Sample records for cross layer design

  1. Joint Cross-Layer Design for Wireless QoS Content Delivery

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Lv, Tiejun; Zheng, Haitao

    2005-12-01

    In this paper, we propose a joint cross-layer design for wireless quality-of-service (QoS) content delivery. Central to our proposed cross-layer design is the concept of adaptation. Adaptation represents the ability to adjust protocol stacks and applications to respond to channel variations. We focus our cross-layer design especially on the application, media access control (MAC), and physical layers. The network is designed based on our proposed fast frequency-hopping orthogonal frequency division multiplex (OFDM) technique. We also propose a QoS-awareness scheduler and a power adaptation transmission scheme operating at both the base station and mobile sides. The proposed MAC scheduler coordinates the transmissions of an IP base station and mobile nodes. The scheduler also selects appropriate transmission formats and packet priorities for individual users based on current channel conditions and the users' QoS requirements. The test results show that our cross-layer design provides an excellent framework for wireless QoS content delivery.

  2. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.

    PubMed

    Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente

    2015-08-10

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.

  3. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández

    2015-01-01

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412

  4. Cross-layer protocol design for QoS optimization in real-time wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2010-04-01

    The metrics of quality of service (QoS) for each sensor type in a wireless sensor network can be associated with metrics for multimedia that describe the quality of fused information, e.g., throughput, delay, jitter, packet error rate, information correlation, etc. These QoS metrics are typically set at the highest, or application, layer of the protocol stack to ensure that performance requirements for each type of sensor data are satisfied. Application-layer metrics, in turn, depend on the support of the lower protocol layers: session, transport, network, data link (MAC), and physical. The dependencies of the QoS metrics on the performance of the higher layers of the Open System Interconnection (OSI) reference model of the WSN protocol, together with that of the lower three layers, are the basis for a comprehensive approach to QoS optimization for multiple sensor types in a general WSN model. The cross-layer design accounts for the distributed power consumption along energy-constrained routes and their constituent nodes. Following the author's previous work, the cross-layer interactions in the WSN protocol are represented by a set of concatenated protocol parameters and enabling resource levels. The "best" cross-layer designs to achieve optimal QoS are established by applying the general theory of martingale representations to the parameterized multivariate point processes (MVPPs) for discrete random events occurring in the WSN. Adaptive control of network behavior through the cross-layer design is realized through the parametric factorization of the stochastic conditional rates of the MVPPs. The cross-layer protocol parameters for optimal QoS are determined in terms of solutions to stochastic dynamic programming conditions derived from models of transient flows for heterogeneous sensor data and aggregate information over a finite time horizon. Markov state processes, embedded within the complex combinatorial history of WSN events, are more computationally tractable and lead to simplifications for any simulated or analytical performance evaluations of the cross-layer designs.

  5. A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.

    PubMed

    Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao

    2018-05-23

    The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.

  6. Physical and Cross-Layer Security Enhancement and Resource Allocation for Wireless Networks

    ERIC Educational Resources Information Center

    Bashar, Muhammad Shafi Al

    2011-01-01

    In this dissertation, we present novel physical (PHY) and cross-layer design guidelines and resource adaptation algorithms to improve the security and user experience in the future wireless networks. Physical and cross-layer wireless security measures can provide stronger overall security with high efficiency and can also provide better…

  7. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    PubMed Central

    Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934

  8. Test Structures For Bumpy Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Sayah, Hoshyar R.

    1989-01-01

    Cross-bridge resistors added to comb and serpentine patterns. Improved combination of test structures built into integrated circuit used to evaluate design rules, fabrication processes, and quality of interconnections. Consist of meshing serpentines and combs, and cross bridge. Structures used to make electrical measurements revealing defects in design or fabrication. Combination of test structures includes three comb arrays, two serpentine arrays, and cross bridge. Made of aluminum or polycrystalline silicon, depending on material in integrated-circuit layers evaluated. Aluminum combs and serpentine arrays deposited over steps made by polycrystalline silicon and diffusion layers, while polycrystalline silicon versions of these structures used to cross over steps made by thick oxide layer.

  9. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending

    NASA Astrophysics Data System (ADS)

    Baltov, Anguel; Yanakieva, Ana

    2015-12-01

    Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).

  10. Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.

  11. Analytical approach to cross-layer protocol optimization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    In the distributed operations of route discovery and maintenance, strong interaction occurs across mobile ad hoc network (MANET) protocol layers. Quality of service (QoS) requirements of multimedia service classes must be satisfied by the cross-layer protocol, along with minimization of the distributed power consumption at nodes and along routes to battery-limited energy constraints. In previous work by the author, cross-layer interactions in the MANET protocol are modeled in terms of a set of concatenated design parameters and associated resource levels by multivariate point processes (MVPPs). Determination of the "best" cross-layer design is carried out using the optimal control of martingale representations of the MVPPs. In contrast to the competitive interaction among nodes in a MANET for multimedia services using limited resources, the interaction among the nodes of a wireless sensor network (WSN) is distributed and collaborative, based on the processing of data from a variety of sensors at nodes to satisfy common mission objectives. Sensor data originates at the nodes at the periphery of the WSN, is successively transported to other nodes for aggregation based on information-theoretic measures of correlation and ultimately sent as information to one or more destination (decision) nodes. The "multimedia services" in the MANET model are replaced by multiple types of sensors, e.g., audio, seismic, imaging, thermal, etc., at the nodes; the QoS metrics associated with MANETs become those associated with the quality of fused information flow, i.e., throughput, delay, packet error rate, data correlation, etc. Significantly, the essential analytical approach to MANET cross-layer optimization, now based on the MVPPs for discrete random events occurring in the WSN, can be applied to develop the stochastic characteristics and optimality conditions for cross-layer designs of sensor network protocols. Functional dependencies of WSN performance metrics are described in terms of the concatenated protocol parameters. New source-to-destination routes are sought that optimize cross-layer interdependencies to achieve the "best available" performance in the WSN. The protocol design, modified from a known reactive protocol, adapts the achievable performance to the transient network conditions and resource levels. Control of network behavior is realized through the conditional rates of the MVPPs. Optimal cross-layer protocol parameters are determined by stochastic dynamic programming conditions derived from models of transient packetized sensor data flows. Moreover, the defining conditions for WSN configurations, grouping sensor nodes into clusters and establishing data aggregation at processing nodes within those clusters, lead to computationally tractable solutions to the stochastic differential equations that describe network dynamics. Closed-form solution characteristics provide an alternative to the "directed diffusion" methods for resource-efficient WSN protocols published previously by other researchers. Performance verification of the resulting cross-layer designs is found by embedding the optimality conditions for the protocols in actual WSN scenarios replicated in a wireless network simulation environment. Performance tradeoffs among protocol parameters remain for a sequel to the paper.

  12. Cross-Layer Protocol Combining Tree Routing and TDMA Slotting in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Bai, Ronggang; Ji, Yusheng; Lin, Zhiting; Wang, Qinghua; Zhou, Xiaofang; Qu, Yugui; Zhao, Baohua

    Being different from other networks, the load and direction of data traffic for wireless sensor networks are rather predictable. The relationships between nodes are cooperative rather than competitive. These features allow the design approach of a protocol stack to be able to use the cross-layer interactive way instead of a hierarchical structure. The proposed cross-layer protocol CLWSN optimizes the channel allocation in the MAC layer using the information from the routing tables, reduces the conflicting set, and improves the throughput. Simulations revealed that it outperforms SMAC and MINA in terms of delay and energy consumption.

  13. Minimalist design of water-soluble cross-[beta] architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biancalana, Matthew; Makabe, Koki; Koide, Shohei

    Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-{beta} proteins. The cross-{beta} motif is formed from the lamination of successive {beta}-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-{beta} has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-{beta}'s recalcitrance to protein engineering and conspicuous absence among the knownmore » atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-{beta} structures of fibril-forming peptides, we identified rows of hydrophobic residues ('ladders') running across {beta}-strands of each {beta}-sheet layer as a minimal component of the cross-{beta} motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-{beta} peptide onto a large {beta}-sheet protein formed a dimeric protein with a cross-{beta} architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-{beta} motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-{beta} structure and expanding the scope of protein design.« less

  14. Minimalist design of water-soluble cross-beta architecture.

    PubMed

    Biancalana, Matthew; Makabe, Koki; Koide, Shohei

    2010-02-23

    Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-beta proteins. The cross-beta motif is formed from the lamination of successive beta-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-beta has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-beta's recalcitrance to protein engineering and conspicuous absence among the known atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-beta structures of fibril-forming peptides, we identified rows of hydrophobic residues ("ladders") running across beta-strands of each beta-sheet layer as a minimal component of the cross-beta motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-beta peptide onto a large beta-sheet protein formed a dimeric protein with a cross-beta architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-beta motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-beta structure and expanding the scope of protein design.

  15. Cross-Layer Design Approach for Wireless Networks to Improve the Performance POSTPRINT)

    DTIC Science & Technology

    2010-06-01

    Yenumula B. Reddy, Nandigam Gajendar, and Sophal Chao Grambling State University JUNE 2010 Approved for public release; distribution...J. Smith, Yenumula B. Reddy, Nandigam Gajendar, and Sophal Chao 5d. PROJECT NUMBER 7622 5e. TASK NUMBER 11 5f. WORK UNIT NUMBER 7622110P...Z39-18 Cross-Layer Design Approach for Wireless Networks to Improve the Performance Nikema J. Smith, Yenumula B. Reddy, and Nandigam Gajendar

  16. Multimedia-Based Integration of Cross-Layer Techniques

    DTIC Science & Technology

    2014-06-01

    wireless networks play a critical role in net-centric warfare, including the sharing of the time-sensitive battlefield information among military nodes for...layer protocols are key enablers in effectively deploying the military wireless network. This report discusses the design of cross-layer protocols...2 1.0 INTRODUCTION 1.1 Motivation The Air Force (AF) Wireless Networks (also denoted as military networks in this report) must be capable of

  17. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks.

    PubMed

    Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang

    2017-08-08

    Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs.

  18. Three-dimensional cross point readout detector design for including depth information

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Baek, Cheol-Ha

    2018-04-01

    We designed a depth-encoding positron emission tomography (PET) detector using a cross point readout method with wavelength-shifting (WLS) fibers. To evaluate the characteristics of the novel detector module and the PET system, we used the DETECT2000 to perform optical photon transport in the crystal array. The GATE was also used. The detector module is made up of four layers of scintillator arrays, the five layers of WLS fiber arrays, and two sensor arrays. The WLS fiber arrays in each layer cross each other to transport light to each sensor array. The two sensor arrays are coupled to the forward and left sides of the WLS fiber array, respectively. The identification of three-dimensional pixels was determined using a digital positioning algorithm. All pixels were well decoded, with the system resolution ranging from 2.11 mm to 2.29 mm at full width at half maximum (FWHM).

  19. CMOS Imager Has Better Cross-Talk and Full-Well Performance

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas J.

    2011-01-01

    A complementary metal oxide/semiconductor (CMOS) image detector now undergoing development is designed to exhibit less cross-talk and greater full-well capacity than do prior CMOS image detectors of the same type. Imagers of the type in question are designed to operate from low-voltage power supplies and are fabricated by processes that yield device features having dimensions in the deep submicron range. Because of the use of low supply potentials, maximum internal electric fields and depletion widths are correspondingly limited. In turn, these limitations are responsible for increases in cross-talk and decreases in charge-handling capacities. Moreover, for small pixels, lateral depletion cannot be extended. These adverse effects are even more accentuated in a back-illuminated CMOS imager, in which photogenerated charge carriers must travel across the entire thickness of the device. The figure shows a partial cross section of the structure in the device layer of the present developmental CMOS imager. (In a practical imager, the device layer would sit atop either a heavily doped silicon substrate or a thin silicon oxide layer on a silicon substrate, not shown here.) The imager chip is divided into two areas: area C, which contains readout circuits and other electronic circuits; and area I, which contains the imaging (photodetector and photogenerated-charge-collecting) pixel structures. Areas C and I are electrically isolated from each other by means of a trench filled with silicon oxide. The electrical isolation between areas C and I makes it possible to apply different supply potentials to these areas, thereby enabling optimization of the supply potential and associated design features for each area. More specifically, metal oxide semiconductor field-effect transistors (MOSFETs) that are typically included in CMOS imagers now reside in area C and can remain unchanged from established designs and operated at supply potentials prescribed for those designs, while the dopings and the lower supply potentials in area I can be tailored to optimize imager performance. In area I, the device layer includes an n+ -doped silicon layer on which is grown an n-doped silicon layer. A p-doped silicon layer is grown on top of the n -doped layer. The total imaging device thickness is the sum of the thickness of the n+, n, and p layers. A pixel photodiode is formed between a surface n+ implant, a p implant underneath it, the aforementioned p layer, and the n and n+ layers. Adjacent to the diode is a gate for transferring photogenerated charges out of the photodiode and into a floating diffusion formed by an implanted p+ layer on an implanted n-doped region. Metal contact pads are added to the back-side for providing back-side bias.

  20. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks

    PubMed Central

    Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang

    2017-01-01

    Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs. PMID:28786915

  1. A novel screen design for anti-ambient light front projection display with angle-selective absorber

    NASA Astrophysics Data System (ADS)

    Liao, Tianju; Chen, Weigang; He, Kebo; Zhang, Zhaoyu

    2016-03-01

    Ambient light is destructive to the reflective type projection system's contrast ratio which has great influence on the image quality. In contrast to the conventional front projection, short-throw projection has its advantage to reject the ambient light. Fresnel lens-shaped reflection layer is adapted to direct light from a large angle due to the low lens throw ratio to the viewing area. The structure separates the path of the ambient light and projection light, creating the chance to solve the problem that ambient light is mixed with projection light. However, with solely the lens-shaped reflection layer is not good enough to improve the contrast ratio due to the scattering layer, which contributes a necessarily wide viewing angle, could interfere with both light paths before hitting the layer. So we propose a new design that sets the draft angle surface with absorption layer and adds an angle-selective absorber to separate these two kinds of light. The absorber is designed to fit the direction of the projection light, leading to a small absorption cross section for the projection light and respectfully big absorption cross section for the ambient light. We have calculated the design with Tracepro, a ray tracing program and find a nearly 8 times contrast ratio improvement against the current design in theory. This design can hopefully provide efficient display in bright lit situation with better viewer satisfaction.

  2. PHY-DLL dialogue: cross-layer design for optical-wireless OFDM downlink transmission

    NASA Astrophysics Data System (ADS)

    Wang, Xuguo; Li, Lee

    2005-11-01

    The use of radio over fiber to provide radio access has a number of advantages including the ability to deploy small, low-cost remote antenna units and ease of upgrade. And due to the great potential for increasing the capacity and quality of service, the combination of Orthogonal Frequency Division Multiplexing (OFDM) modulation and the sub-carrier multiplexed optical transmission is one of the best solutions for the future millimeter-wave mobile communication. And this makes the optimum utility of valuable radio resources essential. This paper devises a cross-layer adaptive algorithm for optical-wireless OFDM system, which takes into consideration not only transmission power limitation in the physical layer, but also traffic scheduling and user fairness at the data-link layer. According to proportional fairness principle and water-pouring theorem, we put forward the complete description of this cross-layer adaptive downlink transmission 6-step algorithm. Simulation results show that the proposed cross-layer algorithm outperforms the mere physical layer adaptive algorithm markedly. The novel scheme is able to improve performance of the packet success rate per time chip and average packet delay, support added active users.

  3. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-02-01

    Solar multiconjugate adaptive optics systems rely on several wavefront sensors, which measure the incoming turbulent phase along several field directions to produce a tomographic reconstruction of the turbulent phase. In this paper, we explore an alternative wavefront sensing approach that attempts to directly measure the turbulent phase present at a particular height in the atmosphere: a layer-oriented cross-correlating Shack-Hartmann wavefront sensor (SHWFS). In an experiment at the Dunn Solar Telescope, we built a prototype layer-oriented cross-correlating SHWFS system conjugated to two separate atmospheric heights. We present the data obtained in the observations and complement these with ray-tracing computations to achieve a better understanding of the instrument's performance and limitations. The results obtained in this study strongly indicate that a layer-oriented cross-correlating SHWFS is not a practical design to measure the wavefront at a high layer in the atmosphere.

  4. Cross-layer protocols optimized for real-time multimedia services in energy-constrained mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2003-07-01

    Mobile ad hoc networking (MANET) supports self-organizing, mobile infrastructures and enables an autonomous network of mobile nodes that can operate without a wired backbone. Ad hoc networks are characterized by multihop, wireless connectivity via packet radios and by the need for efficient dynamic protocols. All routers are mobile and can establish connectivity with other nodes only when they are within transmission range. Importantly, ad hoc wireless nodes are resource-constrained, having limited processing, memory, and battery capacity. Delivery of high quality-ofservice (QoS), real-time multimedia services from Internet-based applications over a MANET is a challenge not yet achieved by proposed Internet Engineering Task Force (IETF) ad hoc network protocols in terms of standard performance metrics such as end-to-end throughput, packet error rate, and delay. In the distributed operations of route discovery and maintenance, strong interaction occurs across MANET protocol layers, in particular, the physical, media access control (MAC), network, and application layers. The QoS requirements are specified for the service classes by the application layer. The cross-layer design must also satisfy the battery-limited energy constraints, by minimizing the distributed power consumption at the nodes and of selected routes. Interactions across the layers are modeled in terms of the set of concatenated design parameters including associated energy costs. Functional dependencies of the QoS metrics are described in terms of the concatenated control parameters. New cross-layer designs are sought that optimize layer interdependencies to achieve the "best" QoS available in an energy-constrained, time-varying network. The protocol design, based on a reactive MANET protocol, adapts the provisioned QoS to dynamic network conditions and residual energy capacities. The cross-layer optimization is based on stochastic dynamic programming conditions derived from time-dependent models of MANET packet flows. Regulation of network behavior is modeled by the optimal control of the conditional rates of multivariate point processes (MVPPs); these rates depend on the concatenated control parameters through a change of probability measure. The MVPP models capture behavior of many service applications, e.g., voice, video and the self-similar behavior of Internet data sessions. Performance verification of the cross-layer protocols, derived from the dynamic programming conditions, can be achieved by embedding the conditions in a reactive routing protocol for MANETs, in a simulation environment, such as the wireless extension of ns-2. A canonical MANET scenario consists of a distributed collection of battery-powered laptops or hand-held terminals, capable of hosting multimedia applications. Simulation details and performance tradeoffs, not presented, remain for a sequel to the paper.

  5. Assessing Routing Strategies for Cognitive Radio Sensor Networks

    PubMed Central

    Zubair, Suleiman; Fisal, Norsheila; Baguda, Yakubu S.; Saleem, Kashif

    2013-01-01

    Interest in the cognitive radio sensor network (CRSN) paradigm has gradually grown among researchers. This concept seeks to fuse the benefits of dynamic spectrum access into the sensor network, making it a potential player in the next generation (NextGen) network, which is characterized by ubiquity. Notwithstanding its massive potential, little research activity has been dedicated to the network layer. By contrast, we find recent research trends focusing on the physical layer, the link layer and the transport layers. The fact that the cross-layer approach is imperative, due to the resource-constrained nature of CRSNs, can make the design of unique solutions non-trivial in this respect. This paper seeks to explore possible design opportunities with wireless sensor networks (WSNs), cognitive radio ad-hoc networks (CRAHNs) and cross-layer considerations for implementing viable CRSN routing solutions. Additionally, a detailed performance evaluation of WSN routing strategies in a cognitive radio environment is performed to expose research gaps. With this work, we intend to lay a foundation for developing CRSN routing solutions and to establish a basis for future work in this area. PMID:24077319

  6. Advanced Wireless Integrated Navy Network (AWINN)

    DTIC Science & Technology

    2005-12-31

    handle high data rates using COTS FPGAs . The effort of the Cross-Layer Optimization group is focused on cross-layer design of UWB for position location...From Transmitter Boar1 To Receiver BoardTransmittedl Receiver i i.. Switch Lowpass -20 dB FPGA -2dB Filter Gain Controlled Gain Variable Attenuator... FPGA Code * April - June 2006 "o Demonstrate Transceiver Operation "o Integrate Transceiver with Other AWINN Activities Personnel: Chris R. Anderson

  7. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    PubMed

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  8. Low latency adaptive streaming of HD H.264 video over 802.11 wireless networks with cross-layer feedback

    NASA Astrophysics Data System (ADS)

    Patti, Andrew; Tan, Wai-tian; Shen, Bo

    2007-09-01

    Streaming video in consumer homes over wireless IEEE 802.11 networks is becoming commonplace. Wireless 802.11 networks pose unique difficulties for streaming high definition (HD), low latency video due to their error-prone physical layer and media access procedures which were not designed for real-time traffic. HD video streaming, even with sophisticated H.264 encoding, is particularly challenging due to the large number of packet fragments per slice. Cross-layer design strategies have been proposed to address the issues of video streaming over 802.11. These designs increase streaming robustness by imposing some degree of monitoring and control over 802.11 parameters from application level, or by making the 802.11 layer media-aware. Important contributions are made, but none of the existing approaches directly take the 802.11 queuing into account. In this paper we take a different approach and propose a cross-layer design allowing direct, expedient control over the wireless packet queue, while obtaining timely feedback on transmission status for each packet in a media flow. This method can be fully implemented on a media sender with no explicit support or changes required to the media client. We assume that due to congestion or deteriorating signal-to-noise levels, the available throughput may drop substantially for extended periods of time, and thus propose video source adaptation methods that allow matching the bit-rate to available throughput. A particular H.264 slice encoding is presented to enable seamless stream switching between streams at multiple bit-rates, and we explore using new computationally efficient transcoding methods when only a high bit-rate stream is available.

  9. Collision avoidance in TV white spaces: a cross-layer design approach for cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Foukalas, Fotis; Karetsos, George T.

    2015-07-01

    One of the most promising applications of cognitive radio networks (CRNs) is the efficient exploitation of TV white spaces (TVWSs) for enhancing the performance of wireless networks. In this paper, we propose a cross-layer design (CLD) of carrier sense multiple access with collision avoidance (CSMA/CA) mechanism at the medium access control (MAC) layer with spectrum sensing (SpSe) at the physical layer, for identifying the occupancy status of TV bands. The proposed CLD relies on a Markov chain model with a state pair containing both the SpSe and the CSMA/CA from which we derive the collision probability and the achievable throughput. Analytical and simulation results are obtained for different collision avoidance and SpSe implementation scenarios by varying the contention window, back off stage and probability of detection. The obtained results depict the achievable throughput under different collision avoidance and SpSe implementation scenarios indicating thereby the performance of collision avoidance in TVWSs-based CRNs.

  10. Design of the Coordinate Transformation Function for Cylindrical Acoustic Cloaks with a Quantity of Discrete Layers

    NASA Astrophysics Data System (ADS)

    Cai, Li; Wen, Ji-Hong; Yu, Dian-Long; Lu, Zhi-Miao; Wen, Xi-Sen

    2014-09-01

    Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential applications such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transformation function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.

  11. Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d

    NASA Astrophysics Data System (ADS)

    Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.

    This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.

  12. An MILP-based cross-layer optimization for a multi-reader arbitration in the UHF RFID system.

    PubMed

    Choi, Jinchul; Lee, Chaewoo

    2011-01-01

    In RFID systems, the performance of each reader such as interrogation range and tag recognition rate may suffer from interferences from other readers. Since the reader interference can be mitigated by output signal power control, spectral and/or temporal separation among readers, the system performance depends on how to adapt the various reader arbitration metrics such as time, frequency, and output power to the system environment. However, complexity and difficulty of the optimization problem increase with respect to the variety of the arbitration metrics. Thus, most proposals in previous study have been suggested to primarily prevent the reader collision with consideration of one or two arbitration metrics. In this paper, we propose a novel cross-layer optimization design based on the concept of combining time division, frequency division, and power control not only to solve the reader interference problem, but also to achieve the multiple objectives such as minimum interrogation delay, maximum reader utilization, and energy efficiency. Based on the priority of the multiple objectives, our cross-layer design optimizes the system sequentially by means of the mixed-integer linear programming. In spite of the multi-stage optimization, the optimization design is formulated as a concise single mathematical form by properly assigning a weight to each objective. Numerical results demonstrate the effectiveness of the proposed optimization design.

