone binds in a pre-force state. Myosin states with bound, unhydrolysed nucleoside triphosphates also give no net movement, indicating that these must also bind in a post-force conformation and that the repriming, post- to pre-transition during the forward cycle must take place while the myosin is dissociated from actin. These observations fit in well with the structural model in which the working stroke is aligned to the opening of the switch 2 element of the ATPase site.

  17. A novel type of peptidoglycan-binding domain highly specific for amidated D-Asp cross-bridge, identified in Lactobacillus casei bacteriophage endolysins.

    PubMed

    Regulski, Krzysztof; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre

    2013-07-12

    Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-L-alanine amidase, whereas Lc-Lys-2 is a γ-D-glutamyl-L-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with D-Ala(4)→D-Asx-L-Lys(3) in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting D-Ala(4)→L-Ala-(L-Ala/L-Ser)-L-Lys(3); moreover, they do not lyse the L. lactis mutant containing only the nonamidated D-Asp cross-bridge, i.e. D-Ala(4)→D-Asp-L-Lys(3). In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 L-Lys(3)-D-Asn-L-Lys(3) bridges replacing the wild-type 4→3 D-Ala(4)-D-Asn-L-Lys(3) bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly D-Asn but not PG with only the nonamidated D-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the D-Asn interpeptide bridge of PG.

  18. Level II scour analysis for Bridge 28 (BRNATH00660028) on Town Highway 66, crossing Locust Creek, Barnard, Vermont

    USGS Publications Warehouse

    Severence, Timothy

    1997-01-01

    The Town Highway 66 crossing of the Locust Creek is a 41-ft-long, one-lane bridge consisting of a 39 ft steel stringer type bridge with a concrete deck (Vermont Agency of Transportation, written communication, August 24, 1994). The clear span is 36.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The upstream right wingwall is protected by stone fill. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is 0 degrees. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

  19. Salt-Bridge Energetics in Halophilic Proteins

    PubMed Central

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K.

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are −3.0 kcal mol−1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of −5.0 kcal mol−1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (−10 kcal mol−1) exceeds than that of bridge term (−7 kcal mol−1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic

  20. Salt-bridge energetics in halophilic proteins.

    PubMed

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are -3.0 kcal mol-1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of -5.0 kcal mol-1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (-10 kcal mol-1) exceeds than that of bridge term (-7 kcal mol-1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its

  1. Level II scour analysis for Bridge 51 (RANDTH00SC0051) on School Street, crossing Thayer Brook, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  2. Ca²⁺-pumping impairment during repetitive fatiguing contractions in single myofibers: role of cross-bridge cycling.

    PubMed

    Nogueira, Leonardo; Shiah, Amy A; Gandra, Paulo G; Hogan, Michael C

    2013-07-15

    The energy cost of contractions in skeletal muscle involves activation of both actomyosin and sarcoplasmic reticulum (SR) Ca²⁺-pump (SERCA) ATPases, which together determine the overall ATP demand. During repetitive contractions leading to fatigue, the relaxation rate and Ca²⁺ pumping become slowed, possibly because of intracellular metabolite accumulation. The role of the energy cost of cross-bridge cycling during contractile activity on Ca²⁺-pumping properties has not been investigated. Therefore, we inhibited cross-bridge cycling by incubating isolated Xenopus single fibers with N-benzyl-p-toluene sulfonamide (BTS) to study the mechanisms by which SR Ca²⁺ pumping is impaired during fatiguing contractions. Fibers were stimulated in the absence (control) and presence of BTS and cytosolic calcium ([Ca²⁺]c) transients or intracellular pH (pHi) changes were measured. BTS treatment allowed normal [Ca²⁺]c transients during stimulation without cross-bridge activation. At the time point that tension was reduced to 50% in the control condition, the fall in the peak [Ca²⁺]c and the increase in basal [Ca²⁺]c did not occur with BTS incubation. The progressively slower Ca²⁺ pumping rate and the fall in pHi during repetitive contractions were reduced during BTS conditions. However, when mitochondrial ATP supply was blocked during contractions with BTS present (BTS + cyanide), there was no further slowing in SR Ca²⁺ pumping during contractions compared with the BTS-alone condition. Furthermore, the fall in pHi was significantly less during the BTS + cyanide condition than in the control conditions. These results demonstrate that factors related to the energetic cost of cross-bridge cycling, possibly the accumulation of metabolites, inhibit the Ca²⁺ pumping rate during fatiguing contractions.

  3. Bridge Crossing Simulator

    DTIC Science & Technology

    2014-10-07

    is counted as. Per the TDTC, a test bridge with longitudinal and/or lateral symmetry under non- eccentric loading can be considered as 1, 2, or 4...Level Run036 3 MLC70T (tracked) BA Run046 6 AB Run055 9 AB Run060 9 BA Run064 12 BA Run071 15 AB Run155 3 MLC96W ( wheeled ) AB...Run331 9 AB Run359 15 AB Run430 12 MLC96W ( wheeled ) BA Run434 12 AB Run447 3 BA Bank Condition: Side Slope, Even Strain Channels High

  4. An amateur's contribution to the design of Telford's Menai Suspension Bridge: a commentary on Gilbert (1826) 'On the mathematical theory of suspension bridges'.

    PubMed

    Calladine, C R

    2015-04-13

    Davies Gilbert's work on the catenary is notable on two counts. First, it influenced Thomas Telford in formulating his final design for the Menai Strait suspension bridge (1826); and second, it established for the first time the form of the 'catenary of equal strength'. The classical catenary is a uniform flexible chain or cable hanging freely under gravity between supports. The 'catenary of equal strength' is the form of a cable whose cross-sectional area is made proportional to the tension at each point, so that the tensile stress is uniform throughout. In this paper I provide a sketch of the lives and achievements of Gilbert and Telford, and of their interaction over the Menai Bridge. There follows a commentary on Gilbert's 1826 paper, and on his two related publications; and a brief sketch of the earlier history of the catenary. I then describe the development of the suspension bridge up to the present time. Finally, I discuss relations between mathematical analysts and practical engineers. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  5. Assessment of Bridging Requirements and Current Bridging Capabilities for use of Legacy Heavy Forces Inside the Contemporary Operational Environment

    DTIC Science & Technology

    2003-01-01

    vehicle-launched bridge (AVLB), the medium-girder bridge (MGB) and the Ribbon Bridge. The AVLB is capable of crossing 17-meter gaps using a crew under ... armor protection (FM 5-34, 2001). The MGB is capable of crossing single spans of 46.2 meters with the addition of a “link-reinforcement system” that

  6. Effect of modified bridge exercise on trunk muscle activity in healthy adults: a cross sectional study.

    PubMed

    Yoon, Jeong-Oh; Kang, Min-Hyeok; Kim, Jun-Seok; Oh, Jae-Seop

    This is a cross-sectional study. University research laboratory. Fifteen healthy adults (mean age: 27.47 years) volunteered for this study. The individuals performed standard bridge exercise and modified bridge exercises with right leg-lift (single-leg-lift bridge exercise, single-leg-lift bridge exercise on an unstable surface, and single-leg-lift hip abduction bridge exercise). During the bridge exercises, electromyography of the rectus abdominis, internal oblique, erector spinae, and multifidus muscles was recorded using a wireless surface electromyography system. Two-way repeated-measures analysis of variance (exercise by side) with post hoc pairwise comparisons using Bonferroni correction was used to compare the electromyography data collected from each muscle. Bilateral internal oblique muscle activities showed significantly greater during single-leg-lift bridge exercise (95% confidence interval: right internal oblique=-8.99 to -1.08, left internal oblique=-6.84 to -0.10), single-leg-lift bridge exercise on an unstable surface (95% confidence interval: right internal oblique=-7.32 to -1.78, left internal oblique=-5.34 to -0.99), and single-leg-lift hip abduction bridge exercise (95% confidence interval: right internal oblique=-17.13 to -0.89, left internal oblique=-8.56 to -0.60) compared with standard bridge exercise. Bilateral rectus abdominis showed greater electromyography activity during single-leg-lift bridge exercise on an unstable surface (95% confidence interval: right rectus abdominis=-9.33 to -1.13, left rectus abdominis=-4.80 to -0.64) and single-leg-lift hip abduction bridge exercise (95% confidence interval: right rectus abdominis=-14.12 to -1.84, left rectus abdominis=-6.68 to -0.16) compared with standard bridge exercise. In addition, the right rectus abdominis muscle activity was greater during single-leg-lift hip abduction bridge exercise compared with single-leg-lift bridge exercise on an unstable surface (95% confidence interval=-7.51 to

  7. Sarcomeric protein modification during adrenergic stress enhances cross-bridge kinetics and cardiac output

    PubMed Central

    Gresham, Kenneth S.; Mamidi, Ranganath; Li, Jiayang; Kwak, Hyerin

    2017-01-01

    Molecular adaptations to chronic neurohormonal stress, including sarcomeric protein cleavage and phosphorylation, provide a mechanism to increase ventricular contractility and enhance cardiac output, yet the link between sarcomeric protein modifications and changes in myocardial function remains unclear. To examine the effects of neurohormonal stress on posttranslational modifications of sarcomeric proteins, mice were administered combined α- and β-adrenergic receptor agonists (isoproterenol and phenylephrine, IPE) for 14 days using implantable osmotic pumps. In addition to significant cardiac hypertrophy and increased maximal ventricular pressure, IPE treatment accelerated pressure development and relaxation (74% increase in dP/dtmax and 14% decrease in τ), resulting in a 52% increase in cardiac output compared with saline (SAL)-treated mice. Accelerated pressure development was maintained when accounting for changes in heart rate and preload, suggesting that myocardial adaptations contribute to enhanced ventricular contractility. Ventricular myocardium isolated from IPE-treated mice displayed a significant reduction in troponin I (TnI) and myosin-binding protein C (MyBP-C) expression and a concomitant increase in the phosphorylation levels of the remaining TnI and MyBP-C protein compared with myocardium isolated from saline-treated control mice. Skinned myocardium isolated from IPE-treated mice displayed a significant acceleration in the rate of cross-bridge (XB) detachment (46% increase) and an enhanced magnitude of XB recruitment (43% increase) at submaximal Ca2+ activation compared with SAL-treated mice but unaltered myofilament Ca2+ sensitivity of force generation. These findings demonstrate that sarcomeric protein modifications during neurohormonal stress are molecular adaptations that enhance in vivo ventricular contractility through accelerated XB kinetics to increase cardiac output. NEW & NOTEWORTHY Posttranslational modifications to sarcomeric

  8. Sarcomeric protein modification during adrenergic stress enhances cross-bridge kinetics and cardiac output.

    PubMed

    Gresham, Kenneth S; Mamidi, Ranganath; Li, Jiayang; Kwak, Hyerin; Stelzer, Julian E

    2017-03-01

    Molecular adaptations to chronic neurohormonal stress, including sarcomeric protein cleavage and phosphorylation, provide a mechanism to increase ventricular contractility and enhance cardiac output, yet the link between sarcomeric protein modifications and changes in myocardial function remains unclear. To examine the effects of neurohormonal stress on posttranslational modifications of sarcomeric proteins, mice were administered combined α- and β-adrenergic receptor agonists (isoproterenol and phenylephrine, IPE) for 14 days using implantable osmotic pumps. In addition to significant cardiac hypertrophy and increased maximal ventricular pressure, IPE treatment accelerated pressure development and relaxation (74% increase in dP/d t max and 14% decrease in τ), resulting in a 52% increase in cardiac output compared with saline (SAL)-treated mice. Accelerated pressure development was maintained when accounting for changes in heart rate and preload, suggesting that myocardial adaptations contribute to enhanced ventricular contractility. Ventricular myocardium isolated from IPE-treated mice displayed a significant reduction in troponin I (TnI) and myosin-binding protein C (MyBP-C) expression and a concomitant increase in the phosphorylation levels of the remaining TnI and MyBP-C protein compared with myocardium isolated from saline-treated control mice. Skinned myocardium isolated from IPE-treated mice displayed a significant acceleration in the rate of cross-bridge (XB) detachment (46% increase) and an enhanced magnitude of XB recruitment (43% increase) at submaximal Ca 2+ activation compared with SAL-treated mice but unaltered myofilament Ca 2+ sensitivity of force generation. These findings demonstrate that sarcomeric protein modifications during neurohormonal stress are molecular adaptations that enhance in vivo ventricular contractility through accelerated XB kinetics to increase cardiac output. NEW & NOTEWORTHY Posttranslational modifications to sarcomeric

  9. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas.

    PubMed

    Caremani, Marco; Dantzig, Jody; Goldman, Yale E; Lombardi, Vincenzo; Linari, Marco

    2008-12-15

    The relation between the chemical and mechanical steps of the myosin-actin ATPase reaction that leads to generation of isometric force in fast skeletal muscle was investigated in demembranated fibers of rabbit psoas muscle by determining the effect of the concentration of inorganic phosphate (Pi) on the stiffness of the half-sarcomere (hs) during transient and steady-state conditions of the isometric contraction (temperature 12 degrees C, sarcomere length 2.5 mum). Changes in the hs strain were measured by imposing length steps or small 4 kHz oscillations on the fibers in control solution (without added Pi) and in solution with 3-20 mM added Pi. At the plateau of the isometric contraction in control solution, the hs stiffness is 22.8 +/- 1.1 kPa nm(-1). Taking the filament compliance into account, the total stiffness of the array of myosin cross-bridges in the hs (e) is 40.7 +/- 3.7 kPa nm(-1). An increase in [Pi] decreases the stiffness of the cross-bridge array in proportion to the isometric force, indicating that the force of the cross-bridge remains constant independently of [Pi]. The rate constant of isometric force development after a period of unloaded shortening (r(F)) is 23.5 +/- 1.0 s(-1) in control solution and increases monotonically with [Pi], attaining a maximum value of 48.6 +/- 0.9 s(-1) at 20 mM [Pi], in agreement with the idea that Pi release is a relatively fast step after force generation by the myosin cross-bridge. During isometric force development at any [Pi], e and thus the number of attached cross-bridges increase in proportion to the force, indicating that, independently of the speed of the process that leads to myosin attachment to actin, there is no significant (>1 ms) delay between generation of stiffness and generation of force by the cross-bridges.

  10. Cross-bridge kinetics of fast and slow fibres of cat jaw and limb muscles: correlations with myosin subunit composition.

    PubMed

    Hoh, Joseph F Y; Li, Zhao-Bo; Qin, Han; Hsu, Michael K H; Rossmanith, Gunther H

    2007-01-01

    Mechanical properties of the jaw-closing muscles of the cat are poorly understood. These muscles are known to differ in myosin and fibre type compositions from limb muscles. This work aims to correlate mechanical properties of single fibres in cat jaw and limb muscles with their myosin subunit compositions. The stiffness minimum frequency, f(min), which reflects isometric cross-bridge kinetics, was measured in Ca(2+)-activated glycerinated fast and slow fibres from cat jaw and limb muscles for temperatures ranging between 15 and 30 degrees C by mechanical perturbation analysis. At 15 degrees C, f(min) was 0.5 Hz for limb-slow fibres, 4-6 Hz for jaw-slow fibres, and 10-13 Hz for limb-fast and jaw-fast fibres. The activation energy for f(min) obtained from the slope of the Arrhenius plot for limb-slow fibres was 30-40% higher than values for the other three types of fibres. SDS-PAGE and western blotting using highly specific antibodies verified that limb-fast fibres contained IIA or IIX myosin heavy chain (MyHC). Jaw-fast fibres expressed masticatory MyHC while both jaw-fast and jaw-slow fibres expressed masticatory myosin light chains (MLCs). The nucleotide sequences of the 3' ends of the slow MyHC cDNAs isolated from cat masseter and soleus cDNA libraries showed identical coding and 3'-untranslated regions, suggesting that jaw-slow and limb-slow fibres express the same slow MyHC gene. We conclude that the isometric cross-bridge cycling kinetics of jaw-fast and limb-fast fibres detected by f(min) are indistinguishable in spite of differences in MyHC and light chain compositions. However, jaw-slow fibres, in which the same slow MyHCs are found in combination with MLCs of the jaw type, show enhanced cross-bridge cycling kinetics and reduced activation energy for cross-bridge detachment.

  11. Guidelines for replacement of deficient bridges with low-water stream crossings in the rural Midwest : technical summary.

    DOT National Transportation Integrated Search

    2017-02-01

    This report provides guidance to public officials and engineers considering the replacement of a deficient or obsolete bridge with a low-water stream crossing (LWSC). An LWSC is a structure that is occasionally overtopped by floodwaters and is likely...

  12. Level II scour analysis for Bridge 4 (MNTGTH00020004) on Town Highway 2, crossing Wade Brook, Montgomery, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows was 0.1 ft. The worst-case contraction scour occurred at the 100-year and 500-year discharges. Abutment scour ranged from 3.9 to 5.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  13. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  14. Morphological aspects of myocardial bridges.

    PubMed

    Lujinović, Almira; Kulenović, Amela; Kapur, Eldan; Gojak, Refet

    2013-11-01

    Although some myocardial bridges can be asymptomatic, their presence often causes coronary disease either through direct compression of the "tunnel" segment or through stimulation and accelerated development of atherosclerosis in the segment proximally to the myocardial bridge. The studied material contained 30 human hearts received from the Department of Anatomy. The hearts were preserved 3 to 5 days in 10% formalin solution. Thereafter, the fatty tissue was removed and arterial blood vessels prepared by careful dissection with special reference to the presence of the myocardial bridges. Length and thickness of the bridges were measured by the precise electronic caliper. The angle between the myocardial bridge fibre axis and other axis of the crossed blood vessel was measured by a goniometer. The presence of the bridges was confirmed in 53.33% of the researched material, most frequently (43.33%) above the anterior interventricular branch. The mean length of the bridges was 14.64 ± 9.03 mm and the mean thickness was 1.23 ± 1.32 mm. Myocardial bridge fibres pass over the descending blood vessel at the angle of 10-90 degrees. The results obtained on a limited sample suggest that the muscular index of myocardial bridge is the highest for bridges located on RIA, but that the difference is not significant in relation to bridges located on other branches. The results obtained suggest that bridges located on other branches, not only those on RIA, could have a great contractive power and, consequently, a great compressive force, which would be exerted on the wall of a crossed blood vessel.

  15. Crystal structures of two cross-bridged chromium(III) tetra­aza­macrocycles

    PubMed Central

    Prior, Timothy J.; Maples, Danny L.; Maples, Randall D.; Hoffert, Wesley A.; Parsell, Trenton H.; Silversides, Jon D.; Archibald, Stephen J.; Hubin, Timothy J.

    2014-01-01

    The crystal structure of di­chlorido­(4,10-dimethyl-1,4,7,10-tetra­aza­bicyclo­[5.5.2]tetra­deca­ne)chromium(III) hexa­fluorido­phosphate, [CrCl2(C12H26N4)]PF6, (I), has monoclinic symmetry (space group P21/n) at 150 K. The structure of the related di­chlorido­(4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­deca­ne)chromium(III) hexa­fluorido­phosphate, [CrCl2(C14H30N4)]PF6, (II), also displays monoclinic symmetry (space group P21/c) at 150 K. In each case, the CrIII ion is hexa­coordinate with two cis chloride ions and two non-adjacent N atoms bound cis equatorially and the other two non-adjacent N atoms bound trans axially in a cis-V conformation of the macrocycle. The extent of the distortion from the preferred octa­hedral coordination geometry of the CrIII ion is determined by the parent macrocycle ring size, with the larger cross-bridged cyclam ring in (II) better able to accommodate this preference and the smaller cross-bridged cyclen ring in (I) requiring more distortion away from octa­hedral geometry. PMID:25309165

  16. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Detail, Vertical Cross Bracing-End Detail - Cumberland Covered Bridge, Spanning Mississinewa River, Matthews, Grant County, IN

  17. Social determinants of denture/bridge use: Japan gerontological evaluation study project cross-sectional study in older Japanese.

    PubMed

    Yamamoto, Tatsuo; Kondo, Katsunori; Aida, Jun; Suzuki, Kayo; Misawa, Jimpei; Nakade, Miyo; Fuchida, Shinya; Hirata, Yukio

    2014-06-03

    Studies suggest that using a denture/bridge may prevent disability in older people. However, not all older people with few remaining teeth use a denture/bridge. This cross-sectional study aimed to examine the social determinants which promote denture/bridge use among older Japanese. A total of 54,388 (25,630 males and 28,758 females) community-dwelling individuals aged 65 or over, living independently, able to perform daily activities, and with 19 or fewer teeth. The dependent variable was denture/bridge use. Socio-demographics, number of teeth, present illness, social participation, social support, and social networks were used as individual-level independent variables. Data for social capital were aggregated and used as local district (n = 561 for males, n = 562 for females) -level independent variables. Number of dentists working in hospitals/clinics per population and population density were used as municipality (n = 28) -level independent variables. Three-level multilevel Poisson regression analysis was performed for each sex. High equivalent income, low number of teeth, present illness, and living in a municipality with high population density were significantly associated with denture/bridge use in both sexes in the fully adjusted models (p < 0.05). Denture/bridge use was significantly associated with high educational attainment in males and participating in social groups in females in the fully adjusted model (p < 0.05). No significant associations were observed between denture/bridge use and social capital. Denture/bridge use was significantly associated with high economic status and present illness in both sexes, high educational attainment in males, and participation in social groups in females among community-dwelling older Japanese after adjusting for possible confounders.

  18. Kinetic coupling of phosphate release, force generation and rate-limiting steps in the cross-bridge cycle.

    PubMed

    Stehle, Robert; Tesi, Chiara

    2017-08-01

    A basic goal in muscle research is to understand how the cyclic ATPase activity of cross-bridges is converted into mechanical force. A direct approach to study the chemo-mechanical coupling between P i release and the force-generating step is provided by the kinetics of force response induced by a rapid change in [P i ]. Classical studies on fibres using caged-P i discovered that rapid increases in [P i ] induce fast force decays dependent on final [P i ] whose kinetics were interpreted to probe a fast force-generating step prior to P i release. However, this hypothesis was called into question by studies on skeletal and cardiac myofibrils subjected to P i jumps in both directions (increases and decreases in [P i ]) which revealed that rapid decreases in [P i ] trigger force rises with slow kinetics, similar to those of calcium-induced force development and mechanically-induced force redevelopment at the same [P i ]. A possible explanation for this discrepancy came from imaging of individual sarcomeres in cardiac myofibrils, showing that the fast force decay upon increase in [P i ] results from so-called sarcomere 'give'. The slow force rise upon decrease in [P i ] was found to better reflect overall sarcomeres cross-bridge kinetics and its [P i ] dependence, suggesting that the force generation coupled to P i release cannot be separated from the rate-limiting transition. The reasons for the different conclusions achieved in fibre and myofibril studies are re-examined as the recent findings on cardiac myofibrils have fundamental consequences for the coupling between P i release, rate-limiting steps and force generation. The implications from P i -induced force kinetics of myofibrils are discussed in combination with historical and recent models of the cross-bridge cycle.

  19. Assessment of the ``cross-bridge''-induced interaction of red blood cells by optical trapping combined with microfluidics

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Wagner, Christian; Priezzhev, Alexander V.

    2017-09-01

    Red blood cell (RBC) aggregation is an intrinsic property of the blood that has a direct effect on the blood viscosity and circulation. Nevertheless, the mechanism behind the RBC aggregation has not been confirmed and is still under investigation with two major hypotheses, known as "depletion layer" and "cross-bridging." We aim to ultimately understand the mechanism of the RBC aggregation and clarify both models. To measure the cell interaction in vitro in different suspensions (including plasma, isotonic solution of fibrinogen, isotonic solution of fibrinogen with albumin, and phosphate buffer saline) while moving the aggregate from one solution to another, an approach combining optical trapping and microfluidics has been applied. The study reveals evidence that RBC aggregation in plasma is at least partly due to the cross-bridging mechanism. The cell interaction strength measured in the final solution was found to be significantly changed depending on the initial solution where the aggregate was formed.

  20. Crossing the Water: Spiritual Growth in "Bridge to Terabithia" and "Lizzie Bright and the Buckminster Boy"

    ERIC Educational Resources Information Center

    Thomas, Trudelle

    2011-01-01

    The author analyses two award-winning juvenile novels, "Bridge to Terabithia" by Katherine Paterson and "Lizzie Bright and the Buckminster Boy" by Gary Schmidt. Each novel portrays a deep friendship between a boy and girl who cross a stream (or river) into a world that includes fantasy, play, closeness to nature and animals, and a sense of the…

  1. Bridging history and social psychology: what, how and why.

    PubMed

    Glăveanu, Vlad; Yamamoto, Koji

    2012-12-01

    This special issue aims to bridge history and social psychology by bringing together historians and social psychologists in an exercise of reading and learning from each other's work. This interdisciplinary exercise is not only timely but of great importance for both disciplines. Social psychologists can benefit from engaging with historical sources by being able to contextualise their findings and enrich their theoretical models. It is not only that all social and psychological phenomena have a history but this history is very much part of present-day and future developments. On the other hand historians can enhance their analysis of historical sources by drawing upon the conceptual tools developed in social psychology. They can "test" these tools and contribute to their validation and enrichment from completely different perspectives. Most important, as contributions to this special issue amply demonstrate, psychology's "historical turn" has the potential to shed a new light on striking, yet underexplored, similarities between contemporary public spheres and their pre-modern counterparts. This issue thereby calls into question the dichotomy between traditional and de-traditionalized societies-a distinction that lies at the heart of many social psychology accounts of the world we live in. The present editorial will introduce and consider this act of bridging history and social psychology by focusing on three main questions: What is the bridge made of? How can the two disciplines be bridged? and Why we cross this interdisciplinary bridge? In the end a reflection on the future of this collaboration will be offered.

  2. Salt bridge as a gatekeeper against partial unfolding.

    PubMed

    Hinzman, Mark W; Essex, Morgan E; Park, Chiwook

    2016-05-01

    Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. © 2016 The Protein Society.

  3. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Joint, Vertical Cross Bracing End Detail - Ceylon Covered Bridge, Limberlost Park, spanning Wabash River at County Road 900 South, Geneva, Adams County, IN

  4. Bathymetric surveys at Highway Bridges Crossing the Missouri River in Kansas City, Missouri, using a multibeam echo sounder, 2010.

    DOT National Transportation Integrated Search

    2010-11-01

    Bathymetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, on the Missouri River in the vicinity of nine bridges at seven highway crossings in Kansas City, Missouri, in March 2010....

  5. Akashi-Kaikyo Bridge, Japan

    NASA Image and Video Library

    2015-08-10

    The Akashi Kaikyo Bridge in Japan has the longest central span of any suspension bridge in the world at 1991 m. The total length of the bridge is 3911 m. It links the city of Kobe on the mainland of Honshu to Iwaya on Awaji Island, crossing the busy Akashi Strait. The image was acquired April 26, 2014, covers an area of 8.1 by 11.2 km, and is located at 34.6 degrees north, 135 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA19747

  6. Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres.

    PubMed

    Andruchov, Oleg; Andruchova, Olena; Wang, Yishu; Galler, Stefan

    2006-02-15

    Cross-bridge kinetics underlying stretch-induced force transients was studied in fibres with different myosin light chain (MLC) isoforms from skeletal muscles of rabbit and rat. The force transients were induced by stepwise stretches (< 0.3% of fibre length) applied on maximally Ca2+-activated skinned fibres. Fast fibre types IIB, IID (or IIX) and IIA and the slow fibre type I containing the myosin heavy chain isoforms MHC-IIb, MHC-IId (or MHC-IIx), MHC-IIa and MHC-I, respectively, were investigated. The MLC isoform content varied within fibre types. Fast fibre types contained the fast regulatory MLC isoform MLC2f and different proportions of the fast alkali MLC isoforms MLC1f and MLC3f. Type I fibres contained the slow regulatory MLC isoform MLC2s and the slow alkali MLC isoform MLC1s. Slow MLC isoforms were also present in several type IIA fibres. The kinetics of force transients differed by a factor of about 30 between fibre types (order from fastest to slowest kinetics: IIB > IID > IIA > I). The kinetics of the force transients was not dependent on the relative content of MLC1f and MLC3f. Type IIA fibres containing fast and slow MLC isoforms were about 1.2 times slower than type IIA fibres containing only fast MLC isoforms. We conclude that while the cross-bridge kinetics is mainly determined by the MHC isoforms present, it is affected by fast and slow MLC isoforms but not by the relative content of MLC1f and MLC3f. Thus, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the cross-bridge kinetics.

  7. Bridges and Equipment

    DTIC Science & Technology

    2009-09-15

    in.) Tire pressure +7 kPa (+1 psig) Ambient or chamber temperature +2 °C (+3.6 °F) Relative humidity (RH) +1% reading Wind speed +1 kt Distance... eccentric ), and number of bridge crossings. (4) Vehicle stopping data including speed, position, and direction on the bridge. (5) Ambient...fashion for initial trials, and then loads should be applied eccentrically . The load configuration as it was applied to the raft will be documented

  8. Implementation of heat-straightening repairs for Louisiana bridges.

    DOT National Transportation Integrated Search

    1998-12-01

    The goal of this study was to implement the latest heat-straightening repair technology on a Louisiana Bridge. The bridge chosen was an overpass just east of Lake Charles crossing 1-10. Working with both state and district personnel, the bridge was r...

  9. Level II scour analysis for Bridge 48 (FFIETH00300048) on Town Highway 30, crossing Wanzer Brook, Fairfield, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure FFIETH00300048 on Town Highway 30 crossing Wanzer Brook, Fairfield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northwestern Vermont. The 6.78-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover upstream of the bridge and on the downstream right bank is primarily pasture. The downstream left bank is forested. In the study area, Wanzer Brook has an incised, straight channel with a slope of approximately 0.03 ft/ft, an average channel top width of 65 ft and an average bank height of 5 ft. The channel bed material is cobble with a median grain size (D50) of 111 mm (0.364 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 11, 1995, indicated that the reach was stable. The Town Highway 30 crossing of Wanzer Brook is a 31-ft-long, two-lane bridge consisting of one 28-foot steel-beam span (Vermont Agency of Transportation, written communication, March 8, 1995). The opening length of the structure parallel to the bridge face is 26 ft.The bridge is supported by vertical stone wall abutments with concrete caps and “kneewall” footings. The channel is skewed approximately 25 degrees to the opening while the measured opening-skew-to-roadway is 20 degrees. A scour hole 1.5 ft deeper than

  10. From Cycling Between Coupled Reactions to the Cross-Bridge Cycle: Mechanical Power Output as an Integral Part of Energy Metabolism

    PubMed Central

    Diederichs, Frank

    2012-01-01

    ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hill’s equation (velocity as a function of load) is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2−], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided. PMID:24957757

  11. Investigation of Aerodynamic Interference between Twin Deck Bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitek, M. A.; Bojanowski, C.; Lottes, S. A.

    2016-05-01

    Construction of a twin bridge can be a cost effective and minimally disruptive way to increase capacity when an existing bridge is not near the end of its service life. With ever growing vehicular traffic, when demand approaches the capacity of many existing roads and bridges. Remodeling a structure with an insufficient number of lanes can be a good solution in case of smaller and less busy bridges. Closing down or reducing traffic on crossings of greater importance for the construction period, however, can result in major delays and revenue loss for commerce and transportation as well as increasing themore » traffic load on alternate route bridges. Multiple-deck bridges may be the answer to this issue. A parallel deck can be built next to the existing one, without reducing the flow. Additionally, a new bridge can be designed as a twin or multi-deck structure. Several such structures have been built throughout the United States, among them: - The New NY Bridge Project - the Tappan Zee Hudson River Crossing, - SR-182 Columbia River Bridge, - The Thaddeus Kosciusko Bridge (I-87), - The Allegheny River Bridge, Pennsylvania, which carries I76, - Fred Hartman Bridge, TX, see Figure 1.2. With a growing number of double deck bridges, additional, more detailed, studies on the interaction of such bridge pairs in windy conditions appears appropriate. Aerodynamic interference effects should be examined to assure the aerodynamic stability of both bridges. There are many studies on aerodynamic response of single deck bridges, but the literature on double-deck structures is not extensive. The experimental results from wind tunnels are still limited in number, as a parametric study is required, they can be very time consuming. Literature review shows that some investigation of the effects of gap-width and angle of wind incidence has been done. Most of the CFD computational studies that have been done were limited to 2D simulations. Therefore, it is desirable to investigate twin

  12. Level II scour analysis for Bridge 45a (BRIDUS00040045a) on U.S. Route 4, crossing Ottauquechee River, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRIDUS00040045a on U.S.. Route 4 crossing the Ottauquechee River, Bridgewater, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge available from VTAOT files was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D. The site is in the Green Mountain physiographic province of central Vermont in the town of Bridgewater. The 72.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the overbank areas are lawn or pasture with a few residences. The immediate channel banks have moderately dense woody vegetation. In the study area, the Ottauquechee River has a sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 81 ft and an average channel depth of 3 ft. The predominant channel bed materials are gravel and cobble (D50 is 54.9 mm or 0.180 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 26, 1994, indicated that the reach was stable. The U.S. Route 4 crossing of the Ottauquechee Riveris a 172-ft-long, two-lane bridge consisting of three steel-beam spans supported by spill-through abutments and two concrete piers (Vermont Agency of Transportation, written commun., August 25, 1994). The abutment and road approaches are protected by type-2 stone fill (less than 36 inches diameter). The North Branch of the Ottauquechee River joins the Ottauquechee River approximately 200 feet upstream of the bridge on the main branch’s left bank. The channel approach to the bridge has a mild bend with the bridge skewed 15

  13. Level II scour analysis for Bridge 6 (MORRTH00030006) on Town Highway 3, crossing Ryder Brook, Morristown, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MORRTH00030006 on Town Highway 3 crossing Ryder Brook, Morristown, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in north-central Vermont. The 19.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover also is forested. In the study area, Ryder Brook has a straight channel with an average channel top width of 450 ft and an average bank height of 7 ft. The predominant channel bed material is silt and clay with a median grain size (D50) of 0.0719 mm (0.000236 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 18, 1996, indicated that the reach was aggraded, but the channel through the bridge was scoured. The Town Highway 3 crossing of Ryder Brook is a 72-ft-long, two-lane bridge consisting of one 70-foot steel-beam span (Vermont Agency of Transportation, written communication, January 31, 1996). The bridge is supported by vertical, concrete abutments with spill-through embankments and wingwalls. The channel is not skewed to the opening and the opening-skew-to-roadway is zero degrees. Channel scour under the bridge was evident at this site during the Level I assessment. The depth of the channel increases from 3 feet at the upstream bridge face to 10 feet at the downstream bridge face. The

  14. Level II scour analysis for Bridge 45 (CHELTH00440045) on Town Highway 44, crossing first Branch White River, Chelsea, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph D.; Hammond, Robert E.

    1996-01-01

    bridge consisting of one 27-foot clear-span concrete-encased steel beam deck superstructure (Vermont Agency of Transportation, written commun., August 25, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is 5 degrees. Both abutment footings were reported as exposed and the left abutment was reported to be undermined by 0.5 ft at the time of the Level I assessment. The only scour protection measure at the site was type-1 stone fill (less than 12 inches diameter) along the left abutment which was reported as failed. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.4 to 5.1 ft. with the worst-case occurring at the 500-year discharge. Abutment scour ranged from 9.9 to 20.3 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a

  15. Level II scour analysis for Bridge 43 (SPRICYBRIG0043) on Bridge Street, crossing the Black River, Springfield, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Medalie, Laura

    1997-01-01

    year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Q-Bridge environmental impact statement : executive summary

    DOT National Transportation Integrated Search

    1997-04-01

    This Executive Summary provides a brief overview of the Final Environmental Impact Statement/Section 4(f) Evaluation (FEIS) for Interstate 95 (I-95) - Pearl Harbor Memorial Bridge (Q-Bridge) Crossing New Haven Harbor Study. The information presented ...

  17. Maximal liquid bridges between horizontal cylinders

    NASA Astrophysics Data System (ADS)

    Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.

    2016-08-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.

  18. The interrelation between mechanical characteristics of contracting muscle, cross-bridge internal structure, and the mechanism of chemomechanical energy transduction.

    PubMed

    Rosenfeld, E V

    2012-09-01

    The cross-bridge working stroke is regarded as a continuous (without jumps) change of myosin head internal state under the action of a force exerted within the nucleotide-binding site. Involvement of a concept of continuous cross-bridge conformation enables discussion of the nature of the force propelling muscle, and the Coulomb repulsion of like-charged adenosine triphosphate (ATP) fragments ADP(2-) and P (i) (2-) can quite naturally be considered as the source of this force. Two entirely different types of working stroke termination are considered. Along with the fluctuation mechanism, which controls the working stroke duration t (w) at isometric contraction, another interrupt mechanism is initially taken into account. It is triggered when the lever arm shift amounts to the maximal value S ≈ 11 nm, the back door opens, and P(i) crashes out. As a result, t (w) becomes inversely proportional to the velocity v of sliding filaments t (w) ≈ S/v for a wide range of values of v. Principal features of the experimentally observed dependences of force, efficiency, and rate of heat production on velocity and ATP concentration can then be reproduced by fitting a single parameter: the velocity-independent time span t (r) between the termination of the last and beginning of the next working stroke. v becomes the principal variable of the model, and the muscle force changes under external load are determined by variations in v rather than in the tension of filaments. The Boltzmann equation for an ensemble of cross-bridges is obtained, and some collective effects are discussed.

  19. Economic benefits of additional rail bridge capacity: a case study on the benefits of replacing the Merchants Bridge main spans at Saint Louis.

    DOT National Transportation Integrated Search

    2015-11-01

    The Merchants Memorial Mississippi Rail Bridge and MacArthur Bridge over the Mississippi River make up the most heavily : used Mississippi River rail crossing in the country. A large contributor to the popularity of the Merchants Bridge is its : acce...

  20. Bacteriophage-derived CHAP domain protein, P128, kills Staphylococcus cells by cleaving interpeptide cross-bridge of peptidoglycan.

    PubMed

    Sundarrajan, Sudarson; Raghupatil, Junjappa; Vipra, Aradhana; Narasimhaswamy, Nagalakshmi; Saravanan, Sanjeev; Appaiah, Chemira; Poonacha, Nethravathi; Desai, Srividya; Nair, Sandhya; Bhatt, Rajagopala Narayana; Roy, Panchali; Chikkamadaiah, Ravisha; Durgaiah, Murali; Sriram, Bharathi; Padmanabhan, Sriram; Sharma, Umender

    2014-10-01

    P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains. © 2014 The Authors.

  1. Roles for Cardiac MyBP-C in Maintaining Myofilament Lattice Rigidity and Prolonging Myosin Cross-Bridge Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, B.M.; Sadayappan, S.; Wang, Y.

    2011-10-06

    We investigated the influence of cardiac myosin binding protein-C (cMyBP-C) and its constitutively unphosphorylated status on the radial and longitudinal stiffnesses of the myofilament lattice in chemically skinned myocardial strips of the following mouse models: nontransgenic (NTG), effective null for cMyBP-C (t/t), wild-type cMyBP-C expressed into t/t (WT{sub t/t}), and constitutively unphosphorylated cMyBP-C (AllP{sub -t/t}). We found that the absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP{sub -t/t} resulted in a compressible cardiac myofilament lattice induced by rigor not observed in the NTG and WT{sub t/t}. These results suggest that the presence and phosphorylation ofmore » the N-terminus of cMyBP-C provides structural support and radial rigidity to the myofilament lattice. Examination of myofilament longitudinal stiffness under rigor conditions demonstrated a significant reduction in cross-bridge-dependent stiffness in the t/t compared with NTG controls, but not in the AllP{sub -t/t} compared with WT{sub t/t} controls. The absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP{sub -t/t} both resulted in a shorter myosin cross-bridge lifetime when myosin isoform was controlled. These data collectively suggest that cMyBP-C provides radial rigidity to the myofilament lattice through the N-terminus, and that disruption of the phosphorylation of cMyBP-C is sufficient to abolish this structural role of the N-terminus and shorten cross-bridge lifetime. Although the presence of cMyBP-C also provides longitudinal rigidity, phosphorylation of the N-terminus is not necessary to maintain longitudinal rigidity of the lattice, in contrast to radial rigidity.« less

  2. Repeated multibeam echosounder hydrographic surveys of 15 selected bridge crossings along the Missouri River from Niobrara to Rulo, Nebraska, during the flood of 2011

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Densmore, Brenda K.; Strauch, Kellan R.

