Science.gov

Sample records for cross flow filter

  1. Hot gas cross flow filtering module

    DOEpatents

    Lippert, Thomas E.; Ciliberti, David F.

    1988-01-01

    A filter module for use in filtering particulates from a high temperature gas has a central gas duct and at least one horizontally extending support mount affixed to the duct. The support mount supports a filter element thereon and has a chamber therein, which communicates with an inner space of the duct through an opening in the wall of the duct, and which communicates with the clean gas face of the filter element. The filter element is secured to the support mount over an opening in the top wall of the support mount, with releasable securement provided to enable replacement of the filter element when desired. Ceramic springs may be used in connection with the filter module either to secure a filter element to a support mount or to prevent delamination of the filter element during blowback.

  2. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  3. Thermal/chemical stability of ceramic cross flow filter materials

    SciTech Connect

    Alvin, M.A.; Bahovchin, D.M.; Lippert, T.E.; Tressler, R.E.; McNerney, K.B.

    1992-01-01

    Westinghouse has undertaken a two phase program to determine possible long-term, high temperature influence that advanced coal-based power system environments may have on the stability of the ceramic cross flow filter elements. During the past year, we have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100[degrees]C) under oxidizing conditions which contain gas phase alkali species. The alumina/mullite cross flow liter material that has consistently been used throughout the flow-through gas phase alkali testing segment of this program, consists of mullite rods or needles that are embedded within an amorphous phase which contains corundum (Al[sub 2]O[sub 3]) and anorthite (CaAl[sub 2]Si[sub 2]O[sub 8]). Due to the rapid cooling rate that was used to produce the alumina/mullite filter disc material from high fire, the matrix consists of 59.6 wt% mullite, 30.5 wt% amorphous, 5.1 wt% anorthite, and 4.8 wt% alumina. The relatively low, as-fabricated, hot strength of this material (841[plus minus]259 psi at 870[degrees]C) is a direct result of the high amorphous content which softens at temperatures of 870[degrees]C. Load versus deflection curves as a function of temperature indicate that this material is relatively brittle up to temperatures of 600[degrees]C. Both a loss of strength, as well as plastic deformation of the matrix occurs at [approximately]700[degrees]C. If cross flow filters are manufactured from an alumina/mullite matrix that contains an [approximately]30.5 wt% amorphous content, we suspect that the plastic nature of the glass phase could potentially serve as a substrate for fines collection during initial filter operation at 700[degrees]C. Similarly the plastic nature could potentially cause deformation of the liter under load.

  4. Thermal/chemical stability of ceramic cross flow filter materials

    SciTech Connect

    Alvin, M.A.; Bahovchin, D.M.; Lippert, T.E.; Tressler, R.E.; McNerney, K.B.

    1992-11-01

    Westinghouse has undertaken a two phase program to determine possible long-term, high temperature influence that advanced coal-based power system environments may have on the stability of the ceramic cross flow filter elements. During the past year, we have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100{degrees}C) under oxidizing conditions which contain gas phase alkali species. The alumina/mullite cross flow liter material that has consistently been used throughout the flow-through gas phase alkali testing segment of this program, consists of mullite rods or needles that are embedded within an amorphous phase which contains corundum (Al{sub 2}O{sub 3}) and anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}). Due to the rapid cooling rate that was used to produce the alumina/mullite filter disc material from high fire, the matrix consists of 59.6 wt% mullite, 30.5 wt% amorphous, 5.1 wt% anorthite, and 4.8 wt% alumina. The relatively low, as-fabricated, hot strength of this material (841{plus_minus}259 psi at 870{degrees}C) is a direct result of the high amorphous content which softens at temperatures of 870{degrees}C. Load versus deflection curves as a function of temperature indicate that this material is relatively brittle up to temperatures of 600{degrees}C. Both a loss of strength, as well as plastic deformation of the matrix occurs at {approximately}700{degrees}C. If cross flow filters are manufactured from an alumina/mullite matrix that contains an {approximately}30.5 wt% amorphous content, we suspect that the plastic nature of the glass phase could potentially serve as a substrate for fines collection during initial filter operation at 700{degrees}C. Similarly the plastic nature could potentially cause deformation of the liter under load.

  5. Design and Initial Development of Monolithic Cross-Flow Ceramic Hot-Gas Filters

    SciTech Connect

    Barra, C.; Limaye, S.; Stinton, D.P.; Vaubert, V.M.

    1999-06-06

    Advanced, coal-fueled, power generation systems utilizing pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC) technologies are currently being developed for high-efficiency, low emissions, and low-cost power generation. In spite of the advantages of these promising technologies, the severe operating environment often leads to material degradation and loss of performance in the barrier filters used for particle entrapment. To address this problem, LoTEC Inc., and Oak Ridge National Laboratory are jointly designing and developing a monolithic cross-flow ceramic hot-gas filter. The filter concept involves a truly monolithic cross-flow design that is resistant to delamination, can be easily fabricated, and offers flexibility of geometry and material make-up. During Phase I of the program, a thermo-mechanical analysis was performed to determine how a cross-flow filter would respond both thermally and mechanically to a series of thermal and mechanical loads. The cross-flow filter mold was designed accordingly, and the materials selection was narrowed down to Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}P{sub 6}O{sub 24} (CS-50) and 2Al{sub 2}O{sub 3}-3SiO{sub 2} (mullite). A fabrication process was developed using gelcasting technology and monolithic cross-flow filters were fabricated. The program focuses on obtaining optimum filter permeability and testing the corrosion resistance of the candidate materials.

  6. Thermal/chemical degradation of ceramic cross-flow filter materials

    SciTech Connect

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  7. Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    SciTech Connect

    Benedek, K. , Inc., Cambridge, MA ); Flytzani-Stephanopoulos, M. )

    1991-08-01

    This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  8. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing

    PubMed Central

    Chiu, Yun-Yen; Huang, Chen-Kang

    2016-01-01

    A microfluidic chip is proposed to separate microparticles using cross-flow filtration enhanced with hydrodynamic focusing. By exploiting a buffer flow from the side, the microparticles in the sample flow are pushed on one side of the microchannels, lining up to pass through the filters. Meanwhile a larger pressure gradient in the filters is obtained to enhance separation efficiency. Compared with the traditional cross-flow filtration, our proposed mechanism has the buffer flow to create a moving virtual boundary for the sample flow to actively push all the particles to reach the filters for separation. It further allows higher flow rates. The device only requires soft lithograph fabrication to create microchannels and a novel pressurized bonding technique to make high-aspect-ratio filtration structures. A mixture of polystyrene microparticles with 2.7 μm and 10.6 μm diameters are successfully separated. 96.2 ± 2.8% of the large particle are recovered with a purity of 97.9 ± 0.5%, while 97.5 ± 0.4% of the small particle are depleted with a purity of 99.2 ± 0.4% at a sample throughput of 10 μl/min. The experiment is also conducted to show the feasibility of this mechanism to separate biological cells with the sample solutions of spiked PC3 cells in whole blood. By virtue of its high separation efficiency, our device offers a label-free separation technique and potential integration with other components, thereby serving as a promising tool for continuous cell filtration and analysis applications. PMID:26858812

  9. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing.

    PubMed

    Chiu, Yun-Yen; Huang, Chen-Kang; Lu, Yen-Wen

    2016-01-01

    A microfluidic chip is proposed to separate microparticles using cross-flow filtration enhanced with hydrodynamic focusing. By exploiting a buffer flow from the side, the microparticles in the sample flow are pushed on one side of the microchannels, lining up to pass through the filters. Meanwhile a larger pressure gradient in the filters is obtained to enhance separation efficiency. Compared with the traditional cross-flow filtration, our proposed mechanism has the buffer flow to create a moving virtual boundary for the sample flow to actively push all the particles to reach the filters for separation. It further allows higher flow rates. The device only requires soft lithograph fabrication to create microchannels and a novel pressurized bonding technique to make high-aspect-ratio filtration structures. A mixture of polystyrene microparticles with 2.7 μm and 10.6 μm diameters are successfully separated. 96.2 ± 2.8% of the large particle are recovered with a purity of 97.9 ± 0.5%, while 97.5 ± 0.4% of the small particle are depleted with a purity of 99.2 ± 0.4% at a sample throughput of 10 μl/min. The experiment is also conducted to show the feasibility of this mechanism to separate biological cells with the sample solutions of spiked PC3 cells in whole blood. By virtue of its high separation efficiency, our device offers a label-free separation technique and potential integration with other components, thereby serving as a promising tool for continuous cell filtration and analysis applications.

  10. Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    SciTech Connect

    Not Available

    1990-03-01

    This synopsis describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  11. Chemical cleaning of porous stainless steel cross-flow filter elements for nuclear waste applications

    SciTech Connect

    Billing, Justin M.; Daniel, Richard C.; Hallen, Richard T.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2011-05-10

    The Waste Treatment and Immobilization Plant (WTP) currently under construction for treatment of High-Level Waste (HLW) at the Hanford Site will rely on cross-flow ultrafiltration to provide solids-liquid separation as a core part of the treatment process. To optimize process throughput, periodic chemical cleaning of the porous stainless steel filter elements has been incorporated into the design of the plant. It is currently specified that chemical cleaning with nitric acid will occur after significant irreversible membrane fouling is observed. Irreversible fouling is defined as fouling that cannot be removed by backpulsing the filter. PNNL has investigated chemical cleaning processes as part of integrated tests with HLW simulants and with actual Hanford tank wastes. To quantify the effectiveness of chemical cleaning, the residual membrane resistance after cleaning was compared against the initial membrane resistance for each test in a series of long-term fouling tests. The impact of the small amount of residual resistance in these tests could not be separated from other parameters and the historical benchmark of >1 GPM/ft2 for clean water flux was determined to be an adequate metric for chemical cleaning. Using the results from these tests, a process optimization strategy is presented suggesting that for the simulant material under test, the value of chemical cleaning may be suspect. The period of enhanced filtration may not be enough to offset the down time required for chemical cleaning, without respect to the other associated costs.

  12. Cross-flow, filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. Sixth quarterly technical progress report

    SciTech Connect

    Benedek, K.; Flytzani-Stephanopoulos, M.

    1991-08-01

    This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  13. Hot gas cleanup using ceramic cross flow membrane filters. Final report

    SciTech Connect

    Ciliberti, D.F.; Smeltzer, E.E.; Alvin, M.A.; Keairns, D.L.; Bachovchin, D.M.

    1983-12-01

    The single unresolved technical issue in the commercialization of pressurized fluid-bed combustion (PPBC) for electric power production is the hot gas cleaning problem. In this technology, high-temperature and -pressure (HTHP), dust-laden flue gases from the combustor must be cleaned enough to reduce expansion turbine blade erosion to an economically acceptable level. Additionally, the level of particulate emission must be compatible with the New Source Performance Standards (NSPS) for environmental acceptability. The Department of Energy (DOE) has sponsored a wide range of research and development programs directed at the solution of this problem. These programs were divided into two classifications, one dealing with more advanced concepts where testing was to be done at relatively large scale and a second group of less advanced, novel concepts where the testing was to be carried out at a bench scale. The cross-flow ceramic membrane filter program described in this report is a member of the small-scale, novel concept group.

  14. Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    SciTech Connect

    Benedek, K. , Inc., Cambridge, MA ); Flytzani-Stephanopoulos, M. )

    1992-01-01

    This report describes work performed on a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particle filter, an SO {sub 2} sorbent, and a NO {sub x} reduction catalyst. One critical element of the R D program is the development of mixed metal oxide materials that serve as combined SO {sub 2} sorbents and NO {sub x} reduction catalysts. In this seventh quarterly progress report, we summarize the performance characteristics of three promising sorbent/catalyst materials tested in powder form.

  15. [Performance of cross flow trickling filter for H2S gas treatment].

    PubMed

    Liu, Chun-Jing; Li, Jian; Liu, Jia; Peng, Shu-Jing; Li, Chao; Chen, Ying; He, Hong

    2012-09-01

    A grading cross bio-trickling filter was designed for H2S removal. Mixed microorganisms domesticated from the former experiment were immobilized to start up the trickling filter. Removal performances during starting up period and different loadings were investigated. Results showed that the immobilization of the trickling filter was completed within 3 d. The removal efficiency was higher than 99% when the inlet concentration was in the range of 110 mg x m(-3) to 230 mg x m(-3) (EBRT 30 s). At low inlet loadings, the front part of the trickling filter played a major role in H2S degradation, accounting for about 85%. Microbial diversity and population of the front part were superior to the tail one. At higher loadings, microbial diversity and population of the tail part increased significantly, from 4.5 x 10(7) cells x g (-1) to 5.17 x 10(8) cells x g(-1), and the elimination capacity was also improved,from 0.04 g x h(-1) to 0.67 g x h(-1). Rod-shaped bacteria were the dominant microorganisms on the surface of ceramics in the steady state as observed by SEM. The surfaces of ceramics were covered by a lot of microbial metabolites at high loadings. Analysis of the metabolites indicated that the majority of H2S was oxidized to sulfur and only a small portion was converted to sulfate.

  16. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  17. Cross-flow, filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. First quarterly technical progress report, 1990

    SciTech Connect

    Not Available

    1990-03-01

    This synopsis describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  18. Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    SciTech Connect

    Not Available

    1990-03-01

    The objective of this program is to successfully carry out the experiment and design tasks described herein that will lead to the development a single-unit, cross flow filter-sorbent-catalyst. In the first stage of work we will investigate the SO{sub 2} removal and NO{sub x} reduction characteristics of different sorbent-catalyst compositions (in granular form), and we will conduct exploratory tests of cross-flow filters under conditions similar to those found in the combustion gases of small-scale combustors. In the second stage of the program, we will investigate the pollutant control characteristics of prototype filter-catalyst devices. The SO{sub 2} removal and NO{sub x} reduction efficiency of a unit-element' prototype will be investigated. This unit element' will be a slot reactor comprised of two flat porous walls, or slabs' of filter-sorbent-catalyst material separated by a 0.5 centimeter gap. The particulate collection efficiency and back-flushing requirements of a multi-element version of this device will be tested. A sorbent regeneration scheme will also be investigated. The sorbents under evaluation are: CuO, CeO{sub 2}, CuO-Al{sub 2}O{sub 3}, CeO{sub 2}-Al{sub 2}O{sub 3}, CuO-CeO{sub 2}, and CuO-CeO{sub 2}-Al{sub 2}O{sub 3}. Progress is described. 25 refs., 4 figs., 5 tabs.

  19. Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    SciTech Connect

    Not Available

    1990-11-01

    The device described in this report will simultaneously remove particulates, SO{sub 2} and NO{sub x} from the combustion gases of coal combustors. The device is configured as a cross-flow filter. The gas flows from the inlet passages to orthogonally oriented discharge channels via thin, multilayered porous walls. Flue gas enters from both the front and back of the device. With the left wall of the filter sealed, gas discharges from the right side of the device. The key to combined physical (fly ash) and chemical (SO{sub 2}/NO{sub x}) cleaning is to utilize chemical active sorbent-catalysts (e.g., metal oxides) in the layered walls of the filter. This quarter, the NO{sub x} reduction activity of three sorbent-catalyst materials was tested over a temperature range from 200 to 500{degree}C. We were primarily interested in the sorbent-catalyst NO{sub x} reduction performance at 400{degree}C because this appears to be a minimum temperature for acceptable sulfur capture with these sorbents. the tradeoff between sulfur capture and NO{sub x} reduction performance for these sorbent-catalysts is clear: sulfation improves with higher temperatures (e.g., 400--600{degree}C) while NO{sub x} reduction improves at lower temperatures (e.g., 200--300{degree}C). Sorbent-catalyst materials included: Cu-7Al-O; Cu-Ce-O; and CeO{sub 2}. 7 refs., 7 figs., 4 tabs.

  20. Cross-flow, filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. Seventh quarterly technical progress report

    SciTech Connect

    Benedek, K.; Flytzani-Stephanopoulos, M.

    1992-01-01

    This report describes work performed on a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particle filter, an SO {sub 2} sorbent, and a NO {sub x} reduction catalyst. One critical element of the R&D program is the development of mixed metal oxide materials that serve as combined SO {sub 2} sorbents and NO {sub x} reduction catalysts. In this seventh quarterly progress report, we summarize the performance characteristics of three promising sorbent/catalyst materials tested in powder form.

  1. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    EPA Science Inventory

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  2. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  3. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, A.C.

    1983-09-06

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  4. Enzymatic oxidation of cephalosporin C using whole cells of the yeast Triginopsis variabilis within a "cross-flow filter-reactor".

    PubMed

    Vicenzi, J T; Hansen, G J

    1993-04-01

    An economical process for the enzymatic oxidation of cephalosporin C to glutaryl-7-ACA was developed at a pilot plant scale. The process utilized nonviable whole cells of the yeast Triginopsis variabilis containing high levels of D-amino acid oxidase. Prior to use, the whole cells were permeabilized with a 25% acetone/water solution which enhanced their apparent activity by 20- to 50-fold. After permeabilization, the whole cells were incubated at pH 11, which served to selectively deactivate catalase which was present in very large quantities. Deactivation of catalase was critical to achieving high reaction yields. The whole cells were utilized within a "cross-flow filter-reactor" which allowed easy and economical recycle of the cells for repeated use. The overall yield of glutaryl-7-ACA from cephalosporin C was 90-95%. The overall productivity of the yeast was 13 kg cephalosporin C oxidized per kilogram yeast (dry basis). The reaction was run at a concentration of 40 g cephalosporin CL-1 and the overall reactor productivity was 11 g glutaryl-7-ACA l-1 h-1. The process has been thoroughly demonstrated on a 35-l scale, and it should be directly scaleable to 10,000 l or more.

  5. Gaussian particle flow implementation of PHD filter

    NASA Astrophysics Data System (ADS)

    Zhao, Lingling; Wang, Junjie; Li, Yunpeng; Coates, Mark J.

    2016-05-01

    Particle filter and Gaussian mixture implementations of random finite set filters have been proposed to tackle the issue of jointly estimating the number of targets and their states. The Gaussian mixture PHD (GM-PHD) filter has a closed-form expression for the PHD for linear and Gaussian target models, and extensions using the extended Kalman filter or unscented Kalman Filter have been developed to allow the GM-PHD filter to accommodate mildly nonlinear dynamics. Errors resulting from linearization or model mismatch are unavoidable. A particle filter implementation of the PHD filter (PF-PHD) is more suitable for nonlinear and non-Gaussian target models. The particle filter implementations are much more computationally expensive and performance can suffer when the proposal distribution is not a good match to the posterior. In this paper, we propose a novel implementation of the PHD filter named the Gaussian particle flow PHD filter (GPF-PHD). It employs a bank of particle flow filters to approximate the PHD; these play the same role as the Gaussian components in the GM-PHD filter but are better suited to non-linear dynamics and measurement equations. Using the particle flow filter allows the GPF-PHD filter to migrate particles to the dense regions of the posterior, which leads to higher efficiency than the PF-PHD. We explore the performance of the new algorithm through numerical simulations.

  6. Method and apparatus for measuring flow velocity using matched filters

    SciTech Connect

    Raptis, A.C.

    1981-07-17

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow is disclosed. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  7. Granular flow in Dorfan Impingo filter for gas cleanup

    SciTech Connect

    Hsiau, S.S.; Smid, J.; Tsai, H.H.; Kuo, J.T.; Chou, C.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Drofan Impingo panel with transparent front and rear walls, the velocity fields of filter granules without gas cross flow were observed. The PE beads with diameter of 6 mm were used as filter granules. The filter bed was filled with beads continuously and circulated until the granular flows inside the panel reached the steady state condition. In the moving granular bed, there is a central fast flowing core of filter granules surrounded by large quasi-stagnant zones located close to the louver walls. The existence of quasi-stagnant zones may result in the dust plugging problems. The velocity fields of filter granules are plotted for three different louver geometries.

  8. Angle only tracking with particle flow filters

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2011-09-01

    We show the results of numerical experiments for tracking ballistic missiles using only angle measurements. We compare the performance of an extended Kalman filter with a new nonlinear filter using particle flow to compute Bayes' rule. For certain difficult geometries, the particle flow filter is an order of magnitude more accurate than the EKF. Angle only tracking is of interest in several different sensors; for example, passive optics and radars in which range and Doppler data are spoiled by jamming.

  9. Velocity filtering applied to optical flow calculations

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1990-01-01

    Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.

  10. Cross flow electrofilter and method

    DOEpatents

    Gidaspow, Dimitri; Lee, Chang H.; Wasan, Darsh T.

    1981-01-01

    A filter for clarifying carbonaceous liquids containing finely divided solid particles of, for instance, unreacted coal, ash and other solids discharged from a coal liquefaction process is presented. The filter includes two passageways separated by a porous filter medium. In one preferred embodiment the filter medium is of tubular shape to form the first passageway and is enclosed within an outer housing to form the second passageway within the annulus. An electrode disposed in the first passageway, for instance along the tube axis, is connected to a source of high voltage for establishing an electric field between the electrode and the filter medium. Slurry feed flows through the first passageway tangentially to the surfaces of the filter medium and the electrode. Particles from the feed slurry are attracted to the electrode within the first passageway to prevent plugging of the porous filter medium while carbonaceous liquid filters into the second passageway for withdrawal. Concentrated slurry is discharged from the first passageway at an end opposite to the feed slurry inlet. Means are also provided for the addition of diluent and a surfactant into the slurry to control relative permittivity and the electrophoretic mobility of the particles.

  11. The guided bilateral filter: when the joint/cross bilateral filter becomes robust.

    PubMed

    Caraffa, Laurent; Tarel, Jean-Philippe; Charbonnier, Pierre

    2015-04-01

    The bilateral filter and its variants, such as the joint/cross bilateral filter, are well-known edge-preserving image smoothing tools used in many applications. The reason of this success is its simple definition and the possibility of many adaptations. The bilateral filter is known to be related to robust estimation. This link is lost by the ad hoc introduction of the guide image in the joint/cross bilateral filter. We here propose a new way to derive the joint/cross bilateral filter as a particular case of a more generic filter, which we name the guided bilateral filter. This new filter is iterative, generic, inherits the robustness properties of the robust bilateral filter, and uses a guide image. The link with robust estimation allows us to relate the filter parameters with the statistics of input images. A scheme based on graduated nonconvexity is proposed, which allows converging to an interesting local minimum even when the cost function is nonconvex. With this scheme, the guided bilateral filter can handle non-Gaussian noise on the image to be filtered. A complementary scheme is also proposed to handle non-Gaussian noise on the guide image even if both are strongly correlated. This allows the guided bilateral filter to handle situations with more noise than the joint/cross bilateral filter can work with and leads to high peak signal-to-noise ratio values as shown experimentally.

  12. A Filtering Method For Gravitationally Stratified Flows

    SciTech Connect

    Gatti-Bono, Caroline; Colella, Phillip

    2005-04-25

    Gravity waves arise in gravitationally stratified compressible flows at low Mach and Froude numbers. These waves can have a negligible influence on the overall dynamics of the fluid but, for numerical methods where the acoustic waves are treated implicitly, they impose a significant restriction on the time step. A way to alleviate this restriction is to filter out the modes corresponding to the fastest gravity waves so that a larger time step can be used. This paper presents a filtering strategy of the fully compressible equations based on normal mode analysis that is used throughout the simulation to compute the fast dynamics and that is able to damp only fast gravity modes.

  13. Spin selective filtering of polariton condensate flow

    SciTech Connect

    Gao, T.; Antón, C.; Martín, M. D.; Liew, T. C. H.; Hatzopoulos, Z.; Viña, L.; Eldridge, P. S.; Savvidis, P. G.

    2015-07-06

    Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons, while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.

  14. Cross-flow, filter-sorbent-catalyst for particulate, SO{sub 2} and NO{sub x} control. Final report

    SciTech Connect

    Benedek, K.; Flytzani-Stephanopoulos, M.

    1994-05-01

    This report describes work performed on a new concept for integrated pollutant control: An active filter comprised of layered, gas permeable membranes that act as a particle filter, an SO{sub 2} sorbent, and a NO{sub x}, reduction catalyst. The focus of the research program documented in this final report is the development of the sorbent/catalyst materials that are the basis of such an emission control system. The device investigated in this program will simultaneously remove particulates, SO{sub 2} and NO{sub x}, from combustion exhaust gases. Sulfur dioxide capture and nitrogen oxide reduction are achieved with a reg le, mixed-metal oxide sorbent-catalyst. The device is a filter with layered walls: A small-pore layer is a barrier to particles, and a macroporus active layer is a SO{sub 2} sorbent and a catalyst for the selective catalytic reduction of NO{sub x}. The small-pore layer could be an inert ceramic that provides structural strength to the unit and protects the active (sorbent-catalyst) material from abrasion or contamination from fly ash particles. We have found that 95--100% removal efficiency of SO{sub 2} and 60--90% removal of NO{sub x}, is achievable with the use of mixed-metal oxide sorbent-catalysts in the device. The ceramic filters are barriers to particles and typically have removal efficiencies of 99.9%.

  15. Flow regions of granules in Dorfan Impingo filter for gas cleanup

    SciTech Connect

    Kuo, J.T.; Smid, J.; Hsiau, S.S.; Tsai, S.S.; Chou, C.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Dorfan Impingo panel with transparent front and rear walls the flow region of filter granules without gas cross flow were observed. The white PE beads were used as filter granules. Colored PE beads served as tracers. Filter granules were discharged and circulated to the bed. The flow rate of filter medium was controlled by the belt conveyor. The image processing system including a Frame Grabber and JVC videocamera was used to record the granular flow. Every image of motion was digitized and stored in a file. The flow patterns and the quasi-stagnant zones history in the moving granular bed were evaluated. The experiment showed fast central moving region (flowing core) of filter granules and quasi-stagnant zones close to louver walls.

  16. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-12-31

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  17. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  18. Modeling jets in cross flow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1994-01-01

    Various approaches to the modeling of jets in cross flow are reviewed. These are grouped into four classes, namely: empirical models, integral models, perturbation models, and numerical models. Empirical models depend largely on the correlation of experimental data and are mostly useful for first-order estimates of global properties such as jet trajectory and velocity and temperature decay rates. Integral models are based on some ordinary-differential form of the conservation laws, but require substantial empirical calibration. They allow more details of the flow field to be obtained; simpler versions have to assume similarity of velocity and temperature profiles, but more sophisticated ones can actually calculate these profiles. Perturbation models require little empirical input, but the need for small parameters to ensure convergent expansions limits their application to either the near-field or the far-field. Therefore, they are mostly useful for the study of flow physics. Numerical models are based on conservation laws in partial-differential form. They require little empirical input and have the widest range of applicability. They also require the most computational resources. Although many qualitative and quantitative features of jets in cross flow have been predicted with numerical models, many issues affecting accuracy such as grid resolution and turbulence model are not completely resolved.

  19. Cross-flow Ultrafiltration Scaling Considerations

    SciTech Connect

    Duignan, M

    2006-04-10

    One legacy of the nuclear age is radioactive waste and it must be stabilized to be stored in a safe manner. An important part of the stabilization process is the separation of radioactive solids from the liquid wastes by cross-flow ultrafiltration. The performance of this technology with the wastes to be treated was unknown and, therefore, had to be obtained. However, before beginning a filter study the question of experimental scale had to be addressed. Of course, carrying out experiments using full-size equipment is always ideal, but rarely practical when dealing with plant size processes. Flow loops that will handle millions of liters of slurries, which are either highly caustic or acidic, with flow rates of 10,000 lpm make full-scale tests prohibitively expensive. Moreover, when the slurries happen to be radioactive such work is also very dangerous. All of these considerations lend themselves to investigations at smaller scales and in many situations can be treated with computational analyses. Unfortunately, as scale is reduced it becomes harder to provide prototypic results and the two and three phase multi-component mixtures challenge accurate computational results. To obtain accurate and representative filter results the use of two scales were chosen: (1) Small-scale--would allow the testing with actual radioactive waste samples and compare results with simulated wastes that were not radioactive. For this scale the feed tank held 6 liters of waste and it had a single cross-flow filter tube 0.61 m long. (2) Pilot-scale--would be restricted to use simulated non-radioactive wastes. At this larger scale the feed tank held 120 liters of waste and the filter unit was prototypic to the planned plant facility in pore size (0.1 micron), length (2.29 m), diameter (0.0127 m inside and 0.0159 m outside diameter), and being multi-tubed. The small-scale apparatus is convenient, easy to use, and can test both radioactive and non-radioactive wastes; therefore, there is a

  20. Cross Flow Parameter Calculation for Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for determining a cross flow angle for a feature on a structure. A processor unit receives location information identifying a location of the feature on the structure, determines an angle of the feature, identifies flow information for the location, determines a flow angle using the flow information, and determines the cross flow angle for the feature using the flow angle and the angle of the feature. The flow information describes a flow of fluid across the structure. The flow angle comprises an angle of the flow of fluid across the structure for the location of the feature.

  1. Development of low optical cross talk filters for VIIRS (JPSS)

    NASA Astrophysics Data System (ADS)

    Murgai, Vijay; Hendry, Derek; Downing, Kevin; Carbone, David; Potter, John

    2016-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011 into a polar orbit of 824 km nominal altitude and the JPSS sensors currently being built and integrated. VIIRS collects radiometric and imagery data of the Earth's atmosphere, oceans, and land surfaces in 22 spectral bands spanning the visible and infrared spectrum from 0.4 to 12.5 μm. Interference filters assembled in `butcher-block' arrays mounted adjacent to focal plane arrays provide spectral definition. Out-of-band signal and out-of-band optical cross-talk was observed for bands in the 0.4 to 1 μm range in testing of VIIRS for S-NPP. Optical cross-talk is in-band or out-of-band light incident on an adjacent filter or adjacent region of the same filter reaching the detector. Out-of-band optical cross-talk results in spectral and spatial `impurities' in the signal and consequent errors in the calculated environmental parameters such as ocean color that rely on combinations of signals from more than one band. This paper presents results of characterization, specification, and coating process improvements that enabled production of filters with significantly reduced out of band light for Joint Polar Satellite System (JPSS) J1 and subsequent sensors. Total transmission and scatter measurements at a wavelength within the pass band can successfully characterize filter performance prior to dicing and assembling filters into butcher block assemblies. Coating and process development demonstrated performance on test samples followed by production of filters for J1 and J2. Results for J1 and J2 filters are presented.

  2. Modeling Flow Past a Tilted Vena Cava Filter

    SciTech Connect

    Singer, M A; Wang, S L

    2009-06-29

    Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.

  3. SITE TECHNOLOGY CAPSULE: FILTER FLOW TECHNOLOGY, INC. - COLLOID POLISHING FILTER METHOD

    EPA Science Inventory

    The Filter Flow Technology, Inc. (FFT) Coloid Polishing Filter Method (CPFM) was demonstrated at the U.S Department of Energy's (DOE) Rock Flats Plant (RFP) as part of the U.S. Environmental Protection Agency's (EPA) Superfund and Innovative Technology Evaluation (SITE) program. ...

  4. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed

  5. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    DTIC Science & Technology

    2008-03-01

    John William Strutt , the third Baron of Rayleigh , or more commonly known as Lord Rayleigh , was the first to offer a correct explanation of the...FILTERED RAYLEIGH SCATTERING MEASUREMENTS IN A BUOYANT FLOW FIELD         THESIS       Steven Michael Meents, Captain, USAF...AFIT/GAE/ENY/08-M22 FILTERED RAYLEIGH SCATTERING MEASUREMENTS IN A BUOYANT FLOW FIELD THESIS Presented to the Faculty Department of Aeronautics

  6. Cross-flow electrofilter and method

    DOEpatents

    Gidaspow, Dimitri; Lee, Chang H.; Wasan, Darsh T.

    1980-01-01

    A filter for clarifying carbonaceous liquids containing finely divided solid particles of, for instance, unreacted coal, ash and other solids discharged from a coal liquefaction process is presented. The filter includes two passageways separated by a porous filter medium. In one preferred embodiment the filter medium is of tubular shape to form the first passageway and is enclosed within an outer housing to form the second passageway within the annulus. An electrode disposed in the first passageway, for instance along the tube axis, is connected to a source of high voltage for establishing an electric field between the electrode and the filter medium. Slurry feed flows through the first passageway tangentially to the surfaces of the filter medium and the electrode. Particles from the feed slurry are attracted to the electrode within the first passageway to prevent plugging of the porous filter medium while carbonaceous liquid filters into the second passageway for withdrawal. Concentrated slurry is discharged from the first passageway at an end opposite to the feed slurry inlet. Means are also provided for the addition of diluent and a surfactant into the slurry to control relative permittivity and the electrophoretic mobility of the particles.

  7. Turbulent crossed fluxes in incompressible flows

    PubMed

    Sancho

    2000-02-01

    We show in the framework of the stochastic calculus the existence of turbulent crossed fluxes in incompressible flows. Physically, these fluxes are related to the dependence of the phenomenological coefficients on the temperature and concentration variables.

  8. Mathematical modeling of flow field in ceramic candle filter

    NASA Astrophysics Data System (ADS)

    Seo, Taewon; Kim, Heuy-Dong; Choi, Joo-Hong; Chung, Jae Hwa

    1998-06-01

    Integrated gasification combined cycle (IGCC) is one of the candidates to achieve stringent environmental regulation among the clean coal technologies. Advancing the technology of the hot gas cleanup systems is the most critical component in the development of the IGCC. Thus the aim of this study is to understand the flow field in the ceramic filter and the influence of ceramic filter in removal of the particles contained in the hot gas flow. The numerical model based on the Reynolds stress turbulence model with the Darcy’s law in the porous region is adopted. It is found that the effect of the porosity in the flowfield is negligibly small while the effect of the filter length is significant. It is also found as the permeability decreases, the reattachment point due to the flow separation moves upstream. This is because the fluid is sucked into the filter region due to the pressure drop before the flow separation occurs. The particle follows well with the fluid stream and the particle is directly sucked into the filter due to the pressure drop even in the flow separation region.

  9. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  10. Electrically heated particulate filter with zoned exhaust flow control

    SciTech Connect

    Gonze, Eugene V

    2012-06-26

    A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

  11. Direction of fluid flow and the properties of fibrous filters

    SciTech Connect

    Pich, J.; Spurny, K.

    1991-01-01

    The influence of the fluid flow direction (downflow and upflow) on the filtration properties of filters that have a fibrous structure is investigated. It is concluded that selectivity of these filters (dependence of the filter efficiency on the particle size) in the case of upflow is changed - in comparison with the case of downflow - in three ways: the position of the minimum of this dependence is shifted to larger particle sizes, and the whole selectivity is decreased and simultaneously deformed. Corresponding equations for this shift and changes are derived and analyzed. Theoretical predictions are compared with available experimental data. In all cases qualitative agreement and in some cases quantitative agreement is found.

  12. Transverse high gradient magnetic filter cell with bounded flow field

    SciTech Connect

    Badescu, V.; Rotariu, O.; Murariu, V.; Rezlescu, N.

    1997-11-01

    The capture of fine paramagnetic particles from a fluid suspension in a magnetic filter element of a novel design is analyzed. Unlike the systems previously analyzed, in the model the flow is bounded by two by two parallel planar plates, and the ferromagnetic wires are installed outside these spaces, within planes parallel with the plates. The analysis is based on the study of particle trajectories, considering the laminar flow of carrier fluid. From these the authors establish the conditions for the maximum recovery of the particles in suspension. This study is useful in designing magnetic filter batteries with corrosion-protected ferromagnetic wires.

  13. Application of velocity filtering to optical-flow passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  14. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  15. Information and Entropy Flow in the Kalman?Bucy Filter

    NASA Astrophysics Data System (ADS)

    Mitter, Sanjoy K.; Newton, Nigel J.

    2005-01-01

    We investigate the information theoretic properties of Kalman-Bucy filters in continuous time, developing notions of information supply, storage and dissipation. Introducing a concept of energy, we develop a physical analogy in which the unobserved signal describes a statistical mechanical system interacting with a heat bath. The abstract `universe' comprising the signal and the heat bath obeys a non-increase law of entropy; however, with the introduction of partial observations, this law can be violated. The Kalman-Bucy filter behaves like a Maxwellian demon in this analogy, returning signal energy to the heat bath without causing entropy increase. This is made possible by the steady supply of new information. In a second analogy the signal and filter interact, setting up a stationary non-equilibrium state, in which energy flows between the heat bath, the signal and the filter without causing any overall entropy increase. We introduce a rate of interactive entropy flow that isolates the statistical mechanics of this flow from marginal effects. Both analogies provide quantitative examples of Landauer's Principle.

  16. Vertical, Bubbly, Cross-Flow Characteristics over Tube Bundles

    NASA Astrophysics Data System (ADS)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    2005-12-01

    Two-phase flow over tube bundles is commonly observed in shell and tube-type heat exchangers. However, only limited amount of data concerning flow pattern and void fraction exists due to the flow complexity and the difficulties in measurement. The detailed flow structure in tube bundles needs to be understood for reliable and effective design. Therefore, the objective of this study was to clarify the two-phase structure of cross-flow in tube bundles by PIV. Experiments were conducted using two types of models, namely in-line and staggered arrays with a pitch-to-diameter ratio of 1.5. Each test section contains 20 rows of five 15 mm O.D. tubes in each row. The experiment’s data were obtained under very low void fraction (α<0.02). Liquid and gas velocity data in the whole flow field were measured successfully by optical filtering and image processing. The structures of bubbly flow in the two different configurations of tube bundles were described in terms of the velocity vector field, turbulence intensity and void fraction.

  17. Coordinated Control of Cross-Flow Turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  18. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.

    PubMed

    Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo

    2017-03-01

    The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths.

  19. Nonlinear ultrasonic measurements based on cross-correlation filtering techniques

    NASA Astrophysics Data System (ADS)

    Yee, Andrew; Stewart, Dylan; Bunget, Gheorghe; Kramer, Patrick; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2017-02-01

    Cyclic loading of mechanical components promotes the formation of dislocation dipoles in metals, which can serve as precursors to crack nucleation and ultimately lead to failure. In the laboratory setting, an acoustic nonlinearity parameter has been assessed as an effective indicator for characterizing the progression of fatigue damage precursors. However, the need to use monochromatic waves of medium-to-high acoustic energy has presented a constraint, making it problematic for use in field applications. This paper presents a potential approach for field measurement of acoustic nonlinearity by using general purpose ultrasonic pulser-receivers. Nonlinear ultrasonic measurements during fatigue testing were analyzed by the using contact and immersion pulse-through method. A novel cross-correlation filtering technique was developed to extract the fundamental and higher harmonic waves from the signals. As in the case of the classic harmonic generation, the nonlinearity parameters of the second and third harmonics indicate a strong correlation with fatigue cycles. Consideration was given to potential nonlinearities in the measurement system, and tests have confirmed that measured second harmonic signals exhibit a linear dependence on the input signal strength, further affirming the conclusion that this parameter relates to damage precursor formation from cyclic loading.

  20. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth

    2016-04-04

    Inadequate access to pure water and sanitation requires new cost-effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide-spread application.

  1. Measurements of the flow and thermal characteristics of turbulet jets in cross flow

    NASA Astrophysics Data System (ADS)

    Sherif, S. A.

    An experimental investigation of the flow, turbulence, and thermal characteristics of heated, cooled, and isothermal turbulent jets in cross flow is reported. The experiments were carried out in a water channel facility of the recirculation type. Hot or cold water was injected verically upward from a circular pipe located near the channel bottom to the cross-flowing stream in the channel. Hot and cold-film anemometers along with appropriate linearizers, bridges, filters, and probes were used. A new signal analysis method was developed for resolving the complex three-dimensional structure of the mean turbulent flow field resulting from the interaction between the free stream and the jet. A rotatable probe technique was used to measure the size components for the Reynolds stress tensor in isothermal flows of any turbulence intensity. New experssions that correct for the temperature contamination of the velocity signals in nonisothermal flows were developed for both the linearized and unlinearized anemometer responses. Mean velocity and turbulence intensity data were obtained for the isothermal jet at jet-to-free stream velocity ratios of 2, 4, and 6 both in and outside the jet plane of symmetry.

  2. Adaptive probabilistic collocation based Kalman filter for unsaturated flow problem

    NASA Astrophysics Data System (ADS)

    Man, J.; Li, W.; Zeng, L.; Wu, L.

    2015-12-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the Polynomial Chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so called "cure of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF is even more computationally expensive than EnKF. Motivated by recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problem. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to alleviate the inconsistency between model parameters and states. The performance of RAPCKF is tested by unsaturated flow numerical cases. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  3. Filter-matrix lattice Boltzmann model for microchannel gas flows.

    PubMed

    Zhuo, Congshan; Zhong, Chengwen

    2013-11-01

    The lattice Boltzmann method has been shown to be successful for microscale gas flows, and it has attracted significant research interest. In this paper, the recently proposed filter-matrix lattice Boltzmann (FMLB) model is first applied to study the microchannel gas flows, in which a Bosanquet-type effective viscosity is used to capture the flow behaviors in the transition regime. A kinetic boundary condition, the combined bounce-back and specular-reflection scheme with the second-order slip scheme, is also designed for the FMLB model. By analyzing a unidirectional flow, the slip velocity and the discrete effects related to the boundary condition are derived within the FMLB model, and a revised scheme is presented to overcome such effects, which have also been validated through numerical simulations. To gain an accurate simulation in a wide range of Knudsen numbers, covering the slip and the entire transition flow regimes, a set of slip coefficients with an introduced fitting function is adopted in the revised second-order slip boundary condition. The periodic and pressure-driven microchannel flows have been investigated by the present model in this study. The numerical results, including the velocity profile and the mass flow rate, as well as the nonlinear pressure distribution along the channel, agree fairly well with the solutions of the linearized Boltzmann equation, the direct simulation Monte Carlo results, the experimental data, and the previous results of the multiple effective relaxation lattice Boltzmann model. Also, the present results of the velocity profile and the mass flow rate show that the present model with the fitting function can yield improved predictions for the microchannel gas flow with higher Knudsen numbers in the transition flow regime.

  4. Coupled continuum and molecular model of flow through fibrous filter

    NASA Astrophysics Data System (ADS)

    Zhao, Shunliu; Povitsky, Alex

    2013-11-01

    A coupled approach combining the continuum boundary singularity method (BSM) and the molecular direct simulation Monte Carlo (DSMC) is developed and validated using Taylor-Couette flow and the flow about a single fiber confined between two parallel walls. In the proposed approach, the DSMC is applied to an annular region enclosing the fiber and the BSM is employed in the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size, and the size of the coupling zone are determined by inspecting the accuracy of pressure drop obtained for the range of Knudsen numbers between zero and unity. The developed approach is used to study flowfield of fibrous filtration flows. It is observed that in the partial-slip flow regime, Kn ⩽ 0.25, the results obtained by the proposed coupled BSM-DSMC method match the solution by BSM combined with the heuristic partial-slip boundary conditions. For transition molecular-to-continuum Knudsen numbers, 0.25 < Kn ⩽ 1, the difference in pressure drop and velocity between these two approaches is significant. This difference increases with the Knudsen number that confirms the usefulness of coupled continuum and molecular methods in numerical modeling of transition low Reynolds number flows in fibrous filters.

  5. Cross-Flow Ultrafiltration with a Shear-Thinning Organic Based Slurry

    SciTech Connect

    Duignan, M.R.

    2001-01-10

    The Department of Energy is sponsoring the River Protection Project, which includes the design of a facility to stabilize liquid radioactive waste that is stored at the Hanford Site. Because of its experience with radioactive waste stabilization, the Savannah River Technology Center (SRTC) of the Westinghouse Savannah River Company was contracted to develop and test parts of the waste treatment process. One part of the process is the separation of highly radioactive solids from the liquid wastes by precipitation and cross-flow filtration. A cross-flow filter was tested with simulated wastes made to represent typical waste chemical and physical characteristics. This paper discusses the results of cross-flow filter operation in a pilot-scale facility that was designed, built, and run by the Experimental Thermal Fluids SRTC.

  6. Flow Characteristics of Pulse Cleaning System in Ceramic Filter

    SciTech Connect

    Zhongli, J.; Peng, S.; Chen, H.; Shi, M.

    2002-09-19

    The rigid ceramic filters have been recognized to be a most promising kind of equipment for the gas-solid separation and the cleaning of hot gases due to their unique properties and higher separation efficiency for larger than 5 {micro}m particles, which will well meet downstream system component protection and environmental standards. They have potential for increased efficiency in advanced coal-fired power generation systems like pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC) process, and petrochemical process such as fluid catalyst cracking (FCC) Process. In the commercial utilization of rigid ceramic filters, the performance of pulse cleaning systems has crucial effects on the long-term structural durability and reliability of the entire design. In order to get a clear insight into the nature of this cleaning process and provide a solid basis for the industrial applications, the transient flow characteristics of the rigid ceramic candle filter during the whole pulse cleaning process should be completely analyzed.

  7. Cross-Effects in Microgravity Flows

    NASA Technical Reports Server (NTRS)

    Loyalka, Sudarshan K.; Tompson, R. V.; Ivchenko, I. N.; Ghosh, T. K.; Hamoodi, S. A.; Hickey, K. A.; Huang, C. M.; Tebbe, Patrick A.; Gabis, D. H.; Tekasakul, P.; Bentz, J. A.

    1996-01-01

    Film growth by chemical/physical vapor deposition is a process of considerable interest in microgravity experiments. The absence of natural convection should allow better control of film growth processes but, in highly non-isothermal ampoules, thermal slip (creep) can become a matter of significant concern. The reported research is a theoretical and experimental investigation of the flow of gas/vapor mixtures under non-continuum conditions. The Boltzmann equation has been solved for a monatomic gas under non-condensing conditions and the various phenomenological coefficients have been computed. Computations for realistic potentials as well as for velocity and creep slip have been completed and the creep slip has been found to be dependent on the type of gas confirming the accuracy of previous variational results. The variational technique has been extended and planar flows calculated via the Burnett solutions. Velocity, diffusion and creep slips have been computed for gas mixtures and previously unknown dependencies of the creep slip on the mixture properties have been observed. Also for gas mixtures, an integral representation of the linearized Boltzmann operator has been developed for use in numerical and variational calculations for all intermolecular force laws. Two, two-bulb capillary systems have been designed, built and tested for the measurements of cross-flows; one of glass for isothermal measurements and one of stainless steel for non-isothermal measurements. Extensive data have been collected for Ar-He and N2-He mixtures at a variety of pressures and mole ratios. Viscosity, velocity slip coefficients and tangential momentum accommodation coefficients have been obtained from measurements with a spinning rotor gauge via a new theory that has been formulated for the spinning rotor gauge in the slip regime. The FIDAP fluid dynamics code has been applied to condensing flows in ampoules in the continuum regime and agreement obtained with the earlier work of

  8. Particle filter based on thermophoretic deposition from natural convection flow

    SciTech Connect

    Sasse, A.G.B.M.; Nazaroff, W.W. ); Gadgil, A.J. )

    1994-04-01

    We present an analysis of particle migration in a natural convection flow between parallel plates and within the annulus of concentric tubes. The flow channel is vertically oriented with one surface maintained at a higher temperature than the other. Particle migration is dominated by advection in the vertical direction and thermophoresis in the horizontal direction. From scale analysis it is demonstrated that particles are completely removed from air flowing through the channel if its length exceeds L[sub c] = (b[sup 4]g/24K[nu][sup 2]), where b is the width of the channel, g is the acceleration of gravity, K is a thermophoretic coefficient of order 0.5, and [nu] is the kinematic viscosity of air. Precise predictions of particle removal efficiency as a function of system parameters are obtained by numerical solution of the governing equations. Based on the model results, it appears feasible to develop a practical filter for removing smoke particles from a smoldering cigarette in an ashtray by using natural convection in combination with thermophoresis. 22 refs., 8 figs., 1 tab.

  9. Transverse jet injection into a supersonic turbulent cross-flow

    NASA Astrophysics Data System (ADS)

    Rana, Z. A.; Thornber, B.; Drikakis, D.

    2011-04-01

    Jet injection into a supersonic cross-flow is a challenging fluid dynamics problem in the field of aerospace engineering which has applications as part of a rocket thrust vector control system for noise control in cavities and fuel injection in scramjet combustion chambers. Several experimental and theoretical/numerical works have been conducted to explore this flow; however, there is a dearth of literature detailing the instantaneous flow which is vital to improve the efficiency of the mixing of fluids. In this paper, a sonic jet in a Mach 1.6 free-stream is studied using a finite volume Godunov type implicit large eddy simulations technique, which employs fifth-order accurate MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme with modified variable extrapolation and a three-stage second-order strong-stability-preserving Runge-Kutta scheme for temporal advancement. A digital filter based turbulent inflow data generation method is implemented in order to capture the physics of the supersonic turbulent boundary layer. This paper details the averaged and instantaneous flow features including vortex structures downstream of the jet injection, along with the jet penetration, jet mixing, pressure distributions, turbulent kinetic energy, and Reynolds stresses in the downstream flow. It demonstrates that Kelvin-Helmholtz type instabilities in the upper jet shear layer are primarily responsible for mixing of the two fluids. The results are compared to experimental data and recently performed classical large eddy simulations (LES) with the same initial conditions in order to demonstrate the accuracy of the numerical methods and utility of the inflow generation method. Results here show equivalent accuracy for 1/45th of the computational resources used in the classical LES study.

  10. Why do Cross-Flow Turbines Stall?

    NASA Astrophysics Data System (ADS)

    Cavagnaro, Robert; Strom, Benjamin; Polagye, Brian

    2015-11-01

    Hydrokinetic turbines are prone to instability and stall near their peak operating points under torque control. Understanding the physics of turbine stall may help to mitigate this undesirable occurrence and improve the robustness of torque controllers. A laboratory-scale two-bladed cross-flow turbine operating at a chord-based Reynolds number ~ 3 ×104 is shown to stall at a critical tip-speed ratio. Experiments are conducting bringing the turbine to this critical speed in a recirculating current flume by increasing resistive torque and allowing the rotor to rapidly decelerate while monitoring inflow velocity, torque, and drag. The turbine stalls probabilistically with a distribution generated from hundreds of such events. A machine learning algorithm identifies stall events and indicates the effectiveness of available measurements or combinations of measurements as predictors. Bubble flow visualization and PIV are utilized to observe fluid conditions during stall events including the formation, separation, and advection of leading-edge vortices involved in the stall process.

  11. Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter.

    PubMed

    Cobos-Becerra, Yazmin Lucero; González-Martínez, Simón

    2013-01-01

    The aim of this study was to evaluate backwashing effects on the apparent porosity of the filter media and on the hydraulic behaviour of a pilot scale submerged filter, prior to biofilm colonization, under different hydraulic retention times, and different air flow rates. Tracer curves were analysed with two mathematical models for ideal and non-ideal flow (axial dispersion and Wolf and Resnick models). The filter media was lava stones sieved to 4.5 mm. Backwashing causes attrition of media particles, decreasing the void volume of the filter media and, consequently, the tracer flow is more uniform. The eroded media presented lower dead volumes (79% for the filter with aeration and 8% for the filter without aeration) compared with the new media (83% for the filter with aeration and 22% for the filter without aeration). The flow patterns of eroded and new media were different because the more regular shape of the particles decreases the void volume of the filter media. The dead volume is attributed, in the case of the filter with aeration, to the turbulence caused by the air bubbles that generate preferential channelling of the bulk liquid along the filter media, creating large zones of stagnant liquid and, for the filter without aeration, to the channels formed due to the irregular shaped media.

  12. Highly Inclined Jets in Cross Flow

    NASA Technical Reports Server (NTRS)

    Milanovic, I. M.; Zaman, K. B. M. Q.