  13. An MILP-Based Cross-Layer Optimization for a Multi-Reader Arbitration in the UHF RFID System

    PubMed Central

    Choi, Jinchul; Lee, Chaewoo

    2011-01-01

    In RFID systems, the performance of each reader such as interrogation range and tag recognition rate may suffer from interferences from other readers. Since the reader interference can be mitigated by output signal power control, spectral and/or temporal separation among readers, the system performance depends on how to adapt the various reader arbitration metrics such as time, frequency, and output power to the system environment. However, complexity and difficulty of the optimization problem increase with respect to the variety of the arbitration metrics. Thus, most proposals in previous study have been suggested to primarily prevent the reader collision with consideration of one or two arbitration metrics. In this paper, we propose a novel cross-layer optimization design based on the concept of combining time division, frequency division, and power control not only to solve the reader interference problem, but also to achieve the multiple objectives such as minimum interrogation delay, maximum reader utilization, and energy efficiency. Based on the priority of the multiple objectives, our cross-layer design optimizes the system sequentially by means of the mixed-integer linear programming. In spite of the multi-stage optimization, the optimization design is formulated as a concise single mathematical form by properly assigning a weight to each objective. Numerical results demonstrate the effectiveness of the proposed optimization design. PMID:22163743

  14. Control of Stationary Cross-Flow Modes in a Mach 3.5 Boundary Layer Using Patterned Passive and Active Roughness

    NASA Technical Reports Server (NTRS)

    Schuele, Chan Yong

    2011-01-01

    Spanwise-periodic roughness designed to excite selected wavelengths of stationary cross- ow modes was investigated in a 3-D boundary layer at Mach 3.5. The test model was a sharp-tipped 14deg right-circular cone. The model and integrated sensor traversing system were placed in the Mach 3.5 Supersonic Low Disturbance Tunnel (SLDT) equipped with a "quiet design" nozzle at the NASA Langley Research Center. The model was oriented at a 4:2deg angle of attack to produce a mean cross-fl ow velocity component in the boundary layer over the cone. Five removable cone tips have been investigated. One has a smooth surface that is used to document the baseline ("natural") conditions. Two had minute (20 - 40 micron) "dimples" that are equally spaced around the circumference, at a streamwise location that is just upstream of the linear stability neutral growth branch for cross- ow modes. The azimuthal mode numbers of the dimpled tips were selected to either enhance the most amplified wave numbers, or to suppress the growth of the most amplified wave numbers. Two of the cone tips had an array of plasma streamwise vortex generators that were designed to simulate the disturbances produced by the passive patterned roughness. The results indicate that the stationary cross-fl ow modes were highly receptive to the patterned roughness of both passive and active types. The patterned passive roughness that was designed to suppress the growth of the most amplified modes had an azimuthal wavelength that was 66% smaller that that of the most amplified stationary cross- ow mode. This had the effect to increase the transition Reynolds number from 25% to 50% depending on the measurement technique. The application of the research is on turbulent transition control on swept wings of supersonic aircraft. The plasma-based roughness has the advantage over the passive roughness of being able to be adaptable to different conditions that would occur during a flight mission.

  15. An Improved Cross-Layering Design for IPv6 Fast Handover with IEEE 802.16m Entry Before Break Handover

    NASA Astrophysics Data System (ADS)

    Kim, Ronny Yongho; Jung, Inuk; Kim, Young Yong

    IEEE 802.16m is an advanced air interface standard which is under development for IMT-Advanced systems, known as 4G systems. IEEE 802.16m is designed to provide a high data rate and a Quality of Service (QoS) level in order to meet user service requirements, and is especially suitable for mobilized environments. There are several factors that have great impact on such requirements. As one of the major factors, we mainly focus on latency issues. In IEEE 802.16m, an enhanced layer 2 handover scheme, described as Entry Before Break (EBB) was proposed and adopted to reduce handover latency. EBB provides significant handover interruption time reduction with respect to the legacy IEEE 802.16 handover scheme. Fast handovers for mobile IPv6 (FMIPv6) was standardized by Internet Engineering Task Force (IETF) in order to provide reduced handover interruption time from IP layer perspective. Since FMIPv6 utilizes link layer triggers to reduce handover latency, it is very critical to jointly design FMIPv6 with its underlying link layer protocol. However, FMIPv6 based on new handover scheme, EBB has not been proposed. In this paper, we propose an improved cross-layering design for FMIPv6 based on the IEEE 802.16m EBB handover. In comparison with the conventional FMIPv6 based on the legacy IEEE 802.16 network, the overall handover interruption time can be significantly reduced by employing the proposed design. Benefits of this improvement on latency reduction for mobile user applications are thoroughly investigated with both numerical analysis and simulation on various IP applications.

  16. Low frequency and broadband metamaterial absorber with cross arrays and a flaked iron powder magnetic composite

    NASA Astrophysics Data System (ADS)

    Li, Wangchang; Liu, Qing; Wang, Liwei; Zhou, Zuzhi; Zheng, Jingwu; Ying, Yao; Qiao, Liang; Yu, Jing; Qiao, Xiaojing; Che, Shenglei

    2018-01-01

    In this paper, we present a design, simulation and experimental measurement of a cross array metamaterial absorber (MMA) based on the flaked Carbonyl iron powder (CIP) filled rubber plate in the microwave regime. The metamaterial absorber is a layered structure consisting of multilayer periodic cross electric resonators, magnetic rubber plate and the ground metal plate. The MMA exhibits dual band absorbing property and the absorption can be tuned from 1˜8GHz in the same thickness depending on the dimension and position of the cross arrays. The obviously broadened absorbing band of the designed structure is a result of the synergistic effects of the electrical resonance of the cross arrays and intrinsic absorption of the magnetic layer. The polarization and oblique incident angle in TE and TM model are also investigated in detail to explore the absorbing mechanisms. The resonance current of the cross array can excite the enhanced local magnetic field and dielectric field which can promote the absorption. The measurement results are basically consistent with the simulations but the absorbing peaks move a little bit to higher frequency for the reason that the surface oxidation of the flaked CIP in the preparation process.

  17. Pressure and heating-rate distributions on a corrugated surface in a supersonic turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.

    1977-01-01

    Drag and heating rates on wavy surfaces typical of current corrugated plate designs for thermal protection systems were determined experimentally. Pressure-distribution, heating-rate, and oil-flow tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.4 and 4.5 with the corrugated surface exposed to both thick and thin turbulent boundary layers. Tests were conducted with the corrugations at cross-flow angles from 0 deg to 90 deg to the flow. Results show that for cross-flow angles of 30 deg or less, the pressure drag coefficients are less than the local flat-plate skin-friction coefficients and are not significantly affected by Mach number, Reynolds number, or boundary-layer thickness over the ranges investigated. For cross-flow angles greater than 30 deg, the drag coefficients increase significantly with cross-flow angle and moderately with Reynolds number. Increasing the Mach number causes a significant reduction in the pressure drag. The average and peak heating penalties due to the corrugated surface are small for cross-flow angles of 10 deg or less but are significantly higher for the larger cross-flow angles.

  18. Cross-layer model design in wireless ad hoc networks for the Internet of Things.

    PubMed

    Yang, Xin; Wang, Ling; Xie, Jian; Zhang, Zhaolin

    2018-01-01

    Wireless ad hoc networks can experience extreme fluctuations in transmission traffic in the Internet of Things, which is widely used today. Currently, the most crucial issues requiring attention for wireless ad hoc networks are making the best use of low traffic periods, reducing congestion during high traffic periods, and improving transmission performance. To solve these problems, the present paper proposes a novel cross-layer transmission model based on decentralized coded caching in the physical layer and a content division multiplexing scheme in the media access control layer. Simulation results demonstrate that the proposed model effectively addresses these issues by substantially increasing the throughput and successful transmission rate compared to existing protocols without a negative influence on delay, particularly for large scale networks under conditions of highly contrasting high and low traffic periods.

  19. Cross-layer model design in wireless ad hoc networks for the Internet of Things

    PubMed Central

    Wang, Ling; Xie, Jian; Zhang, Zhaolin

    2018-01-01

    Wireless ad hoc networks can experience extreme fluctuations in transmission traffic in the Internet of Things, which is widely used today. Currently, the most crucial issues requiring attention for wireless ad hoc networks are making the best use of low traffic periods, reducing congestion during high traffic periods, and improving transmission performance. To solve these problems, the present paper proposes a novel cross-layer transmission model based on decentralized coded caching in the physical layer and a content division multiplexing scheme in the media access control layer. Simulation results demonstrate that the proposed model effectively addresses these issues by substantially increasing the throughput and successful transmission rate compared to existing protocols without a negative influence on delay, particularly for large scale networks under conditions of highly contrasting high and low traffic periods. PMID:29734355

  20. A design method for entrance sections of transonic wind tunnels with rectangular cross sections

    NASA Technical Reports Server (NTRS)

    Lionel, L.; Mcdevitt, J. B.

    1975-01-01

    A mathematical technique developed to design entrance sections for transonic or high-speed subsonic wind tunnels with rectangular cross sections is discribed. The transition from a circular cross-section setting chamber to a rectangular test section is accomplished smoothly so as not to introduce secondary flows (vortices or boundary-layer separation) into a uniform test stream. The results of static-pressure measurements in the transition region and of static and total-pressure surveys in the test section of a pilot model for a new facility at the Ames Research Center are presented.

  1. Analysis and amelioration about the cross-sensitivity of a high resolution MOEMS accelerometer based on diffraction grating

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan

    2016-10-01

    Cross-sensitivity is a crucial parameter since it detrimentally affect the performance of an accelerometer, especially for a high resolution accelerometer. In this paper, a suite of analytical and finite-elements-method (FEM) models for characterizing the mechanism and features of the cross-sensitivity of a single-axis MOEMS accelerometer composed of a diffraction grating and a micromachined mechanical sensing chip are presented, which have not been systematically investigated yet. The mechanism and phenomena of the cross-sensitivity of this type MOEMS accelerometer based on diffraction grating differ quite a lot from the traditional ones owing to the identical sensing principle. By analyzing the models, some ameliorations and the modified design are put forward to suppress the cross-sensitivity. The modified design, achieved by double sides etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer, is validated to have a far smaller cross-sensitivity compared with the design previously reported in the literature. Moreover, this design can suppress the cross-sensitivity dramatically without compromising the acceleration sensitivity and resolution.

  2. Ultrabroadband Design for Linear Polarization Conversion and Asymmetric Transmission Crossing X- and K- Band

    PubMed Central

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Haiyan; Zhang, Li; Li, En; Xie, Jianliang; Deng, Longjiang

    2016-01-01

    In this work, a high-efficiency and broadband reflective converter using ultrathin planar metamaterial (MM) composed of single-layered SRR is firstly realized. Numerical and experimental results demonstrate that the cross-polarization conversion reflectance above 0.84 is achieved from 8.6 to 18.6 GHz for linearly polarized (LP) incident waves under normal incidence. Subsequently, a multi-layered MM based on SRR enables a dramatic improvement of the recently demonstrated asymmetric transmission (AT) effect. Theoretical and measured results present that strong one-way transmission of two orthogonally polarized waves crossing C- and K- band has been observed. These two separated AT pass-bands have a function of selective polarization filter, which can be switched on/off by changing the polarization state of incident waves. The physical mechanisms are elucidated by taking advantage of electric fields and current distributions. Considering the broad bandwidth and the dual band, we believe that these two structures will be beneficial for designing polarization-controlled and selective transmission converter. PMID:27658929

  3. Ultrabroadband Design for Linear Polarization Conversion and Asymmetric Transmission Crossing X- and K- Band.

    PubMed

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Haiyan; Zhang, Li; Li, En; Xie, Jianliang; Deng, Longjiang

    2016-09-23

    In this work, a high-efficiency and broadband reflective converter using ultrathin planar metamaterial (MM) composed of single-layered SRR is firstly realized. Numerical and experimental results demonstrate that the cross-polarization conversion reflectance above 0.84 is achieved from 8.6 to 18.6 GHz for linearly polarized (LP) incident waves under normal incidence. Subsequently, a multi-layered MM based on SRR enables a dramatic improvement of the recently demonstrated asymmetric transmission (AT) effect. Theoretical and measured results present that strong one-way transmission of two orthogonally polarized waves crossing C- and K- band has been observed. These two separated AT pass-bands have a function of selective polarization filter, which can be switched on/off by changing the polarization state of incident waves. The physical mechanisms are elucidated by taking advantage of electric fields and current distributions. Considering the broad bandwidth and the dual band, we believe that these two structures will be beneficial for designing polarization-controlled and selective transmission converter.

  4. Cross-layer shared protection strategy towards data plane in software defined optical networks

    NASA Astrophysics Data System (ADS)

    Xiong, Yu; Li, Zhiqiang; Zhou, Bin; Dong, Xiancun

    2018-04-01

    In order to ensure reliable data transmission on the data plane and minimize resource consumption, a novel protection strategy towards data plane is proposed in software defined optical networks (SDON). Firstly, we establish a SDON architecture with hierarchical structure of data plane, which divides the data plane into four layers for getting fine-grained bandwidth resource. Then, we design the cross-layer routing and resource allocation based on this network architecture. Through jointly considering the bandwidth resource on all the layers, the SDN controller could allocate bandwidth resource to working path and backup path in an economical manner. Next, we construct auxiliary graphs and transform the shared protection problem into the graph vertex coloring problem. Therefore, the resource consumption on backup paths can be reduced further. The simulation results demonstrate that the proposed protection strategy can achieve lower protection overhead and higher resource utilization ratio.

  5. Electronically cloaked nanoparticles

    NASA Astrophysics Data System (ADS)

    Shen, Wenqing

    The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.

  6. Optimised cross-layer synchronisation schemes for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Nasri, Nejah; Ben Fradj, Awatef; Kachouri, Abdennaceur

    2017-07-01

    This paper aims at synchronisation between the sensor nodes. Indeed, in the context of wireless sensor networks, it is necessary to take into consideration the energy cost induced by the synchronisation, which can represent the majority of the energy consumed. On communication, an already identified hard point consists in imagining a fine synchronisation protocol which must be sufficiently robust to the intermittent energy in the sensors. Hence, this paper worked on aspects of performance and energy saving, in particular on the optimisation of the synchronisation protocol using cross-layer design method such as synchronisation between layers. Our approach consists in balancing the energy consumption between the sensors and choosing the cluster head with the highest residual energy in order to guarantee the reliability, integrity and continuity of communication (i.e. maximising the network lifetime).

  7. Differential collision cross-sections for atomic oxygen: Analysis of space flight instruments for solar terrestrial physics

    NASA Technical Reports Server (NTRS)

    Torr, Douglas G.

    1991-01-01

    A summary of the status of the Cross-section Facility at MSFC is presented. A facility was designed, fabricated, assembled, tested, and operated for measurement of differential scattering cross sections important to understand the induced environment for a vehicle (e.g., Space Station) in low earth orbit. A user's manual for the facility is also presented. The performance of the facility was evaluated and found to be satisfactory in all the essential areas. Differential scattering cross sections were measured and results for the scattering measurements are included. Input to the development of the Ultraviolet Imager Optical System is also discussed. Design, fabrication, and evaluation of UV filters using a four-layer aluminum base are reported.

  8. Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers.

    PubMed

    Xia, H M; Wan, S Y M; Shu, C; Chew, Y T

    2005-07-01

    We report two chaotic micromixers that exhibit fast mixing at low Reynolds numbers in this paper. Passive mixers usually use the channel geometry to stir the fluids, and many previously reported designs rely on inertial effects which are only available at moderate Re. In this paper, we propose two chaotic micromixers using two-layer crossing channels. Both numerical and experimental studies show that the mixers are very efficient for fluid manipulation at low Reynolds numbers, such as stretching and splitting, folding and recombination, through which chaotic advection can be generated and the mixing is significantly promoted. More importantly, the generation of chaotic advection does not rely on the fluid inertial forces, so the mixers work well at very low Re. The mixers are benchmarked against a three-dimensional serpentine mixer. Results show that the latter is inefficient at Re = 0.2, while the new design exhibits rapid mixing at Re = 0.2 and at Re of O(10(-2)). The new mixer design will benefit various microfluidic systems.

  9. Correlative Magnetic Imaging of Heat-Assisted Magnetic Recording Media in Cross Section Using Lorentz TEM and MFM

    DOE PAGES

    Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.; ...

    2017-10-23

    In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less

  10. Correlative Magnetic Imaging of Heat-Assisted Magnetic Recording Media in Cross Section Using Lorentz TEM and MFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.

    In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less

  11. SRB thermal curtain design support

    NASA Technical Reports Server (NTRS)

    Dixon, Carl A.; Lundblad, Wayne E.; Koenig, John R.

    1992-01-01

    Improvements in SRB Thermal Curtain were identified by thermal design featuring: selection of materials capable of thermal protection and service temperatures by tri-layering quartz, S2 glass, and Kevlar in thinner cross section; weaving in single piece (instead of 24 sections) to achieve improved strength; and weaving to reduce manufacturing cost with angle interlock construction.

  12. A Survey on Underwater Acoustic Sensor Network Routing Protocols.

    PubMed

    Li, Ning; Martínez, José-Fernán; Meneses Chaus, Juan Manuel; Eckert, Martina

    2016-03-22

    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

  13. A Survey on Underwater Acoustic Sensor Network Routing Protocols

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Meneses Chaus, Juan Manuel; Eckert, Martina

    2016-01-01

    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research. PMID:27011193

  14. Modelling the protocol stack in NCS with deterministic and stochastic petri net

    NASA Astrophysics Data System (ADS)

    Hui, Chen; Chunjie, Zhou; Weifeng, Zhu

    2011-06-01

    Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.

  15. Cross-Layer Design for Space-Time coded MIMO Systems over Rice Fading Channel

    NASA Astrophysics Data System (ADS)

    Yu, Xiangbin; Zhou, Tingting; Liu, Xiaoshuai; Yin, Xin

    A cross-layer design (CLD) scheme for space-time coded MIMO systems over Rice fading channel is presented by combining adaptive modulation and automatic repeat request, and the corresponding system performance is investigated well. The fading gain switching thresholds subject to a target packet error rate (PER) and fixed power constraint are derived. According to these results, and using the generalized Marcum Q-function, the calculation formulae of the average spectrum efficiency (SE) and PER of the system with CLD are derived. As a result, closed-form expressions for average SE and PER are obtained. These expressions include some existing expressions in Rayleigh channel as special cases. With these expressions, the system performance in Rice fading channel is evaluated effectively. Numerical results verify the validity of the theoretical analysis. The results show that the system performance in Rice channel is effectively improved as Rice factor increases, and outperforms that in Rayleigh channel.

  16. Using Cross-Sectional Imaging to Convey Organ Relationships: An Integrated Learning Environment for Students of Gross Anatomy

    PubMed Central

    Forman, Bruce H.; Eccles, Randy; Piggins, Judith; Raila, Wayne; Estey, Greg; Barnett, G. Octo

    1990-01-01

    We have developed a visually oriented, computer-controlled learning environment designed for use by students of gross anatomy. The goals of this module are to reinforce the concepts of organ relationships and topography by using computed axial tomographic (CAT) images accessed from a videodisc integrated with color graphics and to introduce students to cross-sectional radiographic anatomy. We chose to build the program around CAT scan images because they not only provide excellent structural detail but also offer an anatomic orientation (transverse) that complements that used in the dissection laboratory (basically a layer-by-layer, anterior-to-posterior, or coronal approach). Our system, built using a Microsoft Windows-386 based authoring environment which we designed and implemented, integrates text, video images, and graphics into a single screen display. The program allows both user browsing of information, facilitated by hypertext links, and didactic sessions including mini-quizzes for self-assessment.

  17. Design of a polarization-independent, wide-angle, broadband visible absorber

    NASA Astrophysics Data System (ADS)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    Many optical systems benefit from elements that can absorb a broad range of wavelengths over a wide range of angles, independent of polarization. In this paper, we present a polarization-independent, wide-angle, broadband absorber in the visible regime that exploits strong symmetric and asymmetric resonance modes of electromagnetic dipoles. It makes use of a bilayer cross-pattern structure which is simple, having five layers that include two stacks of metal ribbon in cross-patterns, two dielectric spacers and a metal reflecting layer. Simulations show that the design exhibits a significantly enhanced absorption property when compared to a device with a bilayer metal film structure or any other complex structure of cross-patterns that have no intersection angle. The maximum absorption efficiency of the device is 100% at resonances, and its absorption characteristics can be maintained over a wide range of angles of incidence - up to ± 60° - regardless of the incident polarization. This strategy can, in principle, be applied to other material systems and could be useful in diverse applications, including thermal emitters, photovoltaics and photodetectors.

  18. Fabrication of cross-shaped Cu-nanowire resistive memory devices using a rapid, scalable, and designable inorganic-nanowire-digital-alignment technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Wentao; Lee, Yeongjun; Min, Sung-Yong; Park, Cheolmin; Lee, Tae-Woo

    2016-09-01

    Resistive random-access memory (RRAM) is a candidate next generation nonvolatile memory due to its high access speed, high density and ease of fabrication. Especially, cross-point-access allows cross-bar arrays that lead to high-density cells in a two-dimensional planar structure. Use of such designs could be compatible with the aggressive scaling down of memory devices, but existing methods such as optical or e-beam lithographic approaches are too complicated. One-dimensional inorganic nanowires (i-NWs) are regarded as ideal components of nanoelectronics to circumvent the limitations of conventional lithographic approaches. However, post-growth alignment of these i-NWs precisely on a large area with individual control is still a difficult challenge. Here, we report a simple, inexpensive, and rapid method to fabricate two-dimensional arrays of perpendicularly-aligned, individually-conductive Cu-NWs with a nanometer-scale CuxO layer sandwiched at each cross point, by using an inorganic-nanowire-digital-alignment technique (INDAT) and a one-step reduction process. In this approach, the oxide layer is self-formed and patterned, so conventional deposition and lithography are not necessary. INDAT eliminates the difficulties of alignment and scalable fabrication that are encountered when using currently-available techniques that use inorganic nanowires. This simple process facilitates fabrication of cross-point nonvolatile memristor arrays. Fabricated arrays had reproducible resistive switching behavior, high on/off current ratio (Ion/Ioff) 10 6 and extensive cycling endurance. This is the first report of memristors with the resistive switching oxide layer self-formed, self-patterned and self-positioned; we envision that the new features of the technique will provide great opportunities for future nano-electronic circuits.

  19. A game-theoretic method for cross-layer stochastic resilient control design in CPS

    NASA Astrophysics Data System (ADS)

    Shen, Jiajun; Feng, Dongqin

    2018-03-01

    In this paper, the cross-layer security problem of cyber-physical system (CPS) is investigated from the game-theoretic perspective. Physical dynamics of plant is captured by stochastic differential game with cyber-physical influence being considered. The sufficient and necessary condition for the existence of state-feedback equilibrium strategies is given. The attack-defence cyber interactions are formulated by a Stackelberg game intertwined with stochastic differential game in physical layer. The condition such that the Stackelberg equilibrium being unique and the corresponding analytical solutions are both provided. An algorithm is proposed for obtaining hierarchical security strategy by solving coupled games, which ensures the operational normalcy and cyber security of CPS subject to uncertain disturbance and unexpected cyberattacks. Simulation results are given to show the effectiveness and performance of the proposed algorithm.

  20. A Review of Protocol Implementations and Energy Efficient Cross-Layer Design for Wireless Body Area Networks

    PubMed Central

    Hughes, Laurie; Wang, Xinheng; Chen, Tao

    2012-01-01

    The issues inherent in caring for an ever-increasing aged population has been the subject of endless debate and continues to be a hot topic for political discussion. The use of hospital-based facilities for the monitoring of chronic physiological conditions is expensive and ties up key healthcare professionals. The introduction of wireless sensor devices as part of a Wireless Body Area Network (WBAN) integrated within an overall eHealth solution could bring a step change in the remote management of patient healthcare. Sensor devices small enough to be placed either inside or on the human body can form a vital part of an overall health monitoring network. An effectively designed energy efficient WBAN should have a minimal impact on the mobility and lifestyle of the patient. WBAN technology can be deployed within a hospital, care home environment or in the patient's own home. This study is a review of the existing research in the area of WBAN technology and in particular protocol adaptation and energy efficient cross-layer design. The research reviews the work carried out across various layers of the protocol stack and highlights how the latest research proposes to resolve the various challenges inherent in remote continual healthcare monitoring. PMID:23202185

  1. Cross-layer design for intrusion detection and data security in wireless ad hoc sensor networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2007-09-01

    A wireless ad hoc sensor network is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. The nodes are severely resource-constrained, with limited processing, memory and power capacities and must operate cooperatively to fulfill a common mission in typically unattended modes. In a wireless sensor network (WSN), each sensor at a node can observe locally some underlying physical phenomenon and sends a quantized version of the observation to sink (destination) nodes via wireless links. Since the wireless medium can be easily eavesdropped, links can be compromised by intrusion attacks from nodes that may mount denial-of-service attacks or insert spurious information into routing packets, leading to routing loops, long timeouts, impersonation, and node exhaustion. A cross-layer design based on protocol-layer interactions is proposed for detection and identification of various intrusion attacks on WSN operation. A feature set is formed from selected cross-layer parameters of the WSN protocol to detect and identify security threats due to intrusion attacks. A separate protocol is not constructed from the cross-layer design; instead, security attributes and quantified trust levels at and among nodes established during data exchanges complement customary WSN metrics of energy usage, reliability, route availability, and end-to-end quality-of-service (QoS) provisioning. Statistical pattern recognition algorithms are applied that use observed feature-set patterns observed during network operations, viewed as security audit logs. These algorithms provide the "best" network global performance in the presence of various intrusion attacks. A set of mobile (software) agents distributed at the nodes implement the algorithms, by moving among the layers involved in the network response at each active node and trust neighborhood, collecting parametric information and executing assigned decision tasks. The communications overhead due to security mechanisms and the latency in network response are thus minimized by reducing the need to move large amounts of audit data through resource-limited nodes and by locating detection/identification programs closer to audit data. If network partitioning occurs due to uncoordinated node exhaustion, data compromise or other effects of the attacks, the mobile agents can continue to operate, thereby increasing fault tolerance in the network response to intrusions. Since the mobile agents behave like an ant colony in securing the WSN, published ant colony optimization (ACO) routines and other evolutionary algorithms are adapted to protect network security, using data at and through nodes to create audit records to detect and respond to denial-of-service attacks. Performance evaluations of algorithms are performed by simulation of a few intrusion attacks, such as black hole, flooding, Sybil and others, to validate the ability of the cross-layer algorithms to enable WSNs to survive the attacks. Results are compared for the different algorithms.