    2014-01-01

    In 2011, unprecedented flooding in the Missouri River prompted transportation agencies to increase the frequency of monitoring riverbed elevations near bridges that cross the Missouri River. Hydrographic surveys were completed in cooperation with the Nebraska Department of Roads, using a multibeam echosounder at 15 highway bridges spanning the Missouri River from Niobrara to Rulo, Nebraska during and after the extreme 2011 flood. Evidence of bed elevation change near bridge piers was documented. The greatest amount of bed elevation change during the 2011 flood documented for this study occurred at the Burt County Missouri River Bridge at Decatur, Nebraska, where scour of about 45 feet, from before flooding, occurred between a bridge abutment and pier. Of the remaining sites, highway bridges where bed elevation change near piers appeared to have exceeded 10 feet include the Abraham Lincoln Memorial Bridge at Blair, Nebr., Bellevue Bridge at Bellevue, Nebr., and Nebraska City Bridge at Nebraska City, Nebr. Hydrographic surveys at 14 of the 15 sites were completed in mid-July and again in early October or late-November 2011. Near three of the bridges, the bed elevation of locations surveyed in July increased by more than 10 feet, on average, by late October or early November 2011. Bed elevations increased between 1 and 10 feet, on average, near six bridges. Near the remaining four bridges, bed elevations decreased between 1 and 4 feet, on average, from July to late October or early November.

  3. Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation

    PubMed Central

    Vandenboom, Rene; Hannon, James D; Sieck, Gary C

    2002-01-01

    We tested the hypothesis that force-velocity history modulates thin filament activation, as assessed by the rate of force redevelopment after shortening (+dF/dtR). The influence of isotonic force on +dF/dtR was assessed by imposing uniform amplitude (2.55 to 2.15 μm sarcomere−1) but different speed releases to intact frog muscle fibres during fused tetani. Each release consisted of a contiguous ramp- and step-change in length. Ramp speed was changed from release to release to vary fibre shortening speed from 1.00 (2.76 ± 0.11 μm half-sarcomere−1 s−1) to 0.30 of maximum unloaded shortening velocity (Vu), thereby modulating isotonic force from 0 to 0.34 Fo, respectively. The step zeroed force and allowed the fibre to shorten unloaded for a brief period of time prior to force redevelopment. Although peak force redevelopment after different releases was similar, +dF/dtR increased by 81 ± 6% (P < 0.05) as fibre shortening speed was reduced from 1.00 Vu. The +dF/dtR after different releases was strongly correlated with the preceding isotonic force (r = 0.99, P < 0.001). Results from additional experiments showed that the slope of slack test plots produced by systematically increasing the step size that followed each ramp were similar. Thus, isotonic force did not influence Vu (mean: 2.84 ± 0.10 μm half-sarcomere−1 s−1, P < 0.05). We conclude that isotonic force modulates +dF/dtR independent of change in Vu, an outcome consistent with a cooperative influence of attached cross-bridges on thin filament activation that increases cross-bridge attachment rate without alteration to cross-bridge detachment rate. PMID:12205189

  4. The Contribution of Interchain Salt Bridges to Triple-Helical Stability in Collagen

    PubMed Central

    Gurry, Thomas; Nerenberg, Paul S.; Stultz, Collin M.

    2010-01-01

    Abstract Studies on collagen and collagen-like peptides suggest that triple-helical stability can vary along the amino acid chain. In this regard, it has been shown that lysine residues in the Y position and acidic residues in the X′ position of (GPO)3GXYGX′Y′(GPO)3 peptides lead to triple-helical structures with melting temperatures similar to (GPO)8 (where O is hydroxyproline), which is generally regarded as the most stable collagen-like sequence of this length. This enhanced stability has been attributed to the formation of salt bridges between adjacent collagen chains. In this study, we explore the relationship between interchain salt bridge formation and triple-helical stability using detailed molecular simulations. Although our results confirm that salt bridges promote triple-helical stability, we find that not all salt bridges are created equal. In particular, lysine-glutamate salt bridges are most stabilizing when formed between residues in the middle strand (B) and the trailing strand (C), whereas lysine-aspartate salt bridges are most stabilizing when formed between residues in the leading (A) and middle (B) strand—the latter observation being consistent with recent NMR data on a heterotrimeric model peptide. Overall, we believe these data clarify the role of salt bridges in modulating triple-helical stability and can be used to guide the design of collagen-like peptides that have specific interchain interactions. PMID:20513408

  5. Level II scour analysis for Bridge 9 (BARRUSO3020009) on U.S. Route 302, crossing Jail Branch, Barre, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Ivanoff, Michael A.

    1997-01-01

    skew-to-roadway. There is evidence of channel scour along the right bank from 190 feet upstream of the bridge and extending through the bridge along the right abutment. Under the bridge, the scour depth is approximately 0.5 feet below the mean thalweg depth. Scour protection measures at the site include type-3 stone fill (less than 48 inches diameter) along the right bank extending from the bridge to 192 feet upstream. Type-2 stone fill (less than 36 inches diameter) is along the right abutment and the right downstream bank to 205 feet downtream of the bridge. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.2 to 0.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.3 to 7.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Computed scour for the 100-year event does not go below the abutment footings. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a

  6. 4. ENVIRONMENT, FROM NORTH, SHOWING RIVER ROAD BRIDGE CARRYING CASSELMAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. ENVIRONMENT, FROM NORTH, SHOWING RIVER ROAD BRIDGE CARRYING CASSELMAN RIVER ROAD OVER CASSELMAN RIVER, WITH MARYLAND GEOLOGICAL SURVEY STREAM-GAUGING STATION AT NORTHEAST CORNER OF BRIDGE - River Road Bridge, Crossing Casselman River on Casselman River Road, Grantsville, Garrett County, MD

  7. T-section glulam timber bridge modules : modeling and performance

    Treesearch

    Paul A. Morgan; Steven E. Taylor; Michael A. Ritter; John M. Franklin

    1999-01-01

    This paper describes the design, modeling, and testing of two portable timber bridges, each consisting of two noninterconnected longitudinal glued-laminated timber (glulam) deck panels 1.8 m (6 ft) wide. One bridge is 12.2 m (40 ft) long while the other bridge is 10.7 m (35 ft) long. The deck panels are fabricated in a unique double-tee cross section. The bridges...

  8. Evaluation of Virginia's first heated bridge.

    DOT National Transportation Integrated Search

    2000-12-01

    This study is a contribution to the Heated Bridge Technology Program established in 1991 under the Intermodal Surface Transportation Efficiency Act. The goal of the program was to find durable and environmentally friendly heated bridge technologies f...

  9. Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals.

    PubMed

    Gregory, Tremaine; Carrasco-Rueda, Farah; Alonso, Alfonso; Kolowski, Joseph; Deichmann, Jessica L

    2017-06-20

    Linear infrastructure development and resulting habitat fragmentation are expanding in Neotropical forests, and arboreal mammals may be disproportionately impacted by these linear habitat clearings. Maintaining canopy connectivity through preservation of connecting branches (i.e. natural canopy bridges) may help mitigate that impact. Using camera traps, we evaluated crossing rates of a pipeline right-of-way in a control area with no bridges and in a test area where 13 bridges were left by the pipeline construction company. Monitoring all canopy crossing points for a year (7,102 canopy camera nights), we confirmed bridge use by 25 mammal species from 12 families. With bridge use beginning immediately after exposure and increasing over time, use rates were over two orders of magnitude higher than on the ground. We also found a positive relationship between a bridge's use rate and the number of species that used it, suggesting well-used bridges benefit multiple species. Data suggest bridge use may be related to a combination of bridge branch connectivity, multiple connections, connectivity to adjacent forest, and foliage cover. Given the high use rate and minimal cost, we recommend all linear infrastructure projects in forests with arboreal mammal populations include canopy bridges.

  10. Level II scour analysis for Bridge 27 (WSTOTH00070027) on Town Highway 7, crossing Jenny Coolidge Brook, Weston, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WSTOTH00070027 on Town Highway 7 crossing Jenny Coolidge Brook, Weston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in southwestern Vermont. The 2.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture downstream of the bridge while upstream of the bridge is forested. In the study area, the Jenny Coolidge Brook has an incised, sinuous channel with a slope of approximately 0.04 ft/ft, an average channel top width of 51 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 122 mm (0.339 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 20, 1996, indicated that the reach was stable. The Town Highway 7 crossing of the Jenny Coolidge Brook is a 52-ft-long, two-lane bridge consisting of a 50-foot steel-beam span (Vermont Agency of Transportation, written communication, April 7, 1995). The opening length of the structure parallel to the bridge face is 49.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 5 degrees to the opening while the computed opening-skew-to-roadway is 15 degrees. The legs of the skeleton-type right abutment were exposed approximately 2 feet

  11. Level II scour analysis for Bridge 33 (WWINTH00300033) on Town Highway 30, crossing Mill Brook, West Windsor, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Flynn, Robert H.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WWINTH00300033 on Town Highway 30 crossing Mill Brook, West Windsor, Vermont (Figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 24.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream of the bridge while the immediate banks have dense woody vegetation. Downstream of the bridge is forested. In the study area, Mill Brook has an incised, sinuous channel with a slope of approximately 0.004 ft/ft, an average channel top width of 58 ft and an average bank height of 5 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 65.7 mm (0.215 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 5, 1996, indicated that the reach was stable. The Town Highway 30 crossing of the Mill Brook is a 46-ft-long, one-lane covered bridge consisting of a 40-foot wood-beam span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 36.3 ft. The bridge is supported by vertical, concrete capped laid-up stone abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees. The only scour protection measure at

  12. Economic impact for the region of replacement of the Merchants Bridge.

    DOT National Transportation Integrated Search

    2016-01-01

    The Merchants Memorial Mississippi Rail Bridge and MacArthur Bridge over the Mississippi River make up the most heavily used Mississippi River rail crossing in the country. A large contributor to the popularity of the Merchants Bridge is its accessib...

  13. Seismic evaluation of the Tennessee River Bridges on Interstate 24 in Western Kentucky.

    DOT National Transportation Integrated Search

    2006-09-01

    This report presents the seismic evaluation of the approaches and parallel bridges on I-24 crossing the Tennessee River between Marshall and Livingston counties in Western Kentucky. The main bridges are steel tied-arch bridges. The bridges are situat...

  14. 13. RAILROAD BRIDGE MISSISSIPPI, MONROE CO., ABERDEEN 1.5 mi. NW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. RAILROAD BRIDGE MISSISSIPPI, MONROE CO., ABERDEEN 1.5 mi. NW of Amory. St. Louis and San Francisco RR bridge. Steam locomotive and coal train cross bridge on 10 August 1921. Credit: Owned by Jack Donnell, Columbus, Ms., photographer. Copied by Sarcone Photography, Columbus, Ms. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  15. Level II scour analysis for Bridge 37 (DUXBTH00120037) on Town Highway 12, crossing Ridley Brook, Duxbury, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Ivanhoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DUXBTH00120037 on Town Highway 12 crossing Ridley Brook, Duxbury, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in north central Vermont. The 10.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and downstream of the bridge. In the study area, Ridley Brook has an incised, straight channel with a slope of approximately 0.04 ft/ft, an average channel top width of 67 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 123 mm (0.404 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 1, 1996, indicated that the reach was stable. The Town Highway 12 crossing of Ridley Brook is a 33-ft-long, two-lane bridge consisting of five 30-ft steel rolled beams (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 30 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 50 degrees to the opening while the measured opening-skew-to-roadway is 20 degrees. A scour hole 2 ft deeper than the mean thalweg depth was observed along the right abutment and downstream

  16. Level II scour analysis for Bridge 5 (DUMMVT00300005) on State Route 30, crossing Stickney Brook, Dummerston, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DUMMVT00300005 on State Route 30 crossing Stickney Brook, Dummerston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 6.31-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest and brush. In the study area, Stickney Brook has an incised, straight channel with a slope of approximately 0.04 ft/ft, an average channel top width of 80 ft and an average bank height of 7 ft. The channel bed material is predominantly cobble with a median grain size (D50) of 80.3 mm (0.264 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 12, 1996, indicated that the reach was aggrading. The State Route 30 crossing of Stickney Brook is a 84-ft-long, two-lane bridge consisting of one 82-foot steel-beam span (Vermont Agency of Transportation, written communication, March 30, 1995). The opening length of the structure parallel to the bridge face is 79.7 ft. The bridge is supported by vertical, concrete abutments with spill-through embankments. The channel is skewed approximately 5 degrees to the opening while the opening-skew-to-roadway is 0 degrees. A scour hole 0.5 ft deeper than the mean thalweg depth was observed along the toe of the right spill-through slope during

  17. Level II scour analysis for Bridge 33 (HUNTTH00220033) on Town Highway 22, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH00220033 on Town Highway 22 crossing Brush Brook, Huntington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 8.65-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the downstream right overbank which is pasture. In the study area, Brush Brook has an incised, straight channel with a slope of approximately 0.04 ft/ft, an average channel top width of 42 ft and an average bank height of 3 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 76.7 mm (0.252 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 26, 1996, indicated that the reach was stable. The Town Highway 22 crossing of Brush Brook is a 40-ft-long, two-lane bridge consisting of one 23.5-foot concrete slab span (Vermont Agency of Transportation, written communication, November 30, 1995). The opening length of the structure parallel to the bridge face is 36.9 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening while the opening-skew-to-roadway is 30 degrees. The scour protection measure at the site was type-2 stone fill (less than 36 inches diameter

  18. Level II scour analysis for Bridge 2 (RYEGTH00020002) on Town Highway 2, crossing the Wells River, Ryegate, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure RYEGTH00020002 on Town Highway 2 crossing the Wells River, Ryegate, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 75.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of cut grass, trees, and brush on the flood plains while the immediate banks have dense woody vegetation. In the study area, the Wells River has an incised, sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 110 ft and an average bank height of 12 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 82.3 mm (0.270 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 24, 1995, indicated that the reach was laterally unstable with moderate fluvial erosion and meandering downstream of the bridge. The Town Highway 2 crossing of the Wells River is a 79-ft-long, two-lane bridge consisting of one 75-foot steel-beam span (Vermont Agency of Transportation, written communication, March 27, 1995). The opening length of the structure parallel to the bridge face is 75.1 ft. The bridge is supported by vertical, concrete abutments, the left has a spill-through embankment, with wingwalls. The channel is not skewed

  19. Level II scour analysis for Bridge 40 (ROCKTH00140040) on Town Highway 14, crossing the Williams River, Rockingham, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCKTH00140040 on Town Highway 14 crossing the Williams River, Rockingham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 99.2-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture downstream of the bridge. Upstream of the bridge, the left bank is forested and the right bank is suburban. In the study area, the Williams River has an incised, sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 154 ft and an average bank height of 11 ft. The channel bed material ranges from silt and clay to cobble with a median grain size (D50) of 45.4 mm (0.149 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 4, 1996, indicated that the reach was stable. The Town Highway 14 crossing of the Williams River is a 106-ft-long, one-lane covered bridge consisting of two steel-beam spans with a maximum span length of 73 ft (Vermont Agency of Transportation, written communication, April 6, 1995). The opening length of the structure parallel to the bridge face is 94.5 ft. The bridge is supported by a vertical, concrete abutment with wingwalls on the left, a vertical, laid-up stone abutment on the right and a concrete pier. The channel is skewed

  20. Level II scour analysis for Bridge 17 (NEWHTH00200017) on Town Highway 20, crossing Little Otter Creek, New Haven, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Burns, Ronda L.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NEWHTH00200017 on Town Highway 20 crossing Little Otter Creek, New Haven, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Champlain section of the St. Lawrence Valley physiographic province in west-central Vermont. The 10.8-mi2 drainage area is in a predominantly rural and wetland basin. In the vicinity of the study site, the surface cover is shrubland on the downstream right overbank. The surface cover of the downstream left overbank, the upstream right overbank and the upstream left overbank is wetland and pasture. In the study area, Little Otter Creek has a meandering channel with a slope of approximately 0.0007 ft/ft, an average channel top width of 97 ft and an average bank height of 5 ft. The channel bed material ranges from silt and clay to cobble. Medium sized silt and clay is the channel material upstream of the approach cross-section and downstream of the exit cross-section. The median grain size (D50) of the silt and clay channel bed material is 1.52 mm (0.005 ft), which was used for contraction and abutment scour computations. From the approach cross-section, under the bridge, and to the exit cross-section, stone fill is the channel bed material. The median grain size (D50) of the stone fill channel bed material is 95.7 mm (0.314 ft). The stone fill median grain size was used solely for armoring computations. The geomorphic assessment at the

  1. Level II scour analysis for Bridge 8 (ANDOTH00010008) on Town Highway 1, crossing Andover Branch, Andover, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOTH00010008 on Town Highway 1 crossing the Andover Branch, Andover , Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 5.30-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover along the immediate banks, both upstream and downstream of the bridge, is grass while farther upstream and downstream, the surface cover is primarily forest.In the study area, the Andover Branch has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 35 ft and an average bank height of 3 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 63.6 mm (0.209 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 27, 1996, indicated that the reach was stable.The Town Highway 1 crossing of the Andover Branch is a 54-ft-long, two-lane bridge consisting of one 51-foot steel-beam span (Vermont Agency of Transportation, written communication, March 28, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening-skew-to-roadway is 30 degrees.A scour hole 0.7 ft deeper than the mean thalweg depth was observed

  2. Level II scour analysis for Bridge 13 (LINCTH00010013) on Town Highway 1, crossing Cota Brook, Lincoln, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure LINCTH00010013 on Town Highway 1 crossing Cota Brook, Lincoln, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 3.0-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest along the upstream right bank and brushland along the upstream left bank. Downstream of the bridge, the surface cover is pasture along the left and right banks. In the study area, Cota Brook has an sinuous channel with a slope of approximately 0.01 ft/ ft, an average channel top width of 30 ft and an average bank height of 2 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 34.7 mm (0.114 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 10, 1996, indicated that the reach was laterally unstable due to cut-banks and wide, vegetated point bars upstream and downstream of the bridge. The Town Highway 1 crossing of Cota Brook is a 38-ft-long, two-lane bridge consisting of a 36-foot steel-stringer span (Vermont Agency of Transportation, written communication, December 14, 1995). The opening length of the structure parallel to the bridge face is 34.4 ft. The bridge is supported by vertical, concrete abutments. The channel is skewed approximately 15 degrees to the opening while

  3. Level II scour analysis for Bridge 29 (HUNTTH00290029) on Town Highway 29, crossing Cobb Brook, Huntington, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH00290029 on Town Highway 29 crossing Cobb Brook, Huntington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northwestern Vermont. The 4.16-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and downstream of the bridge. In the study area, Cobb Brook has an incised, straight channel with a slope of approximately 0.024 ft/ft, an average channel top width of 53 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 112.0 mm (0.367 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 25, 1996, indicated that the reach was stable. The Town Highway 29 crossing of Cobb Brook is a 36-ft-long, one-lane bridge consisting of one 30-foot steel-beam span (Vermont Agency of Transportation, written communication, December 11, 1995) and a wooden deck. The opening length of the structure parallel to the bridge face is 27 ft.The bridge is supported by vertical, concrete abutments. The channel is skewed approximately 25 degrees to the opening while the opening-skew-to-roadway was measured to be 20 degrees. VTAOT records indicate an opening-skew-to-roadway of zero degrees. A scour hole 1.5 ft deeper than

  4. Level II scour analysis for Bridge 33 (CONCTH00580033) on Town Highway 58, crossing Miles Stream, Concord, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CONCTH00580033 on Town Highway 58 crossing Miles Stream, Concord, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in northeastern Vermont. The 17.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream of the bridge while the immediate banks have dense woody vegetation. Downstream of the bridge, the right bank is forested and the left bank has shrubs and brush. In the study area, Miles Stream has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 91 ft and an average bank height of 7 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 61.6 mm (0.188 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 15, 1995, indicated that the reach was stable. The Town Highway 58 crossing of Miles Stream is a 44-ft-long, two-lane bridge consisting of one 39-foot steel-beam span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 37.4 ft. The bridge is supported by vertical, concrete abutments with stone fill in front creating spillthrough embankments. The channel is skewed approximately 20 degrees

  5. Level II scour analysis for Bridge 46 (FFIETH00470046) on Town Highway 47, crossing Black Creek, Fairfield, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Flynn, Robert H.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure FFIETH00470046 on Town Highway 47 crossing Black Creek, Fairfield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gathered from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in northwestern Vermont. The 37.8 mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, Black Creek has a meandering channel with a slope of approximately 0.0005 ft/ft, an average channel top width of 51 ft and an average bank height of 6 ft. The channel bed material ranges from sand to bedrock with a median grain size (D50) of 0.189 mm (0.00062 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 12, 1995, indicated that the reach was stable. The Town Highway 47 crossing of Black Creek is a 35-ft-long, one-lane bridge consisting of one 31-ft steel-stringer span (Vermont Agency of Transportation, written communication, March 8, 1995). The opening length of the structure parallel to the bridge face is 28.0 ft. The bridge is supported by vertical, laid-up stone abutments with wingwalls. The channel is skewed approximately zero degrees to the opening and the opening-skew-toroadway is zero degrees. A scour hole 6.0 ft deeper than the mean thalweg depth was observed just downstream of the

  6. Myofilament dysfunction contributes to impaired myocardial contraction in the infarct border zone

    PubMed Central

    Shimkunas, Rafael; Makwana, Om; Spaulding, Kimberly; Bazargan, Mona; Khazalpour, Michael; Takaba, Kiyoaki; Soleimani, Mehrdad; Myagmar, Bat-Erdene; Lovett, David H.; Simpson, Paul C.; Ratcliffe, Mark B.

    2014-01-01

    After myocardial infarction, a poorly contracting nonischemic border zone forms adjacent to the infarct. The cause of border zone dysfunction is unclear. The goal of this study was to determine the myofilament mechanisms involved in postinfarction border zone dysfunction. Two weeks after anteroapical infarction of sheep hearts, we studied in vitro isometric and isotonic contractions of demembranated myocardium from the infarct border zone and a zone remote from the infarct. Maximal force development (Fmax) of the border zone myocardium was reduced by 31 ± 2% versus the remote zone myocardium (n = 6/group, P < 0.0001). Decreased border zone Fmax was not due to a reduced content of contractile material, as assessed histologically, and from myosin content. Furthermore, decreased border zone Fmax did not involve altered cross-bridge kinetics, as assessed by muscle shortening velocity and force development kinetics. Decreased border zone Fmax was associated with decreased cross-bridge formation, as assessed from muscle stiffness in the absence of ATP where cross-bridge formation should be maximized (rigor stiffness was reduced 34 ± 6%, n = 5, P = 0.011 vs. the remote zone). Furthermore, the border zone myocardium had significantly reduced phosphorylation of myosin essential light chain (ELC; 41 ± 10%, n = 4, P < 0.05). However, for animals treated with doxycycline, an inhibitor of matrix metalloproteinases, rigor stiffness and ELC phosphorylation were not reduced in the border zone myocardium, suggesting that doxycycline had a protective effect. In conclusion, myofilament dysfunction contributes to postinfarction border zone dysfunction, myofilament dysfunction involves impaired cross-bridge formation and decreased ELC phosphorylation, and matrix metalloproteinase inhibition may be beneficial for limiting postinfarct border zone dysfunction. PMID:25128171

  7. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, Carmelo; Luzi, Guido

    2014-05-27

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions,more » with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.« less

  8. 3. APPROACH TO BRIDGE FROM NORTH. LOOKING SOUTH. Route ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. APPROACH TO BRIDGE FROM NORTH. LOOKING SOUTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  9. 1. BRIDGE IN CONTEXT, FROM EAST SIDE. LOOKING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BRIDGE IN CONTEXT, FROM EAST SIDE. LOOKING WEST. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  10. 2. BRIDGE IN CONTEXT, FROM WEST SIDE. LOOKING EAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BRIDGE IN CONTEXT, FROM WEST SIDE. LOOKING EAST. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  11. 4. APPROACH TO BRIDGE FROM SOUTH. LOOKING NORTH. Route ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. APPROACH TO BRIDGE FROM SOUTH. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  12. Removal of failed crown and bridge

    PubMed Central

    Rahul, G R.; Poduval, Soorya T.; Shetty, Karunakar

    2012-01-01

    Crown and bridge have life span of many years but they fail for a number of reasons. Over the years, many devices have been designed to remove crowns and bridges from abutment teeth. While the removal of temporary crowns and bridges is usually very straightforward, the removal of a definitive cast crown with unknown cement is more challenging. Removal is often by destructive means. There are a number of circumstances, however, in which conservative disassembly would aid the practitioner in completing restorative/endodontic procedures. There are different mechanisms available to remove a failed crown or bridge. But there is no information published about the classification of available systems for crown and bridge removal. So it is logical to classify these systems into different groups which can help a clinician in choosing a particular type of system depending upon the clinical situation. The aim of this article is to provide a classification for various crown and bridge removal systems; describe how a number of systems work; and when and why they might be used. A PubMed search of English literature was conducted up to January 2010 using the terms: Crown and bridge removal, Crown and bridge disassembly, Crown and bridge failure. Additionally, the bibliographies of 3 previous reviews, their cross references as well as articles published in various journals like International Endodontic Journal, Journal of Endodontics and were manually searched. Key words:Crown and bridge removal, Crown and bridge disassembly, Crown and bridge failure. PMID:24558549

  13. Mentoring as a Bridge to Understanding Cultural Difference

    ERIC Educational Resources Information Center

    Blake-Beard, Stacy

    2009-01-01

    Bridges are thresholds to other realities, archetypal, primal symbols of shifting consciousness. They are passageways, conduits, and connectors that connote transitioning, crossing borders, and changing perspectives (Anzaldua, 2002). At its best, mentoring serves as an important bridge in many of the ways described by Anzaldua. When asked to think…

  14. Short-term evaluation of a bridge cable using acoustic emission sensors.

    DOT National Transportation Integrated Search

    2010-05-01

    The Varina-Enon Bridge carries I-295 across the James River and crosses over the shipping channel that leads to the Richmond (Virginia) Marine Terminal. The bridge is a cable-stayed bridge that was opened to traffic in July 1990. It has 150 ft of ver...

  15. The Bridge: Experiments in Science and Art, Experiences from the 2017 SciArt Center Cross-Disciplinary Residency Program

    NASA Astrophysics Data System (ADS)

    Shipman, J. S.; Chalmers, R.; Buntaine, J.

    2017-12-01

    Cross-disciplinary programs create the opportunity to explore new realms for scientists and artists alike. Through the collaborative process, artistic insights enable innovative approaches to emotionally connect to and visualize the world around us. Likewise, engagement across the art-science spectrum can lead to shifts in scientific thinking that create new connections in data and drive discoveries in research. The SciArt Center "The Bridge Residency Program" is a four-month long virtual residency open internationally for professionals in the arts and sciences to facilitate cross-disciplinary work and to bring together like-minded participants. The SciArt Center provides a virtual space to record and showcase the process and products of each collaboration. The work is facilitated with biweekly Skype calls and documented with weekly blog posts. Residents create either digital or physical products and share via video, images, or direct mailing with their collaborators. Past projects have produced call and response discussion, websites, skills and conference presentations, science-art studies, virtual exhibits, art shows, dance performances, and research exchange. Here we present the creative process and outcomes of one of the four collaborative teams selected for the 2017 residency. Jill Shipman, a Ph.D. Candidate in Volcanology who is also active in filmmaking and theatrical productions and Rosemary Chalmers, a UK-based lecturer, concept artist, and illustrator with a specialty in creature design. They were paired together for their shared interest in storytelling, illustration, and unique geological and environmental habitats and the life that occupies them. We will discuss the collaborative project developed by this team during their recent residency and illustrate how a virtual program can bridge the distance between geographical location to foster science and art collaboration. To follow the progress of the residency please visit: http://www.sciartcenter.org/the-bridge.html

  16. Level II scour analysis for Bridge 49 (BENNCYHUNT0049) on Hunt Street, crossing the Walloomsac River, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Medalie, Laura

    1997-01-01

    2 stone fill also protects the channel banks upstream and downstream of the bridge for a minimum distance of 17 feet from the respective bridge faces. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour computed for all modelled flows ranged from 0.9 to 5.0 ft. The worst-case contraction scour occurred at the 500-year discharge. Computed left abutment scour ranged from 15.3 to 16.5 ft. with the worst-case scour occurring at the incipient roadway-overtopping discharge. Computed right abutment scour ranged from 6.0 to 8.7 ft. with the worst-case scour occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited

  17. 6. VIEW OF THE EASTERN BRIDGE ELEVATION, SHOWING CENTRAL PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF THE EASTERN BRIDGE ELEVATION, SHOWING CENTRAL PIER AND ASSOCIATED SUPERSTRUCTURE, AND CANTILEVERED NORTHERN TRUSS SECTION. NOTE THE JOIN BETWEEN EYE-BAR (LEFT) AND RIVETED CHANNEL (RIGHT) LOWER BRIDGE CHORDS AT CENTER LEFT OF PHOTOGRAPH. FACING NORTH. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA

  18. Computer Models Identify Methods to Reduce Bridge Cracks During Production Processes : Brief

    DOT National Transportation Integrated Search

    2012-06-01

    While most motorists see only the bridge deck, strong bridge girders are the basis for a stable system to support the traffic-handling surface. Concrete bridge girders often have two major components: the web, which is an I-shaped cross section and v...

  19. Level II scour analysis for Bridge 34 (CORITH0050034) on Town Highway 50, crossing the South Branch Waits River, Corinth, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CORITH00500034 on Town Highway 50 crossing the South Branch Waits River, Corinth, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 35.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, the South Branch Waits River has an incised, meandering channel with a slope of approximately 0.005 ft/ft, an average channel top width of 63 ft and an average bank height of 6 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 23.7 mm (0.078 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 5, 1995, indicated that the reach was stable. The Town Highway 50 crossing of the South Branch Waits River is a 56-ft-long, one-lane bridge consisting of one 54-foot steel thru-truss span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 51.5 ft.The bridge is supported by vertical, concrete abutments with no wingwalls. Stone fill and bank material in front of the abutments create spill-through embankments. The channel is skewed

  20. 2. AERIAL VIEW, SHOWING GLENDALE ROAD BRIDGE WITHIN ITS SETTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW, SHOWING GLENDALE ROAD BRIDGE WITHIN ITS SETTING AT GLENDALE ROAD CROSSING OF DEEP CREEK LAKE (PHOTOGRAPH BY RUTHVAN MORROW) - Glendale Road Bridge, Spanning Deep Creek Lake on Glendale Road, McHenry, Garrett County, MD

  1. 1. AERIAL VIEW, SHOWING GLENDALE ROAD BRIDGE WITHIN ITS SETTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW, SHOWING GLENDALE ROAD BRIDGE WITHIN ITS SETTING AT GLENDALE ROAD CROSSING OF DEEP CREEK LAKE (PHOTOGRAPH BY RUTHVAN MORROW) - Glendale Road Bridge, Spanning Deep Creek Lake on Glendale Road, McHenry, Garrett County, MD

  2. Level II scour analysis for Bridge 42 (NEWFTH00350042) on Town Highway 35, crossing Stratton Hill Brook, Newfane, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Ivanoff, Michael A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NEWFTH00350042 on Town Highway 35 crossing Stratton Hill Brook, Newfane, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 1.16-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forested. In the study area, Stratton Hill Brook has an incised, striaght channel with a slope of approximately 0.1 ft/ft, an average channel top width of 36 ft and an average bank height of 8 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 121 mm (0.396 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 20, 1996, indicated that the reach was stable. The Town Highway 34 crossing of Stratton Hill Brook is a 34-ft-long, one-lane bridge consisting of a 32-foot steel-beam span (Vermont Agency of Transportation, written communication, April 6, 1995). The opening length of the structure parallel to the bridge face is 30.8 ft. The bridge is supported by vertical, concrete abutments with upstream wingwalls. The channel is skewed approximately 20 degrees to the opening while the computed opening-skew-to-roadway is 15 degrees. During the Level I assessment, it was observed that the right abutment footing was exposed 1.5 feet. The only scour protection measure at the

  3. Level II scour analysis for Bridge 41 (WODSTH00750041) on Town Highway 75, crossing Happy Valley Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WODSTH00750041 on town highway 75 crossing Happy Valley Brook, Woodstock, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province of east-central Vermont. The 3.45-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is brush with scattered trees. In the study area, Happy Valley Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 23 ft and an average channel depth of 5 ft. The predominant channel bed materials are gravel and cobble with a median grain size (D50) of 82.8 mm (0.272 ft). The geomorphic assessment at the time of the Level II site visits on September 13, 1994 and December 14, 1994, indicated that the reach was degrading. Five logs are embedded across the channel under the bridge in an attempt to prevent further degradation (see Figures 5 and 6). The town highway 75 crossing of Happy Valley Brook is a 27-ft-long, two-lane bridge consisting of one 25-foot steel-beam span. The clear span is 17 ft. (Vermont Agency of Transportation, written communication, August 3, 1994). The bridge is supported by vertical, stone abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening and the opening-skew-to-roadway is also 40 degrees. Additional

  4. Level II scour analysis for Bridge 25 (JAMATH00010025) on Town Highway 1, crossing Ball Mountain Brook, Jamaica, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure JAMATH00010025 on Town Highway 1 crossing Ball Mountain Brook, Jamaica, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southern Vermont. The 29.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the downstream right bank which is pasture with some trees along the channel. In the study area, Ball Mountain Brook has an incised, straight channel with a slope of approximately 0.021 ft/ft, an average channel top width of 86 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 222 mm (0.727 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 13, 1996, indicated that the reach was stable. The Town Highway 1 crossing of Ball Mountain Brook is a 78-ft-long, two-lane bridge consisting of one 75-foot steel-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of the structure parallel to the bridge face is 73 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is 30 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth

  5. Existence of Torsional Solitons in a Beam Model of Suspension Bridge

    NASA Astrophysics Data System (ADS)

    Benci, Vieri; Fortunato, Donato; Gazzola, Filippo

    2017-11-01

    This paper studies the existence of solitons, namely stable solitary waves, in an idealized suspension bridge. The bridge is modeled as an unbounded degenerate plate, that is, a central beam with cross sections, and displays two degrees of freedom: the vertical displacement of the beam and the torsional angles of the cross sections. Under fairly general assumptions, we prove the existence of solitons. Under the additional assumption of large tension in the sustaining cables, we prove that these solitons have a nontrivial torsional component. This appears relevant for security since several suspension bridges collapsed due to torsional oscillations.

  6. High in Vivo Stability of 64Cu-Labeled Cross-Bridged Chelators Is a Crucial Factor in Improved Tumor Imaging of RGD Peptide Conjugates.

    PubMed

    Sarkar, Swarbhanu; Bhatt, Nikunj; Ha, Yeong Su; Huynh, Phuong Tu; Soni, Nisarg; Lee, Woonghee; Lee, Yong Jin; Kim, Jung Young; Pandya, Darpan N; An, Gwang Il; Lee, Kyo Chul; Chang, Yongmin; Yoo, Jeongsoo

    2018-01-11

    Although the importance of bifunctional chelators (BFCs) is well recognized, the chemophysical parameters of chelators that govern the biological behavior of the corresponding bioconjugates have not been clearly elucidated. Here, five BFCs closely related in structure were conjugated with a cyclic RGD peptide and radiolabeled with Cu-64 ions. Various biophysical and chemical properties of the Cu(II) complexes were analyzed with the aim of identifying correlations between individual factors and the biological behavior of the conjugates. Tumor uptake and body clearance of the 64 Cu-labeled bioconjugates were directly compared by animal PET imaging in animal models, which was further supported by biodistribution studies. Conjugates containing propylene cross-bridged chelators showed higher tumor uptake, while a closely related ethylene cross-bridged analogue exhibited rapid body clearance. High in vivo stability of the copper-chelator complex was strongly correlated with high tumor uptake, while the overall lipophilicity of the bioconjugate affected both tumor uptake and body clearance.

  7. Level II scour analysis for Bridge 24 (WODSTH00190024) on Town Highway 19, crossing North Bridgewater Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Song, Donald L.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. Abutment scour ranged from 6.6 to 14.9 ft. with the worst-case scenario occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  8. Temperature-dependence of isometric tension and cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal deletion mutant.

    PubMed

    Lu, Xiaoying; Tobacman, Larry S; Kawai, Masataka

    2006-12-01

    The effect of temperature on isometric tension and cross-bridge kinetics was studied with a tropomyosin (Tm) internal deletion mutant AS-Delta23Tm (Ala-Ser-Tm Delta(47-123)) in bovine cardiac muscle fibers by using the thin filament extraction and reconstitution technique. The results are compared with those from actin reconstituted alone, cardiac muscle-derived control acetyl-Tm, and recombinant control AS-Tm. In all four reconstituted muscle groups, isometric tension and stiffness increased linearly with temperature in the range 5-40 degrees C for fibers activated in the presence of saturating ATP and Ca(2+). The slopes of the temperature-tension plots of the two controls were very similar, whereas the slope derived from fibers with actin alone had approximately 40% the control value, and the slope from mutant Tm had approximately 36% the control value. Sinusoidal analysis was performed to study the temperature dependence of cross-bridge kinetics. All three exponential processes A, B, and C were identified in the high temperature range (30-40 degrees C); only processes B and C were identified in the mid-temperature range (15-25 degrees C), and only process C was identified in the low temperature range (5-10 degrees C). At a given temperature, similar apparent rate constants (2pia, 2pib, 2pic) were observed in all four muscle groups, whereas their magnitudes were markedly less in the order of AS-Delta23Tm < Actin < AS-Tm approximately Acetyl-Tm groups. Our observations are consistent with the hypothesis that Tm enhances hydrophobic and stereospecific interactions (positive allosteric effect) between actin and myosin, but Delta23Tm decreases these interactions (negative allosteric effect). Our observations further indicate that tension/cross-bridge is increased by Tm, but is diminished by Delta23Tm. We conclude that Tm affects the conformation of actin so as to increase the area of hydrophobic interaction between actin and myosin molecules.

  9. 76 FR 42545 - Regulated Navigation Area; Chelsea Street Bridge Construction, Chelsea, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ...-AA11 Regulated Navigation Area; Chelsea Street Bridge Construction, Chelsea, MA AGENCY: Coast Guard... and surrounding the Chelsea Street Bridge (CSB) that crosses the Chelsea River between East Boston and... navigable waters during the construction of the Chelsea Street Bridge. DATES: This rule is effective in the...

  10. 75 FR 38923 - Regulated Navigation Area: Niantic Railroad Bridge Construction, Niantic, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ...-AA11 Regulated Navigation Area: Niantic Railroad Bridge Construction, Niantic, CT AGENCY: Coast Guard... Niantic River Channel under and surrounding the Amtrak Railroad Bridge that crosses Niantic Bay in the... on the navigable waters during the construction of the Niantic Railroad Bridge. DATES: This rule is...