    2003-01-01

    Results from an experimental investigation of flow field generated by pitched and yawed jets discharging from a flat plate into a cross-flow are presented. The circular jet was pitched at alpha = 20deg and 45deg and yawed between Beta = 0deg and 90deg in increments of 15deg. The measurements were performed with two ×-wires providing all three components of velocity and turbulent stresses. These data were obtained at downstream locations of x = 3, 5, 10 and 20, where the distance x, normalized by the jet diameter, is measured from the center of the orifice. Data for all configurations were acquired at a momentum-flux ratio J = 8. Additionally, for selected angles and locations, surveys were conducted for J = 1.5, 4, and 20. As expected, the jet penetration is found to be higher at larger alpha. With increasing beta the jet spreads more. The rate of reduction of peak streamwise vorticity, ? max, with the downstream distance is significantly less at higher Beta but is found to be practically independent of alpha. Thus, at the farthest measurement station x = 20, ?xmax is about five times larger for Beta = 75deg compared to the levels at Beta = 0deg. Streamwise velocity within the jet-vortex structure is found to depend on the parameter J. At J = 1.5 and 4, 'wake-like' velocity profiles are observed. In comparison, a 'jet-like' overshoot is present at higher J. Distributions of turbulent stresses for various cases are documented. Peak normal stresses are found to occur within the core of the streamwise vortices. With yaw, at lower values of J, high turbulence is also observed in the boundary layer underneath the jet-vortex structure

  13. Baleen Hydrodynamics and Morphology of Cross-Flow Filtration in Balaenid Whale Suspension Feeding

    PubMed Central

    Werth, Alexander J.; Potvin, Jean

    2016-01-01

    The traditional view of mysticete feeding involves static baleen directly sieving particles from seawater using a simple, dead-end flow-through filtration mechanism. Flow tank experiments on bowhead (Balaena mysticetus) baleen indicate the long-standing model of dead-end filtration, at least in balaenid (bowhead and right) whales, is not merely simplistic but wrong. To recreate continuous intraoral flow, sections of baleen were tested in a flume through which water and buoyant particles circulated with variable flow velocity. Kinematic sequences were analyzed to investigate movement and capture of particles by baleen plates and fringes. Results indicate that very few particles flow directly through the baleen rack; instead much water flows anteroposteriorly along the interior (lingual) side of the rack, allowing items to be carried posteriorly and accumulate at the posterior of the mouth where they might readily be swallowed. Since water flows mainly parallel to rather than directly through the filter, the cross-flow mechanism significantly reduces entrapment and tangling of minute items in baleen fringes, obviating the need to clean the filter. The absence of copepods or other prey found trapped in the baleen of necropsied right and bowhead whales supports this hypothesis. Reduced through-baleen flow was observed with and without boundaries modeling the tongue and lips, indicating that baleen itself is the main if not sole agent of crossflow. Preliminary investigation of baleen from balaenopterid whales that use intermittent filter feeding suggests that although the biomechanics and hydrodynamics of oral flow differ, cross-flow filtration may occur to some degree in all mysticetes. PMID:26918630

  14. Baleen Hydrodynamics and Morphology of Cross-Flow Filtration in Balaenid Whale Suspension Feeding.

    PubMed

    Werth, Alexander J; Potvin, Jean

    2016-01-01

    The traditional view of mysticete feeding involves static baleen directly sieving particles from seawater using a simple, dead-end flow-through filtration mechanism. Flow tank experiments on bowhead (Balaena mysticetus) baleen indicate the long-standing model of dead-end filtration, at least in balaenid (bowhead and right) whales, is not merely simplistic but wrong. To recreate continuous intraoral flow, sections of baleen were tested in a flume through which water and buoyant particles circulated with variable flow velocity. Kinematic sequences were analyzed to investigate movement and capture of particles by baleen plates and fringes. Results indicate that very few particles flow directly through the baleen rack; instead much water flows anteroposteriorly along the interior (lingual) side of the rack, allowing items to be carried posteriorly and accumulate at the posterior of the mouth where they might readily be swallowed. Since water flows mainly parallel to rather than directly through the filter, the cross-flow mechanism significantly reduces entrapment and tangling of minute items in baleen fringes, obviating the need to clean the filter. The absence of copepods or other prey found trapped in the baleen of necropsied right and bowhead whales supports this hypothesis. Reduced through-baleen flow was observed with and without boundaries modeling the tongue and lips, indicating that baleen itself is the main if not sole agent of crossflow. Preliminary investigation of baleen from balaenopterid whales that use intermittent filter feeding suggests that although the biomechanics and hydrodynamics of oral flow differ, cross-flow filtration may occur to some degree in all mysticetes.

  15. Improvement of hemodynamic performance using novel helical flow vena cava filter design

    PubMed Central

    Chen, Ying; Zhang, Peng; Deng, Xiaoyan; Fan, Yubo; Xing, Yubin; Xing, Ning

    2017-01-01

    We propose a vena cava filter in which helical flow is created in the filter’s working zone to minimize filter blockage by trapped clots and facilitate the lysis of trapped clots. To validate this new design, we compared five helical flow inducers with different thread pitches in terms of blood flow patterns in the filter. The vena cava was reconstructed based on computed tomography images. Both the numerical simulation and in vitro experiment revealed that the helical flow inducer can effectively create a helical flow in the vessel, thereby subduing the filter structure’s adverse disruption to blood flow, and increasing flow-induced shear stress in the filter center. In addition, the smaller thread pitch helical flow inducer reduced the oscillating shear index and relative residence time on the vessel wall. Moreover, we observed that the helical flow inducer in the vena cava could induce flow rotation both in clockwise and counterclockwise directions. In conclusion, the new design of the filter with the smaller thread pitch inducer is advantageous over the traditional filter in terms of improving local hemodynamics, which may reduce thrombosis build-up after deployment. PMID:28112186

  16. A Graphical Filter/Flow Representation of Boolean Queries: A Prototype Implementation and Evaluation.

    ERIC Educational Resources Information Center

    Young, Degi; Shneiderman, Ben

    1993-01-01

    Literature showing the disadvantages of Boolean logic in online searching is reviewed, and research comparing the Filter/Flow visual interface (i.e., a graphical representation of Boolean operators) with a text-only interface is described. A significant difference in the total number of correct queries is reported that favored Filter/Flow. (16…

  17. The effect of flow on the filtration performance of paediatric breathing system filters.

    PubMed

    Wilkes, A R; Malan, C A; Hall, J E

    2008-01-01

    The effect of flow on the filtration performance of six different types of filter intended for use in paediatric anaesthesia was measured by challenging the filters with sodium chloride particles at five different flows: 6, 10, 15, 20 and 30 l x min(-1). Twenty-five unused samples of each filter type were evaluated. The pressure drop across each filter was measured at the same flows as those used to measure penetration. The pressure drop varied both between and within the types of filter. Mean pressure drop varied between 89 and 262 Pa at a flow of 15 l x min(-1) for the six different filters. Penetration of sodium chloride particles varied from 1.9 to 18% at 15 l x min(-1) for the six filters. Allowing for the variation in pressure drop, the penetration of particles increased fairly linearly as flow increased for all six filter types. The increase in penetration per unit increase in flow varied from 0.11 to 0.82% per litre per minute. Over the range of flows studied, the increase in penetration with flow is fairly predictable.

  18. Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids

    SciTech Connect

    Duignan, M.R.

    2000-06-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  19. The Effect of Cross Flow on Slat Noise

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Choudhari, Meelan M.

    2010-01-01

    This paper continues the computational examination (AIAA Journal, Vol. 45, No. 9, 2007, pp. 2174-2186) of the unsteady flow within the slat cove region of a multi-element high-lift airfoil configuration. Two simulations have been performed to examine the effect of cross flow on the near-field fluctuations and far-field acoustics. The cross flow was imposed by changing the free-stream velocity vector and modifying the Reynolds number. The cross flow does appear to alter the dynamics in the cove region, but the impact on the noise seems to be more dependent on the flow conditions. However, separating out the true effects of the cross flow from those of the Mach and Reynolds number would require additional calculations to isolate those effects.

  20. Cross flow characteristics in a three fuel assemblies

    SciTech Connect

    Bae, J. H.; Euh, D. J.; Park, C. K.; Youn, Y. J.; Kwon, T. S.

    2012-07-01

    To evaluate the reactor thermal margin of APR+, reactor core flow distribution including both axial and lateral directional hydraulic resistances of fuel assemblies should be known. 3-Ch cross flow test facility has been constructed with three full-size fuel assemblies to investigate the cross flow characteristics. Performance tests have been performed. The axial and lateral directional hydraulic resistances of fuel assemblies have been measured. The test results have been compared to the CFD calculation. (authors)

  1. Hollywood log-homotopy: movies of particle flow for nonlinear filters

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2011-06-01

    In this paper we show five movies of particle flow to provide insight and intuition about this new algorithm. The particles flow solves the well known and important problem of particle degeneracy. Bayes' rule is implemented by particle flow rather than as a pointwise multiplication. This theory is roughly seven orders of magnitude faster than standard particle filters, and it often beats the extended Kalman filter by two orders of magnitude in accuracy for difficult nonlinear problems.

  2. Non-resonant parametric amplification in biomimetic hair flow sensors: Selective gain and tunable filtering

    NASA Astrophysics Data System (ADS)

    Droogendijk, H.; Bruinink, C. M.; Sanders, R. G. P.; Krijnen, G. J. M.

    2011-11-01

    We demonstrate that the responsivity of flow sensors for harmonic flows can be improved significantly by non-resonant parametric amplification. Using electrostatic spring softening by AC-bias voltages, increased responsivity and sharp filtering are achieved in our biomimetic flow sensors. Tunable filtering is obtained for non-resonant electromechanical parametric amplification, applicable at a wide range of non-resonant frequencies while achieving highly selective gain of up to 20 dB.

  3. Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter

    SciTech Connect

    Singer, M A; Henshaw, W D; Wang, S L

    2008-02-04

    To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flow in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating

  4. Flow in tubes of non-circular cross-sections

    NASA Astrophysics Data System (ADS)

    Quadir, Raushan Ara

    Laminar, viscous, incompressible flow in tubes of noncircular cross sections is investigated. The specific aims of the investigation are (1) to look at the problems of both developing flow and fully developed flow, (2) to consider noncircular cross sections in a more systematic manner than has been done in the past, and (3) to develop a relatively simple finite element technique for producing accurate numerical solutions of flow in tubes of fairly arbitrary cross sections. Fully developed flow in tubes is governed by a Poisson type equation for the mainstream velocity. Both analytical and numerical solutions are considered. The cross sections studied include elliptic and rectangular cross sections of different aspect ratios, some triangular cross sections, and a series of crescent-shaped cross sections. The physical characteristics of the flow are examined in a systematic manner in order to determine how these characteristics are affected by certain geometrical features of the cross section. Solutions fall into three basic categories depending on the shape of the cross section. In the first category, which includes circular and elliptic cross sections, solutions are possible in closed form. In the second, including rectangular and some triangular cross sections, solutions are in the form of infinite series. In the third, including cross sections of more complicated or irregular shapes, only numerical solutions are possible. Results of calculations of velocity profiles, flow rate, pumping power, and friction factor are presented in a way which can be useful for engineering applications. In numerical studies of both developing and fully developed flow finite element techniques are used. Results are obtained for tubes of rectangular and elliptic cross sections of different aspect ratios, for tubes of crescent-shaped cross sections, and a tube whose cross section is an oval of Cassini. For fully developed flow, results are compared with the corresponding exact

  5. Adaptive Low Dissipative High Order Filter Methods for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2004-01-01

    Adaptive low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field [divergence of B] numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.

  6. Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass

    PubMed Central

    Milano, Aldo D.; Dodonov, Mikhail; Onorati, Francesco; Menon, Tiziano; Gottin, Leonardo; Malerba, Giovanni; Mazzucco, Alessandro; Faggian, Giuseppe

    2013-01-01

    OBJECTIVES Cardiopulmonary bypass (CPB) has a risk of embolic injury with an important role of gaseous micro-bubbles (GMBs), coming from CPB-circuit. Pulsatile perfusion (PP) can provide specific conditions for supplementary GMB-activity with respect to non-pulsatile (NP). We aimed to test GMB-filtering properties of three modern oxygenators under pulsatile and non-pulsatile conditions. METHODS Seventy-eight patients undergoing on-pump myocardial revascularization were randomized prospectively into three equal groups according to the oxygenator model used during CPB. Terumo Capiox-FX25, Sorin Synthesis or Maquet Quadrox-i-Adult membrane oxygenators were tested. Each group was divided equally to undergo PP or NP. GMBs were counted by means of a GAMPT-BCC200 bubble-counter with two probes placed at preoxygenator and arterial post-filter positions. Results were evaluated in terms of GMB-volume, GMB-number, amount of large over-ranged GMBs, a series of filtering indices and major neurological outcomes. RESULTS PP decreased GMB-filtering properties of the tested oxygenators. Those with integrated filters (CAPIOX-FX25 and SYNTHESIS) did not show significant differences between perfusion groups, while QUADROX-i oxygenator with external arterial filter showed significantly higher GMB-volume (P < 0.001), GMB-number (P < 0.001) and amount of over-ranged bubbles (P < 0.001) detected in arterial line during PP. Despite the differences in filtering capacity of all circuits with both types of perfusion, no important differences in clinical outcomes and major neurological events were observed. CONCLUSIONS Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during CPB. PP requires specially designed circuit components to avoid the risk of additional GMB delivery. PMID:23842758

  7. Effects of flow maldistribution on the thermal performance of cross-flow micro heat exchangers

    NASA Astrophysics Data System (ADS)

    Nonino, C.; Savino, S.

    2016-09-01

    The combined effect of viscosity- and geometry-induced flow maldistribution on the thermal performance of cross-flow micro heat exchangers is investigated with reference to two microchannel cross-sectional geometries, three solid materials, three mass flow rates and three flow nonuniformity models. A FEM procedure, specifically developed for the analysis of the heat transfer between incompressible fluids in cross-flow micro heat exchangers, is used for the numerical simulations. The computed results indicate that flow maldistribution has limited effects on microchannel bulk temperatures, at least for the considered range of operating conditions.

  8. Two interacting cylinders in cross flow.

    PubMed

    Alam, Md Mahbub; Meyer, J P

    2011-11-01

    Cylindrical structures in a group are frequently seen on land and in the ocean. Mutual flow interaction between the structures makes the wake very excited or tranquil depending on the spacing between the structures. The excited wake-enhancing forces in some cases cause a catastrophic failure of the structures. This paper presents results of an experimental investigation of Strouhal number (St), time-mean, and fluctuating forces on, and flow structures around, two identical circular cylinders at stagger angle α = 0°-180° and gap-spacing ratio T/D=0.1-5, where T is the gap width between the cylinders, and D is the diameter of a cylinder. While forces were measured using a load cell, St was from spectral analysis of fluctuating pressures measured on the side surfaces of the cylinders. A flow visualization test was conducted to observe flow structures around the cylinders. Based on forces, St, and flow structures, 19 distinct flow categories in the ranges of α and T/D investigated are observed, including one quadristable flow, three kinds of tristable flows, and four kinds of bistable flows. The quadristable, tristable, and bistable flows ensue from instabilities of the gap flow, shear layers, vortices, separation bubbles, and wakes, engendering a strong jump or drop in forces and St of the cylinders. The two cylinders interact with each other in six different mechanisms, namely interaction between boundary layer and cylinder, shear layer or wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex. While the interaction between vortex and cylinder results in a very high fluctuating drag, that between vortex and shear layer results in a high fluctuating lift. On the other hand, the interaction between shear layer or wake and cylinder weakens mean and fluctuating forces and flow unsteadiness. A mutual discussion of forces, St, and flow structures is presented in this paper.

  9. Design of cross-coupled planar microstrip band-pass filters using a novel adjustment method

    NASA Astrophysics Data System (ADS)

    Alkafaji, Muhammed S. S.

    2015-02-01

    In this paper the design of a cross-coupled planar microwave band-pass filter using open-loop square microstrip resonators, with two symmetrically placed attenuation poles, is presented. The design starts from the following specifications: central frequency 3GHz, 150MHz bandwidth, 1dB ripple in the pass-band corresponding to return loss of 6.8dB.The adjustment method using additional ports placed on each resonator of the filter is used, allowing the interconnection of the filter structure with external lumped elements. Connecting a reactive element (capacitor) from such an additional port to ground allows a fine tuning of the resonator. Connecting a reactive element between two such additional ports allows a fine change in the coupling coefficient between these resonators. After adding four extra ports and connecting the external elements (capacitors), it is possible to use fast circuit simulation software to optimize the filter's response. Then all these capacitors have to be gradually eliminated, by compensating their effects through fine changes back in the layouts. If some specific issues are properly handled, this procedure improves considerably the quality of the final design of the filter. After a thorough optimization of the layout, the filter was fabricated and measured. The results of measurements are in good agreement with the specifications of the filter, showing this way the efficiency of the applied optimization method.

  10. Parametric study on performance of cross-flow turbine

    SciTech Connect

    Joshi, C.B.; Seshadri, V.; Singh, S.N.

    1995-04-01

    In the present experimental study, the effect of blade number, nozzle entry arc, and head on the performance characteristics of a cross-flow turbine have been investigated. It has been observed that the efficiency of the turbine increases with increase in blade number, nozzle entry arc, and head. The present investigation has also shown that there is an optimum number of blades for a given nozzle entry arc beyond which the performance of the cross-flow turbine deteriorates. It has also been shown that cross-flow turbines at higher heads do not behave as pure impulse turbines.

  11. An evaluation of the filtration performance of paediatric breathing system filters at low flows.

    PubMed

    Malan, C A; Wilkes, A R; Hall, J E; Gildersleve, C

    2007-05-01

    The filtration performance of five different types of filter intended for use in paediatric anaesthesia was measured. A total of 120 unused filters (24 samples of each filter type) were evaluated. The pressure drop and filtration performance, using challenges of sodium chloride particles, were measured for each filter at 3 l min(-1) and 15 l min(-1). The pressure drop was less at the lower flow; there was a wide variation in the pressure drop across some filters. The filtration performance of all filter types showed an improvement at 3 l min(-1) compared to 15 l min(-1). Four filter types had filtration efficiencies greater than 95% at 15 l min(-1) and greater than 99% at 3 l min(-1). The remaining filter type had a filtration efficiency less than 90% at 15 l min(-1) and greater than 95% at 3 l min(-1). These levels of performance are comparable to that of breathing system filters intended for use in adult anaesthesia using flows representing mean inspiratory flow.

  12. Enhanced optical flow field of left ventricular motion using quasi-Gaussian DCT filter.

    PubMed

    Riyadi, Slamet; Mustafa, Mohd Marzuki; Hussain, Aini; Maskon, Oteh; Nor, Ika Faizura Mohd

    2011-01-01

    Left ventricular motion estimation is very important for diagnosing cardiac abnormality. One of the popular techniques, optical flow technique, promises useful results for motion quantification. However, optical flow technique often failed to provide smooth vector field due to the complexity of cardiac motion and the presence of speckle noise. This chapter proposed a new filtering technique, called quasi-Gaussian discrete cosine transform (QGDCT)-based filter, to enhance the optical flow field for myocardial motion estimation. Even though Gaussian filter and DCT concept have been implemented in other previous researches, this filter introduces a different approach of Gaussian filter model based on high frequency properties of cosine function. The QGDCT is a customized quasi discrete Gaussian filter in which its coefficients are derived from a selected two-dimensional DCT. This filter was implemented before and after the computation of optical flow to reduce the speckle noise and to improve the flow field smoothness, respectively. The algorithm was first validated on synthetic echocardiography image that simulates a contracting myocardium motion. Subsequently, this method was also implemented on clinical echocardiography images. To evaluate the performance of the technique, several quantitative measurements such as magnitude error, angular error, and standard error of measurement are computed and analyzed. The final motion estimation results were in good agreement with the physician manual interpretation.

  13. Analysis of nitrogen removal processes in a subsurface flow carbonate sand filter treating municipal wastewater.

    PubMed

    Kløve, Bjørn; Søvik, Anne-Kristine; Holtan-Hartwig, Liv

    2005-01-01

    Controlled experiments were carried out in a mesoscale subsurface flow sand filter treating municipal wastewater from a single household. The system consisted of a 50 cm high vertical flow column (pre-filter) with unsaturated flow and a 3 m long horizontal subsurface flow unit (main filter) with saturated flow. Fluxes of nitrogen and carbon were analyzed in 4 different operating conditions (low and high loading, with and without the prefilter unit). Water samples were taken from the inlet, the outlet and within the sand filter at different depths and locations and analysed for water quality (Tot N, NO3-N, NH4-N, TOC, DOC, CODcr, BOD5, SS, pH, and EC) and dissolved gas content (N2O, CH4, and CO2). Emissions of N2O, CH4, and CO2 were measured with the closed-chamber technique adjacent to water quality sampling points. The results show that prefiltering in a vertical, unsaturated flow column changed the incoming ammonium to nitrate during low loading. During high loading part of the ammonium nitrified in the pre-filter was lost by denitrification. Within the horizontal main filter there were two pathways for the incoming nitrate: denitrification and dissimilatory nitrate reduction to ammonium (DNRA).

  14. Study on an undershot cross-flow water turbine

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro

    2014-06-01

    This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.

  15. Application of Micropore Filter Technology: Exploring the Blood Flow Path in Arterial-Line Filters and Its Effect on Bubble Trapping Functions.

    PubMed

    Herbst, Daniel P

    2017-03-01

    Conventional arterial-line filters commonly use a large volume circular shaped housing, a wetted micropore screen, and a purge port to trap, separate, and remove gas bubbles from extracorporeal blood flow. Focusing on the bubble trapping function, this work attempts to explore how the filter housing shape and its resulting blood flow path affect the clinical application of arterial-line filters in terms of gross air handling. A video camera was used in a wet-lab setting to record observations made during gross air-bolus injections in three different radially designed filters using a 30-70% glycerol-saline mixture flowing at 4.5 L/min. Two of the filters both had inlet ports attached near the filter-housing top with bottom oriented outlet ports at the bottom, whereas the third filter had its inlet and outlet ports both located at the bottom of the filter housing. The two filters with top-in bottom-out fluid paths were shown to direct the incoming flow downward as it passed through the filter, placing the forces of buoyancy and viscous drag in opposition to each other. This contrasted with the third filter's bottom-in bottom-out fluid path, which was shown to direct the incoming flow upward so that the forces of buoyancy and viscous drag work together. The direction of the blood flow path through a filter may be important to the application of arterial-line filter technology as it helps determine how the forces of buoyancy and flow are aligned with one another.

  16. Performance Evaluation of Axial Flow AG-1 FC and Prototype FM (High Strength) HEPA Filters - 13123

    SciTech Connect

    Giffin, Paxton K.; Parsons, Michael S.; Wilson, John A.; Waggoner, Charles A.

    2013-07-01

    High efficiency particulate air (HEPA) filters are routinely used in DOE nuclear containment activities. The Nuclear Air Cleaning Handbook (NACH) stipulates that air cleaning devices and equipment used in DOE nuclear applications must meet the American Society of Mechanical Engineers (ASME) Code on Nuclear Air and Gas Treatment (AG-1) standard. This testing activity evaluates two different axial flow HEPA filters, those from AG-1 Sections FC and FM. Section FM is under development and has not yet been added to AG-1 due to a lack of qualification data available for these filters. Section FC filters are axial flow units that utilize a fibrous glass filtering medium. The section FM filters utilize a similar fibrous glass medium, but also have scrim backing. The scrim-backed filters have demonstrated the ability to endure pressure impulses capable of completely destroying FC filters. The testing activities presented herein will examine the total lifetime loading for both FC and FM filters under ambient conditions and at elevated conditions of temperature and relative humidity. Results will include loading curves, penetration curves, and testing condition parameters. These testing activities have been developed through collaborations with representatives from the National Nuclear Security Administration (NNSA), DOE Office of Environmental Management (DOE-EM), New Mexico State University, and Mississippi State University. (authors)

  17. Comparison of NOM removal and microbial properties in up-flow/down-flow BAC filter.

    PubMed

    Han, Lineng; Liu, Wenjun; Chen, Mo; Zhang, Minglu; Liu, Shuming; Sun, Ruilin; Fei, Xiangqin

    2013-09-15

    The removal of natural organic matter (NOM) in term of CODMn by up-flow biologically activated carbon filter (UBACF) and down-flow biologically activated carbon filter (DBACF) was investigated in a pilot-scale test. The impacts of the molecular weight distribution of NOM on its degradation by the UBACF and DBACF were evaluated. The relationship between biodegradation and the microbial properties in the UBACF and DBACF were approached as well. The feed water of the UBACF and DBACF were pumped from the effluent of the rapid sand filtration (RSF) of Chengnan Drinking Water Treatment Plant (CDWTP), Huaian, Jiangsu Province, China. When the adsorption was the dominant mechanism of NOM removal at the initial stage of operation, the CODMn removal efficiency by the UBACF was lower than the DBACF. However, with the microbes gradually accumulated and biofilm formed, the removal of CODMn by the UBACF increased correspondingly to 25.3%, at the steady-state operation and was approximately 10% higher than that by the DBACF. Heterotrophy plate count (HPC) in the finished water of the UBACF was observed 30% higher than that of the DBACF. The UBACF effluent had higher concentration of detached bacteria whereas the DBACF harbored more attached biomass. The highest attached biomass concentration of the UBACF was found in the middle of the GAC bed. On the contrary, the highest attached biomass concentration of the DBACF was found on the top of the GAC bed. Furthermore, a total of 9479 reads by pyrosequencing was obtained from samples of the UBACF and DBACF effluents. The UBACF effluent had a more diverse microbial community and more even distribution of species than the DBACF effluent did. Alphaproteobacteria and Betaproteobacteria were the dominant groups in the finished water of the UBACF and DBACF. The higher organic matter removal by the UBACF was attributed to the presence of its higher biologically activity.

  18. Molecular filter-based diagnostics in high speed flows

    NASA Technical Reports Server (NTRS)

    Elliott, Gregory S.; Samimy, MO; Arnette, Stephen A.

    1993-01-01

    The use of iodine molecular filters in nonintrusive planar velocimetry methods is examined. Detailed absorption profiles are obtained to highlight the effects that determine the profile shape. It is shown that pressure broadening induced by the presence of a nonabsorbing vapor can be utilized to significantly change the slopes bounding the absorbing region while remaining in the optically-thick regime.

  19. Plasmonic band-pass filter device using coupled asymmetric cross-shaped cavity

    NASA Astrophysics Data System (ADS)

    Geng, Xiao-Meng; Mi, Si-Chen; Wang, Tie-Jun; He, Lin-Yan; Wang, Chuan

    2017-01-01

    In this paper, a novel plasmonic band-pass filter by using the system consisting four waveguides and an asymmetric cross-shaped resonator is proposed. The plasmonic system is based on the metal-insulator-metal (MIM) structure which could overcome the diffraction limit and exhibit various promising applications. Here, we investigate the transmission spectra of the cross-shaped resonator by using finite-different-time-domain (FDTD) method and we find that the peak-wavelength on different ports show redshift or blueshift behaviors which are linearly changed with the length of cavity or the coupling distance. Moreover, the wavelength filter could be achieved and further applied in optical signal integrated circuits.

  20. A scale-down cross-flow filtration technology for biopharmaceuticals and the associated theory.

    PubMed

    Guo, Shuyin; Kiefer, Hans; Zhou, Dansheng; Guan, Yue Hugh; Wang, Shili; Wang, Hua; Lu, Ying; Zhuang, Yingping

    2016-03-10

    Use of microfiltration (MF) and ultrafiltration (UF) in cross-flow mode has been intensifying in downstream processing for expensive biopharmaceuticals. A scale-down cross-flow module with ring channel was constructed for reducing costs and increasing throughput. Commensurate with its validation, a new scale down (or scale up) theoretical framework has been further developed to 3 operational parities: (1) ratio of initial sample volume to membrane area, (2) shear force adjacent to membrane surface, and (3) initial permeate flux. By keeping identical initial physicochemical properties, we show that these 3 operational parities are equivalent to 2 further time-dependent theoretical parities for flux and transmission respectively. Importantly, transmission sensitively reflects membrane conditions for partially transmissible molecules or particles. Computational fluid dynamics simulation was conducted to confirm nearly identical shear forces for the mini and its reference filters. Permeate fluxes in suspension containing Escherichia coli phage T7, a monoclonal antibody (MAb) or other proteins, and transmission (with phage T7) were measured. For application demonstration, diafiltration and concentration modes were applied to the MAb, and separation mode to a mixture of bovine serum albumin and lysozyme. In conclusion, the developed scale-down filter has been shown to behave identically or similarly to its reference filter.

  1. Effects of Purge-Flow Rate on Microbubble Capture in Radial Arterial-Line Filters

    PubMed Central

    Herbst, Daniel P.

    2016-01-01

    Abstract: The process of microbubble filtration from blood is complex and highly dependent on the forces of flow and buoyancy. To protect the patient from air emboli, arterial-line filters commonly use a micropore screen, a large volume housing with purpose-built shape, and a purge port to trap, separate, and remove circulating microbubbles. Although it has been proposed that an insufficient buoyancy force renders the purge port ineffective at removing microbubbles smaller than 500 μm, this research attempts to investigate the purge flow of an arterial-line filter to better understand the microbubble removal function in a typical radial filter design. As its primary objective, the study aims to determine the effect of purge-flow rate on bubble capture using air bolus injections from a syringe pump with 22-gauge needle and Doppler ultrasound bubble detection. The measureable bubble size generated in the test circuit ranged between 30 and 500 μm, while purge flow was varied between .1 and .5 L/min for testing. Statistical analysis of the test data was handled using a repeated measures design with significance set at p < .05 level. Outcomes demonstrated that higher purge flows yielded higher bubble counts, but the effect of purge-flow rate on bubble capture decreased as bubble size increased. Results also showed that purge flow from the test filter was capable of capturing all bubble sizes being generated over the entire flow range tested, and confirms utility of the purge port in removing microbubbles smaller than 500 μm. By analyzing bubble counts in the purge flow of a typical radial-filter design, this study demonstrates that currently available micropore filter technology is capable of removing the size range of bubbles that commonly pass through modern pump-oxygenator systems and should continue to be considered during extracorporeal circulation as a measure to improve patient safety. PMID:27729703

  2. Effects of Purge-Flow Rate on Microbubble Capture in Radial Arterial-Line Filters.

    PubMed

    Herbst, Daniel P

    2016-09-01

    The process of microbubble filtration from blood is complex and highly dependent on the forces of flow and buoyancy. To protect the patient from air emboli, arterial-line filters commonly use a micropore screen, a large volume housing with purpose-built shape, and a purge port to trap, separate, and remove circulating microbubbles. Although it has been proposed that an insufficient buoyancy force renders the purge port ineffective at removing microbubbles smaller than 500 μm, this research attempts to investigate the purge flow of an arterial-line filter to better understand the microbubble removal function in a typical radial filter design. As its primary objective, the study aims to determine the effect of purge-flow rate on bubble capture using air bolus injections from a syringe pump with 22-gauge needle and Doppler ultrasound bubble detection. The measureable bubble size generated in the test circuit ranged between 30 and 500 μm, while purge flow was varied between .1 and .5 L/min for testing. Statistical analysis of the test data was handled using a repeated measures design with significance set at p < .05 level. Outcomes demonstrated that higher purge flows yielded higher bubble counts, but the effect of purge-flow rate on bubble capture decreased as bubble size increased. Results also showed that purge flow from the test filter was capable of capturing all bubble sizes being generated over the entire flow range tested, and confirms utility of the purge port in removing microbubbles smaller than 500 μm. By analyzing bubble counts in the purge flow of a typical radial-filter design, this study demonstrates that currently available micropore filter technology is capable of removing the size range of bubbles that commonly pass through modern pump-oxygenator systems and should continue to be considered during extracorporeal circulation as a measure to improve patient safety.

  3. Turbulent combustion flow through variable cross section channel

    SciTech Connect

    Rogov, B.V.; Sokolova, I.A.

    1999-07-01

    The object of this study is to develop a new evolutionary numerical method for solving direct task of Laval nozzle, which provides non-iterative calculations of chemical reacting turbulent flows with detailed kinetic chemistry. The numerical scheme of fourth order along the normal coordinate and second order along the streamwise one is derived for calculation of difference-differential equations of the second order and the first order. Marching method provides the possibility of computing field flow in subsonic section of nozzle and near an expansion. Critical mass consumption is calculated with controlled accuracy. After critical cross section of nozzle a combined marching method with global iterations over axial pressure (only) makes it possible to overcome ill posedness of mixed supersonic flow and calculate the whole flow field near and after critical cross section. Numerical results are demonstrated on turbulent burning hydrogen-oxygen flow through Laval nozzle with curvature of wall K{sub w} = 0.5.

  4. Flow and fouling in membrane filters: Effects of membrane morphology

    NASA Astrophysics Data System (ADS)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  5. Modeling Flow Past a TrapEase Inferior Vena Cava Filter

    NASA Astrophysics Data System (ADS)

    Singer, Michael; Henshaw, William; Wang, Stephen

    2008-11-01

    This study uses three-dimensional computational fluid dynamics to evaluate the efficacy of the TrapEase inferior vena cava (IVC) filter. Hemodynamics of the unoccluded and partially occluded filter are examined, and the clinical implications are assessed. The IVC, which is the primary vein that drains the legs, is modeled as a straight pipe, and a geometrically accurate model of the filter is constructed using computer aided design. Blood is modeled as a homogeneous, incompressible, Newtonian fluid, and the method of overset grids is used to solve the Navier-Stokes equations. Results are corroborated with in-vitro studies. Flow around the unoccluded filter demonstrates minimal disruption, but spherical clots in the downstream trapping position lead to regions of stagnant and recirculating flow that may promote further clotting. The volume of stagnant flow and the peak wall shear stress increase with clot volume. For clots trapped in the upstream trapping position, flow is disrupted along the cava wall downstream of the clot and within the filter. The shape and location of trapped clots also effect the peak wall shear stress and may impact the efficacy of the filter.

  6. Experimental study of cross-flow wet electrostatic precipitator.

    PubMed

    Ali, M; Pasic, H; Alam, K; Tiji, S A N; Mannella, N; Silva, T; Liu, T

    2016-12-01

    This paper reports development and testing of a novel cross-flow wet electrostatic precipitator (WESP), recently patented at Ohio University, that utilizes vertical columns of permeable material in the form of polypropylene ropes placed in a cross-flow configuration within a flue gas stream. The cross-flow design has large surface area, which provides scrubbing action; therefore, it has the potential for removing multiple pollutants, including particulates, gases, vapors, and mists. In this new method, the ropes are kept wet by the liquid (water) introduced from the top of the cells running downward on the ropes by capillary action, making the permeable materials act as the ground electrode for capturing particles from the flue gas. Preliminary testing has shown an efficiency of well above 80% using two cells and three sets of discharge electrodes. Since the material of construction is primarily corrosion-resistant polymeric material, both weight and cost reductions are expected from this new design.

  7. Formation of scalloped cross-bedding without unsteady flows.

    USGS Publications Warehouse

    Rubin, D.M.

    1987-01-01

    Scalloped cross-bedding formed by fluctuating flow superficially resembles that formed by superimposed or intersecting bedforms, but, as illustrated in three-dimensional computer plots, the two kinds of structures commonly can be distinguished by directional properties of the bedding. Scallops deposited by alongslope-migrating, superimposed bedforms have cross-bed and bounding-surface dip patterns that lack bilateral symmetry and have cross-bed dips that are asymmetrically distributed relative to bounding-surface dips. Scallops with dip patterns that are bilaterally symmetrically distributed relative to the bounding-surface dips can be produced either by fluctuating flow or by downslope or upslope migration of superimposed bedforms. An example of nearshore-marine scalloped cross-bedding of Pleistocene age was examined in detail in a coastal terrace of Monterey Bay, California. -from Author

  8. A crossed hot-wire technique for complex turbulent flows

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1991-01-01

    This paper describes a crossed hot-wire technique for the measurement of all components of mean velocity, Reynolds stresses, and triple products in a complex turbulent flow. The accuracy of various assumptions usually implicit in the use of crossed hot-wire anemometers is examined. It is shown that significant errors can result in flow with gradients in mean velocity or Reynolds stress, but that a first-order correction for these errors can be made using available data. It is also shown how corrections can be made for high turbulence levels using available data.

  9. Respirator Filter Efficiency Testing Against Particulate and Biological Aerosols Under Moderate to High Flow Rates

    DTIC Science & Technology

    2006-08-01

    stopped and the filter removed from the system for analysis. Polonium - 210 static eliminators were used to minimize particle loss during transport to...may provide a considerable overestimate of filter performance. Brosseau et al. (1990) compared the collection of silica and asbestos aerosols by DM...a half times as great as that measured under steady flow conditions, which is consistent with the results of Stafford et al. (1973). The asbestos

  10. Flow of Viscoelastic Polymer Solutions through Filter Screens

    NASA Astrophysics Data System (ADS)

    Machač, Ivan; Surý, Alexander; Šiška, Bedřich

    2011-07-01

    In this contribution, the measurements are presented of the pressure drop in the creeping flow of viscoelastic solution of polyacrylamides through metal wire screens, differing in wire diameter, aperture dimension, and type of weaving. In this flow, a strong elastic pressure drop excess manifest itself. Analysing the extensive set of experimental data, it was verified that for engineering estimation of the pressure drop excess, a simple form of the corrective Deborah number function can be used.

  11. Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows

    NASA Technical Reports Server (NTRS)

    Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang

    2009-01-01

    The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.

  12. Method and apparatus for affecting a recirculation zone in a cross flow

    DOEpatents

    Bathina, Mahesh [Andhra Pradesh, IN; Singh, Ramanand [Uttar Pradesh, IN

    2012-07-17

    Disclosed is a cross flow apparatus including a surface and at least one outlet located at the surface. The cross flow apparatus further includes at least one guide at the surface configured to direct an intersecting flow flowing across the surface and increase a velocity of a cross flow being expelled from the at least one outlet downstream from the at least one outlet.

  13. Tricritical spiral vortex instability in cross-slot flow

    NASA Astrophysics Data System (ADS)

    Haward, Simon J.; Poole, Robert J.; Alves, Manuel A.; Oliveira, Paulo J.; Goldenfeld, Nigel; Shen, Amy Q.

    2016-03-01

    We examine fluid flow through cross-slot devices with various depth to width ratios α . At low Reynolds number, Re, flow is symmetric and a sharp boundary exists between the two incoming fluid streams. Above an α -dependent critical value, R ec(α ) , a steady symmetry-breaking bifurcation occurs and a spiral vortex structure develops. Order parameters characterizing the instability grow according to a sixth-order Landau potential, and show a progression from second- to first-order transitions as α increases beyond a tricritical value of α ≈0.55 . Flow simulations indicate the instability is driven by vortex stretching at the stagnation point.

  14. Tricritical spiral vortex instability in cross-slot flow.

    PubMed

    Haward, Simon J; Poole, Robert J; Alves, Manuel A; Oliveira, Paulo J; Goldenfeld, Nigel; Shen, Amy Q

    2016-03-01

    We examine fluid flow through cross-slot devices with various depth to width ratios α. At low Reynolds number, Re, flow is symmetric and a sharp boundary exists between the two incoming fluid streams. Above an α-dependent critical value, Re(c)(α), a steady symmetry-breaking bifurcation occurs and a spiral vortex structure develops. Order parameters characterizing the instability grow according to a sixth-order Landau potential, and show a progression from second- to first-order transitions as α increases beyond a tricritical value of α ≈ 0.55. Flow simulations indicate the instability is driven by vortex stretching at the stagnation point.

  15. File-Based Data Flow in the CMS Filter Farm

    SciTech Connect

    Andre, J.M.; et al.

    2015-12-23

    During the LHC Long Shutdown 1, the CMS Data Acquisition system underwent a partial redesign to replace obsolete network equipment, use more homogeneous switching technologies, and prepare the ground for future upgrades of the detector front-ends. The software and hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms and deal with output data transport and storage has also been redesigned to be completely file- based. This approach provides additional decoupling between the HLT algorithms and the input and output data flow. All the metadata needed for bookkeeping of the data flow and the HLT process lifetimes are also generated in the form of small “documents” using the JSON encoding, by either services in the flow of the HLT execution (for rates etc.) or watchdog processes. These “files” can remain memory-resident or be written to disk if they are to be used in another part of the system (e.g. for aggregation of output data). We discuss how this redesign improves the robustness and flexibility of the CMS DAQ and the performance of the system currently being commissioned for the LHC Run 2.

  16. Adaptive Filtering Methods for Identifying Cross-Frequency Couplings in Human EEG

    PubMed Central

    Van Zaen, Jérôme; Murray, Micah M.; Meuli, Reto A.; Vesin, Jean-Marc

    2013-01-01

    Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations. PMID:23560098

  17. Adaptive filtering methods for identifying cross-frequency couplings in human EEG.

    PubMed

    Van Zaen, Jérôme; Murray, Micah M; Meuli, Reto A; Vesin, Jean-Marc

    2013-01-01

    Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.

  18. Performance of Improved High-Order Filter Schemes for Turbulent Flows with Shocks

    NASA Technical Reports Server (NTRS)

    Kotov, Dmitry Vladimirovich; Yee, Helen M C.

    2013-01-01

    The performance of the filter scheme with improved dissipation control ? has been demonstrated for different flow types. The scheme with local ? is shown to obtain more accurate results than its counterparts with global or constant ?. At the same time no additional tuning is needed to achieve high accuracy of the method when using the local ? technique. However, further improvement of the method might be needed for even more complex and/or extreme flows.

  19. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  20. Radial Flow Fludized Filter Finds Niche as a Pretreatment System for Surface Water in Small Communities

    EPA Science Inventory

    An emerging technology called radial flow fluidized filter (R3f) has been developed as a low cost simplistic filtration technology for small communities of less than 10,000 people. Fouling is a major impediment to the sustainability of membrane technology particularly for small ...

  1. Seeing induced cross-talks in filter-based velocity measurements

    NASA Astrophysics Data System (ADS)

    Sreejith, P.; Sridharan, R.; Sankarasubramanian, K.

    Narrow band imaging using Universal Birefringent Filter (UBF) can be used to measure velocity features on the Sun. Velocity maps, in filter-based observations, are created by taking the intensity differences between the blue and red wing images of a chosen spectral line. In the case of variable seeing, there is a large probability that one of the (red- or blue-) wing images can be affected more compared to the other. Such differential seeing leads to spurious velocity values which are contributed due to cross-talk from the intensity, and found to be more pronounced in umbra and penumbra of sunspots. Simulations are carried out to estimate and understand the sources of the cross-talk. Variable seeing conditions are created using the Adaptive Optics Performance Evaluator (AOPE) software. The point-spread-function (PSF) produced by the AOPE is used to generate the red- and blue-wing images. In this paper, we also discuss the advantages of using AO corrected images in such variable seeing scenario.

  2. Final Report: Pilot-Scale Cross-Flow Ultrafiltration Test Using a Hanford Site Tank 241-AN-102 Waste Simulant

    SciTech Connect

    Duignan, M.R.

    2003-10-03

    Bechtel National l, Inc. (BNI) has been contracted to design a Waste Treatment and Immobilization Plant (WTP) to stabilize liquid radioactive waste that is stored at the Hanford Site as part of the River Protection Project (RPP). Because of its experience with radioactive waste stabilization, the Savannah River Technology Center (SRTC) is working with BNI to help design and test certain parts of the waste treatment facility. One part of the process is the separation of radioactive solids from the liquid wastes by cross- flow ultrafiltration. This task tested a cross- flow filter, prototypic in porosity, length and diameter, with a simulated radioactive waste, made to prototypically represent the chemical and physical characteristics of a Hanford waste in tank 241-AN-102 (AN-102) and precipitated under prototypic conditions. This report discusses the results of cross- flow filter operation in a pilot-scale experimental facility. This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by Bechtel National, Inc. The waste treatment plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  3. Nonlinear dynamics of tube arrays in cross flow

    SciTech Connect

    Chen, S.S.; Cai, Y.; Zhu, S.

    1994-04-01

    Fluidelastic instability of loosely supported tube arrays was studied analytically and experimentally. This is one of the important practical problems of autonomous fluid-structure systems with many interesting motions. Both fluid-damping and fluid-stiffness controlled instabilities were investigated. Depending on the system parameter, the dynamic response of the tubes includes periodic, quasiperiodic, and chaotic motions. The analytical model is based on the unsteady flow theory, which can predict the nonlinear dynamics of tube arrays in cross flow. For fluid-damping controlled instability, analytical results and experimental data agree reasonably well. This study was applied to heat exchangers.

  4. Ambient wind energy harvesting using cross-flow fluttering

    NASA Astrophysics Data System (ADS)

    Li, Shuguang; Yuan, Jianping; Lipson, Hod

    2011-01-01

    In this experimental study, we propose and test a bioinspired piezo-leaf architecture which converts wind energy into electrical energy by wind-induced fluttering motion. While conventional fluttering devices are arranged in parallel with the flow direction, here we explore a dangling cross-flow stalk arrangement. This architecture amplifies the vibration by an order of magnitude, making it appropriate for low-cost organic piezomaterials. We fabricated prototypes using flexible piezoelectric materials as stalks and polymer film as leaves. A series of experiments demonstrated a peak output power of approximately 600 μ W and maximum power density of approximately 2 mW/cm3 from a single leaf.

  5. Demonstration and Analysis of Filtered Rayleigh Scattering Flow Field Diagnostic System

    NASA Technical Reports Server (NTRS)

    Forkey, Joseph N.; Lempert, Walter R.; Miles, Richard B.

    1996-01-01

    Filtered Rayleigh Scattering (FRS) is a diagnostic technique which measures velocity, temperature, and pressure by determining Doppler shift, total intensity, and spectral line shape of laser induced Rayleigh-Brillouin scattering. In the work reported here, this is accomplished by using a narrow line width, injection seeded Nd-YAG laser sheet to induce Rayleigh-Brillouin scattering from a gas flow. This light is passed through an optical notch filter, and transmitted light is imaged onto an intensified charge coupled display (CCD) camera. By monitoring the grayscale value at a particular pixel while the laser frequency is tuned, the convolution between the Rayleigh-Brillouin scattering profile and the filter transmission profile is attained. Since the filter profile can be independently measured, it can be deconvolved from the measuring signal, yielding the Rayleigh-Brillouin scattering profile. From this profile, flow velocity, temperature, and pressure are determined. In this paper the construction and characterization of the optical notch filter and a newly developed frequency apparatus are discussed.

  6. A particle filter to reconstruct a free-surface flow from a depth camera

    NASA Astrophysics Data System (ADS)

    Combés, Benoit; Heitz, Dominique; Guibert, Anthony; Mémin, Etienne

    2015-10-01

    We investigate the combined use of a kinect depth sensor and of a stochastic data assimilation (DA) method to recover free-surface flows. More specifically, we use a weighted ensemble Kalman filter method to reconstruct the complete state of free-surface flows from a sequence of depth images only. This particle filter accounts for model and observations errors. This DA scheme is enhanced with the use of two observations instead of one classically. We evaluate the developed approach on two numerical test cases: a collapse of a water column as a toy-example and a flow in an suddenly expanding flume as a more realistic flow. The robustness of the method to depth data errors and also to initial and inflow conditions is considered. We illustrate the interest of using two observations instead of one observation into the correction step, especially for unknown inflow boundary conditions. Then, the performance of the Kinect sensor in capturing the temporal sequences of depth observations is investigated. Finally, the efficiency of the algorithm is qualified for a wave in a real rectangular flat bottomed tank. It is shown that for basic initial conditions, the particle filter rapidly and remarkably reconstructs the velocity and height of the free surface flow based on noisy measurements of the elevation alone.

  7. A GPU-Parallelized Eigen-Based Clutter Filter Framework for Ultrasound Color Flow Imaging.

    PubMed

    Chee, Adrian J Y; Yiu, Billy Y S; Yu, Alfred C H

    2017-01-01

    Eigen-filters with attenuation response adapted to clutter statistics in color flow imaging (CFI) have shown improved flow detection sensitivity in the presence of tissue motion. Nevertheless, its practical adoption in clinical use is not straightforward due to the high computational cost for solving eigendecompositions. Here, we provide a pedagogical description of how a real-time computing framework for eigen-based clutter filtering can be developed through a single-instruction, multiple data (SIMD) computing approach that can be implemented on a graphical processing unit (GPU). Emphasis is placed on the single-ensemble-based eigen-filtering approach (Hankel singular value decomposition), since it is algorithmically compatible with GPU-based SIMD computing. The key algebraic principles and the corresponding SIMD algorithm are explained, and annotations on how such algorithm can be rationally implemented on the GPU are presented. Real-time efficacy of our framework was experimentally investigated on a single GPU device (GTX Titan X), and the computing throughput for varying scan depths and slow-time ensemble lengths was studied. Using our eigen-processing framework, real-time video-range throughput (24 frames/s) can be attained for CFI frames with full view in azimuth direction (128 scanlines), up to a scan depth of 5 cm ( λ pixel axial spacing) for slow-time ensemble length of 16 samples. The corresponding CFI image frames, with respect to the ones derived from non-adaptive polynomial regression clutter filtering, yielded enhanced flow detection sensitivity in vivo, as demonstrated in a carotid imaging case example. These findings indicate that the GPU-enabled eigen-based clutter filtering can improve CFI flow detection performance in real time.

  8. A GPU-Parallelized Eigen-Based Clutter Filter Framework for Ultrasound Color Flow Imaging.

    PubMed

    Chee, Adrian; Yiu, Billy; Yu, Alfred

    2016-09-07

    Eigen-filters with attenuation response adapted to clutter statistics in color flow imaging (CFI) have shown improved flow detection sensitivity in the presence of tissue motion. Nevertheless, its practical adoption in clinical use is not straightforward due to the high computational cost for solving eigen-decompositions. Here, we provide a pedagogical description of how a real-time computing framework for eigen-based clutter filtering can be developed through a single-instruction, multiple data (SIMD) computing approach that can be implemented on a graphical processing unit (GPU). Emphasis is placed on the single-ensemble-based eigen-filtering approach (Hankel-SVD) since it is algorithmically compatible with GPU-based SIMD computing. The key algebraic principles and the corresponding SIMD algorithm are explained, and annotations on how such algorithm can be rationally implemented on the GPU are presented. Real-time efficacy of our framework was experimentally investigated on a single GPU device (GTX Titan X), and the computing throughput for varying scan depths and slow-time ensemble lengths were studied. Using our eigenprocessing framework, real-time video-range throughput (24 fps) can be attained for CFI frames with full-view in azimuth direction (128 scanlines), up to a scan depth of 5 cm (λ pixel axial spacing) for slow-time ensemble length of 16 samples. The corresponding CFI image frames, with respect to the ones derived from non-adaptive polynomial regression clutter filtering, yielded enhanced flow detection sensitivity in vivo, as demonstrated in a carotid imaging case example. These findings indicate that GPU-enabled eigen-based clutter filtering can improve CFI flow detection performance in real time.

  9. Effect of inner guide on performances of cross flow turbine

    NASA Astrophysics Data System (ADS)

    Kokubu, K.; Yamasaki, K.; Honda, H.; Kanemoto, T.

    2012-11-01

    To get the sustainable society, the hydropower with not only the large but also the mini/micro capacity has been paid attention to the power generation. The cross-flow turbines can work efficiently at the comparatively low head and/or low discharge in the onshore and the offshore, and the runner and the casing profiles have been optimizing. In this paper, the turbine composed of the optimal profiles has prepared to provide for the mini/micro hydropower, and the performances have been investigated at the low head. The hydraulic efficiency is maximal at the normal guide vane opening and deteriorates at the lower and the higher discharge than the normal discharge. Such deteriorations are brought from the unacceptable flow conditions crossing in the runner, that is, the flow direction does not meet the setting angle of the blade at the inner radius. To improve dramatically the performances, the inner guide, which guards the shaft from the water jet and adjusts the flow direction, was installed in the runner.

  10. Investigation of non-symmetric jets in cross flow

    NASA Astrophysics Data System (ADS)

    Yu, Fan-Ming

    1987-05-01

    Non-symmetric jets in crossflow were studied with various jet geometries, jet orientations, jet characteristics, and jet to crossflow velocity ratios. Four different cross-section geometry jets were studied and compared with a circular jet with identical jet port cross-sectional area. Standard dye and laser induced fluorescent flow visualization techniques were used to identify the existence of various vortices in the flow field. Among the many forms of secondary vortices produced, three major vortex systems were identified: main jet vortices, wake vortices, and spinoff vortices. A reconstruction of the asymmetric flow field based on observations and its evolution and relationships with established symmetric jets in the crossflow were made. The large scale rolled-up vortex structure which was found at low jet to crossflow velocity ratio is very similar to the hair-pin vortex structure. This observation provides a potential research tool on the study of the structure of turbulent boundary layers. Unsteady jets created by pulsation of the jet flow at low pulsation frequencies give the increase of the depth of penetration. However, the introducing of swirl into jets by passive methods reduces the depth of penetration.

  11. On the structural limitations of recursive digital filters for base flow estimation

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Costelloe, Justin F.; Peterson, Tim J.; Western, Andrew W.

    2016-06-01

    Recursive digital filters (RDFs) are widely used for estimating base flow from streamflow hydrographs, and various forms of RDFs have been developed based on different physical models. Numerical experiments have been used to objectively evaluate their performance, but they have not been sufficiently comprehensive to assess a wide range of RDFs. This paper extends these studies to understand the limitations of a generalized RDF method as a pathway for future field calibration. Two formalisms are presented to generalize most existing RDFs, allowing systematic tuning of their complexity. The RDFs with variable complexity are evaluated collectively in a synthetic setting, using modeled daily base flow produced by Li et al. (2014) from a range of synthetic catchments simulated with HydroGeoSphere. Our evaluation reveals that there are optimal RDF complexities in reproducing base flow simulations but shows that there is an inherent physical inconsistency within the RDF construction. Even under the idealized setting where true base flow data are available to calibrate the RDFs, there is persistent disagreement between true and estimated base flow over catchments with small base flow components, low saturated hydraulic conductivity of the soil and larger surface runoff. The simplest explanation is that low base flow "signal" in the streamflow data is hard to distinguish, although more complex RDFs can improve upon the simpler Eckhardt filter at these catchments.

  12. The role of pressure drop and flow redistribution on modeling mercury control using sorbent injection in baghouse filters.

    PubMed

    Flora, Joseph R V; Hargis, Richard A; O'Dowd, William J; Karash, Andrew; Pennline, Henry W; Vidic, Radisav D

    2006-03-01

    A mathematical model based on simple cake filtration theory was coupled to a previously developed two-stage mathematical model for mercury (Hg) removal using powdered activated carbon injection upstream of a baghouse filter. Values of the average permeability of the filter cake and the filter resistance extracted from the model were 4.4 x 10(-13) m2 and 2.5 x 10(-4) m(-1), respectively. The flow is redistributed during partial cleaning of the filter, with flows higher across the newly cleaned filter section. The calculated average Hg removal efficiency from the baghouse is lower because of the high mass flux of Hg exiting the filter in the newly cleaned section. The model shows that calculated average Hg removal is affected by permeability, filter resistance, fraction of the baghouse cleaned, and cleaning interval.