  2. Nano-fabricated plasmonic optical transformer

    DOEpatents

    Choo, Hyuck; Cabrini, Stefano; Schuck, P. James; Liang, Xiaogan; Yablonovitch, Eli

    2015-06-09

    The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.

  3. Frame Transmission Efficiency-Based Cross-Layer Congestion Notification Scheme in Wireless Ad Hoc Networks.

    PubMed

    He, Huaguang; Li, Taoshen; Feng, Luting; Ye, Jin

    2017-07-15

    Different from the traditional wired network, the fundamental cause of transmission congestion in wireless ad hoc networks is medium contention. How to utilize the congestion state from the MAC (Media Access Control) layer to adjust the transmission rate is core work for transport protocol design. However, recent works have shown that the existing cross-layer congestion detection solutions are too complex to be deployed or not able to characterize the congestion accurately. We first propose a new congestion metric called frame transmission efficiency (i.e., the ratio of successful transmission delay to the frame service delay), which describes the medium contention in a fast and accurate manner. We further present the design and implementation of RECN (ECN and the ratio of successful transmission delay to the frame service delay in the MAC layer, namely, the frame transmission efficiency), a general supporting scheme that adjusts the transport sending rate through a standard ECN (Explicit Congestion Notification) signaling method. Our method can be deployed on commodity switches with small firmware updates, while making no modification on end hosts. We integrate RECN transparently (i.e., without modification) with TCP on NS2 simulation. The experimental results show that RECN remarkably improves network goodput across multiple concurrent TCP flows.

  4. SOI CMOS Imager with Suppression of Cross-Talk

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Zheng, Xingyu; Cunningham, Thomas J.; Seshadri, Suresh; Sun, Chao

    2009-01-01

    A monolithic silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) image-detecting integrated circuit of the active-pixel-sensor type, now undergoing development, is designed to operate at visible and near-infrared wavelengths and to offer a combination of high quantum efficiency and low diffusion and capacitive cross-talk among pixels. The imager is designed to be especially suitable for astronomical and astrophysical applications. The imager design could also readily be adapted to general scientific, biological, medical, and spectroscopic applications. One of the conditions needed to ensure both high quantum efficiency and low diffusion cross-talk is a relatively high reverse bias potential (between about 20 and about 50 V) on the photodiode in each pixel. Heretofore, a major obstacle to realization of this condition in a monolithic integrated circuit has been posed by the fact that the required high reverse bias on the photodiode is incompatible with metal oxide/semiconductor field-effect transistors (MOSFETs) in the CMOS pixel readout circuitry. In the imager now being developed, the SOI structure is utilized to overcome this obstacle: The handle wafer is retained and the photodiode is formed in the handle wafer. The MOSFETs are formed on the SOI layer, which is separated from the handle wafer by a buried oxide layer. The electrical isolation provided by the buried oxide layer makes it possible to bias the MOSFETs at CMOS-compatible potentials (between 0 and 3 V), while biasing the photodiode at the required higher potential, and enables independent optimization of the sensory and readout portions of the imager.

  5. Cross-layer Energy Optimization Under Image Quality Constraints for Wireless Image Transmissions.

    PubMed

    Yang, Na; Demirkol, Ilker; Heinzelman, Wendi

    2012-01-01

    Wireless image transmission is critical in many applications, such as surveillance and environment monitoring. In order to make the best use of the limited energy of the battery-operated cameras, while satisfying the application-level image quality constraints, cross-layer design is critical. In this paper, we develop an image transmission model that allows the application layer (e.g., the user) to specify an image quality constraint, and optimizes the lower layer parameters of transmit power and packet length, to minimize the energy dissipation in image transmission over a given distance. The effectiveness of this approach is evaluated by applying the proposed energy optimization to a reference ZigBee system and a WiFi system, and also by comparing to an energy optimization study that does not consider any image quality constraint. Evaluations show that our scheme outperforms the default settings of the investigated commercial devices and saves a significant amount of energy at middle-to-large transmission distances.

  6. Gain enhancement with near-zero-index metamaterial superstrate

    NASA Astrophysics Data System (ADS)

    Bouzouad, M.; Chaker, S. M.; Bensafielddine, D.; Laamari, E. M.

    2015-11-01

    The objective of this paper was to use a near-zero-index ( n) metamaterial as a single- or a double-layer superstrate suspended above a microstrip patch antenna, operating at 43 GHz, for the gain enhancement. The single metamaterial layer superstrate consists of a periodic arrangement of Jerusalem cross unit cells and behaves as an homogeneous medium characterized by a refractive index close to zero. This metamaterial property allows gathering radiated waves from the antenna and collimates them toward the superstrate normal direction. The proposed design improves the antenna gain by 5.1 dB with the single-layer superstrate and 7 dB with the double-layer superstrate.

  7. Influence of fibre design and curvature on crosstalk in multi-core fibre

    NASA Astrophysics Data System (ADS)

    Egorova, O. N.; Astapovich, M. S.; Melnikov, L. A.; Salganskii, M. Yu; Mishkin, V. P.; Nishchev, K. N.; Semjonov, S. L.; Dianov, E. M.

    2016-03-01

    We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores.

  8. Design and fabrication of plasmonic cavities for magneto-optical sensing

    NASA Astrophysics Data System (ADS)

    Loughran, T. H. J.; Roth, J.; Keatley, P. S.; Hendry, E.; Barnes, W. L.; Hicken, R. J.; Einsle, J. F.; Amy, A.; Hendren, W.; Bowman, R. M.; Dawson, P.

    2018-05-01

    The design and fabrication of a novel plasmonic cavity, intended to allow far-field recovery of signals arising from near field magneto-optical interactions, is presented. Finite element modeling is used to describe the interaction between a gold film, containing cross-shaped cavities, with a nearby magnetic under-layer. The modeling revealed strong electric field confinement near the center of the cross structure for certain optical wavelengths, which may be tuned by varying the length of the cross through a range that is compatible with available fabrication techniques. Furthermore, the magneto optical Kerr effect (MOKE) response of the composite structure can be enhanced with respect to that of the bare magnetic film. To confirm these findings, cavities were milled within gold films deposited upon a soluble film, allowing relocation to a ferromagnetic film using a float transfer technique. Cross cavity arrays were fabricated and characterized by optical transmission spectroscopy prior to floating, revealing resonances at optical wavelengths in good agreement with the finite element modeling. Following transfer to the magnetic film, circular test apertures within the gold film yielded clear magneto-optical signals even for diameters within the sub-wavelength regime. However, no magneto-optical signal was observed for the cross cavity arrays, since the FIB milling process was found to produce nanotube structures within the soluble under-layer that adhered to the gold. Further optimization of the fabrication process should allow recovery of magneto-optical signal from cross cavity structures.

  9. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    PubMed Central

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

    2014-01-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  10. Design and simulation of multi-color infrared CMOS metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2016-05-01

    Metamaterial electromagnetic wave absorbers, which usually can be fabricated in a low weight thin film structure, have a near unity absorptivity in a special waveband, and therefore have been widely applied from microwave to optical waveband. To increase absorptance of CMOS MEMS devices in 2-5 μmm waveband, multi-color infrared metamaterial absorbers are designed with CSMC 0.5 μmm 2P3M and 0.18 μmm 1P6M CMOS technology in this work. Metal-insulator-metal (MIM) three-layer MMAs and Insulator-metal-insulator-metal (MIMI) four-layer MMAs are formed by CMOS metal interconnect layers and inter metal dielectrics layer. To broaden absorption waveband in 2-5μmm range, MMAs with a combination of different sizes cross bars are designed. The top metal layer is a periodic aluminum square array or cross bar array with width ranging from submicron to several microns. The absorption peak position and intensity of MMAs can be tuned by adjusting the top aluminum micro structure array. Post-CMOS process is adopted to fabricate MMAs. The infrared absorption spectra of MMAs are verified with finite element method simulation, and the effects of top metal structure sizes, patterns, and films thickness are also simulated and intensively discussed. The simulation results show that CMOS MEMS MMAs enhance infrared absorption in 2-20 μmm. The MIM broad MMA has an average absorptance of 0.22 in 2-5 μmm waveband, and 0.76 in 8-14 μm waveband. The CMOS metamaterial absorbers can be inherently integrated in many kinds of MEMS devices fabricated with CMOS technology, such as uncooled bolometers, infrared thermal emitters.

  11. Reactive polymer multilayers fabricated by covalent layer-by-layer assembly: 1,4-conjugate addition-based approaches to the design of functional biointerfaces.

    PubMed

    Bechler, Shane L; Lynn, David M

    2012-05-14

    We report on conjugate addition-based approaches to the covalent layer-by-layer assembly of thin films and the post-fabrication functionalization of biointerfaces. Our approach is based on a recently reported approach to the "reactive" assembly of covalently cross-linked polymer multilayers driven by the 1,4-conjugate addition of amine functionality in poly(ethyleneimine) (PEI) to the acrylate groups in a small-molecule pentacrylate species (5-Ac). This process results in films containing degradable β-amino ester cross-links and residual acrylate and amine functionality that can be used as reactive handles for the subsequent immobilization of new functionality. Layer-by-layer growth of films fabricated on silicon substrates occurred in a supra-linear manner to yield films ≈ 750 nm thick after the deposition of 80 PEI/5-Ac layers. Characterization by atomic force microscopy (AFM) suggested a mechanism of growth that involves the reactive deposition of nanometer-scale aggregates of PEI and 5-Ac during assembly. Infrared (IR) spectroscopy studies revealed covalent assembly to occur by 1,4-conjugate addition without formation of amide functionality. Additional experiments demonstrated that acrylate-containing films could be postfunctionalized via conjugate addition reactions with small-molecule amines that influence important biointerfacial properties, including water contact angles and the ability of film-coated surfaces to prevent or promote the attachment of cells in vitro. For example, whereas conjugation of the hydrophobic molecule decylamine resulted in films that supported cell adhesion and growth, films treated with the carbohydrate-based motif D-glucamine resisted cell attachment and growth almost completely for up to 7 days in serum-containing media. We demonstrate that this conjugate addition-based approach also provides a means of immobilizing functionality through labile ester linkages that can be used to promote the long-term, surface-mediated release of conjugated species and promote gradual changes in interfacial properties upon incubation in physiological media (e.g., over a period of at least 1 month). These covalently cross-linked films are relatively stable in biological media for prolonged periods, but they begin to physically disintegrate after ≈ 30 days, suggesting opportunities to use this covalent layer-by-layer approach to design functional biointerfaces that ultimately erode or degrade to facilitate elimination.

  12. Surface modification of paper on a continuous atmospheric-pressure-plasma system

    NASA Astrophysics Data System (ADS)

    Cruz-Barba, Luis Emilio

    Plasma technologies for the continuous modification of materials in atmospheric-pressure-plasma conditions were used to evaluate the surface modification of paper under different plasma conditions. The generation of hydrophobic layers was used to characterize the efficiency of the originally designed system for future application in the paper industry. Generation of hydrophobic layers was carried out by deposition of thin layers from fluorine containing gases, as well as cross-linking of pre-deposited thin layers of hydrophobic materials, such as fluoropolymers and silicones, in a continuous system plasma reactor (CSPR). Physical and chemical characterization of these layers was carried out by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle goniometry, and water absorption evaluations. Pure gaseous CF4 and a CF4/CH4 mixture were used to deposit fluorinated layers, rendering paper surfaces with low to moderate relative surface atomic contents of fluorine (2.5 to 16.3%). Morphological characterization revealed that the deposition consists of small clusters of fluorinated species scattered on the surface. Contact angle evaluations (50°--70°) indicated a reduction in the water affinity of the paper. Thin layers of fluoropolymer pre-deposited on paper surfaces were cross-linked in the presence of CF4, CF4/CH4, and NH 3 plasmas. All of the gases proved to be effective for the cross-linking under different conditions. These cross-linked layers were determined to maintain the original polymer structure, consisting mainly of CF2-CF 2 and small quantities of CFx. Surface characterization by AFM indicated lower roughness values compared to the untreated additive-free paper (45.1 vs 67.1 nm). Paper samples treated by this approach showed a highly hydrophobic character with up to 160° contact angles, and water absorption was reduced by as much as 61.6%. Silicone layers were cross-linked in the presence of argon and oxygen plasmas. Characterization of the silicone-coated paper indicated, as in the case of fluoropolymers, the retention of the original chemical structure. Surface roughness values (AFM) were in the range of 11.8 to 18.2 nm, evidence of a very smooth surface. High hydrophobicity levels were reached, as shown by contact angles of up to 126°, and water absorption showed a maximum reduction of 76.8%.

  13. Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials.

    PubMed

    Prakash, Amit; Maikap, Siddheswar; Banerjee, Writam; Jana, Debanjan; Lai, Chao-Sung

    2013-09-06

    Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled 'SET/RESET' current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications.

  14. Design and Fabrication of a PDMS Microchip Based Immunoassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close amore » 200µm wide micro channel with flow rate up to 20µl/min.« less

  15. A route for efficient non-resonance cloaking by using multilayer dielectric coating

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Semouchkina, Elena

    2013-03-01

    An approach for designing transmission cloaks by using ordinary dielectrics instead of meta- and plasmonic materials is proposed and demonstrated by the development of a multi-layer cloak for hiding cylindrical objects larger than the wavelengths of incident radiation. The parameters of the cloak layers were found by using the Genetic Algorithm-based optimization procedure, which employed the reciprocal of total scattering cross width of the cloaked target, derived from the solution of the Helmholtz equation, as the fitness function. The proposed cloak demonstrated better cloaking efficiency than did a similarly sized metamaterial cloak designed by using the transformation optics relations.

  16. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks.

    PubMed

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-04-19

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.

  17. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks

    PubMed Central

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-01-01

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs). However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%. PMID:28422062

  18. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping

    2016-05-01

    The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f

  19. Heterojunction-Internal-Photoemission Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    New type of photodetector adds options for design of imaging devices. Heterojunction-internal-photoemission (HIP) infrared photodetectors proposed for incorporation into planar arrays in imaging devices required to function well at wavelengths from 8 to 17 micrometers and at temperatures above 65 K. Photoexcited electrons cross energy barrier at heterojunction and swept toward collection layer. Array of such detectors made by etching mesa structures. HIP layers stacked to increase quantum efficiency. Also built into integrated circuits including silicon multiplexer/readout circuits.

  20. Aerosol and Cloud Observations and Data Products by the GLAS Polar Orbiting Lidar Instrument

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. Both receiver channels meet and exceed their design goals, and beginning with a two month period through October and November 2003, an excellent global lidar data set now exists. The data products for atmospheric observations include the calibrated, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data sets are now in open release through the NASA data distribution system. The initial results on global statistics for cloud and aerosol distribution has been produced and in some cases compared to other satellite observations. The sensitivity of the cloud measurements is such that the 70% global cloud coverage result should be the most accurate to date. Results on the global distribution of aerosol are the first that produce the true height distribution for model inter-comparison.

  1. Influence of fibre design and curvature on crosstalk in multi-core fibre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorova, O N; Astapovich, M S; Semjonov, S L

    2016-03-31

    We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores. (fiber optics)

  2. Clinical knee findings in floor layers with focus on meniscal status.

    PubMed

    Rytter, Søren; Jensen, Lilli Kirkeskov; Bonde, Jens Peter

    2008-10-22

    The aim of this study was to examine the prevalence of self-reported and clinical knee morbidity among floor layers compared to a group of graphic designers, with special attention to meniscal status. We obtained information about knee complaints by questionnaire and conducted a bilateral clinical and radiographic knee examination in 134 male floor layers and 120 male graphic designers. After the exclusion of subjects with reports of earlier knee injuries the odds ratio (OR) with 95% confidence intervals (CI) of knee complaints and clinical findings were computed among floor layers compared to graphic designers, using logistic regression. Estimates were adjusted for effects of body mass index, age and knee straining sports. Using radiographic evaluations, we conducted side-specific sensitivity analyses regarding clinical signs of meniscal lesions after the exclusion of participants with tibiofemoral (TF) osteoarthritis (OA). Reports of knee pain (OR = 2.7, 95% CI = 1.5-4.6), pain during stair walking (OR = 2.2, 95% CI = 1.3-3.9) and symptoms of catching of the knee joint (OR = 2.9, 95% CI = 1.4-5.7) were more prevalent among floor layers compared to graphic designers. Additionally, significant more floor layers than graphic designers had clinical signs suggesting possible meniscal lesions: a positive McMurray test (OR = 2.4, 95% CI = 1.1-5.0) and TF joint line tenderness (OR = 5.4, 95% CI = 2.4-12.0). Excluding floor layers (n = 22) and graphic designers (n = 15) with radiographic TF OA did not alter this trend between the two study groups: a positive McMurray test (OR = 2.2, 95% CI = 1.0-4.9), TF joint line tenderness (OR = 5.0, 95% CI = 2.0-12.5). Results indicate that floor layers have a high prevalence of both self-reported and clinical knee morbidity. Clinical knee findings suggesting possible meniscal lesions were significant more prevalent among floor layers compared to a group of low-level exposed graphic designers and an association with occupational kneeling could be possible. However, causality cannot be confirmed due to the cross-sectional study design.

  3. Cross-Layer Resilience Exploration

    DTIC Science & Technology

    2015-03-31

    complex 563 server-class systems) and any arbitrary fault model (permanent, transient, multi-bit, etc.) System Design Analysis Using flip- flop ...level fault injection, we rank the vulnerability of each flip- flop in the processor in terms of its likelihood to propagate faults [3]. This allows the...hardened flip- flops , which are flip- flops designed to uphold the bit representation of their output circuit even under particle strikes [1, 6, 10

  4. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pala, Ragip A.; Butun, Serkan; Aydin, Koray

    2016-09-19

    Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and broadband absorption enhancement by direct coupling of incoming light to resonant modes of subwavelength scale Mie nanoresonators defined in the thin-film active layer. Absorption was investigated both theoretically and experimentally in prototypes consisting of lithographically patterned, two-dimensional periodic arrays ofmore » silicon nanoresonators on silica substrates. A crossed trapezoid resonator shape of rectangular cross section is used to excite broadband Mie resonances across visible and near-IR spectra. Our numerical simulations, optical absorption measurements and photocurrent spectral response measurements demonstrate that crossed trapezoidal Mie resonant structures enable angle-insensitive, broadband absorption. A short circuit current density of 12.0 mA/cm 2 is achieved in 210 nm thick patterned Si films, yielding a 4-fold increase compared to planar films of the same thickness. As a result, it is suggested that silicon metasurfaces with Mie resonator arrays can provide useful insights to guide future ultrathin-film solar cell designs incorporating nanostructured thin active layers.« less

  5. Broadband Via-Less Microwave Crossover Using Microstrip-CPW Transitions

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; U-Yen, Kongpop; Wollack, Edward; Moseley, Samuel; Hsieh, Wen-Ting

    2011-01-01

    The front-to-back interface between microstrip and CPW (coplanar waveguide) typically requires complex fabrication or has high radiation loss. The microwave crossover typically requires a complex fabrication step. The prior art in microstrip-CPW transition requires a physical vias connection between the microstrip and CPW line on a separate layer. The via-less version of this transition was designed empirically and does not have a close form solution. The prior art of the micro wave crossover requires either additional substrate or wire bond as an air bridge to isolate two microwave lines at the crossing junction. The disadvantages are high radiation loss, no analytical solution to the problem, lengthy simulation time, and complex fabrication procedures to generate air bridges or via. The disadvantage of the prior crossover is a complex fabrication procedure, which also affects the device reliability and yield. This microstrip-CPW transition is visualized as two microstrip-slotline transitions combined in a way that the radiation from two slotlines cancels each other out. The invention is designed based on analytical methods; thus, it significantly reduces the development time. The crossover requires no extra layer to cross two microwave signals and has low radiation loss. The invention is simple to fabricate and design. It produces low radiation loss and can be designed with low insertion loss, with some tradeoff with signal isolation. The microstrip-CPW transition is used as an interface to connect between the device and the circuit outside the package. The via-less microwave crossover is used to allow two signals to cross without using an extra layer or fabrication processing step to enable this function. This design allows the solution to be determined entirely though analytical techniques. In addition, a planar via-less microwave crossover using this technique was proposed. The experimental results show that the proposed crossover at 5 GHz has a minimum isolation of 32 dB. It also has low in-band insertion loss and return loss of 1.2 dB and 18 dB, respectively, over more than 44 percent of bandwidth at room temperature. This microstrip-CPW transition requires the microstrip line to be split into two sections. Each section is connected to a microstrip quarter-wavelength openended stub. A slotline is also placed perpendicular to the microstrip section. The slot is connected to a grounded-end quarter-wavelength slotline and generates a microstrip-slotline transition. When two of these sections are placed in parallel and with the microstrip section combined at transition, a microstrip- CPW transition is formed. The slotline radiation is suppressed as two slots are excited with the electric field in an opposite direction, which cancels the radiation in far field. The invention on the crossover consists of the invented microstrip-CPW transitions combined back-to-back and a microstrip low-pass filter. One signal is crossed through to the microstrip layer, while the other signal is crossed through the CPW line located on the ground plane of the microstrip line. The microstrip low-pass filter produces a narrow line at the crossing point to enhance the system isolation. It also produces broadband response in the operating frequency band. The microstrip-CPW transition allows a microwave signal to travel from microstrip line to CPW line with low radiation loss. The crossover allows two microwave signals to cross with minimal parasitic coupling.

  6. Radar Absorbing Material Design

    DTIC Science & Technology

    2003-09-01

    layer will depend on the angle of the incidence of the incoming wave. However, for large and ε µ values, the direction of the refracted ray in the...1995. 3. Federation of American Scientist Official Website (www.fas.org), 22 June 2003. 4. Asoke Bhattacharyya, D.L. Sengupta, Radar Cross Section

  7. Deposition, Heat Treatment And Characterization of Two Layer Bioactive Coatings on Cylindrical PEEK

    PubMed Central

    Durham, John W.; Rabiei, Afsaneh

    2015-01-01

    Polyether ether ketone (PEEK) rods were coated via ion beam asssited deposition (IBAD) at room temperature. The coating consists of a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to increase bioactivity. A rotating substrate holder was designed to deposit an even coating on the cylindrical surface of PEEK rods; the uniformity is verified by cross-sectional measurements using scanning electron microscopy (SEM). Deposition is followed by heat treatment of the coating using microwave annealing and autoclaving. Transmission electron microscopy (TEM) showed a dense, uniform columnar grain structure in the YSZ layer that is well bonded to the PEEK substrate, while the calcium phosphate layer was amorphous and pore-free in its as-deposited state. Subsequent heat treatment via microwave energy introduced HA crystallization in the calcium phosphate layer and additional autoclaving further expanded the crystallization of the HA layer. Chemical composition evaluation of the coating indicated the Ca/P ratios of the HA layer to be near that of stoichiometric HA, with minor variations through the HA layer thickness. The adhesion strength of as-deposited HA/YSZ coatings on smooth, polished PEEK surfaces was mostly unaffected by microwave heat treatment, but decreased with additional autoclave treatment. Increasing surface roughness showed improvement of bond strength. PMID:27713592

  8. A survey of heating and turbulent boundary layer characteristics of several hypersonic research aircraft configurations

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1981-01-01

    Four of the configurations investigated during a proposed NASA-Langley hypersonic research aircraft program were selected for phase-change-paint heat-transfer testing and forebody boundary layer pitot surveys. In anticipation of future hypersonic aircraft, both published and unpublished data and results are reviewed and presented with the purpose of providing a synoptic heat-transfer data base from the research effort. Engineering heat-transfer predictions are compared with experimental data on both a global and a local basis. The global predictions are shown to be sufficient for purposes of configuration development, and even the local predictions can be adequate when interpreted in light of the proper flow field. In that regard, cross flow in the forebody boundary layers was examined for significant heating and aerodynamic effect on the scramjet engines. A design philosophy which evolved from the research airplane effort is used to design a forebody shape that produces thin, uniform, forebody boundary layers on a hypersonic airbreathing missile. Finally, heating/boundary layer phenomena which are not predictable with state-of-the-art knowledge and techniques are shown and discussed.

  9. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique

    NASA Astrophysics Data System (ADS)

    Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-01

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  10. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique.

    PubMed

    Do, Danh Bich; Lin, Jian Hung; Lai, Ngoc Diep; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-10

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest-host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  11. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOEpatents

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  12. Neutronic Reactor Design to Reduce Neutron Loss

    DOEpatents

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  13. An investigation of turbulence structure in a low-Reynolds-number incompressible turbulent boundary

    NASA Technical Reports Server (NTRS)

    White, B. R.; Strataridakis, C. J.

    1987-01-01

    An existing high turbulence intensity level (5%) atmospheric boundary-layer wind tunnel has been successfully converted to a relatively low level turbulence (0.3%) wind tunnel through extensive modification, testing, and calibration. A splitter plate was designed, built, and installed into the wind-tunnel facility to create thick, mature, two-dimensional turbulent boundary layer flow at zero pressure gradient. Single and cross hot-wire measurements show turbulent boundary layer characteristics of good quality with unusually large physical size, i.e., viscous sublayer of the order of 1 mm high. These confirm the potential ability of the tunnel to be utilized for future high-quality near-wall turbulent boundary layer measurements. It compares very favorably with many low turbulence research tunnels.

  14. The design of broadband radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Suk, Go H.

    1990-09-01

    There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.