  11. Level II scour analysis for Bridge 24 (MANCUS00070024) on U.S. Route 7, crossing Lye Brook, Manchester, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MANCUS00070024 on U.S. Route 7 crossing Lye Brook, Manchester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Taconic section of the New England physiographic province in southwestern Vermont. The 8.13-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the primary surface cover consists of brush and trees. In the study area, Lye Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 66 ft and an average bank height of 11 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 90.0 mm (0.295 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 6, 1996, indicated that the reach was stable. Although, the immediate reach is considered stable, upstream of the bridge the Lye Brook valley is very steep (0.05 ft/ft). Extreme events in a valley this steep may quickly reveal the instability of the channel. In the Flood Insurance Study for the Town of Manchester (Federal Emergency Management Agency, January, 1985), Lye Brook’s overbanks were described as “boulder strewn” after the August 1976 flood. The U.S. Route 7 crossing of Lye Brook is a 28-ft-long, two-lane bridge consisting of one 25-foot concrete span (Vermont Agency of Transportation, written communication, September

  12. Alternative stream channel maintenance at bridge crossings : final report.

    DOT National Transportation Integrated Search

    2017-02-01

    Ohio Department of Transportation (ODOT) forces undertake routine and sometimes extensive maintenance of stream channels that impact the performance and safety of bridges. Unfortunately, county crews have limited options available to solve maintenanc...

  13. Lateral Bracing of Bridge Girders by Permanent Metal Deck Forms

    DOT National Transportation Integrated Search

    2005-01-10

    Lateral torsional buckling is a failure mode that often controls the design of steel bridge girders during construction. Bracing in the form of cross-frames and diaphragms are often provided at locations along the bridge length to reduce the unbraced...

  14. Design Optimization of Hybrid FRP/RC Bridge

    NASA Astrophysics Data System (ADS)

    Papapetrou, Vasileios S.; Tamijani, Ali Y.; Brown, Jeff; Kim, Daewon

    2018-04-01

    The hybrid bridge consists of a Reinforced Concrete (RC) slab supported by U-shaped Fiber Reinforced Polymer (FRP) girders. Previous studies on similar hybrid bridges constructed in the United States and Europe seem to substantiate these hybrid designs for lightweight, high strength, and durable highway bridge construction. In the current study, computational and optimization analyses were carried out to investigate six composite material systems consisting of E-glass and carbon fibers. Optimization constraints are determined by stress, deflection and manufacturing requirements. Finite Element Analysis (FEA) and optimization software were utilized, and a framework was developed to run the complete analyses in an automated fashion. Prior to that, FEA validation of previous studies on similar U-shaped FRP girders that were constructed in Poland and Texas is presented. A finer optimization analysis is performed for the case of the Texas hybrid bridge. The optimization outcome of the hybrid FRP/RC bridge shows the appropriate composite material selection and cross-section geometry that satisfies all the applicable Limit States (LS) and, at the same time, results in the lightest design. Critical limit states show that shear stress criteria determine the optimum design for bridge spans less than 15.24 m and deflection criteria controls for longer spans. Increased side wall thickness can reduce maximum observed shear stresses, but leads to a high weight penalty. A taller cross-section and a thicker girder base can efficiently lower the observed deflections and normal stresses. Finally, substantial weight savings can be achieved by the optimization framework if base and side-wall thickness are treated as independent variables.

  15. Methodology and Estimates of Scour at Selected Bridge Sites in Alaska

    USGS Publications Warehouse

    Heinrichs, Thomas A.; Kennedy, Ben W.; Langley, Dustin E.; Burrows, Robert L.

    2001-01-01

    The U.S. Geological Survey estimated scour depths at 325 bridges in Alaska as part of a cooperative agreement with the Alaska Department of Transportation and Public Facilities. The department selected these sites from approximately 806 State-owned bridges as potentially susceptible to scour during extreme floods. Pier scour and contraction scour were computed for the selected bridges by using methods recommended by the Federal Highway Administration. The U.S. Geological Survey used a four-step procedure to estimate scour: (1) Compute magnitudes of the 100- and 500-year floods. (2) Determine cross-section geometry and hydraulic properties for each bridge site. (3) Compute the water-surface profile for the 100- and 500-year floods. (4) Compute contraction and pier scour. This procedure is unique because the cross sections were developed from existing data on file to make a quantitative estimate of scour. This screening method has the advantage of providing scour depths and bed elevations for comparison with bridge-foundation elevations without the time and expense of a field survey. Four examples of bridge-scour analyses are summarized in the appendix.

  16. Level II scour analysis for Bridge 44 (CHESVT00110044) on State Route 11, crossing Andover Brook, Chester, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESVT00110044 on State Route 11 crossing Andover Brook, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 12.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture with dense woody vegetation on the immediate banks except the downstream left bank of the bridge which is forested. In the study area, Andover Brook has an incised, meandering channel with a slope of approximately 0.02 ft/ft, an average channel top width of 74 ft and an average bank height of 8 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 83.6 mm (0.274 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 11, 1996, indicated that the reach was stable. The State Route 11 crossing of Andover Brook is a 58-ft-long, two-lane bridge consisting of one 56-foot concrete T-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of the structure parallel to the bridge face is 52.9 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening while the opening-skew-to-roadway is 45 degrees. A scour hole 1.8 ft

  17. Level II scour analysis for Bridge 13 (SHARTH00040013) on Town Highway 4, crossing Broad Brook, Sharon, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Weber, Matthew A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHARTH00040013 on Town Highway 4 crossing Broad Brook, Sharon, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the New England Upland section of the New England physiographic province in central Vermont. The 16.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is brushland on the downstream left overbank and row crops on the right overbank, while the immediate banks have dense woody vegetation. Upstream of the bridge, the overbanks are forested.In the study area, Broad Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 69 ft and an average bank height of 5 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 112 mm (0.369 ft). The geomorphic assessment at the time of the Level I site visit on April 11, 1995 and Level II site visit on July 23, 1996, indicated that the reach was stable.The Town Highway 4 crossing of Broad Brook is a 34-ft-long, two-lane bridge consisting of one 31-foot concrete tee beam span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 30.1 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while

  18. Level II scour analysis for Bridge 51 (JERITH00590051) on Town Highway 59, crossing The Creek, Jericho, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure JERITH00590051 on Town Highway 59 crossing The Creek, Jericho, Vermont (figures 1– 8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (Federal Highway Administration, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province and the Champlain section of the St. Lawrence physiographic province in northwestern Vermont. The 10.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the left and right overbanks, upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, The Creek has a sinuous channel with a slope of approximately 0.004 ft/ft, an average channel top width of 45 ft and an average bank height of 6 ft. The channel bed material ranges from silt to cobble with a median grain size (D50) of 58.6 mm (0.192 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 3, 1996, indicated that the reach was stable. The Town Highway 59 crossing of The Creek is a 33-ft-long, two-lane bridge consisting of a 28-foot steel-stringer span (Vermont Agency of Transportation, written communication, December 11, 1995). The opening length of the structure parallel to the bridge face is 26 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the computed opening

  19. Level II scour analysis for Bridge 34 (HUNTTH00210034) on Town Highway 21, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH00210034 on Town Highway 21 crossing Brush Brook, Huntington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 6.23-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest. In the study area, Brush Brook has an incised, straight channel with a slope of approximately 0.03 ft/ft, an average channel top width of 43 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 90.0 mm (0.295 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 26, 1996, indicated that the reach was stable. The Town Highway 21 crossing of Brush Brook is a 28-ft-long, one-lane bridge consisting of one 26-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written communication November 30, 1995). The opening length of the structure parallel to the bridge face is 25.4 ft. The bridge is supported by vertical, concrete abutments with a wingwall on the upstream right. The channel is skewed approximately 5 degrees to the opening and the computed opening-skew-to-roadway is 5 degrees. A tributary enters Brush Brook on the right bank immediately downstream of the bridge. At the confluence, the

  20. Level II scour analysis for Bridge 4 (DANVTH00010004) on Town Highway 1, crossing Joes Brook, Danville, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DANVTH00010004 on Town Highway 1 crossing Joes Brook, Danville, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in northeastern Vermont. The 42.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture along the upstream and downstream left banks with trees and brush along the immediate banks. The upstream and downstream right banks are forested. In the study area, Joes Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 68 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 80.1 mm (0.263 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 22, 1995, indicated that the reach was stable. The Town Highway 1 crossing of Joes Brook is a 49-ft-long, two-lane bridge consisting of one 45-foot steel-beam span (Vermont Agency of Transportation, written communication, March 17, 1995). The opening length of the structure parallel to the bridge face is 45 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening and the computed opening-skew-to-roadway is 15 degrees. A scour

  1. Level II scour analysis for Bridge 38 (TOPSTH00570038) on Town Highway 57, crossing Waits River, Topsham, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure TOPSTH00570038 on Town Highway 57 crossing the Waits River, Topsham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in east central Vermont. The 37.3-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly pasture while the left bank upstream is suburban. In the study area, the Waits River has a sinuous locally anabranched channel with a slope of approximately 0.01 ft/ft, an average channel top width of 76 ft and an average bank height of 6 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 57.2 mm (0.188 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 28, 1995, indicated that the reach was considered laterally unstable due to cut-banks upstream, mid-channel bars and lateral migration of the channel towards the left abutment. The Town Highway 34 crossing of the Waits River is a 34-ft-long, one-lane bridge consisting of one 31-foot steel-beam span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 30.4 ft. The bridge is supported by a vertical, stone abutment with concrete facing and wingwalls on the right and by a vertical, concrete

  2. Level II scour analysis for Bridge 31 (JERITH00350031) on Town Highway 35, crossing Mill Brook, Jericho, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure JERITH00350031 on Town Highway 35 crossing Mill Brook, Jericho, Vermont (figures 1– 8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gathered from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province and the Champlain section of the St. Lawrence physiographic province in northwestern Vermont. The 15.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream of the bridge. The downstream left overbank is pasture. The downstream right overbank is brushland. In the study area, the Mill Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 117 ft and an average bank height of 11 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 81.1 mm (0.266 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 3, 1996, indicated that the reach was laterally unstable. The Town Highway 35 crossing of the Mill Brook is a 53-ft-long, one-lane bridge consisting of a 50-foot steel-beam span with a wooden deck (Vermont Agency of Transportation, written communication, November 30, 1995). The opening length of the structure parallel to the bridge face is 48 ft. The bridge is supported by a vertical, concrete abutment with wingwalls on the left. On the right, the abutment and wingwalls

  3. Level II scour analysis for Bridge 13 (PFRDTH00030013) on Town Highway 3, crossing Furnace Brook, Pittsford, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure PFRDTH00030013 on Town Highway 3 crossing Furnace Brook, Pittsford, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Taconic section of the New England physiographic province in western Vermont. The 17.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass along the downstream right bank while the remaining banks are primarily forested. In the study area, Furnace Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 49 ft and an average channel depth of 4 ft. The predominant channel bed material ranges from gravel to bedrock with a median grain size (D50) of 70.2 mm (0.230 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 20, 1995, indicated that the reach was stable. The Town Highway 3 crossing of Furnace Brook is a 75-ft-long, two-lane bridge consisting of one 72-ft-long steel stringer span (Vermont Agency of Transportation, written communication, March 14, 1995). The bridge is supported by vertical, concrete abutments with spill-through slopes. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 35 degrees. The opening-skew-to-roadway was determined from surveyed data collected at the bridge although, information provided from the

  4. Level II scour analysis for Bridge 23 (GLOVTH00410023) on Town Highway 41, crossing Sherburne Brook, Glover, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure GLOVTH00410023 on Town Highway 41 crossing Sherburne Brook, Glover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in northern Vermont. The 2.57-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is primarily forest with small areas of lawn and a home on the right overbank and a gravel roadway along the upstream left bank. In the study area, Sherburne Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 33 ft and an average bank height of 6 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 57.3 mm (0.188 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 24, 1994, indicated that the reach was stable. The Town Highway 41 crossing of Sherburne Brook is a 24-ft-long, one-lane bridge consisting of one 21-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written communication, August 4, 1994). The opening length of the structure parallel to the bridge face is 20.3 ft. The bridge is supported by vertical, granite block abutments. The channel is skewed approximately 55 degrees to the opening while the measured opening-skew-to-roadway is 30 degrees. One foot

  5. Level II scour analysis for Bridge 28 (ROCHTH00370028) on Town Highway 37, crossing Brandon Brook, Rochester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Weber, Matthew A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCHTH00370028 on Town Highway 37 crossing Brandon Brook, Rochester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from VTAOT files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 8.0-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the upstream left overbank although the immediate banks have dense woody vegetation. The upstream right overbank and downstream left and right overbanks are forested. In the study area, the Brandon Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 44 ft and an average bank height of 7 ft. The channel bed material ranges from gravel to cobbles with a median grain size (D50) of 84.2 mm (0.276 ft). The geomorphic assessment at the time of the Level I site visit on April 12, 1995 and Level II site visit on July 8, 1996, indicated that the reach was stable. The Town Highway 37 crossing of the Brandon Brook is a 33-ft-long, one-lane bridge consisting of a 31-foot timber-stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 29.6 ft. The bridge is supported by vertical, timber log cribbing abutments with wingwalls. The channel is skewed approximately 5 degrees to the opening while the computed opening-skew-to-roadway is zero

  6. Level II scour analysis for Bridge 19 (SHEFTH00440019) on Town Highway 44, crossing Trout Brook, Sheffield, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHEFTH00440019 on Town Highway 44 crossing Trout Brook, Sheffield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 3.0-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass on the upstream and downstream right overbanks, while the immediate banks have dense woody vegetation. The surface cover of the upstream and downstream left overbanks is shrub and brushland. In the study area, Trout Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 45 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 116 mm (0.381 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 31, 1995, indicated that the reach was stable. The Town Highway 44 crossing of Trout Brook is a 24-ft-long, one-lane bridge consisting of a 22-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 28, 1994). The opening length of the structure parallel to the bridge face is 19.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening

  7. Level II scour analysis for Bridge 17 (LYNDTH00020017) on Town Highway 2, crossing Hawkins Brook, Lyndon, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure LYNDTH00020017 on Town Highway 2 crossing Hawkins Brook, Lyndon, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain section of the New England physiographic province in northeastern Vermont. The 7.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the left and right upstream overbanks. The downstream left and right overbanks are brushland.In the study area, Hawkins Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 78 ft and an average bank height of 7.3 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 46.6 mm (0.153 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 4, 1995, indicated that the reach was laterally unstable with the presence of point bars and side bars.The Town Highway 2 crossing of Hawkins Brook is a 49-ft-long, two-lane bridge consisting of a 46-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 27, 1995). The opening length of the structure parallel to the bridge face is 43 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the computed opening-skew-to-roadway is zero

  8. Level II scour analysis for Bridge 32 (HUNTTH00220032) on Town Highway 22, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH00220032 on Town Highway 22 crossing Brush Brook, Huntington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 5.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the downstream right overbank which is pasture. In the study area, Brush Brook has an incised, straight channel with a slope of approximately 0.05 ft/ft, an average channel top width of 58 ft and an average bank height of 6 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 127 mm (0.416 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 25, 1996, indicated that the reach was stable. The Town Highway 22 crossing of Brush Brook is a 36-ft-long, one-lane bridge consisting of one 34-foot steel-beam span and a timber deck (Vermont Agency of Transportation, written communication, December 12, 1995). The opening length of the structure parallel to the bridge face is 35.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls on the left. The channel is skewed approximately 50 degrees to the opening while the measured opening-skew-to-roadway is 15 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was

  9. Level II scour analysis for Bridge 40 (ANDOVT00110040) on State Route 11, crossing Lyman Brook, Andover, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110040 on State Route 11 crossing Lyman Brook, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 4.18-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture while the immediate banks have dense woody vegetation. In the study area, Lyman Brook has an incised, straight channel with a slope of approximately 0.03 ft/ft, an average channel top width of 42 ft and an average bank height of 8 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 86.0 mm (0.282 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 9, 1996, indicated that the reach was stable. The State Route 11 crossing of Lyman Brook is a 28-ft-long, two-lane bridge consisting of one 27-foot concrete tee-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of the structure parallel to the bridge face is 24.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 0 degrees to the opening while the opening-skew-to-roadway is 30 degrees. The scour protection measures at the site included type-2 stone fill (less than 36 inches

  10. Level II scour analysis for Bridge 21 (MORETH00010021) on Town Highway 1, crossing Cox Brook, Moretown, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MORETH00010021 on Town Highway 1 crossing Cox Brook, Moretown, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in north-central Vermont. The 2.85-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly forested. In the study area, Cox Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 23 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 47.5 mm (0.156 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 18, 1996, indicated that the reach was stable. The Town Highway 1 crossing of Cox Brook is a 29-ft-long, two-lane bridge consisting of one 27-foot steel-beam span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 24.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 60 degrees to the opening while the measured opening-skew-to-roadway is 40 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the left abutment downstream during the Level I assessment. The

  11. Level II scour analysis for Bridge 31 (HUNTTH00220031) on Town Highway 22, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH00220031 on Town Highway 22 crossing Brush Brook, Huntington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, obtained from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 5.01-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of trees and brush. In the study area, Brush Brook has an incised, straight channel with a slope of approximately 0.06 ft/ft, an average channel top width of 44 ft and an average bank height of 4 ft. The channel bed material ranges from boulder to gravel with a median grain size (D50) of 107.0 mm (0.352 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 25, 1996, indicated that the reach was stable. The Town Highway 22 crossing of Brush Brook is a 34-ft-long, one-lane bridge consisting of one 30-foot steel I-beam span (Vermont Agency of Transportation, written communication, November 30, 1995). The opening length of the structure parallel to the bridge face is 31.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the computed opening-skew-to-roadway is 10 degrees. The VTAOT computed opening-skewto-roadway is 2 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was

  12. Crossing the Divide: An Emerging Typology of Postsecondary Bridging for Opportunity Youth

    ERIC Educational Resources Information Center

    Almeida, Cheryl; Allen, Lili

    2016-01-01

    Through Job For the Future's (JFF's) work with communities around the country on the Back on Track model, postsecondary bridging strategies have emerged as a particularly critical and especially replicable component of programming for vulnerable youth. This issue brief offers a typology of evidence-informed bridge programming, drawing on…

  13. Bridging the Gap: Solving Spatial Means-Ends Relations in a Locomotor Task

    ERIC Educational Resources Information Center

    Berger, Sarah E.; Adolph, Karen E.; Kavookjian, Alisan E.

    2010-01-01

    Using a means-means-ends problem-solving task, this study examined whether 16-month-old walking infants (N = 28) took into account the width of a bridge as a means for crossing a precipice and the location of a handrail as a means for augmenting balance on a narrow bridge. Infants were encouraged to cross from one platform to another over narrow…

  14. 5. VIEW OF THE EASTERN BRIDGE ELEVATION, SHOWING CENTRAL CUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF THE EASTERN BRIDGE ELEVATION, SHOWING CENTRAL CUT AND MORTARED STONE PIER AND ASSOCIATED STEEL SUPERSTRUCTURE (CENTER), AND CANTILEVERED NORTHERN TRUSS SECTION (RIGHT). FACING NORTHWEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA

  15. Level II scour analysis for Bridge 10 (BENNUS00070010) on U.S. Route 7, crossing the Walloomsac River, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BENNUS00070010 on U.S. Route 7, also known as North Street, crossing of the Walloomsac River, Bennington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southwestern Vermont. The 30.1-mi2 drainage area is a predominantly rural and forested basin. The bridge site is located within an urban setting in the Town of Bennington with buildings, parking lots, lawns, and a playground on the overbank areas. In the study area, the Walloomsac River has a straight channel with constructed channel banks through much of the reach. The channel is located on a delta and has a slope of approximately 0.02 ft/ft, an average channel top width of 37 ft and an average bank height of 5 ft. The predominant channel bed material is cobble with a median grain size (D50) of 96.0 mm (0.315 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 5, 1996, indicated that the constructed reach was stable. The U.S. Route 7 crossing of the Walloomsac River is a 53-ft-long, two-lane bridge consisting of one 50-foot steel span (Vermont Agency of Transportation, written communication, September 27, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The wingwalls are angled in toward the channel because the widths of the upstream and downstream constructed

  16. Level II scour analysis for Bridge 7 (WALDTH00020007) on Town Highway 2, crossing Coles Brook, Walden, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    ft, an average channel top width of 37 ft and an average bank height of 4 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 32.9 mm (0.108 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 9, 1995, indicated that the reach was laterally unstable due to cut-banks, point bars, and loose unconsolidated bed material. The Town Highway 2 crossing of Coles Brook is a 74-ft-long, two-lane bridge consisting of one 71-foot steel-beam span (Vermont Agency of Transportation, written communication, April 5, 1995). The opening length of the structure parallel to the bridge face is 69.3 ft. The bridge is supported by spill-through abutments. The channel is skewed approximately 35 degrees to the opening while the measured opening-skew-to-roadway is 15 degrees. A scour hole 1.5 ft deeper than the mean thalweg depth was observed from 60 ft. to 100 ft. downstream during the Level I assessment. Scour protection measures at the site include: type-1 stone fill (less than 12 inches diameter) along the right bank upstream, at the downstream end of the downstream left wingwall and downstream right wingwall; and type-2 stone fill (less than 36 inches diameter) along the left bank upstream, at the upstream end of the upstream right wingwall, and along the entire base of the left and right abutments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are

  17. Level II scour analysis for Bridge 46 (LINCTH00060046) on Town Highway 6, crossing the New Haven River, Lincoln, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure LINCTH00060046 on Town Highway 6 crossing the New Haven River, Lincoln, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 45.9-mi2 drainage area is in a predominantly suburban and forested basin. In the vicinity of the study site, the surface cover is forest upstream of the bridge. The downstream right overbank near the bridge is suburban with buildings, homes, lawns, and pavement (less than fifty percent). The downstream left overbank is brushland while the immediate banks have dense woody vegetation. In the study area, the New Haven River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 95 ft and an average bank height of 7 ft. The channel bed material ranges from sand to bedrock with a median grain size (D50) of 120.7 mm (0.396 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 13, 1996, indicated that the reach was stable. The Town Highway 34 crossing of the New Haven River is a 85-ft-long, two-lane bridge consisting of an 80-foot steel arch truss (Vermont Agency of Transportation, written communication, December 14, 1995). The opening length of the structure parallel to the bridge face is 69 feet. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed

  18. Level II scour analysis for Bridge 7H (HUNTTH0001007H) on Town Highway 1, crossing Cobb Brook, Huntington, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HUNTTH001007H on Town Highway 1 crossing the Cobb Brook, Huntington, Vermont (figures 1–10). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.In August 1976, Hurricane Belle caused flooding at this site which resulted in road and bridge damage (figures 7-8). This was approximately a 25-year flood event (U.S. Department of Housing and Urban Development, 1978). The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 4.20-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream of the bridge. Downstream of the bridge is brushland and pasture.In the study area, the Cobb Brook has an incised, straight channel with a slope of approximately 0.03 ft/ft, an average channel top width of 43 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 65.5 mm (0.215 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 24, 1996, indicated that the reach was stable. The Town Highway 1 crossing of the Cobb Brook is a 23-ft-long, two-lane bridge consisting of one 20-foot concrete slab span (Vermont Agency of Transportation, written communication, June 21, 1996). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees

  19. Cardiomyopathy mutations reveal variable region of myosin converter as major element of cross-bridge compliance.

    PubMed

    Seebohm, B; Matinmehr, F; Köhler, J; Francino, A; Navarro-Lopéz, F; Perrot, A; Ozcelik, C; McKenna, W J; Brenner, B; Kraft, T

    2009-08-05

    The ability of myosin to generate motile forces is based on elastic distortion of a structural element of the actomyosin complex (cross-bridge) that allows strain to develop before filament sliding. Addressing the question, which part of the actomyosin complex experiences main elastic distortion, we suggested previously that the converter domain might be the most compliant region of the myosin head domain. Here we test this proposal by studying functional effects of naturally occurring missense mutations in the beta-myosin heavy chain, 723Arg --> Gly (R723G) and 736Ile --> Thr (I736T), in comparison to 719Arg --> Trp (R719W). All three mutations are associated with hypertrophic cardiomyopathy and are located in the converter region of the myosin head domain. We determined several mechanical parameters of single skinned slow fibers isolated from Musculus soleus biopsies of hypertrophic cardiomyopathy patients and healthy controls. Major findings of this study for mutation R723G were i), a >40% increase in fiber stiffness in rigor with a 2.9-fold increase in stiffness per myosin head (S( *)(rigor R723G) = 0.84 pN/nm S( *)(rigor WT) = 0.29 pN/nm); and ii), a significant increase in force per head (F( *)(10 degrees C), 1.99 pN vs. 1.49 pN = 1.3-fold increase; F( *)(20 degrees C), 2.56 pN vs. 1.92 pN = 1.3-fold increase) as well as stiffness per head during isometric steady-state contraction (S( *)(active10 degrees C), 0.52 pN/nm vs. 0.28 pN/nm = 1.9-fold increase). Similar changes were found for mutation R719W (2.6-fold increase in S( *)(rigor); 1.8-fold increase in F( *)(10 degrees C), 1.6-fold in F( *)(20 degrees C); twofold increase in S( *)(active10 degrees C)). Changes in active cross-bridge cycling kinetics could not account for the increase in force and active stiffness. For the above estimates the previously determined fraction of mutated myosin in the biopsies was taken into account. Data for wild-type myosin of slow soleus muscle fibers support previous

  20. Wind tunnel test of musi VI bridge

    NASA Astrophysics Data System (ADS)

    Permata, Robby; Andika, Matza Gusto; Syariefatunnisa, Risdhiawan, Eri; Hermawan, Budi; Noordiana, Indra

    2017-11-01

    Musi VI Bridge is planned to cross the Musi River in Palembang City, South Sumatera Province, Indonesia. The main span is a steel arch type with 200 m length and side span length is 75 m. Finite element analysis results showed that the bridge has frequency ratio for torsional and heaving mode (torsional frequency/heaving frequency)=1.14. This close to unity value rises concern about aerodynamic behaviour and stability of the bridge deck under wind loading. Sectional static and free vibration wind tunnel test were performed to clarify this phenomena in B2TA3 facility in Serpong, Indonesia. The test followed the draft of Guide of Wind Tunnel Test for Bridges developed by Indonesian Ministry of Public Works. Results from wind tunnel testing show that the bridge is safe from flutter instability and no coupled motion vibration observed. Therefore, low value of frequency ratio has no effect to aerodynamic behaviour of the bridge deck. Vortex-induced vibration in heaving mode occurred in relatively low wind velocity with permissible maximum amplitude value.

  1. 10. UNDERSIDE, VIEW PARALLEL TO BRIDGE, SHOWING FLOOR SYSTEM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. UNDERSIDE, VIEW PARALLEL TO BRIDGE, SHOWING FLOOR SYSTEM AND SOUTH PIER. LOOKING SOUTHEAST. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  2. Level II scour analysis for Bridge 35, (ANDOVT00110035) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110035 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (Federal Highway Administration, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 4.65-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the left bank and small trees and brush on the right bank upstream and downstream of the bridge. In the study area, the Middle Branch Williams River has an incised, meandering channel with a slope of approximately 0.02 ft/ft, an average channel top width of 57 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 31.4 mm (0.103 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 28, 1996, indicated that the reach was laterally unstable. There are cut-banks upstream and downstream of the bridge and an island in the channel upstream. The State Route 11 crossing of the Middle Branch Williams River is a 28-ft-long, two-lane bridge consisting of one 24-ft concrete tee-beam span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 23.6 ft. The bridge is supported by vertical, concrete abutments with

  3. Entropy Drives the Formation of Salt Bridges in the Protein GB3.

    PubMed

    Zhang, Ning; Wang, Yefei; An, Liaoyuan; Song, Xiangfei; Huang, Qingshan; Liu, Zhijun; Yao, Lishan

    2017-06-19

    Salt bridges are very common in proteins. But what drives the formation of protein salt bridges is not clear. In this work, we determined the strength of four salt bridges in the protein GB3 by measuring the ΔpK a values of the basic residues that constitute the salt bridges with a highly accurate NMR titration method at different temperatures. The results show that the ΔpK a values increase with temperature, thus indicating that the salt bridges are stronger at higher temperatures. Fitting of ΔpK a values to the van't Hoff equation yields positive ΔH and ΔS values, thus indicating that entropy drives salt-bridge formation. Molecular dynamics simulations show that the protein and solvent make opposite contributions to ΔH and ΔS. Specifically, the enthalpic gain contributed from the protein is more than offset by the enthalpic loss contributed from the solvent, whereas the entropic gain originates from the desolvation effect. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Level II scour analysis for Bridge 42 (HARDELMSTR0042) on Elm Street, crossing Cooper Brook, Hardwick, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure HARDELMSTR0042 on Elm Street crossing Cooper Brook, Hardwick, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in north-central Vermont. The 16.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the overbanks are primarily grass covered with some brush along the immediate channel banks except the upstream right bank and overbank which is forested and the downstream left overbank which has a lumberyard. In the study area, Cooper Brook has a sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 50 ft and an average channel depth of 6 ft. The predominant channel bed materials are sand and gravel with a median grain size (D50) of 1.25 mm (0.00409 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 24, 1995, indicated that the reach was stable. The Elm Street crossing of Cooper Brook is a 39-ft-long, two-lane bridge consisting of one 37-foot concrete span (Vermont Agency of Transportation, written communication, March 17, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening while the opening-skew-to-roadway is 45 degrees. On August 17, 1995 the site was revisited to investigate

  5. Bridging the Gap: Possible Roles and Contributions of Representational Momentum

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2006-01-01

    Memory for the position of a moving target is often displaced in the direction of anticipated motion, and this has been referred to as "representational momentum". Such displacement might aid spatial localization by bridging the gap between perception and action, and might reflect a second-order isomorphism between subjective consequences of…

  6. Correlation between cross-bridge kinetics obtained from Trp fluorescence of myofibril suspensions and mechanical studies of single muscle fibers in rabbit psoas.

    PubMed

    Candau, Robin; Kawai, Masataka

    2011-12-01

    Our goal is to correlate kinetic constants obtained from fluorescence studies of myofibril suspension with those from mechanical studies of skinned muscle fibers from rabbit psoas. In myofibril studies, the stopped-flow technique with tryptophan fluorescence was used; in muscle fiber studies, tension transients with small amplitude sinusoidal length perturbations were used. All experiments were performed using the equivalent solution conditions (200 mM ionic strength, pH 7.00) at 10°C. The concentration of MgATP was varied to characterize kinetic constants of the ATP binding step 1 (K (1): dissociation constant), the binding induced cross-bridge detachment step 2 (k (2), k (-2): rate constants), and the ATP cleavage step 3 (k (3), k (-3)). In myofibrils we found that K (1) = 0.52 ± 0.08 mM (±95% confidence limits), k (2) = 242 ± 24 s(-1), and k (-2) ≈ 0; in muscle fibers, K (1) = 0.46 ± 0.06 mM, k (2) = 286 ± 32 s(-1), and k (-2) = 57 ± 21 s(-1). From these results, we conclude that myofibrils and muscle fibers exhibit nearly equal ATP binding step, and nearly equal ATP binding induced cross-bridge detachment step. Consequently, there is a good correlation between process C (phase 2 of step analysis) and the cross-bridge detachment step. The reverse detachment step is finite in fibers, but almost absent in myofibrils. We further studied partially cross-linked myofibrils and found little change in steps 2 and 3, indicating that cross-linking does not affect these steps. However, we found that K (1) is 2.5× of native myofibrils, indicating that MgATP binding is weakened by the presence of the extra load. We further studied the phosphate (Pi) effect in myofibrils, and found that Pi is a competitive inhibitor of MgATP, with the inhibitory dissociation constant of ~9 mM. Similar results were also deduced from fiber studies. To characterize the ATP cleavage step in myofibrils, we measured the slow rate constant in fluorescence, and

  7. Level II scour analysis for Bridge 47 (PLYMTH00540047) on Town Highway 54, crossing Pinney Hollow Brook, Plymouth, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Weber, Matthew A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure PLYMTH00540047 on Town Highway 54 crossing Pinney Hollow Brook, Plymouth, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gathered from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 7.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, Pinney Hollow Brook has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 57 ft and an average bank height of 7 ft. The channel bed material ranges from sand to cobbles with a median grain size (D50) of 45.7 mm (0.150 ft). The geomorphic assessment at the time of the Level I and Level II site visit on March 30, 1995 and Level II site visit on October 2, 1995, indicated that the reach was stable. The Town Highway 54 crossing of Pinney Hollow Brook is a 30-ft-long, two-lane bridge consisting of a 27-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 25.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is not skewed to the opening and the opening-skew-to-roadway is zero degrees. Scour protection measures at the site included

  8. Level II scour analysis for Bridge 68 (NFIETH00960068) on Town Highway 96, crossing the Dog River, Northfield, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NFIETH00960068 on Town Highway 96 crossing the Dog River, Northfield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 30.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the left bank upstream and downstream is pasture while the immediate banks have dense woody vegetation. The right bank upstream is forested and the downstream right bank is pasture. Vermont state route 12A runs parallel to the river on the right bank. In the study area, the Dog River has an incised, straight channel with a slope of approximately 0.004 ft/ft, an average channel top width of 70 ft and an average bank height of 7 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 47.9 mm (0.157 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 25, 1996, indicated that the reach was stable. The Town Highway 96 crossing of the Dog River is a 45-ft-long, one-lane bridge consisting of one 43-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 41.5 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The

  9. Level II scour analysis for Bridge 45 (BRNETH00070045) on Town Highway 7, crossing the Stevens River, Barnet, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRNETH00070045 on Town Highway 7 crossing the Stevens River, Barnet, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 41.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and pasture downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, the Stevens River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 100 ft and an average bank height of 17 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 105 mm (0.344 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 22, 1995, indicated that the reach was stable. The Town Highway 7 crossing of the Stevens River is a 37-ft-long, two-lane bridge consisting of one 34-foot concrete slab span (Vermont Agency of Transportation, written communication, March 16, 1995). The opening length of the structure parallel to the bridge face is 33 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is 20 degrees. The only scour protection measure at

  10. Effect of implementing lean-on bracing in skewed steel I-girder bridges.

    DOT National Transportation Integrated Search

    2016-09-01

    Skew of the supports in steel I-girder bridges cause undesirable torsional effects, increase cross-frame forces, and generally increase the difficulty of designing and : constructing a bridge. The girders experience differential deflections due to th...

  11. Level II scour analysis for Bridge 144 (ROCHVT01000144) on State Route 100, crossing the White River, Rochester, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCHVT01000144 on State Route 100 crossing the White River, Rochester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 68.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture with forest on the valley walls. In the study area, the White River has a meandering channel with a slope of approximately 0.003 ft/ft, an average channel top width of 119 ft and an average channel depth of 4 ft. The predominant channel bed material is gravel and cobbles with a median grain size (D50) of 72.5 mm (0.238 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 22, 1996, indicated that the reach was laterally unstable due to a cut-bank present on the upstream left bank and wide point bars upstream and downstream in the vicinity of this site. The State Route 100 crossing of the White Riveris a 103-ft-long, two-lane bridge consisting of one 101-foot steel-beam span (Vermont Agency of Transportation, written communication, March 8, 1995). The bridge is supported by vertical, concrete abutment walls with spill-through embankments in front of each abutment wall and no wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-toroadway is

  12. Level II scour analysis for Bridge 16 (CHESVT01030016) on State Route 103, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESVT01030016 on State Route 103 crossing the Williams River, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 15.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture except for the downstream right overbank which is forested. In the study area, the Williams River has an incised, straight channel with a slope of approximately 0.008 ft/ft, an average channel top width of 56 ft and an average bank height of 6 ft. The channel bed material ranges from gravel to cobbles with a median grain size (D50) of 67.5 mm (0.222 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 16, 1996, indicated that the reach was stable. The State Route 103 crossing of the Williams River is a 162-ft-long, two-lane bridge consisting of three steel-beam spans (Vermont Agency of Transportation, written communication, March 13, 1995). The opening length of the structure parallel to the bridge face is 157.7 ft.The bridge is supported by vertical, concrete abutments and piers with no wingwalls. The channel is skewed approximately 55 degrees to the opening while the opening-skew-to-roadway is also 55 degrees. The scour protection measures at the site included

  13. Level II scour analysis for Bridge 29 (CRAFTH00550029) on Town Highway 55, crossing the Black River, Craftsbury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CRAFTH00550029 on town highway 55 crossing the Black River, Craftsbury, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province of north-central Vermont in the town of Craftsbury. The 24.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the banks have woody vegetation coverage except for the upstream left bank and the downstream right bank, which have more brush cover than trees. In the study area, the Black River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 41 ft and an average channel depth of 5.5 ft. The predominant channel bed material is sand and gravel (D50 is 44.7 mm or 0.147 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 7, 1995, indicated that the reach was stable. The town highway 55 crossing of the Black Riveris a 32-ft-long, one-lane bridge consisting of one 28-foot span steel stringer superstructure with a timber deck (Vermont Agency of Transportation, written communication, August 4, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening while the opening-skew-to-roadway is 10 degrees. A scour hole 2 ft deeper than the mean thalweg depth was

  14. Level II scour analysis for Bridge 22 (BRADTH00270022) on Town Highway 27, crossing the Waits River, Bradford, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Ivanoff, Michael A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRADTH00270022 on Town Highway 27 crossing the Waits River, Bradford, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, obtained from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 153-mi2 drainage area is in a predominantly rural and forested basin. However, in the vicinity of the study site, the upstream and downstream left banks are suburban and the upstream and downstream right banks are shrub and brushland. In the study area, the Waits River has an incised, sinuous channel with a slope of approximately 0.0002 ft/ft, an average channel top width of 125 ft and an average bank height of 4 ft. The channel bed material ranges from silt and clay to bedrock with a median grain size (D50) of 0.393 mm (0.00129 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 7, 1995, indicated that the reach was stable. The Town Highway 27 crossing of the Waits River is a 109-ft-long, one-lane bridge consisting of a 104-ft steel-truss span (Vermont Agency of Transportation, written communication, March 16, 1995). The opening length of the structure parallel to the bridge face is 99.2 ft. The bridge is supported by vertical, laid-up stone abutments. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is zero degrees. No evidence of scour was observed during the Level I assessment

  15. Effects of neuromuscular joint facilitation on bridging exercises with respect to deep muscle changes.

    PubMed

    Zhou, Bin; Huang, QiuChen; Zheng, Tao; Huo, Ming; Maruyama, Hitoshi

    2015-05-01

    [Purpose] This study examined the effects of neuromuscular joint facilitation on bridging exercises by assessing the cross-sectional area of the multifidus muscle and thickness of the musculus transversus abdominis. [Subjects] Twelve healthy men. [Methods] Four exercises were evaluated: (a) supine resting, (b) bridging resistance exercise involving posterior pelvic tilting, (c) bridging resistance exercise involving anterior pelvic tilting, and (d) bridging resistance exercise involving neuromuscular joint facilitation. The cross-sectional area of the multifidus muscle and thickness of the musculus transversus abdominis were measured during each exercise. [Results] The cross-sectional area of the multifidus muscle and thickness of the musculus transversus abdominis were significantly greater in the neuromuscular joint facilitation group than the others. [Conclusion] Neuromuscular joint facilitation intervention improves the function of deep muscles such as the multifidus muscle and musculus transversus abdominis. Therefore, it can be recommended for application in clinical treatments such as that for back pain.