  13. The role of pressure drop and flow redistribution on modeling mercury control using sorbent injection in baghouse filters

    SciTech Connect

    Joseph R.V. Flora; Richard A. Hargis; William J. O'Dowd; Andrew Karash; Henry W. Pennline; Radisav D. Vidic

    2006-03-15

    A mathematical model based on simple cake filtration theory was coupled to a previously developed two-stage mathematical model for mercury (Hg) removal from coal combustion using powdered activated carbon injection upstream of a baghouse filter. Values of the average permeability of the filter cake and the filter resistance extracted from the model were 4.4 x 10{sup -13}m{sup 2} and 2.5 x 10{sup -4}m{sup -1}, respectively. The flow is redistributed during partial cleaning of the filter, with flows higher across the newly cleaned filter section. The calculated average Hg removal efficiency from the baghouse is lower because of the high mass flux of Hg exiting the filter in the newly cleaned section. The model shows that calculated average Hg removal is affected by permeability, filter resistance, fraction of the baghouse cleaned, and cleaning interval. 17 refs., 8 figs., 2 tabs.

  14. Flow instability in a curved duct of rectangular cross section

    NASA Astrophysics Data System (ADS)

    Belaidi, A.; Johnson, M. W.; Humphrey, J. A. C.

    1992-12-01

    An experimental investigation has been carried out in a curved duct of rectangular cross section in order to study the development of flow instability in such geometries. Hot wire anemometry was used to obtain detailed measurements of velocity on the symmetry plane of the duct for different curvature ratios. As the duct Dean number is increased, a centrifugal instability develops and the Dean vortices are seen to oscillate along the inner wall. To understand the contribution of these vortices to the laminar-turbulent transition, time histories and spectra of the flow were taken on the symmetry plane of the duct for different Reynolds numbers. These data reveal a time-periodic motion along the inner wall where the secondary flows originating from the side wall boundary layers collide. The bend angle where this instability develops depends on the Reynolds number while the frequency of the instability depends on the curvature ratio of the bend.

  15. Analysis of up-flow aerated biological activated carbon filter technology in drinking water treatment.

    PubMed

    Lu, Shaoming; Liu, Jincui; Li, Shaowen; Biney, Elizabeth

    2013-01-01

    Problems have been found in the traditional post-positioned down-flow biological activated carbon filter (DBACF), such as microorganism leakage and low biodegradability. A pilot test was carried out to place a BACF between the sediment tank and the sand filter; a new technology of dual media up-flow aerated biological activated carbon filter (UBACF) was developed. Results showed that in terms of the new process, the up-flow mode was better than the down-flow. Compared with the DBACF, the problem of microorganism leakage could be well resolved with the UBACF process by adding disinfectant before the sand filtration, and a similar adsorption effect could be obtained. For the tested raw water, the COD(Mn) and NH3-N removal rate was 54.6% and 85.0%, respectively, similar to the waterworks with the DBACF process. The UBACF greatly enhanced oxygen supply capability and mass transfer rate via aeration, and the NH3-N removal ability was significantly improved from 1.5 mg/L to more than 3 mg/L. Influent to the UBACF with higher turbidity could be coped with through the primary filtration of the ceramisite layer combined with fluid-bed technology, which gave the carbon bed a low-turbidity environment of less than 1.0 NTU. The backwashing parameters and carbon abrasion rate of the two processes were almost the same.

  16. Performance evaluation of a dual-flow recharge filter for improving groundwater quality.

    PubMed

    Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C

    2014-07-01

    A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system.

  17. Model simulation and experiments of flow and mass transport through a nano-material gas filter

    SciTech Connect

    Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir; Eckels, Steve

    2013-11-01

    A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.

  18. Infrared species tomography of a transient flow field using Kalman filtering.

    PubMed

    Daun, Kyle J; Waslander, Steven L; Tulloch, Brandon B

    2011-02-20

    In infrared species tomography, the unknown concentration distribution of a species is inferred from the attenuation of multiple collimated light beams shone through the measurement field. The resulting set of linear equations is rank-deficient, so prior assumptions about the smoothness and nonnegativity of the distribution must be imposed to recover a solution. This paper describes how the Kalman filter can be used to incorporate additional information about the time evolution of the distribution into the reconstruction. Results show that, although performing a series of static reconstructions is more accurate at low levels of measurement noise, the Kalman filter becomes advantageous when the measurements are corrupted with high levels of noise. The Kalman filter also enables signal multiplexing, which can help achieve the high sampling rates needed to resolve turbulent flow phenomena.

  19. Development of an implantable oxygenator with cross-flow pump.

    PubMed

    Asakawa, Yuichi; Funakubo, Akio; Fukunaga, Kazuyoshi; Taga, Ichiro; Higami, Tetsuya; Kawamura, Tsuyoshi; Fukui, Yasuhiro

    2006-01-01

    Thrombogenicity, a problem with long-term artificial lungs, is caused by blood-biomaterial interactions and is made worse by nonuniform flow, which also causes decreased gas exchange. To overcome these obstacles, we changed the inlet and added a uniform flow pump to our previous oxygenator design. Conventional membrane oxygenators have a (1/2)-inch port for the inlet of blood. These port structures make it difficult for the blood to flow uniformly in the oxygenator. In addition, the complex blood flow patterns that occur in the oxygenator, including turbulence and stagnation, lead to thrombogenicity. A cross-flow pump (CFP) can result in uniform blood flow to the inlet side of an oxygenator. In this study, we evaluated the usefulness of an integrated oxygenator with a fiber bundle porosity of 0.6 and a membrane surface area of 1.3 m2. The inlet part of the oxygenator is improved and better fits the outlet of the CFP. Each of the three models of the improved oxygenator has a different inlet taper angle. The computational fluid dynamics analysis showed that, compared with the original design, uniform flow of the integrated oxygenator improved by 88.8% at the hollow fiber membrane. With the integrated oxygenator, O2 transfer increased by an average of 20.8%, and CO2 transfer increased by an average of 35.5%. The results of our experiments suggest that the CFP, which produces a wide, uniform flow to the oxygenator, is effective in attaining high gas exchange performance.

  20. A Fast Network Flow Model is used in conjunction with Measurements of Filter Permeability to calculate the Performance of Hot Gas Filters

    SciTech Connect

    VanOsdol, J.G.; Chiang, T-K.

    2002-09-19

    Two different technologies that are being considered for generating electric power on a large scale by burning coal are Pressurized Fluid Bed Combustion (PFBC) systems and Integrated Gasification and Combined Cycle (IGCC) systems. Particulate emission regulations that have been proposed for future systems may require that these systems be fitted with large scale Hot Gas Clean-Up (HGCU) filtration systems that would remove the fine particulate matter from the hot gas streams that are generated by PFBC and IGCC systems. These hot gas filtration systems are geometrically and aerodynamically complex. They typically are constructed with large arrays of ceramic candle filter elements (CFE). The successful design of these systems require an accurate assessment of the rate at which mechanical energy of the gas flow is dissipated as it passes through the filter containment vessel and the individual candle filter elements that make up the system. Because the filtration medium is typically made of a porous ceramic material having open pore sizes that are much smaller than the dimensions of the containment vessel, the filtration medium is usually considered to be a permeable medium that follows Darcy's law. The permeability constant that is measured in the lab is considered to be a function of the filtration medium only and is usually assumed to apply equally to all the filters in the vessel as if the flow were divided evenly among all the filter elements. In general, the flow of gas through each individual CFE will depend not only on the geometrical characteristics of the filtration medium, but also on the local mean flows in the filter containment vessel that a particular filter element sees. The flow inside the CFE core, through the system manifolds, and inside the containment vessel itself will be coupled to the flow in the filter medium by various Reynolds number effects. For any given filter containment vessel, since the mean flows are different in different locations

  1. Rotational echo double resonance detection of cross-links formed in mussel byssus under high-flow stress.

    PubMed

    McDowell, L M; Burzio, L A; Waite, J H; Schaefer, J

    1999-07-16

    13C2H rotational echo double resonance NMR has been used to provide the first evidence for the formation of quinone-derived cross-links in mussel byssal plaques. Labeling of byssus was achieved by allowing mussels to filter feed from seawater containing L-[phenol-4-13C]tyrosine and L-[ring-d4]tyrosine for 2 days. Plaques and threads were harvested from two groups of mussels over a period of 28 days. One group was maintained in stationary water while the other was exposed to turbulent flow at 20 cm/s. The flow-stressed byssal plaques exhibited significantly enhanced levels of 5, 5'-di-dihydroxyphenylalanine cross-links. The average concentration of di-dihydroxyphenylalanine cross-links in byssal plaques is 1 per 1800 total protein amino acid residues.

  2. A new way to apply ultrasound in cross-flow ultrafiltration: application to colloidal suspensions.

    PubMed

    Hengl, N; Jin, Y; Pignon, F; Baup, S; Mollard, R; Gondrexon, N; Magnin, A; Michot, L; Paineau, E

    2014-05-01

    A new coupling of ultrasound device with membrane process has been developed in order to enhance cross-flow ultrafiltration of colloidal suspensions usually involved in several industrial applications included bio and agro industries, water and sludge treatment. In order to reduce mass transfer resistances induced by fouling and concentration polarization, which both are main limitations in membrane separation process continuous ultrasound is applied with the help of a vibrating blade (20 kHz) located in the feed channel all over the membrane surface (8mm between membrane surface and the blade). Hydrodynamic aspects were also taking into account by the control of the rectangular geometry of the feed channel. Three colloidal suspensions with different kinds of colloidal interaction (attractive, repulsive) were chosen to evaluate the effect of their physico-chemical properties on the filtration. For a 90 W power (20.5 W cm(-2)) and a continuous flow rate, permeation fluxes are increased for each studied colloidal suspension, without damaging the membrane. The results show that the flux increase depends on the initial structural properties of filtered dispersion in terms of colloidal interaction and spatial organizations. For instance, a Montmorillonite Wyoming-Na clay suspension was filtered at 1.5 × 10(5)Pa transmembrane pressure. Its permeation flux is increased by a factor 7.1, from 13.6 L m(-2)h(-1) without ultrasound to 97 L m(-2)h(-1) with ultrasound.

  3. Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment.

    PubMed

    Petitjean, A; Forquet, N; Boutin, C

    2016-04-01

    13 million people (about 20% of the population) use on-site wastewater treatment in France. Buried vertical sand filters are often built, especially when the soil permeability is not sufficient for septic tank effluent infiltration in undisturbed soil. Clogging is one of the main problems deteriorating the operation of vertical flow filters for wastewater treatment. The extent of clogging is not easily assessed, especially in buried vertical flow sand filters. We suggest examining two possible ways of detecting early clogging: (1) NH4-N/NO3-N outlet concentration ratio, and (2) oxygen measurement within the porous media. Two pilot-scale filters were equipped with probes for oxygen concentration measurements and samples were taken at different depths for pollutant characterization. Influent and effluent grab-samples were taken three times a week. The systems were operated using batch-feeding of septic tank effluent. Qualitative description of oxygen transfer processes under unclogged and clogged conditions is presented. NH4-N outlet concentration appears to be useless for early clogging detection. However, NO3-N outlet concentration and oxygen content allows us to diagnose the early clogging of the system.

  4. Vibration effect on cross-flow and co-flow focusing mechanism for droplet generation

    NASA Astrophysics Data System (ADS)

    Salari, Alinaghi; Dalton, Colin

    2015-03-01

    Microbubbles are widely used in many industries such as water treatment, drug coating, and ultrasonic contrast agents. Cross-flow focusing and co-flow focusing are considered basic mechanisms used for microbubble generation. Typically, to achieve micron-sized droplets requires structure dimensions in the same order of magnitude of the desired droplet sizes. In this paper we report a method of applying an external vibration to a cross-flow and co-flow focusing structure, which allows for smaller droplets to be generated. The junction dimension was 700×400 μm, and the channel width was 800 μm. The two assumed fluids are selected in a way that the Capillary number is high (Ca>10) to make use of necking effect occurred in the downstream. Linear vibration was exerted on the microchannel structure in the direction of central flow. A 2D structure was simulated using finite element software, and the numerical approach was then verified by comparing the experimental data of a typical cross-flow focusing structure taken from our previous study with the corresponding simulation assuming the same parameters. The results show that although the droplet generation regime depends on flow ratio (Qa/Qw) and vibration parameter (ampl×freq), Capillary number also has a significant effect on the regime. Briefly, applying a low-cost linear vibration to the conventional flow focusing structures can be used as an accurate controlling technique for increasing the chance of droplet generation. In fact, vibration motion can change the flow regime and breakup mechanism. It can also change the breakup point at which the droplets are formed.

  5. Particle capture in axial magnetic filters with power law flow model

    NASA Astrophysics Data System (ADS)

    Abbasov, T.; Herdem, S.; Köksal, M.

    1999-05-01

    A theory of capture of magnetic particle carried by laminar flow of viscous non-Newtonian (power law) fluid in axially ordered filters is presented. The velocity profile of the fluid flow is determined by the Kuwabara-Happel cell model. For the trajectory of the particle, the capture area and the filter performance simple analytical expressions are obtained. These expressions are valid for particle capture processes from both Newtonian and non-Newtonian fluids. For this reason the obtained theoretical results make it possible to widen the application of high-gradient magnetic filtration (HGMF) to other industrial areas. For Newtonian fluids the theoretical results are shown to be in good agreement with the experimental ones reported in the literature.

  6. Unsteady Simulation of an ASME Venturi Flow in a Cross Flow

    NASA Astrophysics Data System (ADS)

    Bonifacio, Jeremy; Rahai, Hamid

    2010-11-01

    Unsteady numerical simulations of an ASME venturi flow into a cross flow were performed. The velocity ratios between the venturi flow and the free stream were 25, 50, and 75%. Two cases of the venturi with and without a tube extension have been investigated. The tube extension length was approximately 4D (here D is the inner diameter of the venturi's outlet), connecting the venturi to the bottom surface of the numerical wind tunnel. A finite volume approach with the Wilcox K-φ turbulence model were used. Results that include contours of the mean velocity, velocity vector, turbulent kinetic energy, pressure and vortices within the venturi as well as downstream in the interaction region indicate that when the venturi is flushed with the surface, there is evidence of flow separation within the venturi, near the outlet. However, when the tube extension was added, the pressure recovery was sustained and flow separation within the venturi was not present and the characteristics of the flow in the interaction region were similar to the corresponding characteristics of a pipe jet in a cross flow.

  7. Enhanced Kalman Filtering for a 2D CFD NS Wind Farm Flow Model

    NASA Astrophysics Data System (ADS)

    Doekemeijer, B. M.; van Wingerden, J. W.; Boersma, S.; Pao, L. Y.

    2016-09-01

    Wind turbines are often grouped together for financial reasons, but due to wake development this usually results in decreased turbine lifetimes and power capture, and thereby an increased levelized cost of energy (LCOE). Wind farm control aims to minimize this cost by operating turbines at their optimal control settings. Most state-of-the-art control algorithms are open-loop and rely on low fidelity, static flow models. Closed-loop control relying on a dynamic model and state observer has real potential to further decrease wind's LCOE, but is often too computationally expensive for practical use. In this paper two time-efficient Kalman filter (KF) variants are outlined incorporating the medium fidelity, dynamic flow model “WindFarmSimulator” (WFSim). This model relies on a discretized set of Navier-Stokes equations in two dimensions to predict the flow in wind farms at low computational cost. The filters implemented are an Ensemble KF and an Approximate KF. Simulations in which a high fidelity simulation model represents the true wind farm show that these filters are 101 —102 times faster than a regular KF with comparable or better performance, correcting for wake dynamics that are not modeled in WFSim (noticeably, wake meandering and turbine hub effects). This is a first big step towards real-time closed-loop control for wind farms.

  8. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter.

  9. A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Xia, Mingliang; Xuan, Li

    2013-10-01

    The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.

  10. Real-Time Flood Forecasting System Using Channel Flow Routing Model with Updating by Particle Filter

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Chikamori, H.; Nagai, A.

    2008-12-01

    A real-time flood forecasting system using channel flow routing model was developed for runoff forecasting at water gauged and ungaged points along river channels. The system is based on a flood runoff model composed of upstream part models, tributary part models and downstream part models. The upstream part models and tributary part models are lumped rainfall-runoff models, and the downstream part models consist of a lumped rainfall-runoff model for hillslopes adjacent to a river channel and a kinematic flow routing model for a river channel. The flow forecast of this model is updated by Particle filtering of the downstream part model as well as by the extended Kalman filtering of the upstream part model and the tributary part models. The Particle filtering is a simple and powerful updating algorithm for non-linear and non-gaussian system, so that it can be easily applied to the downstream part model without complicated linearization. The presented flood runoff model has an advantage in simlecity of updating procedure to the grid-based distributed models, which is because of less number of state variables. This system was applied to the Gono-kawa River Basin in Japan, and flood forecasting accuracy of the system with both Particle filtering and extended Kalman filtering and that of the system with only extended Kalman filtering were compared. In this study, water gauging stations in the objective basin were divided into two types of stations, that is, reference stations and verification stations. Reference stations ware regarded as ordinary water gauging stations and observed data at these stations are used for calibration and updating of the model. Verification stations ware considered as ungaged or arbitrary points and observed data at these stations are used not for calibration nor updating but for only evaluation of forecasting accuracy. The result confirms that Particle filtering of the downstream part model improves forecasting accuracy of runoff at

  11. Taylor-Couette flow control by amplitude variation of the inner cylinder cross-section oscillation

    NASA Astrophysics Data System (ADS)

    Oualli, Hamid; Mekadem, Mahmoud; Lebbi, Mohamed; Bouabdallah, Ahcene

    2015-07-01

    The hydrodynamic stability of a viscous fluid flow evolving in an annular space between a rotating inner cylinder with a periodically variable radius and an outer fixed cylinder is considered. The basic flow is axis-symmetric with two counter-rotating vortices each wavelength along the whole filled system length. The numerical simulations are implemented on the commercial Fluent software package, a finite-volume CFD code. It is aimed to make investigation of the early flow transition with assessment of the flow response to radial pulsatile motion superimposed to the inner cylinder cross-section as an extension of a previous developed work in Oualli et al. [H. Oualli, A. Lalaoua, S. Hanchi, A. Bouabdallah, Eur. Phys. J. Appl. Phys. 61, 11102 (2013)] where a comparative controlling strategy is applied to the outer cylinder. The same basic system is considered with similar calculating parameters and procedure. In Oualli et al. [H. Oualli, A. Lalaoua, S. Hanchi, A. Bouabdallah, Eur. Phys. J. Appl. Phys. 61, 11102 (2013)], it is concluded that for the actuated outer cylinder and relatively to the non-controlled case, the critical Taylor number, Tac1, characterizing the first instability onset illustrated by the piled Taylor vortices along the gap, increases substantially to reach a growing rate of 70% when the deforming amplitude is ɛ = 15%. Interestingly, when this controlling strategy is applied to the inner cylinder cross-section with a slight modification of the actuating law, this tendency completely inverts and the critical Taylor number decreases sharply from Tac1 = 41.33 to Tac1 = 17.66 for ɛ = 5%, corresponding to a reduction rate of 57%. Fundamentally, this result is interesting and can be interpreted by prematurely triggering instabilities resulting in rapid development of flow turbulence. Practically, important applicative aspects can be met in several industry areas where substantial intensification of transport phenomena (mass, momentum and heat) is

  12. Acoustic cross-correlation flowmeter for solid-gas flow

    DOEpatents

    Sheen, S.H.; Raptis, A.C.

    1984-05-14

    Apparatus for measuring particle velocity in a solid-gas flow within a pipe includes: first and second transmitting transducers for transmitting first and second ultrasonic signals into the pipe at first and second locations, respectively, along the pipe; an acoustic decoupler, positioned between said first and second transmitting transducers, for acoustically isolating said first and second signals from one another; first and second detecting transducers for detecting said first and second signals and for generating first and second detected signals; and means for cross-correlating said first and second output signals.

  13. Cross Flow Effects on Glaze Ice Roughness Formation

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2004-01-01

    The present study examines the impact of large-scale cross flow on the creation of ice roughness elements on the leading edge of a swept wing under glaze icing conditions. A three-dimensional triple-deck structure is developed to describe the local interaction of a 3 D air boundary layer with ice sheets and liquid films. A linear stability analysis is presented here. It is found that, as the sweep angle increases, the local icing instabilities enhance and the most linearly unstable modes are strictly three dimensional.

  14. Analysis of multiple jets in a cross-flow

    NASA Astrophysics Data System (ADS)

    Isaac, K. M.; Schetz, J. A.

    1982-12-01

    The analysis of Campbell and Schetz (1973) is extended to the study of multiple jets in a cross flow, where the interaction of two jets is taken into account by a modification of the drag coefficient that is sensed by each jet. Results show that the rear jet trajectory is significantly modified by the presence of the front one even when the jets are spaced far apart. The analysis is applicable to such phenomena as the exhaust of chimney stack smoke into a wind and the lift jets of a V/STOL aircraft during takeoff or landing in strong winds.

  15. Acoustic cross-correlation flowmeter for solid-gas flow

    DOEpatents

    Sheen, Shuh-Haw; Raptis, Apostolos C.

    1986-01-01

    Apparatus for measuring particle velocity in a solid-gas flow within a pipe includes: first and second transmitting transducers for transmitting first and second ultrasonic signals into the pipe at first and second locations, respectively, along the pipe; an acoustic decoupler, positioned between said first and second transmitting transducers, for acoustically isolating said first and second signals from one another; first and second detecting transducers for detecting said first and second signals and for generating first and second detected signals in response to said first and second detected signals; and means for cross-correlating said first and second output signals.

  16. Optimized cross-slot flow geometry for microfluidic extensional rheometry.

    PubMed

    Haward, Simon J; Oliveira, Mónica S N; Alves, Manuel A; McKinley, Gareth H

    2012-09-21

    A precision-machined cross-slot flow geometry with a shape that has been optimized by numerical simulation of the fluid kinematics is fabricated and used to measure the extensional viscosity of a dilute polymer solution. Full-field birefringence microscopy is used to monitor the evolution and growth of macromolecular anisotropy along the stagnation point streamline, and we observe the formation of a strong and uniform birefringent strand when the dimensionless flow strength exceeds a critical Weissenberg number Wi(crit) ≈ 0.5. Birefringence and bulk pressure drop measurements provide self-consistent estimates of the planar extensional viscosity of the fluid over a wide range of deformation rates (26 s(-1) ≤ ε ≤ 435 s(-1)) and are also in close agreement with numerical simulations performed by using a finitely extensible nonlinear elastic dumbbell model.

  17. Recovery Act - Refinement of Cross Flow Turbine Airfoils

    SciTech Connect

    McEntee, Jarlath

    2013-08-30

    Ocean Renewable Power Company, LLC (ORPC) is a global leader in hydrokinetic technology and project development. ORPC develops hydrokinetic power systems and eco-conscious projects that harness the power of oceans and rivers to create clean, predictable renewable energy. ORPC’s technology consists of a family of modular hydrokinetic power systems: the TidGen® Power System, for use at shallow to medium-depth tidal sites; the RivGen™ Power System, for use at river and estuary sites; and the OCGen® Power System, presently under development, for use at deep tidal and offshore ocean current sites. These power systems convert kinetic energy in moving water into clean, renewable, grid-compatible electric power. The core technology component for all ORPC power systems is its patented turbine generator unit (TGU). The TGU uses proprietary advanced design cross flow (ADCF) turbines to drive an underwater permanent magnet generator mounted at the TGU’s center. It is a gearless, direct-drive system that has the potential for high reliability, requires no lubricants and releases no toxins that could contaminate the surrounding water. The hydrokinetic industry shows tremendous promise as a means of helping reduce the U.S.’s use of fossil fuels and dependence on foreign oil. To exploit this market opportunity, cross-flow hydrokinetic devices need to advance beyond the pre-commercial state and more systematic data about the structure and function of cross-flow hydrokinetic devices is required. This DOE STTR project, “Recovery Act - Refinement of Cross Flow Turbine Airfoils,” refined the cross-flow turbine design process to improve efficiency and performance and developed turbine manufacturing processes appropriate for volume production. The project proposed (1) to overcome the lack of data by extensively studying the properties of cross flow turbines, a particularly competitive design approach for extracting hydrokinetic energy and (2) to help ORPC mature its pre

  18. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  19. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, A.V.

    1983-10-12

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  20. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, Anthony V.

    1985-01-01

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  1. Computational studies of flow through cross flow fans - effect of blade geometry

    NASA Astrophysics Data System (ADS)

    Govardhan, M.; Sampat, D. Lakshmana

    2005-09-01

    This present paper describes three dimensional computational analysis of complex internal flow in a cross flow fan. A commercial computational fluid dynamics (CFD) software code CFX was used for the computation. RNG k-ɛ two equation turbulence model was used to simulate the model with unstructured mesh. Sliding mesh interface was used at the interface between the rotating and stationary domains to capture the unsteady interactions. An accurate assessment of the present investigation is made by comparing various parameters with the available experimental data. Three impeller geometries with different blade angles and radius ratio are used in the present study. Maximum energy transfer through the impeller takes place in the region where the flow follows the blade curvature. Radial velocity is not uniform through blade channels. Some blades work in turbine mode at very low flow coefficients. Static pressure is always negative in and around the impeller region.

  2. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng

    2014-09-01

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.

  3. Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter

    NASA Astrophysics Data System (ADS)

    Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-06-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a sufficiently large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos expansion (PCE) to represent and propagate the uncertainties in parameters and states. However, PCKF suffers from the so-called "curse of dimensionality". Its computational cost increases drastically with the increasing number of parameters and system nonlinearity. Furthermore, PCKF may fail to provide accurate estimations due to the joint updating scheme for strongly nonlinear models. Motivated by recent developments in uncertainty quantification and EnKF, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected at each assimilation step; the "restart" scheme is utilized to eliminate the inconsistency between updated model parameters and states variables. The performance of RAPCKF is systematically tested with numerical cases of unsaturated flow models. It is shown that the adaptive approach and restart scheme can significantly improve the performance of PCKF. Moreover, RAPCKF has been demonstrated to be more efficient than EnKF with the same computational cost.

  4. Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter

    SciTech Connect

    Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-06-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so-called "curse of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF could be even more computationally expensive than EnKF. Motivated by most recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to eliminate the inconsistency between model parameters and states. The performance of RAPCKF is tested with numerical cases of unsaturated flow models. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  5. Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part II. Experimental evaluation.

    PubMed

    Magnusson, Emma; Håkansson, Andreas; Janiak, John; Bergenståhl, Björn; Nilsson, Lars

    2012-08-31

    In this study we investigate the effect of programmed cross-flows on the error in the hydrodynamic radii (r(h)) determination with asymmetrical flow field-flow fractionation (AsFlFFF). Three different standard polystyrene particles (nominal radii of 30 and 40 and 50 nm) are fractionated with exponentially and linearly decaying cross-flows with different decay rates. Hydrodynamic radii are calculated according to retention theory including steric effects. Rapid decay is expected to give rise to systematic deviations in r(h) determination. The error in r(h) was found to be small when decay rates with half-lives longer than 6 min were used, whereas steeper decays could give rise to errors as high as 16% of the particle size. The error is often explained in terms of secondary relaxation. However, comparisons show that experimental errors are significantly larger than what would be expected due to secondary relaxation, suggesting that other factors also have to be considered in order to fully understand deviations for rapidly decaying cross-flow.

  6. Adaptive clutter filter in 2-D color flow imaging based on in vivo I/Q signal.

    PubMed

    Zhou, Xiaoming; Zhang, Congyao; Liu, Dong C

    2014-01-01

    Color flow imaging has been well applied in clinical diagnosis. For the high quality color flow images, clutter filter is important to separate the Doppler signals from blood and tissue. Traditional clutter filters, such as finite impulse response, infinite impulse response and regression filters, were applied, which are based on the hypothesis that the clutter signal is stationary or tissue moves slowly. However, in realistic clinic color flow imaging, the signals are non-stationary signals because of accelerated moving tissue. For most related papers, simulated RF signals are widely used without in vivo I/Q signal. Hence, in this paper, adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, was proposed based on in vivo carotid I/Q signal in realistic color flow imaging. To get the best performance, the optimal polynomial order of polynomial regression filter and the optimal polynomial order for estimation of instantaneous clutter frequency respectively were confirmed. Finally, compared with the mean blood velocity and quality of 2-D color flow image, the experiment results show that adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, can significantly enhance the mean blood velocity and get high quality 2-D color flow image.

  7. Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET

    PubMed Central

    Kim, Hyeon Sik; Cho, Sang-Geon; Kim, Ju Han; Kwon, Seong Young; Lee, Byeong-il; Bom, Hee-Seung

    2014-01-01

    Objective(s): In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF) measurement by dynamic N-13 ammonia positron emission tomography (PET), we compared various reconstruction and filtering methods with image characteristics. Methods: Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; age: 57, 53, and 76 years) were reconstructed, using filtered back projection (FBP) and ordered subset expectation maximization (OSEM) methods. OSEM reconstruction consisted of OSEM_2I, OSEM_4I, and OSEM_6I with 2, 4, and 6 iterations, respectively. The images, reconstructed and filtered by Gaussian filters of 5, 10, and 15 mm, were obtained, as well as non-filtered images. Visual analysis of image quality (IQ) was performed using a 3-grade scoring system by 2 independent readers, blinded to the reconstruction and filtering methods of stress images. Then, signal-to-noise ratio (SNR) was calculated by noise and contrast recovery (CR). Stress and rest MBF and coronary flow reserve (CFR) were obtained for each method. IQ scores, stress and rest MBF, and CFR were compared between the methods, using Chi-square and Kruskal-Wallis tests. Results: In the visual analysis, IQ was significantly higher by 10 mm Gaussian filtering, compared to other sizes of filter (P<0.001 for both readers). However, no significant difference of IQ was found between FBP and various numbers of iteration in OSEM (P=0.923 and 0.855 for readers 1 and 2, respectively). SNR was significantly higher in 10 mm Gaussian filter. There was a significant difference in stress and rest MBF between several vascular territories. However CFR was not significantly different according to various filtering methods. Conclusion: Post-reconstruction Gaussian filtering with a filter size of 10 mm significantly enhances the IQ of N-13 ammonia PET-CT, without changing the results of CFR calculation. PMID:27408866

  8. Cross-flow versus counter-current flow packed-bed scrubbers: a mathematical analysis

    SciTech Connect

    Fthenakis, V.M.

    1996-02-01

    Little is known about the mass transfer properties of packing media exposed to a crossflow of gas and liquid, whereas there is abundant information related to counter-current scrubbers. This paper presents a theoretical analysis of mass transfer and hydrodynamics in cross- flow packed bed scrubbers and compares those with information available for counter current towers, so that the first can be evaluated and/or designed based on data derived for the second. Mathematical models of mass transfer in cross-flow and counter- current packed bed scrubbers are presented. From those, one can predict the removal effectiveness of a crossflow scrubber from the number of transfer units (NTU) calculated for a similar counterflow operation; alternatively, when the removal effectiveness in counterflow is known, one can predict the corresponding NTU in crossflow.

  9. Finding Leading Indicators for Disease Outbreaks: Filtering, Cross-correlation, and Caveats

    PubMed Central

    Bloom, Ronald M.; Buckeridge, David L.; Cheng, Karen E.

    2007-01-01

    Bioterrorism and emerging infectious diseases such as influenza have spurred research into rapid outbreak detection. One primary thrust of this research has been to identify data sources that provide early indication of a disease outbreak by being leading indicators relative to other established data sources. Researchers tend to rely on the sample cross-correlation function (CCF) to quantify the association between two data sources. There has been, however, little consideration by medical informatics researchers of the influence of methodological choices on the ability of the CCF to identify a lead–lag relationship between time series. We draw on experience from the econometric and environmental health communities, and we use simulation to demonstrate that the sample CCF is highly prone to bias. Specifically, long-scale phenomena tend to overwhelm the CCF, obscuring phenomena at shorter wave lengths. Researchers seeking lead–lag relationships in surveillance data must therefore stipulate the scale length of the features of interest (e.g., short-scale spikes versus long-scale seasonal fluctuations) and then filter the data appropriately—to diminish the influence of other features, which may mask the features of interest. Otherwise, conclusions drawn from the sample CCF of bi-variate time-series data will inevitably be ambiguous and often altogether misleading. PMID:17068353

  10. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  11. Multiscale Simulations of ALD in Cross Flow Reactors

    DOE PAGES

    Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.

    2014-08-13

    In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less

  12. Multiscale Simulations of ALD in Cross Flow Reactors

    SciTech Connect

    Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.

    2014-08-13

    In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract a minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.

  13. Fluidic low pass filter for hydrodynamic flow stabilization in microfluidic environments.

    PubMed

    Kang, Yang Jun; Yang, Sung

    2012-04-24

    Fluctuations in flow rate invariably occur in microfluidic devices. This fluidic instability results in a deteriorating performance and the suspension of their unique functions occasionally. In this study, a fluidic-LPF (low pass filter), which is composed of an ACU (air compliance unit) and a FCSP (fluidic channel with high fluidic resistance for sufficient preload), has been proposed for providing the stabilization of hydrodynamic flow in microfluidic devices. To investigate the characteristics of various fluidic networks including our fluidic-LPF, we used a parametric identification method to estimate the time constants via a transient response that was based on a discrete parameter model. In addition, we propose the use of a pulsation index (PI) to quantify the fluctuations in flow rate. We verified the formula for PI derived herein by varying individually both the periods and the air compliance volumes in the ACU, both theoretically and experimentally. We found that the PI depended strongly on either the time constants or the periods of the flow rates at the inlet. Additionally, the normalized differences between the experimental results and the theoretical estimations were less than 6%, which shows that the proposed formula for PI can provide an accurate quantification of the fluctuations in flow, and estimate the parametric effects. Finally, we have successfully demonstrated that our fluidic-LPF can regulate fluctuations in the flow at extremely low flow rates (~ 10 μL h(-1)) and can also control severe fluidic fluctuations (PI = 0.67) with excessively long periods (100 s) via a microfluidic viscometer. We therefore believe that the stabilization of hydrodynamic flow using a fluidic-LPF could be used easily and extensively with a range of microfluidic platforms that require constant flow rates.

  14. Lagrangian filtered density function for LES-based stochastic modelling of turbulent particle-laden flows

    NASA Astrophysics Data System (ADS)

    Innocenti, Alessio; Marchioli, Cristian; Chibbaro, Sergio

    2016-11-01

    The Eulerian-Lagrangian approach based on Large-Eddy Simulation (LES) is one of the most promising and viable numerical tools to study particle-laden turbulent flows, when the computational cost of Direct Numerical Simulation (DNS) becomes too expensive. The applicability of this approach is however limited if the effects of the Sub-Grid Scales (SGSs) of the flow on particle dynamics are neglected. In this paper, we propose to take these effects into account by means of a Lagrangian stochastic SGS model for the equations of particle motion. The model extends to particle-laden flows the velocity-filtered density function method originally developed for reactive flows. The underlying filtered density function is simulated through a Lagrangian Monte Carlo procedure that solves a set of Stochastic Differential Equations (SDEs) along individual particle trajectories. The resulting model is tested for the reference case of turbulent channel flow, using a hybrid algorithm in which the fluid velocity field is provided by LES and then used to advance the SDEs in time. The model consistency is assessed in the limit of particles with zero inertia, when "duplicate fields" are available from both the Eulerian LES and the Lagrangian tracking. Tests with inertial particles were performed to examine the capability of the model to capture the particle preferential concentration and near-wall segregation. Upon comparison with DNS-based statistics, our results show improved accuracy and considerably reduced errors with respect to the case in which no SGS model is used in the equations of particle motion.

  15. Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?: a preliminary theoretical study for the Gaussian filtered Navier-Stokes equations.

    PubMed

    Ida, Masato; Taniguchi, Nobuyuki

    2003-09-01

    This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.

  16. Pitched and Yawed Circular Jets in Cross-Flow

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.; Zaman, K. B. M. Q.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    Results from an experimental investigation of flow field generated by pitched and yawed jets discharging from a flat plate into a cross-flow are presented. The circular jet was pitched at alpha = 20 degrees and 45 degrees and yawed between beta = 0 degrees and 90 degrees in increments of 15 degrees. The measurements were performed with two X-wires providing all three components of velocity and turbulence intensity. These data were obtained at downstream locations of x = 3, 5, 10 and 20, where the distance x normalized by the jet diameter, is measured from the center of the orifice. Data for all configurations were acquired at a momentum-flux ratio J = 8. Additionally, for selected angles and locations, surveys were conducted for J = 1.5, 4, and 20. As expected, the jet penetration is found to be higher at larger alpha. With increasing beta the jet spreads more. The rate of reduction of peak streamwise vorticity, with the downstream distance is significantly lessened at higher alpha but is found to be practically independent of alpha. Thus, at the farthest measurement station x = 20, omega(sub xmax) is about five times larger for beta = 0 degrees compared to the levels at beta = 0 degrees. Streamwise velocity within the jet-vortex structure is found to depend on the parameter J. At J = 1.5 and 4, 'wake-like' velocity profiles are observed. In comparison, a 'jet-like' overshoot is present at higher J.

  17. Isothermal and Reactive Turbulent Jets in Cross-Flow

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Bush, Scott; Ibrahim, Irene

    2004-11-01

    Jets in cross flow have numerous applications including vertical/short takeoff/landing (V/STOL) aircraft, cooling jets for gas turbine blades and combustion air supply inlets in gas turbine engine. The properties exhibited by these jets are dictated by complex three dimensional turbulence structures which form due to the interaction of the jet with the freestream. The isothermal tests are conducted in a wind tunnel measuring the characteristics of air jets injected perpendicular into an otherwise undisturbed air stream. Different nozzle exit geometries of the air jets were tested including circular, triangular and elongated configurations. Jets are injected in single and paired combinations with other jets to measure the effect of mutual interaction on the parameters mentioned. Quantitative velocity fields are obtained using PIV. The data obtained allows the extraction of flow parameters such as jet structure, penetration and mixing. The reacting tests include separate and combined jets of fuel/air mixture utilized to explore the stabilization of combustion at various operating conditions. Different geometrical configurations of transverse jets are tested to determine the shape and combination of jets that will optimize the jets ability to successfully stabilize a flame.

  18. Flow interactions of finite-span synthetic jets and a cross flow

    NASA Astrophysics Data System (ADS)

    Vasile, Joseph D.

    The interaction of a finite-span synthetic jet with a cross-flow over a swept-back finite wing was studied experimentally at a Reynolds number of 100,000 and at multiple angles of attack. The focus of the work was to explore the interaction of finite span synthetic jets with a locally attached or separated flow field in the vicinity of the synthetic jet orifice. The effect of blowing ratio and aspect ratio of the jet orifice was discussed in detail. As was shown in previous work for an unswept finite configuration, the time-averaged velocity field exhibits secondary streamwise flow structures that evolve due to the finite span of the synthetic jet orifice. Furthermore, these structures depend upon actuation level of the jet, as well as orifice geometry. Phase-averaged measurements over the swept-back finite configuration showed that in the presence of sweep the flow becomes highly three-dimensional almost immediately downstream of the synthetic jet orifice. It was demonstrated that the baseline flow field that develops over a swept-back configuration (dependent on angle of attack), which is characterized by spanwise and streamwise vorticity components, is responsible for the immediate breakdown of the coherent structures that are introduced by the synthetic jet orifice, and for the formation of the secondary flow structures that were seen in the time-averaged flow field. Furthermore, the effect of jet placement along the span of the wing was studied. A finite-span synthetic jet was placed near the tip of a finite sweptback wing. The focus of that part of the work was to explore the interaction of the synthetic jet with a spatially non-uniform velocity field (due to the presence of a tip vortex), especially the formation and advection of flow structures in the vicinity of the synthetic jet. As was shown, the time-averaged velocity field exhibited streamwise flow structures downstream of the jet. The tip vortex was found to influence the development of the flow

  19. Single-ensemble-based eigen-processing methods for color flow imaging--Part I. The Hankel-SVD filter.

    PubMed

    Yu, Alfred C H; Cobbold, Richard S C

    2008-03-01

    Because of their adaptability to the slow-time signal contents, eigen-based filters have shown potential in improving the flow detection performance of color flow images. This paper proposes a new eigen-based filter called the Hankel-SVD filter that is intended to process each slowtime ensemble individually. The new filter is derived using the notion of principal Hankel component analysis, and it achieves clutter suppression by retaining only the principal components whose order is greater than the clutter eigen-space dimension estimated from a frequency based analysis algorithm. To assess its efficacy, the Hankel-SVD filter was first applied to synthetic slow-time data (ensemble size: 10) simulated from two different sets of flow parameters that model: 1) arterial imaging (blood velocity: 0 to 38.5 cm/s, tissue motion: up to 2 mm/s, transmit frequency: 5 MHz, pulse repetition period: 0.4 ms) and 2) deep vessel imaging (blood velocity: 0 to 19.2 cm/s, tissue motion: up to 2 cm/s, transmit frequency: 2 MHz, pulse repetition period: 2.0 ms). In the simulation analysis, the post-filter clutter-to- blood signal ratio (CBR) was computed as a function of blood velocity. Results show that for the same effective stopband size (50 Hz), the Hankel-SVD filter has a narrower transition region in the post-filter CBR curve than that of another type of adaptive filter called the clutter-downmixing filter. The practical efficacy of the proposed filter was tested by application to in vivo color flow data obtained from the human carotid arteries (transmit frequency: 4 MHz, pulse repetition period: 0.333 ms, ensemble size: 10). The resulting power images show that the Hankel-SVD filter can better distinguish between blood and moving-tissue regions (about 9 dB separation in power) than the clutter-downmixing filter and a fixed-rank multi ensemble-based eigen-filter (which showed a 2 to 3 dB separation).

  20. Fast reconstruction and prediction of frozen flow turbulence based on structured Kalman filtering.

    PubMed

    Fraanje, Rufus; Rice, Justin; Verhaegen, Michel; Doelman, Niek

    2010-11-01

    Efficient and optimal prediction of frozen flow turbulence using the complete observation history of the wavefront sensor is an important issue in adaptive optics for large ground-based telescopes. At least for the sake of error budgeting and algorithm performance, the evaluation of an accurate estimate of the optimal performance of a particular adaptive optics configuration is important. However, due to the large number of grid points, high sampling rates, and the non-rationality of the turbulence power spectral density, the computational complexity of the optimal predictor is huge. This paper shows how a structure in the frozen flow propagation can be exploited to obtain a state-space innovation model with a particular sparsity structure. This sparsity structure enables one to efficiently compute a structured Kalman filter. By simulation it is shown that the performance can be improved and the computational complexity can be reduced in comparison with auto-regressive predictors of low order.

  1. Methods to improve pressure, temperature and velocity accuracies of filtered Rayleigh scattering measurements in gaseous flows

    NASA Astrophysics Data System (ADS)

    Doll, Ulrich; Burow, Eike; Stockhausen, Guido; Willert, Christian

    2016-12-01

    Frequency scanning filtered Rayleigh scattering is able to simultaneously provide time-averaged measurements of pressure, temperature and velocity in gaseous flows. By extending the underlying mathematical model, a robust alternative to existing approaches is introduced. Present and proposed model functions are then characterized during a detailed uncertainty analysis. Deviations between the analytical solution of a jet flow experiment and measured results could be related to laser-induced background radiation as well as the Rayleigh scattering’s spectral distribution. In applying a background correction method and by replacing the standard lineshape model by an empirical formulation, detrimental effects on pressure, temperature and velocity accuracies could be reduced below 15 hPa, 2.5 K and 2.7 m s-1.

  2. Construction of low dissipative high-order well-balanced filter schemes for non-equilibrium flows

    SciTech Connect

    Wang Wei; Yee, H.C.; Sjoegreen, Bjoern; Magin, Thierry; Shu, Chi-Wang

    2011-05-20

    The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. (2009) to a class of low dissipative high-order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. More general 1D and 2D reacting flow models and new examples of shock turbulence interactions are provided to demonstrate the advantage of well-balanced schemes. The class of filter schemes developed by Yee et al. (1999) , Sjoegreen and Yee (2004) and Yee and Sjoegreen (2007) consist of two steps, a full time step of spatially high-order non-dissipative base scheme and an adaptive non-linear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand-alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e. choosing a well-balanced base scheme with a well-balanced filter (both with high-order accuracy). A typical class of these schemes shown in this paper is the high-order central difference schemes/predictor-corrector (PC) schemes with a high-order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady-state solutions exactly; it is able to capture small perturbations, e.g. turbulence fluctuations; and it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.

  3. Use of cross-flow membrane filtration in a recirculating hydroponic system to suppress root disease in pepper caused by Pythium myriotylum.

    PubMed

    Schuerger, Andrew C; Hammer, William

    2009-05-01

    Zoosporic pathogens in the genera Pythium and Phytophthora cause extensive root disease epiphytotics in recirculating hydroponic vegetable-production greenhouses. Zoospore cysts of Pythium myriotylum Drechsler were used to evaluate the effectiveness of cross-flow membrane filters to control pythiaceous pathogens in recirculating hydroponic systems. Four membrane filter brands (Honeycomb, Polypure, Polymate, and Absolife) were tested alone or in combination to determine which filters would effectively remove infective propagules of P. myriotylum from solutions and reduce disease incidence and severity. Zoospore cysts of P. myriotylum generally measured 8 to 10 microm, and it was hypothesized that filters with pore-sizes<5 microm would be effective at removing 100% of the infective propagules and protect pepper plants from root infection. Single-filter assays with Honeycomb and Polypure brands removed 85 to 95% of zoospore cysts when pore sizes were rated at 1, 5, 10, 20, or 30 microm. Single-filter assays of Polymate and Absolife brands were more effective, exhibiting apparently 100% removal of zoospore cysts from nutrient solutions on filters rated at 1 to 10 microm. However, plant bioassays with Honeycomb and Polymate single filters failed to give long-term protection of pepper plants. Double-filter assays with 1- and 0.5-microm Polymate filters significantly increased the protection of pepper plants grown in nutrient film technique systems but, eventually, root disease and plant wilt could be observed. Insect transmissions by shore flies were not factors in disease development. Scanning electron microscopy images of zoospore cysts entrapped on Polymate filters revealed zoospore cysts that were either fully encysted, partially encysted, or of unusually small size (3 microm in diameter). It was concluded that either the atypically small or pliable pleomorphic zoospore cysts were able to penetrate filter membranes that theoretically should have captured them.

  4. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  5. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  6. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system.

    PubMed

    Stevens, Richard C; Soelberg, Scott D; Near, Steve; Furlong, Clement E

    2008-09-01

    Saliva provides a useful and noninvasive alternative to blood for many biomedical diagnostic assays. The level of the hormone cortisol in blood and saliva is related to the level of stress. We present here the development of a portable surface plasmon resonance (SPR) biosensor system for detection of cortisol in saliva. Cortisol-specific monoclonal antibodies were used to develop a competition assay with a six-channel portable SPR biosensor designed in our laboratory. The detection limit of cortisol in laboratory buffers was 0.36 ng/mL (1.0 nM). An in-line filter based on diffusion through a hollow fiber hydrophilic membrane served to separate small molecules from the complex macromolecular matrix of saliva prior to introduction to the sensor surface. The filtering flow cell provided in-line separation of small molecules from salivary mucins and other large molecules with only a 29% reduction of signal compared with direct flow of the same concentration of analyte over the sensor surface. A standard curve for detection of cortisol in saliva was generated with a detection limit of 1.0 ng/mL (3.6 nM), sufficiently sensitive for clinical use. The system will also be useful for a wide range of applications where small molecular weight analytes are found in complex matrixes.

  7. Coupling of stochastic moment equations and Ensemble Kalman Filter for groundwater flow data assimilation (Invited)

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Panzeri, M.; Riva, M.; Neuman, S. P.

    2013-12-01

    We embed stochastic groundwater flow moment equations (MEs) in the Ensemble Kalman Filter (EnKF) in a way that obviates the need for Monte Carlo (MC) simulation. The MEs yield approximate conditional ensemble means and covariances of hydraulic heads and fluxes in randomly heterogeneous media. Embedding these in EnKF allows updating of conductivity and head predictors as new data become available without the need for MC. The approach is well suited for cases in which real-time measurements allow sequential (as opposed to simultaneous) updating of flow parameters. We discuss and compare the accuracies and computational efficiencies of our newly proposed ME-based EnKF approach and the traditional MC-based EnKF approach for the case of a pumping well in a two-dimensional randomly heterogeneous aquifer. We analyze a number of settings and investigate the impact on parameters estimates of (a) the number of head measurements assimilated, (b) the error variance associated with head and log conductivity measurements and (c) the initial hydraulic head field. We demonstrate the computational feasibility and accuracy of our methodology and show that hydraulic conductivity estimates are more sensitive to early than to later head values, improving with increased assimilation frequency at early time. Our approach mitigates issues of filter inbreeding and spurious covariances often plaguing standard EnKF.

  8. Effect of filter media size, mass flow rate and filtration stage number in a moving-bed granular filter on the yield and properties of bio-oil from fast pyrolysis of biomass.

    PubMed

    Paenpong, Chaturong; Inthidech, Sudsakorn; Pattiya, Adisak

    2013-07-01

    Fast pyrolysis of cassava rhizome was performed in a bench-scale fluidised-bed reactor unit incorporated with a cross-flow moving-bed granular filter. The objective of this research was to examine several process parameters including the granular size (425-1160 μm) and mass flow rate (0-12 g/min) as well as the number of the filtration stages (1-2 stages) on yields and properties of bio-oil. The results showed that the bio-oil yield decreased from 57.7 wt.% to 42.0-49.2 wt.% when increasing the filter media size, the mass flow rate and the filtration stage number. The effect of the process parameters on various properties of bio-oil is thoroughly discussed. In general, the bio-oil quality in terms of the solids content, ash content, initial viscosity, viscosity change and ageing rate could be enhanced by the hot vapour granular filtration. Therefore, bio-oil of high stability could be produced by the pyrolysis reactor configuration designed in this work.

  9. Loki--A Lava Lake in Rarefied Circumplanetary Cross Flow

    NASA Astrophysics Data System (ADS)

    Walker, Andrew C.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Moore, Chris H.

    2011-05-01

    The interaction between Io's largest hot spot, Loki, and Io's circumplanetary winds is simulated using the direct simulation Monte Carlo (DSMC) method. Our three-dimensional simulation models the rarefied pressure-driven boundary layer flow over a ``hot'' disk in the presence of a weak gravitational field. The pressure gradient which forces winds away from the subsolar point toward the nightside is caused by the variation in insolation over the surface. The rarefaction varies strongly with time of day due to the exponential dependence of the vapor pressure on the surrounding surface frost temperature (KnHS~1×10-4 to 0.5 where KnHS = λ/R, λ is the mean free path, and R is Loki's effective radius). The spread of heat from the hot spot, the equilibration of pressure over the hot spot, and separation of the boundary layer are examined. The spread of heat away from the hot spot is approximately controlled by δ = tRADU/R (tRAD is the radiation time scale and U is the mean wind speed). For cross flow speed considered here, δ~0.5 and therefore the gas warmed by the hot spot cools by e-1~0.5R downstream of the hot spot edge. For the cases without plasma heating, the boundary layer flow separates near the hot spot because the spot creates a significant adverse pressure gradient. Despite the near surface pressure over the hot spot being lower than over surrounding regions, the increased scale height due to the 332 K surface temperature results in higher pressures above the hot spot than the surrounding sublimation atmosphere at high altitudes (>10 km). When plasma heating from above is included the atmosphere is significantly inflated leading to a higher pressure gradient at all altitudes and therefore higher flow speeds. The elevated pressure at high altitudes also decreases the relative size of the adverse pressure gradient created by the hot spot; therefore the boundary layer remains attached. The pressure over the hot spot does not equilibrate with the surrounding

  10. Constraining a compositional flow model with flow-chemical data using an ensemble-based Kalman filter

    NASA Astrophysics Data System (ADS)

    Gharamti, M. E.; Kadoura, A.; Valstar, J.; Sun, S.; Hoteit, I.

    2014-03-01

    Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system's processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.

  11. Experiments on confined turbulent jets in cross flow. [longitudinal and transverse distributions of velocity and temperature for jet flow

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.; Greber, I.

    1974-01-01

    Results are reported of experiments on the effects of an opposite wall on the characteristics of turbulent jets injected into a cross flow, for unheated and heated jets. Longitudinal and transverse distributions of velocity and temperature are presented for single and multiple circular jets, and trajectories are presented for two-dimensional jets. The opposite wall has relatively little effect on a single jet unless the ratio of jet to cross flow momentum flux is large enough for the jet to impinge on the opposite wall. For a row of jets aligned perpendicularly to the cross flow, the opposite wall exerts progressively larger influence as the spacing between jets decreases. Much of the effect of jet and wall proximity can be understood by considering the interaction of the vortex flow which is the major feature of the structure of a single jet in a cross flow. Smoke photographs are shown to elucidate some of the interaction patterns.