  15. Cross-Layer Design for Robust and Scalable Video Transmission in Dynamic Wireless Environment

    DTIC Science & Technology

    2011-02-01

    code rate convolutional codes or prioritized Rate - Compatible Punctured ...34New rate - compatible punctured convolutional codes for Viterbi decoding," IEEE Trans. Communications, Volume 42, Issue 12, pp. 3073-3079, Dec...Quality of service RCPC Rate - compatible and punctured convolutional codes SNR Signal to noise

  16. A radio-aware routing algorithm for reliable directed diffusion in lossy wireless sensor networks.

    PubMed

    Kim, Yong-Pyo; Jung, Euihyun; Park, Yong-Jin

    2009-01-01

    In Wireless Sensor Networks (WSNs), transmission errors occur frequently due to node failure, battery discharge, contention or interference by objects. Although Directed Diffusion has been considered as a prominent data-centric routing algorithm, it has some weaknesses due to unexpected network errors. In order to address these problems, we proposed a radio-aware routing algorithm to improve the reliability of Directed Diffusion in lossy WSNs. The proposed algorithm is aware of the network status based on the radio information from MAC and PHY layers using a cross-layer design. The cross-layer design can be used to get detailed information about current status of wireless network such as a link quality or transmission errors of communication links. The radio information indicating variant network conditions and link quality was used to determine an alternative route that provides reliable data transmission under lossy WSNs. According to the simulation result, the radio-aware reliable routing algorithm showed better performance in both grid and random topologies with various error rates. The proposed solution suggested the possibility of providing a reliable transmission method for QoS requests in lossy WSNs based on the radio-awareness. The energy and mobility issues will be addressed in the future work.

  17. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites.

    PubMed

    Guo, Peijun; Stoumpos, Constantinos C; Mao, Lingling; Sadasivam, Sridhar; Ketterson, John B; Darancet, Pierre; Kanatzidis, Mercouri G; Schaller, Richard D

    2018-05-22

    Two-dimensional Ruddlesden-Popper organic-inorganic hybrid layered perovskites (2D RPs) are solution-grown semiconductors with prospective applications in next-generation optoelectronics. The heat-carrying, low-energy acoustic phonons, which are important for heat management of 2D RP-based devices, have remained unexplored. Here we report on the generation and propagation of coherent longitudinal acoustic phonons along the cross-plane direction of 2D RPs, following separate characterizations of below-bandgap refractive indices. Through experiments on single crystals of systematically varied perovskite layer thickness, we demonstrate significant reduction in both group velocity and propagation length of acoustic phonons in 2D RPs as compared to the three-dimensional methylammonium lead iodide counterpart. As borne out by a minimal coarse-grained model, these vibrational properties arise from a large acoustic impedance mismatch between the alternating layers of perovskite sheets and bulky organic cations. Our results inform on thermal transport in highly impedance-mismatched crystal sub-lattices and provide insights towards design of materials that exhibit highly anisotropic thermal dissipation properties.

  18. Love-Wave Biosensors Using Cross-Linked Polymer Waveguides on LiTaO{sub 3} Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENDER,FLORIAN; CERNOSEK,RICHARD W.; JOSSE,F.

    The design and performance of Love-wave sensors using cross-linked poly-(methyl methacrylate) waveguides of thickness of 0.3--3.2 {micro}m on LiTaO{sub 3} substrates are described. It is found that this layer-substrate combination provides sufficient waveguidance, and electrical isolation of the IDTs from the liquid environment to achieve low acoustic loss and distortion. In bio-sensing experiments, mass sensitivity up to 1,420 Hz/(ng/mm{sup 2}) is demonstrated.

  19. A Web-based, secure, light weight clinical multimedia data capture and display system.

    PubMed

    Wang, S S; Starren, J

    2000-01-01

    Computer-based patient records are traditionally composed of textual data. Integration of multimedia data has been historically slow. Multimedia data such as image, audio, and video have been traditionally more difficult to handle. An implementation of a clinical system for multimedia data is discussed. The system implementation uses Java, Secure Socket Layer (SSL), and Oracle 8i. The system is on top of the Internet so it is architectural independent, cross-platform, cross-vendor, and secure. Design and implementations issues are discussed.

  20. On the origin of pure optical rotation in twisted-cross metamaterials

    PubMed Central

    Barr, Lauren E.; Díaz-Rubio, Ana; Tremain, Ben; Carbonell, Jorge; Sánchez-Dehesa, José; Hendry, Euan; Hibbins, Alastair P.

    2016-01-01

    We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two distinct geometries: firstly, a bilayer structure comprised of arrays of metallic crosses where the crosses in the second layer are twisted about the layer normal; and secondly where the second layer is replaced by the complementary to the original, i.e. an array of cross-shaped holes. Through numerical modelling we determine the origin of rotatory effects in these two structures. In both, pure optical rotation occurs in a frequency band between two transmission minima, where alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of the coupled crosses. By contrast, in the cross/complementary-cross structure the transmission minima are associated with the dipole and quadrupole modes of the cross, the frequencies of which appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to be relatively independent of layer separation. PMID:27457405

  1. Symptomatic knee disorders in floor layers and graphic designers. A cross-sectional study

    PubMed Central

    2012-01-01

    Background Previous studies have described an increased risk of developing tibio-femoral osteoarthritis (TF OA), meniscal tears and bursitis among those with a trade as floor layers. The purpose of this study was to analyse symptomatic knee disorders among floor layers that were highly exposed to kneeling work tasks compared to graphic designers without knee-demanding work tasks. Methods Data on the Knee injury and Osteoarthritis Outcome Score (KOOS) were collected by questionnaires. In total 134 floor layers and 120 graphic designers had a bilateral radiographic knee examination to detect TF OA and patella-femoral (PF) OA. A random sample of 92 floor layers and 49 graphic designers had Magnetic Resonance Imaging (MRI) of both knees to examine meniscal tears. Means of the subscales of KOOS were compared by analysis of variance. The risk ratio of symptomatic knee disorders defined as a combination of radiological detected knee OA or MRI-detected meniscal tears combined with a low KOOS score was estimated by logistic regression in floor layers with 95% confidence interval (CI) and adjusted for age, body mass index, traumas, and knee-straining sports activities. Symptomatic knee OA or meniscal tears were defined as a combination of low KOOS-scores and radiographic or MRI pathology. Results Symptomatic TF and medial meniscal tears were found in floor layers compared to graphic designers with odds ratios 2.6 (95%CI 0.99-6.9) and 2.04 (95% CI 0.77-5.5), respectively. There were no differences in PF OA. Floor layers scored significantly lower on all KOOS subscales compared to graphic designers. Significantly lower scores on the KOOS subscales were also found for radiographic TF and PF OA regardless of trade but not for meniscal tears. Conclusions The study showed an overall increased risk of developing symptomatic TF OA in a group of floor layers with a substantial amount of kneeling work positions. Prevention would be appropriate to reduce the proportion of kneeling postures e.g. by working with tools used from a standing working position. PMID:23009280

  2. On Theoretical Broadband Shock-Associated Noise Near-Field Cross-Spectra

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    The cross-spectral acoustic analogy is used to predict auto-spectra and cross-spectra of broadband shock-associated noise in the near-field and far-field from a range of heated and unheated supersonic off-design jets. A single equivalent source model is proposed for the near-field, mid-field, and far-field terms, that contains flow-field statistics of the shock wave shear layer interactions. Flow-field statistics are modeled based upon experimental observation and computational fluid dynamics solutions. An axisymmetric assumption is used to reduce the model to a closed-form equation involving a double summation over the equivalent source at each shock wave shear layer interaction. Predictions are compared with a wide variety of measurements at numerous jet Mach numbers and temperature ratios from multiple facilities. Auto-spectral predictions of broadband shock-associated noise in the near-field and far-field capture trends observed in measurement and other prediction theories. Predictions of spatial coherence of broadband shock-associated noise accurately capture the peak coherent intensity, frequency, and spectral width.

  3. Regenerator cross arm seal assembly

    DOEpatents

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  4. Comparing Production and Placement of Warm-Mix Asphalt to Traditional Hot-Mix Asphalt for Constructing Airfield Pavements

    DTIC Science & Technology

    2013-08-01

    Sasobit® STA 0+35 cross-section layer thicknesses as constructed............................... 36  Figure 50. Evotherm ™ center-line layer thicknesses...as constructed. ................................................ 37  Figure 51. Evotherm ™ STA 0+15 cross-section layer thicknesses as constructed...37  Figure 52. Evotherm ™ STA 0+25 cross-section layer thicknesses as constructed. .......................... 38  Figure 53

  5. Design of Intelligent Cross-Layer Routing Protocols for Airborne Wireless Networks Under Dynamic Spectrum Access Paradigm

    DTIC Science & Technology

    2011-05-01

    rate convolutional codes or the prioritized Rate - Compatible Punctured ...Quality of service RCPC Rate - compatible and punctured convolutional codes SNR Signal to noise ratio SSIM... Convolutional (RCPC) codes . The RCPC codes achieve UEP by puncturing off different amounts of coded bits of the parent code . The

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Simunovic, Srdjan; Maleki, Hosein

    The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25", 0.5", 1", 2" and 3" diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicatemore » that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. As a result, the short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.« less

  7. MorphoSaurus--design and evaluation of an interlingua-based, cross-language document retrieval engine for the medical domain.

    PubMed

    Markó, K; Schulz, S; Hahn, U

    2005-01-01

    We propose an interlingua-based indexing approach to account for the particular challenges that arise in the design and implementation of cross-language document retrieval systems for the medical domain. Documents, as well as queries, are mapped to a language-independent conceptual layer on which retrieval operations are performed. We contrast this approach with the direct translation of German queries to English ones which, subsequently, are matched against English documents. We evaluate both approaches, interlingua-based and direct translation, on a large medical document collection, the OHSUMED corpus. A substantial benefit for interlingua-based document retrieval using German queries on English texts is found, which amounts to 93% of the (monolingual) English baseline. Most state-of-the-art cross-language information retrieval systems translate user queries to the language(s) of the target documents. In contra-distinction to this approach, translating both documents and user queries into a language-independent, concept-like representation format is more beneficial to enhance cross-language retrieval performance.

  8. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    DOE PAGES

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.; ...

    2016-05-26

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less

  9. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less

  10. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  11. Cross-beam pulsed laser fabrication of Free-Standing Nanostructured Carbon Nanotubes-Pt-Ceria Anode with unprecedented electroactivity and durability for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Youling; Tabet-Aoul, Amel; Gougis, Maxime; Mohamedi, Mohamed

    2015-01-01

    Owing to its inherent properties such as great capacity to store and release oxygen, lattice oxygen that has a key role in removing the CO poisoning effect, non-toxicity, abundance, low cost and low temperature processing, CeO2 is emerging as a unique class of electrode material for low temperature polymer electrolyte fuel cells such as direct ethanol fuel cells (DEFCs). However, the maximal exploitation of its functional properties is strictly reliant on the availability of optimized synthesis routes that allow tailor-designing, architecturing and manipulation of CeO2 in a precise manner when it is combined with other functional materials. Here we use the cross-beam pulsed laser deposition (CBPLD) technique to synthesize free-standing (binderless) Pt-CeO2 nanostructured thin films onto carbon nanotubes as anodes for ethanol oxidation reaction. Further significance of this work is that it establishes the importance in the design of the catalyst layer architecture. Indeed, we demonstrate here that when CeO2 material is beneath or when it is mixed with Pt, the interactions between Pt with CeO2 are not similar leading inevitably to different electrocatalytic performances. Given proper tailoring synthesis conditions, CBPLD-developed Pt-CeO2 thin films are remarkably stable and provide electrochemical performance much greater than the layer onto layer CeO2/Pt architecture.

  12. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.

  13. A Web-based, secure, light weight clinical multimedia data capture and display system.

    PubMed Central

    Wang, S. S.; Starren, J.

    2000-01-01

    Computer-based patient records are traditionally composed of textual data. Integration of multimedia data has been historically slow. Multimedia data such as image, audio, and video have been traditionally more difficult to handle. An implementation of a clinical system for multimedia data is discussed. The system implementation uses Java, Secure Socket Layer (SSL), and Oracle 8i. The system is on top of the Internet so it is architectural independent, cross-platform, cross-vendor, and secure. Design and implementations issues are discussed. Images Figure 2 Figure 3 PMID:11080014

  14. Performance analysis of cross-layer design with average PER constraint over MIMO fading channels

    NASA Astrophysics Data System (ADS)

    Dang, Xiaoyu; Liu, Yan; Yu, Xiangbin

    2015-12-01

    In this article, a cross-layer design (CLD) scheme for multiple-input and multiple-output system with the dual constraints of imperfect feedback and average packet error rate (PER) is presented, which is based on the combination of the adaptive modulation and the automatic repeat request protocols. The design performance is also evaluated over wireless Rayleigh fading channel. With the constraint of target PER and average PER, the optimum switching thresholds (STs) for attaining maximum spectral efficiency (SE) are developed. An effective iterative algorithm for finding the optimal STs is proposed via Lagrange multiplier optimisation. With different thresholds available, the analytical expressions of the average SE and PER are provided for the performance evaluation. To avoid the performance loss caused by the conventional single estimate, multiple outdated estimates (MOE) method, which utilises multiple previous channel estimation information, is presented for CLD to improve the system performance. It is shown that numerical simulations for average PER and SE are in consistent with the theoretical analysis and that the developed CLD with average PER constraint can meet the target PER requirement and show better performance in comparison with the conventional CLD with instantaneous PER constraint. Especially, the CLD based on the MOE method can obviously increase the system SE and reduce the impact of feedback delay greatly.

  15. Optimal Policy of Cross-Layer Design for Channel Access and Transmission Rate Adaptation in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    He, Hao; Wang, Jun; Zhu, Jiang; Li, Shaoqian

    2010-12-01

    In this paper, we investigate the cross-layer design of joint channel access and transmission rate adaptation in CR networks with multiple channels for both centralized and decentralized cases. Our target is to maximize the throughput of CR network under transmission power constraint by taking spectrum sensing errors into account. In centralized case, this problem is formulated as a special constrained Markov decision process (CMDP), which can be solved by standard linear programming (LP) method. As the complexity of finding the optimal policy by LP increases exponentially with the size of action space and state space, we further apply action set reduction and state aggregation to reduce the complexity without loss of optimality. Meanwhile, for the convenience of implementation, we also consider the pure policy design and analyze the corresponding characteristics. In decentralized case, where only local information is available and there is no coordination among the CR users, we prove the existence of the constrained Nash equilibrium and obtain the optimal decentralized policy. Finally, in the case that the traffic load parameters of the licensed users are unknown for the CR users, we propose two methods to estimate the parameters for two different cases. Numerical results validate the theoretic analysis.

  16. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  17. Independent polarization and multi-band THz absorber base on Jerusalem cross

    NASA Astrophysics Data System (ADS)

    Arezoomand, Afsaneh Saee; Zarrabi, Ferdows B.; Heydari, Samaneh; Gandji, Navid P.

    2015-10-01

    In this paper, we present the design and simulation of a single and multi-band perfect metamaterial absorber (MA) in the THz region base on Jerusalem cross (JC) and metamaterial load in unit cells. The structures consist of dual metallic layers for allowing near-perfect absorption with absorption peak of more than 99%. In this novel design, four-different shape of Jerusalem cross is presented and by adding L, U and W shape loaded to first structure, we tried to achieve a dual-band absorber. In addition, by good implementation of these loaded, we are able to control the absorption resonance at second resonance at 0.9, 0.7 and 0.85 THz respectively. In the other hand, we achieved a semi stable designing at first resonance between 0.53 and 0.58 THz. The proposed absorber has broadband polarization angle. The surface current modeled and proved the broadband polarization angle at prototype MA. The LC resonance of the metamaterial for Jerusalem cross and modified structures are extracting from equivalent circuit. As a result, proposed MA is useful for THz medical imaging and communication systems and the dual-band absorber has applications in many scientific and technological areas.

  18. Grading technologies for the manufacture of innovative cutting blades

    NASA Astrophysics Data System (ADS)

    Rostek, Tim; Homberg, Werner

    2018-05-01

    Cutting blades for harvesting applications are used in a variety of agricultural machines. These parts are in contact with highly abrasive lawn clippings and often wear out within hours which results in high expensive re-sharpening maintenance. This paper relates to manufacturing techniques enhancing the durability of cutting blades based on a structural analysis of the prevailing wear mechanisms containing chipping and abrasive wear. Each mechanism results in specific demands on the cutting edge's mechanical characteristics. The design of evaluation methods respectively is one issue of the paper. This is basis for approaches to improve the cutting edge performance on purpose. On option to improve abrasive wear resistance and, thus, service life is the application of locally graded steel materials as semi-finished products for self-sharpening cutting blades. These materials comprise a layered structure consisting of a hard, wear resistant layer and a relatively softer layer which is lesser wear resistant. As the cutting blade is subjected to wear conditions, the less wear resistant layer wears faster than the relatively more wear resistant harder layer revealing a durable cross section of the cutting edge and, thus, cutting performance. Anyways, chipping is another key issue on the cutting edge's lifetime. Here, the cutting edges cross section by means of geometry and grind respectively as well as its mechanical properties matter. FEM analysis reveal innovative options to optimize the cross section of the blade as well as thermomechanical strengthening add further strength to reduce chipping. This paper contains a comprehensive strategy to improve cutting blades with use of innovative manufacturing technologies which apply application-specific graded mechanical characteristics and, thus, significantly improved performance characteristics.

  19. SHELL MICROSTRUCTURE OF GASTROPODS FROM LAKE TANGANYIKA, AFRICA: ADAPTATION, CONVERGENT EVOLUTION, AND ESCALATION.

    PubMed

    West, Kelly; Cohen, Andrew

    1996-04-01

    Gastropod shells from Lake Tanganyika, with their heavy calcification, coarse noded ribbing, spines, apertural lip thickening and repair scars, resemble marine shells more closely than they resemble other lacustrine shells. This convergence between Tanganyikan and marine gastropod shells, however, is not just superficial. Scanning electron microscope (SEM) studies reveal that the Tanganyikan shells are primarily layers of crossed-lamellar crystal architecture (that is, needle-like aragonite crystals arranged into laths that are packed into sheets such that the aragonite needles of adjacent laths are never parallel). The number of crossed-lamellar layers can vary from one to four between different Tanganyikan gastropod species. In species with two or more crossed-lamellar layers, the orientation of the lamellae is offset by approximately 90° between the different layers. The number of crossed-lamellar layers in the shell wall is positively correlated with shell strength and with predation resistance. Three and four crossed-lamellar layers in the shell wall evolved several times independently within the endemic thiarid gastropod radiation in Lake Tanganyika. Repeated origins of three and four crossed-lamellar layers suggest that they may be specific adaptations by Tanganyikan gastropods to strengthen their shells as a defense against shell-crushing predators. © 1996 The Society for the Study of Evolution.

  20. Growth of ZnMgTe/ZnTe waveguide structures on ZnTe (0 0 1) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kumagai, Y.; Imada, S.; Baba, T.; Kobayashi, M.

    2011-05-01

    ZnMgTe/ZnTe/ZnMgTe layered structures were grown on (0 0 1) ZnTe substrates by molecular beam epitaxy. This structure was designed to apply to waveguides in various optoelectronic devices to reduce light loss. Since the lattice mismatch between ZnTe and ZnMgTe was not negligible, the critical layer thickness (CLT) was theoretically derived. Structures with varying Mg composition and layer thickness of ZnMgTe cladding layer were grown and examined for crystal quality with respect to theoretical data. The crystal quality was investigated by means of cross sectional transmission electron microscopy (TEM) and reciprocal space mapping (RSM). Optical confinements were observed by irradiating a laser beam from one end of the sample and monitoring the transmitted light from the other end.

  1. Developing a Standard Method for Link-Layer Security of CCSDS Space Communications

    NASA Technical Reports Server (NTRS)

    Biggerstaff, Craig

    2009-01-01

    Communications security for space systems has been a specialized field generally far removed from considerations of mission interoperability and cross-support in fact, these considerations often have been viewed as intrinsically opposed to security objectives. The space communications protocols defined by the Consultative Committee for Space Data Systems (CCSDS) have a twenty-five year history of successful use in over 400 missions. While the CCSDS Telemetry, Telecommand, and Advancing Orbiting Systems protocols for use at OSI Layer 2 are operationally mature, there has been no direct support within these protocols for communications security techniques. Link-layer communications security has been successfully implemented in the past using mission-unique methods, but never before with an objective of facilitating cross-support and interoperability. This paper discusses the design of a standard method for cryptographic authentication, encryption, and replay protection at the data link layer that can be integrated into existing CCSDS protocols without disruption to legacy communications services. Integrating cryptographic operations into existing data structures and processing sequences requires a careful assessment of the potential impediments within spacecraft, ground stations, and operations centers. The objective of this work is to provide a sound method for cryptographic encapsulation of frame data that also facilitates Layer 2 virtual channel switching, such that a mission may procure data transport services as needed without involving third parties in the cryptographic processing, or split independent data streams for separate cryptographic processing.

  2. Development of quiet-flow supersonic wind tunnels for laminar-turbulent transition research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1994-01-01

    This grant supported research into quiet-flow supersonic wind-tunnels, between May 1990 and December 1994. Quiet-flow nozzles operate with laminar nozzle-wall boundary layers, in order to provide low-disturbance flow for studies of laminar-turbulent transition under conditions comparable to flight. Major accomplishments include: (1) the design, fabrication, and performance-evaluation of a new kind of quiet tunnel, a quiet-flow Ludweig tube; (2) the integration of preexisting codes for nozzle design, 2D boundary-layer computation, and transition-estimation into a single user-friendly package for quiet-nozzle design; and (3) the design and preliminary evaluation of supersonic nozzles with square cross-section, as an alternative to conventional quiet-flow nozzles. After a brief summary of (1), a description of (2) is presented. Published work describing (3) is then summarized. The report concludes with a description of recent results for the Tollmien-Schlichting and Gortler instability in one of the square nozzles previously analyzed.

  3. Study on the millimeter-wave scale absorber based on the Salisbury screen

    NASA Astrophysics Data System (ADS)

    Yuan, Liming; Dai, Fei; Xu, Yonggang; Zhang, Yuan

    2018-03-01

    In order to solve the problem on the millimeter-wave scale absorber, the Salisbury screen absorber is employed and designed based on the RL. By optimizing parameters including the sheet resistance of the surface resistive layer, the permittivity and the thickness of the grounded dielectric layer, the RL of the Salisbury screen absorber could be identical with that of the theoretical scale absorber. An example is given to verify the effectiveness of the method, where the Salisbury screen absorber is designed by the proposed method and compared with the theoretical scale absorber. Meanwhile, plate models and tri-corner reflector (TCR) models are constructed according to the designed result and their scattering properties are simulated by FEKO. Results reveal that the deviation between the designed Salisbury screen absorber and the theoretical scale absorber falls within the tolerance of radar Cross section (RCS) measurement. The work in this paper has important theoretical and practical significance in electromagnetic measurement of large scale ratio.

  4. Whole-angle spherical retroreflector using concentric layers of homogeneous optical media.

    PubMed

    Oakley, John P

    2007-03-01

    Spherical retroreflectors have a much greater acceptance angle than conventional retroreflectors such as corner cubes. However, the optical performance of known spherical reflectors is limited by spherical aberration. It is shown that third-order spherical aberration may be corrected by using two or more layers of homogeneous optical media of different refractive indices. The performance of the retroreflector is characterized by the scattering (or radar) cross section, which is calculated by using optical design software. A practical spherical reflector is described that offers a significant increase in optical performance over existing devices. No gradient index components are required, and the device is constructed by using conventional optical materials and fabrication techniques. The experimental results confirm that the device operates correctly at the design wavelength of 690 nm.

  5. Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness

    PubMed Central

    Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.

    2015-01-01

    A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057

  6. Energy Efficient, Cross-Layer Enabled, Dynamic Aggregation Networks for Next Generation Internet

    NASA Astrophysics Data System (ADS)

    Wang, Michael S.

    Today, the Internet traffic is growing at a near exponential rate, driven predominately by data center-based applications and Internet-of-Things services. This fast-paced growth in Internet traffic calls into question the ability of the existing optical network infrastructure to support this continued growth. The overall optical networking equipment efficiency has not been able to keep up with the traffic growth, creating a energy gap that makes energy and cost expenditures scale linearly with the traffic growth. The implication of this energy gap is that it is infeasible to continue using existing networking equipment to meet the growing bandwidth demand. A redesign of the optical networking platform is needed. The focus of this dissertation is on the design and implementation of energy efficient, cross-layer enabled, dynamic optical networking platforms, which is a promising approach to address the exponentially growing Internet bandwidth demand. Chapter 1 explains the motivation for this work by detailing the huge Internet traffic growth and the unsustainable energy growth of today's networking equipment. Chapter 2 describes the challenges and objectives of enabling agile, dynamic optical networking platforms and the vision of the Center for Integrated Access Networks (CIAN) to realize these objectives; the research objectives of this dissertation and the large body of related work in this field is also summarized. Chapter 3 details the design and implementation of dynamic networking platforms that support wavelength switching granularity. The main contribution of this work involves the experimental validation of deep cross-layer communication across the optical performance monitoring (OPM), data, and control planes. The first experiment shows QoS-aware video streaming over a metro-scale test-bed through optical power monitoring of the transmission wavelength and cross-layer feedback control of the power level. The second experiment extends the performance monitoring capabilities to include real-time monitoring of OSNR and polarization mode dispersion (PMD) to enable dynamic wavelength switching and selective restoration. Chapter 4 explains the author?s contributions in designing dynamic networking at the sub-wavelength switching granularity, which can provide greater network efficiency due to its finer granularity. To support dynamic switching, regeneration, adding/dropping, and control decisions on each individual packet, the cross-layer enabled node architecture is enhanced with a FPGA controller that brings much more precise timing and control to the switching, OPM, and control planes. Furthermore, QoS-aware packet protection and dynamic switching, dropping, and regeneration functionalities were experimentally demonstrated in a multi-node network. Chapter 5 describes a technique to perform optical grooming, a process of optically combining multiple incoming data streams into a single data stream, which can simultaneously achieve greater bandwidth utilization and increased spectral efficiency. In addition, an experimental demonstration highlighting a fully functioning multi-node, agile optical networking platform is detailed. Finally, a summary and discussion of future work is provided in Chapter 6. The future of the Internet is very exciting, filled with not-yet-invented applications and services driven by cloud computing and Internet-of-Things. The author is cautiously optimistic that agile, dynamically reconfigurable optical networking is the solution to realizing this future.