  16. Salt bridges: geometrically specific, designable interactions.

    PubMed

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. Copyright © 2010 Wiley-Liss, Inc.

  17. Level II scour analysis for Bridge 25 (ROCHTH00400025) on Town Highway 40, crossing Corporation Brook, Rochester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Weber, Matthew A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCHTH00400025 on Town Highway 40 crossing Corporation Brook, Rochester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, from Vermont Agency of Transportation files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 4.97-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the upstream left and right overbanks, and the downstream left overbank. On the downstream right overbank, the surface cover is predominately brushland. In the study area, Corporation Brook has an incised, sinuous channel with a slope of approximately 0.04 ft/ft, an average channel top width of 37 ft and an average bank height of 6 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 101 mm (0.332 ft). The geomorphic assessment at the time of the Level I site visit on April 12, 1995 and Level I and II site visit on July 8, 1996, indicated that the reach was stable. The Town Highway 40 crossing of Corporation Brook is a 31-ft-long, one-lane bridge consisting of a 26-foot steel stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 24 ft. The bridge is supported by vertical, concrete abutments. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is 15 degrees. A scour hole 1

  18. Level II scour analysis for Bridge 18 (SHEFTH00410018) on Town Highway 41, crossing Millers Run, Sheffield, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHEFTH00410018 on Town Highway 41 crossing Millers Run, Sheffield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 16.2-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, Millers Run has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 50 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 50.9 mm (0.167 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 1, 1995, indicated that the reach was laterally unstable, which is evident in the moderate to severe fluvial erosion in the upstream reach. The Town Highway 41 crossing of the Millers Run is a 30-ft-long, one-lane bridge consisting of a 28-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 22.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening. The computed

  19. Level II scour analysis for Bridge 37 (PLYMTH00080037) on Town Highway 8, crossing Broad Brook, Plymouth, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Medalie, Laura

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure PLYMTH00080037 on Town Highway 8 crossing Broad Brook, Plymouth, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gathered from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 5.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and downstream of the bridge. In the study area, Broad Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 46 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 87.5 mm (0.287 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 3, 1995, indicated that the reach was laterally unstable due to cut-banks present on the upstream left bank and the downstream left and right banks. The Town Highway 8 crossing of Broad Brook is a 31-ft-long, one-lane bridge consisting of a 28-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 27.0 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is 15 degrees. During the Level I assessment, it was

  20. Level II scour analysis for Bridge 15 (BOLTTH00150015) on Town Highway 15, crossing Joiner Brook, Bolton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BOLTTH00150015 on Town Highway 15 crossing Joiner Brook, Bolton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in north central Vermont. The 9.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture (lawn) downstream of the bridge and on the upstream right bank. The surface cover on the upstream left bank is shrub and brushland. In the study area, Joiner Brook has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 61 ft and an average bank height of 7 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 43.6 mm (0.143 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 27, 1996, indicated that the reach was stable. The Town Highway 15 crossing of Joiner Brook is a 39-ft-long, two-lane bridge consisting of one 36-foot concrete tee-beam span (Vermont Agency of Transportation, written communication, November 3, 1995). The opening length of the structure parallel to the bridge face is 34.6 ft. The bridge is supported by nearly vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 1.5 ft deeper than the

  1. Level II scour analysis for Bridge 26 (ROYATH00540026) on Town Highway 54, crossing Broad Brook, Royalton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Weber, Matthew A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROYATH00540026 on Town Highway 54 crossing Broad Brook, Royalton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 11.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the left bank upstream and downstream is pasture with trees and brush on the immediate banks. The right bank, upstream and downstream of the bridge, is forested. In the study area, Broad Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 37 ft and an average bank height of 4 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 66.3 mm (0.218 ft). The geomorphic assessment at the time of the Level I site visit on April 13, 1995 and the Level II site visit on July 11, 1996, indicated that the reach was stable. The Town Highway 54 crossing of Broad Brook is a 29-ft-long, one-lane bridge consisting of one 24-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 23.3 ft. The bridge is supported by a vertical, concrete face laid-up stone abutment with concrete wingwalls on the left and a laid-up stone

  2. 76 FR 57910 - Regulated Navigation Area; Route 24 Bridge Construction, Tiverton and Portsmouth, RI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ...-AA11 Regulated Navigation Area; Route 24 Bridge Construction, Tiverton and Portsmouth, RI AGENCY: Coast... surrounding construction of the new Route 24 bridge that crosses the Sakonnet River between Tiverton and... channel beneath the bridge, speed restrictions, and suspension of all vessel traffic within the RNA during...

  3. Study on load test of 100m cross-reinforced deck type concrete box arch bridge

    NASA Astrophysics Data System (ADS)

    Shi, Jing Xian; Cheng, Ying Jie

    2018-06-01

    Found in the routine quality inspection of highway bridge that many vertical fractures on the main beam (10mT beam) of the steel reinforced concrete arch bridge near the hydropower station. In order to grasp the bearing capacity of this bridge under working conditions with cracks, the static load and dynamic load test of box arch bridge are carried out. The Midas civil theory is calculated by using the special plate trailer - 300 as the calculation load, and the deflection and stress of the critical section are tested by the equivalent cloth load in the test vehicle. The pulsation test, obstacles and no obstacle driving test were carried out. Experimental results show that the bridge under the condition of the test loads is in safe condition, main bearing component of the strength and stiffness meet the design requirements, the crack width does not increase, in the process of loading bridge overall work performance is good.

  4. Level II scour analysis for Bridge 63 (MTH0TH00120063) on Town Highway 12, crossing Russell Brook, Mount Holly, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Severance, Timothy

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MTHOTH00120063 on Town Highway 12 crossing Russell Brook, Mount Holly, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 3.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and downstream of the bridge. In the study area, Russell Brook has an incised, sinuous channel with a slope of approximately 0.0263 ft/ft, an average channel top width of 29 ft and an average bank height of 3 ft. The channel bed material ranges from cobbles to boulders with a median grain size (D50) of 97.1 mm (0.318 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 4, 1995, indicated that the reach was stable. The Town Highway 12 crossing of Russell Brook is a 29-ft-long, one-lane bridge consisting of a 26-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 21, 1995). The opening length of the structure parallel to the bridge face is 23.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening while the computed opening-skew-to-roadway is 35 degrees. During the Level I assessment, it was observed that the upstream left wingwall footing was exposed 0.2 ft, in reference to

  5. Level II scour analysis for Bridge 8 (BARTTH00020008) on Town Highway 2, crossing Roaring Brook, Barton, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Ivanoff, Michael A.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term aggradation or degradation; 2) contraction scour (due to reduction in flow area caused by a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute scour depths for contraction and local scour and a summary of the results follows. Contraction scour for all modelled flows ranged from 1.4 to 2.8 feet and the worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.5 to 16.5 feet and the worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 4 (CRAFTH00040004) on Town Highway 4, crossing Whitney Brook, Craftsbury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Hammond, Robert E.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term degradation; 2) contraction scour (due to accelerated flow caused by reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the computed scour results follow. Contraction scour for all modelled flows ranged from 0.7 to 1.7 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.7 to 15.3 feet. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 28 (STRATH00020028) on Town Highway 2, crossing the West Branch Ompompanoosuc River, Strafford, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure STRATH00020028 on Town Highway 2 crossing the West Branch Ompompanoosuc River, Strafford, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gathered from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 25.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge. In the study area, the West Branch Ompompanoosuc River has a sinuous channel with a slope of approximately 0.002 ft/ft, an average channel top width of 34 ft and an average bank height of 6 ft. The channel bed material ranges from silt and clay to cobbles with a median grain size (D50) of 20.4 mm (0.0669 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 24, 1996, indicated that the reach was laterally unstable, because of moderate fluvial erosion. The Town Highway 2 crossing of the West Branch Ompompanoosuc River is a 31-ft-long, twolane bridge consisting of a 26-foot concrete tee-beam span (Vermont Agency of Transportation, written communication, October 23, 1995). The opening length of the structure parallel to the bridge face is 24.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the computed opening-skew-toroadway is 5 degrees. A scour hole 3

  8. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Tichenor, Mark S [San Diego, CA; Artau, Alexander [Humacao, PR

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  9. Level II scour analysis for Bridge 22 (JAY-TH00400022) on Town Highway 40, crossing Jay Branch, Jay, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1997-01-01

    8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northern Vermont. The 2.15-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is primarily pasture on the upstream and downstream left overbank while the immediate banks have dense woody vegetation. The downstream right overbank of the bridge is forested. In the study area, Jay Branch Tributary has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 26 ft and an average bank height of 3 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 40.5 mm (0.133 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 7, 1995, indicated that the reach was stable. The Town Highway 40 crossing of Jay Branch Tributary is a 27-ft-long, two-lane bridge consisting of one 25-foot steel-beam span (Vermont Agency of Transportation, written communication, March 6, 1995). The opening length of the structure parallel to the bridge face is 23.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel skew and the opening-skew-to-roadway are zero degrees. The scour counter-measures at the site included type-2 stone fill (less than 36 inches diameter) at the upstream end of the left and right abutments, at the upstream right wingwall, and at the downstream left

  10. Level II scour analysis for Bridge 43 (BENNCYDEPO0043) on Depot Street, crossing the Walloomsac River, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BENNCYDEPO0043 on the Depot Street crossing of the Walloomsac River, Bennington, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southwestern Vermont. The 30.1-mi2 drainage area is a predominantly rural and forested basin. The bridge site is located within an urban setting in the Town of Bennington with buildings and parking lots on overbanks. In the study area, the Walloomsac River has a straight channel with constructed channel banks through much of the reach. The channel is located on a delta and has a slope of approximately 0.02 ft/ft, an average channel top width of 48 ft and an average bank height of 6 ft. The predominant channel bed material is cobble with a median grain size (D50) of 108 mm (0.356 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 5, 1996, indicated that the reach was stable. The Depot Street crossing of the Walloomsac River is a 46-ft-long, two-lane bridge consisting of one 40-foot concrete span (Vermont Agency of Transportation, written communication, December 13, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 5 degrees to the opening and the opening-skew-to-roadway is 15 degrees. Scour countermeasures at the site include type-2 stone fill (less than 36

  11. Level II scour analysis for Bridge 8 (NEWFTH00010008) on Town Highway 1, crossing Wardsboro Brook, Newfane, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Degnan, James

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NEWFTH00010008 on Town Highway 1 crossing Wardsboro Brook, Newfane, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (Federal Highway Administration, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in southestern Vermont. The 6.91-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the upstream right overbank and downstream left and right overbanks. The surface cover on the upstream left overbank is pasture. In the study area, Wardsboro Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 63 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 95.4 mm (0.313 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 21, 1996, indicated that the reach was stable. The Town Highway 1 crossing of the Wardsboro Brook is a 32-ft-long, two-lane bridge consisting of a 26-foot concrete tee-beam span (Vermont Agency of Transportation, written communication, April 6, 1995). The opening length of the structure parallel to the bridge face is 26.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the computed opening while the openingskew-to-roadway is 45 degrees

  12. Level II scour analysis for Bridge 36 (STOWTH00430036) on Town Highway 43, crossing Miller Brook, Stowe, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure STOWTH00430036 on Town Highway 43 crossing the Miller Brook, Stowe, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in north central Vermont. The 5.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly forested. In the study area, the Miller Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 43 ft and an average bank height of 7 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 70.4 mm (0.231 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 15, 1996, indicated that the reach was stable. The Town Highway 43 crossing of the Miller Brook is a 24-ft-long, two-lane bridge consisting of one 21-foot steel-beam span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 21.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening and the computed opening-skew-to-roadway is also 10 degrees. The footing on the left abutment was exposed 2.5 ft and the footing on the right abutment was exposed 3.0 ft during

  13. Level II scour analysis for Bridge 36 (DUXBTH00040036) on Town Highway 4, crossing Crossett Brook, Duxbury, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DUXBTH00040036 on Town Highway 4 crossing the Crossett Brook, Duxbury, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain section of the New England physiographic province in north-central Vermont. The 4.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the upstream left overbank is pasture. The upstream and downstream right overbanks are forested. The downstream left overbank is brushland, while the immediate banks have dense woody vegetation.In the study area, the Crossett Brook has an incised, sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 55 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 51.6 mm (0.169 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 1, 1996, indicated that the reach was stable.The Town Highway 4 crossing of the Crossett Brook is a 29-ft-long, two-lane bridge consisting of a 26-foot concrete slab span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 26 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening while

  14. Level II scour analysis for Bridge 6 (FAYSTH00010006) on Town Highway 1, crossing Shepard Brook, Fayston, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Flynn, Robert H.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure FAYSTH00010006 on Town Highway 1 crossing Shepard Brook, Fayston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 16.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest. In the study area, Shepard Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 56 ft and an average bank height of 3 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 72.6 mm (0.238 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 2, 1996, indicated that the reach was stable. The Town Highway 1 crossing of the Shepard Brook is a 42-ft-long, two-lane bridge consisting of one 40-foot concrete T-beam span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 39.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the calculated opening-skew-to-roadway is 30 degrees. Scour, 2.0 ft deeper than the mean thalweg depth, was observed along the right abutment during the Level I assessment. The left abutment is

  15. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    PubMed

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p < 0.05) when the dominant knee was flexed to 135 ° (23.49% MVIC) versus the traditional 90 ° (75.34% MVIC), while gluteal activation remained similarly high (51.01% and 57.81% MVIC in the traditional position, versus 47.35% and 57.23% MVIC in the modified position for the gluteus maximus and medius, respectively). Modifying the traditional single-leg bridge by flexing the

  16. Evaluation of streambed scour at bridges over tidal waterways in Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.; Schauer, Paul V.

    2012-01-01

    The potential for streambed scour was evaluated at 41 bridges that cross tidal waterways in Alaska. These bridges are subject to several coastal and riverine processes that have the potential, individually or in combination, to induce streambed scour or to damage the structure or adjacent channel. The proximity of a bridge to the ocean and water-surface elevation and velocity data collected over a tidal cycle were criteria used to identify the flow regime at each bridge, whether tidal, riverine, or mixed, that had the greatest potential to induce streambed scour. Water-surface elevations measured through at least one tide cycle at 32 bridges were correlated to water levels at the nearest tide station. Asymmetry of the tidal portion of the hydrograph during the outgoing tide at 12 bridges indicated that riverine flows were stored upstream of the bridge during the tidal exchange. This scenario results in greater discharges and velocities during the outgoing tide compared to those on the incoming tide. Velocity data were collected during outgoing tides at 10 bridges that experienced complete flow reversals, and measured velocities during the outgoing tide exceeded the critical velocity required to initiate sediment transport at three sites. The primary risk for streambed scour at most of the sites considered in this study is from riverine flows rather than tidal fluctuations. A scour evaluation for riverine flow was completed at 35 bridges. Scour from riverine flow was not the primary risk for six tidally-controlled bridges and therefore not evaluated at those sites. Field data including channel cross sections, a discharge measurement, and a water-surface slope were collected at the 35 bridges. Channel instability was identified at 14 bridges where measurable scour and or fill were noted in repeated surveys of channel cross sections at the bridge. Water-surface profiles for the 1-percent annual exceedance probability discharge were calculated by using the Hydrologic

  17. Finite element model updating of multi-span steel-arch-steel-girder bridges based on ambient vibrations

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Gao, Wei-Yuan; Chang, Chia-Sheng; Zhu, Guan-Rong; Su, Yu-Min

    2017-04-01

    The three-span steel-arch-steel-girder Jiaxian Bridge was newly constructed in 2010 to replace the former one that has been destroyed by Typhoon Sinlaku (2008, Taiwan). It was designed and built to continue the domestic service requirement, as well as to improve the tourism business of the Kaohsiung city government, Taiwan. This study aimed at establishing the baseline model of Jiaxian Bridge for hazardous scenario simulation such as typhoons, floods and earthquakes. Necessities of these precaution works were attributed to the inherent vulnerability of the sites: near fault and river cross. The uncalibrated baseline bridge model was built with structural finite element in accordance with the blueprints. Ambient vibration measurements were performed repeatedly to acquire the elastic dynamic characteristics of the bridge structure. Two frequency domain system identification algorithms were employed to extract the measured operational modal parameters. Modal shapes, frequencies, and modal assurance criteria (MAC) were configured as the fitting targets so as to calibrate/update the structural parameters of the baseline model. It has been recognized that different types of structural parameters contribute distinguishably to the fitting targets, as this study has similarly explored. For steel-arch-steel-girder bridges in particular this case, joint rigidity of the steel components was found to be dominant while material properties and section geometries relatively minor. The updated model was capable of providing more rational elastic responses of the bridge superstructure under normal service conditions as well as hazardous scenarios, and can be used for manage the health conditions of the bridge structure.

  18. Roy D. Bridges Bridge

    NASA Image and Video Library

    2003-08-06

    From left, incoming KSC Director James W. Kennedy looks on as departing KSC Director Roy D. Bridges Jr. shakes hands with the 45th Space Wing Commander Brig. Gen. J. Gregory Pavlovich. The occasion is the unveiling of the new sign on the NASA Causeway naming the bridge for Bridges who is leaving KSC to become the director of NASA's Langley Research Center, Hampton, Va. The bridge spans the Banana River on the NASA Causeway and connects Kennedy Space Center and Cape Canaveral Air Force Station.

  19. IceBridge team members

    NASA Image and Video Library

    2013-11-13

    These IceBridge team members aboard a huge U.S. Air Force C-17 transport aircraft are ready to step out into the cold Antarctic air. The C-17 aircraft that fly to Antarctica are operated by the U.S. Air Force's 62nd and 446th Airlift Wings based at Joint Base Lewis-McChord near Seattle, Wash. Credit: NASA/Goddard/Michael Studinger NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Sunshine Skyway Bridge monitoring phase I : system assessment and integration recommendations [summary].

    DOT National Transportation Integrated Search

    2016-10-01

    At over five miles long, the Sunshine Skyway Bridge, crossing Tampa Bay where it meets the Gulf of Mexico, is one of the worlds longest cable-stayed bridges. The pier-supported approaches rise to meet the center section where cables radiating from...

  1. Level II scour analysis for Bridge 32 (TUNBTH00600032) on Town Highway 60, crossing First Branch White River, Tunbridge, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure TUNBTH00600032 on Town Highway 60 crossing the First Branch White River, Tunbridge, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 92.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge, while woody vegetation sparsely covers the immediate banks. In the study area, the First Branch White River has a sinuous channel with a slope of approximately 0.001 ft/ft, an average channel top width of 82 ft and an average bank height of 7 ft. The channel bed material ranges from sand to gravel with a median grain size (D50) of 24.4 mm (0.08 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 18, 1995, indicated that the reach was laterally unstable, as a result of block failure of moderately eroded banks. The Town Highway 60 crossing of the First Branch White River is a 74-ft-long, one-lane bridge consisting of a 71-foot timber thru-truss span (Vermont Agency of Transportation, written communication, August 24, 1994). The opening length of the structure parallel to the bridge face is 64 ft.The bridge is supported by vertical, laid-up stone abutments with upstream wingwalls. The channel is not skewed to the opening

  2. Plans for a sensitivity analysis of bridge-scour computations

    USGS Publications Warehouse

    Dunn, David D.; Smith, Peter N.

    1993-01-01

    Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.

  3. Level II scour analysis for Bridge 12 (SUNDFLR0030012) on Forest Land Road 3, crossing Roaring Branch Brook, Sunderland, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SUNDFLR0030012 on Forest Land Road (FLR) 3 (FAS 114) crossing Roaring Branch Brook, Sunderland, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southwestern Vermont. The 4.93-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is dense forest along the left bank and primarily shrubs and trees along the right bank, both upstream and downstream of the bridge. In the study area, Roaring Branch Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 33 ft and an average bank height of 4 ft. The channel bed material ranges from cobble to bedrock with a median grain size (D50) of 139 mm (0.457 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 30, 1996, indicated that the reach was stable. Forest Land Road 3 (FAS 114) crossing of Roaring Branch Brook is a 37-ft-long, two-lane bridge consisting of one 35-foot steel-beam span (Vermont Agency of Transportation, written communication, December 14, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is 15 degrees. The scour protection measures at the site included

  4. Automated Erosion System to Protect Highway Bridge Crossings at Abutments

    DOT National Transportation Integrated Search

    2010-06-01

    A new instrument (Photo-Electronic Erosion Pin, or PEEP) was examined in collecting field data and remotely monitoring bank erosion near bridge abutments during floods. The performance of PEEPs was evaluated through a detailed field study to determin...

  5. An amateur's contribution to the design of Telford's Menai Suspension Bridge: a commentary on Gilbert (1826) ‘On the mathematical theory of suspension bridges’

    PubMed Central

    Calladine, C. R.

    2015-01-01

    Davies Gilbert's work on the catenary is notable on two counts. First, it influenced Thomas Telford in formulating his final design for the Menai Strait suspension bridge (1826); and second, it established for the first time the form of the ‘catenary of equal strength’. The classical catenary is a uniform flexible chain or cable hanging freely under gravity between supports. The ‘catenary of equal strength’ is the form of a cable whose cross-sectional area is made proportional to the tension at each point, so that the tensile stress is uniform throughout. In this paper I provide a sketch of the lives and achievements of Gilbert and Telford, and of their interaction over the Menai Bridge. There follows a commentary on Gilbert's 1826 paper, and on his two related publications; and a brief sketch of the earlier history of the catenary. I then describe the development of the suspension bridge up to the present time. Finally, I discuss relations between mathematical analysts and practical engineers. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750153

  6. Volume balance and toxicity analysis for the cross lake bridge.

    DOT National Transportation Integrated Search

    2009-09-01

    There were two overall objectives for this project: (1) to assess leakage from the bridge once repairs to the collection system were completed and (2) to investigate Microtox, a toxicity screening tool manufactured by Azur environmental, as a m...

  7. Level II scour analysis for Bridge 21 (MONKTH00340021) on Town Highway 34, crossing Little Otter Creek, Monkton, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MONKTH00340021 on Town Highway 34 crossing Little Otter Creek, Monkton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix D of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix C. The site is in the Champlain section of the Saint Lawrence Valley physiographic province in northwestern Vermont. The 34.1-mi2 drainage area is in a predominantly rural and forested basin with pasture in the valleys. In the vicinity of the study site, the surface cover consists of pasture. The most significant tree cover is immediately adjacent to the channel on the right bank downstream. In the study area, Little Otter Creek has a sinuous channel with a slope of approximately 0.008 ft/ft, an average channel top width of 92 feet and an average bank height of 6 feet. The predominant channel bed materials are silt and clay. Sieve analysis indicates that greater than 50% of the sample is silt and clay and thus a median grain size by use of sieve analysis was indeterminate. Therefore, the median grain size was assumed to be medium silt with a size (D50) of 0.0310 mm (0.000102 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 19 and June 20, 1996, indicated that the reach was stable. The Town Highway 34 crossing of Little Otter Creek is a 50-ft-long, one-lane bridge consisting of one 26-foot concrete span and three “boiler tube” smooth metal pipe culverts through the left road approach (Vermont Agency of

  8. Level II scour analysis for Bridge 18 (GROTTH00480018) on Town Highway 48, crossing the Wells River Groton, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure GROTTH00480018 on Town Highway 48 crossing the Wells River, Groton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in eastern Vermont. The 53.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the right bank upstream and the left bank downstream while the surface cover is shrub and brushland along the left bank upstream and the right bank downstream. The immediate banks are vegetated with brush and scattered trees. In the study area, the Wells River has an incised, straight channel with a slope of approximately 0.003 ft/ft, an average channel top width of 69 ft and an average bank height of 7 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 66.7 mm (0.219 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 28, 1995, indicated that the reach was stable. The Town Highway 48 crossing of the Wells River is a 38-ft-long, one-lane bridge consisting of one 36-foot steel-beam span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 33.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed

  9. Level II scour analysis for Bridge 32 (FERRTH00190032) on Town Highway 19, crossing the South Slang Little Otter Creek, Ferrisburgh, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure FERRTH00190032 on Town Highway 19 crossing the South Slang Little Otter Creek (Hawkins Slang Brook), Ferrisburg, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Champlain section of the St. Lawrence Valley physiographic province in west-central Vermont. The 8.00-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of wetlands upstream and downstream of the bridge with trees and pasture on the wide flood plains. In the study area, the South Slang Little Otter Creek has a meandering channel with essentially no channel slope, an average channel top width of 932 ft and an average bank height of 6 ft. The channel bed material ranges from clay to sand. Sieve analysis indicates that greater than 50% of the sample is coarse silt and clay and thus a medium grain size by use of sieve analysis was indeterminate. The median grain size was assumed to be a course silt with a size (D50) of 0.061mm (0.0002 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 2, 1996, indicated that the reach was stable. The Town Highway 19 crossing of the South Slang Little Otter Creek is a 45-ft-long, twolane bridge consisting of one 42-foot concrete box-beam span (Vermont Agency of Transportation, written communication, December 11, 1995). The opening length of the structure parallel to the bridge face

  10. Cross-infrastructure learnings for alternative bridge system designs : a case study on the hybrid composite bridge system.

    DOT National Transportation Integrated Search

    2015-04-30

    The hybrid composite beam (HCB) technology has been presented as a system for short and medium span beam bridges as an alternative to traditional materials such as concrete and steel. A HCB consists of a concrete tied arch encased in a fiber-reinforc...

  11. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.

    PubMed

    Santiago-Tirado, Felipe H; Onken, Michael D; Cooper, John A; Klein, Robyn S; Doering, Tamara L

    2017-01-31

    The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a "Trojan horse" mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes

  12. 47 CFR 80.1007 - Bridge-to-bridge radiotelephone installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bridge-to-bridge radiotelephone installation. 80.1007 Section 80.1007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bridge-to-Bridge Act § 80.1007 Bridge-to-bridge radiotelephone installation. Use of the bridge-to-bridge...

  13. 47 CFR 80.1007 - Bridge-to-bridge radiotelephone installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bridge-to-bridge radiotelephone installation. 80.1007 Section 80.1007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bridge-to-Bridge Act § 80.1007 Bridge-to-bridge radiotelephone installation. Use of the bridge-to-bridge...

  14. Level II scour analysis for Bridge 34 (ROCHTH00210034) on Town Highway 21, crossing the White River, Rochester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Degnan, James

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCHTH00210034 on Town Highway 21 crossing the White River, Rochester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, obtained from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 74.8-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is suburban on the upstream and downstream left overbanks, though brush prevails along the immediate banks. On the upstream and downstream right overbanks, the surface cover is pasture with brush and trees along the immediate banks.In the study area, the White River has an incised, straight channel with a slope of approximately 0.002 ft/ft, an average channel top width of 102 ft and an average bank height of 5 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 74.4 mm (0.244 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 23, 1996, indicated that the reach was stable.The Town Highway 21 crossing of the White River is a 72-ft-long, two-lane bridge consisting of 70-foot steel stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 67.0 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15

  15. Level II scour analysis for Bridge 67 (MTHOTH00120067) on Town Highway 12, crossing Freeman Brook, Mount Holly, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Severance, Timothy

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MTHOTH00120067 on Town Highway 12 crossing Freeman Brook, Mount Holly, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 11.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forested. In the study area, Freeman Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 51 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 55.7 mm (0.183 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 5, 1995, indicated that the reach was stable. The Town Highway 12 crossing of Freeman Brook is a 34-ft-long, two-lane bridge consisting of a 30-foot prestressed concrete-slab span (Vermont Agency of Transportation, written communication, March 15, 1995). The opening length of the structure parallel to the bridge face is 29.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 50 degrees to the opening while the opening-skew-to-roadway is 15 degrees. Along the upstream right wingwall, the right abutment and the downstream right wingwall, a scour hole approximately 1.0 to 2.0 ft deeper than the mean thalweg

  16. Level II scour analysis for Bridge 38 (JERITH0020038) on Town Highway 20, crossing the Lee River, Jericho, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure JERITH00200038 on Town Highway 20 crossing the Lee River, Jericho, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, obtained from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province and the Champlain section of the St. Lawrence physiographic province in northwestern Vermont. The 12.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the upstream and downstream right overbank is pasture while the immediate banks have dense woody vegetation. The surface cover on the upstream and downstream left overbank is forested. In the study area, the Lee River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 89 ft and an average bank height of 14 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 45.9 mm (0.151 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 2, 1996, indicated that the reach was stable. The Town Highway 20 crossing of the Lee River is a 49-ft-long, one-lane bridge consisting of a steel through truss span (Vermont Agency of Transportation, written communication, December 12, 1995). The opening length of the structure parallel to the bridge face is 44 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is

  17. Level II scour analysis for Bridge 41 (ROCKTH00390041) on Town Highway 39, crossing the Saxtons River, Rockingham, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCKTH00390041 on Town Highway 39 crossing the Saxtons River, Rockingham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 57.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of forest on the left bank and pasture with some trees on the right bank. In the study area, the Saxtons River has an sinuous channel with a slope of approximately 0.009 ft/ft, an average channel top width of 112 ft and an average bank height of 10 ft. The channel bed material ranges from sand to cobbles with a median grain size (D50) of 103 mm (0.339 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 15, 1996, indicated that the reach was laterally unstable. There are wide point bars, cut-banks with fallen trees, and areas of localized channel scour along the left bank, where there is bedrock exposure at the surface. The Town Highway 39 crossing of the Saxtons River is an 85-ft-long, one-lane bridge consisting of one 82-foot steel-beam span (Vermont Agency of Transportation, written communication, March 31, 1995). The bridge is supported by vertical, concrete abutments without wingwalls. The channel is skewed approximately 30 degrees to the opening while the opening

  18. Level II scour analysis for Bridge 20 (GRAFTH00010020) on Town Highway 1, crossing the Saxtons River, Grafton Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure GRAFTH00010020 on Town Highway 1 crossing the Saxtons River, Grafton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 33.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream of the bridge and shrub and brush downstream. In the study area, the Saxtons River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 97 ft and an average bank height of 2 ft. The predominant channel bed material is gravel with a median grain size (D50) of 58.6 mm (0.192 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 21, 1996, indicated that the reach was laterally unstable due to distinctive cut bank development on the upstream right bank and point bar development on the upstream left bank and downstream right bank. The Town Highway 1 crossing of the Saxtons River is a 191-ft-long, two-lane bridge consisting of three steel-beam spans (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with spill-through embankments and two piers. The channel is skewed approximately 40 degrees to the opening. The opening-skew-to-roadway is 45

  19. Level II scour analysis for Bridge 20 (BRISTH00270020) on Town Highway 27, crossing Little Notch Brook, Bristol, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRISTH00270020 on Town Highway 27 crossing Little Notch Brook, Bristol, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 8.43-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of pasture with trees, shrubs, and brush along the road embankments and the stream banks, except for the downstream left overbank area. Surface cover on the downstream left overbank is forest with dense undergrowth consisting of vines, shrubs, and brush. In the study area, Little Notch Brook has a sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 47 feet and an average bank height of 3 feet. The predominant channel bed materials are gravel and cobbles with a median grain size (D50) of 66.0 mm (0.216 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 19, 1995, indicated that the reach was stable. The Town Highway 27 crossing of Little Notch Brook is a 48-ft-long, one-lane bridge consisting of one 45-foot steel pony-truss span (Vermont Agency of Transportation, written communication, November 30, 1995). The opening length of the structure parallel to the bridge face is 42.8 feet. The bridge is supported by vertical, concrete abutments

  20. Level II scour analysis for Bridge 28 (CAMBTH00460028) on Town Highway 46, crossing the Seymour River, Cambridge, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CAMBTH00460028 on Town Highway 46 crossing the Seymour River, Cambridge, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northwestern Vermont. The 9.94-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture while the immediate banks have dense woody vegetation. In the study area, the Seymour River has an incised, straight channel with a slope of approximately 0.02 ft/ft, an average channel top width of 81 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 62.0 mm (0.204 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 11, 1995, indicated that the reach was stable. The Town Highway 46 crossing of the Seymour River is a 38-ft-long, one-lane bridge consisting of one 33-foot steel-beam span (Vermont Agency of Transportation, written communication, March 8, 1995). The opening length of the structure parallel to the bridge face is 30.6 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 5 degrees to the opening while the measured opening-skew-to-roadway is 10 degrees. A scour hole 0.2 ft deeper than the mean thalweg depth was observed along the

  1. Level II scour analysis for Bridge 4 (MAIDTH00070004) on Town Highway 7, crossing Cutler Mill Brook, Maidstone, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MAIDTH00070004 on Town Highway 7 crossing the Cutler Mill Brook, Maidstone, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 18.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly shrub and brushland. In the study area, the Cutler Mill Brook has a non-incised, meandering channel with local braiding and a slope of approximately 0.004 ft/ft, an average channel top width of 43 ft and an average bank height of 2 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 27.6 mm (0.091 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 19, 1995, indicated that the reach was laterally unstable due to large meanders in the channel. The Town Highway 7 crossing of the Cutler Mill Brook is a 25-ft-long, one-lane bridge consisting of one 22-foot concrete span (Vermont Agency of Transportation, written communication, August 5, 1994). The opening length of the structure parallel to the bridge face is 21.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 0 degrees. A scour hole 2.0 ft deeper than

  2. 19. BLUEPRINT, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. BLUEPRINT, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of Ms. 50 Map of Tombigbee River at Waverly, 'Proposed Crossing.' 12 May 1888. Credt: Columbus & Greenville, RR, Columbus, Ms. DWG S-3-343. Sarcone Photography, ColumbuS, Ms. Sept 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  3. Effects of bridge construction on songbirds and small mammals at Blennerhassett Island, Ohio River, USA.

    PubMed

    Vance, Joshua A; Angus, Norse B; Anderson, James T

    2013-09-01

    Construction of man-made objects such as roads and bridges may have impacts on wildlife depending on species or location. We investigated songbirds and small mammals along the Ohio River, WV, USA at a new bridge both before and after construction and at a bridge crossing that was present throughout the study. Comparisons were made at each site over three time periods (1985-1987 [Phase I] and 1998-2000 [Phase II] [pre-construction], 2007-2009 [Phase III] [post-construction]) and at three distances (0, 100, 300 m) from the bridge or proposed bridge location. Overall, 70 songbirds and 10 small mammals were detected during the study. Cliff swallows (Petrochelidon pyrrhonota) and rock pigeons (Columba livia) showed high affinity for bridges (P < 0.05). Combined small mammal abundances increased between Phases I and II (P < 0.05), but did not differ between Phases II and III (P > 0.05). Species richness and diversity for songbirds and small mammals did not differ before and after bridge construction (P > 0.05). We found that most species sampled did not respond to the bridge crossing, and believe that the bridge is not causing any measurable negative density impacts to the species we investigated. The new bridge does provide habitat for exotic rock pigeons that are adjusted to man-made structures for nesting.

  4. The Deformation of Overburden Soil and Interaction with Pile Foundations of Bridges Induced by Normal Faulting

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Chun; Li, Chien-Hung; Chan, Pei-Chen; Lin, Ming-Lang

    2017-04-01

    According to the investigations of well-known disastrous earthquakes in recent years, ground deformation induced by faulting is one of the causes for engineering structure damages in addition to strong ground motion. Most of structures located on faulting zone has been destroyed by fault offset. Take the Norcia Earthquake in Italy (2016, Mw=6.2) as an example, the highway bridge in Arquata crossing the rupture area of the active normal fault suffered a quantity of displacement which causing abutment settlement, the piers of bridge fractured and so on. However, The Seismic Design Provisions and Commentary for Highway Bridges in Taiwan, the stating of it in the general rule of first chapter, the design in bridges crossing active fault: "This specification is not applicable of making design in bridges crossing or near active fault, that design ought to the other particular considerations ".This indicates that the safty of bridges crossing active fault are not only consider the seismic performance, the most ground deformation should be attended. In this research, to understand the failure mechanism and the deformation characteristics, we will organize the case which the bridges subjected faulting at home and abroad. The processes of research are through physical sandbox experiment and numerical simulation by discrete element models (PFC3-D). The normal fault case in Taiwan is Shanchiao Fault. As above, the research can explore the deformation in overburden soil and the influences in the foundations of bridges by normal faulting. While we can understand the behavior of foundations, we will make the bridge superstructures into two separations, simple beam and continuous beam and make a further research on the main control variables in bridges by faulting. Through the above mentioned, we can then give appropriate suggestions about planning considerations and design approaches. This research presents results from sandbox experiment and 3-D numerical analysis to simulate

  5. 77 FR 1020 - Regulated Navigation Area; S99 Alford Street Bridge Rehabilitation Project, Mystic River, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ...-AA11 Regulated Navigation Area; S99 Alford Street Bridge Rehabilitation Project, Mystic River, MA... Mystic River under and surrounding the S99 Alford Street Bridge which crosses the Mystic River between... construction workers by restricting vessel traffic during periods where the bridge is being repaired. DATES...

  6. Study on the measures of tunnels side-crossing bridge based on sheltering effects of isolation piles

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Liu, Jun yan; Liu, Yan

    2017-08-01

    Based on the transit line 3, we studied the effect of the bridge piles crossed closely from the side by the shield tunnel. Using the three-dimensional finite element numerical analysis software Midas GTS/NX, we analyzed the effect of shield tunnel on pile deformation, statistics are obtained that under the condition of pile, subgrade reinforcement and ground changes. The calculation results show that in the condition of reinforcement, the new tunnel shield crossing through the pile caused longitudinal disturbance of the tunnel surrounding strata along the tunnel, where the soil over the area is within a certain range of pile and settlement deformation of surface subsidence occurs, changing the surface roughly to the shape of “V”. The maximum value appears above the shield tunnel and the value is high. In combination with engineering geology, hydrogeology and environment factors, this paper adopted isolation pile reinforcement to the pile, and the simulated results show that, pile settlement was significantly reduced under the condition of pile reinforcement. The calculation results show the rationality of the reinforcement scheme to a certain extent, which provides a theoretical basis for the similar tunnel.

  7. Bridging Organizations Drive Effective Governance Outcomes for Conservation of Indonesia's Marine Systems.

    PubMed

    Berdej, Samantha M; Armitage, Derek R

    2016-01-01

    This study empirically investigates the influence of bridging organizations on governance outcomes for marine conservation in Indonesia. Conservation challenges require ways of governing that are collaborative and adaptive across boundaries, and where conservation actions are better coordinated, information flows improved, and knowledge better integrated and mobilized. We combine quantitative social network analysis and qualitative data to analyze bridging organizations and their networks, and to understand their contributions and constraints in two case studies in Bali, Indonesia. The analysis shows 1) bridging organizations help to navigate the 'messiness' inherent in conservation settings by compensating for sparse linkages, 2) the particular structure and function of bridging organizations influence governing processes (i.e., collaboration, knowledge sharing) and subsequent conservation outcomes, 3) 'bridging' is accomplished using different strategies and platforms for collaboration and social learning, and 4) bridging organizations enhance flexibility to adjust to changing marine conservation contexts and needs. Understanding the organizations that occupy bridging positions, and how they utilize their positionality in a governance network is emerging as an important determinant of successful conservation outcomes. Our findings contribute to a relatively new body of literature on bridging organizations in marine conservation contexts, and add needed empirical investigation into their value to governance and conservation in Coral Triangle nations and beyond.

  8. Turbidity changes during culvert to bridge upgrades at Carmen Creek, Idaho

    Treesearch

    Randy B. Foltz; Breann Westfall; Ben Kopyscianski

    2012-01-01

    Carmen Creek, a tributary to the Salmon River in Idaho, was the site of two culvert to bridge upgrade operations in September and October 2011. Both locations were upgraded from multiple, large diameter culverts to bridge crossings. Turbidity readings measured at the end of the mixing zone during the nearly three weeks of upgrade construction activities did not exceed...