  12. Infiltration capacity of roadside filter strips with non-uniform overland flow

    NASA Astrophysics Data System (ADS)

    García-Serrana, María; Gulliver, John S.; Nieber, John L.

    2017-02-01

    The side slope to a roadside swale (drainage ditch) constitutes a filter strip that has potential for infiltration of road runoff, thereby serving as a stormwater quantity and quality control mechanism. A total of thirty-two tests were performed during three seasons in four different highways located in the Minneapolis-St. Paul metropolitan area, MN to analyze the infiltration performance of roadside filter strips and the effect of fractional coverage of water on infiltration. Three different application rates were used in the experiments. All the tests showed that water flow on the lateral slope of a roadside swale is concentrated in fingers, instead of sheet flow, at the typical road runoff intensities for which infiltration practices are utilized to improve surface water quality. A linear relationship between flux of water from the road and fraction of wetted surface was observed, for the intensities tested. The average percentage infiltration of the medium road runoff rate (1.55 × 10-4 m2/s, without direct rainfall) experiments performed in fall was 85% and in spring 70%. For the high road runoff rate (3.1 × 10-4 m2/s, without direct rainfall) tests the average amount of water infiltrated was 47% and for the low road runoff rate (7.76 × 10-5 m2/s, without direct rainfall) tests it was 69%, both set of tests performed in spring and summer. The saturated hydraulic conductivity of swale soil was high, relative to the values typical of laboratory permeameter measurements for these types of soils. This is believed to be due to the macropores generated by vegetation roots, activity of macrofauna (e.g. earthworms), and construction/maintenance procedures. The trend was to have more infiltration when the saturated hydraulic conductivity was higher and for a greater side slope length, as expected. The vegetation, type of soil and length of the side slope are important to consider for constructing and maintaining roadside swales that will be efficient as stormwater

  13. The Effect of Body Geometry on the Flow Noise of Cylinders in Cross Flow.

    NASA Astrophysics Data System (ADS)

    McEachern, James F.

    This is an experimental thesis that examines the effects of body geometry on the flow noise of cylindrical inertial pressure gradient hydrophones in cross flow. Flow noise is characterized as a fluctuating force on the surface of the body. Variable geometry inertial hydrophones have been fabricated, calibrated and towed in water in an acoustically quiet facility. Flow noise expressed as equivalent sound pressure level is presented for a blunt ended cylinder with a length to diameter ratio of 0.5. The results of the acoustic tow testing show some agreement with existing models for noise generated by pressure fluctuations in the turbulent boundary layer. The fluctuating force is measured at Reynolds numbers from 4 cdot 10^3 to 1.8 cdot 10^4 on cylindrical bodies with length to diameter ratios ranging from 0.5 to 2.5 and end cap shapes ranging from flat to hemispherical. Results are expressed in terms of dimensionless spectra. The experimental results show that increased end cap radius and body aspect ratio can attenuate the fluctuating force level.

  14. "Stolen" blood flow: effect of an open arterial filter purge line in a simulated neonatal CPB model.

    PubMed

    Wang, Shigang; Miller, Akemi; Myers, John L; Undar, Akif

    2008-01-01

    The purpose of this study was to evaluate the effect of different flow rates and pressures on the degree of shunting of blood flow by the arterial filter purge line in a simulated neonatal cardiopulmonary bypass circuit. The circuit was primed with heparinized bovine blood (hematocrit 24%) and postfilter pressure was varied from 60-180 mm Hg (20 mm Hg increments) using a Hoffman clamp. Trials were conducted at flow rates ranging from 200-600 ml/min (100 ml/min increments). During trials conducted at a postfilter pressure of 60 mm Hg, 42.6% of blood flow was shunted through the purge line at a flow rate of 200 ml/min, whereas only 12.8% of flow was diverted at a flow rate 600 ml/min. During trials conducted at a postfilter pressure of 180 mm Hg, 82.8% of blood flow at 200 ml/min and 25.9% of blood flow at 600 ml/min was diverted through the open arterial purge line. The results of this study confirm that a significant amount of flow is diverted away from the patient when the arterial purge line is open. Shunting of blood flow through the arterial purge line could result in less effective tissue perfusion, particularly at low flow rates and high postfilter pressures. To minimize hypoperfusion injury, a flow probe (distal to the arterial filter) may be used to monitor real-time arterial flow in the setting of an open arterial filter purge line.

  15. Analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  16. Data Assimilation for Vadose Zone Flow Modeling Using the Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.; Zha, Y.; Xue, L.

    2015-12-01

    The natural system is open and complex and the hydraulic parameters needed for describing flow and transport in the vadose zone are often poorly known, making it prone to multiple interpretations, mathematical descriptions and uncertainty. Quite often a reasonable "handle" on a sites flow characteristics can be gained only through direct observation of the flow processes itself, determination of the spatial- and probability distributions of material properties combined with computationally expensive inversions of the Richards equation. In groundwater systems, the ensemble Kalman filter (EnKF) has proven to be an effective alternative to model inversions by assimilating observations directly into an ensemble of groundwater models from which time and/or space-variable variable probabilistic quantities of the flow process can be derived. Application of EnKF to Richards equation-type unsaturated flow problems, however, is more challenging than in groundwater systems because the relation of state and model parameters is strongly nonlinear. In addition, the type of functional dependence of moisture content and hydraulic conductivity on matric potential leads to high-dimensional (in the parameter space) problems even under conditions where closed-form expressions of these models such as van Genuchten-Mualem formulations are used. In this study, we updated soil water retention parameters and hydraulic conductivity together and used Restart EnKF, which rerun the nonlinear model from the initial time to obtain the updated state variables, in synthetic cases to explore the factors that may influence estimation results, including the initial estimate, the ensemble size, the observation error, and the assimilation interval. We embedded the EnKF into the Bayesian model averaging framework to enhance the model reliability and reduce predictive uncertainties. This approach is evaluated from a 15 m deep semi-arid highly heterogeneous and anisotropic vadose zone site at the

  17. Baleen wear reveals intraoral water flow patterns of mysticete filter feeding.

    PubMed

    Werth, Alexander J; Straley, Janice M; Shadwick, Robert E

    2016-04-01

    A survey of macroscopic and microscopic wear patterns in the baleen of eight whale species (Cetacea: Mysticeti) discloses structural, functional, and life history properties of this neomorphic keratinous tissue, including evidence of intraoral water flow patterns involved in filter feeding. All baleen demonstrates wear, particularly on its medial and ventral edges, as flat outer layers of cortical keratin erode to reveal horn tubes, also of keratin, which emerge as hair-like fringes. This study quantified five additional categories of specific wear: pitting of plates, scratching of plates, scuffing of fringes, shortening of fringes, and reorientation of fringes (including fringes directed between plates to the exterior of the mouth). Blue whale baleen showed the most pitting and sei whale baleen the most scratching; gray whale baleen had the most fringe wear. The location of worn baleen within the mouth suggests that direct contact with the tongue is not responsible for most wear, and that flowing water as well as abrasive prey or sediment carried by the flowing water likely causes pitting and scratching of plates as well as fringe fraying, scuffing, shortening, and reorientation. Baleen also has elevated vertical and horizontal ridges that are unrelated to wear; these are probably related to growth and may allow for age determination.

  18. Illustration of cross flow of polystyrene melts through a coathanger die

    NASA Astrophysics Data System (ADS)

    Schöppner, V.; Henke, B.

    2015-05-01

    To design an optimal coathanger die with a uniform flow rate distribution and low pressure drop, it is essential to understand the flow conditions in the die. This is important because the quality of the product is influenced by the flow velocity and the flow rate distribution. In extrusion dies, cross flows also occur in addition to the main flow, which flow perpendicular to the main flow. This results in pressure gradients in the extrusion direction, which have an influence on flow distribution and pressure drop in the die. In recent decades, quantitative representation and analysis of physical flow processes have made considerable progress in predicting the weather, developing drive technologies and designing aircraft using simulation methods and lab trials. Using the flow-line method, the flow is analyzed in flat film extrusion dies with a rectangular cross-section, in particular cross flows. The simplest method to visualize the flow is based on the measurement of obstacle orientation in the flow field by adding individual particles. A near-surface flow field can be visualized by using wool or textile yarns. By sticking thin, frayed at the ends of strands of wool surface that is to be examined cross flows, near-wall profiles of the flow and vortex and separation regions can be visualized. A further possibility is to add glass fibers and analyze the fiber orientation by microscopy and x-ray analysis. In this paper the influence of process parameters (e.g. melt temperatures and throughput) on cross flow and fiber orientation is described.

  19. Filter-feeding, near-field flows, and the morphologies of colonial choanoflagellates

    NASA Astrophysics Data System (ADS)

    Kirkegaard, Julius B.; Goldstein, Raymond E.

    2016-11-01

    Efficient uptake of prey and nutrients from the environment is an important component in the fitness of all microorganisms, and its dependence on size may reveal clues to the origins of evolutionary transitions to multicellularity. Because potential benefits in uptake rates must be viewed in the context of other costs and benefits of size, such as varying predation rates and the increased metabolic costs associated with larger and more complex body plans, the uptake rate itself is not necessarily that which is optimized by evolution. Uptake rates can be strongly dependent on local organism geometry and its swimming speed, providing selective pressure for particular arrangements. Here we examine these issues for choanoflagellates, filter-feeding microorganisms that are the closest relatives of the animals. We explore the different morphological variations of the choanoflagellate Salpingoeca rosetta, which can exist as a swimming cell, as a sessile thecate cell, and as colonies of cells in various shapes. In the absence of other requirements and in a homogeneously nutritious environment, we find that the optimal strategy to maximize filter-feeding by the collar of microvilli is to swim fast, which favors swimming unicells. In large external flows, the sessile thecate cell becomes advantageous. Effects of prey diffusion are discussed and also found to be to the advantage of the swimming unicell.

  20. Filter feeders and plankton increase particle encounter rates through flow regime control

    PubMed Central

    Humphries, Stuart

    2009-01-01

    Collisions between particles or between particles and other objects are fundamental to many processes that we take for granted. They drive the functioning of aquatic ecosystems, the onset of rain and snow precipitation, and the manufacture of pharmaceuticals, powders and crystals. Here, I show that the traditional assumption that viscosity dominates these situations leads to consistent and large-scale underestimation of encounter rates between particles and of deposition rates on surfaces. Numerical simulations reveal that the encounter rate is Reynolds number dependent and that encounter efficiencies are consistent with the sparse experimental data. This extension of aerosol theory has great implications for understanding of selection pressure on the physiology and ecology of organisms, for example filter feeders able to gather food at rates up to 5 times higher than expected. I provide evidence that filter feeders have been strongly selected to take advantage of this flow regime and show that both the predicted peak concentration and the steady-state concentrations of plankton during blooms are ≈33% of that predicted by the current models of particle encounter. Many ecological and industrial processes may be operating at substantially greater rates than currently assumed. PMID:19416879

  1. Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting.

    PubMed

    Deng, Ming-jun; Qu, Shi-ru

    2015-01-01

    Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting.

  2. Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H. J.; Kinzelbach, W.

    2008-09-01

    Real-time groundwater flow modeling with filter methods is interesting for dynamical groundwater flow systems, for which measurement data in real-time are available. The Ensemble Kalman Filter (EnKF) approach is used here to update states together with parameters by adopting an augmented state vector approach. The performance of EnKF is investigated in a synthetic study with a two-dimensional transient groundwater flow model where (1) only the recharge rate is spatiotemporally variable, (2) only transmissivity is spatially variable with σlnT2 = 1.0 or (3) with σlnT2 = 2.7, and (4) both recharge rate and transmissivity are uncertain (a combination of (1) and (3)). The performance of EnKF for simultaneous state and parameter estimation in saturated groundwater flow problems is investigated in dependence of the number of stochastic realizations, the updating frequency and updating intensity of log-transmissivity, the amount of measurements in space and time, and the method (iterative versus noniterative EnKF), among others. Satisfactory results were also obtained if both transmissivity and recharge rate were uncertain. However, it was found that filter inbreeding is much more severe if hydraulic heads and transmissivities are jointly updated than if only hydraulic heads are updated. The filter inbreeding problem was investigated in more detail and could be strongly reduced with help of a damping parameter, which limits the intensity of the perturbation of the log-transmissivity field. An additional reduction of filter inbreeding could be achieved by combining two measures: (1) inflating the elements of the predicted state covariance matrix on the basis of a comparison between the model uncertainty and the observed errors at the measurement points and (2) starting the flow simulations with a very large number of realizations and then sampling the desired number of realizations after one simulation time step by minimizing the differences between the local cpdfs (and

  3. Ensemble Kalman Filter vs Particle Filter in a Physically Based Coupled Model of Surface-Subsurface Flow (Invited)

    NASA Astrophysics Data System (ADS)

    Putti, M.; Camporese, M.; Pasetto, D.

    2010-12-01

    Data assimilation (DA) has recently received growing interest by the hydrological modeling community due to its capability to merge observations into model prediction. Among the many DA methods available, the Ensemble Kalman Filter (EnKF) and the Particle Filter (PF) are suitable alternatives for applications to detailed physically-based hydrological models. For each assimilation period, both methods use a Monte Carlo approach to approximate the state probability distribution (in terms of mean and covariance matrix) by a finite number of independent model trajectories, also called particles or realizations. The two approaches differ in the way the filtering distribution is evaluated. EnKF implements the classical Kalman filter, optimal only for linear dynamics and Gaussian error statistics. Particle filters, instead, use directly the recursive formula of the sequential Bayesian framework and approximate the posterior probability distributions by means of appropriate weights associated to each realization. We use the Sequential Importance Resampling (SIR) technique, which retains only the most probable particles, in practice the trajectories closest in a statistical sense to the observations, and duplicates them when needed. In contrast to EnKF, particle filters make no assumptions on the form of the prior distribution of the model state, and convergence to the true state is ensured for large enough ensemble size. In this study EnKF and PF have been implemented in a physically based catchment simulator that couples a three-dimensional finite element Richards equation solver with a finite difference diffusion wave approximation based on a digital elevation data for surface water dynamics. We report on the retrieval performance of the two schemes using a three-dimensional tilted v-catchment synthetic test case in which multi-source observations are assimilated (pressure head, soil moisture, and streamflow data). The comparison between the results of the two approaches

  4. Flow topologies and turbulence scales in a jet-in-cross-flow

    SciTech Connect

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.

  5. Flow topologies and turbulence scales in a jet-in-cross-flow

    DOE PAGES

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less

  6. Comparison of Flow Impairment during Carotid Artery Stenting Using Two Types of Eccentric Filter Embolic Protection Devices

    PubMed Central

    NII, Kouhei; TSUTSUMI, Masanori; MAEDA, Hitoshi; AIKAWA, Hiroshi; INOUE, Ritsuro; ETO, Ayumu; SAKAMOTO, Kimiya; MITSUTAKE, Takafumi; HANADA, Hayatsura; KAZEKAWA, Kiyoshi

    2016-01-01

    We investigated the angiographic findings and the clinical outcomes after carotid artery stenting (CAS) using two different, eccentric filter embolic protection devices (EPDs). Between July 2010 and August 2015, 175 CAS procedures were performed using a self-expandable closed-cell stent and a simple eccentric filter EPD (FilterWire EZ in 86 and Spider FX in 89 procedures). The angiographic findings (i.e., flow impairment and vasospasm) at the level of EPDs, neurologic events, and post-operative imaging results were compared between the FilterWire EZ and the Spider FX groups. The CAS was angiographically successful in all 175 procedures. However, the angiographs were obtained immediately after CAS-detected flow impairment in the distal internal carotid artery (ICA) in 11 (6.3%) and ICA spasms at the level of the EPD in 40 cases (22.9%). The incidence of these complications was higher with FilterWire EZ than Spider FX (ICA flow impairment of 10.5% vs. 2.2%, P = 0.03; vasospasm 30.2% vs. 15.7%, P = 0.03). There were nine neurologic events (5.1%); five patients were presented with transient ischemic attacks, three had minor strokes, and one had a major stroke. New MRI lesions were seen in 25 (29.1%) FilterWire-group and in 36 (40.4%) Spider-group patients. The neurologic events and new MRI lesions were not associated with the type of EPD used. Although the ICA flow impairment may result in neurologic events, there was no significant association between the FilterWire EZ and the Spider FX CAS with respect to the incidence of neurologic events by the prompt treatment such as catheter aspiration. PMID:27319302

  7. Water Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  8. Experimental investigation and CFD analysis on cross flow in the core of PMR200

    SciTech Connect

    Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; Jae, Moosung; Park, Goon -Cherl

    2015-04-16

    The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connecting the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.

  9. Experimental investigation and CFD analysis on cross flow in the core of PMR200

    DOE PAGES

    Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; ...

    2015-04-16

    The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connectingmore » the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.« less

  10. Measurements of the flow and turbulence characteristics of round jets in cross flow

    NASA Astrophysics Data System (ADS)

    Sherif, S. A.; Pletcher, R. H.

    1986-05-01

    Measurements of the velocity and turbulence characteristics of a round turbulent jet in cross flow are reported. The experiments were conducted in a water channel, 8.53 m long, 0.61 m wide, and 1.067 m deep, of the recirculation type. Water was injected vertically upward from a circular pipe located near the channel bottom to simulate the turbulent jet. Normal and 45 deg-slanted fiber-film probes along with appropriate anemometers and bridges were operated in the constant temperature mode to measure mean velocities, turbulence intensities, Reynolds stresses, structural parameters, correlation coefficients, and the turbulent kinetic energy. The measurements were carried out in the jet and its wake both in and outside the jet plane of symmetry.

  11. Detailed flow and force measurements in a rotated triangular tube bundle subjected to two-phase cross-flow

    NASA Astrophysics Data System (ADS)

    Pettigrew, M. J.; Zhang, C.; Mureithi, N. W.; Pamfil, D.

    2005-05-01

    Two-phase cross-flow exists in many shell-and-tube heat exchangers. A detailed knowledge of the characteristics of two-phase cross-flow in tube bundles is required to understand and formulate flow-induced vibration parameters such as damping, fluidelastic instability, and random excitation due to turbulence. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. The array is made of relatively large diameter cylinders (38 mm) to allow for detailed two-phase flow measurements between cylinders. Fiber-optic probes were developed to measure local void fraction. Local flow velocities and bubble diameters or characteristic lengths of the two-phase mixture are obtained by using double probes. Both the dynamic lift and drag forces were measured with a strain gauge instrumented cylinder.

  12. Simplified groundwater flow modeling: an application of Kalman filter based identification

    SciTech Connect

    Pimentel, K.D.; Candy, J.V.; Azevedo, S.G.; Doerr, T.A.

    1980-05-01

    The need exists for methods to simplify groundwater contaminant transport models. Reduced-order models are needed in risk assessments for licensing and regulating long-term nuclear waste repositories. Such models will be used in Monte Carlo simulations to generate probabilities of nuclear waste migration in aquifers at candidate repository sites in the United States. In this feasibility study we focused on groundwater flow rather than contaminant transport because the flow problem is more simple. A pump-drawdown test is modeled with a reduced-order set of ordinary differential equations obtained by differencing the partial differential equation. We determined the accuracy of the reduced model by comparing it with the analytic solution for the drawdown test. We established an accuracy requirement of 2% error at the single observation well and found that a model with only 21 states satisfied that criterion. That model was used in an extended Kalman filter with synthesized measurement data from one observation well to identify transmissivity within 1% error and storage coefficient within 10% error. We used several statistical tests to assess the performance of the estimator/identifier and found it to be satisfactory for this application.

  13. Single- and Two-Phase Diversion Cross-Flows Between Triangle Tight Lattice Rod Bundle Subchannels - Data on Flow Resistance and Interfacial Friction Coefficients for the Cross-Flow

    SciTech Connect

    Tatsuya Higuchi; Akimaro Kawahara; Michio Sadatomi; Hiroyuki Kudo

    2006-07-01

    Single- and two-phase diversion cross-flows arising from the pressure difference between tight lattice subchannels are our concern in this study. In order to obtain a correlation of the diversion cross-flow, we conducted adiabatic experiments using a vertical multiple-channel with two subchannels simplifying the triangle tight lattice rod bundle for air-water flows at room temperature and atmospheric pressure. In the experiments, data were obtained on the axial variations in the pressure difference between the subchannels, the ratio of flow rate in one subchannel to the whole channel, the void fraction in each subchannel for slug-churn and annular flows in two-phase flow case. These data were analyzed by use of a lateral momentum equation based on a two-fluid model to determine both the cross-flow resistance coefficient between liquid phase and channel wall and the gas-liquid interfacial friction coefficient. The resulting coefficients have been correlated in a way similar to that developed for square lattice subchannel case by Kano et al. (2002); the cross-flow resistance coefficient data can be well correlated with a ratio of the lateral velocity due to the cross-flow to the axial one irrespective of single- and two-phase flows; the interfacial friction coefficient data were well correlated with a Reynolds number, which is based on the relative velocity between gas and liquid cross-flows as the characteristic velocity. (authors)

  14. Cross-flow vortex structure and transition measurements using multi-element hot films

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.

    1991-01-01

    An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.

  15. Ensemble Kalman Filter Data Assimilation with the ParFlow Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Williams, J. L., III

    2015-12-01

    Hydrometeorological research has shown that simulations of atmospheric processes benefit from sophisticated land surface formulations. Moisture and energy fluxes between the land surface and lower atmosphere are influenced strongly not only by atmospheric conditions, but by terrestrial hydrologic processes, soil moisture distribution in particular. By improving the representation of hydrologic processes, better predictive skill can be achieved in a fully-coupled weather forcasting model. Further improvements in the model can be realized by incorporating observed data values into the hydrologic model. This work applies the Ensemble Kalman Filter functionality included in the Data Assimilation Assimilation Research Testbed (DART), a collection of data assimilation tools maintained at the National Center for Atmospheric Research, to the ParFlow hydrologic model—the hydrologic component of the TerrSysMP fully coupled hydrologic - land surface - atmospheric model system. This generalized data assimilation tool allows observations of variables in the hydrologic component of the system to be incorporated into the overall error covariance matrix thus guiding the development of quantities that define the model state. Single dimension column tests, and a three-dimensional idealized catchment drainage and dry-out test were performed with the ParFlow-DART system to evaluate the effects of assimilating pressure head, soil moisture, and outflow observations on the development of the model through time. The data assimilation system was then applied to the hydrologic portion a fully-coupled (subsurface, land surface, and atmosphere) simulation over the North Rhine-Westphalia region in western Germany to demonstrate the utility of this system in a non-idealized and realistic forecasting situation. The success of these tests will allow the ParFlow-DART system to be developed into a complete data assimilation package for the TerrSysMP fully-coupled modeling system.

  16. Ensemble Kalman Filter Data Assimilation for the ParFlow Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Williams, John

    2014-05-01

    Research in hydrometeorology has demonstrated repeatedly that atmospheric models benefit from detailed formulations of the land surface, and that energy and moisture fluxes between the land surface and atmosphere are coupled strongly not only with atmospheric conditions, but also with subsurface hydrology—particularly soil moisture distribution. Improving the representation of hydrologic processes should lead to better predictive skill in a fully-coupled weather forecasting model, and the hydrologic model itself can be improved by incorporating observed data values. For this work, we apply the Ensemble Kalman Filter functionality included in the Data Assimilation Assimilation Research Testbed (DART), a collection of data assimilation tools maintained at the National Center for Atmospheric Research, to the ParFlow hydrologic model—the hydrologic component of the TerrSysMP fully coupled hydrologic - land surface - atmospheric model system. This generalized data assimilation tool allows observations of variables in the hydrologic component of the system to be incorporated into the overall error covariance matrix thus guiding the development of quantities that define the model state. Single dimension column tests, two-dimensional hillslope tests, and a three-dimensional drainage and dry-out test were performed with the ParFlow-DART system to evaluate the effects of assimilating pressure head, soil moisture, and outflow observations on the development of the model through time. The success of these tests will allow the ParFlow-DART system to be developed into a complete data assimilation package for the TerrSysMP fully-coupled modeling system.

  17. Calculation of linearized supersonic flow over slender cones of arbitrary cross section

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1972-01-01

    Supersonic linearized conical-flow theory is used to determine the flow over slender pointed cones having horizontal and vertical planes of symmetry. The geometry of the cone cross sections and surface velocities are expanded in Fourier series. The symmetry condition permits the uncoupling of lifting and nonlifting solutions. The present method reduces to Ward's theory for flow over a cone of elliptic cross section. Results are also presented for other shapes. Results by this method diverge for cross-sectional shapes where the maximum thickness is large compared with the minimum thickness. However, even for these slender-body shapes, lower order solutions are good approximations to the complete solution.

  18. An analysis of pressure driven cross-flow through a long slot connecting two parallel channels

    SciTech Connect

    Shadday, M.A. Jr.

    1992-12-31

    Cross-flow between two parallel channels that were connected by a long narrow slot has been measured. The data was presented primarily in terms of transverse resistance coefficients. This data has been analyzed with momentum balances applied to both the axial and transverse components of the slot flow. The importance of wall friction to the slot flow and the necessity of calculating the axial component of the slot flow is demonstrated.

  19. Kalman/Map filtering-aided fast normalized cross correlation-based Wi-Fi fingerprinting location sensing.

    PubMed

    Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin

    2013-11-13

    A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.

  20. Ultrafiltration and nanofiltration in the pulp and paper industry using cross-rotational (CR) filters.

    PubMed

    Mänttäri, M; Nyström, M

    2004-01-01

    Ultra- and nanofiltration with high shear CR-filters have been utilized for cleaning of clear filtrates and effluents from the pulp and paper industry. The aim was to find out how different nanofiltration membranes operate at high shear conditions. The filtration efficiency of the membranes was evaluated by measuring flux, retention and fouling at various recovery and pH conditions. High fluxes (approximately 100 L/(m2h)) for nanofiltration membranes were measured when circulation waters from the paper machine were filtered at neutral conditions. In the filtration of discharge of external activated sludge treatment plants we measured fluxes around 150 L/(m2h) even at a concentration factor of 12. The best NF membranes removed over 80% of the organic carbon and of the conductivity and almost completely eliminated the color. With acidic waters fluxes and retentions were significantly lower. The NF270 membrane from Dow and the Desal-5 membranes from Osmonics had the highest flux and retention properties. However, the Desal-5 membrane lost its retention properties slowly, which restricts its use in the high shear CR-filter. CR-nanofiltration can be used in the pulp and paper industry without feed pre-treatment by ultrafiltration. This increases the attractiveness of high shear CR-nanofiltration.

  1. Air flow resistance of three heat and moisture exchanging filter designs under wet conditions: implications for patient safety.

    PubMed

    Morgan-Hughes, N J; Mills, G H; Northwood, D

    2001-08-01

    Heat and moisture exchanging filters (HMEFs) can be blocked by secretions. We have studied HMEF performance under wet conditions to see which particular design features predispose to this complication. Dar Hygrobac-S (composite felt filter and cellulose exchanger), Dar Hygroster (composite pleated ceramic membrane and cellulose exchanger) and Pall BB22-15 (pleated ceramic membrane) HMEFs were tested. Saline retention, saline concealment, and changes in air flow resistance when wet were assessed. The cellulose exchanger in the composite Hygrobac-S and Hygroster retained saline, producing a 'tampon' effect, associated with bi-directional air flow resistances in excess of the international standard of a 5 cm H(2)O pressure drop at 60 litre min(-1) air flow. Furthermore, high air flow resistances occurred before free saline was apparent within the transparent filter housing. The pleat only BB22-15 showed a significant increase in expiratory air flow resistance, but only after the presence of saline was apparent. These data imply that composite HMEFs with cellulose exchangers are more likely to block or cause excessive work of breathing as a result of occult accumulation of patient secretions than pleat only HMEFs.

  2. Blood Cell Separation Device Using Serially Connected Membrane Filters for Adapting to Blood Flow Properties

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Kato, Daiki; Koga, Hiroyuki; Morimoto, Kenichi; Fukuda, Makoto; Kinoshita, Yoshiharu; Yoshida, Hiroshi; Konishi, Satoshi

    This paper proposes a cooperative operation of serially connected membrane filters toward adaptive blood cell separation system in order to overcome a restriction of a single membrane filter. Serially connected membrane filters allow that downstream filters extract blood plasma from residual blood at upstream filters. Consequently, it becomes possible to adapt filtering characteristics to changing properties of blood. We focus on trans-membrane pressure difference in order to prevent hemolysis. Our strategy can be realized as a miniaturized PDMS fluidic chip. Our laboratory experiment using a prototype shows that plasma extraction efficiency is improved from 34% to 75%. Toward an integrated system, this paper also demonstrates multiple filters are successfully integrated into a PDMS fluidic chip.

  3. Averaged indicators of secondary flow in repeated acoustic Doppler current profiler crossings of bends

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    [1] Cross-stream velocity was measured in a large river bend at high spatial resolution over three separate survey episodes. A suite of methods for resolving cross-stream velocity distributions was tested on data collected using acoustic Doppler current profilers (ADCP) in the sand-bedded Sacramento River, California. The bend was surveyed with repeated ADCP crossings at eight cross sections during a rising limb of high discharge in February 2004 and twice on recession in March 2004. By translating and interpolating repeated ADCP crossings to planar grids, velocity ensembles at similar positions along irregular boat paths could be averaged. The averaging minimized turbulent fluctuations in streamwise velocities over 1 m/s, enabling the resolution of weaker cross-stream velocities (???15-30 cm/s). Secondary-flow influence on suspended sediment was inferred from a lateral region of acoustic backscatter intensity aligned with outward flow over the point bar. A near-bed decrease in backscatter intensity across the pool corresponded with inward cross-stream flow. These suspension indicators were used to orient averaged velocity grids for unambiguously defining the cross-stream velocity magnitudes. Additional field investigations could test whether the correlation between cross-stream velocity and backscatter intensity patterns results from helical recirculation of suspended sediment to the inside of the bend. These river measurements, consistent with classic and recent laboratory studies, show that ADCP surveys can provide refined views of secondary flow and sediment movement in large rivers.

  4. [Effect of grass barrier-combined filter strips on the reduction of nitrogen and phosphorus concentration under concentrated flow of varying densities].

    PubMed

    Du, Qin; Wang, Jin-ye; Li, Hai-fang

    2015-09-01

    Vegetative barrier-combined filter strips are defined as grass barriers set up before filter strips. They could make concentrated water flow disperse, which exerts the function of grass barriers (i.e., existence of grass barriers improves the performance of filter strips in the purification of pollutants). In this regards, grass barriers are generally considered to be effective in the purification of pollutants when the density of concentrated flow is low, whereas little was known about this effect with an increasing density of concentrated flow. In this study, we constructed Miscanthus floridulus barrier before Vitex negundo filter strip with three densities of concentrated flow (low: one concentrated flow channel; middle: three channels; high: five channels). The aim of work was to identify the effect of M. floridulus combined V. negundo filter strips in reducing nitrogen and phosphorus concentration under three concentrated water flow levels. Our results showed that the combined filter strips had a higher performance in the reduction in the total N, NH(4+)-N, NO(3-)-N and total P compared to those in the V. negundo (P < 0.05), regardless of the water flow level. There was no significant difference in the reduction of total N, NH(4+)-N, NO(3-)-N and total P among three water flow levels (P > 0.05). We concluded that M. floridulus combined V. negundo filter strips could improve the reduction of nutrients, which couldn' t be influenced by varying density of concentrated flow level.

  5. Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow

    NASA Astrophysics Data System (ADS)

    Segalini, A.; Cimarelli, A.; Rüedi, J.-D.; De Angelis, E.; Talamelli, A.

    2011-10-01

    The effort to describe velocity fluctuation distributions in wall-bounded turbulent flows has raised different questions concerning the accuracy of hot-wire measurement techniques close to the wall and more specifically the effect of spatial averaging resulting from the finite size of the wire. Here, an analytical model which describes the effect of the spatial filtering and misalignment of hot-wire probes on the main statistical moments in turbulent wall-bounded flows is presented. The model, which is based on the two-point velocity correlation function, shows that the filtering is directly related to the transverse Taylor micro-scale. By means of turbulent channel flow DNS data, the capacity of the model to accurately describe the probe response is established. At the same time, the filtering effect is appraised for different wire lengths and for a range of misalignment angles which can be expected from good experimental practice. Effects of the second-order terms in the model equations are also taken into account and discussed. In order to use the model in a practical situation, the Taylor micro-scale distribution at least should be provided. A simple scaling law based on classic turbulence theory is therefore introduced and finally employed to estimate the filtering effect for different wire lengths.

  6. Optical flow based Kalman filter for body joint prediction and tracking using HOG-LBP matching

    NASA Astrophysics Data System (ADS)

    Nair, Binu M.; Kendricks, Kimberley D.; Asari, Vijayan K.; Tuttle, Ronald F.

    2014-03-01

    We propose a real-time novel framework for tracking specific joints in the human body on low resolution imagery using optical flow based Kalman tracker without the need of a depth sensor. Body joint tracking is necessary for a variety of surveillance based applications such as recognizing gait signatures of individuals, identifying the motion patterns associated with a particular action and the corresponding interactions with objects in the scene to classify a certain activity. The proposed framework consists of two stages; the initialization stage and the tracking stage. In the initialization stage, the joints to be tracked are either manually marked or automatically obtained from other joint detection algorithms in the first few frames within a window of interest and appropriate image descriptions of each joint are computed. We employ the use of a well-known image coding scheme known as the Local Binary Patterns (LBP) to represent the joint local region where this image coding removes the variance to non-uniform lighting conditions as well as enhances the underlying edges and corner. The image descriptions of the joint region would then include a histogram computed from the LBP-coded ROI and a HOG (Histogram of Oriented Gradients) descriptor to represent the edge information. Next the tracking stage can be divided into two phases: Optical flow based detection of joints in corresponding frames of the sequence and prediction /correction phases of Kalman tracker with respect to the joint coordinates. Lucas Kanade optical flow is used to locate the individual joints in consecutive frames of the video based on their location in the previous frame. But more often, mismatches can occur due to the rotation of the joint region and the rotation variance of the optical flow matching technique. The mismatch is then determined by comparing the joint region descriptors using Chi-squared metric between a pair of frames and depending on this statistic, either the prediction

  7. Grid-Independent Large-Eddy Simulation in Turbulent Channel Flow using Three-Dimensional Explicit Filtering

    NASA Technical Reports Server (NTRS)

    Gullbrand, Jessica

    2003-01-01

    In this paper, turbulence-closure models are evaluated using the 'true' LES approach in turbulent channel flow. The study is an extension of the work presented by Gullbrand (2001), where fourth-order commutative filter functions are applied in three dimensions in a fourth-order finite-difference code. The true LES solution is the grid-independent solution to the filtered governing equations. The solution is obtained by keeping the filter width constant while the computational grid is refined. As the grid is refined, the solution converges towards the true LES solution. The true LES solution will depend on the filter width used, but will be independent of the grid resolution. In traditional LES, because the filter is implicit and directly connected to the grid spacing, the solution converges towards a direct numerical simulation (DNS) as the grid is refined, and not towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-closure models is therefore difficult to determine in traditional LES because, as the grid is refined, more turbulence length scales are resolved and less influence from the models is expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales that are smaller than the filter cutoff, regardless of the grid resolution. This ensures that the resolved length-scales do not vary as the grid resolution is changed. In true LES, the cell size must be smaller than or equal to the cutoff length scale of the filter function. The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM), the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These turbulence models were previously studied using two-dimensional explicit filtering in turbulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991) is used as the USFS model in all the simulations. This enables evaluation of different reconstruction models for the RSFS stresses. The DMM

  8. EMERGING TECHNOLOGY BULLETIN: A CROSS-FLOW PERVAPORATION SYSTEM FOR REMOVAL OF VOCS FROM CONTAMINATED WASTEWATER

    EPA Science Inventory

    Pervaporation is a process for removing volatile organic compounds (VOC) from contaminated water. The performance of the cross-flow pervaporation system increases with temperature, with an equipment limitation of 35 degrees Celsius. Permeable membranes that preferentially adsor...

  9. Computer program for the analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A computer program was used to solve the governing of the potential flow in the cross sectional planes of a radial inflow turbine scroll. A list of the main program, the subroutines, and typical output example are included.

  10. Dilution jets in accelerated cross flows. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Lipshitz, A.; Greber, I.

    1984-01-01

    Results of flow visualization experiments and measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The flow in such combustors is typified by transverse and longitudinal acceleration during the passage through its bending section. The flow visualization experiments are designed to examine the separate effects of longitudinal and transverse acceleration on the jet trajectory and spreading rate. A model describing a dense single jet in a lighter accelerating cross flow is developed. The model is based on integral conservation equations, including the pressure terms appropriate to accelerating flows. It uses a modified entrainment correlation obtained from previous experiments of a jet in a cross stream. The flow visualization results are compared with the model calculations in terms of trajectories and spreading rates. Each experiment is typified by a set of three parameters: momentum ratio, density ratio and the densimetric Froude number.

  11. Matched filter optimization of kSZ measurements with a reconstructed cosmological flow field

    NASA Astrophysics Data System (ADS)

    Li, Ming; Angulo, R. E.; White, S. D. M.; Jasche, J.

    2014-09-01

    We develop and test a new statistical method to measure the kinematic Sunyaev-Zel'dovich (kSZ) effect. A sample of independently detected clusters is combined with the cosmic flow field predicted from a galaxy redshift survey in order to derive a matched filter that optimally weights the kSZ signal for the sample as a whole given the noise involved in the problem. We apply this formalism to realistic mock microwave skies based on cosmological N-body simulations, and demonstrate its robustness and performance. In particular, we carefully assess the various sources of uncertainty, cosmic microwave background primary fluctuations, instrumental noise, uncertainties in the determination of the velocity field, and effects introduced by miscentring of clusters and by uncertainties of the mass-observable relation (normalization and scatter). We show that available data (Planck maps and the MaxBCG catalogue) should deliver a 7.7σ detection of the kSZ. A similar cluster catalogue with broader sky coverage should increase the detection significance to ˜13σ. We point out that such measurements could be binned in order to study the properties of the cosmic gas and velocity fields, or combined into a single measurement to constrain cosmological parameters or deviations of the law of gravity from General Relativity.

  12. Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part I. A theoretical approach.

    PubMed

    Håkansson, Andreas; Magnusson, Emma; Bergenståhl, Björn; Nilsson, Lars

    2012-08-31

    Direct determination of hydrodynamic radius from retention time is an advantage of the field-flow fractionation techniques. However, this is not always completely straight forward since non-idealities exist and assumptions have been made in deriving the retention equations. In this study we investigate the effect on accuracy from two factors: (1) level of sophistication of the equations used to determine channel height from a calibration experiment and (2) the influence of secondary relaxation on the accuracy of hydrodynamic radius determination. A new improved technique for estimating the channel height from calibration experiments is suggested. It is concluded that severe systematic error can arise if the most common channel height equations are used and an alternative more rigorous approach is described. For secondary relaxation it is concluded that this effect increases with the cross-flow decay rate. The secondary relaxation effect is quantified for different conditions. This is part one of two. In the second part the determination of hydrodynamic radius are evaluated experimentally under similar conditions.

  13. Improved design and optimization of subsurface flow constructed wetlands and sand filters

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Carranza-Díaz, O.; Rossi, L.; Barry, D. A.

    2010-05-01

    Subsurface flow constructed wetlands and sand filters are engineered systems capable of eliminating a wide range of pollutants from wastewater. These devices are easy to operate, flexible and have low maintenance costs. For these reasons, they are particularly suitable for small settlements and isolated farms and their use has substantially increased in the last 15 years. Furthermore, they are also becoming used as a tertiary - polishing - step in traditional treatment plants. Recent work observed that research is however still necessary to understand better the biogeochemical processes occurring in the porous substrate, their mutual interactions and feedbacks, and ultimately to identify the optimal conditions to degrade or remove from the wastewater both traditional and anthropogenic recalcitrant pollutants, such as hydrocarbons, pharmaceuticals, personal care products. Optimal pollutant elimination is achieved if the contact time between microbial biomass and the contaminated water is sufficiently long. The contact time depends on the hydraulic residence time distribution (HRTD) and is controlled by the hydrodynamic properties of the system. Previous reports noted that poor hydrodynamic behaviour is frequent, with water flowing mainly through preferential paths resulting in a broad HRTD. In such systems the flow rate must be decreased to allow a sufficient proportion of the wastewater to experience the minimum residence time. The pollutant removal efficiency can therefore be significantly reduced, potentially leading to the failure of the system. The aim of this work was to analyse the effect of the heterogeneous distribution of the hydraulic properties of the porous substrate on the HRTD and treatment efficiency, and to develop an improved design methodology to reduce the risk of system failure and to optimize existing systems showing poor hydrodynamics. Numerical modelling was used to evaluate the effect of substrate heterogeneity on the breakthrough curves of

  14. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect

    Recknagle, Kurtis P.; Barnett, J. Matthew; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  15. A cantilevered flexible cylinder in cross-flow

    NASA Astrophysics Data System (ADS)

    Shang, Jessica; Smits, Alexander; Stone, Howard

    2011-11-01

    Biological fluid-structure interactions of high aspect ratio bluff bodies are commonplace: flow around tall plants; flow through arrays of sensory vibrissae, antennae, and hairs. In this study, we seek insight to this class of problems by generalizing the flow configuration to uniform flow past a flexible cantilevered cylinder. Experiments were conducted for ReD = 100-500. Cylinders deflected with the flow and demonstrated multimodal oscillations in both the streamwise and transverse directions. Oscillation frequencies were correlated with vortex shedding frequencies, but low oscillation frequencies (sub-1 Hz), which were not apparently vortex- induced, were also present. Two ReD regimes were noted in which the vortex shedding frequency remained relatively constant with ReD , while the two regimes were separated by an intermediate transition region. This feature results in an apparently linear relationship between St and ReD in each regime. Hydrogen bubble visualization showed strong three-dimensionality in the wake, as well as a diversity of wake structures varying with ReD . NSF-GRFP

  16. CFD simulations of the flow control performance applied for inlet of low drag high-bypass turbofan engine at cross flow regimes

    NASA Astrophysics Data System (ADS)

    Kursakov, I. A.; Kazhan, E. V.; Lysenkov, A. V.; Savelyev, A. A.

    2016-10-01

    Paper describes the optimization procedure for low cruise drag inlet of high-bypass ratio turbofan engine (HBRE). The critical cross-flow velocity when the flow separation on the lee side of the inlet channel occurs is determined. The effciency of different flow control devices used to improve the flow parameters at inlet section cross flow regime is analyzed. Boundary layer suction, bypass slot and vortex generators are considered. It is shown that flow control devices enlarge the stability range of inlet performance at cross flow regimes.

  17. Spin-filtered and spatially distinguishable crossed Andreev reflection in a silicene-superconductor junction

    NASA Astrophysics Data System (ADS)

    Li, Kangkang; Zhang, Yan-Yang

    2016-10-01

    We theoretically investigate the quantum transport in a junction between a superconductor and a silicene nanoribbon, under the effect of a magnetic exchange field. We find that for a narrow nanoribbon of silicene, remarkable crossed Andreev reflection (with a fraction >50 % ) can be induced in the energy window of the elastic cotunneling, by destroying some symmetries of the system. Since the energy responses of electrons to the exchange field are opposite for opposite spins, these transport channels can be well spin polarized. Moreover, due to the helicity conservation of the topological edge states, the Andreev reflection, the crossed Andreev reflection, and the elastic cotunneling are spatially separated in three different locations of the device, making them experimentally distinguishable. This crossed Andreev reflection is a nonlocal quantum interference between opposite edges through evanescent modes. If two superconducting leads with different phases are connected to two edges of the silicene nanoribbon, the crossed Andreev reflection can present Josephson type oscillations, with a maximal fraction ˜100 % .

  18. Dynamics of the ion flow in a discharge with crossed E and H fields

    SciTech Connect

    Movsesyants, Yu. B. Tyuryukanov, P. M.

    2011-12-15

    The experimental and theoretical results of the investigation of an ion flow in a low-pressure discharge in crossed E and H fields are presented. It is shown that two quasi-stationary current states can be realized in a transonic collisionless flow of ions in a cold plasma.

  19. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations

    SciTech Connect

    Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh; Li, Tingwen; Sun, Xin; Sundaresan, Sankaran

    2016-10-01

    The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functional differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.

  20. Accelerated Singular Value-Based Ultrasound Blood Flow Clutter Filtering With Randomized Singular Value Decomposition and Randomized Spatial Downsampling.

    PubMed

    Song, Pengfei; Trzasko, Joshua D; Manduca, Armando; Qiang, Bo; Kadirvel, Ramanathan; Kallmes, David F; Chen, Shigao

    2017-04-01

    Singular value decomposition (SVD)-based ultrasound blood flow clutter filters have recently demonstrated substantial improvement in clutter rejection for ultrafast plane wave microvessel imaging, and have become the commonly used clutter filtering method for many novel ultrafast imaging applications such as functional ultrasound and super-resolution imaging. At present, however, the computational burden of SVD remains as a major hurdle for practical implementation and clinical translation of this method. To address this challenge, in the study we present two blood flow clutter filtering methods based on randomized SVD (rSVD) and randomized spatial downsampling to accelerate SVD clutter filtering with minimal compromise to the clutter filter performance. rSVD accelerates SVD computation by approximating the k largest singular values, while random downsampling accelerates both full SVD and rSVD by decomposing the original large data matrix into small matrices that can be processed in parallel. An in vitro blood flow phantom study with the presence of heavy tissue clutter showed significantly improved computational performance using the proposed methods with minimal deterioration to the clutter filter performance (less than 3-dB reduction in blood to clutter ratio, less than 0.2-cm(2)/s(2) increase in flow mean squared error, less than 0.1-cm/s increase in the standard deviation of the vessel blood flow signal, and less than 0.3-cm/s increase in tissue clutter velocity for both full SVD and rSVD when the downsampling factor was less than 20× ). The maximum acceleration was about threefold from randomized spatial downsampling, and approximately another threefold from rSVD. An in vivo rabbit kidney perfusion study showed that rSVD provided comparable performance to full SVD in clutter rejection in vivo (maximum difference of blood to clutter ratio was less than 0.6 dB), and random downsampling provided artifact-free perfusion imaging results when combined with both

  1. Stabilization of Mass Absorption Cross Section of Elemental Carbon for Filter-Based Absorption Photometer by Heated Inlet

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Sahu, L.; Takegawa, N.; Miyazaki, Y.; Han, S.; Moteki, N.; Hu, M.; Kim Oanh, N.; Kim, Y.

    2008-12-01

    Accurate measurements of elemental carbon (EC) or black carbon on a long-term basis are important for the studies of impacts of EC on climate and human health. In principle, mass concentrations of EC (MEC) can be estimated by the measurement of light absorption coefficient by EC. Filter-based methods, which quantify the absorption coefficient (kabs) from the change in transmission through a filter loaded with particles, have been widely used to measure MEC because of the ease of the operation. However, in practice, reliable determination of MEC has been very difficult because of the large variability in the mass absorption cross sections (Cabs), which is a conversion factor from kabs to MEC. Coating of EC by volatile compounds and co-existence of light-scattering particles greatly contributes to the variability of Cabs. In order to overcome this difficulty, volatile aerosol components were removed before collection of EC particles on filters by heating an inlet section to 400°C. The heated inlet vaporized almost completely sulfate, nitrate, ammonium, and organics without any detectable loss of EC. Simultaneous measurements of kabs by two types photometers (Particle Soot Absorption Photometer (PSAP) and Continuous Soot Monitoring System (COSMOS)) together with MEC by the EC-OC analyzer were made to determine Cabs at 6 different locations in Asia (Japan, Korea, China, and Thailand) in different seasons. The Cabs was stable to be 10.5±0.7 m2 g-1 at the wavelength of 565 nm for EC strongly impacted by emissions from vehicles and biomass burning. The stability of the Cabs for different EC sources and under the different physical and chemical conditions provides a firm basis for its use in estimating MEC in fine mode with an accuracy of about 10%.

  2. Scheduling and Separating Departures Crossing Arrival Flows in Shared Airspace

    NASA Technical Reports Server (NTRS)

    Chevalley, Eric; Parke, Bonny K.; Lee, Paul; Omar, Faisal; Lee, Hwasoo; Beinert, Nancy; Kraut, Joshua M.; Palmer, Everett

    2013-01-01

    Flight efficiency and reduction of flight delays are among the primary goals of NextGen. In this paper, we propose a concept of shared airspace where departures fly across arrival flows, provided gaps are available in these flows. We have explored solutions to separate departures temporally from arrival traffic and pre-arranged procedures to support controllers' decisions. We conducted a Human-in-the-Loop simulation and assessed the efficiency and safety of 96 departures from the San Jose airport (SJC) climbing across the arrival airspace of the Oakland and San Francisco arrival flows. In our simulation, the SJC tower had a tool to schedule departures to fly across predicted gaps in the arrival flow. When departures were mistimed and separation could not be ensured, a safe but less efficient route was provided to the departures to fly under the arrival flows. A coordination using a point-out procedure allowed the arrival controller to control the SJC departures right after takeoff. We manipulated the accuracy of departure time (accurate vs. inaccurate) as well as which sector took control of the departures after takeoff (departure vs. arrival sector) in a 2x2 full factorial plan. Results show that coordination time decreased and climb efficiency increased when the arrival sector controlled the aircraft right after takeoff. Also, climb efficiency increased when the departure times were more accurate. Coordination was shown to be a critical component of tactical operations in shared airspace. Although workload, coordination, and safety were judged by controllers as acceptable in the simulation, it appears that in the field, controllers would need improved tools and coordination procedures to support this procedure.

  3. Nonstationary flow in a channel with variable cross section under conditions of periodic pulsed energy supply

    NASA Astrophysics Data System (ADS)

    Zamuraev, V. P.; Kalinina, A. P.

    2007-04-01

    The effect of a periodic pulsed supply of energy, equal to that of hydrogen combustion in air, on the structure of a supersonic flow in a channel of variable cross section modeling a ramjet tract has been studied. The flow has been numerically simulated based on two-dimensional gasdynamic equations. Various flow regimes are obtained depending on the configuration of energy supply zones and the excess air ratio in the channel.

  4. Traffic flow of a roundabout crossing with an open boundary condition

    NASA Astrophysics Data System (ADS)

    Bai, Ke-Zhao; Tan, Hui-Li; Kong, Ling-Jiang; Liu, Mu-Ren

    2010-04-01

    This paper presents a cellular automaton traffic flow model with an open boundary condition to describe the traffic flow at a roundabout crossing with an inner roundabout lane and an outer roundabout lane. The simulation results show that the boundary condition, bottlenecks and the self-organization affect the traffic flow at the roundabout crossing. Because of the effect of bottlenecks, jams easily appear on the inner roundabout lane. To improve the capacity of the roundabout system, proper values of the enter probability α and the out probability β can be chosen.

  5. Investigation of flow and transport processes at the MADE site using ensemble Kalman filter

    USGS Publications Warehouse

    Liu, Gaisheng; Chen, Y.; Zhang, Dongxiao

    2008-01-01

    In this work the ensemble Kalman filter (EnKF) is applied to investigate the flow and transport processes at the macro-dispersion experiment (MADE) site in Columbus, MS. The EnKF is a sequential data assimilation approach that adjusts the unknown model parameter values based on the observed data with time. The classic advection-dispersion (AD) and the dual-domain mass transfer (DDMT) models are employed to analyze the tritium plume during the second MADE tracer experiment. The hydraulic conductivity (K), longitudinal dispersivity in the AD model, and mass transfer rate coefficient and mobile porosity ratio in the DDMT model, are estimated in this investigation. Because of its sequential feature, the EnKF allows for the temporal scaling of transport parameters during the tritium concentration analysis. Inverse simulation results indicate that for the AD model to reproduce the extensive spatial spreading of the tritium observed in the field, the K in the downgradient area needs to be increased significantly. The estimated K in the AD model becomes an order of magnitude higher than the in situ flowmeter measurements over a large portion of media. On the other hand, the DDMT model gives an estimation of K that is much more comparable with the flowmeter values. In addition, the simulated concentrations by the DDMT model show a better agreement with the observed values. The root mean square (RMS) between the observed and simulated tritium plumes is 0.77 for the AD model and 0.45 for the DDMT model at 328 days. Unlike the AD model, which gives inconsistent K estimates at different times, the DDMT model is able to invert the K values that consistently reproduce the observed tritium concentrations through all times. ?? 2008 Elsevier Ltd. All rights reserved.

  6. The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow

    NASA Technical Reports Server (NTRS)

    Fernando, E. M.; Donovan, J. F.; Smits, A. J.

    1987-01-01

    The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow is considered. Crossed-wire probes offer considerable advantages over single, inclined wires: the kinematic shear stress can be derived from a single point measurement; the rms quantities can be derived from the same measurement, and the instantaneous quantities can be obtained as a continuous function of time. However, using a crossed-wire probe in supersonic flow is subject to the following practical difficulties: the problem of flow interference, where the shock waves from one wire and its supports interfere with the flow over the other wire; the necessity for high frequency response to resolve the spectral content, and the sensitivity of the results to small changes in the calibration constants. In the present contribution, each of these problems is addressed. Practical solutions are suggested, and some encouraging results are presented.

  7. Global aerodynamic instability of twin cylinders in cross flow

    NASA Astrophysics Data System (ADS)

    Alam, Md. Mahbub; Meyer, J. P.