  7. Ester-free cross-linker molecules for ultraviolet-light-cured polysilsesquioxane gate dielectric layers of organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Okada, Shuichi; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2018-04-01

    Pentacene thin-film transistors (TFTs) were fabricated with ultraviolet-light (UV)-cured polysilsesquioxane (PSQ) gate dielectric layers using cross-linker molecules with or without ester groups. To polymerize PSQ without ester groups, thiol-ene reaction was adopted. The TFTs fabricated with PSQ layers comprising ester-free cross-linkers showed a higher carrier mobility than the TFTs with PSQ layers cross-linked with ester groups, which had large electric dipole moments that limited the carrier mobility. It was demonstrated that the thiol-ene reaction is more suitable than the conventional radical reaction for UV-cured PSQ with small dielectric constant.

  8. Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.

    PubMed

    Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing

    2017-08-01

    The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.

  9. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit

    DOE PAGES

    Wang, Hsin; Simunovic, Srdjan; Maleki, Hosein; ...

    2016-01-01

    The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25", 0.5", 1", 2" and 3" diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicatemore » that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. As a result, the short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.« less

  10. A Cross-Layer Duty Cycle MAC Protocol Supporting a Pipeline Feature for Wireless Sensor Networks

    PubMed Central

    Tong, Fei; Xie, Rong; Shu, Lei; Kim, Young-Chon

    2011-01-01

    Although the conventional duty cycle MAC protocols for Wireless Sensor Networks (WSNs) such as RMAC perform well in terms of saving energy and reducing end-to-end delivery latency, they were designed independently and require an extra routing protocol in the network layer to provide path information for the MAC layer. In this paper, we propose a new cross-layer duty cycle MAC protocol with data forwarding supporting a pipeline feature (P-MAC) for WSNs. P-MAC first divides the whole network into many grades around the sink. Each node identifies its grade according to its logical hop distance to the sink and simultaneously establishes a sleep/wakeup schedule using the grade information. Those nodes in the same grade keep the same schedule, which is staggered with the schedule of the nodes in the adjacent grade. Then a variation of the RTS/CTS handshake mechanism is used to forward data continuously in a pipeline fashion from the higher grade to the lower grade nodes and finally to the sink. No extra routing overhead is needed, thus increasing the network scalability while maintaining the superiority of duty-cycling. The simulation results in OPNET show that P-MAC has better performance than S-MAC and RMAC in terms of packet delivery latency and energy efficiency. PMID:22163895

  11. An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers.

    PubMed

    Van Blitterswyk, Jared; Rocha, Joana

    2017-02-01

    A more complete understanding of the physical relationships, between wall-pressure and turbulence, is required for modeling flow-induced noise and developing noise reduction strategies. In this study, the wall-pressure fluctuations, induced by low Reynolds number turbulent boundary layers, are experimentally studied using a high-resolution microphone array. Statistical characteristics obtained using traditional cross-correlation and cross-spectra analyses are complimented with wall-pressure-velocity cross-spectra and wavelet cross-correlations. Wall-pressure-velocity correlations revealed that turbulent activity in the buffer layer contributes at least 40% of the energy to the wall-pressure spectrum at all measured frequencies. As Reynolds number increases, the low-frequency energy shifts from the buffer layer to the logarithmic layer, as expected for regions of uniform streamwise momentum formed by hairpin packets. Conditional cross-spectra suggests that the majority of broadband wall-pressure energy is concentrated within the packets, with the pressure signatures of individual hairpin vortices estimated to decay on average within traveling ten displacement thicknesses, and the packet signature is retained for up to seven boundary layer thicknesses on average.

  12. Cross-layer Design for MIMO Systems with Transmit Antenna Selection and Imperfect CSI

    NASA Astrophysics Data System (ADS)

    Yu, Xiangbin; Liu, Yan; Rui, Yun; Zhou, Tingting; Yin, Xin

    2013-04-01

    In this paper, by combining adaptive modulation and automatic repeat request (ARQ), a cross-layer design (CLD) scheme for multiple-input and multiple-output (MIMO) system with transmit antenna selection (TAS) and imperfect channel state information (CSI) is presented. Based on the imperfect CSI, the probability density function of the effective signal to noise ratio (SNR) is derived, and the fading gain switching thresholds are also derived subject to a target packet loss rate and fixed power constraint. According to these results, we further derive the average spectrum efficiency (SE) and packet error rate (PER) of the system. As a result, closed-form expressions of the average SE and PER are obtained, respectively. The derived expressions include the expressions under perfect CSI as special cases, and can provide good performance evaluation for the CLD system with imperfect CSI. Simulation results verify the validity of the theoretical analysis. The results show that the CLD system with TAS provides better SE than that with space-time block coding, but the SE and PER performance of the system with imperfect CSI are worse than those with perfect CSI due to the estimation error.

  13. Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

    NASA Astrophysics Data System (ADS)

    Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian

    2018-04-01

    Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

  14. Method Development for Binding Media Analysis in Painting Cross-Sections by Desorption Electrospray Ionization-Mass Spectrometry (DESI-MS).

    PubMed

    Watts, Kristen; Lagalante, Anthony

    2018-06-06

    Art conservation science is in need of a relatively nondestructive way of rapidly identifying the binding media within a painting cross-section and isolating binding media to specific layers within the cross-section. Knowledge of the stratigraphy of cross-sections can be helpful for removing possible unoriginal paint layers on the artistic work. Desorption electrospray ionization-mass spectrometry (DESI-MS) was used in ambient mode to study cross-sections from mock-up layered paint samples and samples from a 17th century baroque painting. The DESI spray was raster scanned perpendicular to the cross-section layers to maximize lateral resolution then analyzed with a triple quadrupole mass analyzer in linear ion trap mode. From these scans, isobaric mass maps were created to map the locations of masses indicative of particular binding media onto the cross-sections. Line paint-outs of pigments in different binding media showed specific and unique ions to distinguish between the modern acrylic media and the lipid containing binding media. This included: OP (EO) 9 surfactant in positive ESI for acrylic (m/z 621), and oleic (m/z 281), stearic (m/z 283), and azelaic (m/z 187) acids in negative ESI for oil and egg tempera. DESI-MS maps of mock-up cross-sections of layered pigmented binding media showed correlation between these ions and the layers with a spatial resolution of 100 μm. DESI-MS is effective in monitoring binding media within an intact painting cross-section via mass spectrometric methods. This includes distinguishing between lipid-containing and modern binding materials present in a known mockup cross section matrix as well as identifying lipid binding media in a 17th century baroque era painting. This article is protected by copyright. All rights reserved.

  15. A new fold-cross metal mesh filter for suppressing side lobe leakage in terahertz region

    NASA Astrophysics Data System (ADS)

    Lu, Changgui; Qi, Zhengqing; Guo, Wengao; Cui, Yiping

    2018-04-01

    In this paper we propose a new type of fold-cross metal mesh band pass filter, which keeps diffraction side lobe far away from the main transmission peak and shows much better side lobe suppression. Both experimental and theoretical studies are made to analyze the mechanism of side lobe. Compared to the traditional cross filter, the fold-cross filter has a much lower side lobe with almost the same central frequency, bandwidth and highest transmission about 98%. Using the photolithography and electroplating techniques, we experimentally extend the distance between the main peak and diffraction side lobe to larger than 1 THz for the fold-cross filter, which is two times larger than the cross filter while maintaining the main peak transmissions of 89% at 1.25 THz for the two structures. This type of single layer substrate-free fold-cross metal structure shows better design flexibility and structure reliability with the introduction of fold arms for metal mesh band pass filters.

  16. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    PubMed

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  17. FAST TRACK COMMUNICATION: Evaluation of the In concentration of an InxGa1-xSb alloy layer in cross-sectional HRTEM images of III-V semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Quan, Maohua; Guo, Fengyun; Li, Meicheng; Zhao, Liancheng

    2010-08-01

    Atomic-scale positional resolved lattice spacing measurement is used to study the In concentration of the alloy layer in InAs/InxGa1-xSb superlattices by the molecular beam epitaxy techniques. The unstrained lattice distance d along three directions, [0 0 1], [1 1 0] and [1 1 1], was measured and the average lattice constant was calculated. The experimental lattice constants of InAs layers are almost equal to the theoretical ones. We have found that the average lattice constant of In0.25Ga0.75Sb alloy layers is in good agreement with previously reported Vegard's values, being slightly larger. The results indicate that the In concentration of x = 0.18 has a larger deviation compared with the designed values.

  18. Electrografted diazonium salt layers for antifouling on the surface of surface plasmon resonance biosensors.

    PubMed

    Zou, Qiongjing; Kegel, Laurel L; Booksh, Karl S

    2015-02-17

    Electrografted diazonium salt layers on the surface of surface plasmon resonance (SPR) sensors present potential for a significant improvement in antifouling coatings. A pulsed potential deposition profile was used in order to circumvent mass-transport limitations for layer deposition rate. The influence of number of pulses with respect to antifouling efficacy was evaluated by nonspecific adsorption surface coverage of crude bovine serum proteins. Instead of using empirical and rough estimated values, the penetration depth and sensitivity of the SPR instrument were experimentally determined for the calculation of nonspecific adsorption surface coverage. This provides a method to better examine antifouling surface coatings and compare crossing different coatings and experimental systems. Direct comparison of antifouling performance of different diazonium salts was facilitated by a tripad SPR sensor design. The electrografted 4-phenylalanine diazonium chloride (4-APhe) layers with zwitterionic characteristic demonstrate ultralow fouling.

  19. Pressure prediction model for compression garment design.

    PubMed

    Leung, W Y; Yuen, D W; Ng, Sun Pui; Shi, S Q

    2010-01-01

    Based on the application of Laplace's law to compression garments, an equation for predicting garment pressure, incorporating the body circumference, the cross-sectional area of fabric, applied strain (as a function of reduction factor), and its corresponding Young's modulus, is developed. Design procedures are presented to predict garment pressure using the aforementioned parameters for clinical applications. Compression garments have been widely used in treating burning scars. Fabricating a compression garment with a required pressure is important in the healing process. A systematic and scientific design method can enable the occupational therapist and compression garments' manufacturer to custom-make a compression garment with a specific pressure. The objectives of this study are 1) to develop a pressure prediction model incorporating different design factors to estimate the pressure exerted by the compression garments before fabrication; and 2) to propose more design procedures in clinical applications. Three kinds of fabrics cut at different bias angles were tested under uniaxial tension, as were samples made in a double-layered structure. Sets of nonlinear force-extension data were obtained for calculating the predicted pressure. Using the value at 0° bias angle as reference, the Young's modulus can vary by as much as 29% for fabric type P11117, 43% for fabric type PN2170, and even 360% for fabric type AP85120 at a reduction factor of 20%. When comparing the predicted pressure calculated from the single-layered and double-layered fabrics, the double-layered construction provides a larger range of target pressure at a particular strain. The anisotropic and nonlinear behaviors of the fabrics have thus been determined. Compression garments can be methodically designed by the proposed analytical pressure prediction model.

  20. A microwave scattering model for layered vegetation

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Fung, Adrian K.; Lang, Roger H.; Chauhan, Narinder S.

    1992-01-01

    A microwave scattering model was developed for layered vegetation based on an iterative solution of the radiative transfer equation up to the second order to account for multiple scattering within the canopy and between the ground and the canopy. The model is designed to operate over a wide frequency range for both deciduous and coniferous forest and to account for the branch size distribution, leaf orientation distribution, and branch orientation distribution for each size. The canopy is modeled as a two-layered medium above a rough interface. The upper layer is the crown containing leaves, stems, and branches. The lower layer is the trunk region modeled as randomly positioned cylinders with a preferred orientation distribution above an irregular soil surface. Comparisons of this model with measurements from deciduous and coniferous forests show good agreements at several frequencies for both like and cross polarizations. Major features of the model needed to realize the agreement include allowance for: (1) branch size distribution, (2) second-order effects, and (3) tree component models valid over a wide range of frequencies.

  1. Heterogeneous metasurface for high temperature selective emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolf, D., E-mail: dwoolf@psicorp.com; Hensley, J.; Cederberg, J. G.

    2014-08-25

    We demonstrate selective emission from a heterogeneous metasurface that can survive repeated temperature cycling at 1300 K. Simulations, fabrication, and characterization were performed for a cross-over-a-backplane metasurface consisting of platinum and alumina layers on a sapphire substrate. The structure was stabilized for high temperature operation by an encapsulating alumina layer. The geometry was optimized for integration into a thermophotovoltaic (TPV) system, and was designed to have its emissivity matched to the external quantum efficiency spectrum of 0.6 eV InGaAs TPV material. We present spectral measurements of the metasurface that result in a predicted 22% optical-to-electrical power conversion efficiency in a simplified modelmore » at 1300 K. Furthermore, this broadly adaptable selective emitter design can be easily integrated into full-scale TPV systems.« less

  2. Predicting transmittance spectra of electrophotographic color prints

    NASA Astrophysics Data System (ADS)

    Mourad, Safer; Emmel, Patrick; Hersch, Roger D.

    2000-12-01

    For dry toner electrophotographic color printers, we present a numerical simulation model describing the color printer responses based on a physical characterization of the different electrophotographic process steps. The proposed model introduces a Cross Transfer Efficiency designed to predict the color transmittance spectra of multi-color prints by taking into account the transfer influence of each deposited color toner layer upon the other layers. The simulation model leads to a better understanding of the factors that have an impact on printing quality. In order to avoid the additional optical non-linearities produced by light reflection on paper, we have limited the present investigation to transparency prints. The proposed model succeeded to predict the transmittance spectra of printed wedges combining two color toner layers with a mean deviation less than CIE-LAB (Delta) E equals 2.5.

  3. Study of the microstructure and mechanical properties of white clam shell.

    PubMed

    Liang, Yunhong; Zhao, Qian; Li, Xiujuan; Zhang, Zhihui; Ren, Luquan

    2016-08-01

    The microstructure and mechanical properties of white clam shell were investigated, respectively. It can be divided into horny layer, prismatic layer and nacreous layer. Crossed-lamellar structure was the microstructural characteristic. The extension direction of lamellae in prismatic layer was different from that in nacreous layer, which formed an angle on the interface between prismatic layer and nacreous layer. The phase component of three layers was CaCO3 with crystallization morphology of aragonite, which confirmed the crossed-lamellar structural characteristic. White calm shell exhibited perfect mechanical properties. The microhardness values of three layers were 273HV, 240HV and 300HV, respectively. The average values of flexure and compression strength were 110.2MPa and 80.1MPa, respectively. The macroscopical cracks crossed the lamellae and finally terminated within the length range of about 80μm. It was the microstructure characteristics, the angle on the interface between prismatic and nacreous layer and the hardness diversity among the different layers that enhanced mechanical properties of white calm shell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter

    NASA Astrophysics Data System (ADS)

    Zhu, Jianfeng; Yang, Yang; Li, Shufang

    2018-04-01

    A new and simple design of photo-excited broadband to dual-band tunable terahertz (THz) metamaterial cross polarization converter is proposed in this paper. The tunable converter is a sandwich structure with the center-cut cross-shaped metallic patterned structure as a resonator, the middle dielectric layer as a spacer and the bottom metallic film as the ground. The conductivity of the photoconductive semiconductor (Silicon) filled in the gap of the cross-shaped metallic resonator can be tuned by the incident pump power, leading to an easy modulation of the electromagnetic response of the proposed converter. The results show that the proposed cross-polarization converter can be tuned from a broadband with polarization conversion ratio (PCR) beyond 95% (1.86-2.94 THz) to dual frequency bands (fl = 1 . 46 THz &fh = 2 . 9 THz). The conversion peaks can reach 99.9% for the broadband and, 99.5% (fl) and 99.7% (fh) for the dual-band, respectively. Most importantly, numerical simulations demonstrate that the broadband/dual-band polarization conversion mechanism of the converter originates from the localized surface plasmon modes, which make the design simple and different from previous designs. With these good features, the proposed broadband to dual-band tunable polarization converter is expected to be used in widespread applications.

  5. Design and calibration of the mixing layer and wind tunnel

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1989-01-01

    A detailed account of the design, assembly and calibration of a wind tunnel specifically designed for free-shear layer research is contained. The construction of this new facility was motivated by a strong interest in the study of plane mixing layers with varying initial and operating conditions. The Mixing Layer Wind tunnel is located in the Fluid Mechanics Laboratory at NASA Ames Research Center. The tunnel consists of two separate legs which are driven independently by centrifugal blowers connected to variable speed motors. The blower/motor combinations are sized such that one is smaller than the other, giving maximum flow speeds of about 20 and 40 m/s, respectively. The blower speeds can either be set manually or via the Microvax II computer. The two streams are allowed to merge in the test section at the sharp trailing edge of a slowly tapering splitter plate. The test section is 36 cm in the cross-stream direction, 91 cm in the spanwise direction and 366 cm in length. One test section side-wall is slotted for probe access and adjustable so that the streamwise pressure gradient may be controlled. The wind tunnel is also equipped with a computer controlled, three-dimensional traversing system which is used to investigate the flow fields with pressure and hot-wire instrumentation. The wind tunnel calibration results show that the mean flow in the test section is uniform to within plus or minus 0.25 pct and the flow angularity is less than 0.25 deg. The total streamwise free-stream turbulence intensity level is approximately 0.15 pct. Currently the wind tunnel is being used in experiments designed to study the three-dimensional structure of plane mixing layers and wakes.

  6. A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2011-01-01

    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908

  7. Multilayer biomimetics: reversible covalent stabilization of a nanostructured biofilm.

    PubMed

    Li, Bingyun; Haynie, Donald T

    2004-01-01

    Designed polypeptides and electrostatic layer-by-layer self-assembly form the basis of promising research in bionanotechnology and medicine on development of polyelectrolyte multilayer films (PEMs). We show that PEMs can be formed from oppositely charged 32mers containing several cysteine residues. The polypeptides in PEMs become cross-linked under mild oxidizing conditions. This mimicking of disulfide (S-S) bond stabilization of folded protein structure confers on the PEMs a marked increase in resistance to film disassembly at acidic pH. The reversibility of S-S bond stabilization of PEMs presents further advantages for controlling physical properties of films, coatings, and other applications involving PEMs.

  8. Turbulence stress measurements in a nonadiabatic hypersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Mikulla, V.; Horstman, C. C.

    1975-01-01

    Turbulent shear stress and direct turbulent total heat-flux measurements have been made across a nonadiabatic, zero pressure gradient, hypersonic boundary layer by using specially designed hot-wire probes free of strain-gauging and wire oscillation. Heat-flux measurements were in reasonably good agreement with values obtained by integrating the energy equation using measured profiles of velocity and temperature. The shear-stress values deduced from the measurements, by assuming zero correlation of velocity and pressure fluctuations, were lower than the values obtained by integrating the momentum equation. Statistical properties of the cross-correlations are similar to corresponding incompressible measurements at approximately the same momentum-thickness Reynolds number.

  9. Cognitive Airborne Networking: Self-Aware Communications via Sensing, Adaptation, and Cross-Layer Optimization

    DTIC Science & Technology

    2011-03-01

    Karystinos and D. A. Pados, “New bounds on the total squared correlation and optimum design of DS - CDMA binary signature sets,” IEEE Trans. Commun...vol. 51, pp. 48-51, Jan. 2003. [99] C. Ding, M. Golin, and T. Klφve, “Meeting the Welch and Karystinos-Pados bounds on DS - CDMA binary signature sets...Designs, Codes and Cryptography, vol. 30, pp. 73-84, Aug. 2003. [100] V. P. Ipatov, “On the Karystinos-Pados bounds and optimal binary DS - CDMA

  10. Cross-Plane Seebeck Coefficient Measurement of Misfit Layered Compounds (SnSe)n(TiSe2)n (n = 1,3,4,5).

    PubMed

    Li, Zhen; Bauers, Sage R; Poudel, Nirakar; Hamann, Danielle; Wang, Xiaoming; Choi, David S; Esfarjani, Keivan; Shi, Li; Johnson, David C; Cronin, Stephen B

    2017-03-08

    We report cross-plane thermoelectric measurements of misfit layered compounds (SnSe) n (TiSe 2 ) n (n = 1,3,4,5), approximately 50 nm thick. Metal resistance thermometers are fabricated on the top and bottom of the (SnSe) n (TiSe 2 ) n material to measure the temperature difference and heat transport through the material directly. By varying the number of layers in a supercell, n, we vary the interface density while maintaining a constant global stoichiometry. The Seebeck coefficient measured across the (SnSe) n (TiSe 2 ) n samples was found to depend strongly on the number of layers in the supercell (n). When n decreases from 5 to 1, the cross-plane Seebeck coefficient decreases from -31 to -2.5 μV/K, while the cross-plane effective thermal conductivity decreases by a factor of 2, due to increased interfacial phonon scattering. The cross-plane Seebeck coefficients of the (SnSe) n (TiSe 2 ) n are very different from the in-plane Seebeck coefficients, which are higher in magnitude and less sensitive to the number of layers in a supercell, n. We believe this difference is due to the different carrier types in the n-SnSe and p-TiSe 2 layers and the effect of tunneling on the cross-plane transport.

  11. The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes

    NASA Astrophysics Data System (ADS)

    Vineesh, Thazhe Veettil; Alwarappan, Subbiah; Narayanan, Tharangattu N.

    2015-04-01

    Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07315k

  12. Investigation of novel fractal shape of the nano-aperture as a metasurface for bio sensing application

    NASA Astrophysics Data System (ADS)

    Heydari, Samaneh; Rastan, Iman; Parvin, Amin; Pirooj, Azadeh; Zarrabi, Ferdows B.

    2017-01-01

    Recently, nano-aperture is noticed due to its good transmission in the optical regime. Also, the nano-apertures are developed at the metasurface design for circular polarization; for this aim, various shapes of the nano-aperture are suggested. To reach this objective, we have developed a novel Jerusalem cross fractal shape for a mid-infrared application. We have simulated various formations of the nano-fractal Jerusalem cross based on a simple cross to show the effect of nano-aperture shape on electrical field enhancement in the near-field which is important in spectroscopy and optical imaging. In addition, we have used a single layer graphene over the aperture as a coat for making reconfigurable characteristic also creating a membrane for placement of nano-particle over the aperture. Implementation of the graphene is an amendment to the transfer of the nano-apertures. The biological materials with a thickness of 80 nm have been placed over the graphene layer and the Figures of Merits (FOM) have been obtained. Additionally, the prototype of nano-antenna is independent from incident wave polarization. The Finite Difference Time Domain (FDTD) calculations have been implemented in the simulation and modeling the nano-apertures.

  13. Software fault-tolerance by design diversity DEDIX: A tool for experiments

    NASA Technical Reports Server (NTRS)

    Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Lyu, R. T.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.

    1986-01-01

    The use of multiple versions of a computer program, independently designed from a common specification, to reduce the effects of an error is discussed. If these versions are designed by independent programming teams, it is expected that a fault in one version will not have the same behavior as any fault in the other versions. Since the errors in the output of the versions are different and uncorrelated, it is possible to run the versions concurrently, cross-check their results at prespecified points, and mask errors. A DEsign DIversity eXperiments (DEDIX) testbed was implemented to study the influence of common mode errors which can result in a failure of the entire system. The layered design of DEDIX and its decision algorithm are described.

  14. Thermal conductivity of ultrathin nano-crystalline diamond films determined by Raman thermography assisted by silicon nanowires

    NASA Astrophysics Data System (ADS)

    Anaya, Julian; Rossi, Stefano; Alomari, Mohammed; Kohn, Erhard; Tóth, Lajos; Pécz, Béla; Kuball, Martin

    2015-06-01

    The thermal transport in polycrystalline diamond films near its nucleation region is still not well understood. Here, a steady-state technique to determine the thermal transport within the nano-crystalline diamond present at their nucleation site has been demonstrated. Taking advantage of silicon nanowires as surface temperature nano-sensors, and using Raman Thermography, the in-plane and cross-plane components of the thermal conductivity of ultra-thin diamond layers and their thermal barrier to the Si substrate were determined. Both components of the thermal conductivity of the nano-crystalline diamond were found to be well below the values of polycrystalline bulk diamond, with a cross-plane thermal conductivity larger than the in-plane thermal conductivity. Also a depth dependence of the lateral thermal conductivity through the diamond layer was determined. The results impact the design and integration of diamond for thermal management of AlGaN/GaN high power transistors and also show the usefulness of the nanowires as accurate nano-thermometers.