  9. Level II scour analysis for Bridge 5 (WOLCTH00150005) on Town Highway 15, crossing the Wild Branch Lamoille River, Wolcott, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WOLCTH00150005 on Town Highway 15 crossing the Wild Branch Lamoille River, Wolcott, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.During the August 1995 and July 1997 flood events, the left roadway was overtopped. Although there was loss of stone fill along the right abutment, the structure withstood both events.The site is in the Green Mountain section of the New England physiographic province in north- central Vermont. The 38.3-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge, while the immediate banks have dense woody vegetation.In the study area, the Wild Branch Lamoille River has an incised, sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 98 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 89.1 mm (0.292 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 17, 1996, indicated that the reach was stable.The Town Highway 15 crossing of the Wild Branch Lamoille River is a 46-ft-long, two-lane bridge consisting of a 43-foot prestressed concrete box-beam span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face

  10. Level II scour analysis for Bridge 30 (NEWHTH00050030) on Town Highway 5, crossing the New Haven River, New Haven, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NEWHTH00050030 on Town Highway 5 crossing the New Haven River, New Haven, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (Federal Highway Administration, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.The site is in the Champlain section of the St. Lawrence Valley physiographic province in west-central Vermont. The 115-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the right bank upstream and downstream of the bridge while the immediate banks have dense woody vegetation. The upstream left bank is also pasture. The downstream left bank is forested.In the study area, the New Haven River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 127 ft and an average bank height of 5 ft. The channel bed material ranges from silt to cobble with a median grain size (D50) of 20.4 mm (0.067 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 19, 1996, indicated that the reach was laterally unstable. The stream bends through the bridge and impacts the left bank where there is a cut bank and scour hole.The Town Highway 5 crossing of the New Haven River is a 181-ft-long, two-lane bridge consisting of four 45-ft concrete tee-beam spans (Vermont Agency of Transportation, written communication, December 15, 1995). The opening length of the structure parallel to the bridge face is 175.9 ft. The

  11. Level II scour analysis for Bridge 52 (CHESTH00100052) on Town Highway 10, crossing the South branch Williams River, Chester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Ivanoff, Michael A.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESTH00100052 on Town Highway 10 crossing the South Branch Williams River, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 4.05-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and downstream of the bridge. In the study area, the South Branch Williams River has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 35 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 82.1 mm (0.269 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 21, 1996, indicated that the reach was unstable, as a result of the moderate bank erosion. The Town Highway 10 crossing of the South Branch Williams River is a 32-ft-long, one-lane bridge consisting of a 29-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 31, 1995). The opening length of the structure parallel to the bridge face is 27.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 25 degrees to the opening while the opening-skew-to-roadway is 20 degrees. A scour hole 1.0 ft deeper than the

  12. Level II scour analysis for Bridge 29 (ROYATH00920029) on Town Highway 92, crossing the First Branch White River, Royalton, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROYATH00920029 on Town Highway 92 crossing the First Branch White River, Royalton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 101-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge. In the study area, the First Branch White River has an incised, sinuous channel with a slope of approximately 0.001 ft/ft, an average channel top width of 81 ft and an average bank height of 9 ft. The channel bed material ranges from sand to bedrock with a median grain size (D50) of 1.18 mm (0.00347 ft). The geomorphic assessment at the time of the Level I site visit on July 23, 1996 and Level II site visit on June 2, 1995, indicated that the reach was stable. The Town Highway 92 crossing of the First Branch White River is a 59-ft-long, one-lane bridge consisting of a 57-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 52.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 4.0 ft deeper than the

  13. Level II scour analysis for Bridge 17 (RIPTTH00180017) on Town Highway 18, crossing the South Branch Middlebury River, Ripton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure RIPTTH00180017 on Town Highway 18 crossing the South Branch Middlebury River, Ripton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 15.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the upstream left bank where it is shrubs and brush. In the study area, the South Branch Middlebury River has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 86 ft and an average bank height of 10 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 111 mm (0.364 ft). In addition, there is a bedrock outcrop across the channel downstream of the bridge. The geomorphic assessment at the time of the Level I and Level II site visit on June 10, 1996, indicated that the reach was stable. The Town Highway 18 crossing of the South Branch Middlebury River is a 61-ft-long, one-lane bridge consisting of one 58-foot steel-beam span (Vermont Agency of Transportation, written communication, November 30, 1995). The opening length of the structure parallel to the bridge face is 56.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the

  14. Level II scour analysis for Bridge 26 (WSTOTH00070026) on Town Highway 7, crossing Greendale Brook, Weston, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Hammond, Robert A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WSTOTH00070026 on Town Highway 7 crossing Greendale Brook, Weston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south central Vermont. The 3.13-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest. In the study area, the Greendale Brook has a sinuous, non-incised, non-alluvial channel with a slope of approximately 0.015 ft/ft, an average channel top width of 38 ft and an average bank height of 3 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 64.8 mm (0.213 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 19, 1996, indicated that the reach was laterally unstable. The channel has moved to the right, however, scour countermeasures are in place along the upstream right bank. The Town Highway 7 crossing of the Greendale Brook is a 52-ft-long, two-lane bridge consisting of one 50-foot steel-beam span with a concrete deck (Vermont Agency of Transportation, written communication, April 07, 1995). The opening length of the structure parallel to the bridge face is 48.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 50 degrees to the opening while the opening

  15. Seismic evaluation of the Cumberland River Bridges on I-24 in Western Kentucky.

    DOT National Transportation Integrated Search

    2006-09-01

    The main objective of this study is to assess the structural integrity of the I-24 parallel bridges at the Cumberland River crossing in western Kentucky. Due to its importance, the bridge is evaluated for the 250-year event and the maximum credible 5...

  16. Level II scour analysis for Bridge 12 (HUNTTH00010012) on Town Highway 001, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1997-01-01

    frequency data contained in the Flood Insurance Study for the Town of Huntington (U.S. Department of Housing and Urban Development, 1978). The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 9.19-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture while the immediate banks have some woody vegetation. In the study area, the Brush Brook has a sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 62 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 100.0 mm (0.328 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 25, 1996, indicated that the reach was stable. The Town Highway 1 crossing of Brush Brook is a 64-ft-long, two-lane bridge consisting of one 62-foot steel-stringer span (Vermont Agency of Transportation, written communication, November 30, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is 6 degrees. Channel scour 2.2 ft deeper than the mean thalweg depth was observed along the upstream right bank and along the base of the spill-through protection for the right abutment during the Level I assessment. Scour protection measured at the site was type-2 stone fill (less than 36 inches diameter) along the upstream left and right banks and in front of all four wingwalls. In front of the abutments, there was type-3 stone fill (less than 48 inches diameter) forming a spill-through slope. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others

  17. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen

    PubMed Central

    Santiago-Tirado, Felipe H.; Onken, Michael D.; Cooper, John A.; Klein, Robyn S.

    2017-01-01

    ABSTRACT The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a “Trojan horse” mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. PMID:28143979

  18. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    PubMed

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  19. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    PubMed Central

    Wu, Lai-Yi

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  20. Investigation of Prefabricated Steel-Truss Bridge Deck System

    DOT National Transportation Integrated Search

    2017-11-01

    Steel truss bridges are an efficient and aesthetic option for highway crossings. Their relatively light weight compared with plate girder systems make them a desirable alternative for both material savings and constructability. A prototype of a welde...

  1. Level II scour analysis for Bridge 23 (WOLCTH00130023) on Town Highway 13, crossing the Wild Branch of the Lamoille River, Wolcott, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WOLCTH00130023 on Town Highway 13 crossing the Wild Branch Lamoille River, Wolcott, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, collected from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northcentral Vermont. The 27.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the upstream right overbank. The upstream left overbank is brushland. Downstream of the bridge, the surface cover is forested on the right overbank. The downstream left overbank is pasture while the immediate bank has dense woody vegetation. In the study area, the Wild Branch Lamoille River has an incised, straight channel with a slope of approximately 0.009 ft/ft, an average channel top width of 65 ft and an average bank height of 7 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 85.3 mm (0.280 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 17, 1996 indicated that the reach was laterally unstable. The Town Highway 13 crossing of the Wild Branch Lamoille River is a 41-ft-long, one-lane bridge consisting of a 39-foot steel girder span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 38 ft. The bridge is supported by

  2. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri River in and into Missouri during summer flooding, July-August 2011

    USGS Publications Warehouse

    Huizinga, Richard J.

    2012-01-01

    Bathymetric and velocimetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Kansas and Missouri Departments of Transportation, in the vicinity of 36 bridges at 27 highway crossings of the Missouri River between Brownville, Nebraska and St. Louis, Missouri, from July 13 through August 3, 2011, during a summer flood. A multibeam echo sounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,350 to 1,860 feet and extending across the active channel of the Missouri River. These bathymetric scans provide a "snapshot" of the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be used by the Kansas and Missouri Departments of Transportation to assess the bridges for stability and integrity issues with respect to bridge scour during floods. Bathymetric data were collected around every pier that was in water, except those at the edge of water, in extremely shallow water, or surrounded by debris rafts. Scour holes were present at most piers for which bathymetry could be obtained, except at piers on channel banks, those near or embedded in lateral or longitudinal spur dikes, and those on exposed bedrock outcrops. Scour holes observed at the surveyed bridges were examined with respect to depth and shape. Although exposure of parts of foundational support elements was observed at several piers, at most sites the exposure likely can be considered minimal compared to the overall substructure that remains buried in bed material; however, there were several notable exceptions where the bed material thickness between the bottom of the scour hole and bedrock was less than 6 feet. Such substantial exposure of usually buried substructural elements may warrant special observation in future flood events. Previous bathymetric surveys had been done at several of the sites

  3. Level II scour analysis for Bridge 12 (BRAITH00230012) on Town Highway 23, crossing Ayers Brook, Braintree, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 4.2 to 9.4 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge which was less than the 100-year discharge. Abutment scour ranged from 4.3 to 17.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Air toxics exposure from vehicle emissions at a U.S. border crossing: Buffalo Peace Bridge Study.

    PubMed

    Spengler, John; Lwebuga-Mukasa, Jamson; Vallarino, Jose; Melly, Steve; Chillrud, Steve; Baker, Joel; Minegishi, Taeko

    2011-07-01

    The Peace Bridge in Buffalo, New York, which spans the Niagara River at the east end of Lake Erie, is one of the busiest U.S. border crossings. The Peace Bridge plaza on the U.S. side is a complex of roads, customs inspection areas, passport control areas, and duty-free shops. On average 5000 heavy-duty diesel trucks and 20,000 passenger cars traverse the border daily, making the plaza area a potential "hot spot" for emissions from mobile sources. In a series of winter and summer field campaigns, we measured air pollutants, including many compounds considered by the U.S. Environmental Protection Agency (EPA*) as mobile-source air toxics (MSATs), at three fixed sampling sites: on the shore of Lake Erie, approximately 500 m upwind (under predominant wind conditions) of the Peace Bridge plaza; immediately downwind of (adjacent to) the plaza; and 500 m farther downwind, into the community of west Buffalo. Pollutants sampled were particulate matter (PM) < or = 10 microm (PM10) and < or = 2.5 microm (PM2.5) in aerodynamic diameter, elemental carbon (EC), 28 elements, 25 volatile organic compounds (VOCs) including 3 carbonyls, 52 polycyclic aromatic hydrocarbons (PAHs), and 29 nitrogenated polycyclic aromatic hydrocarbons (NPAHs). Spatial patterns of counts of ultrafine particles (UFPs, particles < 0.1 microm in aerodynamic diameter) and of particle-bound PAH (pPAH) concentrations were assessed by mobile monitoring in the neighborhood adjacent to the Peace Bridge plaza using portable instruments and Global Positioning System (GPS) tracking. The study was designed to assess differences in upwind and downwind concentrations of MSATs, in areas near the Peace Bridge plaza on the U.S. side of the border. The Buffalo Peace Bridge Study featured good access to monitoring locations proximate to the plaza and in the community, which are downwind with the dominant winds from the direction of Lake Erie and southern Ontario. Samples from the lakeside Great Lakes Center (GLC), which

  5. Level II scour analysis for Bridge 71 (WODSTH00050071) on Town Highway 5, crossing Kedron Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, S.A.; Ayotte, J.D.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 2.5 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. The contraction scour depths do not take the concrete channel bed under the bridge into account. Abutment scour ranged from 8.7 to 18.2 ft. The worstcase abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 28 (BRIDTH00440028) on Town Highway 044 crossing Plymouth Brook, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Ayotte, Joseph D.

    1996-01-01

    The town highway 5 crossing of the Black River is a 70-ft-long, two-lane bridge consisting of one 65-foot clear span (Vermont Agency of Transportation, written commun., August 2, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. There is also a retaining wall along the upstream side of the road embankments. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 15 degrees. A scour hole 3.0 ft deeper than the mean thalweg depth was observed along the right abutment. The scour hole was 27 feet long, 15 feet wide, and was 2.5 feet below the abutment footing at the time of the Level I assessment. This right abutment had numerous cracks and had settled. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  7. Level II scour analysis for Bridge 38 (BETHTH00070038) on Town Highway 007, crossing Gilead Brook, Bethel, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1996-01-01

    The town highway 5 crossing of the Black River is a 70-ft-long, two-lane bridge consisting of one 65-foot clear span (Vermont Agency of Transportation, written commun., August 2, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. There is also a retaining wall along the upstream side of the road embankments. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 15 degrees. A scour hole 3.0 ft deeper than the mean thalweg depth was observed along the right abutment. The scour hole was 27 feet long, 15 feet wide, and was 2.5 feet below the abutment footing at the time of the Level I assessment. This right abutment had numerous cracks and had settled. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  8. Hydraulic survey and scour assessment of Bridge 524, Tanana River at Big Delta, Alaska

    USGS Publications Warehouse

    Heinrichs, Thomas A.; Langley, Dustin E.; Burrows, Robert L.; Conaway, Jeffrey S.

    2007-01-01

    Bathymetric and hydraulic data were collected August 26–28, 1996, on the Tanana River at Big Delta, Alaska, at the Richardson Highway bridge and Trans-Alaska Pipeline crossing. Erosion along the right (north) bank of the river between the bridge and the pipeline crossing prompted the data collection. A water-surface profile hydraulic model for the 100- and 500-year recurrence-interval floods was developed using surveyed information. The Delta River enters the Tanana immediately downstream of the highway bridge, causing backwater that extends upstream of the bridge. Four scenarios were considered to simulate the influence of the backwater on flow through the bridge. Contraction and pier scour were computed from model results. Computed values of pier scour were large, but the scour during a flood may actually be less because of mitigating factors. No bank erosion was observed at the time of the survey, a low-flow period. Erosion is likely to occur during intermediate or high flows, but the actual erosion processes are unknown at this time.

  9. Bridge analysis and evaluation of effects under overload vehicles : phase 2.

    DOT National Transportation Integrated Search

    2012-09-01

    The use of special purpose highway vehicles, over the legal limit in size and in weight, is increasing as industry grows and large items must be shipped over highways. Overload vehicle crossing of a bridge, even if it is a single crossing, may affect...

  10. 47 CFR 80.331 - Bridge-to-bridge communication procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bridge-to-bridge communication procedure. 80..., Alarm, Urgency and Safety Procedures § 80.331 Bridge-to-bridge communication procedure. (a) Vessels subject to the Bridge-to-Bridge Act transmitting on the designated navigational frequency must conduct...

  11. 47 CFR 80.331 - Bridge-to-bridge communication procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bridge-to-bridge communication procedure. 80..., Alarm, Urgency and Safety Procedures § 80.331 Bridge-to-bridge communication procedure. (a) Vessels subject to the Bridge-to-Bridge Act transmitting on the designated navigational frequency must conduct...

  12. Level II scour analysis for Bridge 44 (LINCTH00330044) on Town Highway 33, crossing the New Haven River, Lincoln, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure LINCTH00330044 on Town Highway 33 crossing the New Haven River, Lincoln, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 6.3-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest.In the study area, the New Haven River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 56 ft and an average bank height of 6 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 101.9 mm (0.334 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 10, 1996, indicated that the reach was stable.The Town Highway 33 crossing of the New Haven River is a 33-ft-long, one-lane bridge consisting of one 31-foot timber-beam span (Vermont Agency of Transportation, written communication, December 14, 1995). The opening length of the structure parallel to the bridge face is 29.3 ft. The bridge is supported by vertical, wood-beam crib abutments with wingwalls. The channel is skewed approximately 25 degrees to the opening while the opening-skew-to-roadway is zero degrees.A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the right abutment during the Level I assessment. The

  13. Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions.

    PubMed

    Basu, Sankar; Mukharjee, Debasish

    2017-07-01

    There has been considerable debate about the contribution of salt bridges to the stabilization of protein folds, in spite of their participation in crucial protein functions. Salt bridges appear to contribute to the activity-stability trade-off within proteins by bringing high-entropy charged amino acids into close contacts during the course of their functions. The current study analyzes the modes of association of salt bridges (in terms of networks) within globular proteins and at protein-protein interfaces. While the most common and trivial type of salt bridge is the isolated salt bridge, bifurcated salt bridge appears to be a distinct salt-bridge motif having a special topology and geometry. Bifurcated salt bridges are found ubiquitously in proteins and interprotein complexes. Interesting and attractive examples presenting different modes of interaction are highlighted. Bifurcated salt bridges appear to function as molecular clips that are used to stitch together large surface contours at interacting protein interfaces. The present work also emphasizes the key role of salt-bridge-mediated interactions in the partial folding of proteins containing long stretches of disordered regions. Salt-bridge-mediated interactions seem to be pivotal to the promotion of "disorder-to-order" transitions in small disordered protein fragments and their stabilization upon binding. The results obtained in this work should help to guide efforts to elucidate the modus operandi of these partially disordered proteins, and to conceptualize how these proteins manage to maintain the required amount of disorder even in their bound forms. This work could also potentially facilitate explorations of geometrically specific designable salt bridges through the characterization of composite salt-bridge networks. Graphical abstract ᅟ.

  14. MR damping system on Dongting Lake cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Wang, X. Y.; Ko, J. M.; Ni, Y. Q.; Spencer, Billie F., Jr.; Yang, G.

    2003-08-01

    The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. After this bridge was completed in 1999, its cables were observed to be sensitive to rain-wind-induced vibration, especially under adverse weather conditions of both rain and wind. To investigate the possibility of using MR damping systems to reduce cable vibration, a joint project between the Central South University of China and the Hong Kong Polytechnic University was conducted. Based on the promising research results, the bridge authority decided to install MR damping systems on the longest 156 stay cables. The installation started in July 2001 and finished in June 2002, making it the world's first application of MR dampers on cable-stayed bridge to suppress the rain-wind-induced cable vibration. As a visible and permanent aspect of bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes the implementation of MR damping systems for cable vibration reduction.

  15. Level II scour analysis for Bridge 3 (EASTTH00010003) on Town Highway 1, crossing the East Branch Passumpsic River, East Haven, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure EASTTH00010003 on Town Highway 1 crossing the East Branch Passumpsic River, East Haven, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 50.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the left bank upstream is forest. On the remaining three banks the surface cover is pasture while the immediate banks have dense woody vegetation. In the study area, the East Branch Passumpsic River has an incised, sinuous channel with a slope of approximately 0.003 ft/ft, an average channel top width of 62 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 61.5 mm (0.187 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 14, 1995, indicated that the reach was stable. The Town Highway 1 crossing of the East Branch Passumpsic River is a 89-ft-long, two-lane bridge consisting of one 87-foot steel-beam span (Vermont Agency of Transportation, written communication, March 17, 1995). The opening length of the structure parallel to the bridge face is 84.7 ft. The bridge is supported by vertical, concrete abutments with sloped stone fill in front that creates a spill through embankment. The

  16. [Modified anterolateral thigh perforator flap pedicled by cross-bridge microvascular anastomosis for repairing soft tissue defects in middle and lower segments of leg].

    PubMed

    Yang, Lin; Liu, Hongjun; Zhang, Wenzhong; Song, Guoxun; Xia, Shicong; Zhang, Naichen; Gu, Jiaxiang; Yuan, Chaoqun

    2017-10-01

    To explore the effectiveness of modified anterolateral thigh perforator flap pedicled by cross-bridge microvascular anastomosis in treatment of soft tissue defects in the middle and lower segments of the leg. Between March 2011 and June 2015, 15 cases with skin and soft tissue defects in the middle and lower segments of the legs were treated. There were 9 males and 6 females, aged 22-48 years (mean, 32.6 years). Of whom, 8 patients caused by traffic accidents, 5 by machine twist, and 2 by crash injury of heavy object. The mean interval from injury to admission was 82.6 hours (range, 2 hours to 1 week). The area of defect ranged from 13 cm×9 cm to 23 cm×16 cm. After primary debridement and vaccum sealing drainage treatment, the defects were repaired with modified anterolateral thigh perforator flap pedicled by cross-bridge microvascular anastomosis. The size of flap ranged from 15 cm×10 cm to 25 cm×15 cm. The donor sites were sutured directly or repaired with the skin grafts. The pedicle division was done at 4 weeks after operation. After operation, venous crisis occurred in 1 case and distal skin necrosis in 2 cases which was healed by dressing change. The other tissue flaps survived successfully and wounds healed by first intention. All skin grafts at donor site survived after operation, and primary healing of wound was obtained. All patients were followed up 6-24 months (mean, 13 months). All flaps were characterized by soft texture, satisfactory appearance, and restoring the protective sensation. Moreover, the two-point discrimination ranged from 15 to 28 mm (mean, 19.5 mm) at 6 months after operation. The function of both lower extremities were normal without obvious contracture of scar at donor site. Modified free anterolateral thigh perforator flap, with little damage in donor site, a reliable blood supply by making a cross-bridge microvascular anastomosis with pretibial or posterior tibial blood vessel on normal leg, is a reliable alternative method for

  17. 15. STRESS SHEET. American Bridge Company, New York Office, 30 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. STRESS SHEET. American Bridge Company, New York Office, 30 Church Street, sheet no. C516, dated March 12, 1928, approved March 16, 1928, order no. F5073. For U.S. Steel Products Company, Pacific Coast Depot. For Southern Pacific Company, Pacific Lines, 1st crossing, Napa River, near Napa, Western Division, customer's order no. 8873-P-28746. Various scales. - Napa River Railroad Bridge, Spanning Napa River, east of Soscol Avenue, Napa, Napa County, CA

  18. Level II scour analysis for Bridge 46 (CHESVT00110046) on Vermont State Route 11, crossing the Middle Branch Williams River, Chester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESVT00110046 on State Route 11 crossing the Middle Branch Williams River, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the Green Mountain and New England Upland sections of the New England physiographic province in southeastern Vermont. The 28.0-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forested on the upstream left and downstream right overbanks. The upstream right and downstream left overbanks are pasture while the immediate banks have dense woody vegetation.In the study area, the the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.013 ft/ft, an average channel top width of 81 ft and an average bank height of 11 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 70.7 mm (0.232 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 12, 1996, indicated that the reach was stable.The State Route 11 crossing of the Middle Branch Williams River is a 118-ft-long, two-lane steel stringer type bridge consisting of a 114-foot steel plate deck (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of the structure parallel to the bridge face is 109 ft.The bridge is supported by vertical, concrete abutments with

  19. BridgePBEE | BridgePBEE

    Science.gov Websites

    jacking Item 22: Bridge removal (column) Item 23: Bridge removal (portion) Item 24: Approach slab removal for: Search Menu Log in Register PEER Center - 325 Davis Hall, University of California, Berkeley, CA

  20. Solutions of burnt-bridge models for molecular motor transport.

    PubMed

    Morozov, Alexander Yu; Pronina, Ekaterina; Kolomeisky, Anatoly B; Artyomov, Maxim N

    2007-03-01

    Transport of molecular motors, stimulated by interactions with specific links between consecutive binding sites (called "bridges"), is investigated theoretically by analyzing discrete-state stochastic "burnt-bridge" models. When an unbiased diffusing particle crosses the bridge, the link can be destroyed ("burned") with a probability p , creating a biased directed motion for the particle. It is shown that for probability of burning p=1 the system can be mapped into a one-dimensional single-particle hopping model along the periodic infinite lattice that allows one to calculate exactly all dynamic properties. For the general case of p<1 a theoretical method is developed and dynamic properties are computed explicitly. Discrete-time and continuous-time dynamics for periodic distribution of bridges and different burning dynamics are analyzed and compared. Analytical predictions are supported by extensive Monte Carlo computer simulations. Theoretical results are applied for analysis of the experiments on collagenase motor proteins.

  1. Level II scour analysis for Bridge 29 (DORSTH00100029) on Town Highway 10, crossing the Mettawee River, Dorset, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DORSTH00100029 on Town Highway 10 crossing the Mettawee River, Dorset, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Taconic section of the New England physiographic province in southwestern Vermont. The 9.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the upstream left overbank and the upstream and downstream right overbanks. The downstream left overbank is pasture and brushland. In the study area, the Mettawee River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 66 ft and an average bank height of 8 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 79.0 mm (0.259 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 5, 1996, indicated that the reach was stable. The Town Highway 10 crossing of the Mettawee River is a 26-ft-long, two-lane bridge consisting of a 24-ft steel-stringer span (Vermont Agency of Transportation, written communication, September 28, 1995). The opening length of the structure parallel to the bridge face is 24.1 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening-skew-to-roadway is zero degrees. At the

  2. Level II scour analysis for Bridge 16 (BURKTH00070016) on Town Highway 7, crossing Dish Mill Brook, Burke, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Severance, Tim

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BURKTH00070016 on Town Highway 7 crossing Dish Mill Brook, Burke, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 6.0-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the left bank upstream which is brushland. In the study area, Dish Mill Brook has an incised, sinuous channel with a slope of approximately 0.04 ft/ft, an average channel top width of 40 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 94.1 mm (0.309 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 7, 1995, indicated that the reach was stable. The Town Highway 7 crossing of Dish Mill Brook is a 28-ft-long, two-lane bridge consisting of one 24-foot steel-beam span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 24.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening while the computed opening-skew-to-roadway is 35 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the left and right

  3. Level II scour analysis for Bridge 34 (WWINTH00370034) on Town Highway 37, crossing Mill Brook, West Windsor, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Wild, Emily C.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WWINTH00370034 on Town Highway 37 crossing Mill Brook, West Windsor, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 16.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture except for the upstream left bank where there is mostly shrubs and brush. In the study area, Mill Brook has a sinuous channel with a slope of approximately 0.003 ft/ ft, an average channel top width of 52 ft and an average bank height of 5 ft. The channel bed material ranges from sand to cobbles with a median grain size (D50) of 43.4 mm (0.142 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 5, 1996, indicated that the reach was laterally unstable. Point bars were observed upstream and downstream of this site. Furthermore, slip failure of the bank material was noted downstream at a cut-bank on the left side of the channel across from a point bar. The Town Highway 37 crossing of Mill Brook is a 37-ft-long, one-lane covered bridge consisting of one 32-foot wood thru-truss span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 29.6 ft. The bridge is supported by vertical, laid-up stone abutment walls with

  4. Bridging Social Capital and Individual Earnings: Evidence for an Inverted U.

    PubMed

    Growiec, Katarzyna; Growiec, Jakub

    Based on data on a cross section of individuals surveyed in the 1999-2002 wave of World and European Values Surveys, we investigate the multilateral associations between bridging social capital, individuals' earnings, as well as social trust and employment status. Our analysis provides robust evidence that the relationship between bridging social capital and earnings is inverted-U shaped. We carry out a range of tests in order to ascertain that this result is not driven by regressor endogeneity or omitted variables bias. We also identify significant interaction effects between bridging social capital, social trust, and employment status.

  5. 4. VIEW OF THE WEST FACADE. NOTE THE BRIDGES FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF THE WEST FACADE. NOTE THE BRIDGES FROM THE D.L. & W. R.R. WOODWARD SIDING AND MAIN LINE IN THE LEFT FOREGROUND. PHOTO IS FROM THE LEVEE CROSSING TOBY CREEK FACING EAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  6. Level II scour analysis for Bridge 33 (TUNBTH00450033) on Town Highway 45, crossing the First Branch White River, Tunbridge, Vermont

    USGS Publications Warehouse

    Wild, E.C.; Severance, Timothy

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure TUNBTH00450033 on Town Highway 45 crossing the First Branch White River, Tunbridge, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 86.4-mi 2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture upstream and downstream of the bridge, while woody vegetation sparsely covers the immediate banks. In the study area, the First Branch White River has an incised, sinuous channel with a slope of approximately 0.003 ft/ft, an average channel top width of 68 ft and an average bank height of 7 ft. The channel bed material ranges from sand to gravel with a median grain size (D50) of 27.1 mm (0.089 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 18, 1995, indicated that the reach was laterally unstable due to a cut-bank present on the upstream right bank and a wide channel bar in the upstream reach. The Town Highway 45 crossing of the First Branch White River is a 67-ft-long, one-lane bridge consisting of one 54-foot timber thru-truss span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 53.5 ft. The bridge is supported on the right by a vertical, concrete abutment

  7. Bridge Building Potential in Cross-Cultural Learning: A Mixed Method Study

    ERIC Educational Resources Information Center

    Rienties, Bart; Johan, Novie; Jindal-Snape, Divya

    2015-01-01

    Although many international students experience transitional issues, most research assumes that these issues will disappear over time with increased interaction. Using principles of social network theory, this study addressed why some students become bridge builders between international and host students, while others primarily interact with…

  8. Level II scour analysis for Bridge 21 (MIDBTH00230021) on Town Highway 23, crossing the Middlebury River, Middlebury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1997-01-01

    year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.2 to 1.8 feet. The worst-case contraction scour occurred at the incipient overtopping discharge, which is less than the 500-year discharge. Abutment scour ranged from 17.7 to 23.7 feet. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Myocardial Bridge

    MedlinePlus

    ... Center > Myocardial Bridge Menu Topics Topics FAQs Myocardial Bridge En español Your heart is made of muscle, ... surface of the heart. What is a myocardial bridge? A myocardial bridge is a band of heart ...

  10. Bridging Organizations Drive Effective Governance Outcomes for Conservation of Indonesia’s Marine Systems

    PubMed Central

    Berdej, Samantha M.; Armitage, Derek R.

    2016-01-01

    This study empirically investigates the influence of bridging organizations on governance outcomes for marine conservation in Indonesia. Conservation challenges require ways of governing that are collaborative and adaptive across boundaries, and where conservation actions are better coordinated, information flows improved, and knowledge better integrated and mobilized. We combine quantitative social network analysis and qualitative data to analyze bridging organizations and their networks, and to understand their contributions and constraints in two case studies in Bali, Indonesia. The analysis shows 1) bridging organizations help to navigate the ‘messiness’ inherent in conservation settings by compensating for sparse linkages, 2) the particular structure and function of bridging organizations influence governing processes (i.e., collaboration, knowledge sharing) and subsequent conservation outcomes, 3) ‘bridging’ is accomplished using different strategies and platforms for collaboration and social learning, and 4) bridging organizations enhance flexibility to adjust to changing marine conservation contexts and needs. Understanding the organizations that occupy bridging positions, and how they utilize their positionality in a governance network is emerging as an important determinant of successful conservation outcomes. Our findings contribute to a relatively new body of literature on bridging organizations in marine conservation contexts, and add needed empirical investigation into their value to governance and conservation in Coral Triangle nations and beyond. PMID:26794003

  11. Level II scour analysis for Bridge 41 (ANDOVT00110041) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110041 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southeastern Vermont. The 12.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass on the upstream right overbank while the immediate banks have dense woody vegetation. The upstream left overbank and downstream right overbank are brushland. The downstream left overbank is forested. In the study area, the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.018 ft/ft, an average channel top width of 71 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 85.0 mm (0.279 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 10, 1996, indicated that the reach was laterally unstable due to a cut-bank present on the upstream right bank and a wide channel bar with vegetation in the upstream reach. The State Route 11 crossing of the Middle Branch Williams River is a 46-ft-long, two-lane bridge consisting of a concrete 44-foot tee-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of

  12. Level II scour analysis for Bridge 16 (RIPTTH00110016) on Town Highway 11, crossing the Middle Branch Middlebury River, Ripton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure RIPTTH00110016 on Town Highway 11 crossing the Middle Branch Middlebury River, Ripton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in west-central Vermont. The 6.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of shrubs, brush and trees except for the upstream left bank which is completely forested. In the study area, the Middle Branch Middlebury River has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 68 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 97.6 mm (0.320 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 11, 1996, indicated that the reach was stable. The Town Highway 11 crossing of the Middle Branch Middlebury River is a 44-ft-long, two-lane bridge consisting of one 42-foot steel-beam span (Vermont Agency of Transportation, written communication, December 15, 1995). The opening length of the structure parallel to the bridge face is 40.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening. The opening-skew-to-roadway value from the VTAOT

  13. Building Bridges to Integrate Care (BRIDGES): Incubating Health Service Innovation across the Continuum of Care for Patients with Multiple Chronic Conditions.

    PubMed

    Bhattacharyya, Onil; Schull, Michael; Shojania, Kaveh; Stergiopoulos, Vicky; Naglie, Gary; Webster, Fiona; Brandao, Ricardo; Mohammed, Tamara; Christian, Jennifer; Hawker, Gillian; Wilson, Lynn; Levinson, Wendy

    2016-01-01

    Integrating care for people with complex needs is challenging. Indeed, evidence of solutions is mixed, and therefore, well-designed, shared evaluation approaches are needed to create cumulative learning. The Toronto-based Building Bridges to Integrate Care (BRIDGES) collaborative provided resources to refine and test nine new models linking primary, hospital and community care. It used mixed methods, a cross-project meta-evaluation and shared outcome measures. Given the range of skills required to develop effective interventions, a novel incubator was used to test and spread opportunities for system integration that included operational expertise and support for evaluation and process improvement.

  14. Prevention of VOC releases from bridge painting operations.

    DOT National Transportation Integrated Search

    2007-06-01

    Bridge maintenance painting employs solvent-based coatings that generate volatile organic compounds (VOCs) that contribute to air-quality problems. Methods for capturing VOCs during normal Kentucky Transportation Cabinet (KYTC) maintenance painting o...

  15. Side-To-Side Nerve Bridges Support Donor Axon Regeneration Into Chronically Denervated Nerves and Are Associated With Characteristic Changes in Schwann Cell Phenotype.

    PubMed

    Hendry, J Michael; Alvarez-Veronesi, M Cecilia; Snyder-Warwick, Alison; Gordon, Tessa; Borschel, Gregory H

    2015-11-01

    Chronic denervation resulting from long nerve regeneration times and distances contributes greatly to suboptimal outcomes following nerve injuries. Recent studies showed that multiple nerve grafts inserted between an intact donor nerve and a denervated distal recipient nerve stump (termed "side-to-side nerve bridges") enhanced regeneration after delayed nerve repair. To examine the cellular aspects of axon growth across these bridges to explore the "protective" mechanism of donor axons on chronically denervated Schwann cells. In Sprague Dawley rats, 3 side-to-side nerve bridges were placed over a 10-mm distance between an intact donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) distal nerve stump. Green fluorescent protein-expressing TIB axons grew across the bridges and were counted in cross section after 4 weeks. Immunofluorescent axons and Schwann cells were imaged over a 4-month period. Denervated Schwann cells dedifferentiated to a proliferative, nonmyelinating phenotype within the bridges and the recipient denervated CP nerve stump. As donor TIB axons grew across the 3 side-to-side nerve bridges and into the denervated CP nerve, the Schwann cells redifferentiated to the myelinating phenotype. Bridge placement led to an increased mass of hind limb anterior compartment muscles after 4 months of denervation compared with muscles whose CP nerve was not "protected" by bridges. This study describes patterns of donor axon regeneration and myelination in the denervated recipient nerve stump and supports a mechanism where these donor axons sustain a proregenerative state to prevent deterioration in the face of chronic denervation.

  16. Level II scour analysis for Bridge 39 (LOWETH00080039) on Town Highway 8, crossing Potter Brook, Lowell, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1997-01-01

    A scour hole 2.0 feet deeper than the mean thalweg depth was observed along the left abutment during the Level I assessment. There were no scour protection measures evident at the site. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 1.8 to 5.5 feet. The worst-case abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and

  17. Level II scour analysis for Bridge 38 (ANDOVT00110038) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110038 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south central Vermont. The 5.65-mi2 drainage area is in a predominantly rural and forested basin. Upstream and downstream of the study site banks and overbanks are forested. In the study area, the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 44 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 54.0 mm (0.177 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 5, 1996, indicated that the reach was stable. The State Route 11 crossing of the Middle Branch Williams River is a 33-ft-long, two-lane bridge consisting of one 31-foot concrete T-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 55 degrees to the opening while the measured opening-skew-to-roadway is 45 degrees. There were no scour problems observed during the Level I assessment. Type-4 stone fill (less than 60 inches diameter) and type-3 stone fill

  18. Level II scour analysis for Bridge 39 (ANDOVT00110039) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110039 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southern Vermont. The 5.75-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the upstream left bank and downstream right bank. The surface cover on the upstream right and downstream left banks is brush. In the study area, the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 58 ft and an average bank height of 8 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 96.8 mm (0.317 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 9, 1996, indicated that the reach was laterally unstable. The State Route 11 crossing of the Middle Branch Williams River is a 43-ft-long, two-lane bridge consisting of one 41-foot concrete-beam span and two additional steel beams on the upstream face (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening

  19. Exact Solutions of Burnt-Bridge Models for Molecular Motor Transport

    NASA Astrophysics Data System (ADS)

    Morozov, Alexander; Pronina, Ekaterina; Kolomeisky, Anatoly; Artyomov, Maxim

    2007-03-01

    Transport of molecular motors, stimulated by interactions with specific links between consecutive binding sites (called ``bridges''), is investigated theoretically by analyzing discrete-state stochastic ``burnt-bridge'' models. When an unbiased diffusing particle crosses the bridge, the link can be destroyed (``burned'') with a probability p, creating a biased directed motion for the particle. It is shown that for probability of burning p=1 the system can be mapped into one-dimensional single-particle hopping model along the periodic infinite lattice that allows one to calculate exactly all dynamic properties. For general case of p<1 a new theoretical method is developed, and dynamic properties are computed explicitly. Discrete-time and continuous-time dynamics, periodic and random distribution of bridges and different burning dynamics are analyzed and compared. Theoretical predictions are supported by extensive Monte Carlo computer simulations. Theoretical results are applied for analysis of the experiments on collagenase motor proteins.

  20. Application of FBG sensors in strengthening and maintenance monitoring of old bridges

    NASA Astrophysics Data System (ADS)

    Yue, Li-na; Huang, Jun; Yang, Yan

    2009-10-01

    The various fiber Bragg grating(FBG)sensors such as FBG force rings, differential FBG displacement cells, FBG strain sensors and FBG temperature sensors had been used to monitor the strengthening and maintenance process of the continuous concrete beam bridges and the continuous concrete rigid frame bridges which are the part of Wuhan Second Yangtze River Bridge. In the strengthening and maintenance process, the tension force of the external prestressed tendons, the cracks change and intensity of cross sections had been monitored to insure the instruction safety, study the effect of strengthening and maintenance, and verify the design theories of strengthening and maintenance. Also the reference state criterion for long-term bridge health monitoring had been provided according to the monitoring results.

  1. Bridge pier foundation evaluation using cross-hole seismic tomographic imaging

    NASA Astrophysics Data System (ADS)

    Butchibabu, B.; Sandeep, N.; Sivaram, Y. V.; Jha, P. C.; Khan, P. K.