    2013-08-01

    This paper comprises an in-depth physical discussion of the flow-induced vibration of two circular cylinders in view of the time-mean lift force on stationary cylinders and interaction mechanisms. The gap-spacing ratio T/D is varied from 0.1 to 5 and the attack angle α from 0° to 180° where T is the gap width between the cylinders and D is the diameter of a cylinder. Mechanisms of interaction between two cylinders are discussed based on time-mean lift, fluctuating lift, flow structures and flow-induced responses. The whole regime is classified into seven interaction regimes, i.e., no interaction regime; boundary layer and cylinder interaction regime; shear-layer/wake and cylinder interaction regime; shear-layer and shear-layer interaction regime; vortex and cylinder interaction regime; vortex and shear-layer interaction regime; and vortex and vortex interaction regime. Though a single non-interfering circular cylinder does not correspond to a galloping following quasi-steady galloping theory, two circular cylinders experience violent galloping vibration due to shear-layer/wake and cylinder interaction as well as boundary layer and cylinder interaction. A larger magnitude of fluctuating lift communicates to a larger amplitude vortex excitation.

  8. Cellular automata (CA) simulation of the interaction of vehicle flows and pedestrian crossings on urban low-grade uncontrolled roads

    NASA Astrophysics Data System (ADS)

    Chen, Qun; Wang, Yan

    2015-08-01

    This paper discusses the interaction of vehicle flows and pedestrian crossings on uncontrolled low-grade roads or branch roads without separating barriers in cities where pedestrians may cross randomly from any location on both sides of the road. The rules governing pedestrian street crossings are analyzed, and a cellular automata (CA) model to simulate the interaction of vehicle flows and pedestrian crossings is proposed. The influence of the interaction of vehicle flows and pedestrian crossings on the volume and travel time of the vehicle flow and the average wait time for pedestrians to cross is investigated through simulations. The main results of the simulation are as follows: (1) The vehicle flow volume decreases because of interruption from pedestrian crossings, but a small number of pedestrian crossings do not cause a significant delay to vehicles. (2) If there are many pedestrian crossings, slow vehicles will have little chance to accelerate, causing travel time to increase and the vehicle flow volume to decrease. (3) The average wait time for pedestrians to cross generally decreases with a decrease in vehicle flow volume and also decreases with an increase in the number of pedestrian crossings. (4) Temporal and spatial characteristics of vehicle flows and pedestrian flows and some interesting phenomena such as "crossing belt" and "vehicle belt" are found through the simulations.

  9. On the Nonlinear Evolution of a Stationary Cross-Flow Vortex in a Fully Three-Dimensional Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1995-01-01

    We consider the nonlinear stability of a fully three-dimensional boundary layer flow in an incompressible fluid and derive an equation governing the nonlinear development of a stationary cross-flow vortex. The amplitude equation is a novel integro-differential equation which has spatial derivatives of the amplitude occurring in the kernal function. It is shown that the evolution of the cross-flow vortex is strongly coupled to the properties of an unsteady wall layer which is in fact driven by an unknown slip velocity, proportional to the amplitude of the cross-flow vortex. The work is extended to obtain the corresponding equation for rotating disk flow. A number of special cases are examined and the numerical solution for one of cases, and further analysis, demonstrates the existence of finite-distance as well as focussing type singularities. The numerical solutions also indicate the presence of a new type of nonlinear wave solution for a certain set of parameter values.

  10. Cross flow induced vibrations in staggered arrays of cylindrical structures

    SciTech Connect

    Marn, J.

    1991-12-31

    Flow induced vibrations cause by instability is the subject of this investigation. The bulk of the work performed is theoretical in nature, the comparison with some of existing experimental data is given for each of four models described. First model encompasses the effects of prescribed motion on the cylinder. Such circumstances occur in the case of vortex shedding initiated instability. The reduced velocity within the cylinder array is low and there is no coupling between the adjacent cylinders. Second model assumes certain form of vibration and corresponding behavior of the perturbed velocity field in temporal and one of spatial coordinates thus transforming partial differential equations into ordinary differential equations and takes into account the motion of the neighboring cylinder. This corresponds to fluid elastic controlled instabilities. The resulting equations are solved analytically. The model is used for better understanding of the equations of cylinder motion as well as for quick estimates of threshold of instability. Third model relaxes an assumption about the form of vibration in spatial direction and uses the vorticity formulation of equation of fluid motion to account for fluid-solid interaction. This model analysis is of two phase (air-water mixture) flow. The void fraction distribution is found to be the single most decisive factor to determine the onset of instability for such a domain. In conclusion, two distinct mechanism were found to be responsible for flow induced vibration caused instabilities, (1) outside source controlled periodic excitation (such as vortex shedding) -- described by the first model and (2) fluid elastic forces -- described by second, third and fourth models. For the values of reduced velocity below 0.7 first model is proposed, for the values above 0.7, the rest.

  11. Crossing turbulent boundaries: interfacial flux in environmental flows.

    PubMed

    Grant, Stanley B; Marusic, Ivan

    2011-09-01

    Advances in the visualization and prediction of turbulence are shedding new light on mass transfer in the turbulent boundary layer. These discoveries have important implications for many topics in environmental science and engineering, from the transport of earth-warming CO2 across the sea-air interface, to nutrient processing and sediment erosion in rivers, lakes, and the ocean, to pollutant removal in water and wastewater treatment systems. In this article we outline current understanding of turbulent boundary layer flows, with particular focus on coherent turbulence and its impact on mass transport across the sediment-water interface in marine and freshwater systems.

  12. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  13. Analysis of KrF excimer laser beam modification resulting from ablation under closed thick film flowing filtered water

    NASA Astrophysics Data System (ADS)

    Dowding, Colin; Lawrence, Jonathan

    2011-09-01

    The application of a closed thick film flowing filtered water to immerse the ablation etching mechanism of an excimer laser poses interesting possibilities concerning debris control, modification of machined feature topography and modification of the ablation rate. Furthermore, these parameters have been shown to be dependent on flow velocity; hence, offering further user control of machining characteristics. However, the impact of this technique requires investigation. This contribution offers comparison of the calculated ablation pressure and the effect on feature surface characteristics given for laser ablation of bisphenol A polycarbonate using KrF excimer laser radiation in ambient air against laser ablation of the same substrate under closed thick film flowing filtered water immersion. Also, an impact of such immersion equipment on the optical performance of the micromachining centre used is quantified and reviewed. The pressure is calculated to have risen by a magnitude of 48, when using the liquid immersed ablation technique. This increase in pressure is proposed to have an increased surface roughness, promoting the number of asperities with a surface area lower than 16 μm 2; resulting in a diffuse reflection of light and an apparent darkening of features. The focal length of the optical system was accurately predicted to increase by 2.958 mm, when using the closed flowing liquid immersion equipment. This equipment is predicted to have increased the optical depth of focus via reduction in the angle of convergence of the two defining image rays; yet the perceived focus, measured discretely by mean feature wall angle, was found to be 25% smaller when using the closed thick film flowing filtered water immersion technique instead of similar laser ablation in ambient air. A compressed plume interaction is proposed as a contributing factor in this change.

  14. A circular cylinder undergoing large-amplitude transverse oscillations in a slow uniform cross flow

    NASA Astrophysics Data System (ADS)

    Lam, K. M.; Liu, P.

    2013-05-01

    This study explores the vortex patterns formed by a circular cylinder undergoing lateral cylinder oscillations with large amplitudes and in the presence of a slow uniform cross flow. It is an extension of our previous study (Lam et al., 2010b) in which formation of the 2S, 2P and P+S vortex modes were discussed from the viewpoint of interaction of a uniform cross-flow with the vortex street patterns of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers up to KC=8.9. The present paper reports three additional experimental sets in which the amplitudes of cylinder oscillations have even larger values, at A/D>2.5, and lie beyond the vortex mode map usually quoted from Williamson and Roshko (1988). It is found that the slow uniform cross-flow at λ/D≈3 and Reynolds number based on cross-flow velocity at 232 acts to convect the corresponding vortex patterns in the absence of cross-flow downstream across the line of cylinder oscillation. Vortex-vortex interaction and vortex-cylinder interaction are observed to affect the subsequent development of vortices. The P+S vortex mode is found to occur up to KC=16. At KC between 16 and 24, a new vortex mode is observed in which only one vortex pair can be convected downstream every cylinder oscillation cycle. Another new vortex mode with two vortex pairs and two stationary vortices are found at KC>24.

  15. Dynamic analysis of pedestrian crossing behaviors on traffic flow at unsignalized mid-block crosswalks

    NASA Astrophysics Data System (ADS)

    Liu, Gang; He, Jing; Luo, Zhiyong; Yang, Wunian; Zhang, Xiping

    2015-05-01

    It is important to study the effects of pedestrian crossing behaviors on traffic flow for solving the urban traffic jam problem. Based on the Nagel-Schreckenberg (NaSch) traffic cellular automata (TCA) model, a new one-dimensional TCA model is proposed considering the uncertainty conflict behaviors between pedestrians and vehicles at unsignalized mid-block crosswalks and defining the parallel updating rules of motion states of pedestrians and vehicles. The traffic flow is simulated for different vehicle densities and behavior trigger probabilities. The fundamental diagrams show that no matter what the values of vehicle braking probability, pedestrian acceleration crossing probability, pedestrian backing probability and pedestrian generation probability, the system flow shows the "increasing-saturating-decreasing" trend with the increase of vehicle density; when the vehicle braking probability is lower, it is easy to cause an emergency brake of vehicle and result in great fluctuation of saturated flow; the saturated flow decreases slightly with the increase of the pedestrian acceleration crossing probability; when the pedestrian backing probability lies between 0.4 and 0.6, the saturated flow is unstable, which shows the hesitant behavior of pedestrians when making the decision of backing; the maximum flow is sensitive to the pedestrian generation probability and rapidly decreases with increasing the pedestrian generation probability, the maximum flow is approximately equal to zero when the probability is more than 0.5. The simulations prove that the influence of frequent crossing behavior upon vehicle flow is immense; the vehicle flow decreases and gets into serious congestion state rapidly with the increase of the pedestrian generation probability.

  16. Performance characterization of a cross-flow hydrokinetic turbine in sheared inflow

    SciTech Connect

    Forbush, Dominic; Polagye, Brian; Thomson, Jim; Kilcher, Levi; Donegan, James; McEntee, Jarlath

    2016-12-01

    A method for constructing a non-dimensional performance curve for a cross-flow hydrokinetic turbine in sheared flow is developed for a natural river site. The river flow characteristics are quasi-steady, with negligible vertical shear, persistent lateral shear, and synoptic changes dominated by long time scales (days to weeks). Performance curves developed from inflow velocities measured at individual points (randomly sampled) yield inconclusive turbine performance characteristics because of the spatial variation in mean flow. Performance curves using temporally- and spatially-averaged inflow velocities are more conclusive. The implications of sheared inflow are considered in terms of resource assessment and turbine control.

  17. Intensity transform and Wiener filter in measurement of blood flow in arteriography

    NASA Astrophysics Data System (ADS)

    Nunes, Polyana F.; Franco, Marcelo L. N.; Filho, João. B. D.; Patrocínio, Ana C.

    2015-03-01

    Using the arteriography examination, it is possible to check anomalies in blood vessels and diseases such as stroke, stenosis, bleeding and especially in the diagnosis of Encephalic Death in comatose individuals. Encephalic death can be diagnosed only when there is complete interruption of all brain functions, and hence the blood stream. During the examination, there may be some interference on the sensors, such as environmental factors, poor maintenance of equipment, patient movement, among other interference, which can directly affect the noise produced in angiography images. Then, we need to use digital image processing techniques to minimize this noise and improve the pixel count. Therefore, this paper proposes to use median filter and enhancement techniques for transformation of intensity using the sigmoid function together with the Wiener filter so you can get less noisy images. It's been realized two filtering techniques to remove the noise of images, one with the median filter and the other with the Wiener filter along the sigmoid function. For 14 tests quantified, including 7 Encephalic Death and 7 other cases, the technique that achieved a most satisfactory number of pixels quantified, also presenting a lesser amount of noise, is the Wiener filter sigmoid function, and in this case used with 0.03 cuttof.

  18. Transport and survival of bacterial and viral tracers through submerged-flow constructed wetland and sand-filter system.

    PubMed

    Vega, Everardo; Lesikar, Bruce; Pillai, Suresh D

    2003-08-01

    Untreated or improperly treated wastewater has often been cited as the primary contamination source of groundwater. The use of decentralized wastewater treatment systems has applicability around the world since it obviates the need for extensive infrastructure development and expenditures. The use of a submerged flow constructed wetland (CW) and a sand filter to remove bacterial and viral pathogens from wastewater streams was evaluated in this study Salmonella sp. and a bacteriophages tracer were used in conjunction with the conservative bromide tracer to understand the fate and transport of these organisms in these treatment systems. Viral breakthrough numbers in the sand filter and CW were similar with a Spearman Rank correlation of 0.8 (P<0.05). In the CW, the virus exhibited almost a 3-log reduction, while in the sand filter, the viruses exhibited a 2-log reduction. The bacterial tracers, however, did not exhibit similar reductions. Low numbers of bacteria and viruses were still detectable in the effluent streams suggesting that disinfection of the effluent is critical. The survival of the tracer bacteria and viruses was as expected dependent on the biotic and abiotic conditions existing within the wastewater. The results suggest that the microbial removal characteristics of decentralized wastewater treatment systems can vary and depend on factors such as adsorption, desorption and inactivation which in turn depend on the design specifics such as filter media characteristics and local climatic conditions.

  19. Influence of flow concentration on parameter importance and prediction uncertainty of pesticide trapping by vegetative filter strips

    NASA Astrophysics Data System (ADS)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Sabbagh, George J.

    2010-04-01

    SummaryFlow concentration is a key hydrologic factor limiting the effectiveness of vegetated filter strips (VFS) in removing pesticides from surface runoff. Numerical models, such as VFSMOD-W, offer a mechanistic approach for evaluating VFS effectiveness under various hydrological conditions including concentrated flow. This research hypothesizes that the presence of concentrated flow drastically alters the importance of various hydrological, sedimentological, and pesticide input factors and the prediction uncertainty of pesticide reduction. Using data from a VFS experimental field study investigating chlorpyrifos and atrazine transport, a two-step global sensitivity and uncertainty analysis framework was used with VFSMOD-W based on (1) a screening method (Morris) and (2) a variance-based method (extended Fourier Analysis Sensitivity Test, FAST). The vertical, saturated hydraulic conductivity was consistently the most important input factor for predicting infiltration, explaining 49% of total output variance for uniform sheet flow, but only 8% for concentrated flow. Sedimentation was governed by both hydrologic (vertical, saturated hydraulic conductivity and initial and saturated water content) and sediment characteristics (average particle diameter). The vertical, saturated hydraulic conductivity was the most important input factor for atrazine or chlorpyrifos trapping under uniform sheet flow (explained more than 46% of the total output variance) and concentrated flow (although only explained 8% of the total variance in this case). The 95% confidence intervals for atrazine and chlorpyrifos reduction ranged between 43% and 78% for uniform sheet flow and decreased to between 1% and 16% under concentrated flow. Concentrated flow increased interactions among the system components, enhancing the relative importance of processes that were latent under shallow flow conditions. This complex behavior warrants the need for process-based modeling to be able to predict the

  20. Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach.

    PubMed

    Sagaidachnyi, A A; Fomin, A V; Usanov, D A; Skripal, A V

    2017-02-01

    The determination of the relationship between skin blood flow and skin temperature dynamics is the main problem in thermography-based blood flow imaging. Oscillations in skin blood flow are the source of thermal waves propagating from micro-vessels toward the skin's surface, as assumed in this study. This hypothesis allows us to use equations for the attenuation and dispersion of thermal waves for converting the temperature signal into the blood flow signal, and vice versa. We developed a spectral filtering approach (SFA), which is a new technique for thermography-based blood flow imaging. In contrast to other processing techniques, the SFA implies calculations in the spectral domain rather than in the time domain. Therefore, it eliminates the need to solve differential equations. The developed technique was verified within 0.005-0.1 Hz, including the endothelial, neurogenic and myogenic frequency bands of blood flow oscillations. The algorithm for an inverse conversion of the blood flow signal into the skin temperature signal is addressed. The examples of blood flow imaging of hands during cuff occlusion and feet during heating of the back are illustrated. The processing of infrared (IR) thermograms using the SFA allowed us to restore the blood flow signals and achieve correlations of about 0.8 with a waveform of a photoplethysmographic signal. The prospective applications of the thermography-based blood flow imaging technique include non-contact monitoring of the blood supply during engraftment of skin flaps and burns healing, as well the use of contact temperature sensors to monitor low-frequency oscillations of peripheral blood flow.

  1. Does Kutta lift exist on a vortex ring in a uniform cross flow?

    NASA Astrophysics Data System (ADS)

    Lim, T. T.; Lua, K. B.; Thet, K.

    2008-05-01

    Past works [Y. K. Chang and A. D. Vakili, Phys. Fluids 7, 1583 (1995); R. Sau and K. Mahesh, AIAA Paper No. 2007-1316] show that a vortex ring ejected normal to a cross flow tilts and deforms as it propagates downstream, and they attribute this phenomenon to the Kutta lift or Magnus effect. Here, we show through a controlled experiment that there is no physical evidence of the existence of a Kutta lift when a fully developed vortex ring is exposed to a uniform cross flow. The observed phenomenon could be attributed to the modification of vorticity distribution of the vortex core due to the combined effect of the cross flow itself and the entrainment of boundary layer material during the formation of vortex ring.

  2. Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Li, L.; Zhou, H.; Hendricks Franssen, H. J.; Gómez-Hernández, J. J.

    2012-02-01

    The normal-score ensemble Kalman filter (NS-EnKF) is tested on a synthetic aquifer characterized by the presence of channels with a bimodal distribution of its hydraulic conductivities. This is a clear example of an aquifer that cannot be characterized by a multiGaussian distribution. Fourteen scenarios are analyzed which differ among them in one or various of the following aspects: the prior random function model, the boundary conditions of the flow problem, the number of piezometers used in the assimilation process, or the use of covariance localization in the implementation of the Kalman filter. The performance of the NS-EnKF is evaluated through the ensemble mean and variance maps, the connectivity patterns of the individual conductivity realizations and the degree of reproduction of the piezometric heads. The results show that (i) the localized NS-EnKF can characterize the non-multiGaussian underlying hydraulic distribution even when an erroneous prior random function model is used, (ii) localization plays an important role to prevent filter inbreeding and results in a better logconductivity characterization, and (iii) the NS-EnKF works equally well under very different flow configurations.

  3. Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Li, L.; Zhou, H.; Hendricks Franssen, H. J.; Gómez-Hernández, J. J.

    2011-07-01

    The normal-score ensemble Kalman filter (NS-EnKF) is tested on a synthetic aquifer characterized by the presence of channels with a bimodal distribution of its hydraulic conductivities. Fourteen scenarios are analyzed which differ among them in one or various of the following aspects: the prior random function model, the boundary conditions of the flow problem, the number of piezometers used in the assimilation process, or the use of covariance localization in the implementation of the Kalman filter. The performance of the NS-EnKF is evaluated through the ensemble mean and variance maps, the connectivity patterns of the individual conductivity realizations and the degree of reproduction of the piezometric heads. The results show that (i) the localized NS-EnKF can identify correctly the channels when a large number of conditioning piezometers are used even when an erroneous prior random function model is used, (ii) localization plays an important role to prevent filter inbreeding and results in a better logconductivity characterization, and (iii) the NS-EnKF works equally well under very different flow configurations.

  4. Investigation of rarefied gas flow in microchannels of non-uniform cross section

    NASA Astrophysics Data System (ADS)

    Hemadri, Vadiraj; Varade, Vijay V.; Agrawal, Amit; Bhandarkar, U. V.

    2016-02-01

    Study of rarefied gas flow in converging and diverging cross sections is crucial to the development of micro-nozzles and micro-thrusters. In other practical cases too, a microchannel may not always be straight and may include diverging and converging sections in the flow path. In this context, isothermal rarefied gas flow in microchannels of longitudinally varying cross section is studied experimentally in this work. The primary objective is to investigate the existence of Knudsen minimum in microchannels of varying cross sections. The effect of geometrical cross section and fluid properties on the Knudsen minimum are also investigated by performing experiments on three divergence angles (4°, 8°, and 12°) and three different gases (argon, nitrogen, and oxygen) to prove the robustness of the result. The Knudsen minimum, which is one of the characteristic features of rarefied flows, is experimentally observed for the first time in a microchannel of varying cross section. The position of the Knudsen minimum (at Kn ≈ 1) is seen to depend only weakly on the divergence angle and fluid properties.

  5. Thin-film flow in helically wound shallow channels of arbitrary cross-sectional shape

    NASA Astrophysics Data System (ADS)

    Arnold, D. J.; Stokes, Y. M.; Green, J. E. F.

    2017-01-01

    We consider the steady, gravity-driven flow of a thin film of viscous fluid down a helically wound shallow channel of arbitrary cross-sectional shape with arbitrary torsion and curvature. This extends our previous work [D. J. Arnold et al., "Thin-film flow in helically-wound rectangular channels of arbitrary torsion and curvature," J. Fluid Mech. 764, 76-94 (2015)] on channels of rectangular cross section. The Navier-Stokes equations are expressed in a novel, non-orthogonal coordinate system fitted to the channel bottom. By assuming that the channel depth is small compared to its width and that the fluid depth in the vertical direction is also small compared to its typical horizontal extent, we are able to solve for the velocity components and pressure analytically. Using these results, a differential equation for the free surface shape is obtained, which must in general be solved numerically. Motivated by the aim of understanding flows in static spiral particle separators used in mineral processing, we investigate the effect of cross-sectional shape on the secondary flow in the channel cross section. We show that the competition between gravity and inertia in non-rectangular channels is qualitatively similar to that in rectangular channels, but that the cross-sectional shape has a strong influence on the breakup of the secondary flow into multiple clockwise-rotating cells. This may be triggered by small changes to the channel geometry, such as one or more bumps in the channel bottom that are small relative to the fluid depth. In contrast to the secondary flow which is quite sensitive to small bumps in the channel bottom, the free-surface profile is relatively insensitive to these. The sensitivity of the flow to the channel geometry may have important implications for the design of efficient spiral particle separators.

  6. The CA model for traffic-flow at the grade roundabout crossing

    NASA Astrophysics Data System (ADS)

    Chen, Rui-Xiong; Bai, Ke-Zhao; Liu, Mu-Ren

    2006-07-01

    The cellular automaton model is suggested to describe the traffic-flow at the grade roundabout crossing. After the simulation with computer, the fundamental properties of this model have been revealed. Analysing this kind of road structure, this paper transforms the grade roundabout crossing with inner-roundabout-lane and outer-roundabout-lane into a configuration with many bottlenecks. Because of the self-organization, the traffic flow remains unblocked under a certain vehicle density. Some results of the simulation are close to the actual design parameter.

  7. Thermal design of multi-fluid mixed-mixed cross-flow heat exchangers

    NASA Astrophysics Data System (ADS)

    Roetzel, W.; Luo, X.

    2010-11-01

    A fast analytical calculation method is developed for the thermal design and rating of multi-fluid mixed-mixed cross-flow heat exchangers. Temperature dependent heat capacities and heat transfer coefficients can iteratively be taken into account. They are determined at one or two special reference temperatures. Examples are given for the application of the method to the rating of special multi-fluid multi-pass shell-and-tube heat exchangers and multi-fluid cross-flow plate-fin heat exchangers. The accuracy of the method is tested against numerical calculations with good results.

  8. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  9. Analysis of the injection of a heated turbulent jet into a cross flow

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Schetz, J. A.

    1973-01-01

    The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  10. In-vessel fluid flow measurements using thermocouples cross-correlation.

    SciTech Connect

    NguyenLe, Q.

    1998-05-08

    Fluid flow rate in high temperature and pressure vessels can be difficult to measure due to the associated harsh environment, inaccessible locations and pressure boundary integrity concerns. However, by using quick response miniature thermocouples to measure the naturally occurring temperature variations within the flow, the fluid velocity can be inferred from the transit time analysis. This flow measurement technique has other advantages such as the flow profile is not significantly disturbed, no additional flow restrictions introduced and the system fiction factor is not increased. Furthermore, since the measured flow rate is generally unaffected by the global system dynamics, such as heat increases or losses, as well as changes in the flow regimes, the location of the thermocouple pairs is extremely flexible. Due to the mentioned advantages, the thermocouple cross-correlation flow measurement method has been developed for use at the Purdue University Multi-Dimensional Integral Test Assembly (PUMA). Currently, thermocouple cross-correlation technique is used to measure the Reactor Pressure Vessel downcomer fluid velocity and the suppression pool in-vessel natural circulation velocity.

  11. Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2000-01-01

    Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.

  12. Improving Efficiency of a Counter-Current Flow Moving Bed Granular Filter

    SciTech Connect

    Colver, G.M.; Brown, R.C.; Shi, H.; Soo, D.S-C.

    2002-09-18

    The goal of this research is to improve the performance of moving bed granular filters for gas cleaning at high temperatures and pressures. A second goal of the research is to optimize the performances of both solids and gas filtering processes through appropriate use of granular bed materials, particle sizes, feed rates etc. in a factorial study. These goals are directed toward applications of advanced coal-fired power cycles under development by the U.S. Department of Energy including pressurized fluidized bed combustion and integrated gasification/combined cycles based on gas turbines and fuel cells. Only results for particulate gas cleaning are reported here.

  13. Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data.

    PubMed

    Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F

    2016-10-25

    This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements.

  14. Treatment of petrochemical secondary effluent by an up-flow biological aerated filter (BAF).

    PubMed

    Fu, L Y; Wu, C Y; Zhou, Y X; Zuo, J E; Ding, Y

    2016-01-01

    In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography-mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86-6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent.

  15. Vertical flow soil filter for the elimination of micro pollutants from storm and waste water.

    PubMed

    Janzen, Niklas; Banzhaf, Stefan; Scheytt, Traugott; Bester, Kai

    2009-11-01

    A technical scale activated soil filter has been used to study the elimination rates of diverse environmentally relevant micro pollutants from storm and waste water. The filter was made of layers of peat, sand and gravel. The upper (organic) layer was planted with reed (phragmites australis) to prevent clogging and was spiked with activated sludge to enhance microbial biomass and biodegradation potential. Compounds used as UV filters, antioxidants or plasticizers, namely 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), butylated hydroxytoluene (BHT), N-butylbenzenesulfonamide (NBBS), 2,6-di-tert-butyl-1,4-benzoquinone (2,6-DTB-1,4-BQ), 1,1-biphenyl-3,3-dimethyl (1,1-BP-3,3-DM) and dibenzyl (DB) have been included in this study. The chemical characteristics of these compounds ranged from the hydrophilic (pK(OW) 2.6) to the lipophilic (pK(OW) 5) properties. For the elimination studies, synthetic waste water spiked to 3000 ng L(-1) with the selected compounds was used. Elimination rates with low hydraulic load (61 L m(-2)d(-1), water retention time: 2d) were higher than 96%. During a storm water simulation experiment (hydraulic load: 255 L m(-2), water retention time: <1h), the elimination rates of the most analytes decreased to 79-96%. The elimination performance of the hydrophilic compound NBBS declined to 21%. Balancing studies including the soil of the filter system revealed that degradation or transformation were both relevant elimination mechanism.

  16. Electric Discharge Flow Interaction in Parallel and Cross-Flow Electric Fields.

    DTIC Science & Technology

    1981-09-01

    was measured by a pitot-static probe (connected to a mercury manometer ) inserted in the exhaust opening of the test section. The probe was removed...fan was employed, blowing in the reverse direction from the normal flow, at an air flow speed too small to be measured by the pitot tube and mercury ... manometer . Results summarized on Figure 21 indicate an increase in power with increased electrode spacing. This is a fundamental improvement over the

  17. Cross-Omics Comparison of Stress Responses in Mesothelial Cells Exposed to Heat- versus Filter-Sterilized Peritoneal Dialysis Fluids

    PubMed Central

    Kratochwill, Klaus; Bender, Thorsten O.; Lichtenauer, Anton M.; Herzog, Rebecca; Tarantino, Silvia; Bialas, Katarzyna; Jörres, Achim; Aufricht, Christoph

    2015-01-01

    Recent research suggests that cytoprotective responses, such as expression of heat-shock proteins, might be inadequately induced in mesothelial cells by heat-sterilized peritoneal dialysis (PD) fluids. This study compares transcriptome data and multiple protein expression profiles for providing new insight into regulatory mechanisms. Two-dimensional difference gel electrophoresis (2D-DIGE) based proteomics and topic defined gene expression microarray-based transcriptomics techniques were used to evaluate stress responses in human omental peritoneal mesothelial cells in response to heat- or filter-sterilized PD fluids. Data from selected heat-shock proteins were validated by 2D western-blot analysis. Comparison of proteomics and transcriptomics data discriminated differentially regulated protein abundance into groups depending on correlating or noncorrelating transcripts. Inadequate abundance of several heat-shock proteins following exposure to heat-sterilized PD fluids is not reflected on the mRNA level indicating interference beyond transcriptional regulation. For the first time, this study describes evidence for posttranscriptional inadequacy of heat-shock protein expression by heat-sterilized PD fluids as a novel cytotoxic property. Cross-omics technologies introduce a novel way of understanding PDF bioincompatibility and searching for new interventions to reestablish adequate cytoprotective responses. PMID:26495307

  18. Cross-omics comparison of stress responses in mesothelial cells exposed to heat- versus filter-sterilized peritoneal dialysis fluids.

    PubMed

    Kratochwill, Klaus; Bender, Thorsten O; Lichtenauer, Anton M; Herzog, Rebecca; Tarantino, Silvia; Bialas, Katarzyna; Jörres, Achim; Aufricht, Christoph

    2015-01-01

    Recent research suggests that cytoprotective responses, such as expression of heat-shock proteins, might be inadequately induced in mesothelial cells by heat-sterilized peritoneal dialysis (PD) fluids. This study compares transcriptome data and multiple protein expression profiles for providing new insight into regulatory mechanisms. Two-dimensional difference gel electrophoresis (2D-DIGE) based proteomics and topic defined gene expression microarray-based transcriptomics techniques were used to evaluate stress responses in human omental peritoneal mesothelial cells in response to heat- or filter-sterilized PD fluids. Data from selected heat-shock proteins were validated by 2D western-blot analysis. Comparison of proteomics and transcriptomics data discriminated differentially regulated protein abundance into groups depending on correlating or noncorrelating transcripts. Inadequate abundance of several heat-shock proteins following exposure to heat-sterilized PD fluids is not reflected on the mRNA level indicating interference beyond transcriptional regulation. For the first time, this study describes evidence for posttranscriptional inadequacy of heat-shock protein expression by heat-sterilized PD fluids as a novel cytotoxic property. Cross-omics technologies introduce a novel way of understanding PDF bioincompatibility and searching for new interventions to reestablish adequate cytoprotective responses.

  19. Vortex shedding and galloping of open semi-circular and parabolic cylinders in cross-flow

    NASA Astrophysics Data System (ADS)

    Weaver, D. S.; Veljkovic, I.

    2005-11-01

    An experimental wind-tunnel study was undertaken to investigate the flow-induced vibration behaviour of open semi-circular and parabolic cylinders in cross-flow. The motivation for the research was to investigate the cause of the fatigue failures of a number of parabolic section rotary mixing blades in a large mixing vessel. Results are presented for force coefficients as a function of angle of incidence of the flow, Strouhal number and amplitude response. It is shown that the parabolic cylinder is subject to large amplitude vortex shedding resonance and, when the elastic axis is sufficiently downstream of the section's centre of gravity, galloping instability.

  20. Preconditioning an ensemble Kalman filter for groundwater flow using environmental-tracer observations

    NASA Astrophysics Data System (ADS)

    Erdal, Daniel; Cirpka, Olaf A.

    2017-02-01

    Groundwater resources management requires operational, regional-scale groundwater models accounting for dominant spatial variability of aquifer properties and spatiotemporal variability of groundwater recharge. We test the Ensemble Kalman filter (EnKF) to estimate transient hydraulic heads and groundwater recharge, as well as the hydraulic conductivity and specific-yield distributions of a virtual phreatic aquifer. To speed up computation time, we use a coarsened spatial grid in the filter simulations, and reconstruct head measurements at observation points by a local model in the vicinity of the piezometer as part of the observation operator. We show that the EnKF can adequately estimate both the mean and spatial patterns of hydraulic conductivity when assimilating daily values of hydraulic heads from a highly variable initial sample. The filter can also estimate temporally variable recharge to a satisfactory level, as long as the ensemble size is large enough. Constraining the parameters on concentrations of groundwater-age tracers (here: tritium) and transient hydraulic-head observations cannot reasonably be done by the EnKF because the concentrations depend on the recharge history over longer times while the head observations have much shorter temporal support. We thus use a different method, the Kalman Ensemble Generator (KEG), to precondition the initial ensemble of the EnKF on the groundwater-age tracer data and time-averaged hydraulic-head values. The preconditioned initial ensemble exhibits a smaller spread as well as improved means and spatial patterns. The preconditioning improves the EnKF particularly for smaller ensemble sizes, allowing operational data assimilation with reduced computational effort. In a validation scenario of delineating groundwater protection zones, the preconditioned filter performs clearly better than the filter using the original initial ensemble.

  1. On the trajectory scaling of tandem twin jets in cross-flow in close proximity

    NASA Astrophysics Data System (ADS)

    New, T. H.; Zang, B.

    2015-11-01

    An experimental study has been conducted on tandem twin jets in cross-flow (JICF) in close proximity to investigate the relationships between their trajectories, separation distances and velocity ratios. Results show that the front and rear jets, each with initially distinct jet trajectory, merge into a single trajectory shortly after they exhaust into the cross-flow. Furthermore, the merged tandem JICF attains deeper cross-flow penetration than that of a single JICF at the same velocity ratio. The front jet is also observed to provide `shielding' for the rear jet such that the latter penetrates relatively deeper into the cross-flow, which corroborates observations made by earlier studies. In particular, the present study demonstrates that it is possible to collapse the tandem JICF merged trajectories by ` rD'-scaling, where A and B coefficients show slight reductions and increments, respectively, with increasing separation distance. Collapsing the merged trajectories by using single JICF A and B coefficients leads to the notion of effective velocity ratio for tandem JICF, which enable the authors to propose a modification in the ` rD'-scaling law for tandem JICF. Lastly, the modified ` rD'-scaling law is applied to trajectory data from an earlier tandem JICF study, and its validity is demonstrated by the resulting good collapse.

  2. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow

    NASA Astrophysics Data System (ADS)

    Lee, Inchul; Kang, Youngsu; Koo, Jaye

    2010-04-01

    Penetration depth, spray dispersion angle, droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine. These processes will enhance air/fuel mixing inside the combustor. Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated. And experiments were conducted to a range of cross-flow velocities from 42˜136 m/s. Air is injected with 0˜300kPa, with air-assist pulsation frequency of 0˜20Hz. Pulsation frequency was modulated by solenoid valve. Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics. High-speed CCD camera was used to obtain injected spray structure. Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration. Air-assist makes a very fine droplet which generated mist-like spray. Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field. The results show that pulsation frequency has an effect on penetration, transverse velocities and droplet sizes. The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.

  3. Generation of two-dimensional vortices in a cross-flow

    NASA Technical Reports Server (NTRS)

    Samaniego, Jean-Michel

    1993-01-01

    The present report is concerned with an experimental study on the generation of plane two-dimensional vortices in a cross-flow. The purpose of this work is to address the problem of the feasibility of a two-dimensional experiment of flame-vortex interactions.

  4. Effect of real-time information upon traffic flows on crossing roads

    NASA Astrophysics Data System (ADS)

    Fukui, Minoru; Nishinari, Katsuhiro; Yokoya, Yasushi; Ishibashi, Yoshihiro

    2009-04-01

    The effect of real-time information on the traffic flows of the crossing roads is studied by simulations based on a cellular automaton model. At the intersection, drivers have to enter a road of a shorter trip-time, by making a turn if necessary, as indicated on the information board. Dynamics of the traffic are expressed as a return map in the density-flow space. The traffic flow is classified into six phases, as a function of the car density. It is found that such a behavior of drivers induces too much concentration of cars on one road and, as a result, causes oscillation of the flow and the density of cars on both roads. The oscillation usually results in a reduced total flow, except for the cases of high car density.

  5. Reducing cross-sectional data using a genetic algorithm method and effects on cross-section geometry and steady-flow profiles

    USGS Publications Warehouse

    Berenbrock, Charles E.

    2015-01-01

    The effects of reduced cross-sectional data points on steady-flow profiles were also determined. Thirty-five cross sections of the original steady-flow model of the Kootenai River were used. These two methods were tested for all cross sections with each cross section resolution reduced to 10, 20 and 30 data points, that is, six tests were completed for each of the thirty-five cross sections. Generally, differences from the original water-surface elevation were smaller as the number of data points in reduced cross sections increased, but this was not always the case, especially in the braided reach. Differences were smaller for reduced cross sections developed by the genetic algorithm method than the standard algorithm method.

  6. Cellular automata model for urban road traffic flow considering pedestrian crossing street

    NASA Astrophysics Data System (ADS)

    Zhao, Han-Tao; Yang, Shuo; Chen, Xiao-Xu

    2016-11-01

    In order to analyze the effect of pedestrians' crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space-time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow's characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.

  7. Cross-Diffusion Systems with Excluded-Volume Effects and Asymptotic Gradient Flow Structures

    NASA Astrophysics Data System (ADS)

    Bruna, Maria; Burger, Martin; Ranetbauer, Helene; Wolfram, Marie-Therese

    2017-04-01

    In this paper, we discuss the analysis of a cross-diffusion PDE system for a mixture of hard spheres, which was derived in Bruna and Chapman (J Chem Phys 137:204116-1-204116-16, 2012a) from a stochastic system of interacting Brownian particles using the method of matched asymptotic expansions. The resulting cross-diffusion system is valid in the limit of small volume fraction of particles. While the system has a gradient flow structure in the symmetric case of all particles having the same size and diffusivity, this is not valid in general. We discuss local stability and global existence for the symmetric case using the gradient flow structure and entropy variable techniques. For the general case, we introduce the concept of an asymptotic gradient flow structure and show how it can be used to study the behavior close to equilibrium. Finally, we illustrate the behavior of the model with various numerical simulations.

  8. Electro-osmotic flow through a two-dimensional screen-pump filter.

    PubMed

    Liu, Ying-Hong; Kuo, Chih-Yu; Chang, Chien C; Wang, Chang-Yi

    2011-09-01

    The electro-osmotic flow driven by a screen pump, composed of a line array of evenly spaced identical rectangular solid blocks, is investigated under the Debye-Hückel approximation. The geometry of the screen pump is determined by the spacing and aspect ratio of the solid blocks. A constant surface zeta potential is assumed on the block surface. The method of eigenfunction series expansion is applied to solve analytically for the applied electric field, electric charge potential in the fluid, and flow field. Because of the low Reynolds number, Stokes equations are applied for the flow. The analytic result is first confirmed by comparing with the exact solution of the electro-osmotic flow in an infinite channel. Then different geometries of the screen pump and the effect of the electrokinetic width are computed for their influence on the flow rate. Recirculating eddies and reversing flow are found even though the applied electric driving field is unidirectional.

  9. Ensemble kalman filtering to perform data assimilation with soil water content probes and pedotransfer functions in modeling water flow in variably saturated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data from modern soil water contents probes can be used for data assimilation in soil water flow modeling, i.e. continual correction of the flow model performance based on observations. The ensemble Kalman filter appears to be an appropriate method for that. The method requires estimates of the unce...

  10. TOMOGRAPHY OF PLASMA FLOWS IN THE UPPER SOLAR CONVECTION ZONE USING TIME-DISTANCE INVERSION COMBINING RIDGE AND PHASE-SPEED FILTERING

    SciTech Connect

    Svanda, Michal

    2013-09-20

    The consistency of time-distance inversions for horizontal components of the plasma flow on supergranular scales in the upper solar convection zone is checked by comparing the results derived using two k-{omega} filtering procedures-ridge filtering and phase-speed filtering-commonly used in time-distance helioseismology. I show that both approaches result in similar flow estimates when finite-frequency sensitivity kernels are used. I further demonstrate that the performance of the inversion improves (in terms of a simultaneously better averaging kernel and a lower noise level) when the two approaches are combined together in one inversion. Using the combined inversion, I invert for horizontal flows in the upper 10 Mm of the solar convection zone. The flows connected with supergranulation seem to be coherent only for the top {approx}5 Mm; deeper down there is a hint of change of the convection scales toward structures larger than supergranules.

  11. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    PubMed

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  12. Oscillating flow and heat transfer in a channel with sudden cross section change

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Hashim, Waqar

    1993-01-01

    We have computationally examined oscillating flow (zero mean) between two parallel plates with a sudden change in cross section. The flow was assumed to be laminar incompressible with the inflow velocity uniform over the channel cross section but varying sinusoidally with time. The cases studied cover wide ranges of Re(sub max) (from 187.5 to 2000), Va (from 1 to 10.66), the expansion ratio (1:2 and 1:4) and A(sub r) (2 and 4). Also, three different geometric cases were discussed: (1) asymmetric expansion/contraction; (2) symmetric expansion/contraction; and (3) symmetric blunt body. For these oscillating flow conditions, the fluid undergoes sudden expansion in one-half of the cycle and sudden contraction inthe other half. The instantaneous friction factor, for some ranges of Re(sub max) and Va, deviated substantially from the steady-state friction factor for the same flow parameters. A region has been identified below which the flow is laminar quasi-steady. A videotape showing computer simulations of the oscillating flow demonstrates the usefulness of the current analyses in providing information on the transient hydraulic phenomena.

  13. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce

  14. A critical evaluation of various methods for the analysis of flow-solid interaction in a nest of thin cylinders subjected to cross flows

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1987-01-01

    Various experimental, analytical, and numerical analysis methods for flow-solid interaction of a nest of cylinders subjected to cross flows are reviewed. A nest of cylinders subjected to cross flows can be found in numerous engineering applications including the Space Shuttle Maine Engine-Main Injector Assembly (SSME-MIA) and nuclear reactor heat exchangers. Despite its extreme importance in engineering applications, understanding of the flow-solid interaction process is quite limited and design of the tube banks are mostly dependent on experiments and/or experimental correlation equations. For future development of major numerical analysis methods for the flow-solid interaction of a nest of cylinders subjected to cross flow, various turbulence models, nonlinear structural dynamics, and existing laminar flow-solid interaction analysis methods are included.

  15. Physics of the cigarette filter: fluid flow through structures with randomly-placed obstacles

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Andrade, José S.

    2001-06-01

    This talk briefly reviews the subject of fluid flow through disordered media. In particular, we focus on the sorts of considerations that may be necessary to move statistical physics from the description of idealized flows in the limit of zero Reynolds number to more realistic flows of real fluids moving at a nonzero velocity, where inertia effects mean that dangling ends are explored and the backbone is not entirely explored by the fluid. We discuss several intriguing features, such as the surprisingly sharp change in behavior from a localized to delocalized flow structure (distribution of flow velocities) that seems to occur at a critical value of Re which is orders of magnitude smaller than the critical value of Re where turbulence sets in.

  16. Cross-flow turbines: progress report on physical and numerical model studies at large laboratory scale

    NASA Astrophysics Data System (ADS)

    Wosnik, Martin; Bachant, Peter

    2016-11-01

    Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.

  17. Recirculating electric air filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  18. Recirculating electric air filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  19. Numerical Simulations of a Reacting Sonic Jet in a Supersonic Cross-flow

    NASA Astrophysics Data System (ADS)

    Attal, Nitesh; Ramaprabhu, Praveen

    2014-11-01

    Interaction of a jet with a background cross-flow is a situation common to many engineering systems, including combustors in SCRAMJETS, gas turbines etc. Such an interaction enhances fuel-air mixing through the distortion of coherent structures into counter-rotating vortex pairs that are tilted, stretched and then sundered by the velocity gradient in the cross-flow, eventually leading to turbulent mixing. The ignition process and flame characteristics depend sensitively on the extent and efficiency of this turbulent mixing process. We describe results from detailed 3D numerical simulations of a sonic circular jet of diameter (D = 0.5 cm) issuing a mixture of H2 (Fuel) diluted with 50% N2 at 300 K into a turbulent, Mach 2 cross-flow of air at 1200 K. The simulations were performed in a computational domain of 20 × 16 × 16 jet diameters using the compressible flow code FLASH, with modifications to handle detailed (H2-O2) chemistry and temperature-dependent material properties. We discuss the role of shock driven mixing, ignition and flame anchoring on the combustion efficiency of the system.

  20. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.

    PubMed

    Elegir, G; Bussini, D; Antonsson, S; Lindström, M E; Zoia, L

    2007-12-01

    In this work, the effect of Trametes pubescens laccase (TpL) used in combination with a low-molecular-weight ultra-filtered lignin (UFL) to improve mechanical properties of kraft liner pulp and chemi-thermo-mechanical pulp was studied. UFL was isolated by ultra-filtration from the kraft cooking black liquor obtained from softwood pulping. This by-product from the pulp industry contains an oligomeric lignin with almost twice the amount of free phenolic moieties than residual kraft pulp lignin. The reactivity of TpL on UFL and kraft pulp was studied by nuclear magnetic resonance spectroscopy and size exclusion chromatography. Laccase was shown to polymerise UFL and residual kraft pulp lignin in the fibres, seen by the increase in their average molecular weight and in the case of UFL as a decrease in the amount of phenolic hydroxyls. The laccase initiated cross-linking of lignin, mediated by UFL, which gives rise to more than a twofold increase in wet strength of kraft liner pulp handsheets without loosing other critical mechanical properties. Hence, this could be an interesting path to decrease mechano-sorptive creep that has been reported to lessen in extent as wet strength is given to papers. The laccase/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) mediator system showed a greater increase in wet tensile strength of the resulting pulp sheets than the laccase/UFL system. However, other mechanical properties such as dry tensile strength, compression strength and Scott Bond internal strength were negatively affected by the laccase/ABTS system.

  1. Scale-adaptive simulation of a hot jet in cross flow

    NASA Astrophysics Data System (ADS)

    Duda, B. M.; Menter, F. R.; Hansen, T.; Esteve, M.-J.

    2011-12-01

    The simulation of a hot jet in cross flow is of crucial interest for the aircraft industry as it directly impacts aircraft safety and global performance. Due to the highly transient and turbulent character of this flow, simulation strategies are necessary that resolve at least a part of the turbulence spectrum. The high Reynolds numbers for realistic aircraft applications do not permit the use of pure Large Eddy Simulations as the spatial and temporal resolution requirements for wall bounded flows are prohibitive in an industrial design process. For this reason, the hybrid approach of the Scale-Adaptive Simulation is employed, which retains attached boundary layers in well-established RANS regime and allows the resolution of turbulent fluctuations in areas with sufficient flow instabilities and grid refinement. To evaluate the influence of the underlying numerical grid, three meshing strategies are investigated and the results are validated against experimental data.

  2. Cross-flow turbines: physical and numerical model studies towards improved array simulations

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2015-12-01

    Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An

  3. Experimental and numerical analyses of finned cross flow heat exchangers efficiency under non-uniform gas inlet flow conditions

    NASA Astrophysics Data System (ADS)

    Bury, Tomasz; Składzień, Jan; Widziewicz, Katarzyna

    2010-10-01

    The work deals with experimental and numerical thermodynamic analyses of cross-flow finned tube heat exchangers of the gas-liquid type. The aim of the work is to determine an impact of the gas non-uniform inlet on the heat exchangers performance. The measurements have been carried out on a special testing rig and own numerical code has been used for numerical simulations. Analysis of the experimental and numerical results has shown that the range of the non-uniform air inlet to the considered heat exchangers may be significant and it can significantly affect the heat exchanger efficiency.

  4. Filter type rotor for multistation photometer

    DOEpatents

    Shumate, II, Starling E.

    1977-07-12

    A filter type rotor for a multistation photometer is provided. The rotor design combines the principle of cross-flow filtration with centrifugal sedimentation so that these occur simultaneously as a first stage of processing for suspension type fluids in an analytical type instrument. The rotor is particularly useful in whole-blood analysis.

  5. Influence of cross-flow on nonlinear Tollmien-Schlichting/vortex interaction

    NASA Technical Reports Server (NTRS)

    Davis, D. A. R.; Smith, F. T.

    1994-01-01

    The transition of an incompressible three-dimensional boundary layer with strong cross-flow is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two lower-branch Tollmien-Schlichting waves which mutually interact nonlinearly to induce a longitudinal vortex flow. The vortex motion in turn gives rise to significant wave modulation via wall-shear forcing. The characteristic Reynolds number is large and, as a consequence, the waves' and the vortex motion are governed primarily by triple deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Following analysis and computation over a wide range of parameters, three distinct responses are found to emerge in the nonlinear behavior of the flow solution downstream: an algebraic finite-distance singularity, far-downstream saturation or far-downstream wave decay leaving pure vortex flow. These depend on the input conditions, the wave angles and the size of the cross flow.

  6. PIV measurement of the vertical cross-flow structure over tube bundles

    NASA Astrophysics Data System (ADS)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    Shell and tube heat exchangers are among the most commonly used types of heat exchangers. Shell-side cross-flow in tube bundles has received considerable attention and has been investigated extensively. However, the microscopic flow structure including velocity distribution, wake, and turbulent structure in the tube bundles needs to be determined for more effective designs. Therefore, in this study, in order to clarify the detailed structure of cross-flow in tube bundles with particle image velocimetry (PIV), experiments were conducted using two types of model; in-line and staggered bundles with a pitch-to-diameter ratio of 1.5, containing 20 rows of five 15 mm O.D. tubes in each row. The velocity data in the whole flow field were measured successfully by adjusting the refractive index of the working fluid to that of the tube material. The flow features were characterized in different tube bundles with regards to the velocity vector field, vortex structure, and turbulent intensity.

  7. A Numerical Simulation of a Normal Sonic Jet into a Hypersonic Cross-Flow

    NASA Technical Reports Server (NTRS)

    Jeffries, Damon K.; Krishnamurthy, Ramesh; Chandra, Suresh

    1997-01-01

    This study involves numerical modeling of a normal sonic jet injection into a hypersonic cross-flow. The numerical code used for simulation is GASP (General Aerodynamic Simulation Program.) First the numerical predictions are compared with well established solutions for compressible laminar flow. Then comparisons are made with non-injection test case measurements of surface pressure distributions. Good agreement with the measurements is observed. Currently comparisons are underway with the injection case. All the experimental data were generated at the Southampton University Light Piston Isentropic Compression Tube.

  8. Dynamics of traffic flows on crossing roads induced by real-time information

    NASA Astrophysics Data System (ADS)

    Fukui, Minoru; Ishibashi, Yoshihiro; Nishinari, Katsuhiro

    2013-02-01

    Traffic flows on crossing roads with an information board installed at the intersection have been simulated by a cellular automaton model. In the model, drivers have to enter the road with a shorter trip-time indicated on the information board, by making a turn at the intersection if necessary. The movement of drivers induces various traffic states, which are classified into six phases as a function of the car density. The dynamics of the traffic is expressed as the return map in the density-flow space, and analyzed on the basis of the car configuration on the roads.

  9. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  10. The flow of red cells through spleen-like filtering slits

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan

    2012-11-01

    It is widely understood that the spleen is the principal site in the body for removal of old red blood cells. As they age during their approximately 120 day lifetimes, red blood cells have increasingly slow relaxation times. This mechanical change is potentially the identifying characteristic for filtering in the spleen, which is thought to occur in particularly narrows slit-like passages (< 1 μ m × ~ 7 μ m). The mechanism of the filtering, however, is unclear. Most simply, increasing cell viscosity with age would slow, rather than stop, cell passage. Similarly, `testing' the cells via significant strains during each passage through the spleen might be expected to accelerate aging through fatigue-like mechanisms. Our detailed simulations of red cells passing trough a model slit geometry suggest that increasing cell viscosity can fundamentally change its passage. The results are suggestive of a bifurcation, such as in the onset of instability, with increasing cell interior viscosity. Higher viscosities (or elastic capillary numbers) are seen in cases to lead to a fingering-like instability, which might be expected to severely damage aged cells, leading to their removal, while leaving younger low viscosity cells relatively unstressed.

  11. Cross-flow deep fat frying and its effect on fry quality distribution and mobility.

    PubMed

    van Koerten, K N; Schutyser, M A I; Somsen, D; Boom, R M

    2016-04-01

    Conventional industrial frying systems are not optimised towards homogeneous product quality, which is partly related to poor oil distribution across the packed bed of fries. In this study we investigate an alternative frying system with an oil cross-flow from bottom to top through a packed bed of fries. Fluidization of rectangular fries during frying was characterised with a modified Ergun equation. Mixing was visualized by using two coloured layers of fries and quantified in terms of mixing entropy. Smaller fries mixed quickly during frying, while longer fries exhibited much less mixing, which was attributed to the higher minimum fluidization velocity and slower dehydration for longer fries. The cross-flow velocity was found an important parameter for the homogeneity of the moisture content of fries. Increased oil velocities positively affected moisture distribution due to a higher oil refresh rate. However, inducing fluidization caused the moisture distribution to become unpredictable due to bed instabilities.