  15. Do viruses use vectors to penetrate mucus barriers?

    PubMed Central

    Ribbeck, Katharina

    2010-01-01

    I propose a mechanism by which viruses successfully infect new individuals, despite being immotile particles with no ability for directed movement. Within cells, viral particle movements are directed by motors and elements of the cytoskeleton, but how viruses cross extracellular barriers, like mucus, remains a mystery. I propose that viruses cross these barriers by hitch-hiking on bacteria or sperm cells which can transport themselves across mucosal layers designed to protect the underlying cells from pathogen attack. An important implication of this hypothesis is that agents that block interactions between viruses and bacteria or sperm may be new tools for disease prevention. PMID:20190864

  16. Investigation of Activation Cross Sections of the Proton Induced Nuclear Reactions on Natural Iron at Medium Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditroi, F.; Tarkanyi, F.; Csikai, J.

    2005-05-24

    Iron is one of the most important structural materials in every field of science, technology, industry, etc. Its application in a radiating environment requires the knowledge of accurate excitation functions for the possible reactions in question. By using the Thin Layer Activation technique (TLA) the knowledge of such data is also extremely important even in the case of relative measurements to design the irradiation (irradiation energy, beam intensity, duration) and also for radioactive safety estimations. The cross sections are frequently measured at low energies but there are unsatisfactory and unreliable data in the energy range above 40 MeV.

  17. Investigation of Activation Cross Sections of the Proton Induced Nuclear Reactions on Natural Iron at Medium Energies

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Csikai, J.; Uddin, M. S.; Hagiwara, M.; Baba, M.

    2005-05-01

    Iron is one of the most important structural materials in every field of science, technology, industry, etc. Its application in a radiating environment requires the knowledge of accurate excitation functions for the possible reactions in question. By using the Thin Layer Activation technique (TLA) the knowledge of such data is also extremely important even in the case of relative measurements to design the irradiation (irradiation energy, beam intensity, duration) and also for radioactive safety estimations. The cross sections are frequently measured at low energies but there are unsatisfactory and unreliable data in the energy range above 40 MeV.

  18. Scale Dependence of the Mechanical Properties and Microstructure of Crustaceans Thin Films as Biomimetic Materials

    NASA Astrophysics Data System (ADS)

    Verma, Devendra; Qu, Tao; Tomar, Vikas

    2015-04-01

    The exoskeletons of crustacean species in the form of thin films have been investigated by several researchers to better understand the role played by the exoskeletal structure in affecting the functioning of species such as shrimps, crabs, and lobsters. These species exhibit similar designs in their exoskeleton microstructure, such as a Bouligand pattern (twisted plywood structure), layers of different thickness across cross section, change in mineral content through the layers, etc. Different parts of crustaceans exhibit a significant variation in mechanical properties based on the variation in the above-mentioned parameters. This change in mechanical properties has been analyzed by using imaging techniques such as scanning electron microscopy and energy-dispersive x-ray spectroscopy, and by using mechanical characterization techniques such as nanoindentation and atomic force microscopy. In this article, the design principles of these biological composites are discussed based on two shrimp species: Rimicaris exoculata and Pandalus platyceros.

  19. Analysis of single-layer metamaterial absorber with reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Tang, Ming-Chun; Hong, Jing-Song

    2015-04-01

    A reflection theory is employed to analyze a single-layered metamaterial absorber. With the necessary conditions for zero reflection, the permittivity and permeability as functions of absorptivity were obtained, which are suitable for analyzing the absorption properties of single-layered metamaterial absorber at both normal and oblique incidence cases. With the obtained expressions, it not only can explain why the absorption peaks monotonously decrease with increasing of the incident angles but also can explore the relationship between the absorptivity and spacer thickness of the dielectric slab. A Jerusalem cross metamaterial absorber was simulated and verified the validity of this proposed reflection theory. The main contribution of our work is that it can explain the physical mechanism of the various absorption peaks by using the analytical formula and highlights its potential guidance for designing and analyzing metamaterial absorbers in the future.

  20. Space-Time Processing for Tactical Mobile Ad Hoc Networks

    DTIC Science & Technology

    2007-08-01

    rates in mobile ad hoc networks. In addition, he has considered the design of a cross-layer multi-user resource allocation framework using a... framework for many-to-one communication. In this context, multiple nodes cooperate to transmit their packets simultaneously to a single node using multi...spatially multiplexed signals transmitted from multiple nodes. Our goal is to form a framework that activates different sets of communication links

  1. The CMS Level-1 Calorimeter Trigger for LHC Run II

    NASA Astrophysics Data System (ADS)

    Sinthuprasith, Tutanon

    2017-01-01

    The phase-1 upgrades of the CMS Level-1 calorimeter trigger have been completed. The Level-1 trigger has been fully commissioned and it will be used by CMS to collect data starting from the 2016 data run. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Design, which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The architecture is flexible and the number of trigger processors can be expanded according to the physics needs of CMS. Intelligent, more complex, and innovative algorithms are now the core of the first decision layer of CMS: the upgraded trigger system implements pattern recognition and MVA (Boosted Decision Tree) regression techniques in the trigger processors for pT assignment, pile up subtraction, and isolation requirements for electrons, and taus. The performance of the TMT design and the latency measurements and the algorithm performance which has been measured using data is also presented here.

  2. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  3. Cross Section High Resolution Imaging of Polymer-Based Materials

    NASA Astrophysics Data System (ADS)

    Delaportas, D.; Aden, P.; Muckle, C.; Yeates, S.; Treutlein, R.; Haq, S.; Alexandrou, I.

    This paper describes a methodology for preparing cross sections of organic layers suitable for transmission electron microscopy (TEM) at high resolution. Our principal aim is to prepare samples that are tough enough to allow the slicing into sub-150 nm sections. We also need strong contrast at the organic layer area to make it identifiable during TEM. Our approach is to deposit organic layers on flexible substrates and prepare thin cross sections using ultra-microtomy. We sandwich the organic layer between two metal thin films in order to isolate it and improve contrast. Our methodology is used to study the microstructure of polymer/nanotube composites, allowing us to accurately measure the organic layer thickness, determine nanotube dispersion and assess the effect of nanotube clustering on film structural stability.

  4. Anisotropic mechanical behaviors and their structural dependences of crossed-lamellar structure in a bivalve shell.

    PubMed

    Jiao, D; Liu, Z Q; Qu, R T; Zhang, Z F

    2016-02-01

    Crossed-lamellar structure is one of the most common organizations found in mollusk shells and may serve as a natural mimetic model for designing bio-inspired synthetic materials. Nonetheless, the mechanical behaviors and corresponding mechanisms have rarely been investigated for individual macro-layer of such structure. The integrated effects of orientation and hydration also remain unclear. In this study, the mechanical behaviors and their structural dependences of pure crossed-lamellar structure in Saxidomus purpuratus shell were systematically examined by three-point bending and compression tests. Mechanical properties and fracture mechanisms were revealed to depend strongly on the orientation, hydration state and loading condition. Three basic cracking modes of inter-platelet, trans-platelet, and along the interfaces between first-order lamellae were identified, and the interfacial separation was enhanced by hydration. Macroscopic compressive fracture was accomplished through axial splitting during which multiple toughening mechanisms were activated. The competition among different cracking modes was quantitatively evaluated by analyzing their driving stresses and resistances from fundamental mechanics. This study helps to clarify the mechanical behaviors of naturally occurring crossed-lamellar structure, and accordingly, aids in designing new bio-inspired synthetic materials by mimicking it. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bimorph Silk Microsheets with Programmable Actuating Behavior: Experimental Analysis and Computer Simulations.

    PubMed

    Ye, Chunhong; Nikolov, Svetoslav V; Geryak, Ren D; Calabrese, Rossella; Ankner, John F; Alexeev, Alexander; Kaplan, David L; Tsukruk, Vladimir V

    2016-07-13

    Microscaled self-rolling construct sheets from silk protein material have been fabricated, containing a silk bimorph composed of silk ionomers as an active layer and cross-linked silk β-sheet as the passive layer. The programmable morphology was experimentally explored along with a computational simulation to understand the mechanism of shape reconfiguration. The neutron reflectivity shows that the active silk ionomers layer undergoes remarkable swelling (eight times increase in thickness) after deprotonation while the passive silk β-sheet retains constant volume under the same conditions and supports the bimorph construct. This selective swelling within the silk-on-silk bimorph microsheets generates strong interfacial stress between layers and out-of-plane forces, which trigger autonomous self-rolling into various 3D constructs such as cylindrical and helical tubules. The experimental observations and computational modeling confirmed the role of interfacial stresses and allow programming the morphology of the 3D constructs with particular design. We demonstrated that the biaxial stress distribution over the 2D planar films depends upon the lateral dimensions, thickness and the aspect ratio of the microsheets. The results allow the fine-tuning of autonomous shape transformations for the further design of complex micro-origami constructs and the silk based rolling/unrolling structures provide a promising platform for polymer-based biomimetic devices for implant applications.

  6. GenoQuery: a new querying module for functional annotation in a genomic warehouse

    PubMed Central

    Lemoine, Frédéric; Labedan, Bernard; Froidevaux, Christine

    2008-01-01

    Motivation: We have to cope with both a deluge of new genome sequences and a huge amount of data produced by high-throughput approaches used to exploit these genomic features. Crossing and comparing such heterogeneous and disparate data will help improving functional annotation of genomes. This requires designing elaborate integration systems such as warehouses for storing and querying these data. Results: We have designed a relational genomic warehouse with an original multi-layer architecture made of a databases layer and an entities layer. We describe a new querying module, GenoQuery, which is based on this architecture. We use the entities layer to define mixed queries. These mixed queries allow searching for instances of biological entities and their properties in the different databases, without specifying in which database they should be found. Accordingly, we further introduce the central notion of alternative queries. Such queries have the same meaning as the original mixed queries, while exploiting complementarities yielded by the various integrated databases of the warehouse. We explain how GenoQuery computes all the alternative queries of a given mixed query. We illustrate how useful this querying module is by means of a thorough example. Availability: http://www.lri.fr/~lemoine/GenoQuery/ Contact: chris@lri.fr, lemoine@lri.fr PMID:18586731

  7. Cross-layer restoration with software defined networking based on IP over optical transport networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Cheng, Lei; Deng, Junni; Zhao, Yongli; Zhang, Jie; Lee, Young

    2015-10-01

    The IP over optical transport network is a very promising networking architecture applied to the interconnection of geographically distributed data centers due to the performance guarantee of low delay, huge bandwidth and high reliability at a low cost. It can enable efficient resource utilization and support heterogeneous bandwidth demands in highly-available, cost-effective and energy-effective manner. In case of cross-layer link failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In this paper, we propose a novel cross-layer restoration scheme for data center services with software defined networking based on IP over optical network. The cross-layer restoration scheme can enable joint optimization of IP network and optical network resources, and enhance the data center service restoration responsiveness to the dynamic end-to-end service demands. We quantitatively evaluate the feasibility and performances through the simulation under heavy traffic load scenario in terms of path blocking probability and path restoration latency. Numeric results show that the cross-layer restoration scheme improves the recovery success rate and minimizes the overall recovery time.

  8. Sharp focusing of laser light by multilayer cylinders with circular cross-section

    NASA Astrophysics Data System (ADS)

    Kozlova, E. S.

    2018-04-01

    In this paper, the focusing of laser light at 532 nm by dielectric cylinders with a metal shells is studied by using COMSOL Multiphysics. The analysis of cylinder design which proposed multilayered shell shows that a microcylinder with a gold-silver (or silver-gold) shell can improve the focusing process, especially in the case of TM polarization. The microcylinder with thin internal silver layer of 1 nm and outside gold layer of 9 nm focus TE-polarized light to nanojet with maximal intensity of 5.65 a.u., full width and full length at half maximum of intensity of of 0.39λ and 0.72λ, respectively.

  9. The measurement of shear stress and total heat flux in a nonadiabatic turbulent hypersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Mikulla, V.; Horstman, C. C.

    1975-01-01

    Turbulent shear stress and direct turbulent total heat-flux measurements have been made across a nonadiabatic, zero pressure gradient, hypersonic boundary layer by using specially designed hot-wire probes free of strain-gauging and wire oscillation. Heat-flux measurements were in reasonably good agreement with values obtained by integrating the energy equation using measured profiles of velocity and temperature. The shear-stress values deduced from the measurements, by assuming zero correlation of velocity and pressure fluctuations, were lower than the values obtained by integrating the momentum equation. Statistical properties of the cross-correlations are similar to corresponding incompressible measurements at approximately the same momentum-thickness Reynolds number.

  10. A wearable fabric-based speech-generating device: system design and case demonstration.

    PubMed

    Fleury, Amanda; Wu, Gloria; Chau, Tom

    2018-05-26

    Existing speech generating devices (SGD) often require caregiver intervention for setup and positioning, and thus limit opportunities for spontaneous social interaction. The advent of conductive fabrics presents an opportunity to render SGDs wearable, thus persistently available. Our goal was to design and test a wearable SGD incorporating resistive textile-based switches for a nonverbal pediatric participant with vision impairment. Quad-key fabric keypads were designed using two conductive fabrics in combination with felt and mesh insulators. The keypad with the most repeatable low force activations and the least cross-talk among keys was chosen for implementation in a wrist-worn, four-message textile SGD. The fabric-based SGD was used by a nonverbal pediatric participant for two one-week analysis periods, alternating with the user's current device for usage reference. Data were derived from usage logs, parent questionnaires and an end-of-study participant interview. The best performing keypad consisted of two layers of woven conductive fabrics and one layer of insulating felt with 10 mm apertures. Communicative interactions were higher with the fabric-based SGD, particularly at school. Unprompted initiation of communication was observed only with the fabric-based SGD. The persistent availability of the textile solution, along with esthetic appeal likely contributed to its utilization. While the participant preferred the fabric-based SGD, the parent opted for the iPod alternative, citing enhanced message intelligibility. Fabric-based SGDs are a new alternative to conventional SGD designs using rigid electronics. As such, tactile differentiability of keys, device wearability and esthetic personalization may be promising advantages for pediatric users. Implications for rehabilitation Fabric-based switches may be a promising alternative to conventional electro-mechanical switches for the control of speech-generating devices, offering functional (e.g., comfort and tactile differentiability), expressive (e.g., non-stigmatizing textile integration) and esthetic (e.g., colors and textures) appeal. The material combination of two layers of woven conductive material and one insulating layer of felt with 10 mm diameter apertures seems to provide a fabric-based keypad suitable for pediatric use, requiring low-force activation and minimal cross-talk among buttons. Fabric-based devices offer advantages of tactile differentiability and thus may be particularly suited to individuals with vision impairments. Wearable textile SGDs can be persistently available and may thus increase opportunities for communication.

  11. TCP throughput adaptation in WiMax networks using replicator dynamics.

    PubMed

    Anastasopoulos, Markos P; Petraki, Dionysia K; Kannan, Rajgopal; Vasilakos, Athanasios V

    2010-06-01

    The high-frequency segment (10-66 GHz) of the IEEE 802.16 standard seems promising for the implementation of wireless backhaul networks carrying large volumes of Internet traffic. In contrast to wireline backbone networks, where channel errors seldom occur, the TCP protocol in IEEE 802.16 Worldwide Interoperability for Microwave Access networks is conditioned exclusively by wireless channel impairments rather than by congestion. This renders a cross-layer design approach between the transport and physical layers more appropriate during fading periods. In this paper, an adaptive coding and modulation (ACM) scheme for TCP throughput maximization is presented. In the current approach, Internet traffic is modulated and coded employing an adaptive scheme that is mathematically equivalent to the replicator dynamics model. The stability of the proposed ACM scheme is proven, and the dependence of the speed of convergence on various physical-layer parameters is investigated. It is also shown that convergence to the strategy that maximizes TCP throughput may be further accelerated by increasing the amount of information from the physical layer.

  12. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  13. Elastic guided waves in a layered plate with rectangular cross section.

    PubMed

    Mukdadi, O M; Desai, Y M; Datta, S K; Shah, A H; Niklasson, A J

    2002-11-01

    Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated.

  14. Wrinkling of solidifying polymeric coatings

    NASA Astrophysics Data System (ADS)

    Basu, Soumendra Kumar

    2005-07-01

    In coatings, wrinkles are viewed as defects or as desired features for low gloss, and texture. In either case, discovering the origin of wrinkles and the conditions that lead to their formation is important. This research examines what wrinkling requires and proposes a mechanism to explain the observations. All curing wrinkling coatings contain multi-functional reactants. Upon curing, all develop a depth-wise gradient in solidification that result in a cross-linked elastic skin atop a viscous bottom layer. It is hypothesized that compressive stress develops in the skin when liquid below diffuses up into the skin. High enough compressive stress buckles the skin to produce wrinkles. The hypothesis is substantiated by experimental and theoretical evidences. Effects of various application and compositional parameters on wrinkle size in a liquid-applied acrylic coating and a powder-applied epoxy coating were examined. All three components, namely resin, cross-linker and catalyst blocked with at least equimolar volatile blocker, proved to be required for wrinkling. The wrinkling phenomenon was modeled with a theory that accounts for gradient generation, cross-linking reaction and skinning; predictions compared well with observations. Two-layer non-curing coatings that have a stiff elastic layer atop a complaint elastic bottom layer wrinkled when the top layer is compressed. The top layer was compressed by either moisture absorption or differential thermal expansion. Experimental observations compared well with predictions from a theory based on force balance in multilayer systems subjected to differential contraction or expansion. A model based on the Flory-Rehner free energy of a constrained cross-linked gel was constructed that predicts the compressive stress generated in a coating when it absorbs solvent. Linear stability analysis predicts that when a compressed elastic layer is attached atop a viscous layer, it is always unstable to buckles whose wavelength exceeds a critical value; more cross-linking and poor solvent produce higher wavelength, lower amplitude wrinkles. When a compressed elastic layer is attached atop an elastic layer and subjected to more than a critical compressive stress, it is unstable to intermediate wavelengths of buckling; better solvent, higher ratio of bottom-to-top layer thickness, and lower bottom layer modulus produce higher wavelength, higher amplitude wrinkles.

  15. Spread Spectrum Visual Sensor Network Resource Management Using an End-to-End Cross-Layer Design

    DTIC Science & Technology

    2011-02-01

    Coding In this work, we use rate compatible punctured convolutional (RCPC) codes for channel coding [11]. Using RCPC codes al- lows us to utilize Viterbi’s...11] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE Trans. Commun., vol. 36, no. 4, pp. 389...source coding rate , a channel coding rate , and a power level to all nodes in the

  16. Superscattering of light optimized by a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2014-07-01

    We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.

  17. Numerical analysis of behaviour of cross laminated timber (CLT) in blast loading

    NASA Astrophysics Data System (ADS)

    Šliseris, J.; Gaile, L.; Pakrastiņš, L.

    2017-10-01

    A non-linear computation model for CLT wall element that includes explicit dynamics and composite damage constitutive model was developed. The numerical model was compared with classical beam theory and it turned out that shear wood layer has significant shear deformations that must be taken into account when designing CLT. It turned out that impulse duration time has a major effect on the strength of CLT. Special attention must be payed when designing CLT wall, window and door architectural system in order to guarantee the robustness of structure. The proposed numerical modelling framework can be used when designing CLT buildings that can be affected by blast loading, whilst structural robustness must be guaranteed.

  18. DESIGN OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANDERER,P.; ET AL.

    2003-06-15

    Superconducting combined function magnets will be utilized for the 50GeV-750kW proton beam line for the J-PARC neutrino experiment and an R and D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2-D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.

  19. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers

    PubMed Central

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N.; Hamm, James F.; Dani, Keshav M.; Dani, Anya R.

    2017-01-01

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects. PMID:28772468

  20. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers.

    PubMed

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N; Hamm, James F; Dani, Keshav M; Dani, Anya R

    2017-01-26

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects.

  1. The structure of a three-dimensional turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Smith, F. T.; Walker, J. D. A.

    1993-01-01

    The three-dimensional turbulent boundary layer is shown to have a self-consistent two-layer asymptotic structure in the limit of large Reynolds number. In a streamline coordinate system, the streamwise velocity distribution is similar to that in two-dimensional flows, having a defect-function form in the outer layer which is adjusted to zero at the wall through an inner wall layer. An asymptotic expansion accurate to two orders is required for the cross-stream velocity which is shown to exhibit a logarithmic form in the overlap region. The inner wall-layer flow is collateral to leading order but the influence of the pressure gradient, at large but finite Reynolds numbers, is not negligible and can cause substantial skewing of the velocity profile near the wall. Conditions under which the boundary layer achieves self-similarity and the governing set of ordinary differential equations for the outer layer are derived. The calculated solution of these equations is matched asymptotically to an inner wall-layer solution and the composite profiles so formed describe the flow throughout the entire boundary layer. The effects of Reynolds number and cross-stream pressure gradient on the crossstream velocity profile are discussed and it is shown that the location of the maximum cross-stream velocity is within the overlap region.

  2. Multi-spectral Metasurface for Different Functional Control of Reflection Waves.

    PubMed

    Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang

    2016-03-22

    Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band.

  3. Multi-spectral Metasurface for Different Functional Control of Reflection Waves

    PubMed Central

    Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang

    2016-01-01

    Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206

  4. Rectangular microstrip antenna with corrugation like defects at radiating edge: A new approach to reduce cross polarization radiation

    NASA Astrophysics Data System (ADS)

    Pawar, U. A.; Mondal, D.; Nagaraju, A.; Chakraborty, S.; Singh, L. L. K.; Chattopadhyay, S.

    2018-03-01

    In this paper, single layer, simple and compact RMA, with corrugation like defects at the radiating edge, is studied thoroughly to reduce XP radiation from the patch. Unlike the earlier works reported on defected ground structure integrated patches and defect patch structures, in this work, corrugation like linear defects have been placed at the radiating edges of the patch to reduce cross polarisation radiation. Around 30-40 dB of CP-XP isolation is observed in H-plane with 7% impedance bandwidth and in E-plane also, more than 55 dB CP-XP isolation is found. The proposed structure is very simple to design and easy to fabricate.

  5. Modeling and characterization of through-the-thickness properties of 3D woven composites

    NASA Technical Reports Server (NTRS)

    Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei

    1995-01-01

    The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.

  6. Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin

    PubMed Central

    Appel, Esther; Heepe, Lars; Lin, Chung-Ping; Gorb, Stanislav N

    2015-01-01

    Dragonflies count among the most skilful of the flying insects. Their exceptional aerodynamic performance has been the subject of various studies. Morphological and kinematic investigations have showed that dragonfly wings, though being rather stiff, are able to undergo passive deformation during flight, thereby improving the aerodynamic performance. Resilin, a rubber-like protein, has been suggested to be a key component in insect wing flexibility and deformation in response to aerodynamic loads, and has been reported in various arthropod locomotor systems. It has already been found in wing vein joints, connecting longitudinal veins to cross veins, and was shown to endow the dragonfly wing with chordwise flexibility, thereby most likely influencing the dragonfly’s flight performance. The present study revealed that resilin is not only present in wing vein joints, but also in the internal cuticle layers of veins in wings of Sympetrum vulgatum (SV) and Matrona basilaris basilaris (MBB). Combined with other structural features of wing veins, such as number and thickness of cuticle layers, material composition, and cross-sectional shape, resilin most probably has an effect on the vein′s material properties and the degree of elastic deformations. In order to elucidate the wing vein ultrastructure and the exact localisation of resilin in the internal layers of the vein cuticle, the approaches of bright-field light microscopy, wide-field fluorescence microscopy, confocal laser-scanning microscopy, scanning electron microscopy and transmission electron microscopy were combined. Wing veins were shown to consist of up to six different cuticle layers and a single row of underlying epidermal cells. In wing veins of MBB, the latter are densely packed with light-scattering spheres, previously shown to produce structural colours in the form of quasiordered arrays. Longitudinal and cross veins differ significantly in relative thickness of exo- and endocuticle, with cross veins showing a much thicker exocuticle. The presence of resilin in the unsclerotised endocuticle suggests its contribution to an increased energy storage and material flexibility, thus to the prevention of vein damage. This is especially important in the highly stressed longitudinal veins, which have much lower possibility to yield to applied loads with the aid of vein joints, as the cross veins do. These results may be relevant not only for biologists, but may also contribute to optimise the design of micro-air vehicles. PMID:26352411

  7. Cross-immunoreactivity between the LH1 antibody and cytokeratin epitopes in the differentiating epidermis of embryos of the grass snake Natrix natrix L. during the end stages of embryogenesis.

    PubMed

    Swadźba, Elwira; Rupik, Weronika

    2012-01-01

    The monoclonal anti-cytokeratin 1/10 (LH1) antibody recognizing K1/K10 keratin epitopes that characterizes a keratinized epidermis of mammals cross-reacts with the beta and Oberhäutchen layers covering the scales and gastrosteges of grass snake embryos during the final period of epidermis differentiation. The immunolocalization of the anti-cytokeratin 1/10 (LH1) antibody appears in the beta layer of the epidermis, covering the outer surface of the gastrosteges at the beginning of developmental stage XI, and in the beta layer of the epidermis, covering the outer surface of the scales at the end of developmental stage XI. This antibody cross-reacts with the Oberhäutchen layers in the epidermis covering the outer surface of both scales and gastrosteges at developmental stages XI and XII just before its fusion with the beta layers. After fusion of the Oberhäutchen and beta layers, LH1 immunolabeling is weaker than before. This might suggest that alpha-keratins in these layers of the epidermis are masked by beta-keratins, modified, or degraded. The anti-cytokeratin 1/10 (LH1) antibody stains the Oberhäutchen layer in the epidermis covering the inner surface of the gastrosteges and the hinge regions between gastrosteges at the end of developmental stage XI. However, the Oberhäutchen of the epidermis covering the inner surfaces of the scales and the hinge regions between scales does not show cytokeratin 1/10 (LH1) immunolabeling until hatching. This cross-reactivity suggests that the beta and Oberhäutchen layers probably contain some alpha-keratins that react with the LH1 antibody. It is possible that these alpha-keratins create specific scaffolding for the latest beta-keratin deposition. It is also possible that the LH1 antibody cross-reacts with other epidermal proteins such as filament-associated proteins, i.e., filaggrin-like. The anti-cytokeratin 1/10 (LH1) antibody does not stain the alpha and mesos layers until hatching. We suppose that the differentiation of these layers will begin just after the first postnatal sloughing.