    2017-09-01

    An ambitious project connecting Jammu and Srinagar through a railway link in tectonically active and geologically complex Himalayan Mountain terrain is under progress. Under this project, the world's highest (359 m) railway arch-bridge is under construction across the River Chenab in the northern territory of India. This mega engineering structure has a two-fold ribbed arch design, comprising of steel girders. During the excavation for one of the concrete pillars on the right abutment, wide open joints and weak/shear zones were noticed. The width of these joints varies from 30 to 50 cm, trending along N170° with a dip of 65°. The foundation area of this pillar is 13 m × 24 m and on the cut slopes of the right bank of Chenab River. These exposed joints and weak zones were treated with consolidation grouting to strengthen the foundation area. To delineate the extent of these joints and weak zones below the foundation level, seismic tomography was carried out in five boreholes drilled for this purpose to cover the 300 sq-m area. The results of cross-hole seismic tomography reveals the presence of three low velocity (≤ 2600 m/s) anomalous zones below the foundation area. This also ascertained the efficacy of grouting in consolidating the joints and weak zones. Later, rock-mass quality (Q) was determined based on the relationship between the P-wave velocity and the Q-value (Barton, 2002) to infer the support system for the slope stabilization below the foundation. 3-D visualization of the seismic velocity demarcates the extent of weak or untreated zones. This methodology facilitates to update the design parameters according to Q-values during the construction stage and estimate the required level of reinforcement and support system. Similar methodology can be applicable in other areas under same site conditions.

  2. Micro-bridge defects: characterization and root cause analysis

    NASA Astrophysics Data System (ADS)

    Santoro, Gaetano; Van den Heuvel, Dieter; Braggin, Jennifer; Rosslee, Craig; Leray, Philippe J.; Cheng, Shaunee; Jehoul, Christiane; Schreutelkamp, Robert; Hillel, Noam

    2010-03-01

    Defect review of advanced lithography processes is becoming more and more challenging as feature sizes decrease. Previous studies using a defect review SEM on immersion lithography generated wafers have resulted in a defect classification scheme which, among others, includes a category for micro-bridges. Micro-bridges are small connections between two adjacent lines in photo-resist and are considered device killing defects. Micro-bridge rates also tend to increase as feature sizes decrease, making them even more important for the next technology nodes. Especially because micro-bridge defects can originate from different root causes, the need to further refine and split up the classification of this type of defect into sub groups may become a necessity. This paper focuses on finding the correlation of the different types of micro-bridge defects to a particular root cause based on a full characterization and root cause analysis of this class of defects, by using advanced SEM review capabilities like high quality imaging in very low FOV, Multi Perspective SEM Imaging (MPSI), tilted column and rotated stage (Tilt&Rotation) imaging and Focused Ion Beam (FIB) cross sectioning. Immersion lithography material has been mainly used to generate the set of data presented in this work even though, in the last part of the results, some EUV lithography data will be presented as part of the continuing effort to extend the micro-bridge defect characterization to the EUV technology on 40 nm technology node and beyond.

  3. 96. (Credit BLV) View locking West at Cross Lake dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    96. (Credit BLV) View locking West at Cross Lake dam and spillway constructed immediately west of Kansas City Southern railroad bridge. Booster station located at left. Note cribbing at bridge abutment in upper left which straddles gravity flow canduit installed in 1924-1926 and supports extra suction line (installed in 1930) on top. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  4. Operational forest stream crossings effects on water quality in the Virginia Piedmont

    Treesearch

    Wallace M. Aust; Matthew B. Carroll; M. Chad Bolding; Andy Dolloff

    2011-01-01

    Water quality indices were examined for paired upstream and downstream samples for 23 operational stream crossings and approaches during four periods. Stream crossings were (1) portable bridges (BRIDGE), (2) culverts backfilled with poles (POLE), (3) culverts with earth backfill (CULVERT), and (4) reinforced fords (FORD). The four operational periods were (1) prior to...

  5. Boron bridging of rhamnogalacturonan-II, monitored by gel electrophoresis, occurs during polysaccharide synthesis and secretion but not post-secretion

    PubMed Central

    Chormova, Dimitra; Messenger, David J; Fry, Stephen C

    2014-01-01

    The cell-wall pectic domain rhamnogalacturonan-II (RG-II) is cross-linked via borate diester bridges, which influence the expansion, thickness and porosity of the wall. Previously, little was known about the mechanism or subcellular site of this cross-linking. Using polyacrylamide gel electrophoresis (PAGE) to separate monomeric from dimeric (boron-bridged) RG-II, we confirmed that Pb2+ promotes H3BO3-dependent dimerisation in vitro. H3BO3 concentrations as high as 50 mm did not prevent cross-linking. For in-vivo experiments, we successfully cultured ‘Paul's Scarlet’ rose (Rosa sp.) cells in boron-free medium: their wall-bound pectin contained monomeric RG-II domains but no detectable dimers. Thus pectins containing RG-II domains can be held in the wall other than via boron bridges. Re-addition of H3BO3 to 3.3 μm triggered a gradual appearance of RG-II dimer over 24 h but without detectable loss of existing monomers, suggesting that only newly synthesised RG-II was amenable to boron bridging. In agreement with this, Rosa cultures whose polysaccharide biosynthetic machinery had been compromised (by carbon starvation, respiratory inhibitors, anaerobiosis, freezing or boiling) lost the ability to generate RG-II dimers. We conclude that RG-II normally becomes boron-bridged during synthesis or secretion but not post-secretion. Supporting this conclusion, exogenous [3H]RG-II was neither dimerised in the medium nor cross-linked to existing wall-associated RG-II domains when added to Rosa cultures. In conclusion, in cultured Rosa cells RG-II domains have a brief window of opportunity for boron-bridging intraprotoplasmically or during secretion, but secretion into the apoplast is a point of no return beyond which additional boron-bridging does not readily occur. PMID:24320597

  6. Flood-plain and channel aggradation of selected bridge sites in the Iowa and Skunk River basins, Iowa

    USGS Publications Warehouse

    Eash, D.A.

    1996-01-01

    Flood-plain and channel-aggradation rates were estimated at 10 bridge sites on the Iowa River upstream of Coralville Lake and at two bridge sites in the central part of the Skunk River Basin. Four measurement methods were used to quantify aggradation rates: (1) a dendrogeomorphic method that used tree-age data and sediment-deposition depths, (2) a bridge-opening cross-section method that compared historic and recent cross sections of bridge openings, (3) a stage-discharge rating-curve method that compared historic and recent stages for the 5-year flood discharge and the average discharge, and (4) nine sediment pads that were installed on the Iowa River flood plain at three bridge sites in the vicinity of Marshalltown. The sediment pads were installed prior to overbank flooding in 1993. Sediments deposited on the pads as a result of the 1993 flood ranged in depth from 0.004 to 2.95 feet. Measurement periods used to estimate average aggradation rates ranged from 1 to 98 years and varied among methods and sites. The highest aggradation rates calculated for the Iowa River Basin using the dendrogeomorphic and rating- curve measurement methods were for the State Highway 14 crossing at Marshalltown, where these highest rates were 0.045 and 0.124 feet per year, respectively. The highest aggradation rates calculated for the Skunk River Basin were for the U.S. Highway 63 crossing of the South Skunk River near Oskaloosa, where these highest rates were 0.051 and 0.298 feet per year, respectively.

  7. Enhanced drug encapsulation and extended release profiles of calcium-alginate nanoparticles by using tannic acid as a bridging cross-linking agent.

    PubMed

    Abulateefeh, Samer R; Taha, Mutasem O

    2015-01-01

    Calcium alginate nanoparticles (NPs) suffer from sub-optimal stability in bio-relevant media leading to low drug encapsulation efficiency and uncontrolled release profiles. To sort out these drawbacks, a novel approach is proposed herein based on introducing tannic acid into these NPs to act as a bridging cross-linking aid agent. Calcium-alginate NPs were prepared by the ionotropic gelation method and loaded with diltiazem hydrochloride as a model drug. These NPs were characterized in terms of particle size, zeta potential, and morphology, and results were explained in accordance with Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The incorporation of tannic acid led to more than four folds increase in drug encapsulation efficiency (i.e. from 15.3% to 69.5%) and reduced burst drug release from 44% to around 10% within the first 30 min. These findings suggest the possibility of improving the properties of Ca-alginate NPs by incorporating cross-linking aid agents under mild conditions.

  8. An improved bridge safety index for narrow bridges.

    DOT National Transportation Integrated Search

    1983-08-01

    In this report, a new bridge safety index is developed based upon an extensive : statistical study of accident data on 78 bridges. A total of 655 accidents : were recorded at these bridges over the six-year period between 1974 and 1979. : Cluster ana...

  9. A Highly Conserved Salt Bridge Stabilizes the Kinked Conformation of β2,3-Sheet Essential for Channel Function of P2X4 Receptors.

    PubMed

    Zhao, Wen-Shan; Sun, Meng-Yang; Sun, Liang-Fei; Liu, Yan; Yang, Yang; Huang, Li-Dong; Fan, Ying-Zhe; Cheng, Xiao-Yang; Cao, Peng; Hu, You-Min; Li, Lingyong; Tian, Yun; Wang, Rui; Yu, Ye

    2016-04-08

    Significant progress has been made in understanding the roles of crucial residues/motifs in the channel function of P2X receptors during the pre-structure era. The recent structural determination of P2X receptors allows us to reevaluate the role of those residues/motifs. Residues Arg-309 and Asp-85 (rat P2X4 numbering) are highly conserved throughout the P2X family and were involved in loss-of-function polymorphism in human P2X receptors. Previous studies proposed that they participated in direct ATP binding. However, the crystal structure of P2X demonstrated that those two residues form an intersubunit salt bridge located far away from the ATP-binding site. Therefore, it is necessary to reevaluate the role of this salt bridge in P2X receptors. Here, we suggest the crucial role of this structural element both in protein stability and in channel gating rather than direct ATP interaction and channel assembly. Combining mutagenesis, charge swap, and disulfide cross-linking, we revealed the stringent requirement of this salt bridge in normal P2X4 channel function. This salt bridge may contribute to stabilizing the bending conformation of the β2,3-sheet that is structurally coupled with this salt bridge and the α2-helix. Strongly kinked β2,3 is essential for domain-domain interactions between head domain, dorsal fin domain, right flipper domain, and loop β7,8 in P2X4 receptors. Disulfide cross-linking with directions opposing or along the bending angle of the β2,3-sheet toward the α2-helix led to loss-of-function and gain-of-function of P2X4 receptors, respectively. Further insertion of amino acids with bulky side chains into the linker between the β2,3-sheet or the conformational change of the α2-helix, interfering with the kinked conformation of β2,3, led to loss-of-function of P2X4 receptors. All these findings provided new insights in understanding the contribution of the salt bridge between Asp-85 and Arg-309 and its structurally coupled β2,3-sheet to the

  10. Use of a ground-penetrating radar system to detect pre-and post-flood scour at selected bridge sites in New Hampshire, 1996-98

    USGS Publications Warehouse

    Olimpio, Joseph R.

    2000-01-01

    Ground-penetrating radar was used to measure the depth and extent of existing and infilled scour holes and previous scour surfaces at seven bridges in New Hampshire from April 1996 to November 1998. Ground-penetrating-radar survey techniques initially were used by the U.S. Geological Survey to study streambed scour at 30 bridges. Sixteen of the 30 bridges were re-surveyed where floods exceeded a 2-year recurrence interval. A 300-megahertz signal was used in the ground-penetrating radar system that penetrated through depths as great as 20 feet of water and as great as 32 feet of streambed materials. Existing scour-hole dimensions, infilled thickness, previous scour surfaces, and streambed materials were detected using ground-penetrating radar. Depths to riprap materials and pier footings were identified and verified with bridge plans. Post data-collection-processing techniques were applied to assist in the interpretation of the data, and the processed data were displayed and printed as line plots. Processing included distance normalization, migration, and filtering but processing was kept to a minimum and some interference from multiple reflections was left in the record. Of the 16 post-flood bridges, 22 ground-penetrating-radar cross sections at 7 bridges were compared and presented in this report. Existing scour holes were detected during 1996 (pre-flood) data collection in nine cross sections where scour depths ranged from 1 to 3 feet. New scour holes were detected during 1998 (post-flood) data collection in four cross sections where scour depths were as great as 4 feet deep. Infilled scour holes were detected in seven cross sections, where depths of infilling ranged from less than 1 to 4 feet. Depth of infilling by means of steel rod and hammer was difficult to verify in the field because of cobble and boulder streambeds or deep water. Previous scour surfaces in streambed materials were identified in 15 cross sections and the depths to these surfaces ranged from

  11. Bridge Suture for Successful McDonald Emergency Cerclage.

    PubMed

    Tanaka, Masaaki; Hori, Yoshiaki; Shirafuji, Aya; Kato, Mitsunori; Kato, Jyun; Kobayashi, Hiroto; Tsuchida, Toru; Fukae, Tsukasa

    2017-01-01

    To create awareness about a surgical technique termed bridge suture, which is performed as a pretreatment before a McDonald cerclage is performed on an emergency to treat severe cervical insufficiency. Procedures for bridge suture were reviewed in detail and outcomes of 16 patients treated with bridge suture followed by McDonald cerclage were evaluated retrospectively. Using the bridge suture, the edges of uterine cervix were temporarily sutured and the external uterine os was closed, while the hourglass-shaped fetal membranes were concomitantly confined within the cervix; subsequently, a McDonald cerclage was performed. Over a 22-year period, 16 patients with a dilated cervix and bulging fetal membranes were treated using the technique of bridge suture followed by an emergency cerclage. The mean gestational age at cerclage was 22.5 weeks; the mean gestational age at delivery was 30.7 weeks; and the mean interval between cerclage and delivery was 8.2 weeks. In 15 out of 16 cases, cerclage was performed without encountering any complications. No maternal complications, including cervical laceration, were observed. The mean body weight of 17 neonates, including that of a twin, was 1,516 g and of them, 15 neonates survived. The important outcome of bridge suture is the replacement of fetal membranes back into the uterine cavity before McDonald's cerclage is performed. Pretreatment with bridge suture may facilitate the performance of a successful emergency cerclage and contribute to good maternal and neonatal outcomes. © 2016 S. Karger AG, Basel.

  12. Level II scour analysis for Bridge 10 (CHESTH00030010) on Town Highway 3 (VT 35), crossing the South Branch of Williams River, Chester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESTH00030010 on Town Highway 3 (VT 35) crossing the South Branch Williams River, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 9.44-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest.In the study area, the South Branch Williams River has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 67 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 69.0 mm (0.226 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 26-27, 1996, indicated that the reach was stable.The Town Highway 3 (VT 35) crossing of the South Branch Williams River is a 69-foot-long, two-lane bridge consisting of one 67-foot steel-stringer span with a concrete deck (Vermont Agency of Transportation, written communication, August 23, 1994). The opening length of the structure parallel to the bridge face is 64.5 ft. The bridge is supported by vertical, concrete abutments with spill-through embankments. The channel is skewed approximately 50 degrees to the opening while the opening-skew-to-roadway is 30 degrees.The scour protection (spill

  13. The "Why" and "Where" of the Tappan Zee Bridge: A Lesson in Site Location, Physical Geography, and Politics

    ERIC Educational Resources Information Center

    Mitchell, Jerry T.; Cantrill, Jeremy; Kearse, Justin

    2012-01-01

    Bridges are some of the most majestic features in the American landscape. For classrooms, the bridge serves as an important component of one of the main themes of geography: movement. One bridge, north of Manhattan and crossing the Hudson River, is the Tappan Zee. One aspect that stands out in a way that does not at all appear reasonable: the…

  14. Dynamic and Fatigue Analysis of an 18th Century Steel Arch Bridge

    NASA Astrophysics Data System (ADS)

    Boumechra, Nadir; Hamdaoui, Karim

    2008-07-01

    Within the "Oran-Tlemcen" railway line realization project (159 km), several bridges were built by the Railroads Algerian West Company. 7 km from the east of Tlemcen city, this railway line must cross a very broken mountainous collar, that's why the French engineer "Gustave Eiffel" was solicited to construct a 68 m length bridge. In 1890, an arch steel truss bridge was realized. The bridge presents 300 m of apron curvature radius and, currently, is considered as one of the most important monuments of the Algerian historical heritage. Considering the age of the bridge and the evolution of the railway loads in time, it was essential to check the good behavior of the studied structure. For that, analyses to verify the physical and mechanical properties of the growth iron members are made. A finite element model of the bridge was built and numerical simulations were drawn. The structural vibration conducted analysis permit to understand the behavior of this particular structure, then to evaluate (in detail) the rate of the structure fatigue.

  15. 28. BRIDGE NO. 9 APRON AND BRIDGE HINGE JOINT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. BRIDGE NO. 9 APRON AND BRIDGE HINGE JOINT AND BRIDGE SUSPENSION SYSTEM SHOWING EYEBAR AND CABLE CONNECTIONS. LOOKING WEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  16. Level II scour analysis for Bridge 43 (CHESVT00110043) on State Highway 11, crossing the Middle Branch Williams River, Chester, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Burns, Ronda L.

    1997-01-01

    76-ft-long, two-lane bridge consisting of two 37-foot concrete Tee-beam spans (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening. The computed opening-skew-to-roadway was 30 degrees but the historical records indicate this angle is 25 degrees. Scour protection measures at the site consist of type-1 stone fill (less than 12 inches diameter) along the downstream banks and the upstream right wing wall. Type-2 (less than 36 inches diameter) stone fill protection is noted on the upstream and downstream left wingwalls and upstream along the left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.2 to 10.7 ft. The worst-case abutment scour occurred at the 500-year discharge for the right abutment. Pier scour ranged from 7.3 to 8.6 ft. The worst-case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour

  17. Bridge permeameter

    DOEpatents

    Graf, Darin C.; Warpinski, Norman R.

    1996-01-01

    A system for single-phase, steady-state permeability measurements of porous rock utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors.

  18. 29. BRIDGE NO. 13 APRON AND BRIDGE HINGE JOINT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. BRIDGE NO. 13 APRON AND BRIDGE HINGE JOINT AND BRIDGE SUSPENSION SYSTEM (OLDER STYLE) SHOWING EYEBAR AND CABLE CONNECTIONS. LOOKING WEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  19. 5. View of Clark Fork Vehicle Bridge facing east. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Clark Fork Vehicle Bridge facing east. Bridge from south shore of Clark Fork River-southernmost span. 1900-era Northern Pacific Railway Bridge in background. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  20. Bridging Student Leadership Assessment across a Three-Institution Consortium

    ERIC Educational Resources Information Center

    Ostrom-Blonigen, Jean; Bornsen, Susan E.; Larson-Casselton, Cindy; Erickson, Sheri L.

    2010-01-01

    Throughout the nation, training students for leadership roles is a primary cross-disciplinary bridge from coursework to career or from service learning to community service. Student leadership training has been linked to communication traits of goal setting, decision making, conflict resolution, concern for community, and increased understanding…

  1. Tresfjord Bridge - a human friendly and traffic efficient structure

    NASA Astrophysics Data System (ADS)

    Dahl, Kristian B.; Anta Magerøy Tønnessen, Aja; Toverud, Lars I.

    2017-09-01

    The E136 Tresfjord Bridge opened in October 2015, and crosses the Tresfjorden on the west coast of Norway. It is a concrete bridge with a total length of 1290 m, consisting of 19 viaduct spans, 60 m each, and a FCM (free cantilever method) main span of 160 m. The E136 is one of the most important transportation routes in the county of Møre and Romsdal and starts in Ålesund, and passes along Tresfjorden to Åndalsnes. The existing road is very narrow with speed limit of 60 km/h and characterizes by many accidents involving cars and people. The traffic flow is approximately ca 2500 vehicles a day, of this is 25% heavy vehicles. Those transport fresh salmon from the breeders in the fjords along the coast. To try to decrease the transportation time is very important for the fresh salmon. The bridge reduces the distance between Ålesund and Åndalsnes by 13 km. The speed limit is now 80 km/h, and with much less risk for accidents since there are separate lanes for cars and pedestrians over the whole bridge. This means that the bridge represents a human friendly and traffic efficient structure to the benefit for the people and the region.

  2. 31. U.S. WORKS PROGRAM GRADE CROSSING PROJECT, (TITLE PAGE) W.P.G.M. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. U.S. WORKS PROGRAM GRADE CROSSING PROJECT, (TITLE PAGE) W.P.G.M. NO-301, WEST BRIDGE STREET. Sheet 1 of 10 - Notre Dame Bridge, Spanning Merrimack River on Bridge Street, Manchester, Hillsborough County, NH

  3. Level II scour analysis for Bridge 25 (REDSTH00360025) on Town Highway 36, crossing the West Branch Deerfield River, Readsboro, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure REDSTH00360025 on Town Highway 36 crossing the West Branch Deerfield River, Readsboro, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 14.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the upstream right bank and forest on the upstream left bank. The surface cover on the downstream right and left banks is primarily grass, shrubs and brush. In the study area, the West Branch Deerfield River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 65 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulders, with a median grain size (D50) of 117 mm (0.383 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 1, 1996, indicated that the reach was stable. The Town Highway 36 crossing of the West Branch Deerfield River is a 59-ft-long, two-lane bridge consisting of one 57-foot concrete T-beam span (Vermont Agency of Transportation, written communication, September 28, 1995). The opening length of the structure parallel to the bridge face is 54 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 50

  4. Prioritizing bridge structures for underwater inspections : summary report.

    DOT National Transportation Integrated Search

    1993-01-01

    In the last decade, there has been increasing national concern about the adequacy of underwater inspection of bridge substructures. A number of factors have contributed to this concern, in particular the collapse of several major spans, some of which...

  5. Simulation of flow and evaluation of bridge scour at Horse Island Chute Bridge near Chester, Illinois

    USGS Publications Warehouse

    Huizinga, Richard J.; Rydlund, Jr., Paul H.

    2001-01-01

    The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth equations. Occasionally, the conditions of a site dictate that a more thorough hydraulic assessment is required. To provide the hydraulic parameters required to determine the potential scour depths at the bridge over Horse Island Chute near Chester, Illinois, a two-dimensional finite-element surface-water model (FESWMS-2DH) was used to simulate flood flows in the vicinity of the Missouri State Highway 51 crossing of the Mississippi River and Horse Island Chute. The model was calibrated using flood-flow information collected during the 1993 flood. A flood profile along the Illinois side of the Mississippi River on August 5, 1993, with a corresponding measured discharge of 944,000 cubic feet per second was used to calibrate the model. Two additional flood-flow simulations were run: the flood peak that occurred on August 6, 1993, with a maximum discharge of 1,000,000 cubic feet per second, and the discharge that caused impending overtopping of the road embankment in the vicinity of the Horse Island Chute bridge, with a discharge of 894,000 cubic feet per second (impendent discharge). Hydraulic flow parameters obtained from the simulations were applied to scour depth equations to determine general contraction and local pier and abutment scour depths at the Horse Island Chute bridge. The measured discharge of 944,000 cubic feet per second resulted in 13.3 feet of total combined contraction and local pier scour at Horse Island Chute bridge. The maximum discharge of 1,000,000 cubic feet per second resulted in 15.8 feet of total scour and the impendent discharge of 894,000 cubic feet per second resulted in 11.6 feet of total scour.

  6. Bridge permeameter

    DOEpatents

    Graf, D.C.; Warpinski, N.R.

    1996-08-13

    A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.

  7. Bridge permeameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, D.C.; Warpinski, N.R.

    A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.

  8. Long-term bridge performance high priority bridge performance issues.

    DOT National Transportation Integrated Search

    2014-10-01

    Bridge performance is a multifaceted issue involving performance of materials and protective systems, : performance of individual components of the bridge, and performance of the structural system as a whole. The : Long-Term Bridge Performance (LTBP)...

  9. OVERVIEW OF BRIDGES WITH WAIKELE CANAL BRIDGE IN CENTER, OR&L ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF BRIDGES WITH WAIKELE CANAL BRIDGE IN CENTER, OR&L BRIDGE IN BACKGROUND. SHOWING THE EARTHEN INCLINE THAT RAISES FARRINGTON HIGHWAY OVER THE FORMER OR&L TRACKS. NOTE THE 1963 WESTBOUND BRIDGE IN THE FOREGROUND. VIEW FACING EAST. - Waikele Canal Bridge and Highway Overpass, Farrington Highway and Waikele Stream, Waipahu, Honolulu County, HI

  10. 47 CFR 80.163 - Operator requirements of the Bridge-to-Bridge Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Operator requirements of the Bridge-to-Bridge... Requirements § 80.163 Operator requirements of the Bridge-to-Bridge Act. Each ship subject to the Bridge-to-Bridge Act must have on board a radio operator who holds a restricted radiotelephone operator permit or...

  11. 47 CFR 80.163 - Operator requirements of the Bridge-to-Bridge Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operator requirements of the Bridge-to-Bridge... Requirements § 80.163 Operator requirements of the Bridge-to-Bridge Act. Each ship subject to the Bridge-to-Bridge Act must have on board a radio operator who holds a restricted radiotelephone operator permit or...

  12. Kinetic bridges.

    DOT National Transportation Integrated Search

    1980-01-01

    This report on kinetic bridges is essentially a state-of-the-art study on two types of bridges whose location or physical characteristics are designed to be time dependent. The first type, called a "relocatable bridge", is essentially for use as a te...

  13. Bridge health monitoring metrics : updating the bridge deficiency algorithm.

    DOT National Transportation Integrated Search

    2009-10-01

    As part of its bridge management system, the Alabama Department of Transportation (ALDOT) must decide how best to spend its bridge replacement funds. In making these decisions, ALDOT managers currently use a deficiency algorithm to rank bridges that ...

  14. Bulb-T beams with self-consolidating concrete on the Route 33 bridge over the Pamunkey River in Virginia.

    DOT National Transportation Integrated Search

    2008-01-01

    This study evaluated the bulb-T beams made with self-consolidating concrete (SCC) used in the Route 33 Bridge over the Pamunkey River at West Point, Virginia. Before the construction of the bridge, two test beams with SCC similar in cross section to ...

  15. Guardrails for use on historic bridges: volume 2--bridge deck overhang design.

    DOT National Transportation Integrated Search

    2016-11-01

    Bridges that are designated historic present a special challenge to bridge engineers whenever rehabilitation work or improvements are : made to the bridges. Federal and state laws protect historically significant bridges, and railings on these bridge...

  16. Identifying hidden sexual bridging communities in Chicago.

    PubMed

    Youm, Yoosik; Mackesy-Amiti, Mary Ellen; Williams, Chyvette T; Ouellet, Lawrence J

    2009-07-01

    Bridge populations can play a central role in the spread of human immunodeficiency virus (HIV) by providing transmission links between higher and lower prevalence populations. While social network methods are well suited to the study of bridge populations, analyses tend to focus on dyads (i.e., risk between drug and/or sex partners) and ignore bridges between distinct subpopulations. This study takes initial steps toward moving the analysis of sexual network linkages beyond individual and risk group levels to a community level in which Chicago's 77 community areas are examined as subpopulations for the purpose of identifying potential bridging communities. Of particular interest are "hidden" bridging communities; that is, areas with above-average levels of sexual ties with other areas but whose below-average AIDS prevalence may hide their potential importance for HIV prevention. Data for this analysis came from the first wave of recruiting at the Chicago Sexual Acquisition and Transmission of HIV Cooperative Agreement Program site. Between August 2005 through October 2006, respondent-driven sampling was used to recruit users of heroin, cocaine, or methamphetamine, men who have sex with men regardless of drug use, the sex partners of these two groups, and sex partners of the sex partners. In this cross-sectional study of the sexual transmission of HIV, participants completed a network-focused computer-assisted self-administered interview, which included questions about the geographic locations of sexual contacts with up to six recent partners. Bridging scores for each area were determined using a matrix representing Chicago's 77 community areas and were assessed using two measures: non-redundant ties and flow betweenness. Bridging measures and acquired immunodeficiency syndrome (AIDS) case prevalence rates were plotted for each community area on charts representing four conditions: below-average bridging and AIDS prevalence, below-average bridging and above

  17. 47 CFR 80.309 - Watch required by the Bridge-to-Bridge Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Watch required by the Bridge-to-Bridge Act. 80... Safety Watches § 80.309 Watch required by the Bridge-to-Bridge Act. In addition to the watch requirement contained in § 80.148, all vessels subject to the Bridge-to-Bridge Act must keep a watch on the designated...

  18. 47 CFR 80.309 - Watch required by the Bridge-to-Bridge Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Watch required by the Bridge-to-Bridge Act. 80... Safety Watches § 80.309 Watch required by the Bridge-to-Bridge Act. In addition to the watch requirement contained in § 80.148, all vessels subject to the Bridge-to-Bridge Act must keep a watch on the designated...

  19. 1. View of bridge from Interstate 195 (Washington Bridge) looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of bridge from Interstate 195 (Washington Bridge) looking southwest - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI

  20. Field performance of timber bridges. 7, Connell Lake stress-laminated deck bridge

    Treesearch

    L. E. Hislop; M. A. Ritter

    The Connell Lake bridge was constructed in early 1991 on the Tongass National Forest, Alaska, as a demonstration bridge under the Timber Bridge Initiative. The bridge is a stress-laminated deck structure with an approximate 36-ft length and 18-ft width and is the first known stress-laminated timber bridge constructed in Alaska. Performance of the bridge was monitored...

  1. Dynamic and Fatigue Analysis of an 18{sup th} Century Steel Arch Bridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boumechra, Nadir; Hamdaoui, Karim

    2008-07-08

    Within the 'Oran-Tlemcen' railway line realization project (159 km), several bridges were built by the Railroads Algerian West Company. 7 km from the east of Tlemcen city, this railway line must cross a very broken mountainous collar, that's why the French engineer 'Gustave Eiffel' was solicited to construct a 68 m length bridge. In 1890, an arch steel truss bridge was realized. The bridge presents 300 m of apron curvature radius and, currently, is considered as one of the most important monuments of the Algerian historical heritage. Considering the age of the bridge and the evolution of the railway loadsmore » in time, it was essential to check the good behavior of the studied structure. For that, analyses to verify the physical and mechanical properties of the growth iron members are made. A finite element model of the bridge was built and numerical simulations were drawn. The structural vibration conducted analysis permit to understand the behavior of this particular structure, then to evaluate (in detail) the rate of the structure fatigue.« less

  2. Crossing the Bridge: GED Credentials and Postsecondary Educational Outcomes. Year One Report

    ERIC Educational Resources Information Center

    Patterson, Margaret Becker; Zhang, Jizhi; Song, Wei; Guison-Dowdy, Anne

    2010-01-01

    For most high school non-completers, the GED[R] credential provides a bridge to postsecondary education, but little is known about how successfully GED (General Educational Development) Test candidates make that transition and whether enrollment rates change with time. The American Council on Education (ACE) has begun a three-year longitudinal…

  3. Marine ARM GPCI Investigation of Clouds Bridge Display Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, R. Michael; Lewis, Ernie

    2016-09-01

    At the beginning of the U.S. Department of Energy (DOE) Marine Atmospheric Radiation Measurement (ARM) Climate Research Facility Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds (MAGIC) experiment, we recognized that the crew on the ship’s bridge would like to see a display of the meteorological data that was being collected. While a display on the bridge would be marginally useful to the science, it was decided to make a display for the bridge. A display was programmed in Lab View and a personal computer (PC) was set up in themore » bridge. This remained in operation until the ship went to dry dock for upgrades and service. Part of the upgrade was a new meteorological system for the ship. After this time there was no need for the ARM display and so it was not re-installed for the remainder of the program.« less

  4. Crossing at the Speed of Change

    DTIC Science & Technology

    2016-06-10

    prowess. They built complicated structures and durable roads, much of which exists still today. A military force unparalleled in their time, the Romans... structures displaying their expertise and capability to could cross any obstacle at will was equally important. This was exemplified by the first recorded...constructing a bridge out of timber , complete with protective works upstream.5 Details of the bridge were found in Caesar’s personal record of his

  5. GOETHALS BRIDGE FROM NORTH SIDE OVER ARTHUR KILL. RAILROAD BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GOETHALS BRIDGE FROM NORTH SIDE OVER ARTHUR KILL. RAILROAD BRIDGE IN FOREGROUND - Goethals Bridge, Spanning Arthur Kill from New Jersey to Staten Island, Staten Island (subdivision), Richmond County, NY

  6. CTP:phosphocholine cytidylyltransferase binds anionic phospholipid vesicles in a cross-bridging mode.

    PubMed

    Taneva, Svetla G; Patty, Philipus J; Frisken, Barbara J; Cornell, Rosemary B

    2005-07-05

    CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the rate-limiting step in phosphatidylcholine (PC) synthesis, and its activity is regulated by reversible association with membranes, mediated by an amphipathic helical domain M. Here we describe a new feature of the CCTalpha isoform, vesicle tethering. We show, using dynamic light scattering and transmission electron microscopy, that dimers of CCTalpha can cross-bridge separate vesicles to promote vesicle aggregation. The vesicles contained either class I activators (anionic phospholipids) or the less potent class II activators, which favor nonlamellar phase formation. CCT increased the apparent hydrodynamic radius and polydispersity of anionic phospholipid vesicles even at low CCT concentrations corresponding to only one or two dimers per vesicle. Electron micrographs of negatively stained phosphatidylglycerol (PG) vesicles confirmed CCT-mediated vesicle aggregation. CCT conjugated to colloidal gold accumulated on the vesicle surfaces and in areas of vesicle-vesicle contact. PG vesicle aggregation required both the membrane-binding domain and the intact CCT dimer, suggesting binding of CCT to apposed membranes via the two M domains situated on opposite sides of the dimerization domain. In contrast to the effects on anionic phospholipid vesicles, CCT did not induce aggregation of PC vesicles containing the class II lipids, oleic acid, diacylglycerol, or phosphatidylethanolamine. The different behavior of the two lipid classes reflected differences in measured binding affinity, with only strongly binding phospholipid vesicles being susceptible to CCT-induced aggregation. Our findings suggest a new model for CCTalpha domain organization and membrane interaction, and a potential involvement of the enzyme in cellular events that implicate close apposition of membranes.

  7. LOOKING WEST, BETWEEN READING DEPOT BRIDGE AND SKEW ARCH BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKING WEST, BETWEEN READING DEPOT BRIDGE AND SKEW ARCH BRIDGE (HAER No. PA-116). - Philadelphia & Reading Railroad, Reading Depot Bridge, North Sixth Street at Woodward Street, Reading, Berks County, PA

  8. Plans: Poop Deck, Boat Deck, Housetop, Bridge Deck, Upper Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plans: Poop Deck, Boat Deck, Housetop, Bridge Deck, Upper Bridge Deck, Navigating Bridge, Forecastle Deck, Upper Deck, Second Deck and Hold - Saugatuck, James River Reserve Fleet, Newport News, Newport News, VA

  9. 1. VIEW OF SWING BRIDGE FROM KEDZIE AVENUE BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF SWING BRIDGE FROM KEDZIE AVENUE BRIDGE, LOOKING EAST. - Chicago, Madison & Northern Railroad, Sanitary & Ship Canal Bridge, Spanning Sanitary & Ship Canal, east of Kedzie Avenue, Chicago, Cook County, IL

  10. 3. View of Clark Fork Vehicle Bridge facing southwest. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of Clark Fork Vehicle Bridge facing southwest. Bridge from north shore of Clark Fork River. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  11. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    PubMed

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. OVERVIEW OF BRIDGES WITH OR&L BRIDGE IN CENTER, WAIKELE CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF BRIDGES WITH OR&L BRIDGE IN CENTER, WAIKELE CANAL BRIDGE IN BACKGROUND. SHOWING THE EARTHEN INCLINE THAT RAISES FARRINGTON HIGHWAY OVER THE FORMER OR&L TRACKS. VIEW FACING SOUTHWEST. - Waikele Canal Bridge and Highway Overpass, Farrington Highway and Waikele Stream, Waipahu, Honolulu County, HI

  13. Agri-environmental collaboratives as bridging organisations in landscape management.

    PubMed

    Prager, Katrin

    2015-09-15

    In recent years, landscape and its management has become a focus of policies and academic conceptualisation. Landscape is understood as a concept of interconnected natural and human systems. Its management must take into account the dynamic interdependencies and diverging interests of various stakeholders at different levels. Bridging organisations can provide an arena for trust-building, conflict resolution, learning and collaboration between relevant stakeholders. This paper draws on two strands of literature - landscape governance and co-management of social-ecological systems - to investigate the contributions of agri-environmental collaboratives (AEC) to sustainable landscape management. Based on data from 41 interviews with key informants and AEC members in Germany and the Netherlands, six fields of contributions were identified: policy implementation and service provision; coordination and mediation; awareness raising and behaviour change; care for 'everyday' landscapes; maintenance and protection of landscapes (including species and habitats); and income generation and economic benefits. Some of the contributions evolve around the specific role of AEC as bridging organisations, but other contributions such as economic benefits emerge beyond this analytical lens. The paper therefore emphasises holistic, bottom up assessment of AEC contributions and argues that governments should support such organisations through i) funding for facilitators and ii) funding for impact monitoring and data management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    PubMed Central

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms. PMID:22408487

  15. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    PubMed

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  16. 4. View of Clark Fork Vehicle Bridge facing northeast. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of Clark Fork Vehicle Bridge facing northeast. Bridge from south shoreof Clark Fork River showing 4 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  17. Level II scour analysis for Bridge 63 (CHESTH00090063) on Town Highway 9, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.

    1997-01-01

    year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Hydropower production from bridges in urban or suburban areas

    NASA Astrophysics Data System (ADS)

    Tucciarelli, Tullio; Sammartano, Vincenzo; Sinagra, Marco; Morreale, Gabriele; Ferreira, Teresa

    2015-04-01

    A new technology for hydropower production from rivers crossing urban or suburban areas is proposed, based on the use of Cross-Flow turbines having its axis horizontal and normal to the flow direction. A large part of the river cross-section could be covered by the turbine cross-section and this would generate a small, but consistent jump between the water levels of the inlet and the outlet sections. The turbine should be anchored to a pre-existing bridge and the total length of its axis should be of the same order of the bridge length. Due to the large axis extension, it should be possible to easily attain a gross power similar to the power produced with a more traditional installation, based on weirs or barrages, if single jumps of few tens of centimeters were added over a large number of bridges. If the bridges were set in urbanized areas, the production of electricity would be located close to its consumption, according to the smart grid requirements, and the hydrological basin at the bridge section (along with the corresponding discharge) would be greater than the basin of traditional plants located in more upstream locations. The maximum water level to be attained in the upstream section of the bridge should be the minimum among the following ones: 1) the level corresponding to the maximum flood allowed by the surrounding infra-structures, 2) the level corresponding to the maximum force allowed by the bridge structures. The resulting upstream water level hydrographs should be compatible with the river suspended and bed load equilibrium and with the requirement of the aquatic living population. The system should include a mechanism able to raise the turbine completely out of the water level, if required, for maintenance or other purposes. The complete lifting of the turbine could be used to: a) reconstruct the natural river bed profile during floods, b) allow the navigation or fish movements during some periods of the year, or even some hours of the day. A

  19. Truck shipments across the Woodrow Wilson Bridge : value and tonnage in 1993

    DOT National Transportation Integrated Search

    1998-04-01

    The Woodrow Wilson Bridge, where Interstate 95 crosses the Potomac River just south of Washington, DC, carries significant amounts of freight to support economic activities well beyond the nation's capitol. The Bureau of Transportation Statistics (BT...

  20. 64Cu-Labeled Phosphonate Cross-Bridged Chelator Conjugates of c(RGDyK) for PET/CT Imaging of Osteolytic Bone Metastases.