  12. Physical and Numerical Model Studies of Cross-flow Turbines Towards Accurate Parameterization in Array Simulations

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2014-12-01

    Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of

  13. Shape optimization of multi-chamber cross-flow mufflers by SA optimization

    NASA Astrophysics Data System (ADS)

    Chiu, Min-Chie; Chang, Ying-Chun

    2008-05-01

    It is essential when searching for an efficient acoustical mechanism to have an optimally shaped muffler designed specially for the constrained space found in today's plants. Because the research work of optimally shaped straight silencers in conjunction with multi-chamber cross-flow perforated ducts is rarely addressed, this paper will not only analyze the sound transmission loss (STL) of three kinds of cross-flow perforated mufflers but also will analyze the optimal design shape within a limited space. In this paper, the four-pole system matrix used in evaluating acoustic performance is derived by using the decoupled numerical method. Moreover, a simulated annealing (SA) algorithm, a robust scheme in searching for the global optimum by imitating the softening process of metal, has been adopted during shape optimization. To reassure SA's correctness, the STL's maximization of three kinds of muffles with respect to one-tone and dual-tone noise is exemplified. Furthermore, the optimization of mufflers with respect to an octave-band fan noise by the simulated algorithm has been introduced and fully discussed. Before the SA operation can be carried out, an accuracy check of the mathematical model with respect to cross-flow perforated mufflers has to be performed by Munjal's analytical data and experimental data. The optimal result in eliminating broadband noise reveals that the cross-flow perforated muffler with more chambers is far superior at noise reduction than a muffler with fewer chambers. Consequently, the approach used for the optimal design of noise elimination proposed in this study is certainly easy and efficient.

  14. Data Assimilation in a Solar Dynamo Model Using Ensemble Kalman Filters: Sensitivity and Robustness in Reconstruction of Meridional Flow Speed

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Anderson, Jeffrey L.; Mitra, Dhrubaditya

    2016-09-01

    We implement an Ensemble Kalman Filter procedure using the Data Assimilation Research Testbed for assimilating “synthetic” meridional flow-speed data in a Babcock-Leighton-type flux-transport solar dynamo model. By performing several “observing system simulation experiments,” we reconstruct time variation in meridional flow speed and analyze sensitivity and robustness of reconstruction. Using 192 ensemble members including 10 observations, each with 4% error, we find that flow speed is reconstructed best if observations of near-surface poloidal fields from low latitudes and tachocline toroidal fields from midlatitudes are assimilated. If observations include a mixture of poloidal and toroidal fields from different latitude locations, reconstruction is reasonably good for ≤slant 40 % error in low-latitude data, even if observational error in polar region data becomes 200%, but deteriorates when observational error increases in low- and midlatitude data. Solar polar region observations are known to contain larger errors than those in low latitudes; our forward operator (a flux-transport dynamo model here) can sustain larger errors in polar region data, but is more sensitive to errors in low-latitude data. An optimal reconstruction is obtained if an assimilation interval of 15 days is used; 10- and 20-day assimilation intervals also give reasonably good results. Assimilation intervals \\lt 5 days do not produce faithful reconstructions of flow speed, because the system requires a minimum time to develop dynamics to respond to flow variations. Reconstruction also deteriorates if an assimilation interval \\gt 45 days is used, because the system’s inherent memory interferes with its short-term dynamics during a substantially long run without updating.

  15. Air-bubbling, hollow-fiber reactor with cell bleeding and cross-flow filtration.

    PubMed

    Nishii, K; Sode, K; Karube, I

    1990-05-01

    Continuous asymmetric reduction of dyhydrooxoisophorone (DOIP) to 4-hydroxy-2,2,6-trimethylcyclo-hexanone (4-HTMCH) was achieved by a thermophilic bacterium Bacillus stearothermophilus NK86-0151. Three reactors were used: an air-bubbling hollow-fiber reactor with cell bleeding and cross-flow filtration, an air-lift reactor, and a CSTR with PAA immobilized cells. The maximum cell concentration of 11.1 g dry wt L(-1) was obtained in an air-bubbling hollow-fiber reactor, while in the other reactors the cell densities were between 3.5 and 4.1 g dry wt L(-1) The optimum bleed ratio was 0.1 at the dilution rate 0.3 h(-1) in the hollow-fiber reactor. The highest viable cell concentration was maintained in the dilution range of 0.4-0.7 h(-1) by a combination of proper cell bleeding and cross-flow filtration. The maximum volumetric productivity of 4-HTMCH reached 826 mg L(-1) h(-1) at the dilution rate 0.54 h(-1). This value was 4 and 2 times higher than those in the air-lift reactor and CSTR, respectively. The increasing viable cell concentration increased the volumetric productivity of 4-HTMCH. A cell free product solution was continuously obtained by cross-flow filtration.

  16. The Far Field Structure of a Jet in Cross-Flow

    NASA Astrophysics Data System (ADS)

    Lanitis, Nicolas; Dawson, James

    2014-11-01

    Stereoscopic PIV measurements were performed in the far field of a cross-flow jet. Measurements were taken in a water channel in the spanwise-wall normal plane (y-z) containing the Counter-Rotating vortex pair (CVP). The jet's Reynolds number was Rejet = 2 ×104 and had an exit diameter of dj = 4 mm. Measurements were taken for a jet to cross-flow velocity ratio of Vr = 10 at three downstream positions of x /dj = 30 , 55 , 85 and for a Vr = 15 , 20 at x /dj = 85 . Two point spatial correlations hint at the presence of arch shaped structures titled in the streamwise x-direction on the windward side of the CVP as well as straight vortex tubes extending into the wake. The arched shaped structure is compounded by PDFs of the location of streamwise vorticity peaks (vortex tubes) in the instantaneous field indicating the presence of a vortex structure aligned in the spanwise direction. This information together with the use of High Speed Stereoscopic PIV and Taylor's Hypothesis, which allowed for the extraction of 3D structures, led to the development of an eddy model comprised of hairpin, roller and wake structures to predict turbulence statistics of a jet in cross-flow.

  17. Modelling aerobic biodegradation in vertical flow sand filters: impact of operational considerations on oxygen transfer and bacterial activity.

    PubMed

    Petitjean, A; Forquet, N; Wanko, A; Laurent, J; Molle, P; Mosé, R; Sadowski, A

    2012-05-01

    Oxygen renewal, as a prominent phenomenon for aerobic bacterial activity, deeply impacts Vertical Flow Constructed Wetland (VFCW) treatment efficiency. We introduce a multiphase model able to simulate multi-component transfer in VFCWs. It is based on a two-phase flow module, and a transport module. The flow module can quantify both water and air velocities throughout the filter during operation. The reactive transport module follows dissolved and gaseous oxygen concentrations, and the transport of solutes such as ammonium and readily biodegradable COD (Chemical Oxygen Demand). The consumption of components is governed by Monod-type kinetics. Heterotrophic and autotrophic bacteria, which are responsible for COD and ammonium degradation respectively, are part of the model components. The kinetics are based on the Constructed Wetlands Model 1. The results from the simulation tool were compared with existing experimental data, and two kinds of operation with VFCWs were investigated. The authors show strong interplay between oxygen renewal and bacterial consumption in case of sequential batch feeding with transient flooding of surface. Oxygen renewal is essentially convection mediated in such operation, while convection is not significant in non-flooding operation. Simulated bacterial patterns are impacted by the operation, both quantitatively and spatially. From a modelling point of view, the authors highlight some limitations of the biological model: the description of bacterial lysis processes needs to be enhanced, as well as ammonium adsorption to organic matter.

  18. Optimal hydraulic design of earth dam cross section using saturated-unsaturated seepage flow model

    NASA Astrophysics Data System (ADS)

    Xu, Y.-Q.; Unami, K.; Kawachi, T.

    An optimal hydraulic design problem regarding an earth dam cross section is formulated as an inverse problem for the steady model of saturated-unsaturated seepage flows in porous media. In the problem formulation, the choice of soil material to be used in each point of the dam cross sectional domain is considered as the control variable to be identified. The performance index used to evaluate the appropriateness of the design is defined as the sum of two square integral norms, which represent reducing the saturated zone and minimizing material costs. It is also shown that the first norm bounds the total seepage discharge through the earth dam. Since the governing variational boundary value problem as well as the adjoint problem is well-posed, a deterministic approach is taken. A numerical scheme including pseudo-unsteady terms is developed to calculate the optimal solution in an ideal earth dam cross section to be designed utilizing two different types of soil material. The results show that an inclined clay core of less hydraulic conductivity should be located on the upstream side of the cross section. The unsaturated zone turns out to play an important role in the flow field and the optimal design.

  19. Performance of system consisting of vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of rural wastewater.

    PubMed

    Zhang, Yi; Cheng, Yan; Yang, Chunping; Luo, Wei; Zeng, Guangming; Lu, Li

    2015-10-01

    In order to improve nitrogen removal for rural wastewater, a novel two-stage hybrid system, consisting of a vertical flow trickling filter (VFTF) and a horizontal flow multi-soil-layering (HFMSL) bioreactor was developed. The performance of the apparatus was observed under various carbon-nitrogen ratios and water spraying frequencies separately. The maximum removal efficiency of total nitrogen (TN) for the hybrid system was 92.8% while the removal rates of CODCr, ammonium (NH4(+)-N), and total phosphorus (TP) were 94.1%, 96.1%, 92.0% respectively, and the corresponding effluent concentrations were 3.61, 21.20, 1.91, and 0.33 mg L(-1). The horizontal flow mode for MSL led the system to denitrifying satisfactorily as it ensured relatively long hydraulic retention time (HRT), ideal anoxic condition and adequate organic substrates supply. Also, higher water spraying frequency benefited intermittent feeding system for pollutants removal. Shock loading test indicated that the hybrid system could operate well even at hydraulic shock loadings.

  20. Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method

    NASA Astrophysics Data System (ADS)

    Flad, David; Beck, Andrea; Munz, Claus-Dieter

    2016-05-01

    Scale-resolving simulations of turbulent flows in complex domains demand accurate and efficient numerical schemes, as well as geometrical flexibility. For underresolved situations, the avoidance of aliasing errors is a strong demand for stability. For continuous and discontinuous Galerkin schemes, an effective way to prevent aliasing errors is to increase the quadrature precision of the projection operator to account for the non-linearity of the operands (polynomial dealiasing, overintegration). But this increases the computational costs extensively. In this work, we present a novel spatially and temporally adaptive dealiasing strategy by projection filtering. We show this to be more efficient for underresolved turbulence than the classical overintegration strategy. For this novel approach, we discuss the implementation strategy and the indicator details, show its accuracy and efficiency for a decaying homogeneous isotropic turbulence and the transitional Taylor-Green vortex and compare it to the original overintegration approach and a state of the art variational multi-scale eddy viscosity formulation.

  1. Low-flow hydraulic conductivity tests at wells that cross the water table.

    PubMed

    Aragon-Jose, Alejandra T; Robbins, Gary A

    2011-01-01

    Wells with screens and sand packs that cross the water table represent a challenging problem for determining hydraulic conductivity by slug testing due to sand pack drainage and resaturation. Sand pack drainage results in a multisegmented recovery curve. One must then subjectively pick a portion of the curve to analyze. Sand pack drainage also results in a change in the effective radius of the well which requires a guess at the porosity or specific yield in analyzing the test. In the study of Robbins et al. (2009), a method was introduced to obtain hydraulic conductivity in monitoring wells using the steady-state drawdown and flow rate obtained during low-flow sampling. The method was tested in this study in wells whose screens cross the water table and shown to avoid sand pack drainage problems that complicate analyzing slug tests. In applying the method to low-flow sampling, only a single pair of steady-state flow rate and drawdown are needed; hence, to derive meaningful results, an accurate determination of these parameters is required.

  2. Influence of cross-flow on the entrainment of bending plumes

    NASA Astrophysics Data System (ADS)

    Freedland, Graham; Mastin, Larry; Steven, Solovitz; Cal, Raul

    2016-11-01

    Volcanic eruption columns inject high concentrations of ash into the atmosphere. Some of this ash is carried downwind forming ash clouds in the atmosphere that are hazardous for private and commercial aviation. Current models rely on inputs such as plume height, duration, eruption rate, and meteorological wind fields. Eruption rate is estimated from plume height using relations that depend on the rate of air entrainment into the plume, which is not well quantified. A wind tunnel experiment has been designed to investigate these models by injecting a vertical air jet into a cross-flow. The ratio of the cross-flow and jet velocities is varied to simulate a weak plume, and flow response is measured using particle image velocimetry. The plumes are characterized and profile data is examined to measure the growth of weak plumes and the entrainment velocity along its trajectory. This allows for the study of the flow field, mean, and second order moments, and obtain information to improve models of volcanic ash concentrations in the atmosphere.

  3. Kinetics of gravity-driven slug flow in partially wettable capillaries of varying cross section

    NASA Astrophysics Data System (ADS)

    Nissan, Alon; Wang, Qiuling; Wallach, Rony

    2016-11-01

    A mathematical model for slug (finite liquid volume) motion in not-fully-wettable capillary tubes with sinusoidally varying cross-sectional areas was developed. The model, based on the Navier-Stokes equation, accounts for the full viscous terms due to nonuniform geometry, the inertial term, the slug's front and rear meniscus hysteresis effect, and dependence of contact angle on flow velocity (dynamic contact angle). The model includes a velocity-dependent film that is left behind the advancing slug, reducing its mass. The model was successfully verified experimentally by recording slug movement in uniform and sinusoidal capillary tubes with a gray-scale high-speed camera. Simulation showed that tube nonuniformity has a substantial effect on slug flow pattern: in a uniform tube it is monotonic and depends mainly on the slug's momentary mass/length; an undulating tube radius results in nonmonotonic flow characteristics. The static nonzero contact angle varies locally in nonuniform tubes owing to the additional effect of wall slope. Moreover, the nonuniform cross-sectional area induces slug acceleration, deceleration, blockage, and metastable-equilibrium locations. Increasing contact angle further amplifies the geometry effect on slug propagation. The developed model provides a modified means of emulating slug flow in differently wettable porous media for intermittent inlet water supply (e.g., raindrops on the soil surface).

  4. Insect-Inspired Self-Motion Estimation with Dense Flow Fields--An Adaptive Matched Filter Approach.

    PubMed

    Strübbe, Simon; Stürzl, Wolfgang; Egelhaaf, Martin

    2015-01-01

    The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion.

  5. Insect-Inspired Self-Motion Estimation with Dense Flow Fields—An Adaptive Matched Filter Approach

    PubMed Central

    Strübbe, Simon; Stürzl, Wolfgang; Egelhaaf, Martin

    2015-01-01

    The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion. PMID:26308839

  6. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films.

    PubMed

    Chen, Qin; Cumming, David R S

    2010-06-21

    Three primary color (red, green and blue) filters consisting of subwavelength triangular-lattice hole arrays in an aluminum film on glass were simulated and fabricated. A silicon dioxide cap layer, deposited on the patterned aluminum film, was found to almost double the transmission efficiency for all the filters. The measured peak transmittance for each color filter was above 30%, exhibiting a wavelength spectrum with a full-width at half-maximum of approximately 100 nm. Simulation results of various structures with different cap layers revealed the enhanced coupling between surface plasmon resonances at both sides of the metal film in a symmetrical configuration. It was found that gratings with as few as three periods were sufficient to demonstrate filtering. The effect of metal thickness and hole size was investigated in detail.

  7. Investigation of Blade Angle of an Open Cross-Flow Runner

    NASA Astrophysics Data System (ADS)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  8. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  9. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  10. A coordinated flowing afterglow and crossed beam study of electron attachment to CCl3Br

    NASA Astrophysics Data System (ADS)

    Spanel, P.; Smith, D.; Matejcik, S.; Kiendler, A.; Mark, T. D.

    1997-11-01

    Dissociative electron attachment to CCl3Br has been studied using a flowing afterglow/Langmuir probe (FALP) and a crossed beam technique. In the FALP experiment the overall attachment rate coefficients and the branching ratio into the Cl- and the Br- product channels, R = Cl-/(Cl- + Br-), were measured as a function of the gas temperature, Tg, in the range of 300-540K and the electron temperatures, Te, from Tg to 4000K indicating that R approached the statistical value of 0.75 at the highest Tg. At Tg = 540K both Cl2-1 and ClBr- molecular ions were observed at about the 2% level. An apparent activation energy of 55 meV for the overall attachment reaction was derived using a model developed previously to describe the dependence of dissociative electron attachment rates on Tg and Te. The crossed beam experiment provided relative attachment cross-sections for the production of Cl- and Br- as a function of electron energy, E, from near zero up to ~2 eV at several Tg within the range 311-423 K. The absolute cross-sections at Tg = 311K were obtained from the FALP value using a calibration procedure. At low E the overall attachment cross-section varies as E-1 in accordance with s-wave capture theory. In accordance with the FALP data R increases from 0.2 at low E and the lowest Tg to the statistical value of 0.75 at high E and high Tg. A peak observed in the cross-section at an E of about 0.7 eV is tentatively attributed to p-wave electron attachment. The rapid decrease of this peak cross-section with Tg is ascribed to autodetachment.

  11. Ammonium removal using a novel unsaturated flow biological filter with passive aeration.

    PubMed

    Lahav, O; Artzi, E; Tarre, S; Green, M

    2001-02-01

    A novel vertical bed process for the removal of ammonium from secondary effluents, using a "passive air pump", has been developed. The process is based on convective aeration caused by a fill and draw operational sequence, and combines the advantages of the vertical wetlands concept with the high loading rates typically associated with trickling filters. Experiments were carried out in a 500-l reactor using simulative effluents and actual municipal secondary effluents. A maximal ammonium removal rate of 1100 g N/m2 reactor/d was achieved using simulative effluents and an effective gravel size of 0.96 mm. At all hydraulic loads applied, the nitrification rate was found to be limited by the oxygen transfer rate. The small-size medium used with simulative effluents clogged when using actual municipal secondary effluents. Two other media (2.46 mm and 4.31 mm) did not clog during the entire experimental period and a maximum removal load of 300 g N/m2 reactor/d was achieved. This value is still much higher than typical rates reported for conventional vertical beds.

  12. The Next Step in Ice Flow Measurement from Optical Imagery: Comprehensive Mapping Of Ice Sheet Flow in Landsat 8 Imagery Using Spatial Frequency Filtering, Enabled by High Radiometric Sensitivity

    NASA Astrophysics Data System (ADS)

    Fahnestock, M. A.; Scambos, T. A.; Klinger, M. J.

    2014-12-01

    The advent of large area satellite coverage in the visible spectrum enabled satellite-based tracking of ice sheet flow just over twenty years ago. Following this, rapid development of techniques for imaging radar data enabled the wide-area mapping and time series coverage that SAR has brought to the documentation of changing ice discharge. We report on the maturation of feature tracking in visible-band satellite imagery of the ice sheets enabled by the high radiometric resolution and accurate geolocation delivered by Landsat 8, and apply this to mapping ice flow in the interiors of Antarctica and Greenland. The high radiometric resolution of Landsat 8 enables one to track subtle patterns on the surface of the ice sheet, unique at spatial scales of a few hundred meters, between images separated by multiple orbit cycles. In areas with significant dynamic topography generated by ice flow, this requires use of simple spatial filtering techniques first applied by Scambos et al. 1992. The result is densely sampled maps of surface motion that begin to rival the coverage available from SAR speckle tracking and interferometry. Displacement accuracy can approach one tenth of a pixel for reasonable chip sizes using conventional normalized cross-correlation; this can exceed the geolocation accuracy of the scenes involved, but coverage is sufficient to allow correction strategies based on very slow moving ice. The advance in radiometry, geo-location, and tracking tools is augmented by an increased rate of acquisition by Landsat 8. This helps mitigate the issue of cloud cover, as much of every 16-day orbit cycle over ice is acquired, maximizing the acquisition of clear-sky scenes. Using the correlation techniques common to IMCORR and later software, modern libraries, and single-cpu hardware, we are able to process full Landsat 8 scene pairs in a few minutes, allowing comprehensive analysis of ~1K available ice sheet image pairs in a few days.

  13. Experimental Investigation of Cross-Flow Axis Marine Hydrokinetic Turbines, Including Effects of Waves and Turbulence

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2011-12-01

    A new test bed for Marine Hydrokinetic (MHK) turbines at the Center for Ocean Renewable Energy at the University of New Hampshire (UNH-CORE) was used to evaluate the performance of different cross-flow axis hydrokinetic turbines, and investigate the effects of waves and turbulence on these devices. The test bed was designed and built to operate in the UNH tow and wave tank, which has a cross section of 3.67m (width) x 2.44m (depth). In the present configuration, tow speeds of up to 3 m/s can be achieved for smaller turbine models, and up to 1.5 m/s for large turbine models with low gear ratio. It features a flap style wave maker at one end that is capable of producing waves with 1-5 s periods up to 0.4 m wave height. Turbine thrust (drag) and mechanical power output (torque, angular velocity) were measured at tow speeds of 0.6-1.5 m/s for two cross-flow axis MHK turbines: a Gorlov Helical Turbine (GHT) and a Lucid spherical turbine (LST). Both were provided by Lucid Energy Technologies, LLP, and have frontal areas of 1.3 (GHT) and 1.0 (LST) square meters, respectively. GHT performance was also measured in progressive waves of various periods, grid turbulence, and in the wake of a cylinder, installed upstream at various cross-stream locations. Overall, the GHT performs with higher power and thrust (drag) coefficients than the LST. A 2nd law efficiency, or kinetic exergy efficiency, was defined to calculate what fraction of the kinetic energy removed from the flow is converted to usable shaft work by each turbine. The exergy efficiency varies with tip speed ratio but approaches 90% for the optimum operating conditions for each turbine. The fraction of kinetic energy removed from the fluid that is not converted to shaft work is redistributed into turbulent kinetic energy in the wake. Quantifying the kinetic energy flowing out of the turbine is important for modeling of environmental transport processes and for predicting performance when turbines are used in arrays

  14. Experimental Investigation of the Discharge Coefficient and Impingement Heat Transfer Characteristics of a Single Jet in Cross Flow

    NASA Astrophysics Data System (ADS)

    Roberts, Brian

    This experimentation investigates the local heat transfer characteristics of an impinging jet with the effects of cross flow. The jet is formed by a single round hole with a diameter of 0.25 inches, sharp edges and a length to diameter ratio of 4. For one combination of impingement plate spacing and cross flow to jet flow mass velocity ratio, detailed photographs of a sheet of liquid crystal were taken. These photographs were then used to create a Nusselt number contour plot. Observations are made regarding the comparison of the Nusselt number contour plots with and without cross flow. Comparisons are also made to data in open literature citing the degradation of the average Nusselt number with cross flow to that without cross flow. While the main focus of this study was the heat transfer of an impinging jet, a large amount of discharge coefficient data was also gathered for a single, sharp edged, round hole in the presence of cross flow. It compared very well to other investigator's data and a correlation relating the discharge coefficient to the mass velocity ratio is reported.

  15. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2005-06-27

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  16. Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging

    NASA Astrophysics Data System (ADS)

    Binley, Andrew; Cassiani, Giorgio; Middleton, Roy; Winship, Peter

    2002-10-01

    Cross-borehole geoelectrical imaging, in particular electrical resistivity tomography (ERT) and transmission radar tomography, can provide high-resolution images of hydrogeological structures and, in some cases, detailed assessment of dynamic processes in the subsurface environment. Through appropriate petrophysical relationships, these tools offer data suitable for parameterising and constraining models of groundwater flow. This is demonstrated using cross-borehole radar and resistivity measurements collected during a controlled vadose zone tracer test, performed at a field site in the UK Sherwood Sandstone. Both methods show clearly the vertical migration of the tracer over a 200 h monitoring period. By comparing first and second spatial moments of changes in moisture content predicted from a numerical simulation of vadose zone flow with equivalent statistics from two- and three-dimensional ERT and cross-borehole radar profiles the effective hydraulic conductivity is estimated to be approximately 0.4 m/d. Such a value is comparable to field estimates from borehole hydraulic tests carried out in the saturated zone at the field site and provides valuable information that may be utilised to parameterise pollutant transport models of the site.

  17. Vadose Zone Flow Model Parameterisation Using Cross-Borehole Radar and Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Binley, A.; Cassiani, G.; Middleton, R.; Winship, P.

    2001-12-01

    Cross-borehole geoelectrical imaging, in particular electrical resistivity tomography and transmission radar tomography, can provide high resolution images of hydrogeological structures and, in some cases, detailed assessment of dynamic processes in the subsurface environment. Through appropriate petrophysical relationships, these tools offer data suitable for parameterizing and constraining models of groundwater flow. This is demonstrated using cross-borehole radar and resistivity measurements collected during a controlled vadose zone tracer test, performed at a field site in the UK Sherwood Sandstone. Both methods show clearly the vertical migration of the tracer over a 200 hour monitoring period. By comparing first and second spatial moments of changes in moisture content predicted from a numerical simulation of vadose zone flow with equivalent statistics from 2- and 3-D electrical resistivity tomography and cross-borehole radar profiles the effective hydraulic conductivity is estimated to be approximately 0.4 m d-1. Such a value is comparable to field estimates from borehole hydraulic tests carried out in the saturated zone at the field site and provides valuable information that may be utilized to parameterise pollutant transport models of the site.

  18. Experimental evaluation of sound produced by two cylinders in a cross flow in various configurations

    NASA Astrophysics Data System (ADS)

    Bilka, Michael; Kerrian, Peter; Morris, Scott

    2012-11-01

    Cylinders in a cross flow is a canonical test case that is considered representative of industrial fluid flow problems, such as heat exchangers and aircraft landing gear. The general configurations are cylinders in tandem, parallel or staggered, which lead to several interesting flow phenomena such as wake cavity/wake interaction effects (tandem), symmetric/asymmetric wake behavior (parallel) or wake interaction/coanda effects (staggered), depending on relative location of the cylinders. In many cases, it is important to not only understand the flow interaction between the cylinders but also the acoustic consequence of such configurations. However, information on the acoustical behavior based on these configurations is relatively small compared to that of the steady aerodynamic and flow interaction behavior. The present work investigates the acoustic spectral properties of these configurations in order to characterize the sound produced by cylinder proximity and wake effects. The spectra are measured using an acoustic beam-forming technique to identify the sources and remove spurious content from the spectra.

  19. The Effect of Vortex Generators on a Jet in a Cross-Flow

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Foss, J. K.

    1997-01-01

    The effect of vortex generators in the form of tabs on the penetration and spreading of a jet in a cross-flow has been studied experimentally. It is found that the tab has very little effect when placed on the leeward side, i.e., on the downstream edge of the jet nozzle relative to the free-stream flow. A study of the static pressure distribution reveals significantly lower pressures on the leeward side. Thus, when placed on that side the tab does not produce a "pressure hill" of sufficient magnitude that is the primary source of streamwise vorticity in the flow field over the tab. This qualitatively explains the ineffectiveness. In comparison, there is a significant effect on the flow field when the tab is placed on the windward side, The sense of vorticity generated by the tab in the latter configuration is opposite to that of the bound vortex pair that otherwise characterizes the flow. Thus, the strength of the bound vortex pair is diminished and the jet penetration is reduced.

  20. Constraints of nonresponding flows based on cross layers in the networks

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Chao; Xiao, Yang; Wang, Dong

    2016-02-01

    In the active queue management (AQM) scheme, core routers cannot manage and constrain user datagram protocol (UDP) data flows by the sliding window control mechanism in the transport layer due to the nonresponsive nature of such traffic flows. However, the UDP traffics occupy a large part of the network service nowadays which brings a great challenge to the stability of the more and more complex networks. To solve the uncontrollable problem, this paper proposes a cross layers random early detection (CLRED) scheme, which can control the nonresponding UDP-like flows rate effectively when congestion occurs in the access point (AP). The CLRED makes use of the MAC frame acknowledgement (ACK) transmitting congestion information to the sources nodes and utilizes the back-off windows of the MAC layer throttling data rate. Consequently, the UDP-like flows data rate can be restrained timely by the sources nodes in order to alleviate congestion in the complex networks. The proposed CLRED can constrain the nonresponsive flows availably and make the communication expedite, so that the network can sustain stable. The simulation results of network simulator-2 (NS2) verify the proposed CLRED scheme.

  1. Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering.

    PubMed

    Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Liu, Xiaohui

    2011-07-01

    In this paper, a mathematical model for sandwich-type lateral flow immunoassay is developed via short available time series. A nonlinear dynamic stochastic model is considered that consists of the biochemical reaction system equations and the observation equation. After specifying the model structure, we apply the extended Kalman filter (EKF) algorithm for identifying both the states and parameters of the nonlinear state-space model. It is shown that the EKF algorithm can accurately identify the parameters and also predict the system states in the nonlinear dynamic stochastic model through an iterative procedure by using a small number of observations. The identified mathematical model provides a powerful tool for testing the system hypotheses and also for inspecting the effects from various design parameters in both rapid and inexpensive way. Furthermore, by means of the established model, the dynamic changes in the concentration of antigens and antibodies can be predicted, thereby making it possible for us to analyze, optimize, and design the properties of lateral flow immunoassay devices.

  2. Mechanisms of Flame Stabilization and Blowout in a Reacting Turbulent Hydrogen Jet in Cross-Flow

    SciTech Connect

    Kolla, H.; Grout, R. W.; Gruber, A.; Chen, J. H.

    2012-08-01

    The mechanisms contributing to flame stabilization and blowout in a nitrogen-diluted hydrogen transverse jet in a turbulent boundary layer cross-flow (JICF) are investigated using three-dimensional direct numerical simulation (DNS) with detailed chemistry. Non-reacting JICF DNS were performed to understand the relative magnitude and physical location of low velocity regions on the leeward side of the fuel jet where a flame can potentially anchor. As the injection angle is reduced from 90{sup o} to 70{sup o}, the low velocity region was found to diminish significantly, both in terms of physical extent and magnitude, and hence, its ability to provide favorable conditions for flame anchoring and stabilization are greatly reduced. In the reacting JICF DNS a stable flame is observed for 90{sup o} injection angle and, on average, the flame root is in the vicinity of low velocity magnitude and stoichiometric mixture. When the injection angle is smoothly transitioned to 75{sup o} a transient flame blowout is observed. Ensemble averaged quantities on the flame base reveal two phases of the blowout characterized by a kinematic imbalance between flame propagation speed and flow normal velocity. In the first phase dominant flow structures repeatedly draw the flame base closer to the jet centerline resulting in richer-than-stoichiometric mixtures and high velocity magnitudes. In the second phase, in spite of low velocity magnitudes and a return to stoichiometry, due to jet bending and flame alignment normal to the cross-flow, the flow velocity normal to the flame base increases dramatically perpetuating the blowout.

  3. Numerical Investigation of Cross Flow Phenomena in a Tight-Lattice Rod Bundle Using Advanced Interface Tracking Method

    NASA Astrophysics Data System (ADS)

    Zhang, Weizhong; Yoshida, Hiroyuki; Ose, Yasuo; Ohnuki, Akira; Akimoto, Hajime; Hotta, Akitoshi; Fujimura, Ken

    In relation to the design of an innovative FLexible-fuel-cycle Water Reactor (FLWR), investigation of thermal-hydraulic performance in tight-lattice rod bundles of the FLWR is being carried out at Japan Atomic Energy Agency (JAEA). The FLWR core adopts a tight triangular lattice arrangement with about 1 mm gap clearance between adjacent fuel rods. In view of importance of accurate prediction of cross flow between subchannels in the evaluation of the boiling transition (BT) in the FLWR core, this study presents a statistical evaluation of numerical simulation results obtained by a detailed two-phase flow simulation code, TPFIT, which employs an advanced interface tracking method. In order to clarify mechanisms of cross flow in such tight lattice rod bundles, the TPFIT is applied to simulate water-steam two-phase flow in two modeled subchannels. Attention is focused on instantaneous fluctuation characteristics of cross flow. With the calculation of correlation coefficients between differential pressure and gas/liquid mixing coefficients, time scales of cross flow are evaluated, and effects of mixing section length, flow pattern and gap spacing on correlation coefficients are investigated. Differences in mechanism between gas and liquid cross flows are pointed out.

  4. Reduction of Jet Penetration in a Cross-Flow by Using Tabs

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1998-01-01

    A tab placed suitably on a nozzle that produces a jet in a cross-flow can reduce the penetration of the jet. This effect, achieved when the tab is placed on the windward side of the nozzle relative to the cross flow, may be of interest in film cooling applications. Wind tunnel experiments are carried out, in the momentum ratio (J) range of 10-90, to investigate the tab geometry that would maximize this effect. The preliminary results show that a 'delta tab' having a base width approximately fifty percent of the nozzle diameter may be considered optimum. With a given tab size, the effect is more pronounced at higher J. Reduction in jet penetration by as much as 40% is observed. Comparable reduction in jet penetration is also obtained when a triangular shaped tab is placed flush with the tunnel wall or with its apex tilted down into the jet nozzle (the 'delta tab' being the configuration in which the apex is tilted up). However, the delta tab involves the least flow blockage and pressure loss. Relative to the baseline case, the lateral spreading of the jet is found to be more with the delta tab but less with other orientations of the tab.

  5. Heat transfer in oscillating flows with sudden change in cross section

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Hashim, Waqar; Tew, Roy C.; Dudenhoefer, James E.

    1992-01-01

    Oscillating fluid flow (zero mean) with heat transfer, between two parallel plates with a sudden change in cross section, was examined computationally. The flow was assumed to be laminar and incompressible with inflow velocity uniform over the channel cross section but varying sinusoidally with time. Over 30 different cases were examined; these cases cover wide ranges of Re sub max (187.5 to 30000), Va (1 to 350), expansion ratio (1:2, 1:4, 1:8, and 1:12) and A sub r (0.68 to 4). Three different geometric cases were considered (asymmetric expansion and/or contraction, symmetric expansion/contraction, and symmetric blunt body). The heat transfer cases were based on constant wall temperature at higher (heating) or lower (cooling) value than the inflow fluid temperature. As a result of the oscillating flow, the fluid undergoes sudden expansion in one half of the cycle and sudden contraction in the other half. One heating case is examined in detail, and conclusions are drawn from all the cases (documented in detail elsewhere). Instantaneous friction factors and heat transfer coefficients, for some ranges of Re sub max and Va, deviated substantially from those predicted with steady state correlations.

  6. Bacteriological evaluation of a laminar cross-flow tunnel for surgery under operational conditions.

    PubMed

    van der Waaij, D; Heidt, P J; Hendriks, W D

    1974-04-01

    A transportable surgery cross-flow unit has been tested under ;operational conditions'. By the use of artificial aerosols and a volunteer surgical team, or dummies, it was found that, at an air velocity of 0.45 m./sec., a detectable transfer to above the table occurred only when quite highly concentrated aerosols (of more than 10(3.6) bacteria/m.(3) of air or more) existed underneath the table. The short disappearance time under these conditions and the quite stable flow pattern above the table found when a surgical team was working, standing along both sides of the table, make it unlikely that an aerosol of detectable concentration can develop during surgery, at this site. The chance that particles, liberated from the heads of the surgical team, settle on the table, was found to be strongly reduced when a cross-flow tunnel operated at an air velocity of 0.45 m./sec. The transfer from outside the unit to the inside was prevented by closing the upper part of the open front side.

  7. Bacteriological evaluation of a laminar cross-flow tunnel for surgery under operational conditions

    PubMed Central

    van der Waaij, D.; Heidt, P. J.; Hendriks, W. D. H.

    1974-01-01

    A transportable surgery cross-flow unit has been tested under `operational conditions'. By the use of artificial aerosols and a volunteer surgical team, or dummies, it was found that, at an air velocity of 0·45 m./sec., a detectable transfer to above the table occurred only when quite highly concentrated aerosols (of more than 103·6 bacteria/m.3 of air or more) existed underneath the table. The short disappearance time under these conditions and the quite stable flow pattern above the table found when a surgical team was working, standing along both sides of the table, make it unlikely that an aerosol of detectable concentration can develop during surgery, at this site. The chance that particles, liberated from the heads of the surgical team, settle on the table, was found to be strongly reduced when a cross-flow tunnel operated at an air velocity of 0·45 m./sec. The transfer from outside the unit to the inside was prevented by closing the upper part of the open front side. PMID:4274415

  8. Effects of a fluctuating sheared flow on cross phase in passive-scalar turbulent diffusion

    NASA Astrophysics Data System (ADS)

    Leconte, M.; Beyer, P.; Benkadda, S.; Garbet, X.

    2006-11-01

    Transport barriers are key elements concerning energy and particle confinement in fusion devices. They play a fundamental role in the L →H transition observed in most tokamaks' edges. It has been shown that a shear in the E ×B velocity could trigger and sustain such a barrier. The E ×B velocity shear model has proven to be of great interest in the study of the formation and characteristics of transport barriers. Here we address a particular case of flow shear stabilization, namely the effect of a shear flow on the diffusion of a passive scalar. A shear flow reduces the radial flux (radial transport) Γ of a passive scalar field (we consider the pressure field) via the reduction of the turbulence energy √⟨p2⟩ and/or via the reduction of the cross phase cosδ between the fluctuations of the pressure and velocity fields. We compare our results with those of different analytical models for passive-scalar advection or diffusion [Terry et al., Phys. Rev. Lett. 87, 185001 (2001); Kim and Diamond, Phys. Rev. Lett. 91, 075001 (2003)]. However, these studies yielded contradictory results. The purpose of this study is to shed light on this particular issue using numerical simulations to clarify the role of the reduction of the amplitude of turbulence and cross phase in regulating the radial transport.

  9. Jet mixing into a heated cross flow in a cylindrical duct: Influence of geometry and flow variations

    NASA Technical Reports Server (NTRS)

    Hatch, M. S.; Sowa, W. A.; Samuelsen, G. S.; Holdeman, J. D.

    1992-01-01

    To examine the mixing characteristics of jets in an axi-symmetric can geometry, temperature measurements were obtained downstream of a row of cold jets injected into a heated cross stream. Parametric, non-reacting experiments were conducted to determine the influence of geometry and flow variations on mixing patterns in a cylindrical configuration. Results show that jet to mainstream momentum flux ratio and orifice geometry significantly impact the mixing characteristics of jets in a can geometry. For a fixed number of orifices, the coupling between momentum flux ratio and injector determines (1) the degree of jet penetration at the injection plane, and (2) the extent of circumferential mixing downstream of the injection plane. The results also show that, at a fixed momentum flux ratio, jet penetration decreases with (1) an increase in slanted slot aspect ratio, and (2) an increase in the angle of the slots with respect to the mainstream direction.

  10. ZENON ENVIRONMENTAL, INC.; CROSS-FLOW PERVAPORATION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT (EPA/540/R-95/511)

    EPA Science Inventory

    A demonstration of the Zenon cross-flow pervaporation technology was conducted under the Superfund Innovative Technology Evaluation (SITE) program in February 1995 to determine the removal efficiency of trichloroethylene (TCE) from groundwaters at the Naval Air Station North Isla...

  11. Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot device.

    PubMed

    Haward, S J; Jaishankar, A; Oliveira, M S N; Alves, M A; McKinley, G H

    2013-07-01

    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers.

  12. Mechanism of Suppression and Extinguishment of Communication Cable Fire by Ultra Fine Water Mist in Cross-Flow

    DTIC Science & Technology

    2006-04-14

    of Communication Cable Fire by Ultra Fine Water Mist in Cross-Flow Chuka C. Ndubizu,* Ramagopal Ananth, Damian Rouson , and Frederick W. Williams NRL...Ultra Fine Water Mist in Cross-Flow April 14, 2006 Approved for public release; distribution is unlimited. RAMAGOPAL ANANTH DAMIAN ROUSON FREDERICK W... WILLIAMS Navy Technology Center for Safety and Survivability Chemistry Division CHUKA C. NDUBIZU Geo-Centers, Inc. Arlington, VA i REPORT

  13. Semi-analytical model of cross-borehole flow experiments for fractured medium characterization

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Irving, J.; Day-Lewis, F. D.

    2014-12-01

    The study of fractured rocks is extremely important in a wide variety of research fields where the fractures and faults can represent either rapid access to some resource of interest or potential pathways for the migration of contaminants in the subsurface. Identification of their presence and determination of their properties are critical and challenging tasks that have led to numerous fracture characterization methods. Among these methods, cross-borehole flowmeter analysis aims to evaluate fracture connections and hydraulic properties from vertical-flow-velocity measurements conducted in one or more observation boreholes under forced hydraulic conditions. Previous studies have demonstrated that analysis of these data can provide important information on fracture connectivity, transmissivity, and storativity. Estimating these properties requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. Quantitative analysis of cross-borehole flowmeter experiments, in particular, requires modeling formulations that: (i) can be adapted to a variety of fracture and experimental configurations; (ii) can take into account interactions between the boreholes because their radii of influence may overlap; and (iii) can be readily cast into an inversion framework that allows for not only the estimation of fracture hydraulic properties, but also an assessment of estimation error. To this end, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. Our model addresses the above needs and provides a flexible and computationally efficient semi-analytical framework having strong potential for future adaptation to more complex configurations. The proposed modeling approach is demonstrated

  14. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    SciTech Connect

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role of hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable

  15. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration.

    PubMed

    McManamay, Ryan A; Frimpong, Emmanuel A

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role of hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages; the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable

  16. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE PAGES

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for

  17. A cross-disciplinary understanding of incipient motion for effective environmental flow setting

    NASA Astrophysics Data System (ADS)

    Neverman, Andrew; Fuller, Ian; Death, Russell; Procter, Jon; Singh, Ranvir

    2016-04-01

    Environmental flow setting as a tool for maintaining ecological health in rivers has been a focus of debate for many years. Environmental flow setting often involves the establishment of base flow levels below impoundment structures as well as setting flushing flows in order to control excess periphyton accrual and sedimentation. The role of bedload transport and substrate stability is recognised as an integral part of effectively managing benthic communities, but environmental flow regulations often do not focus on managing sediment processes. Environmental flows which fail to scour periphyton have been attributed to increased biomass accumulation through increasing nutrient supply to periphyton mats. It may therefore be more effective to establish environmental flow models based on incipient motion thresholds. The aim of these models would be to establish target near-bed velocities as opposed to discharges. Establishment of such models requires an accurate understanding of the threshold conditions for incipient motion. Despite decades of incipient motion studies scientists are unable to consistently and accurately predict bedload transport in natural channels. Incipient motion results from a complex set of geomorphic, hydrologic, and ecological interactions operating over a range of spatial and temporal scales. Direct measurement of these processes can be difficult and time consuming, and has been restricted by a lack of suitable high spatio-temporal resolution methods in the past. This paper presents a cross-disciplinary approach to the study of incipient motion to develop effective environmental flow targets. Recent developments in remote sensing and 3D point cloud analysis are used to characterise substrate surfaces. Groundwater head pressures are measured during floods to examine changes in threshold velocities under different seepage conditions. The onset of bedload transport is recorded using impact plate sensors to relate transport initiation to near

  18. Site technology capsule: Zenon Environmental, Inc. cross-flow pervaporation system

    SciTech Connect

    1995-08-01

    This capsule contains information on the cross-flow pervaporation technology developed by ZENON Environmental, INC., (ZENON). The technology is designed to remove volatile organic compounds (VOC) from aqueous media. In early 1995, a full-scale Zenon system was evaluated at a former disposal area on Navel Air Station North Island (NASNI) in Coronado, California. Groundwater at the site is contaminated with trichloroethene (TCE) and other organic compounds. Results of the demonstration are summarized in the Performance Data section of this capsule. Results from a 1993 pilot-scale SITE demonstration of the technology in Burlington, Ontario, Canada, are also summarized in the Performance Data section.

  19. Experimental study of cross flow mixing in cylindrical and rectangular ducts

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; Vranos, A.; Lohmann, R. P.

    1993-01-01

    An experimental investigation of non-reacting cross flow jet injection and mixing in cylindrical and rectangular ducts has been conducted with application to a low emissions combustor. Quantitative measurement of injectant concentration distributions perpendicular to the duct axis were obtained by planar digital imaging of the Mie-scattered light from an aerosol seed mixed with the injectant. The flowfield unmixedness was evaluated using (1) a mixing parameter derived from the ratio of the jet concentration fluctuations to the fully mixed concentration, and (2) probability density functions of the concentration distributions. Mixing rate was measured for 45 degree slant slot and round orifice injectors.

  20. Computational analysis of magnetohydrodynamic Casson and Maxwell flows over a stretching sheet with cross diffusion

    NASA Astrophysics Data System (ADS)

    Kumaran, G.; Sandeep, N.; Ali, M. E.

    This paper reports the magnetohydrodynamic chemically reacting Casson and Maxwell fluids past a stretching sheet with cross diffusion, non-uniform heat source/sink, thermophoresis and Brownian motion effects. Numerical results are obtained by employing the R-K based shooting method. Effects of pertinent parameters on flow, thermal and concentration fields are discussed with graphical illustrations. We presented the tabular results to discuss the nature of the skin friction coefficient, reduced Nusselt and Sherwood numbers. Dual nature is observed in the solution of Casson and Maxwell fluids. It is also observed a significant increase in heat and mass transfer rate of Maxwell fluid when compared with the Casson fluid.

  1. Methods and systems for Raman and optical cross-interrogation in flow-through silicon membranes

    SciTech Connect

    Bond, Tiziana C.; Letant, Sonia E.

    2014-09-09

    Cross-interrogating photonic detection systems and methods are shown. A flow through photonic crystal membrane with a surface enhanced Raman scattering (SERS) substrate is provided with pores which are distributed along multiple regions. The pores of one region have walls to which a first type of target specific anchor can be attached, while pores of another region have walls to which a second type of target specific anchor can be attached. An optical arrangement out-of-plane to the SERS substrate is also provided for enhanced sensitivity and identification of target organisms.

  2. Continuous Processing of Active Pharmaceutical Ingredients Suspensions via Dynamic Cross-Flow Filtration.

    PubMed

    Gursch, Johannes; Hohl, Roland; Toschkoff, Gregor; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2015-10-01

    Over the last years, continuous manufacturing has created significant interest in the pharmaceutical industry. Continuous filtration at low flow rates and high solid loadings poses, however, a significant challenge. A commercially available, continuously operating, dynamic cross-flow filtration device (CFF) is tested and characterized. It is shown that the CFF is a highly suitable technology for continuous filtration. For all tested model active pharmaceutical ingredients, a material-specific strictly linear relationship between feed and permeate rate is identified. Moreover, for each tested substance, a constant concentration factor is reached. A one-parameter model based on a linear equation is suitable to fully describe the CFF filtration performance. This rather unexpected finding and the concentration polarization layer buildup is analyzed and a basic model to describe the observed filtration behavior is developed.

  3. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    PubMed Central

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-01-01

    An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield. PMID:25494348

  4. Freezing transition in a four-directional traffic model for facing and crossing pedestrian flow

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Komada, Kazuhito

    2010-04-01

    We study the traffic behavior in the facing and crossing traffic of pedestrians numerically and analytically. There are four kinds of walkers, those moving to east, to west, to north, and to south. We present the mean-field approximation (MFA) model for the four-directional traffic. The model is described in terms of four nonlinear difference equations. The excluded-volume effect and directionality are taken into account. The fundamental diagrams (current-density diagrams) are derived. When pedestrian density is higher than a critical value, the dynamical phase transition occurs from the free flow to the frozen (stopping) state. The critical density is derived by using the linear stability analysis. The velocity and current (flow) at the steady state are derived analytically. The analytical result is consistent with that obtained by the numerical simulation.

  5. An experimental study of the flow field surrounding a subsonic jet in a cross flow. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dennis, Robert Foster

    1993-01-01

    An experimental investigation of the flow interaction of a 5.08 cm (2.00 in.) diameter round subsonic jet exhausting perpendicularly to a flat plate in a subsonic cross flow was conducted in the NASA Ames 7x1O ft. Wind Tunnel Number One. Flat plate surface pressures were measured at 400 locations in a 30.48 cm (12.0 in.) concentric circular array surrounding the jet exit. Results from these measurements are provided in tabular and graphical form for jet-to-crossflow velocity ratios ranging from 4 to 12, and for jet exit Mach numbers ranging from 0.50 to 0.93. Laser doppler velocimeter (LDV) three component velocity measurements were made in selected regions in the developed jet plume and near the flat plate surface, at a jet Mach number of 0.50 and jet-to-crossflow velocity ratios of 6 and 8. The results of both pressure and LDV measurements are compared with the results of previous experiments. In addition, pictures of the jet plume shape at jet velocity ratios ranging from 4 to 12 were obtained using schleiren photography. The LDV measurements are consistent with previous work, but more extensive measurements will be necessary to provide a detailed picture of the flow field. The surface pressure results compare closely with previous work and provide a useful characterization of jet induced surface pressures. The results demonstrate the primary influence of jet velocity ratio and the secondary influence of jet Mach number in determining such surface pressures.

  6. Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Kroll, J. T.; Sowa, W. A.; Samuelsen, G. S.

    1996-01-01

    Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of the jet injection in combustors is largely based on practical experience. The emergence of NO(x) regulations for stationary gas turbines and the anticipation of aero-engine regulations requires an improved understanding of jet mixing as new combustor concepts are introduced. For example, the success of the staged combustor to reduce the emission of NO(x) is almost entirely dependent upon the rapid and complete dilution of the rich zone products within the mixing section. It is these mixing challenges to which the present study is directed. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of a conventional design. An experimental test matrix was designed around three variables: the number of orifices, the orifice length-to- width ratio, and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that the best mixing orifice geometry tested involves eight orifices with a long-to-short side aspect ratio of 3.5 at a twenty-three degree inclination from the center-line of the mixing section.

  7. Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Sowa, W. A.; Kroll, J. T.; Samuelsen, G. S.; Holdeman, J. D.

    1994-01-01

    Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of jet injection in combustors is largely based on practical experience. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of an advanced design. An experimental test matrix was designed around three variables: the number of orifices, the orifice aspect ratio (long-to-short dimension), and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that mixture uniformity is a non-linear function of the number of orifices, the orifice aspect ratio, and the orifice angle. Optimum mixing occurs when the asymptotic mean jet trajectories are in the range of 0.35 less than r/R less than 0.5 (where r = 0 is at the mixer wall) at z/R = 1.0. At the optimum number of orifices, the difference between shallow-angled slots with large aspect ratios and round holes is minimal and either approach will lead to good mixing performance. At the optimum number of orifices, it appears possible to have two local optimums where one corresponds to an aspect ratio of 1.0 and the other to a high aspect ratio.

  8. Blown Away: The Shedding and Oscillation of Sessile Drops by Cross Flowing Air

    NASA Astrophysics Data System (ADS)

    Milne, Andrew James Barnabas

    For drops sessile on a solid surface, cross flowing air can drive drop oscillation or shedding, based on the balance and interaction of aerodynamic drag force (based on drop size/shape and air speed) and adhesion/capillary forces (based on surface tension and drop size/shape). Better understanding of the above has applications to, e.g., fuel cell flooding, airfoil icing, and visibility in rain. To understand the basic physics, experiments studying individual sessile drops in a low speed wind tunnel were performed in this thesis. Analysis of high speed video gave time resolved profiles and airspeed for shedding. Testing 0.5 mul to 100 mul drops of water and hexadecane on poly(methyl methacrylate) PMMA, Teflon, and a superhydrophobic surface (SHS) yielded a master curve describing critical airspeed for shedding for water drops on all surface tested. This curve predicts behavior for new surfaces, and explains experimental results published previously. It also indicates that the higher contact angle leads to easier shedding due to decreased adhesion and increased drag. Developing a novel floating element differential drag sensor gave the first measurements of the microNewton drag force experienced by drops. Forces magnitude is comparable to gravitational shedding from a tilted plate and to simplified models for drop adhesion, with deviations that suggest effects due to the air flow. Fluid properties are seen to have little effect on drag versus airspeed, and decreased adhesion is seen to be more important than increased drag for easing shedding. The relation between drag coefficient and Reynolds number increases slightly with liquid-solid contact angle, and with drop volume. Results suggest that the drop experiences increased drag compared to similarly shaped solid bodies due to drop oscillations aeroelasticly coupling into the otherwise laminar flow. The bulk and surface oscillations of sessile drops in cross flow was also studied, using a full profile analysis

  9. Axisymmetric electrostatic magnetohydrodynamic oscillations in tokamaks with general cross-sections and toroidal flow

    NASA Astrophysics Data System (ADS)

    Chu, M. S.; Guo, Wenfeng

    2016-06-01

    The frequency spectrum and mode structure of axisymmetric electrostatic oscillations [the zonal flow (ZF), sound waves (SW), geodesic acoustic modes (GAM), and electrostatic mean flows (EMF)] in tokamaks with general cross-sections and toroidal flows are studied analytically using the electrostatic approximation for magnetohydrodynamic modes. These modes constitute the "electrostatic continua." Starting from the energy principle for a tokamak plasma with toroidal rotation, we showed that these modes are completely stable. The ZF, the SW, and the EMF could all be viewed as special cases of the general GAM. The Euler equations for the general GAM are obtained and are solved analytically for both the low and high range of Mach numbers. The solution consists of the usual countable infinite set of eigen-modes with discrete eigen-frequencies, and two modes with lower frequencies. The countable infinite set is identified with the regular GAM. The lower frequency mode, which is also divergence free as the plasma rotation tends to zero, is identified as the ZF. The other lower (zero) frequency mode is a pure geodesic E×B flow and not divergence free is identified as the EMF. The frequency of the EMF is shown to be exactly 0 independent of plasma cross-section or its flow Mach number. We also show that in general, sound waves with no geodesic components are (almost) completely lost in tokamaks with a general cross-sectional shape. The exception is the special case of strict up-down symmetry. In this case, half of the GAMs would have no geodesic displacements. They are identified as the SW. Present day tokamaks, although not strictly up-down symmetric, usually are only slightly up-down asymmetric. They are expected to share the property with the up-down symmetric tokamak in that half of the GAMs would be more sound wave-like, i.e., have much weaker coupling to the geodesic components than the other half of non-sound-wave-like modes with stronger coupling to the geodesic

  10. Flow-induced oscillations of a prism with triangular cross-section placed in water

    NASA Astrophysics Data System (ADS)

    Carlson, Daniel; Seyed-Aghazadeh, Banafsheh; Modarres-Sadeghi, Yahya

    2015-11-01

    Flow-induced oscillations of a prism with a triangular cross-section was studied experimentally. The cylinder had one-degree-of-freedom to oscillate in the crossflow direction. The response of the cylinder in terms of the amplitudes of oscillations as well as the flow forces were studied at varying angles of attack in the range of α = 0° -60° and a reduced velocity range of U* =4-22. Depending on the angle of attack and the reduced velocity, the cylinder experienced either VIV or galloping. For small angles of attack of α<30°, the cylinder did not oscillate while for larger angles of α = 30° and 35°, the cylinder underwent VIV in a range of reduced velocities (U* =7-14.5) and galloping at higher reduced velocities (U* =19.5-22). The conducted dye flow visualization as well as the measured flow forces confirmed the existence of lock-in as well as galloping-type response. For larger angles of attack of α>35°, the amplitude of oscillations increased monotonically with increasing reduced velocity and the cylinder underwent galloping. Several different vortex shedding patterns were observed in the wake of the cylinder at different angles of attack and flow velocities. New, high-frequency shedding patterns with their corresponding high harmonic shedding frequencies in the flow force FFTs were observed in the regions where galloping occurred. This work is partially supported by the NSF-sponsored IGERT: Offshore Wind Energy Engineering, Environmental Science, and Policy (Grant Number 1068864).