  8. Designing an upgrade of the Medley setup for light-ion production and fission cross-section measurements

    NASA Astrophysics Data System (ADS)

    Jansson, K.; Gustavsson, C.; Al-Adili, A.; Hjalmarsson, A.; Andersson-Sundén, E.; Prokofiev, A. V.; Tarrío, D.; Pomp, S.

    2015-09-01

    Measurements of neutron-induced fission cross-sections and light-ion production are planned in the energy range 1-40 MeV at the upcoming Neutrons For Science (NFS) facility. In order to prepare our detector setup for the neutron beam with continuous energy spectrum, a simulation software was written using the Geant4 toolkit for both measurement situations. The neutron energy range around 20 MeV is troublesome when it comes to the cross-sections used by Geant4 since data-driven cross-sections are only available below 20 MeV but not above, where they are based on semi-empirical models. Several customisations were made to the standard classes in Geant4 in order to produce consistent results over the whole simulated energy range. Expected uncertainties are reported for both types of measurements. The simulations have shown that a simultaneous precision measurement of the three standard cross-sections H(n,n), 235U(n,f) and 238U(n,f) relative to each other is feasible using a triple layered target. As high resolution timing detectors for fission fragments we plan to use Parallel Plate Avalanche Counters (PPACs). The simulation results have put some restrictions on the design of these detectors as well as on the target design. This study suggests a fissile target no thicker than 2 μm (1.7 mg/cm2) and a PPAC foil thickness preferably less than 1 μm. We also comment on the usability of Geant4 for simulation studies of neutron reactions in this energy range.

  9. Technology of an adhesive silicone film as drug carrier in transdermal therapy. I: Analytical methods used for characterization and design of the universal elastomer layers.

    PubMed

    Mojsiewicz-Pieńkowska, Krystyna; Jamrógiewicz, Marzena; Zebrowska, Maria; Sznitowska, Małgorzata; Centkowska, Katarzyna

    2011-08-25

    Silicone polymers possess unique properties, which make them suitable for many different applications, for example in the pharmaceutical and medical industry. To create an adhesive silicone film, the appropriate silicone components have to be chosen first. From these components two layers were made: an adhesive elastomer applied on the skin, and a non-adhesive elastomer on the other side of the film. The aim of this study was to identify a set of analytical methods that can be used for detailed characterization of the elastomer layers, as needed when designing new silicone films. More specifically, the following methods were combined to detailed identification of the silicone components: Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (¹H NMR) and size exclusion chromatography with evaporative light scattering detector (SEC-ELSD). It was demonstrated that these methods together with a rheological analysis are suitable for controlling the cross-linking reaction, thus obtaining the desired properties of the silicone film. Adhesive silicone films can be used as universal materials for medical use, particularly for effective treatment of scars and keloids or as drug carriers in transdermal therapy.

  10. Finite element simulation of thickness changes in laminate during thermoforming

    NASA Astrophysics Data System (ADS)

    White, K. D.; Sherwood, J. A.

    2017-10-01

    This paper discusses a numerical investigation of thickness changes of Dyneema HB80, a cross-ply thermoplastic lamina, during a helmet thermoforming process. The main mode of deformation during the preform phase of manufacture is in-plane shearing of the fabric. A laminate undergoes varying degrees of shear to conform to the geometric variations over the surface of the preform shape. Decreases in areal coverage that occur with increases in the local shear angle will lead to a resulting increase in local thickness. During the consolidation phase, multiple preform layers are compressed in a set of matched tools, and the compounding of the thickness variations can adversely affect the uniformity of pressure distribution between matched die tooling. Pressure variations over the surface of the part can lead to incomplete consolidation of the ply stack, as well as weakened, resin-rich areas. Because wrinkling of the composite reinforcement, incomplete consolidation and resin-rich areas can result in a compromised structural performance, it is important that the manufacturing process be well understood so it can be designed to mitigate formation of such defects. In the current work, the material properties derived from shear, bending and tensile tests are implemented in a finite element model of the cross-ply lamina. The finite element model uses a hybrid discrete mesoscopic approach, and deep-draw forming of the material is simulated to investigate its formability to a hemispherical geometry. Thickening of the lamina resulting from shear deformation is investigated and incorporated into models single-layer preform simulations. The simulation results are used to inform the design of multiple-layer preforms to mitigate the development of thin regions and out-of-plane waves to ensure complete, uniform consolidation.

  11. HYDROGEN ELECTROLYZER FLOW DISTRIBUTOR MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadday, M

    2006-09-28

    The hybrid sulfur process (HyS) hydrogen electrolyzer consists of a proton exchange membrane (PEM) sandwiched between two porous graphite layers. An aqueous solution of sulfuric acid with dissolved SO{sub 2} gas flows parallel to the PEM through the porous graphite layer on the anode side of the electrolyzer. A flow distributor, consisting of a number of parallel channels acting as headers, promotes uniform flow of the anolyte fluid through the porous graphite layer. A numerical model of the hydraulic behavior of the flow distributor is herein described. This model was developed to be a tool to aid the design ofmore » flow distributors. The primary design objective is to minimize spatial variations in the flow through the porous graphite layer. The hydraulic data from electrolyzer tests consists of overall flowrate and pressure drop. Internal pressure and flow distributions are not measured, but these details are provided by the model. The model has been benchmarked against data from tests of the current electrolyzer. The model reasonably predicts the viscosity effect of changing the fluid from water to an aqueous solution of 30 % sulfuric acid. The permeability of the graphite layer was the independent variable used to fit the model to the test data, and the required permeability for a good fit is within the range literature values for carbon paper. The model predicts that reducing the number of parallel channels by 50 % will substantially improve the uniformity of the flow in the porous graphite layer, while maintaining an acceptable pressure drop across the electrolyzer. When the size of the electrolyzer is doubled from 2.75 inches square to 5.5 inches square, the same number of channels as in the current design will be adequate, but it is advisable to increase the channel cross-sectional flow area. This is due to the increased length of the channels.« less

  12. Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links.

    PubMed

    Podsiadlo, Paul; Kaushik, Amit K; Shim, Bong Sup; Agarwal, Ashish; Tang, Zhiyong; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A

    2008-11-20

    The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa.

  13. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xun-jun, E-mail: hexunjun@hrbust.edu.cn; Li, Teng-yue; Wang, Lei

    2014-05-07

    In this paper, we design and numerically demonstrate an electrically controllable light-matter interaction in a hybrid material/metamaterial system consisting of an artificially constructed cross cut-wire complementary metamaterial and an atomically thin graphene layer to realize terahertz (THz) wave modulator. By applying a bias voltage between the metamaterial and the graphene layer, this modulator can dynamically control the amplitude and phase of the transmitted wave near 1.43 THz. Moreover, the distributions of current density show that this large modulation depth can be attributed to the resonant electric field parallel to the graphene sheet. Therefore, the modulator performance indicates the enormous potentialmore » of graphene for developing sophisticated THz communication systems.« less

  14. Supersonic compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are providedmore » having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less

  15. Recent Results on "Approximations to Optimal Alarm Systems for Anomaly Detection"

    NASA Technical Reports Server (NTRS)

    Martin, Rodney Alexander

    2009-01-01

    An optimal alarm system and its approximations may use Kalman filtering for univariate linear dynamic systems driven by Gaussian noise to provide a layer of predictive capability. Predicted Kalman filter future process values and a fixed critical threshold can be used to construct a candidate level-crossing event over a predetermined prediction window. An optimal alarm system can be designed to elicit the fewest false alarms for a fixed detection probability in this particular scenario.

  16. Optimizing Airborne Networking Performance with Cross-Layer Design Approach

    DTIC Science & Technology

    2009-06-01

    Schiavone , L.J.; “Airborne Networking –Approaches and Challenges,” Military Communications Conference IEEE, Oct 31 – Nov 3, 2004, Vol. 1, pp. 404...www.ccny.cuny.edu/cint/ [5] John Seguí and Esther Jennings,’’ Delay Tolerant Networking – Bundle Protocol Simulation’’ [6] DTNRG website...throughput route selection in multi-rate ad hoc wireless networks,” Technical report, Johns Hopkins CS Dept, March 2003. v 2. [15] R. Draves, J

  17. Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites

    NASA Astrophysics Data System (ADS)

    Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid

    2018-01-01

    Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.

  18. Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Ian J.; Wu, Qi h.; Arnold, Matthew; McCall, Martin W.; Lakhtakia, Akhlesh

    2002-09-01

    A left-handed chiral sculptured thin film (STF) that reflects strongly at the wavelength of the circular Bragg resonance tends to partially convert the handedness of incident LCP (left-circularly-polarized) light to RCP (right-circularly-polarized). We show that the cross-polarized component of the reflected RCP beam can be eliminated by interference with an additional RCP beam that is reflected at the interface of an isotropic cover and an AR (antireflecting) layer. For best results the refractive index and thickness of the AR layer need to accommodate a phase change on reflection that occurs at the chiral film. Effective suppression of the reflectances RRR, RRL, RLR and the transmittances TRL, TLR can be achieved by sandwiching the chiral reflector between such amplitude and phase-matched AR coatings. Co-polarized chiral reflectors of this type may form efficient handed optical resonators. For LCP light the optical properties of such a handed resonator are formally the same as the properties of the isotropic passive or active Fabry-Perot resonators, but the handed resonator is transparent to RCP light.

  19. Scattering characteristics of relativistically moving concentrically layered spheres

    NASA Astrophysics Data System (ADS)

    Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.

    2018-02-01

    The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.

  20. Challenges of CAC in Heterogeneous Wireless Cognitive Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jiazheng; Fu, Xiuhua

    Call admission control (CAC) is known as an effective functionality in ensuring the QoS of wireless networks. The vision of next generation wireless networks has led to the development of new call admission control (CAC) algorithms specifically designed for heterogeneous wireless Cognitive networks. However, there will be a number of challenges created by dynamic spectrum access and scheduling techniques associated with the cognitive systems. In this paper for the first time, we recommend that the CAC policies should be distinguished between primary users and secondary users. The classification of different methods of cac policies in cognitive networks contexts is proposed. Although there have been some researches within the umbrella of Joint CAC and cross-layer optimization for wireless networks, the advent of the cognitive networks adds some additional problems. We present the conceptual models for joint CAC and cross-layer optimization respectively. Also, the benefit of Cognition can only be realized fully if application requirements and traffic flow contexts are determined or inferred in order to know what modes of operation and spectrum bands to use at each point in time. The process model of Cognition involved per-flow-based CAC is presented. Because there may be a number of parameters on different levels affecting a CAC decision and the conditions for accepting or rejecting a call must be computed quickly and frequently, simplicity and practicability are particularly important for designing a feasible CAC algorithm. In a word, a more thorough understanding of CAC in heterogeneous wireless cognitive networks may help one to design better CAC algorithms.

  1. Embedded cluster metal-polymeric micro interface and process for producing the same

    DOEpatents

    Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.

    2002-01-29

    A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.

  2. Tactical missile aerodynamics - General topics. Progress in Astronautics and Aeronautics. Vol. 141

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemsch, M.J.

    1992-01-01

    The present volume discusses the development history of tactical missile airframes, aerodynamic considerations for autopilot design, a systematic method for tactical missile design, the character and reduction of missile observability by radar, the visualization of high angle-of-attack flow phenomena, and the behavior of low aspect ratio wings at high angles of attack. Also discussed are airbreathing missile inlets, 'waverider' missile configurations, bodies with noncircular cross-sections and bank-to-turn missiles, asymmetric flow separation and vortex shedding on bodies-of-revolution, unsteady missile flows, swept shock-wave/boundary-layer interactions, pylon carriage and separation of stores, and internal stores carriage and separation.

  3. Shell microstructure of the late Carboniferous rostroconch mollusc Apotocardium lanterna (Branson, 1965)

    USGS Publications Warehouse

    Rogalla, N.S.; Carter, J.G.; Pojeta, J.

    2003-01-01

    The Late Carboniferous bransoniid conocardioidean Apotocardium lanterna (Branson, 1965) had an entirely aragonitic shell with a finely prismatic outer shell layer, a predominantly crossed lamellar to complex crossed lamellar middle shell layer, and an "inner" shell layer of finely textured porcelaneous and/or matted structure. This "inner" layer is probably homologous with the inner part of the middle shell layer and the inner layer sensu stricto of bivalved molluscs. Shell morphological and microstructural convergences between conocardioids and living heart cockles suggest that at least some conocardioids may have farmed algal endosymbionts in their posterior mantle margins. This symbiosis may have helped conocardioids compete with the biomechanically more efficient bivalves during the latter part of the Paleozoic.

  4. Compact Interconnection Networks Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary-signal wires described in the cited prior article. One of these advances would be the development of QCA-based wires capable of bidirectional transmission of signals. The other advance would be the development of QCA circuits capable of high-impedance state outputs. The high-impedance states would be utilized along with the 0- and 1-state outputs of QCA.

  5. Characterization of the multilayered shell of a limpet, Lottia kogamogai (Mollusca: Patellogastropoda), using SEM-EBSD and FIB-TEM techniques.

    PubMed

    Suzuki, Michio; Kameda, Jun; Sasaki, Takenori; Saruwatari, Kazuko; Nagasawa, Hiromichi; Kogure, Toshihiro

    2010-08-01

    The microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD). The five layers were termed as M+3, M+2, M+1, M, M-1 from the outside to the inside in previous works, where M means myostracum. The outmost M+3 layer consists of calcite with a "mosaic" structure; granular submicron sub-grains with small-angle grain boundaries often accompanying dislocation arrays. M+2 layer consists of flat prismatic aragonite crystals with a leaf-like cross section, stacked obliquely to the shell surface. It looks that the prismatic crystals are surrounded by organic sheets, forming a compartment structure. M+1 and M-1 layers adopt a crossed lamellar structure consisting of aragonite flat prisms with rectangular cross section. M layer has a prismatic structure of aragonite perpendicular to the shell surface and with irregular shaped cross sections. Distinct organic sheets were not observed between the crystals in M+1, M and M-1 layers. The {110} twins are common in all aragonite M+2, M+1, M and M-1 layers, with the twin boundaries parallel to the prisms. These results for the microstructure of each layer should be considered in the discussion of the formation mechanism of the limpet shell structure. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Combining Domain-driven Design and Mashups for Service Development

    NASA Astrophysics Data System (ADS)

    Iglesias, Carlos A.; Fernández-Villamor, José Ignacio; Del Pozo, David; Garulli, Luca; García, Boni

    This chapter presents the Romulus project approach to Service Development using Java-based web technologies. Romulus aims at improving productivity of service development by providing a tool-supported model to conceive Java-based web applications. This model follows a Domain Driven Design approach, which states that the primary focus of software projects should be the core domain and domain logic. Romulus proposes a tool-supported model, Roma Metaframework, that provides an abstraction layer on top of existing web frameworks and automates the application generation from the domain model. This metaframework follows an object centric approach, and complements Domain Driven Design by identifying the most common cross-cutting concerns (security, service, view, ...) of web applications. The metaframework uses annotations for enriching the domain model with these cross-cutting concerns, so-called aspects. In addition, the chapter presents the usage of mashup technology in the metaframework for service composition, using the web mashup editor MyCocktail. This approach is applied to a scenario of the Mobile Phone Service Portability case study for the development of a new service.

  7. Cross-diffusion-driven hydrodynamic instabilities in a double-layer system: General classification and nonlinear simulations

    NASA Astrophysics Data System (ADS)

    Budroni, M. A.

    2015-12-01

    Cross diffusion, whereby a flux of a given species entrains the diffusive transport of another species, can trigger buoyancy-driven hydrodynamic instabilities at the interface of initially stable stratifications. Starting from a simple three-component case, we introduce a theoretical framework to classify cross-diffusion-induced hydrodynamic phenomena in two-layer stratifications under the action of the gravitational field. A cross-diffusion-convection (CDC) model is derived by coupling the fickian diffusion formalism to Stokes equations. In order to isolate the effect of cross-diffusion in the convective destabilization of a double-layer system, we impose a starting concentration jump of one species in the bottom layer while the other one is homogeneously distributed over the spatial domain. This initial configuration avoids the concurrence of classic Rayleigh-Taylor or differential-diffusion convective instabilities, and it also allows us to activate selectively the cross-diffusion feedback by which the heterogeneously distributed species influences the diffusive transport of the other species. We identify two types of hydrodynamic modes [the negative cross-diffusion-driven convection (NCC) and the positive cross-diffusion-driven convection (PCC)], corresponding to the sign of this operational cross-diffusion term. By studying the space-time density profiles along the gravitational axis we obtain analytical conditions for the onset of convection in terms of two important parameters only: the operational cross-diffusivity and the buoyancy ratio, giving the relative contribution of the two species to the global density. The general classification of the NCC and PCC scenarios in such parameter space is supported by numerical simulations of the fully nonlinear CDC problem. The resulting convective patterns compare favorably with recent experimental results found in microemulsion systems.

  8. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies

    DOE PAGES

    Zhang, Yuping; Li, Tongtong; Chen, Qi; ...

    2015-12-22

    We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We also employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer. High absorbance is maintained over a wide incident angle range up to 50 degrees for both TE and TM polarizations. Thus, it enables a promising way to design electrically tunable absorbers, which maymore » contribute toward the realization of frequency selective detectors for sensing applications.« less

  9. Results From a Channel Restoration Project: Hydraulic Design Considerations

    USGS Publications Warehouse

    Karle, K.F.; Densmore, R.V.; ,

    2001-01-01

    Techniques for the hydraulic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve, Alaska. The two-year study at Glen Creek focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements included a channel capacity for a bankfull discharge and a floodplain capacity for a 1.5- to 100-year discharge. Several bio-engineering techniques using alder and willow, including anchored brush bars, streambank hedge layering, seedlings, and cuttings, were tested to dissipate floodwater energy and encourage sediment deposition until natural revegetation stabilized the new floodplains. Permanently monumented cross-sections installed throughout the project site were surveyed every one to three years. Nine years after the project began, a summer flood caused substantial damage to the channel form, including a change in width/depth ratio, slope, and thalweg location. Many of the alder brush bars were heavily damaged or destroyed, resulting in significant bank erosion. This paper reviews the original hydraulic design process, and describes changes to the channel and floodplain geometry over time, based on nine years of cross-section surveys.

  10. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking.

    PubMed

    Ma, Lang; Cheng, Chong; He, Chao; Nie, Chuanxiong; Deng, Jie; Sun, Shudong; Zhao, Changsheng

    2015-12-02

    In this work, we designed a robust and heparin-mimetic hydrogel thin film coating via combined layer-by-layer (LbL) self-assembly and mussel-inspired post-cross-linking. Dopamine-grafted heparin-like/-mimetic polymers (DA-g-HepLP) with abundant carboxylic and sulfonic groups were synthesized by the conjugation of adhesive molecule, DA, which exhibited substrate-independent adhesive affinity to various solid surfaces because of the formation of irreversible covalent bonds. The hydrogel thin film coated substrates were prepared by a three-step reaction: First, the substrates were coated with DA-g-HepLP to generate negatively charged surfaces. Then, multilayers were obtained via LbL coating of chitosan and the DA-g-HepLP. Finally, the noncovalent multilayers were oxidatively cross-linked by NaIO4. Surface ATR-FTIR and XPS spectra confirmed the successful fabrication of the hydrogel thin film coatings onto membrane substrates; SEM images revealed that the substrate-independent coatings owned 3D porous morphology. The soaking tests in highly alkaline, acid, and concentrated salt solutions indicated that the cross-linked hydrogel thin film coatings owned high chemical resistance. In comparison, the soaking tests in physiological solution indicated that the cross-linked hydrogel coatings owned excellent long-term stability. The live/dead cell staining and morphology observations of the adhered cells revealed that the heparin-mimetic hydrogel thin film coated substrates had low cell toxicity and high promotion ability for cell proliferation. Furthermore, systematic in vitro investigations of protein adsorption, platelet adhesion, blood clotting, and blood-related complement activation confirmed that the hydrogel film coated substrates showed excellent hemocompatibility. Both the results of inhibition zone and bactericidal activity indicated that the gentamycin sulfate loaded hydrogel thin films had significant inhibition capability toward both Escherichia coli and Staphylococcus aureus bacteria. Combined the above advantages, it is believed that the designed heparin-mimetic hydrogel thin films may show high potential for applications in various biological and clinical fields, such as long-term hemocompatible and drug-loading materials for implants.

  11. Determination of Optimum Cross-section for Oran Highway Revetment

    NASA Astrophysics Data System (ADS)

    Sogut, E.; Velioglu, D.; Guler, I.

    2016-12-01

    Revetments are shore parallel, sloping coastal structures which are built to provide protection from the negative effects of the sea. The revetment mentioned in this study is located in the City of Oran, Algeria and is currently under construction. This study investigates the determination of the optimum revetment cross section for Oran highway, considering both the hydraulic stability of the revetment and economy. The existence of cliffs in the region and the settlement of the City of Oran created a necessity to re-align Oran highway; therefore, it was shifted towards the Gulf of Oran. Approximately 1 km of the highway is to be constructed on the Mediterranean Sea due to the new alignment. In order to protect the sea side of the road from the adverse effects of the sea, a revetment was designed. The proposed cross section had an armour layer composed of 23 tons of antifer units and regular placement of armour units was recommended. In order to check the hydraulic stability of the proposed section, physical model tests were performed in the laboratory of LEM (Laboratoire d'Etudes Maritimes) in Algeria, using the pre-determined design wave conditions. The physical model tests revealed that the trunk of the revetment was totaly damaged. Accordingly, the proposed section was found insufficient and certain modifications were required. The first modification was made in the arrangement of armour units, changing them from regular to irregular. After testing the new cross section, it was observed that the revetment was vulnerable to breaking wave attack due to the toe geometry and thus the toe of the revetment had to be re-shaped. Therefore, the second option was to reduce the toe elevation. It was observed that even though the revetment trunk was safe, the damage in the toe was not in acceptable limits. The new cross section was found insufficient and as the final option, the weight of the antifer units used in the armour layer was increased, the toe length of the structure was increased and the size of the armour units in the toe was decreased. After the modifications, the new section was tested physically and it was selected as the most optimum option.

  12. Photoacoustic signal attenuation analysis for the assessment of thin layers thickness in paintings

    NASA Astrophysics Data System (ADS)

    Tserevelakis, George J.; Dal Fovo, Alice; Melessanaki, Krystalia; Fontana, Raffaella; Zacharakis, Giannis

    2018-03-01

    This study introduces a novel method for the thickness estimation of thin paint layers in works of art, based on photoacoustic signal attenuation analysis (PAcSAA). Ad hoc designed samples with acrylic paint layers (Primary Red Magenta, Cadmium Yellow, Ultramarine Blue) of various thicknesses on glass substrates were realized for the specific application. After characterization by Optical Coherence Tomography imaging, samples were irradiated at the back side using low energy nanosecond laser pulses of 532 nm wavelength. Photoacoustic waves undergo a frequency-dependent exponential attenuation through the paint layer, before being detected by a broadband ultrasonic transducer. Frequency analysis of the recorded time-domain signals allows for the estimation of the average transmitted frequency function, which shows an exponential decay with the layer thickness. Ultrasonic attenuation models were obtained for each pigment and used to fit the data acquired on an inhomogeneous painted mock-up simulating a real canvas painting. Thickness evaluation through PAcSAA resulted in excellent agreement with cross-section analysis with a conventional brightfield microscope. The results of the current study demonstrate the potential of the proposed PAcSAA method for the non-destructive stratigraphic analysis of painted artworks.

  13. A spectrally accurate boundary-layer code for infinite swept wings

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1994-01-01

    This report documents the development, validation, and application of a spectrally accurate boundary-layer code, WINGBL2, which has been designed specifically for use in stability analyses of swept-wing configurations. Currently, we consider only the quasi-three-dimensional case of an infinitely long wing of constant cross section. The effects of streamwise curvature, streamwise pressure gradient, and wall suction and/or blowing are taken into account in the governing equations and boundary conditions. The boundary-layer equations are formulated both for the attachment-line flow and for the evolving boundary layer. The boundary-layer equations are solved by marching in the direction perpendicular to the leading edge, for which high-order (up to fifth) backward differencing techniques are used. In the wall-normal direction, a spectral collocation method, based upon Chebyshev polynomial approximations, is exploited. The accuracy, efficiency, and user-friendliness of WINGBL2 make it well suited for applications to linear stability theory, parabolized stability equation methodology, direct numerical simulation, and large-eddy simulation. The method is validated against existing schemes for three test cases, including incompressible swept Hiemenz flow and Mach 2.4 flow over an airfoil swept at 70 deg to the free stream.