    PubMed

    Ocak, Meltem; Beaino, Wissam; White, Alexander; Zeng, Dexing; Cai, Zhengxin; Anderson, Carolyn J

    2018-03-01

    The goal of this research was to evaluate c(RGDyK) conjugated to phosphonate-based cross-bridged chelators using Cu-free click chemistry in the 4T1 mouse mammary tumor bone metastasis model in comparison with 64 Cu-CB-TE2A-c(RGDyK), which previously showed selective binding to integrin αvβ3 on osteoclasts. Two phosphonate-based cross-bridged chelators (CB-TE1A1P and CB-TE1K1P) were conjugated to c(RGDyK) through bio-orthogonal strain-promoted alkyne-azide cycloaddition. In vitro and in vivo evaluation of the 64 Cu-labeled TE1A1P-DBCO-c(RGDyK) (AP-c(RGDyK)), TE1K1P-PEG4-DBCO-c(RGDyK) (KP-c(RGDyK)), and CB-TE2A-c(RGDyK) were compared in the 4T1 mouse model of bone metastasis. The affinities of the unconjugated and chelator-c(RGDyK) analogs for αvβ3 integrin were determined using a competitive-binding assay. For in vivo evaluation, BALB/c mice were injected with 1 × 10 5 4T1/Luc cells in the left ventricle. Formation of metastases was monitored by bioluminescence imaging (BLI) followed by small-animal PET/CT 2 h postinjection of radiotracers. The chelator-peptide conjugates showed similar affinity to integrin αvβ3, in the low nM range. PET imaging demonstrated a higher uptake in bones having metastases for all 64 Cu-labeled c(RGDyK) analogs compared with bones in nontumor-bearing mice. The correlation between uptake of 64 Cu-AP-c(RGDyK) and 64 Cu-KP-c(RGDyK) in bones with metastases based on PET/CT imaging, and osteoclast number based on histomorphometry, was improved over the previously investigated 64 Cu-CB-TE2A-c(RGDyK). These data suggest that the phosphonate chelator conjugates of c(RDGyK) peptides are promising PET tracers suitable for imaging tumor-associated osteoclasts in bone metastases.

  1. 2. View of Clark Fork Vehicle Bridge facing northeast. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Clark Fork Vehicle Bridge facing northeast. Bridge from south shore of Clark Fork River showing 4 1/2 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  2. 7. View of Clark Fork Vehicle Bridge facing northwest. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View of Clark Fork Vehicle Bridge facing northwest. Bridge from south shore of Clark Fork River showing 4 1/2 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  3. 4. View of bridge deck from northeast approach (bridge deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of bridge deck from northeast approach (bridge deck from southwest approach is virtually identical - Big Cottonwood River Bridge No. 246, Spanning Big Cottonwood River at Cottonwood Street (City Road No. 165), New Ulm, Brown County, MN

  4. NYSDOT Bridge Deck Task Force evaluation of bridge deck cracking on NYSDOT bridges

    DOT National Transportation Integrated Search

    2007-02-01

    This paper presents a summary of knowledge gained by the NYSDOT Bridge Deck Task Force (BDTF). Although the paper contains recommendations to reduce the prevalence and severity of bridge deck cracking, it does not include a silver bullet soluti...

  5. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalised cross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  6. Floodflow characteristics at proposed bridge site on Fishkill Creek, Fishkill, New York

    USGS Publications Warehouse

    Zembrzuski, Thomas J.; Dunn, Bernard

    1976-01-01

    An evaluation of floodflow characteristics of Fishkill Creek at the proposed bridge site at Fishkill, N.Y., was made for the 50- and 100-year floods. The flood-frequency analysis revealed that the magnitude of the 50- and 100-year floods are 8,000 cubic feet per second (cfs) and 10,000 cfs, respectively. The normal water-surface elevation at the approach cross section was determined by the slope-conveyance method to be 209.8 feet during a 50-year flood and 210.8 feet during a 100-year flood. Also included is an analysis of the effect of the existing bridge and of two alternative bridge designs on the profiles of floods having recurrence intervals of 50 and 100 years. (Woodard-USGS)

  7. Dynamic response of the train-track-bridge system subjected to derailment impacts

    NASA Astrophysics Data System (ADS)

    Ling, Liang; Dhanasekar, Manicka; Thambiratnam, David P.

    2018-04-01

    Derailments on bridges, although not frequent, when occurs due to a complex dynamic interaction of the train-track-bridge structural system, are very severe. Furthermore, the forced vibration induced by the post-derailment impacts can toss out the derailed wagons from the bridge deck with severe consequences to the traffic underneath and the safety of the occupants of the wagons. This paper presents a study of the train-track-bridge interaction during a heavy freight train crossing a concrete box girder bridge from a normal operation to a derailed state. A numerical model that considers the bridge vibration, train-track interaction and the train post-derailment behaviour is formulated based on a coupled finite-element - multi-body dynamics (FE-MBD) theory. The model is applied to predict the post-derailment behaviour of a freight train composed of one locomotive and several wagons, as well as the dynamic response of a straight single-span simply supported bridge containing ballast track subjected to derailment impacts. For this purpose, a typical derailment scenario of a heavy freight train passing over a severe track geometry defect is introduced. The dynamic derailment behaviour of the heavy freight train and the dynamic responses of the rail bridge are illustrated through numerical examples. The results exhibit the potential for tossing out of the derailed trains from the unstable increase in the yaw angle signature and a lower rate of increase of the bridge deck bending moment compared to the increase in the static axle load of the derailed wheelset.

  8. Human-simulated intelligent control of train braking response of bridge with MRB

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhou, Hongli; Wu, Yueyuan; Wang, Xiaojie

    2016-04-01

    The urgent train braking could bring structural response menace to the bridge under passive control. Based on the analysis of breaking dynamics of a train-bridge vibration system, a magnetorheological elastomeric bearing (MRB) whose mechanical parameters are adjustable is designed, tested and modeled. A finite element method (FEM) is carried out to model and optimize a full scale vibration isolation system for railway bridge based on MRB. According to the model above, we also consider the effect of different braking stop positions on the vibration isolation system and classify the bridge longitudinal vibration characteristics into several cases. Because the train-bridge vibration isolation system has multiple vibration states and strongly coupling with nonlinear characteristics, a human-simulated intelligent control (HSIC) algorithm for isolating the bridge vibration under the impact of train braking is proposed, in which the peak shear force of pier top, the displacement of beam and the acceleration of beam are chosen as control goals. The simulation of longitudinal vibration control system under the condition of train braking is achieved by MATLAB. The results indicate that different braking stop positions significantly affect the vibration isolation system and the structural response is the most drastic when the train stops at the third cross-span. With the proposed HSIC smart isolation system, the displacement of bridge beam and peak shear force of pier top is reduced by 53.8% and 34.4%, respectively. Moreover, the acceleration of bridge beam is effectively controlled within limited range.

  9. 78 FR 13747 - Safety Advisory 2013-01; Passing Stop Signals Protecting Movable Bridges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... 82 freight cars, including 51 hazardous materials tank cars, derailed seven cars while crossing a... bridge to close using the key pad on the locomotive radio. Through the use of a programmable logic...

  10. Bridges in complex networks

    NASA Astrophysics Data System (ADS)

    Wu, Ang-Kun; Tian, Liang; Liu, Yang-Yu

    2018-01-01

    A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real networks typically have more bridges than their completely randomized counterparts, but they have a fraction of bridges that is very similar to their degree-preserving randomizations. We define an edge centrality measure, called bridgeness, to quantify the importance of a bridge in damaging a network. We find that certain real networks have a very large average and variance of bridgeness compared to their degree-preserving randomizations and other real networks. Finally, we offer an analytical framework to calculate the bridge fraction and the average and variance of bridgeness for uncorrelated random networks with arbitrary degree distributions.

  11. The hepatic bridge.

    PubMed

    Sugarbaker, Paul H

    2018-07-01

    The hepatic bridge forms a tunnel of liver parenchyma that may obscure peritoneal metastases associated with the round ligament. Visualization and then resection of nodules associated with this structure is necessary. The incidence of a hepatic bridge and the extent that it covered the round ligament was determined in consecutive patients. Extent of coverage of the round ligament by the hepatic bridge was determined: Class 1 indicates up to one-third of the round ligament obscured, Class 2 up to two-thirds and Class 3 more than two-thirds. In 102 patients in whom the round ligament of the liver could be completely visualized, 50 had a hepatic bridge. Class 1 was 22 (44%) of the bridges, Class 2 was 16 (32%) and Class 3 was 12 (24%). A hepatic bridge was more frequently present in 28 of 45 male patients (62%) vs. 22 of 57 female patients (38%). Approximately one-half of our patients having cytoreductive surgery for peritoneal metastases were observed to have a hepatic bridge. Up to 56% of these patients have Class 2 or 3 hepatic bridge and may require division of the hepatic bridge to completely visualize the contents of the tunnel created by this structure. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  12. Level II scour analysis for Bridge 23 (WEELTH00210023) on Town Highway 21, crossing Miller Run, Wheelock, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Boehmler, Erick M.

    1997-01-01

    Contraction scour for all modelled flows was computed to be zero ft. Abutment scour ranged from 9.1 to 10.8 ft along the right abutment and from 9.8 to 12.3 ft along the left abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Level II scour analysis for Bridge 17 (SHEFTH00380017) on Town Highway 38, crossing Miller Run, Sheffield, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Degnan, James R.

    1997-01-01

    Contraction scour for modelled flows ranged from 0.0 to 2.4 ft. Abutment scour ranged from 6.1 to 7.9 ft at the left abutment and 11.4 to 17.4 ft at the right abutment. The worstcase contraction and abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  14. Bridge resource program.

    DOT National Transportation Integrated Search

    2013-09-01

    The mission of Rutgers Universitys Center for Advanced Infrastructure and Transportation (CAIT) Bridge Resource Program (BRP) is to provide bridge engineering support to the New Jersey Department of Transportation (NJDOT)s Bridge Engineering an...

  15. NCDOT : bridge policy

    DOT National Transportation Integrated Search

    1994-11-01

    NCDOTs Bridge Policy establishes controlling design elements for new and reconstructed bridges on the state road system. It includes information to address sidewalks and bicycle facilities on bridges, including minimum handrail heights and sidewal...

  16. Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac muscle

    PubMed Central

    Tewari, Shivendra G.; Bugenhagen, Scott M.; Palmer, Bradley M.; Beard, Daniel A.

    2015-01-01

    Despite extensive study over the past six decades the coupling of chemical reaction and mechanical processes in muscle dynamics is not well understood. We lack a theoretical description of how chemical processes (metabolite binding, ATP hydrolysis) influence and are influenced by mechanical processes (deformation and force generation). To address this need, a mathematical model of the muscle cross-bridge (XB) cycle based on Huxley’s sliding filament theory is developed that explicitly accounts for the chemical transformation events and the influence of strain on state transitions. The model is identified based on elastic and viscous moduli data from mouse and rat myocardial strips over a range of perturbation frequencies, and MgATP and inorganic phosphate (Pi) concentrations. Simulations of the identified model reproduce the observed effects of MgATP and MgADP on the rate of force development. Furthermore, simulations reveal that the rate of force re-development measured in slack-restretch experiments is not directly proportional to the rate of XB cycling. For these experiments, the model predicts that the observed increase in the rate of force generation with increased Pi concentration is due to inhibition of cycle turnover by Pi. Finally, the model captures the observed phenomena of force yielding suggesting that it is a result of rapid detachment of stretched attached myosin heads. PMID:25681584

  17. Chord Splicing & Joining Detail; Chord & CrossBracing Joint Details; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chord Splicing & Joining Detail; Chord & Cross-Bracing Joint Details; Cross Bracing Center Joint Detail; Chord & Diagonal Joint Detail - Vermont Covered Bridge, Highland Park, spanning Kokomo Creek at West end of Deffenbaugh Street (moved to), Kokomo, Howard County, IN

  18. Bridged graphite oxide materials

    NASA Technical Reports Server (NTRS)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  19. 50. INTERIOR OF BRIDGE SUSPENSION STRUCTURE ABOVE BRIDGE NOS. 10 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. INTERIOR OF BRIDGE SUSPENSION STRUCTURE ABOVE BRIDGE NOS. 10 AND 9 SHOWING CABLE COUNTERWEIGHT SYSTEM AND SCREW-TYPE VERTICAL ADJUSTMENT MACHINERY (LIFTING SCREWS). LOOKING NORTH. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  20. 16. LOG AND PLANK BRIDGE ON ACCESS ROAD NEAR BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. LOG AND PLANK BRIDGE ON ACCESS ROAD NEAR BRIDGE SITE; SAME STRUCTURE AS SHOWN IN PHOTO #12. ZION NP NEGATIVE NO. 967 ZIO. - Zion-Mount Carmel Highway, Virgin River Bridge, Spanning North Fork of Virgin River on Zion-Mount Carmel Highway, Springdale, Washington County, UT

  1. Cross-reactive influenza virus–specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus–associated infectious mononucleosis

    PubMed Central

    Clute, Shalyn C.; Watkin, Levi B.; Cornberg, Markus; Naumov, Yuri N.; Sullivan, John L.; Luzuriaga, Katherine; Welsh, Raymond M.; Selin, Liisa K.

    2005-01-01

    The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M158–66–specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1280–288, which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM. PMID:16308574

  2. Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus-associated infectious mononucleosis.

    PubMed

    Clute, Shalyn C; Watkin, Levi B; Cornberg, Markus; Naumov, Yuri N; Sullivan, John L; Luzuriaga, Katherine; Welsh, Raymond M; Selin, Liisa K

    2005-12-01

    The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M1(58-66)-specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1(280-288), which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM.

  3. Laboratory and field testing of an accelerated bridge construction demonstration bridge : US Highway 6 bridge over Keg Creek.

    DOT National Transportation Integrated Search

    2013-04-01

    The US Highway 6 Bridge over Keg Creek outside of Council Bluffs, Iowa is a demonstration bridge site chosen to put into practice : newly-developed Accelerated Bridge Construction (ABC) concepts. One of these new concepts is the use of prefabricated ...

  4. Level II scour analysis for Bridge 23 (WALDTH00060023) on Town Highway 6, crossing Stannard Brook, Walden, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WALDTH00060023 on Town Highway 6 crossing Stannard Brook, Walden, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in eastern Vermont. The 5.61-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the upstream surface cover is shrub and brushland with some trees. The downstream surface cover is forest. In the study area, Stannard Brook has an incised, straight channel with a slope of approximately 0.02 ft/ft, an average channel top width of 54 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 64.0 mm (0.210 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 8, 1995, indicated that the reach was stable. The Town Highway 6 crossing of Stannard Brook is a 59-ft-long (bottom width), two-lane pipe arch culvert consisting of one 22-foot corrugated plate pipe arch span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 21.9 ft.The pipe arch is supported by vertical, concrete kneewalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees. A scour hole 1.5 ft deeper than the mean

  5. Electron-Transfer Dynamics for a Donor-Bridge-Acceptor Complex in Ionic Liquids.

    PubMed

    DeVine, Jessalyn A; Labib, Marena; Harries, Megan E; Rached, Rouba Abdel Malak; Issa, Joseph; Wishart, James F; Castner, Edward W

    2015-08-27

    Intramolecular photoinduced electron transfer from an N,N-dimethyl-p-phenylenediamine donor bridged by a diproline spacer to a coumarin 343 acceptor was studied using time-resolved fluorescence measurements in three ionic liquids and in acetonitrile. The three ionic liquids have the bis[(trifluoromethyl)sulfonyl]amide anion paired with the tributylmethylammonium, 1-butyl-1-methylpyrrolidinium, and 1-decyl-1-methylpyrrolidinium cations. The dynamics in the two-proline donor-bridge-acceptor complex are compared to those observed for the same donor and acceptor connected by a single proline bridge, studied previously by Lee et al. (J. Phys. Chem. C 2012, 116, 5197). The increased conformational freedom afforded by the second bridging proline resulted in multiple energetically accessible conformations. The multiple conformations have significant variations in donor-acceptor electronic coupling, leading to dynamics that include both adiabatic and nonadiabatic contributions. In common with the single-proline bridged complex, the intramolecular electron transfer in the two-proline system was found to be in the Marcus inverted regime.

  6. Real-time data collection of scour at bridges

    USGS Publications Warehouse

    Mueller, David S.; Landers, Mark N.

    1994-01-01

    The record flood on the Mississippi River during the summer of 1993 provided a rare opportunity to collect data on scour of the streambed at bridges and to test data collection equipment under extreme hydraulic conditions. Detailed bathymetric and hydraulic information were collected at two bridges crossing the Mississippi River during the rising limb, near the peak, and during the recession of the flood. Bathymetric data were collected using a digital echo sounder. Three-dimensional velocities were collected using Broadband Acoustic Doppler Current Profilers (BB-ADCP) operating at 300 kilohertz (kHz), 600 kHz, and 1,200 kHz. Positioning of the data collected was measured using a range-azimuth tracking system and two global positioning systems (GPS). Although differential GPS was able to provide accurate positions and tracking information during approach- and exit-reach data collection, it was unable to maintain lock on a sufficient number of satellites when the survey vessel was under the bridge or near the piers. The range-azimuth tracking system was used to collect position and tracking information for detailed data collection near the bridge piers. These detailed data indicated local scour ranging from 3 to 8 meters and will permit a field-based evaluation of the ability of various numerical models to compute the hydraulics, depth, geometry, and time-dependent development of local scour.

  7. Evaluation of road approaches to four different types of stream crossings in the Virginia Piedmont

    Treesearch

    Matthew B. Carroll; W. Michael Aust; C. Andrew Dolloff; Robert M. Shaffer

    2013-01-01

    Erosion potential was estimated for road approaches during 4 phases of a timber harvesting scheduled for 23 stream crossings in the Virginia Piedmont. The objectives of this study were to: (1) examine four different types of stream crossing structures (steel bridges, pole bridges, standard culverts, and reenforced fords) in order to determine if the type of stream...

  8. Instrumentation to Aid in Steel Bridge Fabrication : Bridge Virtual Assembly System

    DOT National Transportation Integrated Search

    2018-05-01

    This pool funded project developed a BRIDGE VIRTUAL ASSEMBLY SYSTEM (BRIDGE VAS) that improves manufacturing processes and enhances quality control for steel bridge fabrication. The system replaces conventional match-drilling with virtual assembly me...

  9. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction

    DOT National Transportation Integrated Search

    2017-09-01

    Concrete bridge decks are directly exposed to daily traffic loads and may experience some surface cracking caused by excessive stress or fatigue accumulation, which requires repair or replacement. Among typical bridges in North America, bridge decks ...

  10. PBF (PER620) south facade. Camera facing north. Note pedestrian bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) south facade. Camera facing north. Note pedestrian bridge crossing over conduit. Central high bay contains reactor room and canal. Date: March 2004. INEEL negative no. HD-41-2-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. Development Study of Pedestrian Bridge at Gramedia Bookstore Jalan Raden Intan Bandar Lampung

    NASA Astrophysics Data System (ADS)

    Bernaditha, C. M.

    2018-03-01

    Bandar Lampung with high enough population densities has provides transportation facilities for pedestrian such as pedestrian bridge. This pedestrian bridges spread at Bandar Lampung’s traffic congested area, shopping centre nor education centre. Jl. Raden Intan as one of primary collector road with four lanes one direction at Bandar Lampung has high LHR (average daily traffic) movemenet pattern especially at morning, day and afternoon rush hour that make it difficult for pedestrian who want to cross the road. Therefore pedes trian bridge at this section Jl. Raden Intan highly needed especially at in front of Gramedia Bookstore with large amount of crossing pedestrian volume. From this research and analysis, found that number of LHR (average daily traffic) at Jl. Raden Intan shows large number traffic volume that is 4509 passenger car unit/hour at morning rush hour (07.00-08.30), with value of V/C Ratio or Degree of Saturation reach 0,92 (E category), while the amount of pedestrian who cross ahead from Gramedia Bookstore to Bank Muammalat is 29 people per 15 minutes. Other than that based on the calculation results of pedestrian volume and traffic volume at rush hour as follow: average pedestrian volume at rush hour is 146 people/hour between the range 100-1250 people/hour and traffic volume 7521 vehicles/hour over than 7000 vehicles/hour, and also the value PV2=1,682x1010 which is means the value of PV2 worth over 2x108, moreover the speed plan Jl. Raden Intan between 60-80 km/hour above 70 km/hour. Based on the calculation and analysis above, it can be concluded transportation facilities recommended for Jl. Raden Intan is pedestrian bridge.

  12. Multi-temporal SAR interferometry reveals acceleration of bridge sinking before collapse

    NASA Astrophysics Data System (ADS)

    Sousa, J. J.; Bastos, L.

    2013-03-01

    On the night of 4 March 2001, at Entre-os-Rios (Northern Portugal), the Hintze Ribeiro centennial bridge collapsed killing 59 people traveling in a bus and three cars that were crossing the Douro River. According to the national authorities, the collapse was due to two decades of uncontrolled sand extraction which compromised the stability of the bridge's pillars, together with underestimating the warnings from divers and technicians. In this work we do not intend to corroborate or contradict the official version of the accident's causes, but only demonstrate the potential of Multi-Temporal Interferometric techniques for detection and monitoring of deformations in structures such as bridges, and consequently the usefulness of the derived information in some type of early warning system to help prevent new catastrophic events. Based on the analysis of 52 ERS-1/2 covering the period from May 1995 to the fatal occurrence, we were able to detect significant movements, reaching rates of 20 mm yr-1, in the section of the bridge that fell into the Douro River, which are obvious signs of the bridge's instability. These promising results demonstrate that with the new high-resolution synthetic aperture radar satellite scenes it is possible to develop interferometric based methodologies for structural health monitoring.

  13. BRIDGE BUILDER WILLIAM FLINN’S “CAMP & BRIDGE BUILDING OUTFIT”. INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRIDGE BUILDER WILLIAM FLINN’S “CAMP & BRIDGE BUILDING OUTFIT”. INTERIOR VIEW SHOWING LABORERS AT MEAL TIME. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  14. Notable unbuilt bridges.

    DOT National Transportation Integrated Search

    1988-01-01

    Described and discussed in this exposition are a number of unusual or notable bridges proposed in this century that for various reasons were not built. Emphasis is placed on bridges in the United States, although some bridges in other countries are a...

  15. 12. Readville showing the intersection of the Franklin Branch crossing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Readville showing the intersection of the Franklin Branch crossing the Northeast Corridor (formerly the Boston & Providence RR) on the bridge; Readville Station to the right of bridge. Readville, Suffolk Co., MA. Sec. 4116, MP 219.41. - Northeast Railroad Corridor, Amtrak Route between RI/MA State Line & South Station, Boston, Suffolk County, MA

  16. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri River between Kansas City and St. Louis, Missouri, April-May, 2013

    USGS Publications Warehouse

    Huizinga, Richard J.

    2014-01-01

    Bathymetric and velocimetric data were collected by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, in the vicinity of 10 bridges at 9 highway crossings of the Missouri River between Lexington and Washington, Missouri, from April 22 through May 2, 2013. A multibeam echosounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,640 to 1,840 feet longitudinally and extending laterally across the active channel between banks and spur dikes in the Missouri River during low- to moderate-flow conditions. These bathymetric surveys indicate the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be useful to the Missouri Department of Transportation to assess the bridges for stability and integrity issues with respect to bridge scour during floods. Bathymetric data were collected around every pier that was in water, except those at the edge of water or in very shallow water (less than about 6 feet). Scour holes were present at most piers for which bathymetry could be obtained, except at piers on channel banks, near or embedded in lateral or longitudinal spur dikes, and on exposed bedrock outcrops. Scour holes observed at the surveyed bridges were examined with respect to depth and shape. Although exposure of parts of foundational support elements was observed at several piers, at most sites the exposure likely can be considered minimal compared to the overall substructure that remains buried in channel-bed material; however, there were several notable exceptions where the bed material thickness between the bottom of the scour hole and bedrock was less than 6 feet. Such substantial exposure of usually buried substructural elements may warrant special observation in future flood events. Previous bathymetric surveys had been done at all of the

  17. Field performance of timber bridges. 6, Hoffman Run stress-laminated deck bridge

    Treesearch

    M. A. Ritter; P. D. Hilbrich Lee; G. J. Porter

    The Hoffman Run bridge, located just outside Dahoga, Pennsylvania, was constructed in October 1990. The bridge is a simple-span, single-lane, stress-laminated deck superstructure that is approximately 26 ft long and 16 ft wide. It is the second stress-laminated timber bridge to be constructed of hardwood lumber in Pennsylvania. The performance of the bridge was...

  18. Bridge Programs in Illinois: Results of the 2010 Illinois Bridge Status Survey

    ERIC Educational Resources Information Center

    Taylor, J. L.; Harmon, T.

    2010-01-01

    This report provides a summary of major results of the Illinois Bridge Status Survey, administered online between April and June 2010. The purpose of the survey was to understand the extent to which bridge programs are being implemented in Illinois, as well as to build an online directory of bridge programs. Bridge programs are an emerging…

  19. Research on Swivel Construction Technology of 22,400 Tons in Zoucheng Thirty Meter Bridge

    NASA Astrophysics Data System (ADS)

    Han, Jun; Benlin, Xiao

    2018-05-01

    In recent years, with the rapid development of highways and railways in our country, there have been many new bridges that need to cross the existing routes. If the conventional construction methods are used, the existing traffic will be affected and the traffic will be built above the busy traffic lines, so there is a big security risk, the construction methods must be improved and innovated. In this paper, it intends to research and develop some key technologies of swivel construction. According to the construction features to use finite element method of swivel cable-stayed bridge to analyse the cable-stayed bridge . The swivel construction process is carried out to solve the technical problems and difficulties in the construction.

  20. Exact Solution for Capillary Bridges Properties by Shooting Method

    NASA Astrophysics Data System (ADS)

    Qiang-Nian, Li; Jia-Qi, Zhang; Feng-Xi, Zhou

    2017-04-01

    The investigation of liquid bridge force acting between wet particles has great significance in many fields. In this article, the exact solution of capillary force between two unequal-sized spherical particles is investigated. Firstly, The Young-Laplace equation with moving boundary is converted into a set of ordinary differential equations with two fix point boundary using variable substitution technique, in which the gravity effects have been neglected. The geometry of the liquid bridge between two particles is solved by shooting method. After that, the gorge method is applied to calculate the capillary-bridge force that is consists of contributions from the capillary suction and surface tension. Finally, the effect of various parameters including distance between two spheres, radii of spheres, and contact angles on the capillary force are investigated. It is shown that the presented approach is an efficient and accurate algorithm for capillary force between two particles in complex situations.

  1. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres

    PubMed Central

    Yuen, Michaela; Cooper, Sandra T.; Marston, Steve B.; Nowak, Kristen J.; McNamara, Elyshia; Mokbel, Nancy; Ilkovski, Biljana; Ravenscroft, Gianina; Rendu, John; de Winter, Josine M.; Klinge, Lars; Beggs, Alan H.; North, Kathryn N.; Ottenheijm, Coen A.C.; Clarke, Nigel F.

    2015-01-01

    Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin–tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca2+] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca2+-sensitivity, at sub-saturating [Ca2+] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca2+], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca2+-sensitivity in TPM3-myopathy patients suggests Ca2+-sensitizing drugs may represent a useful treatment for this condition. PMID:26307083

  2. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres.

    PubMed

    Yuen, Michaela; Cooper, Sandra T; Marston, Steve B; Nowak, Kristen J; McNamara, Elyshia; Mokbel, Nancy; Ilkovski, Biljana; Ravenscroft, Gianina; Rendu, John; de Winter, Josine M; Klinge, Lars; Beggs, Alan H; North, Kathryn N; Ottenheijm, Coen A C; Clarke, Nigel F

    2015-11-15

    Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition. © The Author 2015. Published by Oxford University Press. All rights reserved

  3. Level II scour analysis for Bridge 46 (CHELTH00680046) on Town Highway 68, crossing the First Branch of the White River, Chelsea, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.9 to 2.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 14.3 to 24.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The left abutment sits atop a bedrock outcrop. The results of the calculated scour depths will be limited by the bedrock. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. How Did the Spider Cross the River? Behavioral Adaptations for River-Bridging Webs in Caerostris darwini (Araneae: Araneidae)

    PubMed Central

    Gregorič, Matjaž; Agnarsson, Ingi; Blackledge, Todd A.; Kuntner, Matjaž

    2011-01-01

    Background Interspecific coevolution is well described, but we know significantly less about how multiple traits coevolve within a species, particularly between behavioral traits and biomechanical properties of animals' “extended phenotypes”. In orb weaving spiders, coevolution of spider behavior with ecological and physical traits of their webs is expected. Darwin's bark spider (Caerostris darwini) bridges large water bodies, building the largest known orb webs utilizing the toughest known silk. Here, we examine C. darwini web building behaviors to establish how bridge lines are formed over water. We also test the prediction that this spider's unique web ecology and architecture coevolved with new web building behaviors. Methodology We observed C. darwini in its natural habitat and filmed web building. We observed 90 web building events, and compared web building behaviors to other species of orb web spiders. Conclusions Caerostris darwini uses a unique set of behaviors, some unknown in other spiders, to construct its enormous webs. First, the spiders release unusually large amounts of bridging silk into the air, which is then carried downwind, across the water body, establishing bridge lines. Second, the spiders perform almost no web site exploration. Third, they construct the orb capture area below the initial bridge line. In contrast to all known orb-weavers, the web hub is therefore not part of the initial bridge line but is instead built de novo. Fourth, the orb contains two types of radial threads, with those in the upper half of the web doubled. These unique behaviors result in a giant, yet rather simplified web. Our results continue to build evidence for the coevolution of behavioral (web building), ecological (web microhabitat) and biomaterial (silk biomechanics) traits that combined allow C. darwini to occupy a unique niche among spiders. PMID:22046378

  5. Bridging Cultures in Our Schools: New Approaches That Work. Knowledge Brief.

    ERIC Educational Resources Information Center

    Trumbull, Elise; Rothstein-Fisch, Carrie; Greenfield, Patricia M.

    This publication describes how teachers can begin to gain understanding of diverse students and families and their cultural values, behavioral standards, and social ideals. It presents specific examples of cross-cultural conflicts and illustrates strategies for resolving them. Data come from the Bridging Cultures action research project in…

  6. Level II scour analysis for Bridge 37 (BARTTH00080037) on Town Highway 8, crossing Willoughby River, Barton, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph D.; Boehmler, Erick M.

    1996-01-01

    of north-central Vermont in the town of Barton. The 60.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the banks have sparse to moderate woody vegetation coverage. In the study area, the Willoughby River is probably incised, has a sinuous channel with a slope of approximately 0.009 ft/ft, an average channel top width of 108 ft and an average channel depth of 6 ft. The predominant channel bed material is cobble (D50 is 95.1 mm or 0.312 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 20, 1994, indicated that the reach was stable. The town highway 8 crossing of the Willoughby River is a 96-ft-long, two-lane bridge consisting of one 94-foot steel-beam span (Vermont Agency of Transportation, written communication, August 4, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is 10 degrees. No scour was reported in the channel or along abutments or wingwalls during the Level I assessment. Type-2 stone fill (less than 24 inches diameter) was reported at each abutment and all four wingwalls. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Data in appendix D (Vermont Agency of Transportation, written communication, August 4, 1994) indicate that the right abutment may be founded on or near marble bedrock which may limit scour depths. Bedrock was not detected by borings in the vicinity of the left abutment. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure

  7. Parryville Bridge (S.R. 2008, section 01B Bridge) looking north across ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Parryville Bridge (S.R. 2008, section 01B Bridge) looking north across traffic level, showing village of Parryville. - Parryville Bridge, State Route 2008 over Pohapoco Creek, Parryville, Carbon County, PA

  8. Structure and dynamics of a salt-bridge model system in water and DMSO

    NASA Astrophysics Data System (ADS)

    Lotze, S.; Bakker, H. J.

    2015-06-01

    We study the interaction between the ions methylguanidinium and trifluoroacetate dissolved in D2O and dimethylsulfoxide with linear infrared spectroscopy and femtosecond two-dimensional infrared spectroscopy. These ions constitute model systems for the side chains of arginine and glutamic and aspartic acid that are known to form salt bridges in proteins. We find that the salt-bridge formation of methylguanidinium and trifluoroacetate leads to a significant acceleration of the vibrational relaxation dynamics of the antisymmetric COO stretching vibration of the carboxyl moiety of trifluoroacetate. Salt-bridge formation has little effect on the rate of the spectral fluctuations of the CN stretching vibrations of methylguanidinium. The anisotropy of the cross peaks between the antisymmetric COO stretching vibration of trifluoroacetate and the CN stretching vibrations of methylguanidinium reveals that the salt-bridge is preferentially formed in a bidentate end-on configuration in which the two C=O groups of the carboxylate moiety form strong hydrogen bonds with the two -NH2 groups of methylguanidinium.

  9. Structural strength deterioration of coastal bridge piers considering non-uniform corrosion in marine environments

    NASA Astrophysics Data System (ADS)

    Guo, Anxin; Yuan, Wenting; Li, Haitao; Li, Hui

    2018-04-01

    In the aggressive marine environment over a long-term service period, coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity. This paper investigates the strength reduction of coastal bridges, especially focusing on the effects of non-uniform corrosion along the height of bridge piers. First, the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments. To investigate the various damage modes of the concrete cover, a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment. Second, the shear strength of these aging structures is analyzed. Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover. Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures' service time is assumed to be the same.

  10. Level II scour analysis for Bridge 12 (CHESVT01030012) on State Highway 103, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    northerly pier) and from 13.5 to 17.1 ft along Pier 2 (southerly pier). The worst case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured -streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 37, (BRNETH00740037) on Town Highway 74, crossing South Peacham Brook, Barnet, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 15.8 to 22.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.7 to 11.1 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in Tables 1 and 2. A cross-section of the scour computed at the bridge is presented in Figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Summary and Comparison of Multiphase Streambed Scour Analysis at Selected Bridge Sites in Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.

    2004-01-01

    The U.S. Geological Survey and the Alaska Department of Transportation and Public Facilities undertook a cooperative multiphase study of streambed scour at selected bridges in Alaska beginning in 1994. Of the 325 bridges analyzed for susceptibility to scour in the preliminary phase, 54 bridges were selected for a more intensive analysis that included site investigations. Cross-section geometry and hydraulic properties for each site in this study were determined from field surveys and bridge plans. Water-surface profiles were calculated for the 100- and 500-year floods using the Hydrologic Engineering Center?s River Analysis System and scour depths were calculated using methods recommended by the Federal Highway Administration. Computed contraction-scour depths for the 100- and 500-year recurrence-interval discharges exceeded 5 feet at six bridges, and pier-scour depths exceeded 10 feet at 24 bridges. Complex pier-scour computations were made at 10 locations where the computed contraction-scour depths would expose pier footings. Pressure scour was evaluated at three bridges where the modeled flood water-surface elevations intersected the bridge structure. Site investigation at the 54 scour-critical bridges was used to evaluate the effectiveness of the preliminary scour analysis. Values for channel-flow angle of attack and approach-channel width were estimated from bridge survey plans for the preliminary study and were measured during a site investigation for this study. These two variables account for changes in scour depths between the preliminary analysis and subsequent reanalysis for most sites. Site investigation is needed for best estimates of scour at bridges with survey plans that indicate a channel-flow angle of attack and for locations where survey plans did not include sufficient channel geometry upstream of the bridge.

  13. Pilot installation of a bridge scour monitoring site at FM 1157 Mustang Creek

    DOT National Transportation Integrated Search

    1999-12-01

    A pilot installation was implemented at the Mustang Creek bridge crossing on FM 1157 in the Yoakum District, Jackson County, Texas. This pilot installation was developed in two phases. Phase 1 used a rather limited datalogger that lacked the ability ...

  14. Structuring of Amide Cross-Linked Non-Bridged and Bridged Alkyl-Based Silsesquioxanes.

    PubMed

    Nunes, S C; de Zea Bermudez, V

    2018-02-06

    The development of sophisticated organized materials exhibiting enhanced properties is a challenging topic of the domain of organic/inorganic hybrid materials. This review, composed of four sections, reports the work we have carried out over the last 10 years on the synthesis of amide cross-linked alkyl/siloxane hybrids by means of sol-gel chemistry and self-directed assembly/self-organization routes relying on weak interactions (hydrophobic interactions and hydrogen bonding). The various as-produced lamellar structures displaying a myriad of morphologies, often closely resembling those found in natural materials, are discussed. The major role played by the synthetic conditions (pH, water content, co-solvent(s) nature/concentration and dopant presence/concentration), the alkyl chains (length and presence of ramification or not) and the number of the amide cross-links present in the precursor, is evidenced. Examples of highly organized hybrids structures incorporating ionic species (alkali and alkaline earth metal salts) and optically-active centers (organic dyes and lanthanide ions) are described. A useful qualitative relationship deduced between the emission quantum yield of the ordered hybrid materials and the degree of order of the hydrogen-bonded network is highlighted. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Level II scour analysis for Bridge 27 (ANDOTH00290027) on Town Highway 29, crossing Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1997-01-01

    2 stone fill (less than 36 inches diameter) along the upstream right bank and downstream left bank and around the upstream left and right wingwalls. Type- 3 stone fill (less than 48 inches diameter) is located along the base of the left abutment in the scour hole, at the end of the downstream left wingwall and along the upstream left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.4 to 0.9 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge and the 100-year discharge. Abutment scour ranged from 10.7 to 13.6 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are

  16. Structural characterization of UHPC waffle bridge deck and connections : [tech transfer summary].

    DOT National Transportation Integrated Search

    2014-07-01

    Contribute to design an innovative and durable precast deck alternative : using ultra-high performance concrete (UHPC) for accelerated bridge : construction : Evaluate the structural characteristics of the UHPC waffle deck, : critical connect...

  17. The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase.

    PubMed

    Jónsdóttir, Lilja B; Ellertsson, Brynjar Ö; Invernizzi, Gaetano; Magnúsdóttir, Manuela; Thorbjarnardóttir, Sigríður H; Papaleo, Elena; Kristjánsson, Magnús M

    2014-12-01

    Differences in salt bridges are believed to be a structural hallmark of homologous enzymes from differently temperature-adapted organisms. Nevertheless, the role of salt bridges on structural stability is still controversial. While it is clear that most buried salt bridges can have a functional or structural role, the same cannot be firmly stated for ion pairs that are exposed on the protein surface. Salt bridges, found in X-ray structures, may not be stably formed in solution as a result of high flexibility or high desolvation penalty. More studies are thus needed to clarify the picture on salt bridges and temperature adaptation. We contribute here to this scenario by combining atomistic simulations and experimental mutagenesis of eight mutant variants of aqualysin I, a thermophilic subtilisin-like proteinase, in which the residues involved in salt bridges and not conserved in a psychrophilic homolog were systematically mutated. We evaluated the effects of those mutations on thermal stability and on the kinetic parameters. Overall, we show here that only few key charged residues involved in salt bridges really contribute to the enzyme thermal stability. This is especially true when they are organized in networks, as here attested by the D17N mutation, which has the most remarkable effect on stability. Other mutations had smaller effects on the properties of the enzyme indicating that most of the isolated salt bridges are not a distinctive trait related to the enhanced thermal stability of the thermophilic subtilase. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Bridge deterioration models to support Indiana's bridge management system.

    DOT National Transportation Integrated Search

    2016-02-01

    An effective bridge management system that is equipped with reliable deterioration models enables agency engineers to carry out : monitoring and long-term programming of bridge repair actions. At the project level, deterioration models help the agenc...