  11. Groundwater Budget Analysis of Cross Formational Flow: Hueco Bolson (Texas and Chihuahua)

    NASA Astrophysics Data System (ADS)

    Hutchison, W. R.

    2005-12-01

    Groundwater from the Hueco Bolson supplies the majority of municipal water in El Paso, Texas and Ciudad Juarez, Chihuahua, the largest international border community in the world. For over 100 years, water managers and researchers have been developing an understanding of Hueco Bolson groundwater occurrence and movement, and the interaction between surface water and groundwater. Since 2001, isotopic studies of groundwater chemistry on both sides of the border have provided valuable insights into the occurrence of groundwater and its historic movement. Numerical groundwater flow models of the area have been developed and used since the 1970s. The results of the most recent model were used to develop a detailed analysis of the groundwater inflows, outflows and storage change of the entire area and subregions of the model domain from 1903 to 2002. These detailed groundwater budgets were used to quantify temporal and spatial flow changes that resulted from groundwater pumping: induced inflow of surface water, decreased natural outflows, and storage declines. In addition, the detailed groundwater budgets were used to quantify the changes in cross formational flow between the Rio Grande Alluvium and the Hueco Bolson, as well as the changes in vertical flow within the Hueco Bolson. The groundwater budget results are consistent with the results of the isotopic analyses, providing a much needed confirmation of the overall conceptual model of the numerical model. In addition, the groundwater budgets have provided information that has been useful in further interpreting the results of the isotopic analyses.

  12. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  13. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: Applications to cerebral autoregulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Hu, Kun; Stanley, H. Eugene; Novak, Vera; Ivanov, Plamen Ch.

    2006-03-01

    We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in

  14. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2006-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (a) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (b) evaluated at ''in-service'' loads at service temperatures and environments. In this 12th quarter of performance, program activities are concluded for Task 2 and continuing for Tasks 3, 4 and

  15. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.

  16. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal Kad

    2007-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program were to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined was iterative and intended to systematically (i) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, to be (ii) evaluated at 'in-service' loads at service temperatures and environments. Our report outlines the significant hoop creep enhancements possible via secondary cross-rolling and/or flow-forming operations. Each of the

  17. Investigation of the flow-field in the upper respiratory system when wearing N95 filtering facepiece respirator.

    PubMed

    Zhang, Xiaotie; Li, Hui; Shen, Shengnan; Cai, Mang

    2016-01-01

    This article presents a reverse modeling of the headform when wearing a filtering facepiece respirator (FFR) and a computational fluid dynamics (CFD) simulation based on the modeling. The whole model containing the upper respiratory airway, headform, and FFR was directly recorded by computed tomography (CT) scanning, and a medical contrast medium was used to make the FFR "visible." The FFR was normally worn by the subject during CT scanning so that the actual deformation of both the FFR and the face muscles during contact can be objectively conserved. The reverse modeling approach was introduced to rebuild the geometric model and convert it into a CFD solvable model. In this model, we conducted a transient numerical simulation of air flow containing carbon dioxide, thermal dynamics, and pressure and wall shear stress distribution in the respiratory system taking into consideration an individual wearing a FFR. The breathing cycle was described as a time-dependent profile of the air velocity through the respiratory airway. The result shows that wearing the N95 FFR results in CO2 accumulation, an increase in temperature and pressure elevation inside the FFR cavity. The volume fraction of CO2 reaches 1.2% after 7 breathing cycles and then is maintained at 3.04% on average. The wearers re-inhale excessive CO2 in every breathing cycle from the FFR cavity. The air temperature in the FFR cavity increases rapidly at first and then stays close to the exhaled temperature. Compared to not wearing an FFR, wearers have to increase approximately 90 Pa more pressure to keep the same breathing flow rate of 30.54 L/min after wearing an FFR. The nasal vestibule bears more wall shear stress than any other area in the airway.

  18. Performance Evaluation, Emulation, and Control of Cross-Flow Hydrokinetic Turbines

    NASA Astrophysics Data System (ADS)

    Cavagnaro, Robert J.

    Cross-flow hydrokinetic turbines are a promising option for effectively harvesting energy from fast-flowing streams or currents. This work describes the dynamics of such turbines, analyzes techniques used to scale turbine properties for prototyping, determines and demonstrates the limits of stability for cross-flow rotors, and discusses means and objectives of turbine control. Novel control strategies are under development to utilize low-speed operation (slower than at maximum power point) as a means of shedding power under rated conditions. However, operation in this regime may be unstable. An experiment designed to characterize the stability of a laboratory-scale cross-flow turbine operating near a critically low speed yields evidence that system stall (complete loss of ability to rotate) occurs due, in part, to interactions with turbulent decreases in flow speed. The turbine is capable of maintaining 'stable' operation at critical speed for short duration (typically less than 10 s), as described by exponential decay. The presence of accelerated 'bypass' flow around the rotor and decelerated 'induction' region directly upstream of the rotor, both predicted by linear momentum theory, are observed and quantified with particle image velocimetry (PIV) measurements conducted upstream of the turbine. Additionally, general agreement is seen between PIV inflow measurements and those obtained by an advection-corrected acoustic Doppler velocimeter (ADV) further upstream. Performance of a turbine at small (prototype) geometric scale may be prone to undesirable effects due to operation at low Reynolds number and in the presence of high channel blockage. Therefore, testing at larger scale, in open water is desirable. A cross-flow hydrokinetic turbine with a projected area (product of blade span and rotor diameter) of 0.7 m2 is evaluated in open-water tow trials at three inflow speeds ranging from 1.0 m/s to 2.1 m/s. Measurements of the inflow velocity, the rotor mechanical

  19. Measurements of the cross-sectional distributions of spherical particles suspended in rectangular channel flows

    NASA Astrophysics Data System (ADS)

    Imanishi, Takahiro; Yabu, Takuya; Yamashita, Hiroshi; Itano, Tomoaki; Sugihara-Seki, Masako

    2016-11-01

    We investigated the inertial migration of neutrally buoyant spherical particles using millimeter-sized rectangular channels of various aspect ratios (AR = 1 - 4.2), in the range of Reynolds numbers (Re) from 100 to 2000. The Reynolds number was defined as UH/ ν, where U is the maximum flow velocity, H is the length of the shorter face of the channel cross-section, and ν is the kinematic viscosity. Dilute suspensions of polystyrene particles of diameter d = 300 - 650 μm were used. For the size ratio d / H = 0 . 1 - 0.25, the observation of particle positions at downstream cross-sections revealed that the particles were aligned in a straight or curved line nearly parallel to the longer face of the channel cross-section and their probability density function showed a sharp peak at a certain distance from the channel centerline. These focusing positions of particles were found to depend on Re, d / H and AR. They approached the channel centerline with increasing Re. As AR increased for constant Re and constant d / H , focusing positions moved closer to the channel centerline, and reached asymptotic positions for AR>2.

  20. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2005-02-28

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  1. Field-scale application of Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations

    NASA Astrophysics Data System (ADS)

    Panzeri, Marco; Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.

    2014-05-01

    The ensemble Kalman filter (EnKF) enables one to assimilate newly available data in transient groundwater and other temporal earth system models through real-time Bayesian updating of system states (e.g., hydraulic heads) and parameters (e.g., hydraulic conductivities). It has become common to treat spatially varying hydraulic conductivities as autocorrelated random fields conditioned on measured conductivities and/or heads. Doing so renders the corresponding groundwater flow equations stochastic. Assimilating data in such equations via traditional EnKF entails computationally intensive Monte Carlo (MC) simulation. We have previously illustrated a methodology to circumvent the need for MC. Our methodology is grounded on (1) an approximate direct solution of nonlocal (integrodifferential) equations that govern the space-time evolution of conditional ensemble means (statistical expectations) and covariances of hydraulic heads and fluxes and (2) the embedding of these moments in EnKF. This provides sequential updates of conductivity and head estimates throughout the space-time domain of interest, does not suffer from inbreeding issues and, as an additional benefit, obviates the need for computationally intensive batch inverse solution of the moment equations as we have been doing previously. We compare the performance of our new EnKF approach based on stochastic moment equation and of the traditional Monte Carlo approach. We do so for a field scale scenario involving a sequence of pumping tests performed in a heterogeneous alluvial test site located near the city of Tuebingen, Germany.

  2. Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent.

    PubMed

    Mac Conell, E F A; Almeida, P G S; Martins, K E L; Araújo, J C; Chernicharo, C A L

    2015-01-01

    The bacterial community composition of a down-flow sponge-based trickling filter treating upflow anaerobic sludge blanket (UASB) effluent was investigated by pyrosequencing. Bacterial community composition considerably changed along the reactor and over the operational period. The dominant phyla detected were Proteobacteria, Verrucomicrobia, and Planctomycetes. The abundance of denitrifiers decreased from the top to the bottom and it was consistent with the organic matter concentration gradients. At lower loadings (organic and nitrogen loading rates), the abundance of anammox bacteria was higher than that of the ammonium-oxidizing bacteria in the upper portion of the reactor, suggesting that aerobic and anaerobic ammonium oxidation occurred. Nitrification occurred in all the compartments, while anammox bacteria prominently appeared even in the presence of high organic carbon to ammonia ratios (around 1.0-2.0 gCOD gN(-1)). The results suggest that denitrifiers, nitrifiers, and anammox bacteria coexisted in the reactor; thus, different metabolic pathways were involved in ammonium removal in the post-UASB reactor sponge-based.

  3. Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays

    NASA Astrophysics Data System (ADS)

    Moran, Joaquin E.

    An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The model tube bundle had 10 cantilevered tubes in a parallel-triangular configuration, with a pitch ratio of 1.49. The two-phase flow loop used in this research utilized Refrigerant 11 as the working fluid, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of void fraction, density and velocity predictions. Three different damping measurement methodologies were implemented and compared in order to obtain a more reliable damping estimate. The methods were the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The decay trace was obtained by "plucking" the monitored tube from outside the test section using a novel technique, in which a pair of electromagnets changed their polarity at the natural frequency of the tube to produce resonance. The experiments showed that the half-power bandwidth produces higher damping values than the other two methods. The primary difference between the methods is caused by tube frequency shifting, triggered by fluctuations in the added mass and coupling between the tubes, which depend on void fraction and flow regime. The exponential fitting proved to be the more consistent and reliable approach to estimating damping. In order to examine the relationship between the damping ratio and mass flux, the former was plotted as a function of void fraction and pitch mass flux in an iso-contour plot. The results showed that damping is not independent of mass

  4. An Isolated Circular Synthetic Jet in Cross-Flow at Low Momentum-Flux Ratio

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.; Zaman, Khairul B. M. Q.; Rumsey, Christopher L.

    2005-01-01

    A joint experimental and computational investigation was carried out for a round synthetic jet issuing normal to a turbulent boundary layer at a momentum-flux ratio of one. Distributions of velocity and turbulence intensity were measured by hot-wire anemometry. Numerical results were obtained using unsteady Reynolds-averaged Navier-Stokes (URANS) computations. Time and phase-averaged flow properties were compared on the cross sectional plane at x/D = 0.53, 5 and 10 as well as on the axial plane of symmetry. Overall, the numerical results agreed well with the experimental data. CFD predicted a somewhat larger velocity deficit in regions of low-momentum fluid pulled up from the boundary layer. Phase- averaged velocity contours at the plane of symmetry indicated good match between experiments and CFD regarding the size and the position of the periodic flow structure. However, some differences occurred in details such as the shape and inclination of the low-speed flow structure.

  5. Active Control of Jets in Cross-Flow for Film Cooling Applications

    NASA Technical Reports Server (NTRS)

    Nikitopoulos, Dimitris E.

    2003-01-01

    Jets in cross-flow have applications in film cooling of gas turbine vanes, blades and combustor liners. Their cooling effectiveness depends on the extent to which the cool jet-fluid adheres to the cooled component surface. Lift-off of the cooling jet flow or other mechanisms promoting mixing, cause loss of cooling effectiveness as they allow the hot "free-stream" fluid to come in contact with the component surface. The premise of this project is that cooling effectiveness can be improved by actively controlling (e.9. forcing, pulsing) the jet flow. Active control can be applied to prevent/delay lift-off and suppress mixing. Furthermore, an actively controlled film-cooling system coupled with appropriate sensory input (e.g. temperature or heat flux) can adapt to spatial and temporal variations of the hot-gas path. Thus, it is conceivable that the efficiency of film-cooling systems can be improved, resulting in coolant fluid economy. It is envisioned that Micro Electro-Mechanical Systems (MEMS) will play a role in the realization of such systems. As a first step, a feasibility study will be conducted to evaluate the concept, identify actuation and sensory elements and develop a control strategy. Part of this study will be the design of a proof-of-concept experiment and collection of necessary data.

  6. Interactions of a finite span synthetic jet with a cross flow

    NASA Astrophysics Data System (ADS)

    Leong, Chia Min; van Buren, Tyler; Whalen, Edward; Amitay, Michael; Rensselaer Polytechnic Institute Team; Boeing Collaboration

    2013-11-01

    A synthetic jet is a zero-net-mass-flux flow control actuator that produces alternating ejection and suction of fluid momentum across an orifice. It has been used in numerous applications as an active flow control device to improve aerodynamic performance. Though their aerodynamic performance effects are well known, this present study seeks to understand the fluid dynamic effects of synthetic jets. Specifically, the work investigates the interactions of a finite span synthetic jet with a zero-pressure-gradient laminar boundary layer. This study was performed in a small-scale subsonic wind tunnel with an adjustable test section upper wall that was used to generate a zero-pressure-gradient boundary layer. Several finite span rectangular orifices were chosen for this study. Time and phase-averaged Stereoscopic Particle Image Velocimetry (SPIV) measurements were acquired at multiple planes upstream and downstream of the synthetic jet orifice to explore the interaction of the synthetic jet with the cross flow. The effects of the orifice aspect ratio (12, 18, and 24) and blowing ratio (0.5, 1, and 1.5) were investigated. The unsteady vortical structures observed in the near field and the steady structures in the far field are discussed.

  7. On the use of the periodicity condition in cross-flow tube

    NASA Astrophysics Data System (ADS)

    Beladjine, Boumedienne; Aounallah, Mohammed; Belkadi, Mustapha; Aadjlout, Lahouari; Imine, Omar

    2015-05-01

    This paper presents the results of measurements and numerical predictions of turbulent cross-flow through an in-line 7×7 bundle configuration with a constant transverse and longitudinal pitch-to-diameter ratio of 1.44. The experiments are conducted to measure the pressure around tubes, using DPS differential pressure scanner with air flow, in square channel at a Reynolds number of 35000 based on the gap velocity and the tube diameter. The commercial ANSYS FLUENT is used to solve the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations. The primary aim of the present study is to search for a turbulent model that could serve as an engineering design tool at a relatively low computational cost. The performances of the Spalart-Allmaras, the RNG k-ɛ, the Shear Stress Transport k-ω and the second moment closure RSM models are evaluated by comparing their simulation results against experimental data. The second objective is to verify the validity of the periodicity assumption taken account in the most previous numerical works by considering the filled bundle geometry. The CFD results show that the Spalart-Allmaras model on the fine mesh are comparable to the experiments while the periodicity statement did not produce consistently the flow behavior in the 7×7 tube bundle configuration.

  8. Relationship of flow and cross-sectional area to frictional stress in airway models of asthma.

    PubMed

    Chowdhary, R; Singh, V; Tattersfield, A E; Sharma, S D; Kar, S; Gupta, A B

    1999-08-01

    Frictional stress from air flowing through narrowed airways may damage the airway mucosa and thereby increase airway inflammation and airway obstruction. To investigate the levels of frictional stress that might occur in the airway, we measured the frictional stress in three physical airway models (model 1: normal state; models 2 and 3: narrowed states with cross-sectional area half and one-fourth of model 1, respectively) at tracheal expiratory flow rates of 1, 2, 3, 4, 5, 6, 7, and 8 L/sec. Frictional stress measured at stations in the trachea (A), two each in the left (B and C) and right (D and E) major bronchi, and one in the right secondary bronchus (F) indicated that at higher flow rates, high values of the frictional stress seen in model 3 (highest value being 139.2 N/m2 at 8 L/sec at station) could well damage the airway wall, especially during episodes of cough, and particularly when the mucosa is inflamed and friable as it is in asthmatic patients. Conversely, control of cough may have anti-inflammatory benefits in asthmatic patients.

  9. ARRANGEMENT FOR REPLACING FILTERS

    DOEpatents

    Blomgren, R.A.; Bohlin, N.J.C.

    1957-08-27

    An improved filtered air exhaust system which may be continually operated during the replacement of the filters without the escape of unfiltered air is described. This is accomplished by hermetically sealing the box like filter containers in a rectangular tunnel with neoprene covered sponge rubber sealing rings coated with a silicone impregnated pneumatic grease. The tunnel through which the filters are pushed is normal to the exhaust air duct. A number of unused filters are in line behind the filters in use, and are moved by a hydraulic ram so that a fresh filter is positioned in the air duct. The used filter is pushed into a waiting receptacle and is suitably disposed. This device permits a rapid and safe replacement of a radiation contaminated filter without interruption to the normal flow of exhaust air.

  10. Nusselt numbers of laminar, oscillating flows in stacks and regenerators with pores of arbitrary cross-sectional geometry.

    PubMed

    Brady, John F

    2013-04-01

    Though widely used in steady-flow heat transfer applications, the Nusselt number-a dimensionless heat transfer coefficient-has not been studied as thoroughly in oscillating flows and is therefore not generally used in thermoacoustic applications. This paper presents expressions for the Nusselt numbers of laminar oscillating flows within the pores of stacks and regenerators, derived from thermoacoustic theory developed by Rott and Swift. These expressions are based on bulk (velocity-weighted, cross-sectionally averaged) temperature, rather than the cross-sectionally averaged temperature. Results are shown for parallel plates, circular pores, rectangular pores, and within the boundary layer limit. It is shown that bulk temperature does not become infinite during an acoustic cycle and that the Nusselt number is a complex constant at all times. In addition, steady-flow Nusselt numbers are recovered when velocity and temperature profiles are like those in steady flows.

  11. Effect of momentum dependent interactions and nucleonic cross-section on directed flow (v{sub 1})

    SciTech Connect

    Jain, Anupriya; Vinayak, Karan Singh; Kumar, Suneel

    2013-07-15

    The descriptive analysis for the effect of momentum dependent interactions and nucleonic cross-section (isospin dependent and isospin-independent) on the neutron–proton directed flow (v{sub 1}), within the framework of the isospin dependent quantum molecular dynamics model is presented. Our study shows that, the directed flow of both neutrons and protons is affected by the momentum dependence of nuclear equation of state and the isospin dependence of nucleon–nucleon cross-section. A soft momentum dependent (SM) equation of state is found to be more compatible with the experimental data. -- Highlights: •Role of rapidity cut on transverse flow has been explored. •p{sub t} differential flow for protons and neutrons has been studied. •Role of MDI on directed flow has been studied.

  12. Cross-correlation based time delay estimation for turbulent flow velocity measurements: Statistical considerations

    SciTech Connect

    Tal, Balazs; Bencze, Attila; Zoletnik, Sandor; Veres, Gabor; Por, Gabor

    2011-12-15

    Time delay estimation methods (TDE) are well-known techniques to investigate poloidal flows in hot magnetized plasmas through the propagation properties of turbulent structures in the medium. One of these methods is based on the estimation of the time lag at which the cross-correlation function (CCF) estimation reaches its maximum value. The uncertainty of the peak location refers to the smallest determinable flow velocity modulation, and therefore the standard deviation of the time delay imposes important limitation to the measurements. In this article, the relative standard deviation of the CCF estimation and the standard deviation of its peak location are calculated analytically using a simple model of turbulent signals. This model assumes independent (non interacting) overlapping events (coherent structures) with randomly distributed spatio-temporal origins moving with background flow. The result of our calculations is the derivation of a general formula for the CCF variance, which is valid not exclusively in the high event density limit, but also for arbitrary event densities. Our formula reproduces the well known expression for high event densities previously published in the literature. In this paper we also present a derivation of the variance of time delay estimation that turns out to be inversely proportional to the applied time window. The derived formulas were tested in real plasma measurements. The calculations are an extension of the earlier work of Bencze and Zoletnik [Phys. Plasmas 12, 052323 (2005)] where the autocorrelation-width technique was developed. Additionally, we show that velocities calculated by a TDE method possess a broadband noise which originates from this variance, its power spectral density cannot be decreased by worsening the time resolution and can be coherent with noises of other velocity measurements where the same turbulent structures are used. This noise should not be confused with the impact of zero mean frequency zonal flow

  13. Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section.

    PubMed

    Gambaruto, Alberto M

    2016-07-26

    Vessel with 'circular' or 'star-shaped' cross sections are studied, representing respectively dilated or constricted cases where endothelial cells smoothly line or bulge into the lumen. Computational haemodynamics simulations are carried out on idealised periodic arteriole-sized vessels, with red blood cell 'tube' hematocrit value=24%. A further simulation of a single red blood cell serves for comparison purposes. The bulk motion of the red blood cells reproduces well-known effects, including the presence of a cell-free layer and the apparent shear-thinning non-Newtonian rheology. The velocity flow field is analysed in a Lagrangian reference frame, relative to any given red blood cell, hence removing the bulk coaxial motion and highlighting instead the complex secondary flow patterns. An aggregate formation becomes apparent, continuously rearranging and dynamic, brought about by the inter-cellular fluid mechanics interactions and the deformability properties of the cells. The secondary flow field induces a vacillating radial migration of the red blood cells. At different radial locations, the red blood cells express different residence times, orientation and shape. The shear stresses exerted by the flow on the vessel wall are influenced by the motion of red blood cells, despite the presence of the cell-free layer. Spatial (and temporal) variations of wall shear stress patters are observed, especially for the 'circular' vessel. The 'star-shaped' vessel bears considerable stress at the protruding endothelial cell crests, where the stress vectors are coaxially aligned. The bulging endothelial cells hence regularise the transmission of stresses on the vessel wall.

  14. Flow structure caused by a local cross-sectional area increase and curvature in a sharp river bend

    NASA Astrophysics Data System (ADS)

    Vermeulen, B.; Hoitink, A. J. F.; Labeur, R. J.

    2015-09-01

    Horizontal flow recirculation is often observed in sharp river bends, causing a complex three-dimensional flow structure with large implications for the morphological and planimetric development of meanders. Several field observations in small-scale systems show that sharp bends are often found in association with a strong increase in cross-sectional area, the deposition of outer bank benches, and reattachment bars near the inner bank. Recent studies show that these bends can also occur in large-scale systems. In this study, we present field measurements of a sharp bend in the Mahakam River, East Kalimantan, Indonesia. The cross-sectional area increases by a factor of 3 compared with the reach-averaged cross-sectional area. Along a river reach of about 150 km, cross-sectional area correlates strongly with curvature. The field measurements are analyzed together with the results from numerical simulation with a three-dimensional finite element model, which yields a comprehensive view of the intricate flow structure. In turn, the model is used to validate a new equation that captures the water surface topography dependence on cross-sectional area variation and curvature. The results show the importance of the increase in cross-sectional area in the development of horizontal recirculation. Vertical acceleration of the flow into the scour causes the pressure to deviate from a hydrostatic pressure distribution. Strong downflow (up to 12 cm s-1) advects longitudinal momentum toward the bed, causing the flow to concentrate in the lower part of the cross section. This increases the velocity magnitude throughout the cross section, which is expected to maintain the large scour depth found in several bends along the Mahakam River.

  15. Flow structure caused by a local cross-sectional area increase and curvature in sharp river bends

    NASA Astrophysics Data System (ADS)

    Vermeulen, B.

    2015-12-01

    Horizontal flow recirculation is often observed in sharp river bends, causing a complex three-dimensional flow structure with large implications for the morphological and planimetric development of meanders. Several field observations in small scale systems show that sharp bends are often found in association with a strong increase in cross-sectional area, the deposition of outer bank benches and reattachment bars near the inner bank. Recent studies show that these bends can also occur in large scale systems. In this study, we present field measurements of a sharp bend in the Mahakam River, East Kalimantan, Indonesia. The cross-sectional area increases by a factor of three compared with the reach averaged cross-sectional area. Along a river reach of about 150 km, cross-sectional area correlates strongly with curvature. The field measurements are analyzed together with the results from numerical simulation with a 3D finite element model, which yields a comprehensive view of the intricate flow structure. In turn, the model is used to validate a new equation that captures the water surface topography dependence on cross-sectional area variation and curvature. The results show the importance of the increase in cross-sectional area in the development of horizontal recirculation. Vertical acceleration of the flow into the scour causes the pressure to deviate from a hydrostatic pressure distribution. Strong downflow (up to 12 cm/s) advects longitudinal momentum towards the bed, causing the flow to concentrate in the lower part of the cross-section. This increases the velocity magnitude throughout the cross-section, which is expected to maintain the large scour depth found in several bends along the Mahakam River.

  16. Interactions between Seagrass Complexity, Hydrodynamic Flow and Biomixing Alter Food Availability for Associated Filter-Feeding Organisms

    PubMed Central

    González-Ortiz, Vanessa; Egea, Luis G.; Jiménez-Ramos, Rocio; Moreno-Marín, Francisco; Pérez-Lloréns, José L.; Bouma, Tjeed J.; Brun, Fernando G.

    2014-01-01

    Seagrass shoots interact with hydrodynamic forces and thereby a positively or negatively influence the survival of associated species. The modification of these forces indirectly alters the physical transport and flux of edible particles within seagrass meadows, which will influence the growth and survivorship of associated filter-feeding organisms. The present work contributes to gaining insight into the mechanisms controlling the availability of resources for filter feeders inhabiting seagrass canopies, both from physical (influenced by seagrass density and patchiness) and biological (regulated by filter feeder density) perspectives. A factorial experiment was conducted in a large racetrack flume, which combined changes in hydrodynamic conditions, chlorophyll a concentration in the water and food intake rate (FIR) in a model active filter-feeding organism (the cockle). Results showed that seagrass density and patchiness modified both hydrodynamic forces and availability of resources for filter feeders. Chlorophyll a water content decreased to 50% of the initial value when densities of both seagrass shoots and cockles were high. Also, filter feeder density controlled resource availability within seagrass patches, depending on its spatial position within the racetrack flume. Under high density of filter-feeding organisms, chlorophyll a levels were lower between patches. This suggests that the pumping activity of cockles (i.e. biomixing) is an emergent key factor affecting both resource availability and FIR for filter feeders in dense canopies. Applying our results to natural conditions, we suggest the existence of a direct correlation between habitat complexity (i.e. shoot density and degree of patchiness) and filter feeders density. Fragmented and low-density patches seem to offer both greater protection from hydrodynamic forces and higher resource availability. In denser patches, however, resources are allocated mostly within the canopy, which would benefit

  17. Interactions between seagrass complexity, hydrodynamic flow and biomixing alter food availability for associated filter-feeding organisms.

    PubMed

    González-Ortiz, Vanessa; Egea, Luis G; Jiménez-Ramos, Rocio; Moreno-Marín, Francisco; Pérez-Lloréns, José L; Bouma, Tjeed J; Brun, Fernando G

    2014-01-01

    Seagrass shoots interact with hydrodynamic forces and thereby a positively or negatively influence the survival of associated species. The modification of these forces indirectly alters the physical transport and flux of edible particles within seagrass meadows, which will influence the growth and survivorship of associated filter-feeding organisms. The present work contributes to gaining insight into the mechanisms controlling the availability of resources for filter feeders inhabiting seagrass canopies, both from physical (influenced by seagrass density and patchiness) and biological (regulated by filter feeder density) perspectives. A factorial experiment was conducted in a large racetrack flume, which combined changes in hydrodynamic conditions, chlorophyll a concentration in the water and food intake rate (FIR) in a model active filter-feeding organism (the cockle). Results showed that seagrass density and patchiness modified both hydrodynamic forces and availability of resources for filter feeders. Chlorophyll a water content decreased to 50% of the initial value when densities of both seagrass shoots and cockles were high. Also, filter feeder density controlled resource availability within seagrass patches, depending on its spatial position within the racetrack flume. Under high density of filter-feeding organisms, chlorophyll a levels were lower between patches. This suggests that the pumping activity of cockles (i.e. biomixing) is an emergent key factor affecting both resource availability and FIR for filter feeders in dense canopies. Applying our results to natural conditions, we suggest the existence of a direct correlation between habitat complexity (i.e. shoot density and degree of patchiness) and filter feeders density. Fragmented and low-density patches seem to offer both greater protection from hydrodynamic forces and higher resource availability. In denser patches, however, resources are allocated mostly within the canopy, which would benefit

  18. Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent.

    PubMed

    Torrens, Antonina; Molle, Pascal; Boutin, Catherine; Salgot, Miquel

    2009-04-01

    With the aim of improving the quality of the effluent from a waste stabilization pond (WSP) different types of vertical-flow constructed wetlands (VFCWs) and intermittent sand filters (ISFs) were tested at a pilot plant in Aurignac (France). The effectiveness of each design at upgrading the pond effluent was studied over a period of 2 years. Physicochemical parameters were monitored by taking composite samples over 24h and grab samples every week. The hydraulic behaviour of the filters was studied using (NaCl) tracer tests and monitoring the infiltration rate. This paper describes the influence on the performance of the beds of: (a) the characteristics of the medium (type of sand, depth, and presence of Phragmites); (b) feed modes; and (c) the presence of an algae clogging layer. The study demonstrates the viability of VFCWs and ISFs as means of upgrading effluent from WSPs. For hydraulic loads (HL) of up to 80cm/day, both technologies effectively retain algae, complete organic matter degradation, and nitrify the pond effluent. The presence of plants did not significantly affect the performance of the filters although it was important in terms of maintenance. The deeper filters presented better removals for all the parameter tested, due to higher hydraulic detention times (HDTs). The dosing regime and resting period duration all affected the hydraulic performance and purification efficiency of the filters.

  19. Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 1: Theory and application

    NASA Technical Reports Server (NTRS)

    Marshall, F. J.; Deffenbaugh, F. D.

    1974-01-01

    A method is developed to determine the flow field of a body of revolution in separated flow. The technique employed is the use of the computer to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the required two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separation regions and wake vortex patterns are determined.

  20. Vortical flow control on a conical fore body cross section using an array of pulsed dc actuators

    NASA Astrophysics Data System (ADS)

    Singh, Kunwar Pal; Roy, Subrata

    2007-05-01

    Flow control on a conical fore body cross section of an aircraft is studied using plasma discharge by considering the neutral gas flow at 17.5 deg angle of attack. The equations governing the motion of electrons, ions as well as Poisson's equation are solved together with Navier-Stokes and energy equation for neutrals to study flow control. A single barrier discharge actuator is not sufficient to control the flow on the entire length of the fore body. An arrangement of multiple electrodes powered with pulsed dc voltage has been suggested for controlling such flows. The effects of joule heating of plasma, dielectric heating, and electrodynamic force have been investigated, separately and then combined on flow control. It is found that joule heating results in high temperature of the dielectric surface, however; electrodynamic force contributes prominently to flow control. A three-dimensional analysis is necessary to validate results with experiments.

  1. Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 2: Computer program description

    NASA Technical Reports Server (NTRS)

    Marshall, F. J.; Deffenbaugh, F. D.

    1974-01-01

    A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described.

  2. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2005-11-23

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in crossrolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to

  3. Surface-specific flow factors for prediction of friction of cross-hatched surfaces

    NASA Astrophysics Data System (ADS)

    Leighton, M.; Rahmani, R.; Rahnejat, H.

    2016-06-01

    The paper presents a combined numerical and experimental study of generated sliding friction at low sliding speeds and high load intensity, typical of the top compression ring-cylinder liner conjunction at top dead centre in the compression stroke of high performance race engines. Frictional losses in the transition from compression to power stroke represent a significant portion of cyclic cylinder losses. The cylinder liner is cross-hatch honed with non-Gaussian topography, including larger groove features and a fairly smooth plateau roughness. Surface-specific flow factors are derived to closely represent the actual real rough conjunction. The predictions closely agree with the representative reported precision tribometric study of measured friction.

  4. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    PubMed

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-03-24

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m(2)/bar.

  5. Onsager's cross coupling effects in gas flows confined to micro-channels

    NASA Astrophysics Data System (ADS)

    Wang, Ruijie; Xu, Xinpeng; Xu, Kun; Qian, Tiezheng

    2016-08-01

    In rarefied gases, mass and heat transport processes interfere with each other, leading to the mechano-caloric effect and thermo-osmotic effect, which are of interest to both theoretical study and practical applications. We employ the unified gas-kinetic scheme to investigate these cross coupling effects in gas flows in micro-channels. Our numerical simulations cover channels of planar surfaces and also channels of ratchet surfaces, with Onsager's reciprocal relation verified for both cases. For channels of planar surfaces, simulations are performed in a wide range of Knudsen number, and our numerical results show good agreement with the literature results. For channels of ratchet surfaces, simulations are performed for both the slip and transition regimes, and our numerical results not only confirm the theoretical prediction [Phys. Rev. Lett. 107, 164502 (2011), 10.1103/PhysRevLett.107.164502] for the Knudsen number in the slip regime but also show that the off-diagonal kinetic coefficients for cross coupling effects are maximized at a Knudsen number in the transition regime. Finally, a preliminary optimization study is carried out for the geometry of Knudsen pump based on channels of ratchet surfaces.

  6. Free stream turbulence and density ratio effects on the interaction region of a jet in a cross flow

    NASA Technical Reports Server (NTRS)

    Wark, C. E.; Foss, J. F.

    1984-01-01

    Jets of low temperature air are introduced into the aft sections of gas turbine combustors for the purpose of cooling the high temperature gases and quenching the combustion reactions. Research studies, motivated by this complex flow field, have been executed by introducing a heated jet into the cross stream of a wind tunnel. The investigation by Kamotani and Greber stands as a prime example of such investigations and it serves as the principal reference for the present study. The low disturbance level of the cross stream, in their study and in similar research investigations, is compatible with an interest in identifying the basic features of this flow field. The influence of the prototypes' strongly disturbed cross flow is not, however, made apparent in these prior investigations.

  7. Filter desulfation system and method

    DOEpatents

    Lowe, Michael D.; Robel, Wade J.; Verkiel, Maarten; Driscoll, James J.

    2010-08-10

    A method of removing sulfur from a filter system of an engine includes continuously passing an exhaust flow through a desulfation leg of the filter system during desulfation. The method also includes sensing at least one characteristic of the exhaust flow and modifying a flow rate of the exhaust flow during desulfation in response to the sensing.

  8. Optimization of an inclined elliptic impinging jet with cross flow for enhancing heat transfer

    NASA Astrophysics Data System (ADS)

    Heo, Man-Woong; Lee, Ki-Don; Kim, Kwang-Yong

    2011-06-01

    This work presents a parametric study and optimization of a single impinging jet with cross flow to enhance heat transfer with two design variables. The fluid flow and heat transfer have been analyzed using three-dimensional compressible Reynolds-averaged Navier-Stokes equations with a uniform heat flux condition being applied to the impingement plate. The aspect ratio of the elliptic jet hole and the angle of inclination of the jet nozzle are chosen as the two design variables, and the area-averaged Nusselt number on a limited target plate is set as the objective function. The effects of the design variables on the heat transfer performance have been evaluated, and the objective function has been found to be more sensitive to the angle of inclination of the jet nozzle than to the aspect ratio of the elliptic jet hole. The optimization has been performed by using the radial basis neural network model. Through the optimization, the area-averaged Nusselt number increased by 7.89% compared to that under the reference geometry.

  9. Cross-streamline migration of a semiflexible polymer in a pressure driven flow.

    PubMed

    Reddig, S; Stark, H

    2011-10-28

    Experiments and simulations on single α-actin filaments in the Poiseuille flow through a microchannel show that the center-of-mass probability density across the channel assumes a bimodal shape as a result of pronounced cross-streamline migration. We reexamine the problem and perform Brownian dynamics simulations for a bead-spring chain with bending elasticity. Hydrodynamic interactions between the pointlike beads are taken into account by the two-wall Green tensor of the Stokes equations. Our simulations reproduce the bimodal distribution only when hydrodynamic interactions are taken into account. Numerical results on the orientational order of the end-to-end vector of the model polymer are also presented together with analytical hard-needle expressions at zero flow velocity. We derive a Smoluchowski equation for the center-of-mass distribution and carefully analyze the different contributions to the probability current that causes the bimodal distribution. As for flexible polymers, hydrodynamic repulsion explains the depletion at the wall. However, in contrast to flexible polymers, the deterministic drift current mainly determines migration away from the centerline and thereby depletion at the center. Diffusional currents due to a position-dependent diffusivity become less important with increasing polymer stiffness.

  10. Eulerian models for particle trajectory crossing in turbulent flows over a large range of Stokes numbers

    NASA Astrophysics Data System (ADS)

    Fox, Rodney O.; Vie, Aymeric; Laurent, Frederique; Chalons, Christophe; Massot, Marc

    2012-11-01

    Numerous applications involve a disperse phase carried by a gaseous flow. To simulate such flows, one can resort to a number density function (NDF) governed a kinetic equation. Traditionally, Lagrangian Monte-Carlo methods are used to solve for the NDF, but are expensive as the number of numerical particles needed must be large to control statistical errors. Moreover, such methods are not well adapted to high-performance computing because of the intrinsic inhomogeneity of the NDF. To overcome these issues, Eulerian methods can be used to solve for the moments of the NDF resulting in an unclosed Eulerian system of hyperbolic conservation laws. To obtain closure, in this work a multivariate bi-Gaussian quadrature is used, which can account for particle trajectory crossing (PTC) over a large range of Stokes numbers. This closure uses up to four quadrature points in 2-D velocity phase space to capture large-scale PTC, and an anisotropic Gaussian distribution around each quadrature point to model small-scale PTC. Simulations of 2-D particle-laden isotropic turbulence at different Stokes numbers are employed to validate the Eulerian models against results from the Lagrangian approach. Good agreement is found for the number density fields over the entire range of Stokes numbers tested. Research carried out at the Center for Turbulence Research 2012 Summer Program.

  11. Relating surface pressure to Lagrangian wake topology around a circular cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Rockwood, Matthew; Green, Melissa

    2016-11-01

    The tracks of Lagrangian saddles, identified as non-parallel intersections of positive and negative-time finite-time Lyapunov exponent (FTLE) ridges, have been shown to indicate the timing of von Karman vortex shedding in the wake of bluff bodies. The saddles are difficult to track in real-time, however, since future flow field data is needed for the computation of the FTLE fields. In order to detect the topological changes without direct access to the FTLE, the saddle dynamics are correlated to measurable surface quantities on a circular cylinder in cross flow. The Lagrangian saddle found upstream of a forming and subsequently shedding vortex has been shown to accelerate away from the cylinder surface as the vortex sheds. In previous numerical results at Re = 150 , this acceleration coincides with the peak in lift force over the cylinder, and also with a minimum in the static pressure at a location slightly upstream of the mean separation location. In the current work, this result is compared with experimental data at Re = O (10 , 000) . Successful validation would provide a strategy for locating sensitive regions on the cylinder surface where vortex shedding could be detected using simple pressure transducers. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.

  12. Effect of gas-liquid flow pattern and microbial diversity analysis of a pilot-scale biotrickling filter for anoxic biogas desulfurization.

    PubMed

    Almenglo, Fernando; Bezerra, Tercia; Lafuente, Javier; Gabriel, David; Ramírez, Martín; Cantero, Domingo

    2016-08-01

    Hydrogen sulfide removal from biogas was studied under anoxic conditions in a pilot-scale biotrickling filter operated under counter- and co-current gas-liquid flow patterns. The best performance was found under counter-current conditions (maximum elimination capacity of 140 gS m(-3) h(-1)). Nevertheless, switching conditions between co- and counter-current flow lead to a favorable redistribution of biomass and elemental sulfur along the bed height. Moreover, elemental sulfur was oxidized to sulfate when the feeding biogas was disconnected and the supply of nitrate (electron acceptor) was maintained. Removal of elemental sulfur was important to prevent clogging in the packed bed and, thereby, to increase the lifespan of the packed bed between maintenance episodes. The larger elemental sulfur removal rate during shutdowns was 59.1 gS m(-3) h(-1). Tag-encoded FLX amplicon pyrosequencing was used to study the diversity of bacteria under co-current flow pattern with liquid recirculation and counter-current mode with a single-pass flow of the liquid phase. The main desulfurizing bacteria were Sedimenticola while significant role of heterotrophic, opportunistic species was envisaged. Remarkable differences between communities were found when a single-pass flow of industrial water was fed to the biotrickling filter.

  13. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-05-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) prescribe extrusion consolidation methodologies via detailed

  14. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-03-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) prescribe extrusion consolidation methodologies via detailed

  15. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-08-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  16. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-11-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  17. International journal of computational fluid dynamics real-time prediction of unsteady flow based on POD reduced-order model and particle filter

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ryota; Misaka, Takashi; Obayashi, Shigeru

    2016-04-01

    An integrated method consisting of a proper orthogonal decomposition (POD)-based reduced-order model (ROM) and a particle filter (PF) is proposed for real-time prediction of an unsteady flow field. The proposed method is validated using identical twin experiments of an unsteady flow field around a circular cylinder for Reynolds numbers of 100 and 1000. In this study, a PF is employed (ROM-PF) to modify the temporal coefficient of the ROM based on observation data because the prediction capability of the ROM alone is limited due to the stability issue. The proposed method reproduces the unsteady flow field several orders faster than a reference numerical simulation based on Navier-Stokes equations. Furthermore, the effects of parameters, related to observation and simulation, on the prediction accuracy are studied. Most of the energy modes of the unsteady flow field are captured, and it is possible to stably predict the long-term evolution with ROM-PF.

  18. Experimental demonstration of a DSP-based cross-channel interference cancellation technique for application in digital filter multiple access PONs.

    PubMed

    Al-Rawachy, E; Giddings, R P; Tang, J M

    2017-02-20

    A DSP-based cross-channel interference cancellation (CCIC) technique with initial condition-free, fast convergence and signal modulation format independence, is experimentally demonstrated in a two-channel point-to-point digital filter multiple access (DFMA) PON system based on intensity-modulation and direct-detection (IMDD). The CCIC-induced transmission performance improvements under various system conditions are fully investigated for the first time. It is shown that with one iteration only the CCIC technique can achieve a reduction in individual OFDM subcarrier BERs of more than 1000 times, an increase in transmission capacity by as much as 19 times and an increase in optical power budget by as much as 3.5dB. The CCIC technique thus has the potential to drastically improve the transmission performance of DFMA PONs.

  19. Exploring the velocity distribution of debris flows: An iteration algorithm based approach for complex cross-sections

    NASA Astrophysics Data System (ADS)

    Han, Zheng; Chen, Guangqi; Li, Yange; Wang, Wei; Zhang, Hong

    2015-07-01

    The estimation of debris-flow velocity in a cross-section is of primary importance due to its correlation to impact force, run up and superelevation. However, previous methods sometimes neglect the observed asymmetric velocity distribution, and consequently underestimate the debris-flow velocity. This paper presents a new approach for exploring the debris-flow velocity distribution in a cross-section. The presented approach uses an iteration algorithm based on the Riemann integral method to search an approximate solution to the unknown flow surface. The established laws for vertical velocity profile are compared and subsequently integrated to analyze the velocity distribution in the cross-section. The major benefit of the presented approach is that natural channels typically with irregular beds and superelevations can be taken into account, and the resulting approximation by the approach well replicates the direct integral solution. The approach is programmed in MATLAB environment, and the code is open to the public. A well-documented debris-flow event in Sichuan Province, China, is used to demonstrate the presented approach. Results show that the solutions of the flow surface and the mean velocity well reproduce the investigated results. Discussion regarding the model sensitivity and the source of errors concludes the paper.

  20. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes for Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2006-04-10

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (2) evaluated at ''in-service'' loads at service temperatures and environments. This research program is being conducted in collaboration with the DOE's Oak Ridge National Laboratory and the vested

  1. Summary of Flow Loss between Selected Cross Sections on the Rio Grande in and near Albuquerque, New Mexico

    USGS Publications Warehouse

    Veenhuis, Jack E.

    2002-01-01

    The upper middle Rio Grande Basin, as defined by the U.S. Army Corps of Engineers, extends from the headwaters of the Rio Grande in southwestern Colorado to Fort Quitman, Texas. Most of the basin has a semiarid climate typical of the southwestern United States. This climate drives a highly variable streamflow regime that contributes to the complexity of water management in the basin. Currently, rapid population growth in the basin has resulted in increasing demands on the hydrologic system. Water management decisions have become increasingly complex because of the broad range of interests and issues. For these reasons, the U.S. Geological Survey, in cooperation with the City of Albuquerque, New Mexico, conducted paired flow measurements at two cross sections to determine cross-sectional loss in the Albuquerque reach of the Rio Grande. This report statistically summarizes flow losses in the Albuquerque reach of the Rio Grande during the winter nonirrigation season from December 1996 to February 2000. The two previous flow-loss investigations are statistically summarized. Daily mean flow losses are calculated for the winter nonirrigation season using daily mean flows at three selected Rio Grande streamflow-gaging stations.For the winter nonirrigation season cross-sectional measurements (1996-2000), an average of 210 cubic feet per second was returned to the river between the measurement sites, of which 165 cubic feet per second was intercepted by riverside drains along the 21.9-mile reach from the Rio Grande near Bernalillo to the Rio Grande at Rio Bravo Bridge streamflow-gaging stations. Total cross-sectional losses in this reach averaged about 90 cubic feet per second. Regression equations were determined for estimating downstream total outflow from upstream total inflow for all three paired measurement studies. Regression equations relating the three daily mean flow recording stations also were determined. In each succeeding study, additional outside variables

  2. A study of K variability and its effect on solute transport in subsurface-flow sand filters by measurement and modelling.

    PubMed

    Kløve, Bjørn; Xu, Shulan; Lindahl, Anna; Wörman, Anders; Søvik, Anne-Kristine

    2005-01-01

    Hydraulics of subsurface flow filters (SSF) was studied by measurement of soil hydraulic conductivity (K) variation and performing tracer tests in two SSF filters consisting of 1-4 mm Ca rich sand (shell sand). Soil samples were carefully taken at several locations in Filter I. A tracer experiment was conducted in the undisturbed Filter II using KI. The measured K variability in Filer I was used to analyze the variations in tracer breakthrough. The spatially distribution of K was obtained by fitting a variogram to observed data and interpolation using Kriging. The tracer residence probability density function (PDF) was determined by modelling the tracer movement with a 3-D groundwater model. The observed and simulated tracer arrival was compared for cases with constant K, constant K and dispersion (D), and for spatially variable K and dispersion. The results show that groundwater models were well suited to simulate solute movement in the SSF system studied. An almost perfect fit to observed tracer PDF was obtained when variable K and dispersion was included in the model. This indicates that information on K variability and dispersion is important for studying solute movement in SSF constructed wetlands.

  3. Water Filter

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compact, lightweight electrolytic water sterilizer available through Ambassador Marketing, generates silver ions in concentrations of 50 to 100 parts per billion in water flow system. The silver ions serve as an effective bactericide/deodorizer. Tap water passes through filtering element of silver that has been chemically plated onto activated carbon. The silver inhibits bacterial growth and the activated carbon removes objectionable tastes and odors caused by addition of chlorine and other chemicals in municipal water supply. The three models available are a kitchen unit, a "Tourister" unit for portable use while traveling and a refrigerator unit that attaches to the ice cube water line. A filter will treat 5,000 to 10,000 gallons of water.

  4. Evaluation of the discrete vortex wake cross flow model using vector computers. Part 2: User's manual for DIVORCE

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, F. D.; Vitz, J. F.

    1979-01-01

    The users manual for the Discrete Vortex Cross flow Evaluator (DIVORCE) computer program is presented. DIVORCE was developed in FORTRAN 4 for the DCD 6600 and CDC 7600 machines. Optimal calls to a NASA vector subroutine package are provided for use with the CDC 7600.

  5. Experimental Study of an Inclined Jet-In-Cross-Flow Interacting with a Vortex Generator

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Rigby, D. L.; Heidmann, J. D.

    2010-01-01

    An experiment is conducted on the effectiveness of a vortex generator (VG) in preventing lift-off of a jet-in-cross-flow (JICF), with film-cooling application in mind. The jet issues into the boundary layer at an angle of 20 to the free-stream. The effect of a triangular ramp-shaped VG is studied while varying its geometry and location. Detailed flow-field properties are documented for a specific case in which the height of the VG and the diameter of the orifice are comparable to the approach boundary layer thickness. This combination of VG and JICF produce a streamwise vortex pair with vorticity magnitude three times larger (and of opposite sense) than that found in the JICF alone. Such a VG appears to be most effective in keeping the jet attached to the wall. While most of the data are taken at a jet-to-freestream momentum flux ratio (J) of 2, limited surveys are done for varying J. The VG is found to have a significant effect even at the highest J (=11) covered in the experiment. Effect of parametric variation is studied mostly from surveys ten diameters downstream from the orifice. When the VG height is halved there is a lift-off of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensities. Varying the location of the VG, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the VG with increasing radius of curvature progressively diminishes the effect. However, a small radius of curvature may be quite tolerable in practice.

  6. Advanced development of the nested fiber filter

    SciTech Connect

    Litt, R.D.; Glover, R.C.; Raghavan, J.K.

    1993-05-01

    Battelle and DOE have been developing the Nested Fiber Filter for high-temperature, high-pressure particulate control as applied to advanced coal-fired power systems. The current program represents a focused effort to develop cleaning techniques for the NFF at pilot plant scale. The filter consists of a 10-inch deep nest of stainless steel fibers collecting particles as dendrites on individual fibers. Tests with a 6-sq ft Nested Fiber Filter (NFF) have demonstrated greater than 99% particulate capture over a limited number of operating hours. Design, development, and testing a 6-sq ft module proceeded in three sequential stages. The NFF test module was integrated with a fluidized bed combustor to provide a realistic particulate laden gas to the NFF. Initial problems with gas and particulate bypassing plus ineffective cleaning by acoustic drivers led to a series of tests on a 1.5 sq ft section of the NFF. The fiber bed was slightly compressed to further prevent voids forming at the side walls during the vibration cleaning cycle. A mechanical vibrator was coupled with the pulse combustor to effectively clean/regenerate the NFF over a limited number of cycles. Testing resumed with the 6-sq ft test module and the above modifications. Two tests totaling 15 hours of operation and 14 repetitive cycles are summarized here and demonstrated the NFF performance. The preliminary engineering and economic evaluation showed the NFF to be cost-competitive with the ceramic cross-flow filter and the granular bed filter. Capital cost for a NFF on a 330 MW PFBC is estimated to be $42.9 million or $130/kW. The total plant cost for a PFBC system including the NFF is estimated to be $1,274/kW. This compares to $1,261/kW for a PFBC plus ceramic cross-flow filter or $1,351/kW for a PFBC plus granular bed filter.

  7. Quantitative fuel vapor/air mixing imaging in droplet/gas regions of an evaporating spray flow using filtered Rayleigh scattering.

    PubMed

    Allison, Patton M; McManus, Thomas A; Sutton, Jeffrey A

    2016-03-15

    This Letter demonstrates the application of filtered Rayleigh scattering (FRS) for quantitative two-dimensional fuel vapor/air mixing measurements in an evaporating hydrocarbon fuel spray flow. Using the FRS approach, gas-phase measurements are made in the presence of liquid-phase droplets without interference. Effective suppression of the liquid-phase droplet scattering using FRS is enabled by the high spectral purity of the current Nd:YAG laser system. Simultaneous Mie-scattering imaging is used to visualize the droplet field and illustrate the droplet loading under which the FRS imaging is applied in the current spray flows. The initial quantification of the FRS imaging is based on calibration measurements from a flow cell of known fuel vapor/air mixtures, while future work targets the utilization of a Rayleigh-Brillouin spectral model for quantification of the FRS signals.

  8. Method of measuring cross-flow vortices by use of an array of hot-film sensors

    NASA Technical Reports Server (NTRS)

    Agarwal, Aval K. (Inventor); Maddalon, Dal V. (Inventor); Mangalam, Siva M. (Inventor)

    1993-01-01

    The invention is a method for measuring the wavelength of cross-flow vortices of air flow having streamlines of flow traveling across a swept airfoil. The method comprises providing a plurality of hot-film sensors. Each hot-film sensor provides a signal which can be processed, and each hot-film sensor is spaced in a straight-line array such that the distance between successive hot-film sensors is less than the wavelength of the cross-flow vortices being measured. The method further comprises determining the direction of travel of the streamlines across the airfoil and positioning the straight-line array of hot film sensors perpendicular to the direction of travel of the streamlines, such that each sensor has a spanwise location. The method further comprises processing the signals provided by the sensors to provide root-mean-square values for each signal, plotting each root-mean-square value as a function of its spanwise location, and determining the wavelength of the cross-flow vortices by noting the distance between two maxima or two minima of root-mean-square values.

  9. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment.

    PubMed

    Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan

    2013-06-01

    Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased.

  10. Carotenoids concentration of Gac (Momordica cochinchinensis Spreng.) fruit oil using cross-flow filtration technology.

    PubMed

    Mai, Huỳnh Cang; Truong, Vinh; Debaste, Frédéric

    2014-11-01

    Gac (Momordica cochinchinensis Spreng.) fruit, a traditional fruit in Vietnam and other countries of eastern Asia, contains an oil rich in carotenoids, especially lycopene and β-carotene. Carotenoids in gac fruit oil were concentrated using cross-flow filtration. In total recycle mode, effect of membrane pore size, temperature, and transmembrane pressure (TMP) on permeate flux and on retention coefficients has been exploited. Resistance of membrane, polarization concentration, and fouling were also analyzed. Optimum conditions for a high permeate flux and a good carotenoids retention are 5 nm, 2 bars, and 40 °C of membrane pore size, TMP, and temperature, respectively. In batch mode, retentate was analyzed through index of acid, phospholipids, total carotenoids content (TCC), total antioxidant activity, total soluble solids, total solid content, color measurement, and viscosity. TCC in retentate is higher 8.6 times than that in feeding oil. Lipophilic antioxidant activities increase 6.8 times, while hydrophilic antioxidant activities reduce 40%. The major part of total resistance is due to polarization (55%) while fouling and intrinsic membrane contribute about 30% and 24%, respectively.

  11. Optimization of circular plate separators with cross flow for removal of oil droplets and solid particles.

    PubMed

    Ngu, Hei; Wong, Kien Kuok; Law, Puong Ling

    2012-04-01

    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.

  12. Removal of phenol from coke-oven wastewater by cross-flow nanofiltration membranes.

    PubMed

    Kumar, Ramesh; Pal, Parimal

    2013-05-01

    This study investigated the phenol rejection characteristics of some nanofiltration membranes during treatment of coke wastewater. Four different types of composite polyamide commercial nanofiltration membranes (Sepro, USA) were tested under different operating conditions including transmembrane pressure, pH and recovery rate. When pressure was increased from 4 to 16 bars, the percentage of rejection of phenol in the permeate increased from 72.5% to 97.7% while yielding a high flux of 118 litres per square meter per hour(LMH) at a volumetric cross flow rate of 800 litres per hour at pH 10 (in recirculation mode) in case of NF1 membrane. The effect of recovery rate on the rejection coefficient of phenol and flux was also studied in concentrated mode and found that a recovery rate of up 55% nanofiltration was successfully operated without much decline of flux and rejection coefficient. Finally, nanofiltration had great efficiency in phenol removal from industrial wastewater and was considered suitable regarding its operation.

  13. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    SciTech Connect

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  14. Inexpensive cross-flow hydropower turbine at Arbuckle Mountain Hydroelectric Project

    SciTech Connect

    Not Available

    1991-07-01

    This report documents the first three and half years of operation and maintenance on the Arbuckle Mountain Hydroelectric Project. Located on a flashy mountain stream in northern California, the project was designed, built and tested through a Cooperative Agreement between the US DOE and OTT Engineering, Inc. (OTT). The purpose of the Agreement is to build and intensively test an inexpensive American-made cross-flow turbine and to provide information to the DOE on the cost, efficiency, operation, and maintenance of the unit. It requires that OTT document for DOE a summary of the complete operating statistics, operation and maintenance cost, and revenues from power sales for a two-year operating period. Several unique events occurred between the initial start-up (December 1986) and the beginning of the 1989 generation season (October 1988) that delayed the first year's full operation and provided unique information for a demonstration project of this type. Accordingly, this report will discuss certain major problems experienced with the design, operation and maintenance, and energy production, as well as the operation and maintenance costs and value of the power produced for the first three and half years of operation. 9 figs., 2 tabs.

  15. Performance of a cross-flow humidifier with a high flux water vapor transport membrane

    NASA Astrophysics Data System (ADS)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-01

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  16. Effect of Wall Suction on Cross-Flow Absolute Instability of a Rotating Disk Boundary Layer

    NASA Astrophysics Data System (ADS)

    Ho, Joanna; Corke, Thomas; Matlis, Eric

    2014-11-01

    The effect of uniform suction on the absolute instability of Type I cross-flow modes on a rotating disk is examined. Specifically it investigates if wall suction transforms the absolute instability into a global mode as postulated in the numerical simulations of Davies and Carpenter (2003). The experiment is designed so that a suction parameter of a =W0 /(νω) 1 / 2 = 0 . 2 locates the absolute instability critical Reynolds number, Rca = 650 , on the disk. Uniform wall suction is applied from R = 317 to 696. The design for wall suction follows that of Gregory and Walker (1950), where an array of holes through the disk communicate between the measurement side of the disk and the underside of the disk in an enclosure that is maintained at a slight vacuum. The measurement surface is covered by a 20 micron pore size Polyethylene sheet. Temporal disturbances are introduced using the method of Othman and Corke (2006), and the evolution of the resulting wave packets are documented. The present results indicate a rapid transition to turbulence near Rca.

  17. Numerical analysis of sheet cavitation on marine propellers, considering the effect of cross flow

    NASA Astrophysics Data System (ADS)

    Yari, Ehsan; Ghassemi, Hassan

    2013-12-01

    The research performed in this paper was carried out to investigate the numerical analysis of the sheet cavitation on marine propeller. The method is boundary element method (BEM). Using the Green's theorem, the velocity potential is expressed as an integral equation on the surface of the propeller by hyperboloid-shaped elements. Employing the boundary conditions, the potential is determined via solving the resulting system of equations. For the case study, a DTMB4119 propeller is analyzed with and without cavitating conditions. The pressure distribution and hydrodynamic performance curves of the propellers as well as cavity thickness obtained by numerical method are calculated and compared by the experimental results. Specifically in this article cavitation changes are investigate in both the radial and chord direction. Thus, cross flow variation has been studied in the formation and growth of sheet cavitation. According to the data obtained it can be seen that there is a better agreement and less error between the numerical results gained from the present method and Fluent results than Hong Sun method. This confirms the accurate estimation of the detachment point and the cavity change in radial direction.

  18. Growth and densification of frost around a circular cylinder under humid air on cross flow

    NASA Astrophysics Data System (ADS)

    Madrid, Victor; Sanchez, Fausto; Martinez, Simon; Morales, Arturo

    2015-03-01

    Formation, growth and densification of frost around a circular cylinder under humid air on cross flow at different Reynolds numbers has been numerically studied using the finite volume method. The frost formation phenomenon takes place when humidity goes through a desublimation phase change at a temperature lower than its solidification point. Continuity, momentum, energy and mass transport equations have been solved for a whole domain including both phases, gas and solid, and the two components in the gas phase, i.e. dry air and humidity. The mass of water that goes from the gas to the solid phase is used as a source term in the mass conservation equation for solid phase and as a sink for the gas phase, affecting source terms in all the other conservation equations (energy and momentum) also. A volume of fraction conservation equation for solid phase is used to obtain local fractions of ice droplets, considering formally as frost those fraction values greater than a critical value. Once those local fractions are known, local frost properties such as density and thermal conductivity can be calculated as functions of the phase fraction allowing to compute the evolution of growth and local properties of frost. Authors aknowledge financial support from CONACYT through Project 221993.

  19. The effect of blade pitch in the rotor hydrodynamics of a cross-flow turbine

    NASA Astrophysics Data System (ADS)

    Somoano, Miguel; Huera-Huarte, Francisco

    2016-11-01

    In this work we will show how the hydrodynamics of the rotor of a straight-bladed Cross-Flow Turbine (CFT) are affected by the Tip Speed Ratio (TSR), and the blade pitch angle imposed to the rotor. The CFT model used in experiments consists of a three-bladed (NACA-0015) vertical axis turbine with a chord (c) to rotor diameter (D) ratio of 0.16. Planar Digital Particle Image Velocimetry (DPIV) was used, with the laser sheet aiming at the mid-span of the blades, illuminating the inner part of the rotor and the near wake of the turbine. Tests were made by forcing the rotation of the turbine with a DC motor, which provided precise control of the TSR, while being towed in a still-water tank at a constant Reynolds number of 61000. A range of TSRs from 0.7 to 2.3 were covered for different blade pitches, ranging from 8° toe-in to 16° toe-out. The interaction between the blades in the rotor will be discussed by examining dimensionless phase-averaged vorticity fields in the inner part of the rotor and mean velocity fields in the near wake of the turbine. Supported by the Spanish Ministry of Economy and Competitiveness, Grant BES-2013-065366 and project DPI2015-71645-P.

  20. Cross-flow microfiltration for lab-on-chip defatting of human breast milk

    NASA Astrophysics Data System (ADS)

    Lai, Meifang; Lai, Ching Tat; Keating, Adrian; Dell, John; Liu, Yinong

    2008-12-01

    Determining the lactose concentration in human breast milk (HBM) via standard assay techniques requires fat removal from the milk (defatting), followed by lactose detection in the remaining skim milk. This work focuses on methods of defatting which can be subsequently integrated in the same Lab-on-Chip (LOC) as the lactose measurement. One method under study for defatting HBM is the use of a cross-flow microfiltration structure. This kind of microfiltration prevents clogging and separates the large fat globules from the smaller nutrition constituents of milk, of which lactose is amongst the smallest. To test if large fat globules may clog the channel or not, the biocompatibility of PMMA and HBM was studied. The weight of absorbed fat on the surface of PMMA was found to be 3-orders of magnitude lower than that of the total fat in HBM. Photolithgraphy using SU-8 was applied for mold fabrication; however, hot-embossing using SU-8 mold has not been successful due to the high stress resulting in the demolding process. To improve mold strength, nickel molds were fabricated by electroplating using different current densities. As expected, the deposition rates were found to have a linear relationship with applied current density, while the smaller features have a higher deposition rate than larger features.

  1. Innovative cross-flow membrane system for volume reduction of mixed waste

    SciTech Connect

    Greene, W.

    1997-10-01

    In this task, SpinTek Membrane Systems, Inc., and the Institute of Gas Technology are completing engineering development leading to a full-scale demonstration of the SpinTek ST-II High Shear Rotary Membrane Filtration System (ST-II) under a Program Research and Development Agreement (PRDA) with the Federal Energy Technology Center-Morgantown. The SpinTek ST-II technology will be scaled-up, and a two-stage ST-II system will be designed, constructed, and operated on both surrogate and actual feed at the Los Alamos National Laboratory (LANL) Liquid Radioactive Waste Treatment Facility (LRWTF). Results from these studies on both surrogate and actual wastewater streams will also be used by LANL personnel to produce a model for determining the applicability and economics of the SpinTek ST-II system to other DOE waste and process streams. The ST-II is a unique, compact cross-flow membrane system having several advantages in performance and cost compared to currently available systems. Staff at LANL have performed pilot-scale testing with the SpinTek technology to evaluate its feasibility for enhanced radionuclide removal from wastewater at its 5- to 8-million-gallon-per-year LRWTF. Recent data have shown the system`s capabilities to remove radionuclides from the waste stream at concentration factors greater than 2000:1, and performance has exceeded both conventional and all other advanced technologies examined.

  2. Remotely serviced filter and housing

    DOEpatents

    Ross, Maurice J.; Zaladonis, Larry A.

    1988-09-27

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

  3. Wavelength-preserving polarization-insensitive all-optical 3R regenerator based on self- and cross-phase modulation and offset filtering utilizing Raman amplification

    NASA Astrophysics Data System (ADS)

    Chung, Sung Han

    Optical regeneration has the potential to significantly increase the reach of long-haul transmission systems. In this thesis, wavelength-preserving polarization-insensitive all-optical 3R regeneration is investigated and demonstrated for 10 and 40 Gb/s signals. The all-optical regenerator utilizes a self-pulsating laser for clock recovery, cross-phase modulation (XPM) based spectral broadening in a highly nonlinear fiber (HNLF) and offset filtering for retiming, and self-phase modulation based spectral broadening in a HNLF and offset filtering for reshaping. Raman amplification is used to increase the XPM-based spectral broadening and thus allow a design that meets the tradeoffs involved in simultaneously achieving good retiming and reshaping performance. The regenerator is shown to reduce amplitude noise and timing jitter while not causing a BER penalty. To fully validate the regeneration scheme, the cascadability is demonstrated using a recirculating loop. For a 10 Gb/s signal, with a regenerator spacing of 240 km, a return-to-zero, on-off-keyed (RZ-OOK) signal was transmitted over 18,000 km (75 loops) with a power penalty of 1.6 dB at a BER of 10 -9 compared to the back-to-back case. For a 40 Gb/s signal, with a regenerator spacing of 80 km, a RZ-OOK signal was transmitted over 8,000 km (100 loops) with a power penalty of 1.2 dB. In addition, all-optical 3R regeneration is demonstrated using a multimode quantum-dot Fabry Perot laser with ultra-low timing jitter.

  4. Numerical heat and mass transfer analysis of a cross-flow indirect evaporative cooler with plates and flat tubes

    NASA Astrophysics Data System (ADS)

    Chua, K. J.; Xu, J.; Cui, X.; Ng, K. C.; Islam, M. R.

    2016-09-01

    In this study the performance of an indirect evaporative cooling system (IECS) of cross-flow configuration is numerically investigated. Considering the variation of water film temperature along the flowing path and the wettability of the wet channel, a two-dimensional theoretical model is developed to comprehensively describe the heat and mass transfer process involved in the system. After comparing the simulation results with available experimental data from literature, the deviation within ±5 % proves the accuracy and reliability of the proposed mathematical model. The simulation results of the plate type IECS indicate that the important parameters, such as dimension of plates, air properties, and surface wettability play a great effect on the cooling performance. The investigation of flow pattern shows that cross-flow configuration of primary air with counter-flow of secondary air and water film has a better cooling performance than that of the parallel-flow pattern. Furthermore, the performance of a novel flat tube working as the separating medium is numerically investigated. Simulation results for this novel geometry indicate that the tube number, tube long axis and short axis length as well as tube length remarkably affect its cooling performance.

  5. Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter.

    PubMed

    Jin, Yaomin; Veiga, María C; Kennes, Christian

    2005-11-20

    In this study, the effects of pH, CO(2), and flow pattern on the performance of a biotrickling filter (BTF) packed with plastic Pall rings and treating a H(2)S-polluted waste gas were investigated to establish the optimum operating conditions and design criteria. The CO(2) concentration had no effect on the biodegradation at H(2)S concentrations below 50 ppm. In the range of 50-127 ppm H(2)S, CO(2) concentrations between 865 and 1,087 ppm enhanced H(2)S removal, while higher concentrations of 1,309-4,009 ppm CO(2) slightly inhibited H(2)S removal. The co-current flow BTF presented the advantage of a more uniform H(2)S removal and biomass growth in each section than the counter-current flow BTF. Examination of the pH-effect in the range of pH 2.00-7.00 revealed optimal activity for autotrophs at pH 6.00. Under optimal conditions, the elimination capacity reached 31.12 g H(2)S/m(3)/h with a removal efficiency exceeding 97%. In the present research, autotrophic biomass was developed in the BTF, performing both a partial oxidization of H(2)S to elemental sulfur and a complete oxidization to sulfate, which is favorable from an environmental point of view. Results showed that around 60% of the sulfide concentration fed to the reactor was transformed into sulfate. Such autotrophic trickling filters may present other advantages, including the fact that they do not release any CO(2) to the atmosphere. Besides, the limited growth of autotrophs avoids potential clogging problems. Experimental performance data were compared with data from a mathematical model. Comparisons showed that the theoretical model was successful in predicting the performance of the biotrickling filter.

  6. Enumeration, characterization, and collection of intact circulating tumor cells by cross contamination-free flow cytometry.

    PubMed

    Takao, Masashi; Takeda, Kazuo

    2011-02-01

    Circulating tumor cells (CTC) are an important biomarker for several solid cancers. Most of the commercially available systems for enumeration of CTC are based on immunomagnetic enrichment of epithelial cell adhesion molecule (EpCAM/CD326)-expressing CTC before microscopic cell imaging or reverse-transcription PCR (RT-PCR). The aim of this study was to establish a practical method for enumeration of CTC using a novel flow cytometer that has a disposable microfluidic chip, which is designed to realize absolute cross contamination-free measurements and to collect the analyzed cell sample. Although the process of enumeration and labeling of CTC was optimized for this device, the simplified protocol described here could be applied to other flow cytometers. Cultured cancer cells spiked into normal blood were enriched using MACS® EpCAM-MicroBeads following cell labeling with an allophycocyanin (APC)-conjugated EpCAM mAb, instead of by intracellular staining of cytokeratins (CK). The EpCAM double-positive selection/labeling method allows enumeration of intact CTC, maintenance of cellular integrity, and the concomitant performance of a CTC viability test. The combination of the fine-tuned CTC enrichment process and the cytometric multicolor analysis resulted in a linear relationship between the output cell count and the input cell number from zero to hundreds of cells. In particular, a satisfactory signal/noise ratio was obtained by gate-exclusion of leukocyte signals using an anti-CD45 mAb. The entire process had little influence on the viability of the spiked lung cancer cell PC-9. Measured PC-9 and breast cancer MCF-7 cells bearing EpCAM-MicroBeads, APC-conjugated EpCAM mAb, and the DNA staining dye SYTO9 grew normally, demonstrating the potential usefulness of the collected samples for further studies. This intact CTC enumeration and analysis procedure (iCeap) would be of great benefit to clinicians by providing them with rapid stratification of antitumor therapy, and

  7. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  8. A noninvasive technique for the evaluation of diversion cross flow at the inlet of a simulated fuel rod bundle

    SciTech Connect

    Sedaghat, A.; Castellana, F.S.; Hsu, R.H.; Macduff, R.B.

    1988-03-01

    Diversion cross flow was characterized from a two-subchannel simulation of a nuclear fuel assembly using a gamma camera. The gamma camera alllowed external monitoring over the length of the test assembly, thereby eliminating experimental problems associated with flow partitioning and an isokinetic withdrawal system, allowing the possibility of noninvasive measurement. The experiment was performed by providing fixed but different flow rates to each subchannel. The higher mass flow rate stream was traced with a gamma-emitting radionuclide, /sup 99m/Tc pertechnetate. Activity in each subchannel was measured by the camera. Diversion length was found to be relatively small and strongly dependent on gap spacing. Effective lateral velocity through the gap was also evaluated. With some exceptions, the results were in good agreement with the predictions of the subchannel analysis computer code COBRA IIIC. At a high inlet axial mass velocity ratio of 4, however, the agreement with the prediction was poor.

  9. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine

    PubMed Central

    Wosnik, Martin; Gunawan, Budi; Neary, Vincent S.

    2016-01-01

    The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy’s Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor’s angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor’s NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case—a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding—responsible for mean vertical advection—and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available. PMID:27684076

  10. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine.

    PubMed

    Bachant, Peter; Wosnik, Martin; Gunawan, Budi; Neary, Vincent S

    The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy's Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor's angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor's NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case-a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding-responsible for mean vertical advection-and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available.

  11. Standardizing admission and discharge processes to improve patient flow: A cross sectional study

    PubMed Central

    2012-01-01

    Background The aim of this study was to evaluate how hospital capacity was managed focusing on standardizing the admission and discharge processes. Methods This study was set in a 900-bed university affiliated hospital of the National Health Service, near Barcelona (Spain). This is a cross-sectional study of a set of interventions which were gradually implemented between April and December 2008. Mainly, they were focused on standardizing the admission and discharge processes to improve patient flow. Primary administrative data was obtained from the 2007 and 2009 Hospital Database. Main outcome measures were median length of stay, percentage of planned discharges, number of surgery cancellations and median number of delayed emergency admissions at 8:00 am. For statistical bivariate analysis, we used a Chi-squared for linear trend for qualitative variables and a Wilcoxon signed ranks test and a Mann–Whitney test for non-normal continuous variables. Results The median patients’ global length of stay was 8.56 days in 2007 and 7.93 days in 2009 (p < 0.051). The percentage of patients admitted the same day as surgery increased from 64.87% in 2007 to 86.01% in 2009 (p < 0.05). The number of cancelled interventions due to lack of beds was 216 patients in 2007 and 42 patients in 2009. The median number of planned discharges went from 43.05% in 2007 to 86.01% in 2009 (p < 0.01). The median number of emergency patients waiting for an in-hospital bed at 8:00 am was 5 patients in 2007 and 3 patients in 2009 (p < 0.01). Conclusions In conclusion, standardization of admission and discharge processes are largely in our control. There is a significant opportunity to create important benefits for increasing bed capacity and hospital throughput. PMID:22741542

  12. Alkali impregnated teflon as a filter for atmospheric SO 2 PIXE analysis

    NASA Astrophysics Data System (ADS)

    Matsuda, Yatsuka; Cahill, Thomas A.

    1985-02-01

    In order to collect SO 2 gas on a stretched Teflon filter impregnated with an alkali solution for a PIXE analysis, an impregnation method has been developed. In this article, the following points are presented. a) It has been found to be necessary to replace the air trapped in filter pores by methanol, and then to replace the methanol by an alkali solution, b) The resistance for air flow through an impregnated Teflon filter is not high and it has been checked that an ordinary pump can be used for the air sampling with the impregnated filter, with the usual flow rate aerosol sampling, c) The impurity levels of the reagents used for impregnants were small enough for sulfur analysis, d) The collection efficiencies of the impregnants, 20%NaOH + 10%glycerin and 20%NaOH + 10%TEA, which are the most suitable ones, did not decrease with flow rate in the range of 0-10 {1}/{min} per filter of 25 mm in diameter. A cross check experiment on the collection of ambient SO 2 gas with the three kinds of filter (A: 5%NaOH + 5%glycerin impregnated Whatman-41 filter, B: 20%NaOH + 10%TEA coated Nuclepore filter, C: 20%NaOH + 10%TEA impregnated stretched Teflon filter) was done. The results showed a satisfactory tolerance for the practical use of Teflon impregnated filter.

  13. Surface and flow field measurements in a symmetric crossing shock wave/turbulent boundary-layer interaction

    NASA Technical Reports Server (NTRS)

    Davis, D. O.; Hingst, W. R.

    1992-01-01

    Results of an experimental investigation of a symmetric crossing shock/turbulent boundary layer interaction are presented for a Mach number of 3.44 and deflection angles of 2, 6, 8, and 9 degrees. The interaction strengths vary from weak to strong enough to cause a large region of separated flow. Measured quantities include surface static pressure (both steady and unsteady) and flowfield Pitot pressures. Pitot profiles in the plane of symmetry through the interaction region are shown for various deflection angles. Oil flow visualization and the results of a trace gas streamline tracking technique are also presented.

  14. Numerical simulation of ground-water flow in La Crosse County, Wisconsin, and into nearby pools of the Mississippi River

    USGS Publications Warehouse

    Hunt, Randall J.; Saad, David A.; Chapel, Dawn M.

    2003-01-01

    The models provide estimates of the locations and amount of ground-water flow into Pool 8 and the southern portion of Pool 7 of the Mississippi River. Ground-water discharges into all areas of the pools, except along the eastern shore in the vicinity of the city of La Crosse and immediately downgradient from lock and dam 7 and 8. Ground-water flow into the pools is generally greatest around the perimeter with decreasing amounts away from the perimeter. An area of relatively high ground-water discharge extends out towards the center of Pool 7 from the upper reaches of the pool and may

  15. Effect of vegetated filter strips on transport and deposition rates of Escherichia coli in overland flow in the eastern escarpments of the Mau Forest, Njoro River Watershed, Kenya

    PubMed Central

    Onyando, J. O.; Moturi, W. N.; Muia, A. W.; Ombui, P.; Shivoga, W. A.; Roegner, A. F.

    2016-01-01

    The fate and transport of Escherichia coli (E. coli) in lotic waters through vegetated filter strips (VFSs) was evaluated in a field model pasture, utilizing VFSMOD Windows along with direct pathogen testing. This study assessed effects of VFS on transport and deposition rates of E. coli in lotic overland flow waters. The VFS measured 44 m long by 40 m wide, covering an area of 1584 m2 and land slope of 15 %. Cowpat was applied onto the model pasture and washed by overland flow into the VFS. The 4-methylumbelliferyl β-D-glucuronide substrate confirmed the identity of E. coli prior to cowpat application and after isolating them from soil using centrifugation and membrane filtration techniques. Napier grass root system recorded the highest recovery rates of E. coli at 99.9 % along the length of VFS III. This efficiency reduced significantly (p < 0.05; df = 29) to 95 % in Kikuyu grass and 75 % in Couch grass–Buffer grass. The data demonstrated similarity in transport of manure-borne E. coli and organic carbon (OC) through all the simulated VFS. These results indicated that OC could be used as a true natural tracer of manure-borne E. coli, a pollution indicator organism of lentic and lotic surface waters provided the OC release kinetics from cowpat were similar to that of E. coli kinetics. Thus, efficient filtering to reduce E. coli concentrations and load in overland flows requires managing combined grass species, agro-pastoral systems models and dispersed or preferential flows to enhance surface water quality standards.

  16. Cross-borehole flow analysis to characterize fracture connections in the Melechov Granite, Bohemian-Moravian Highland, Czech Republic

    USGS Publications Warehouse

    Paillet, Frederick L.; Williams, John H.; Urik, Joseph; Lukes, Joseph; Kobr, Miroslav; Mares, Stanislav

    2012-01-01

    Application of the cross-borehole flow method, in which short pumping cycles in one borehole are used to induce time-transient flow in another borehole, demonstrated that a simple hydraulic model can characterize the fracture connections in the bedrock mass between the two boreholes. The analysis determines the properties of fracture connections rather than those of individual fractures intersecting a single borehole; the model contains a limited number of adjustable parameters so that any correlation between measured and simulated flow test data is significant. The test was conducted in two 200-m deep boreholes spaced 21 m apart in the Melechov Granite in the Bohemian-Moravian Highland, Czech Republic. Transient flow was measured at depth stations between the identified transmissive fractures in one of the boreholes during short-term pumping and recovery periods in the other borehole. Simulated flows, based on simple model geometries, closely matched the measured flows. The relative transmissivity and storage of the inferred fracture connections were corroborated by tracer testing. The results demonstrate that it is possible to assess the properties of a fracture flow network despite being restricted to making measurements in boreholes in which a local population of discrete fractures regulates the hydraulic communication with the larger-scale aquifer system.

  17. Evaluation of the metabolic diversity of microbial communities in four different filter layers of a constructed wetland with vertical flow by Biolog analysis.

    PubMed

    Salomo, S; Münch, C; Röske, I

    2009-10-01

    The community-level substrate utilization test based on direct incubation of environmental samples in Biolog EcoPlates is a suitable and sensitive tool to characterize microbial communities. The aim of this study was to investigate the influence of plant roots and soil structure on the metabolic diversity of microorganisms in a constructed wetland with vertical flow. Sediment samples were taken from different filter depths representing specific filter layers. The color development representing the substrate utilization was measured with the samples over a period of 10 days. The average well color development (AWCD) for all carbon sources was calculated as an indicator of total activity and in order to compensate the influence of the inoculum's density on the color development in the plates. After transformation by dividing by the AWCD, the optical density data were analysed by principal component analysis (PCA). An analysis of the kinetic profile of the AWCD was carried out to increase the analytical power of the method. The corrected data have been successfully fit to the logistic growth equation. Three kinetic model parameters, the asymptote (K), the exponential rate of color change (p) and the time to the midpoint of the exponential portion of the curve (s), were used for statistical analysis of the physiological profile of the microbial community in the different filter layers of the constructed wetland. We found out that in the upper two horizons, which were rooted most densely, mainly easily degradable materials like specific carbohydrates were utilized, while in the lower layers, where only single roots occur, more biochemically inert compounds, e.g. 2-hydroxy benzoic acid, were utilized. Furthermore it could be shown that microorganisms in the surface layer benefited from the plant litter because they can utilize decay products of these. In the lower filter layers specialists took advantage because they had to cope with the biochemically inert materials and

  18. Cross-correlation velocimetry for measurement of velocity and temperature profiles in low-speed, turbulent, nonisothermal flows

    SciTech Connect

    Motevalli, V. ); Marks, C.H. ); McCaffrey, B.J. )

    1992-05-01

    A technique utilizing thermocouple pairs as sensors to measure velocity and temperature profiles in low-speed, turbulent, nonisothermal flows is described here. In this technique, Cross-Correlation Velocimetry (CCV), the temperature-time records from a pair of thermocouples, one downstream of the other, are cross-correlated to determine the flow's preferred mean velocity while temperature is measured directly. The velocity measurements have undergone extensive verification using hotwire, pitot tube, and Laser-Doppler Velocimetry to determine the degree of confidence in this technique. This work demonstrates that the CCV technique is quite reliable and can measure the mean preferred component of the convective velocity with better than {plus minus}5 percent certainty. Application of this technique to the measurement of velocities in a ceiling jet induced by a fire plume is briefly presented here.

  19. Remotely serviced filter and housing

    DOEpatents

    Ross, M.J.; Zaladonis, L.A.

    1987-07-22

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

  20. Viability of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft

    DTIC Science & Technology

    2012-06-01

    the CFF’s thrust was through the use of the average air velocity leaving the fan. Initially, a hand-held anemometer was used to find the outlet... history for mass flow rate through the CFF. The inlet mass flow rate and outlet mass flow rate were verified to reach a steady-state value after five

  1. Pilot-scale study of vertical flow constructed wetland combined with trickling filter and ferric chloride coagulation: influence of irregular operational conditions.

    PubMed

    Kim, B; Gautier, M; Olvera Palma, G; Molle, P; Michel, P; Gourdon, R

    2015-01-01

    The aim of this study was to characterize the efficiency of an intensified process of vertical flow constructed wetland having the following particularities: (i) biological pretreatment by trickling filter, (ii) FeCl3 injection for dissolved phosphorus removal and (iii) succession of different levels of redox conditions along the process line. A pilot-scale set-up designed to simulate a real-scale plant was constructed and operated using real wastewater. The influences of FeCl3 injection and water saturation level within the vertical flow constructed wetland stage on treatment performances were studied. Three different water saturation levels were compared by monitoring: suspended solids (SS), total phosphorus (TP), dissolved chemical oxygen demand (COD), ammonium, nitrate, phosphate, iron, and manganese. The results confirmed the good overall efficiency of the process and the contribution of the trickling filter pretreatment to COD removal and nitrification. The effects of water saturation level and FeCl3 injection on phosphorus removal were evaluated by analysis of the correlations between the variables. Under unsaturated conditions, good nitrification and no denitrification were observed. Under partly saturated conditions, both nitrification and denitrification were obtained, along with a good retention of SSs. Finally, under saturated conditions, the performance was decreased for almost all parameters.

  2. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.

    PubMed

    Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2016-06-01

    This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa.

  3. Cross-Flow Filtration of Simulated High-Level Waste Sludge (Tank 8F)

    SciTech Connect

    Poirier, M.R.

    2001-06-07

    This report discussed results of tests which investigated filter performance with slurry containing simulated Tank 8F Sludge at concentrations between 0.044 wt percent and 4.80 wt percent. Testing used a slurry containing 3.5 wt percent Tank 8F simulated sludge and a target concentration of 0.06 weight percent MST.

  4. Bubble Formation on a Wall in Cross-Flowing Liquid and Surrounding Fluid Motion,With and Without Heating

    NASA Technical Reports Server (NTRS)

    Bhunia, Avijit; Kamotani, Yasuhiro; Nahra, Henry K.

    2000-01-01

    Application of gas-liquid two-phase flow systems for space-based thermal management and for the HEDS program demands a precise control of bubble size distribution in liquid. The necessity of bulk liquid motion for controlling bubble size and frequency in the space environment has been suggested by recent studies on pool, forced convection boiling and bubble formation in flowing liquid. The present work, consisting of two parts, explores bubble generation at wall in a cross-flowing liquid, i.e., in a forced convection boiling configuration. A schematic is shown. The first part looks into the bubble formation process under isothermal conditions in a reduced gravity environment, by injecting gas through a hole in the wall of a flowing liquid channel. In the latter part with channel wall heating, flow and temperature fields near a single bubble are studied under normal (1-g) and micro-gravity (mu-g) conditions. The objective of the isothermal experiments is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter (D(sub N)), the gas flow rate (Q(sub g)), and the liquid cross-flow velocity (U(sub L)). The reduced gravity data are shown. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small

  5. Cross-Layer Scheme to Control Contention Window for Per-Flow in Asymmetric Multi-Hop Networks

    NASA Astrophysics Data System (ADS)

    Giang, Pham Thanh; Nakagawa, Kenji

    The IEEE 802.11 MAC standard for wireless ad hoc networks adopts Binary Exponential Back-off (BEB) mechanism to resolve bandwidth contention between stations. BEB mechanism controls the bandwidth allocation for each station by choosing a back-off value from one to CW according to the uniform random distribution, where CW is the contention window size. However, in asymmetric multi-hop networks, some stations are disadvantaged in opportunity of access to the shared channel and may suffer severe throughput degradation when the traffic load is large. Then, the network performance is degraded in terms of throughput and fairness. In this paper, we propose a new cross-layer scheme aiming to solve the per-flow unfairness problem and achieve good throughput performance in IEEE 802.11 multi-hop ad hoc networks. Our cross-layer scheme collects useful information from the physical, MAC and link layers of own station. This information is used to determine the optimal Contention Window (CW) size for per-station fairness. We also use this information to adjust CW size for each flow in the station in order to achieve per-flow fairness. Performance of our cross-layer scheme is examined on various asymmetric multi-hop network topologies by using Network Simulator (NS-2).

  6. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, P.D.

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be

  7. Analysis and Experimental Verification of New Power Flow Control for Grid-Connected Inverter with LCL Filter in Microgrid

    PubMed Central

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304

  8. Analysis and experimental verification of new power flow control for grid-connected inverter with LCL filter in microgrid.

    PubMed

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.

  9. The filter pads and filtration mechanisms of the devil rays: Variation at macro and microscopic scales.

    PubMed

    Paig-Tran, E W Misty; Kleinteich, Thomas; Summers, Adam P

    2013-09-01

    Three lineages of cartilaginous fishes have independently evolved filter feeding (Lamniformes: Megachasma and Cetorhinus, Orectolobiformes: Rhincodon, and Mobulidae: Manta and Mobula); and the structure of the branchial filters is different in each group. The filter in Rhincodon typus has been described; species within the Lamniformes have simple filamentous filters, but the anatomy and ultrastructure of the branchial filter in the mobulid rays varies and is of functional interest. In most fishes, branchial gill rakers are elongated structures located along the anterior ceratobranchial and/or epibranchial arches; however, mobulid gill rakers are highly modified, flattened, lobe-like structures located on the anterior and posterior epibranchial elements as well as the ceratobranchials. The ultrastructure of the filter lobes can be smooth or covered by a layer of microcilia, and some are denticulated along the dorsal and ventral lobe surface. Flow through the mobulid oropharyngeal cavity differs from other filter-feeding fishes in that water must rapidly deviate from the free stream direction. There is an abrupt 90° turn from the initial inflowing path to move through the laterally directed branchial filter pores, over the gill tissue, and out the ventrally located gill slits. The deviation in the flow must result in tangential shearing stress across the filter surface. This implies that mobulids can use cross-flow filtration in which this shearing force serves as a mechanism to resuspend food particles initially caught by sieving or another capture mode. These particles will be transported by the cross filter flow toward the esophagus. We propose that species with cilia on the rakers augment the shear mediated movement of particles along the filter with ciliary transport.

  10. Filter-based measurements of UV-vis mass absorption cross sections of organic carbon aerosol from residential biomass combustion: Preliminary findings and sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K.

    2016-10-01

    Combustion of solid biomass fuels is a major source of household energy in developing nations. Black (BC) and organic carbon (OC) aerosols are the major PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) pollutants co-emitted during burning of these fuels. While the optical nature of BC is well characterized, very little is known about the properties of light-absorbing OC (LAOC). Here, we report our preliminary findings on the mass-based optical properties of LAOC emitted from the combustion of four commonly used solid biomass fuels - fuel-wood, agricultural residue, dung-cake, and mixed - in traditional Indian cookstoves. As part of a pilot field study conducted in central India, PM2.5 samples were collected on Teflon filters and analyzed for their absorbance spectra in the 300-900 nm wavelengths at 1 nm resolution using a UV-Visible spectrophotometer equipped with an integrating sphere. The mean mass absorption cross-sections (MAC) of the emitted PM2.5 and OC, at 550 nm, were 0.8 and 0.2 m2 g-1, respectively, each with a factor of ~2.3 uncertainty. The mean absorption Ångström exponent (AǺE) values for PM2.5 were 3±1 between 350 and 550 nm, and 1.2±0.1 between 550 and 880 nm. In the 350-550 nm range, OC had an AǺE of 6.3±1.8. The emitted OC mass, which was on average 25 times of the BC mass, contributed over 50% of the aerosol absorbance at wavelengths smaller than 450 nm. The overall OC contribution to visible solar light (300-900 nm) absorption by the emitted particles was 26-45%. Our results highlight the need to comprehensively and accurately address: (i) the climatic impacts of light absorption by OC from cookstove emissions, and (ii) the uncertainties and biases associated with variability in biomass fuel types and combustion conditions, and filter-based measurement artifacts during determination of MAC values.

  11. Direct measurements and modeling of gradient-aligned cross-field ion flows near an absorbing boundary

    NASA Astrophysics Data System (ADS)

    Thompson, D. S.; Siddiqui, M. Umair; McIlvain, J. S.; Short, Z. D.; Scime, E. E.; Aguirre, E. M.; Henriquez, M. F.; McKee, J. S.

    2015-11-01

    Direct measurements of cross-field ion transport near boundaries are sought for validating transport models in magnetically confined plasmas. Using laser-induced fluorescence, we measured ion flows normal to an absorbing boundary that was aligned to be parallel to a uniform axial magnetic field in a helicon plasma. We used Langmuir and emissive probes to measure local density, temperature and plasma potential profiles in the same region. We then scanned ion-neutral collisionality by varying the ratio of the ion gyro-radius, ρi, and ion-neutral collision length, λ, over the range 0.34 <=ρi / λ <= 1.60. Classical diffusion along density and potential gradients is sufficient to describe flow profiles for most cases but did not describe measurements well for 0.44 <=ρi / λ <= 0.65. In these cases, cross-sections ~3 times the classical prediction produced acceptable fits, and flow to the boundary was enhanced significantly. These enhanced flow cases exhibit spectra with low-frequency electrostatic fluctuations (f <10 kHz) that are not observed in data described well by a classical diffusion model. This work is supported by US National Science Foundation grant number PHY-1360278.

  12. Magnetic self-assembly of microparticle clusters in an aqueous two-phase microfluidic cross-flow

    NASA Astrophysics Data System (ADS)

    Abbasi, Niki; Jones, Steven G.; Moon, Byeong-Ui; Tsai, Scott S. H.

    2015-11-01

    We present a technique that self-assembles paramagnetic microparticles on the interface of aqueous two-phase system (ATPS) fluids in a microfluidic cross-flow. A co-flow of the ATPS is formed in the microfluidic cross channel as the flows of a dilute dextran (DEX) phase, along with a flow-focused particle suspension, converges with a dilute polyethylene glycol (PEG) phase. The microparticles arrive at the liquid-liquid interface and self-assemble into particle clusters due to forces on the particles from an applied external magnetic field gradient, and the interfacial tension of the ATPS. The microparticles form clusters at the interface, and once the cluster size grows to a critical value, the cluster passes through the interface. We control the size of the self-assembled clusters, as they pass through the interface, by varying the strength of the applied magnetic field gradient and the ATPS interfacial tension. We observe rich assembly dynamics, from the formation of Pickering emulsions to clusters that are completely encapsulated inside DEX phase droplets. We anticipate that this microparticle self-assembly method may have important biotechnological applications that require the controlled assembly of cells into clusters.

  13. Global 2D stability analysis of the cross lid-driven cavity flow with a streamfunction-vorticity approach

    NASA Astrophysics Data System (ADS)

    Gogoi, Bidyut B.

    2016-07-01

    We have recently analyzed the global two-dimensional (2D) stability of the staggered lid-driven cavity (LDC) flow with a higher order compact (HOC) approach. In the analysis, critical parameters are determined for both the parallel and anti-parallel motion of the lids and a detailed analysis has been carried out on either side of the critical values. In this article, we carry out an investigation of flow stabilities inside a two-sided cross lid-driven cavity with a pair of opposite lids moving in both parallel and anti-parallel directions. On discretization, the governing 2D Navier-Stokes (N-S) equations describing the steady flow and flow perturbations results in a generalized eigenvalue problem which is solved for determining the critical parameters on four different grids. Elaborate computation is performed for a wide range of Reynolds numbers (Re) on either side of the critical values in the range 200 ⩽ Re ⩽ 10000. For flows below the critical Reynolds number Rec, our numerical results are compared with established steady-state results and excellent agreement is obtained in all the cases. For Reynolds numbers above Rec, phase plane and spectral density analysis confirmed the existence of periodic, quasi-periodic, and stable flow patterns.

  14. The effect of flat bar supports on the cross flow induced response of heat exchanger U-tubes

    SciTech Connect

    Weaver, D.S.; Schneider, W.

    1982-01-01

    A wind tunnel study was conducted to determine the effect of flat bar supports on the cross-flow induced response of heat exchanger U-tubes. The 13 mm diameter tubes formed a triangular array with a pitch ratio o 1.57 and a mean U-bend diameter of about 1.5 m. A 0.3 m long section of the array was exposed to a flow parallel to the plane of the U-bends. Experiments were conducted with no supports, with 1 set of flat bars at the apex and with 2 sets of flat bar supports at the apex and 45/sup 0/ points. In each case, the tube response was monitored to a flow velocity beyond that required for fluid elastic instability. Limited experiments were also conducted to examine the effect of tube support clearance on tube response. Conclusions are drawn regarding the effectiveness of flat bars as U-bend antivibration supports.

  15. The application of cross-flow filtration to the collection of colloids and their associated metals in seawater

    NASA Astrophysics Data System (ADS)

    Moran, S. B.

    A variety of techniques have been used for the collection of colloidal material in natural waters; for example, centrifugation, filtration, ultrafiltration, dialysis, gel-permeation chromatography and field-flow fractionation [e.g. Karaiskakis et al., 1982; Laxen and Chandler, 1982; de Mora and Harrison, 1983; Salbu et al., 1985; Giddings, 1988]. There have been few studies of the size speciation of trace materials, organic or inorganic, in oceanic waters due primarily to problems of contamination and slow filtration rates (e.g. mL hr-1) associated with conventional ultrafiltration equipment. A relatively new technique for marine applications, crossflow filtration (CFF), has the potential to overcome both of these problems. Cross-flow, or tangential-flow, filtration has been used in such disciplines as medical research, sewage treatment and microbiology. However, the application of this technique to oceanographic studies has only recently been reported [e.g. Whitehouse et al., 1986, 1990; Moran and Moore, 1989].

  16. Characterization of Preferential Flow Paths from Single and Cross-borehole Flowmeter tests in a Fractured Aquifer

    NASA Astrophysics Data System (ADS)

    Bour, O.; Le Borgne, T.; Paillet, F.; Caudal, J.

    2006-12-01

    The structure of the permeability field and in particular the connectivity of preferential flow paths controls the fluxes at large scale as well as the transport properties. However, this information is rarely available in the field unless intensive and time-consuming packer testing is achieved. In this study, we present a characterization of flow paths connectivity at the Plumeur fractured crystalline aquifer from cross-borehole flowmeter tests. We also compare hydraulic properties estimates obtained from single borehole flowmeter experiments, cross borehole flowmeter experiments and long term pumping tests. Cross borehole flowmeter tests have been recently proposed as an efficient technique to characterize the connectivity of fractures between boreholes. Cross borehole flowmeter tests consist of measuring transient vertical flow in an observation borehole when the pumping rate is changed in a nearby pumping well. The rate of change in borehole flow between flow zones intersected by the borehole depends on the connectivity and hydraulic properties of the flow zones between the two boreholes. Flow measurements were achieved with a calibrated heat-pulse flowmeter whose principle is to measure the time for a heat pulse to travel from a heat grid to a thermistor located a few cm above or below the heat source. We combined this method with single borehole flowmeter tests and long-term pumping tests to characterize the connectivity, geometry and hydraulic properties of large scale flow paths at the Plumeur aquifer where long-screened observation boreholes does not allow the use of packers. The aquifer is located on the south coast of Brittany in crystalline bedrock terrain characterized by igneous and metamorphic rocks. We restrict our analysis to the boreholes that are the closest to a pumping station within an area of approximately 600 meters in diameter. These boreholes react relatively rapidly to the pumping variations even for large borehole separations. Most

  17. Hybrid modeling of convective laminar flow in a permeable tube associated with the cross-flow process

    NASA Astrophysics Data System (ADS)

    Venezuela, A. L.; Pérez-Guerrero, J. S.; Fontes, S. R.

    2009-03-01

    The confined flows in tubes with permeable surfaces are associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature.

  18. Mixed convection heat transfer to and from a horizontal cylinder in cross-flow with heating from below.

    SciTech Connect

    Greif, Ralph; Evans, Gregory Herbert; Kearney, Sean Patrick; Laskowski, Gregory Michael

    2006-02-01

    Heat transfer to and from a circular cylinder in a cross-flow of water at low Reynolds number was studied both experimentally and numerically. The experiments were carried out in a high aspect ratio water channel. The test section inflow temperature and velocity, channel lower surface temperature and cylinder surface temperature were controlled to yield either laminar or turbulent flow for a desired Richardson number. When the lower surface was unheated, the temperatures of the lower surface and water upstream of the cylinder were maintained approximately equal and the flow was laminar. When the lower surface was heated, turbulence intensities as high as 20% were measured several cylinder diameters upstream of the cylinder due to turbulent thermal plumes produced by heating the lower surface. Variable property, two-dimensional simulations were undertaken using a variant of the u{sup 2}-f turbulence model with buoyancy production of turbulence accounted for by a simple gradient diffusion model. Predicted and measured heat flux distributions around the cylinder are compared for values of the Richardson number, Gr{sub d}/Re{sub d}{sup 2} from 0.3 to 9.3. For laminar flow, the predicted and measured heat flux results agreed to within the experimental uncertainty. When the lower surface was heated, and the flow was turbulent, there was qualitative agreement between predicted and measured heat flux distributions around the cylinder. However the predicted spatially averaged Nusselt number was from 37% to 53% larger than the measured spatially averaged Nusselt number. Additionally, spatially averaged Nusselt numbers are compared to correlations in the literature for mixed convection heat transfer to/from cylinders in cross-flow. The results presented here are larger than the correlation values. This is believed to be due to the effects of buoyancy-induced turbulence resulting from heating the lower surface and the proximity of the cylinder to that surface.

  19. Convective Ignition of Propellant Cylinders in a Developing Cross-Flow Field.

    DTIC Science & Technology

    1980-09-01

    Predictions of the Ignition Model for the Front Stagnation Region .... ............ .. 32 (i) The Effects of Various Thermal, Chemical and Flow Properties... Predicted , Appendix II P - Product S - Solid phase SP - At flow separation zone -xvii- ST - Starting values of numerical solution, Appendix II W - Wall...sustained burning. III-H Numerical Predictions of the Ignition Model for the Front Stagnation Flow Rgo The calculations for the ignition model for the

  20. Cross-shift peak expiratory flow changes are unassociated with respirable coal dust exposure among South African coal miners

    SciTech Connect

    Naidoo, R.N.; Robins, T.G.; Becklake, M.; Seixas, N.; Thompson, M.L.

    2007-12-15

    he objectives of this study were to determine whether cross-shift changes in peak expiratory flow rate (PEFR) were related to respirable dust exposure in South African coalminers. Fifty workers were randomly selected from a cohort of 684 miners from 3 bituminous coal mines in Mpumalanga, South Africa. Peak expiratory efforts were measured prior to the commencement of the shift, and at the end of the shift on at least two occasions separated by at least 2 weeks, with full shift personal dust sampling being conducted on each occasion for each participant. Interviews were conducted, work histories were obtained and cumulative exposure estimates were constructed. Regression models examined the associations of cross-shift changes in PEFR with current and cumulative exposure, controlling for shift, smoking and past history of tuberculosis. There were marginal differences in cross-shift PEFR (ranging from 0.1 to 2 L/min). Linear regression analyses showed no association between cross-shift change in PEFR and current or cumulative exposure. The specific shift worked by participants in the study showed no effect. Our study showed no association between current respirable dust exposure and cross-shift changes in PEFR. There was a non-significant protective effect of cumulative dust exposure on the outcome, suggesting the presence of a 'healthy worker survivor effect' in this data.

  1. DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE

    SciTech Connect

    John P. Hurley; Ann K. Henderson; Jan W. Nowok; Michael L. Swanson

    2002-01-01

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the turbine. Production of a dependable rapidly closing autonomous mechanical

  2. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  3. The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water

    NASA Astrophysics Data System (ADS)

    Desai, Sandeep Rangrao; Pavitran, Sampat

    2016-07-01

    Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited

  4. On the exact analytical solution for the spatial moments of the cross-sectional average concentration in open channel flows

    NASA Astrophysics Data System (ADS)

    Pannone, Marilena

    2012-08-01

    This paper shows how an exact analytical solution for the transient-state spatial moments of the cross-sectional average tracer concentration in large open channel flows can be derived from the depth-averaged advection-diffusion equation resorting to the method of Green's functions, without any simplifying assumption about the regularity of the actual concentration field, the smallness of the fluctuations, or the large space-time scale of variation of the average concentration gradient (justifying the a priori localization of the problem), which were the basis of the classic Taylor dispersion theory. The results reveal that in agreement with the findings by Aris (1956) and later by others for flows within a conduit, there are an initial centroid displacement and a variance deficit dependent on the specific position and dimension of the initial injection. The second central moment asymptotically tends to the linearly increasing function predictable on the basis of Taylor's classic theory, and the skewness, which is constantly zero for the cross-sectionally uniform injection, in the case of nonuniform initial distributions tends to slowly vanish after having reached a maximum. Thus, the persistent asymmetry exhibited by the field concentration data, as well as the retardations and the accelerations in the peak trajectory, can be justified without making any a priori assumption about the physical mechanism underlying their appearance, like transient storage phenomena, just by rigorously solving the governing equation for the cross-sectional average concentration in the presence of nonuniform, asymmetrically located solute injections.

  5. Prediction of Bubble Diameter at Detachment from a Wall Orifice in Liquid Cross Flow Under Reduced and Normal Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2003-01-01

    Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.

  6. Analysis of Extensive Cross-Flow Separation using Higher-Order RANS Closure Models

    NASA Technical Reports Server (NTRS)

    Morison, J. H.; Panaras, A. G.; Gatski, T. B.; Georgantopoulos, G. A.

    2003-01-01

    The turbulent flow fields associated with the incompressible flow over a 6:1 prolate spheroid at high angle of attack, and the supersonic flow over an ogive cylinder are studied. Both these flows are characterized by large separation and vortical flow regions and therefore provide a challenging database for comparison of turbulent closure models. Of interest is the ability to predict the effects of separation and associated vortical motion common to both flows. Two turbulent models are investigated that each represent the class of linear eddy-viscosity models (LEVMs) and explicit algebraic stress models (EASMs). Since the EASM accounts for anisotropic effects, the in- fluence of these effects on flow field predictions can be assessed. The EASM model is shown to both improve the separation location prediction and pressure trough under the secondary vortex on the 6:1 prolate spheroid at high angle of attack and high Reynolds number, and improve the prediction of the separation location on a supersonic ogive cylinder.