  19. SBION: A Program for Analyses of Salt-Bridges from Multiple Structure Files.

    PubMed

    Gupta, Parth Sarthi Sen; Mondal, Sudipta; Mondal, Buddhadev; Islam, Rifat Nawaz Ul; Banerjee, Shyamashree; Bandyopadhyay, Amal K

    2014-01-01

    Salt-bridge and network salt-bridge are specific electrostatic interactions that contribute to the overall stability of proteins. In hierarchical protein folding model, these interactions play crucial role in nucleation process. The advent and growth of protein structure database and its availability in public domain made an urgent need for context dependent rapid analysis of salt-bridges. While these analyses on single protein is cumbersome and time-consuming, batch analyses need efficient software for rapid topological scan of a large number of protein for extracting details on (i) fraction of salt-bridge residues (acidic and basic). (ii) Chain specific intra-molecular salt-bridges, (iii) inter-molecular salt-bridges (protein-protein interactions) in all possible binary combinations (iv) network salt-bridges and (v) secondary structure distribution of salt-bridge residues. To the best of our knowledge, such efficient software is not available in public domain. At this juncture, we have developed a program i.e. SBION which can perform all the above mentioned computations for any number of protein with any number of chain at any given distance of ion-pair. It is highly efficient, fast, error-free and user friendly. Finally we would say that our SBION indeed possesses potential for applications in the field of structural and comparative bioinformatics studies. SBION is freely available for non-commercial/academic institutions on formal request to the corresponding author (akbanerjee@biotech.buruniv.ac.in).

  20. ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.

    PubMed

    Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi

    2017-08-01

    With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.

  1. Creep and shrinkage effects on integral abutment bridges

    NASA Astrophysics Data System (ADS)

    Munuswamy, Sivakumar

    Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the

  2. Does cross-generational epigenetic inheritance contribute to cultural continuity?

    PubMed

    Pembrey, Marcus E

    2018-04-01

    Human studies of cross-generational epigenetic inheritance have to consider confounding by social patterning down the generations, often referred to as 'cultural inheritance'. This raises the question to what extent is 'cultural inheritance' itself epigenetically mediated rather than just learnt. Human studies of non-genetic inheritance have demonstrated that, beyond foetal life, experiences occurring in mid-childhood before puberty are the most likely to be associated with cross-generational responses in the next generation(s). It is proposed that cultural continuity is played out along the axis, or 'payoff', between responsiveness and stability. During the formative years of childhood a stable family and/or home permits small children to explore and thereby learn. To counter disruptions to this family home ideal, cultural institutions such as local schools, religious centres and market places emerged to provide ongoing stability, holding the received wisdom of the past in an accessible state. This cultural support allows the growing child to freely indulge their responsiveness. Some of these prepubertal experiences induce epigenetic responses that also transfer molecular signals to the gametes through which they contribute to the conception of future offspring. In parallel co-evolution with growing cultural support for increasing responsiveness, 'runaway' responsiveness is countered by the positive selection of genetic variants that dampen responsiveness. Testing these ideas within longitudinal multigenerational cohorts will need information on ancestors/parents' own communities and experiences (Exposome scans) linked to ongoing Phenome scans on grandchildren; coupled with epigenome analysis, metastable epialleles and DNA methylation age. Interactions with genetic variants affecting responsiveness should help inform the broad hypothesis.

  3. Modal Identification of Tsing MA Bridge by Using Improved Eigensystem Realization Algorithm

    NASA Astrophysics Data System (ADS)

    QIN, Q.; LI, H. B.; QIAN, L. Z.; LAU, C.-K.

    2001-10-01

    This paper presents the results of research work on modal identification of Tsing Ma bridge ambient testing data by using an improved eigensystem realization algorithm. The testing was carried out before the bridge was open to traffic and after the completion of surfacing. Without traffic load, ambient excitations were much less intensive, and the bridge responses to such ambient excitation were also less intensive. Consequently, the bridge responses were significantly influenced by the random movement of heavy construction vehicles on the deck. To cut off noises in the testing data and make the ambient signals more stationary, the Chebyshev digital filter was used instead of the digital filter with a Hanning window. Random decrement (RD) functions were built to convert the ambient responses to free vibrations. An improved eigensystem realization algorithm was employed to improve the accuracy and the efficiency of modal identification. It uses cross-correlation functions ofRD functions to form the Hankel matrix instead of RD functions themselves and uses eigenvalue decomposition instead of singular value decomposition. The data for response accelerations were acquired group by group because of limited number of high-quality accelerometers and channels of data loggers available. The modes were identified group by group and then assembled by using response accelerations acquired at reference points to form modes of the complete bridge. Seventy-nine modes of the Tsing Ma bridge were identified, including five complex modes formed in accordance with unevenly distributed damping in the bridge. The identified modes in time domain were then compared with those identified in frequency domain and finite element analytical results.

  4. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity.

    PubMed

    Sharma, Himanshu; Nagaraj, Ramakrishnan

    2015-01-01

    Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.

  5. Human β-Defensin 4 with Non-Native Disulfide Bridges Exhibit Antimicrobial Activity

    PubMed Central

    Sharma, Himanshu; Nagaraj, Ramakrishnan

    2015-01-01

    Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency. PMID:25785690

  6. Level II scour analysis for Bridge 29 (LONDTH00410029) on Town Highway 41, crossing Cook Brook, Londonderry, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Wild, Emily C.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.5. Abutment scour ranged from 8.4 to 15.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 7 (WARRTH00010007) onTown Highway 1, crossing Freemans Brook, Warren, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    The computed contraction scour for all modelled flows was 0.0 feet. Abutment scour ranged from 5.3 to 8.2 ft. The worst-case abutment scour occurred at the right abutment for the incipient-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 30, (HUNTTH00220030), on Town Highway 22, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    Contraction scour for all modelled flows was zero. Abutment scour ranged from 7.8 to 10.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Urban Climate Change Resilience as a Teaching Tool for a STEM Summer Bridge Program

    NASA Astrophysics Data System (ADS)

    Rosenzweig, B.; Vorosmarty, C. J.; Socha, A.; Corsi, F.

    2015-12-01

    Community colleges have been identified as important gateways for the United States' scientific workforce development. However, students who begin their higher education at community colleges often face barriers to developing the skills needed for higher-level STEM careers, including basic training in mathematics, programming, analytical problem solving, and cross-disciplinary communication. As part of the Business Higher Education Forum's Undergraduate STEM Interventions in Industry (USI2) Consortium, we are developing a summer bridge program for students in STEM fields transferring from community college to senior (4-year) colleges at the City University of New York. Our scientific research on New York City climate change resilience will serve as the foundation for the bridge program curriculum. Students will be introduced to systems thinking and improve their analytical skills through guided problem-solving exercises using the New York City Climate Change Resilience Indicators Database currently being developed by the CUNY Environmental Crossroads Initiative. Students will also be supported in conducting an introductory, independent research project using the database. The interdisciplinary nature of climate change resilience assessment will allow students to explore topics related to their STEM field of interest (i.e. engineering, chemistry, and health science), while working collaboratively across disciplines with their peers. We hope that students that participate in the bridge program will continue with their research projects through their tenure at senior colleges, further enhancing their academic training, while actively contributing to the study of urban climate change resilience. The effectiveness of this approach will be independently evaluated by NORC at the University of Chicago, as well as through internal surveying and long-term tracking of participating student cohorts.

  10. Designing timber bridge superstructures : a comparison of U.S. and Canadian bridge codes.

    Treesearch

    James Scott Groenier; James P. Wacker

    2008-01-01

    Several changes relating to timber bridges have been incorporated into the AASHTO-LRFD Bridge Design Specifications recently. In addition, the Federal Highway Administration is strongly encouraging an LRFD-based design approach for all new bridges in the United States. The Bridge Design Code in Canada was one of the first to adopt the limit states design philosophy,...

  11. Real-time seismic monitoring of the integrated cape girardeau bridge array and recorded earthquake response

    USGS Publications Warehouse

    Celebi, M.

    2006-01-01

    This paper introduces the state of the art, real-time and broad-band seismic monitoring network implemented for the 1206 m [3956 ft] long, cable-stayed Bill Emerson Memorial Bridge in Cape Girardeau (MO), a new Mississippi River crossing, approximately 80 km from the epicentral region of the 1811-1812 New Madrid earthquakes. The bridge was designed for a strong earthquake (magnitude 7.5 or greater) during the design life of the bridge. The monitoring network comprises a total of 84 channels of accelerometers deployed on the superstructure, pier foundations and at surface and downhole free-field arrays of the bridge. The paper also presents the high quality response data obtained from the network. Such data is aimed to be used by the owner, researchers and engineers to assess the performance of the bridge, to check design parameters, including the comparison of dynamic characteristics with actual response, and to better design future similar bridges. Preliminary analyses of ambient and low amplitude small earthquake data reveal specific response characteristics of the bridge and the free-field. There is evidence of coherent tower, cable, deck interaction that sometimes results in amplified ambient motions. Motions at the lowest tri-axial downhole accelerometers on both MO and IL sides are practically free from any feedback from the bridge. Motions at the mid-level and surface downhole accelerometers are influenced significantly by feedback due to amplified ambient motions of the bridge. Copyright ASCE 2006.

  12. Field Performance of Timber Bridges. 16: North Siwell Road Stress-Laminated Bridge

    DOT National Transportation Integrated Search

    1998-03-01

    This report is 16th in a series of reports that documents the : field performance of timber bridges. The North Siwell Road bridge was constructed during December 1994 in Hinds County, Mississippi. The bridge is a single span, stress laminated T-beam ...

  13. Performance Assessment of Bridges Using GPS: The Juarez Bridge in Culiacan, Mexico

    NASA Astrophysics Data System (ADS)

    Vazquez, G. E.; Gaxiola-Camacho, J. R.; Trejo, M.; Echagaray, J.; Guzman, G. M.

    2015-12-01

    Performance assessment of bridges has become very important during recent years. Bridges around the world are aging, leading to the incorporation of efficient, reliable, and economic evaluation procedures. These techniques must assess properly the performance of bridges under several loading conditions in a real manner, representing the physics of the problem. Among several approaches, Global Positioning System (GPS) can be intelligently used for the performance evaluation of bridges. We focused on GPS, since it naturally produces position estimates as compared to seismic instruments that record either velocity or acceleration, and thus require an integration. There are several reasons that make the Juarez Bridge a case of study for evaluation: it is approximately 45 years old, it is a reinforced concrete structure, it connects two significant zones of the city, and its spans is closely to 200 meters long. In addition, thousands of vehicles and pedestrians use the Juarez Bridge every day, which make feasible the GPS performance assessment. Hence, in order to produce optimal position estimates, GPS data were collected during two consecutive hours at three different periods of the day for a whole week (Monday through Sunday), to represent three critical limit states of the bridge (mid-span and end-spans). GPS data were processed using the GAMIT/GLOBK software, considering 1-second sampling rate, 15-degree cutoff angle, ionosphere-free double-differenced (DD) carrier phase method, and precise final orbits disseminated by IGS (International GNSS Service). The displacements obtained from the above discussed procedure are compared with allowable values documented in bridge construction manuals. Reliability theory was used to evaluate the probability of failure of the bridge for the three periods of the day. In addition, a conclusion was made about the most risky day of the week for the use of the Juarez Bridge. It is expected that the results from the proposed research

  14. Level II scour analysis for Bridge 42 (BENNCYSCHL0042) on School Street, crossing Walloomsac River, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Degnan, James R.

    1997-01-01

    Contraction scour computed for all modelled flows was 0.0 ft. Computed left abutment scour ranged from 9.4 to 10.2 ft. with the worst-case scour occurring at the 500-year discharge. Computed right abutment scour ranged from 2.7 to 5.7 ft. with the worst-case scour occurring at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Towards a robust assessment of bridge clogging processes in flood risk management

    NASA Astrophysics Data System (ADS)

    Gschnitzer, T.; Gems, B.; Mazzorana, B.; Aufleger, M.

    2017-02-01

    River managers are aware that wood-clogging mechanisms frequently trigger damage-causing processes like structural damages at bridges, sudden channel outbursts, and occasionally, major displacements of the water course. To successfully mitigate flood risks related to the transport of large wood (LW), river managers need a guideline for an accurate and reliable risk assessment procedure and the design of river sections and bridges that are endangered of LW clogging. In recent years, comprehensive research dealing with the triggers of wood-clogging mechanisms at bridges and the corresponding impacts on flood risk was accomplished at the University of Innsbruck. A large set of laboratory experiments in a rectangular flume was conducted. In this paper we provide an overall view of these tests and present our findings. By applying a logistic regression analysis, the available knowledge on the influence of geometrical, hydraulic, and wood-related parameters on LW clogging probabilities is processed in a generalized form. Based on the experimental modeling results a practice-oriented guideline that supports the assessment of flood risk induced by LW clogging, is presented. In this context, two specific local structural protection measures at the bridge, aiming for a significant decrease of the entrapment probabilities, are illustrated: (i) a deflecting baffle installed on the upstream face of the bridge and (ii) a channel constriction leading to a change in flow state and a corresponding increase of the flow velocities and the freeboard at the bridge cross section. The presented guideline is based on a three-step approach: estimation of LW potential, entrainment, and transport; clogging scenario at the bridge; and the impact on channel and floodplain hydraulics. For a specific bridge susceptible to potential clogging caused by LW entrapment, it allows for a qualitative evaluation of potential LW entrainment in the upstream river segments, its transport toward the

  16. Steel framing strategies for highly skewed bridges to reduce/eliminate distortion near skewed supports.

    DOT National Transportation Integrated Search

    2014-05-01

    Different problems in straight skewed steel I-girder bridges are often associated with the methods used for detailing the cross-frames. Use of theoretical terms to describe these detailing methods and absence of complete and simplified design approac...

  17. Field performance of timber bridges. 9, Big Erick`s stress-laminated deck bridge

    Treesearch

    J. A. Kainz; J. P. Wacker; M. Nelson

    The Big Erickas bridge was constructed during September 1992 in Baraga County, Michigan. The bridge is 72 ft long, 16 ft wide, and consists of three simple spans: two stress-laminated deck approach spans and a stress-laminated box center span. The bridge is unique in that it is one of the first known stress-laminated timber bridge applications to use Eastern Hemlock...

  18. Field performance of timber bridges. 5, Little Salmon Creek stress-laminated deck bridge

    Treesearch

    M. A. Ritter; J. A. Kainz; G. J. Porter

    The Little Salmon Creek bridge was constructed in November 1988 on the Allegheny National Forest in Pennsylvania. The bridge is a simple span, single-lane, stress-laminated deck superstructure that is approximately 26-ft long and 16-ft wide. The bridge is unique in that it is the first known stress-laminated timber bridge to be constructed of hardwood lumber. The...

  19. Improving bridge load rating accuracy.

    DOT National Transportation Integrated Search

    2013-06-01

    Nearly one-quarter of Alabamas bridges are deemed structurally deficient or functionally obsolete. An : additional seven percent of Alabamas bridges were posted bridges in 2010. (Federal Highway Administration, : 2011) Accurate bridge load rati...

  20. Hydraulic modeling of flow impact on bridge structures: a case study on Citarum bridge

    NASA Astrophysics Data System (ADS)

    Siregar, R. I.

    2018-02-01

    Flood waves because of the rapid catchment response to high intense rainfall, breaches of flood defenses may induce huge impact forces on structures, causing structural damage or even failures. Overflowing stream that passes over the bridge, it means to discharge flood water level is smaller than the capacity of the river flow. In this study, the researches present the methodological approach of flood modeling on bridge structures. The amount of force that obtained because of the hydrostatic pressure received by the bridge at the time of the flood caused the bridge structure disrupted. This paper presents simulation of flow impact on bridge structures with some event flood conditions. Estimating the hydrostatic pressure developed new model components, to quantify the flow impact on structures. Flow parameters applied the model for analyzing, such as discharge, velocity, and water level or head that effect of bridge structures. The simulation will illustrate the capability of bridge structures with some event flood river and observe the behavior of the flow that occurred during the flood. Hydraulic flood modeling use HEC-RAS for simulation. This modeling will describe the impact on bridge structures. Based on the above modelling resulted, in 2008 has flood effect more than other years on the Citarum Bridge, because its flow overflow on the bridge.

  1. Conversational Moves That Matter: Bridging Learning Outcomes and Patterns of Speech in Informal Cross-Organizational Conversations Among Top-Level Leaders

    ERIC Educational Resources Information Center

    Hartung, Kyle John; Wilson, Daniel Gray

    2016-01-01

    Cross-organizational "learning conversations" are an important source of informal learning among professionals, though little is known about whether specific characteristics of conversational interaction contribute to different learning outcomes in such conversations. This mixed-methods study examined the relationship between…

  2. A conserved π-cation and an electrostatic bridge are essential for 11R-lipoxygenase catalysis and structural stability.

    PubMed

    Eek, Priit; Piht, Mari-Ann; Rätsep, Margus; Freiberg, Arvi; Järving, Ivar; Samel, Nigulas

    2015-10-01

    Lipoxygenases (LOXs) are lipid-peroxidizing enzymes that consist of a regulatory calcium- and membrane-binding PLAT (polycystin-1, lipoxygenase, α-toxin) domain and a catalytic domain. In a previous study, the crystal structure of an 11R-LOX revealed a conserved π-cation bridge connecting these two domains which could mediate the regulatory effect of the PLAT domain to the active site. Here we analyzed the role of residues Trp107 and Lys172 that constitute the π-cation bridge in 11R-LOX along with Arg106 and Asp173-a potential salt bridge, which could also contribute to the inter-domain communication. According to our kinetic assays and protein unfolding experiments conducted using differential scanning fluorimetry and circular dichroism spectroscopy, mutants with a disrupted link display diminished catalytic activity alongside reduced stability of the protein fold. The results demonstrate that both these bridges contribute to the two-domain interface, and are important for proper enzyme activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Development of bridge girder movement criteria for accelerated bridge construction.

    DOT National Transportation Integrated Search

    2014-06-01

    End diaphragms connect multiple girders to form a bridge superstructure system for effective resistance to earthquake loads. Concrete : girder bridges that include end diaphragms consistently proved to perform well during previous earthquake events. ...

  4. Diode-quad bridge circuit means

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Dimeff, J. (Inventor)

    1975-01-01

    Diode-quad bridge circuit means is described for use as a transducer circuit or as a discriminator circuit. It includes: (1) a diode bridge having first, second, third, and fourth bridge terminals consecutively coupled together by four diodes polarized in circulating relationship; (2) a first impedance connected between the second bridge terminal and a circuit ground; (3) a second impedance connected between the fourth bridge terminal and the circuit ground; (4) a signal source having a first source terminal capacitively coupled to the first and third bridge terminals, and a second source terminal connected to the circuit ground; and (5) an output terminal coupled to the first bridge terminal and at which an output signal may be taken.

  5. 4. VIEW OF SILVER BRIDGE (ST. MARY'S BRIDGE), CARRYING COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF SILVER BRIDGE (ST. MARY'S BRIDGE), CARRYING COUNTY ROAD OVER SOURIS RIVER NEAR SOUTH END OF REFUGE, LOOKING NORTHEAST - Upper Souris National Wildlife Refuge Dams, Souris River Basin, Foxholm, Surrey (England), ND

  6. Does cross-generational epigenetic inheritance contribute to cultural continuity?

    PubMed Central

    Pembrey, Marcus E

    2018-01-01

    Abstract Human studies of cross-generational epigenetic inheritance have to consider confounding by social patterning down the generations, often referred to as ‘cultural inheritance’. This raises the question to what extent is ‘cultural inheritance’ itself epigenetically mediated rather than just learnt. Human studies of non-genetic inheritance have demonstrated that, beyond foetal life, experiences occurring in mid-childhood before puberty are the most likely to be associated with cross-generational responses in the next generation(s). It is proposed that cultural continuity is played out along the axis, or ‘payoff’, between responsiveness and stability. During the formative years of childhood a stable family and/or home permits small children to explore and thereby learn. To counter disruptions to this family home ideal, cultural institutions such as local schools, religious centres and market places emerged to provide ongoing stability, holding the received wisdom of the past in an accessible state. This cultural support allows the growing child to freely indulge their responsiveness. Some of these prepubertal experiences induce epigenetic responses that also transfer molecular signals to the gametes through which they contribute to the conception of future offspring. In parallel co-evolution with growing cultural support for increasing responsiveness, ‘runaway’ responsiveness is countered by the positive selection of genetic variants that dampen responsiveness. Testing these ideas within longitudinal multigenerational cohorts will need information on ancestors/parents’ own communities and experiences (Exposome scans) linked to ongoing Phenome scans on grandchildren; coupled with epigenome analysis, metastable epialleles and DNA methylation age. Interactions with genetic variants affecting responsiveness should help inform the broad hypothesis. PMID:29732169

  7. Dog Bridge, view of the deck of the bridge and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Dog Bridge, view of the deck of the bridge and rails looking from Linden Lane - National Park Seminary, Bounded by Capitol Beltway (I-495), Linden Lane, Woodstove Avenue, & Smith Drive, Silver Spring, Montgomery County, MD

  8. Load ratings for secondary bridges.

    DOT National Transportation Integrated Search

    1991-05-01

    A load rating states the load in tons which a vehicle can impose on a bridge. : Changes in guidelines, standards, and customary uses of bridges require : analyses of bridges to be updated and re-evaluated. : In this report, twenty-two secondary bridg...

  9. Channel evolution of the Hatchie River near the U.S. Highway 51 crossing in Lauderdale and Tipton counties, West Tennessee

    USGS Publications Warehouse

    Bryan, B.A.

    1989-01-01

    An investigation was conducted to describe the channel cross-section evolution near the bridge crossing of the Hatchie River at U.S. Highway 51 in Lauderdale and Tipton Counties, in West Tennessee. The study also included velocity and discharge distributions near the bridge crossing, and definition of streamflow duration and flood frequencies at the bridge site and comparison of these statistics with flows prior to the bridge collapse. Cross-section measurements at the site indicated that the channel was widening at a rate of 0.8 ft/year from 1931 through about 1975. The channel bed was stable at an elevation of about 235 ft. Construction of a south bound bridge in 1974 and 1975 reduced the effective flow width from about 4,000 to about 1,000 ft. Data collected from 1975 to 1981 indicated that the channel bed degraded to an elevation of about 230 ft and the widening rate increased to about 4.5 ft/year. The channel bed returned to approximately the pre-construction elevation of 235 ft as channel width increased. The widening rate decreased to about 1.8 ft/year from 1981 through 1989. Channel-geometry data indicated that recent channel morphology changes along the toe of the right bank have resulted in continued bank undercutting and bank failure. Cross-section geometry and flow-velocity distributions from measurements made from April 6 through 10, 1989, indicate that there is a high-flow meander pattern through this river reach and that the bridges are located at the point where the current strikes the right bank. (USGS)

  10. Field performance of timber bridges. 17, Ciphers stress-laminated deck bridge

    Treesearch

    James P. Wacker; James A. Kainz; Michael A. Ritter

    In September 1989, the Ciphers bridge was constructed within the Beltrami Island State Forest in Roseau County, Minnesota. The bridge superstructure is a two-span continuous stress-laminated deck that is approximately 12.19 m long, 5.49 m wide, and 305 mm deep (40 ft long, 18 ft wide, and 12 in. deep). The bridge is one of the first to utilize red pine sawn lumber for...

  11. 6. VIEW OF GDOT BRIDGE NO. 02700268X00678N BRIDGE PLATE IDENTIFYING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF GDOT BRIDGE NO. 027-00268X-00678N BRIDGE PLATE IDENTIFYING COUNTY COMMISSIONERS AT THE TIME OF CONSTRUCTION. - GDOT Bridge No. 027-00268X-00678N, County Road 268-Empress Road span Piscola Creek, Quitman, Brooks County, GA

  12. Benchmark model correction of monitoring system based on Dynamic Load Test of Bridge

    NASA Astrophysics Data System (ADS)

    Shi, Jing-xian; Fan, Jiang

    2018-03-01

    Structural health monitoring (SHM) is a field of research in the area, and it’s designed to achieve bridge safety and reliability assessment, which needs to be carried out on the basis of the accurate simulation of the finite element model. Bridge finite element model is simplified of the structural section form, support conditions, material properties and boundary condition, which is based on the design and construction drawings, and it gets the calculation models and the results.But according to the design and specification requirements established finite element model due to its cannot fully reflect the true state of the bridge, so need to modify the finite element model to obtain the more accurate finite element model. Based on Da-guan river crossing of Ma - Zhao highway in Yunnan province as the background to do the dynamic load test test, we find that the impact coefficient of the theoretical model of the bridge is very different from the coefficient of the actual test, and the change is different; according to the actual situation, the calculation model is adjusted to get the correct frequency of the bridge, the revised impact coefficient found that the modified finite element model is closer to the real state, and provides the basis for the correction of the finite model.

  13. 25. Otter Creek Bridge #2. View of the stone facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Otter Creek Bridge #2. View of the stone facing common on nearly all concrete box culverts. The stone faced arch mimics rigid frame structures. Culverts were used for a variety of purposes from small stream crossings to grade separation structures for farmers whose land was split by the parkway. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  14. SSI-bridge : soil bridge interaction during long-duration earthquake motions.

    DOT National Transportation Integrated Search

    2014-09-01

    The seismic response of a complete soil-bridge system during shallow, crustal and subduction zone earthquakes is the topic of this report. Specifically, the effects of earthquake duration on the seismic performance of soil-bridge systems are examined...

  15. 49 CFR 236.312 - Movable bridge, interlocking of signal appliances with bridge devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Movable bridge, interlocking of signal appliances with bridge devices. 236.312 Section 236.312 Transportation Other Regulations Relating to... SYSTEMS, DEVICES, AND APPLIANCES Interlocking Standards § 236.312 Movable bridge, interlocking of signal...

  16. 49 CFR 236.312 - Movable bridge, interlocking of signal appliances with bridge devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movable bridge, interlocking of signal appliances with bridge devices. 236.312 Section 236.312 Transportation Other Regulations Relating to... SYSTEMS, DEVICES, AND APPLIANCES Interlocking Standards § 236.312 Movable bridge, interlocking of signal...

  17. 76 FR 55160 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Annual Materials Report on New Bridge Construction and Bridge Rehabilitation AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice... for Users (SAFETEA-LU) (Pub. L. 109-59; 119 Stat. 1144) continued the highway bridge program to enable...

  18. 77 FR 53251 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Annual Materials Report on New Bridge Construction and Bridge Rehabilitation AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice... for Users (SAFETEA-LU) (Pub. L. 109-59; 119 Stat. 1144) continued the highway bridge program to enable...

  19. 75 FR 62181 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Annual Materials Report on New Bridge Construction and Bridge Rehabilitation AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice... for Users (SAFETEA-LU) (Pub. L. 109-59; 119 Stat. 1144) continued the highway bridge program to enable...

  20. Embedded fiber optic sensors for bridge deck chloride penetration measurements

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Huston, Dryver R.; MacCraith, Brian D.

    1998-04-01

    The use of chloride-based deicing agents to help clear U.S. highways of roadway hazards leads to associated chemical related problems. Fouling of local rivers and streams due to runoff of the waterborne chlorides is significant and has contributed to local ordinances that are attempting to force state agencies to reduce, if not eliminate, the use of these chlorides (typically at the cost of increased driving hazards). With respect to the corrosion aspects of chloride application, cracks that occur in the roadway/bridge pavement allow water to seep into the pavement carrying the chloride to the rebar with the resultant increase in corrosion. The costs of this corrosion are considerable and have led to the wide- spread use of chloride/water impermeable membranes on roadways and especially within bridges. Fiber optics sensors have repeatedly been shown to provide measurement capabilities of parameters within such reinforced concrete structures. Development of fiber optic chloride sensors capable of being embedded within a roadway or bridge deck is reported.

  1. Comprehensive evaluation of fracture critical bridges.

    DOT National Transportation Integrated Search

    2014-02-01

    Two-girder steel bridges are classified as fracture critical bridges based on the definition given in the AASHTO LRFD Bridge Design Specifications. In a fracture critical bridge a failure of a tension member leads to collapse of the bridge. However, ...

  2. Backwater at bridges and densely wooded flood plains, west fork Amite River near Liberty, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on West Fork Amite River near Liberty, MS. Water depths , velocities, and discharges through bridge openings on West Fork Amite River near Liberty, MS for floods of December 6, 1971 , and March 25, 1973, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (USGS).

  3. Evaluation of bridge replacement alternatives for the county bridge system.

    DOT National Transportation Integrated Search

    1994-08-01

    Recent reports have indicated that 23.5 percent of the nation's highway bridges are : structurally deficient and 17.7 percent are functionally obsolete. A significant number of these bridges : are on the Iowa county road system. The objective of the ...

  4. Bridges to Understanding: Writings by OCC International Students. Spring 1994.

    ERIC Educational Resources Information Center

    McKague, Thomas, Ed.; Waelder, Patricia K., Ed.

    This booklet contains the writings of international students enrolled in the English for Speakers of Other Languages (ESOL) at Onondaga Community College (New York). The contributed writings were viewed as bridges to understanding among the world's peoples. The collection of essays, poems and short stories includes: (1) "Our Lives in the…

  5. Robust cross-links in molluscan adhesive gels: Testing for contributions from hydrophobic and electrostatic interactions

    PubMed Central

    Smith, A.M.; Robinson, T. M.; Salt, M. D.; Hamilton, K. S.; Silvia, B. E.; Blasiak, R.

    2009-01-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism. PMID:18952190

  6. Robust cross-links in molluscan adhesive gels: testing for contributions from hydrophobic and electrostatic interactions.

    PubMed

    Smith, A M; Robinson, T M; Salt, M D; Hamilton, K S; Silvia, B E; Blasiak, R

    2009-02-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism.

  7. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri and Mississippi Rivers near St. Louis, Missouri, May 23–27, 2016

    USGS Publications Warehouse

    Huizinga, Richard J.

    2017-09-26

    Bathymetric and velocimetric data were collected by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, near 13 bridges at 8 highway crossings of the Missouri and Mississippi Rivers in the greater St. Louis, Missouri, area from May 23 to 27, 2016. A multibeam echosounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,640 to 1,970 feet longitudinally and extending laterally across the active channel from bank to bank during low to moderate flood flow conditions. These bathymetric surveys indicate the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be useful to the Missouri Department of Transportation as a low to moderate flood flow comparison to help assess the bridges for stability and integrity issues with respect to bridge scour during floods.Bathymetric data were collected around every pier that was in water, except those at the edge of water, and scour holes were observed at most surveyed piers. The observed scour holes at the surveyed bridges were examined with respect to shape and depth.The frontal slope values determined for scour holes observed in the current (2016) study generally are similar to recommended values in the literature and to values determined for scour holes in previous bathymetric surveys. Several of the structures had piers that were skewed to primary approach flow, as indicated by the scour hole being longer on the side of the pier with impinging flow, and some amount of deposition on the leeward side, as typically has been observed at piers skewed to approach flow; however, at most skewed piers in the current (2016) study, the scour hole was deeper on the leeward side of the pier. At most of these piers, the angled approach flow was the result of a deflection or contraction of flow caused by a spur dike

  8. Level II scour analysis for Bridge 25 (ANDOTH00230025) on Town Highway 23, crossing Andover Branch, Andover, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOTH00230025 on Town Highway 23 crossing the Andover Branch, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 6.74-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the right overbank and forest on the left overbank while the immediate banks, both upstream and downstream, are forested. In the study area, the Andover Branch has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 55 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 78.4 mm (0.257 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 27, 1996, indicated that the reach was stable. The Town Highway 23 crossing of the Andover Branch is a 25-ft-long, two-lane structure consisting of a multi-plate corrugated steel arch culvert with concrete footings (Vermont Agency of Transportation, written communication, March 29, 1995). The culvert is mitered at the inlet and outlet. The channel is skewed approximately zero degrees to the opening while the opening-skew-to-roadway is zero degrees. The footings are exposed approximately 1.25 ft, with the

  9. Field performance of timber bridges. 16, North Siwell Road stress-laminated bridge

    Treesearch

    J. A. Kainz

    The North Siwell Road bridge was constructed during December 1994 in Hinds County, Mississippi. The bridge is a single-span, stress-laminated T-beam structure that measures 9.1 m (30 ft) long and 8.7 m (28.5 ft) wide. Performance of the bridge was monitored for 24 months, beginning at the time of installation. Monitoring involved gathering and evaluating data relative...

  10. Field performance of timber bridges. 10, Sanborn Brook stress-laminated deck bridge

    Treesearch

    P. D. Hilbrich Lee; J. P. Wacker; M. A. Ritter

    The Sanborn Brook bridge was constructed in August 1991, 10 miles northeast of Concord, New Hampshire, as part of the demonstration timber bridge program of the USDA Forest Service. The bridge is a simple-span, double-lane, stress-laminated deck superstructure constructed from Southern Pine lumber and is approximately 25 ft long and 28 ft wide with a skew of 14 degrees...

  11. Effective Sealing and Monitoring of Small Movement Expansion Joints in Connecticut Bridges

    DOT National Transportation Integrated Search

    2017-03-01

    One in nine bridges in the United States is rated as structurally deficient by the 2013 Infrastructure Report Card published by the American Society of Civil Engineers. One of the primary degradation factors that contribute to compromising the struct...

  12. Performance evaluation of bridges with structural bridge deck overlays (SBDO).

    DOT National Transportation Integrated Search

    2006-03-01

    Structural Bridge Deck Overlay (SBDO) involves applying 6 to 10 inches (150 to 200 mm) of normal weight, class AA, reinforced concrete directly to a bridges original slab. The overlay is designed to increase the deck elevation to an extent that st...

  13. Level II scour analysis for Bridge 11R (ROCKTH0001011R) on Town Highway 1 (VT 121 & FAS 125), crossing the Saxtons River, Rockingham, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCKTH0001011R on Town Highway 1 crossing the Saxtons River, Rockingham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 68.3-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of houses, short grass, and scattered trees except along the immediate river banks, which are tree covered. In the study area, the Saxtons River has a sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 121 ft and an average bank height of 8 ft. The predominant channel bed materials are gravel and cobbles with a median grain size (D50) of 109 mm (0.359 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 3, 1996, indicated that the reach was laterally unstable. Lateral instability was evident with respect to a cut-bank on the left bank upstream with slip failure of bank material. Furthermore, there is a wide point bar along the right bank upstream opposite the cut-bank. The Town Highway 1 crossing of the Saxtons River is a 184-ft-long, two-lane bridge consisting of three steel-beam spans (Vermont Agency of Transportation, written communication, March 30, 1995). The bridge is supported by vertical, concrete, skeletal

  14. Long continuous bridge deck evaluation : John Day River Bridge, Clatsop County, Bridge No. 1827B : final report.

    DOT National Transportation Integrated Search

    1995-06-01

    The John Day River Bridge, near Astoria, Oregon was built with a continuous deck length of 1,105 ft. (340 m). The rationale for designing the John Day River Bridge with an unusually long continuous deck is in part based on the site's very mild climat...

  15. Preparation and Biological Evaluation of 64Cu Labeled Tyr3-Octreotate Using a Phosphonic Acid-Based Cross-Bridged Macrocyclic Chelator

    PubMed Central

    Guo, Yunjun; Ferdani, Riccardo; Anderson, Carolyn J.

    2014-01-01

    Somatostatin receptors (SSTr) are overexpressed in a wide range of neuroendocrine tumors, making them excellent targets for nuclear imaging and therapy, and radiolabeled somatostatin analogues have been investigated for positron emission tomography imaging and radionuclide therapy of SSTr-positive tumors, especially of the subtype-2 (SSTr2). The aim of this study was to develop a somatostatin analogue, Tyr3-octreotate (Y3-TATE), conjugated to a novel cross-bridged macrocyclic chelator, 11-carboxymethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4-methanephosphonic acid (CB-TE1A1P). Unlike traditional cross-bridged macrocycles, such as 4, 11 - bis (carboxymethyl) - 1, 4, 8, 11 -etraazabicyclo[6.6.2]hexadecane (CB-TE2A), CB-TE1A1P-Y3-TATE was radiolabeled with 64Cu in high purity and high specific activity using mild conditions. Saturation binding assays revealed that 64Cu-CB-TE1A1P-Y3-TATE had comparable binding affinity but bound to more binding sites in AR42J rat pancreatic tumor cell membranes than 64Cu-CB-TE2A-Y3-TATE. Both radiopharmaceuticals showed comparable uptake in SSTr2 positive tissues in AR42J tumor-bearing rats. 64Cu-CB-TE1A1PY3- TATE demonstrated improved blood clearance compared to 64Cu-CB-TE2A-Y3-TATE, as the tumor/blood ratios of 64Cu-CB-TE1A1P-Y3-TATE were shown to be significantly higher than those of 64Cu-CB-TE2A-Y3-TATE at 4 and 24 h postinjection. 64Cu-CB-TE1A1P-Y3-TATE, in spite of a relatively high kidney uptake, accumulated less in nontarget organs such as liver, lung, and bone. Small animal PET/CT imaging of 64Cu-CB-TE1A1P-Y3-TATE in AR42J tumor bearing rats validated significant uptake and good contrast in the tumor. This study suggests that CB-TE1A1P is a promising bifunctional chelator for 64Cu-labeled for Y3-TATE, owing to high binding affinity and target tissue uptake, the ability to radiolabel the agent at lower temperatures, and improved tumor/nontarget organ ratios over 64Cu-CB-TE2A-Y3-TATE. PMID:22663248

  16. Level II scour analysis for Bridge 36 (RANDTH00480036) on Town Highway 48, crossing Snows Brook, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.1 to 11.6 ft. The worst-case abutment scour occurred at the incipient-overtopping discharge, which was 50 cfs lower than the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 30 (BRNATH00470030) on Town Highway 47, crossing Locust Creek, Barnard, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Song, Donald L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.4 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 2.3 to 8.9 feet. The worst-case abutment scour occurred at the 100-year discharge at the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 8 (WELLTH00020008) on Town Highway 2, crossing Wells Brook, Wells, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 5.6 to 10.0 ft at the left abutment and from 3.1 to 4.2 ft at the right abutment. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge at the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Bridge-scour analysis on Cuchillo Negro Creek at the Interstate 25 crossing near Truth or Consequences, New Mexico

    USGS Publications Warehouse

    Waltemeyer, S.D.

    1995-01-01

    A sediment-transport model to simulate channel change was applied to a 1-mile reach of Cuchillo Negro Creek at the Interstate 25 crossing at Truth or Consequences, New Mexico, using the Bridge-Stream Tube model for Alluvial River Simulation (BRI-STARS). The 500-year flood discharge was estimated to be 10,700 cubic feet per second. The 100-year, 500-year, and regional maximum discharges were used to design synthetic and discretized hydrographs using a flood volume equation. The regional maximum discharge relation was developed for New Mexico based on 259 streamflow-gaging stations' maximum peak discharge. The regional maximum-peak discharge for the site was determined to be 81,700 cubic feet per second. Bed-material particle-size distribution was determined for six size classes ranging from 1 to 30 millimeters. The median diameter was 4.6 millimeters at the bed surface and 9.0 millimeters 13 feet below the bed surface. Bed-material discharge for use in the model was estimated to be 18,770 tons per day using hydraulic properties, water temperature, and Yang's gravel equation. Channel-change simulations showed a maximum channel degradation of 1.38 feet for the regional maximum-peak discharge hydrograph.

  20. Level II scour analysis for Bridge 49 (FFIETH00290049) on Town Highway29, crossing Black Creek, Fairfield, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 4.4 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.5 to 14.3 ft and 12.2 to 16.3 ft on the left and right abutments respectively. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.