  14. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  15. Controlling the morphology and performance of FO membrane via adjusting the atmosphere humidity during casting procedure

    NASA Astrophysics Data System (ADS)

    Zuo, Hao-Ran; Cao, Gui-Ping; Wang, Meng; Zhang, Huan-Huan; Song, Chen-Chen; Fang, Xu; Wang, Tao

    2018-03-01

    Forward osmosis (FO) has received great interest for its considerable potential in a wide range of fields. In this work, the morphology and performance of FO membrane were regulated by adjusting the atmosphere humidity (HC) of casting procedure. The polysulfone support layer was casted under various atmosphere humidity levels ranging from 40% to 80%. By multi-techniques such as SEM, AFM, and XPS, it was proved that the atmosphere humidity had modified the surface morphology and thickness of the skin layer in support layer, which contributed up to 90% of the structure parameter, resulting in distinct morphology, thickness, and cross-linking degree of active layer. The active layer with sparse bead-like wrinkles on the smooth surface of support layer casted at HC = 65% showed the highest water permeability [26.9 (L/m2 h MPa)] and considerable low salt permeability [0.0390 (L/m2 h)]. It was found that the water flux of FO-65 was 27% and 46% higher than that of FO-80 in AL-DS and AL-FS mode, respectively, and the salt rejection was as high as 98%. Our work highlighted the importance of considering the effect of atmosphere humidity during casting when design an FO membrane for appropriate performance.

  16. Evaluation of the new TAMZ titanium alloy for dental cast application.

    PubMed

    Zhang, Y M; Guo, T W; Li, Z C

    2000-12-01

    To reveal the potential of the new titanium alloy as dental prosthodontic materials. Dental castings of TAMZ alloy were investigated in the casting machine specially designed for titanium. A mesh pattern was used to count the castability value. The mechanical properties were measured by means of a universal testing machine. Optical micrography was done on the exposed cross-section of TAMZ alloy casting. From the surface to the inner part the Knoop hardness in reacted layer of TAMZ alloy casting was measured. The structure and elemental analyses of the reacted layer were made by SEM and element line scanning observation. The castability value (Cv = 98%) and the tensile test (sigma b = 850 Mpa, sigma 0.2 = 575 Mpa, delta = 7.33%) data were collected. The castings microstructure showed main alpha phase and small beta phase. Knoop hardness in the surface reacted layer was greater than that in the inner part. From the SEM and element line scanning observation, there are three different layers in the surface reacted layer of the TAMZ alloy castings, and higher level of element of O, Al, Si and Zr were found in the reacted layer while the Si permeated deeper than others. TAMZ alloy can be accepted as a material for dental alloy in prosthodontics.

  17. Strain relaxation induced surface morphology of heterogeneous GaInNAs layers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Gelczuk, Ł.; Jóźwiak, G.; Moczała, M.; Dłużewski, P.; Dąbrowska-Szata, M.; Gotszalk, T. P.

    2017-07-01

    The partially-relaxed heterogeneous GaInNAs layers grown on GaAs substrate by atmospheric pressure vapor phase epitaxy (AP-MOVPE) were investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The planar-view TEM image shows a regular 2D network of misfit dislocations oriented in two orthogonal 〈1 1 0〉 crystallographic directions at the (0 0 1) layer interface. Moreover, the cross-sectional view TEM image reveals InAs-rich and V-shaped precipitates in the near surface region of the GaInNAs epitaxial layer. The resultant undulating surface morphology, known as a cross-hatch pattern, is formed as observed by AFM. The numerical analysis of the AFM image of the GaInNAs layer surface with the well-defined cross-hatch morphology enabled us to determine a lower bound of actual density of misfit dislocations. However, a close correspondence between the asymmetric distribution of interfacial misfit dislocations and undulating surface morphology is observed.

  18. Reagent-less amperometric glucose biosensor based on a graphite rod electrode layer-by-layer modified with 1,10-phenanthroline-5,6-dione and glucose oxidase.

    PubMed

    Kausaite-Minkstimiene, Asta; Simanaityte, Ruta; Ramanaviciene, Almira; Glumbokaite, Laura; Ramanavicius, Arunas

    2017-08-15

    A reagent-less amperometric glucose biosensor operating in not-stirred sample solution was developed. A working electrode of the designed biosensor was based on a graphite rod (GR) electrode, which was modified with 1,10-phenanthroline-5,6-dione (PD) and glucose oxidase (GOx). The PD and the GOx were layer-by-layer adsorbed on the GR electrode surface with subsequent drying followed by chemical cross-linking of the adsorbed GOx with glutaraldehyde (GA). Optimal preparation conditions of the working electrode (GR/PD/GOx) were achieved with 12.6μg and 0.24mg loading amount of PD and GOx, respectively and 25min lasting cross-linking of the GOx with GA. A current response to glucose of the GR/PD/GOx electrode was measured at +200mV potential vs Ag/AgCl reference electrode. Maximum current response was registered when the pH of the buffer solution was 6.0. The registered current response to glucose was linear in the concentration range of 0.1-76mmolL -1 (R 2 =0.9985) and a detection limit was 0.025mmolL -1 . The GR/PD/GOx electrode demonstrated good reproducibility and repeatability with the relative standard deviation of 6.2% and 1.8% (at 4.0mmolL -1 of glucose), respectively, high anti-interference ability to uric and ascorbic acids. It was highly selective to glucose and demonstrated good accuracy in the analysis of human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Application of Layer Theory to Design: The Control Layer

    ERIC Educational Resources Information Center

    Gibbons, Andrew S.; Langton, Matthew B.

    2016-01-01

    A theory of design layers proposed by Gibbons ("An Architectural Approach to Instructional Design." Routledge, New York, 2014) asserts that each layer of an instructional design is related to a body of theory closely associated with the concerns of that particular layer. This study focuses on one layer, the control layer, examining…

  20. Experimental and computational studies of electromagnetic cloaking at microwaves

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui

    An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (epsilon r>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can be easily scaled to various operating frequencies. The simulation results show that the multi-layer cylindrical cloak essentially outperforms the similarly sized metamaterials-based cloak designed by using the transformation optics-based reduced parameters. For the designed spherical cloak, the simulated scattering pattern shows that the total scattering cross section is greatly reduced. In addition, the scattering in specific directions could be significantly reduced. It is shown that the cloaking efficiency for larger targets could be improved by employing lossy materials in the shell. At last, we propose to hide a target inside a waveguide structure filled with only epsilon near zero materials, which are easy to implement in practice. The cloaking efficiency of this method, which was found to increase for large targets, has been confirmed both theoretically and by simulations.

  1. Attenuation of co- and cross-polarized electric fields of waves through a layer of dielectric spheroids

    NASA Astrophysics Data System (ADS)

    Russchenberg, H. W. J.; Ligthart, L. P.; de Wolf, David A.

    1991-02-01

    A recent model (de Wolf et al., Sept. 1990) for analyzing radar reflections from the layer of melting ice hydrometeors is adjusted and expanded for analyzing line-of-sight attenuation of copolar and cross-polar signals at wavelengths that are comparable to the particle sizes. Expressions for copolar and cross-polar attenuation discrimination are derived. It is shown with a parametric study that these quantities have the expected behavior.

  2. Chapter 2: Manufacturing Cross-laminated timber manufacturing

    Treesearch

    Borjen Yeh; Dave Kretschmann; Brad (Jianhe) Wang

    2013-01-01

    Cross-laminated timber ( CLT) is defined as a prefabricated solid engineered wood product made of at least three orthogonally bonded layers of solid-sawn lumber or structural composite lumber (SCL) that are laminated by gluing oflongitudinal and transverse layers with structural adhesives to form a solid rectangular-shaped, straight, and plane timber intended for roof...

  3. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer.

    PubMed

    Zhang, Kai; Zhong, Chengmei; Liu, Shengjian; Mu, Cheng; Li, Zhengke; Yan, He; Huang, Fei; Cao, Yong

    2014-07-09

    A cross-linkable water/alcohol soluble conjugated polymer (WSCP) material poly[9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane-3-ethyloxy)-hexyl) fluorene] (PFN-OX) was designed. The cross-linkable nature of PFN-OX is good for fabricating inverted polymer solar cells (PSCs) with well-defined interface and investigating the detailed working mechanism of high-efficiency inverted PSCs based on poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno[3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7) and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) blend active layer. The detailed working mechanism of WSCP materials in high-efficiency PSCs were studied and can be summarized into the following three effects: a) PFN-OX tunes cathode work function to enhance open-circuit voltage (Voc); b) PFN-OX dopes PC71BM at interface to facilitate electron extraction; and c) PFN-OX extracts electrons and blocks holes to enhance fill factor (FF). On the basis of this understanding, the hole-blocking function of the PFN-OX interlayer was further improved with addition of a ZnO layer between ITO and PFN-OX, which led to inverted PSCs with a power conversion efficiency of 9.28% and fill factor high up to 74.4%.

  4. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    PubMed

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.

  5. Immobilization of a phosphonated analog of matrix phosphoproteins within cross-linked collagen as a templating mechanism for biomimetic mineralization

    PubMed Central

    Gu, Li-sha; Kim, Young Kyung; Liu, Yan; Takahashi, Kei; Arun, Senthil; Wimmer, Courtney E.; Osorio, Raquel; Ling, Jun-qi; Looney, Stephen W.; Pashley, David H.; Tay, Franklin R.

    2010-01-01

    Immobilization of phosphoproteins on a collagen matrix is important for induction of intrafibrillar apatite mineralization. Unlike phosphate esters, polyphosphonic acid has no reactive sites for covalent binding to collagen amine groups. Binding of polyvinylphosphonic acid (PVPA), a biomimetic templating analog of matrix phosphoproteins, to collagen was found to be electrostatic in nature. Thus, an alternative retention mechanism was designed for immobilization of PVPA to collagen by cross-linking the latter with carbodiimide (EDC). This mechanism is based on the principle of size exclusion entrapment of PVPA molecules within the internal water compartments of collagen. By cross-linking collagen with EDC, a zero-length cross-linking agent, the sieving property of collagen is increased, enabling the PVPA to be immobilized within the collagen. Absence of covalent cross-linking between PVPA and collagen was confirmed by FT-IR spectroscopy. Based on these results, a concentration range for immobilized PVPA to template intrafibrillar apatite deposition was established and validated using a single-layer reconstituted type I collagen mineralization model. In the presence of a polyacrylic acid-containing mineralization medium, optimal intrafibrillar mineralization of the EDC-cross-linked collagen was achieved using 500 and 1,000 μg/mL PVPA. The mineralized fibrils exhibited a hierarchical order of intrafibrillar mineral infiltration, as manifested by the appearance of electron-dense periodicity within unstained fibrils. Understanding the basic processes in intrafibrillar mineralization of reconstituted collagen creates opportunities for the design of tissue engineering materials for hard tissue repair and regeneration. PMID:20688200

  6. Cross-Layer Scheme to Control Contention Window for Per-Flow in Asymmetric Multi-Hop Networks

    NASA Astrophysics Data System (ADS)

    Giang, Pham Thanh; Nakagawa, Kenji

    The IEEE 802.11 MAC standard for wireless ad hoc networks adopts Binary Exponential Back-off (BEB) mechanism to resolve bandwidth contention between stations. BEB mechanism controls the bandwidth allocation for each station by choosing a back-off value from one to CW according to the uniform random distribution, where CW is the contention window size. However, in asymmetric multi-hop networks, some stations are disadvantaged in opportunity of access to the shared channel and may suffer severe throughput degradation when the traffic load is large. Then, the network performance is degraded in terms of throughput and fairness. In this paper, we propose a new cross-layer scheme aiming to solve the per-flow unfairness problem and achieve good throughput performance in IEEE 802.11 multi-hop ad hoc networks. Our cross-layer scheme collects useful information from the physical, MAC and link layers of own station. This information is used to determine the optimal Contention Window (CW) size for per-station fairness. We also use this information to adjust CW size for each flow in the station in order to achieve per-flow fairness. Performance of our cross-layer scheme is examined on various asymmetric multi-hop network topologies by using Network Simulator (NS-2).

  7. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    NASA Astrophysics Data System (ADS)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  8. Physical and technological principles of designing layer-gradient multicomponent surfaces by combining the methods of ion-diffusion saturation and magnetron- and vacuum-arc deposition

    NASA Astrophysics Data System (ADS)

    Savostikov, V. M.; Potekaev, A. I.; Tabachenko, A. N.

    2011-12-01

    Using a technological system proposed by the authors, a combined process is developed for formation of stratified-gradient surface layers and multicomponent coatings. It is implemented under the conditions of a combined serial-parallel operation of a hot-cathode gas plasma generator and a duomagnetron with two targets and two electric-arc evaporators. The extended functional potential is ensured by using advanced multi-element and multi-phase cathode targets made of borides, carbides, silicides, and sulfides of metals produced by the SHS-process followed by their immediate compaction. The variations in composition, structure, and physicomechanical properties in the cross-section of the stratified-gradient surface layers and coating is provided by a predetermined alternating replacement of the sputtered cathode targets of the plasma sources, the plasma flow intensity ratios, and variation in the particle energy incident on the substrate, which is determined by the accelerating voltage on the substrate.

  9. Vapor Responsive One-Dimensional Photonic Crystals from Zeolite Nanoparticles and Metal Oxide Films for Optical Sensing

    PubMed Central

    Lazarova, Katerina; Awala, Hussein; Thomas, Sebastien; Vasileva, Marina; Mintova, Svetlana; Babeva, Tsvetanka

    2014-01-01

    The preparation of responsive multilayered structures with quarter-wave design based on layer-by-layer deposition of sol-gel derived Nb2O5 films and spin-coated MEL type zeolite is demonstrated. The refractive indices (n) and thicknesses (d) of the layers are determined using non-linear curve fitting of the measured reflectance spectra. Besides, the surface and cross-sectional features of the multilayered structures are characterized by scanning electron microscopy (SEM). The quasi-omnidirectional photonic band for the multilayered structures is predicted theoretically, and confirmed experimentally by reflectance measurements at oblique incidence with polarized light. The sensing properties of the multilayered structures toward acetone are studied by measuring transmittance spectra prior and after vapor exposure. Furthermore, the potential of the one-dimensional photonic crystals based on the multilayered structure consisting of Nb2O5 and MEL type zeolite as a chemical sensor with optical read-out is discussed. PMID:25010695

  10. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zbib, Hussein M.; Bahr, David F.

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layeredmore » over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these tri-layer composites. CINT formed nanolaminate composites were tested in tension, with bulge testing, using nanoindentation, and using micro-compression testing to demonstrate that the tri-layer films were indeed tougher and hardened more during deformation (they got stronger as we deformed them) than equivalent bi-layers. The seven graduate students, 4 post-docs and research faculty, and the two faculty co-PI’s were able to create a collaborated computational prediction and experimental validation team to demonstrate the benefits of this class of materials to the community. The computational work crossed from atomistic to bulk simulations, and the experiments coupled form nm-scale to the mm scale; closely matching the simulations. The simulations provided viable mechanisms that explained the observed results, and new experimental results were used to push the boundaries of the simulation tools. Over the life of the 7 years of this program we proved that tri-layer nanolaminate metallic composite systems exceeded the mechanical performance of bi-layer systems if the right materials were chosen, and that the mechanism responsible for this was tied to the cross slip of dislocations. With 30 journal publications resulting from this work we have broadly disseminated this family of results to the scientific community.« less

  11. Cross-Platform Toxicogenomics for the Prediction of Non-Genotoxic Hepatocarcinogenesis in Rat

    PubMed Central

    Metzger, Ute; Templin, Markus F.; Plummer, Simon; Ellinger-Ziegelbauer, Heidrun; Zell, Andreas

    2014-01-01

    In the area of omics profiling in toxicology, i.e. toxicogenomics, characteristic molecular profiles have previously been incorporated into prediction models for early assessment of a carcinogenic potential and mechanism-based classification of compounds. Traditionally, the biomarker signatures used for model construction were derived from individual high-throughput techniques, such as microarrays designed for monitoring global mRNA expression. In this study, we built predictive models by integrating omics data across complementary microarray platforms and introduced new concepts for modeling of pathway alterations and molecular interactions between multiple biological layers. We trained and evaluated diverse machine learning-based models, differing in the incorporated features and learning algorithms on a cross-omics dataset encompassing mRNA, miRNA, and protein expression profiles obtained from rat liver samples treated with a heterogeneous set of substances. Most of these compounds could be unambiguously classified as genotoxic carcinogens, non-genotoxic carcinogens, or non-hepatocarcinogens based on evidence from published studies. Since mixed characteristics were reported for the compounds Cyproterone acetate, Thioacetamide, and Wy-14643, we reclassified these compounds as either genotoxic or non-genotoxic carcinogens based on their molecular profiles. Evaluating our toxicogenomics models in a repeated external cross-validation procedure, we demonstrated that the prediction accuracy of our models could be increased by joining the biomarker signatures across multiple biological layers and by adding complex features derived from cross-platform integration of the omics data. Furthermore, we found that adding these features resulted in a better separation of the compound classes and a more confident reclassification of the three undefined compounds as non-genotoxic carcinogens. PMID:24830643

  12. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation.

    PubMed

    Weaver, Jessica D; Headen, Devon M; Hunckler, Michael D; Coronel, Maria M; Stabler, Cherie L; García, Andrés J

    2018-07-01

    The use of immunoisolating macrodevices in islet transplantation confers the benefit of safety and translatability by containing transplanted cells within a single retrievable device. To date, there has been limited development and characterization of synthetic poly(ethylene glycol) (PEG)-based hydrogel macrodevices for islet encapsulation and transplantation. Herein, we describe a two-component synthetic PEG hydrogel macrodevice system, designed for islet delivery to an extrahepatic islet transplant site, consisting of a hydrogel core cross-linked with a non-degradable PEG dithiol and a vasculogenic outer layer cross-linked with a proteolytically sensitive peptide to promote degradation and enhance localized vascularization. Synthetic PEG macrodevices exhibited equivalent passive molecular transport to traditional microencapsulation materials (e.g., alginate) and long-term stability in the presence of proteases in vitro and in vivo, out to 14 weeks in rats. Encapsulated islets demonstrated high viability within the device in vitro and the incorporation of RGD adhesive peptides within the islet encapsulating PEG hydrogel improved insulin responsiveness to a glucose challenge. In vivo, the implementation of a vasculogenic, degradable hydrogel layer at the outer interface of the macrodevice enhanced vascular density within the rat omentum transplant site, resulting in improved encapsulated islet viability in a syngeneic diabetic rat model. These results highlight the benefits of the facile PEG platform to provide controlled presentation of islet-supportive ligands, as well as degradable interfaces for the promotion of engraftment and overall graft efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Optical characterization of Jerusalem cross-shaped nanoaperture antenna arrays

    NASA Astrophysics Data System (ADS)

    Turkmen, Mustafa; Aslan, Ekin; Aslan, Erdem

    2014-03-01

    Recent advances in nanofabrication and computational electromagnetic design techniques have enabled the realization of metallic nanostructures in different shapes and sizes with adjustable resonance frequencies. To date, many metamaterial designs in various geometries with the used of different materials have been presented for the applications of surface plasmons, cloaking, biosensing, and frequency selective surfaces1-5. Surface plasmons which are collective electron oscillations on metal surfaces ensure that plasmonic nanoantennas can be used in many applications like biosensing at infrared (IR) and visible regions. The nanostructure that we introduce has a unit cell that consists of Jerusalem crossshaped nanoaperture on a gold layer, which is standing on suspended SiNx, Si or glass membranes. The proposed nanoaperture antenna array has a regular and stable spectral response. In this study, we present sensitivity of the resonance characteristics of Jerusalem cross-shaped nanoaperture antenna arrays to the changes in substrate parameters and metal thickness. We demonstrate that resonance frequency values can be adjusted by changing the thicknesses and types of the dielectric substrate and the metallic layer. Numerical calculations on spectral response of the nanoantenna array are performed by using Finite Difference Time Domain (FDTD) method6. The results of the simulations specify that resonance frequencies, the reflectance and transmittance values at resonances, and the band gap vary by the change of substrate parameters and metal thicknesses. These variations is a sign of that the proposed nanoantenna can be employed for sensing applications.

  14. A radiation detector design mitigating problems related to sawed edges

    NASA Astrophysics Data System (ADS)

    Aurola, A.; Marochkin, V.; Tuuva, T.

    2014-12-01

    In pixelated silicon radiation detectors that are utilized for the detection of UV, visible, and in particular Near Infra-Red (NIR) light it is desirable to utilize a relatively thick fully depleted Back-Side Illuminated (BSI) detector design providing 100% Fill Factor (FF), low Cross-Talk (CT), and high Quantum Efficiency (QE). The optimal thickness of such detectors is typically less than 300μm and above 40μm and thus it is more or less mandatory to thin the detector wafer from the backside after the front side of the detector has been processed and before a conductive layer is formed on the backside. A TAIKO thinning process is optimal for such a thickness range since neither a support substrate on the front side nor lithographic steps on the backside are required. The conductive backside layer should, however, be homogenous throughout the wafer and it should be biased from the front side of the detector. In order to provide good QE for blue and UV light the conductive backside layer should be of opposite doping type than the substrate. The problem with a homogeneous backside layer being of opposite doping type than the substrate is that a lot of leakage current is typically generated at the sawed chip edges, which may increase the dark noise and the power consumption. These problems are substantially mitigated with a proposed detector edge arrangement which 2D simulation results are presented in this paper.

  15. The North American Product Standard for Cross-Laminated Timber

    Treesearch

    Borjen Yeh; Sylvain Gagnon; Tom Williamson; Ciprian Pirvu; Conroy Lum; Dave Kretschmann

    2012-01-01

    Cross-laminated timber (CLT) is a prefabricated solid engineered wood product made of at least three orthogonally bonded layers of solid-sawn lumber or structural composite lumber that are laminated by gluing of longitudinal and transverse layers with structural adhesives to form a solid rectangular-shaped, straight, and plane timber intended for roof, floor, or wall...

  16. Evaluation of adhesive-free crossed-electrode poly(vinylidene fluoride) copolymer array transducers for high frequency imaging

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank

    2016-07-01

    High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.

  17. High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor.

    PubMed

    Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan

    2017-03-16

    In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.

  18. In Situ Boundary Layer Coral Metabolism in the Atlantic Ocean Acidification Test Bed

    NASA Astrophysics Data System (ADS)

    McGillis, Wade

    2013-04-01

    and Chris Langdon, Brice Loose, Dwight Gledhill, Diana Hsueh, Derek Manzello, Ian Enochs, Ryan Moyer We present net ecosystem productivity (nep) and net ecosystem calcification (nec) in coral and seagrass ecosystems using the boundary layer gradient flux technique (CROSS). Coastal anthropogenic inputs and changes in global ocean chemistry in response to rising levels of atmospheric carbon dioxide has emerged in recent years as a topic of considerable concern. Coral reefs are particularly vulnerable from eroded environmental conditions including ocean acidification and water pollution. The Atlantic Ocean Acidification Testbed (AOAT) project monitors metabolism to ascertain the continuing health of coral reef ecosystems. The CROSS boundary layer nep/nec approach is one component of this diagnostic program. Certification of CROSS as an operational monitoring tool is underway in the AOAT. CROSS inspects a benthic community and measures productivity/respiration and calcification/dissolution over an area of 10 square meters. Being a boundary layer tool, advection and complex mesoscale flows are not a factor or concern and CROSS is autonomous and can be used at deep benthic sites. The interrogation area is not enclosed therefore exposed to ambient light, flow, and nutrient levels. CROSS is easy to deploy, unambiguous, and affordable. Repeated measurements have been made from 2011-2012 in reefal systems in La Parguera Puerto Rico and the Florida Keys, USA. Diurnal, seasonal and regional metabolism will be compared and discussed. The ability to accurately probe benthic ecosystems provides a powerful management and research tool to policy makers and researchers.

  19. Construction of Compact Polyelectrolyte Multilayers Inspired by Marine Mussel: Effects of Salt Concentration and pH As Observed by QCM-D and AFM.

    PubMed

    Wang, Weina; Xu, Yisheng; Backes, Sebastian; Li, Ang; Micciulla, Samantha; Kayitmazer, A Basak; Li, Li; Guo, Xuhong; von Klitzing, Regine

    2016-04-12

    Biomimetic multilayers based on layer-by-layer (LbL) assembly were prepared as functional films with compact structure by incorporating the mussel-inspired catechol cross-linking. Dopamine-modified poly(acrylic acid) (PAADopa) was synthesized as a polyanion to offer electrostatic interaction with the prelayer polyethylenimine (PEI) and consecutively cross-linked by zinc to generate compact multilayers with tunable physicochemical properties. In situ layer-by-layer growth and cross-linking were monitored by a quartz crystal microbalance with dissipation (QCM-D) to reveal the kinetics of the process and the influence of Dopa chemistry. Addition of Dopa enhanced the mass adsorption and led to the formation of a more compact structure. An increase of ionic strength induced an increase in mass adsorption in the Dopa-cross-linked multilayers. This is a universal approach for coating of various surfaces such as Au, SiO2, Ti, and Al2O3. Roughness observed by AFM in both wet and dry conditions was compared to confirm the compact morphology of Dopa-cross-linked multilayers. Because of the pH sensitivity of Dopa moiety, metal-chelated Dopa groups can be turned into softer structure at higher pH as revealed by reduction of Young's modulus determined by MFP-3D AFM. A deeper insight into the growth and mechanical properties of Dopa-cross-linked polyelectrolyte multilayers was addressed in the present study. This allows a better control of these systems for bioapplications.

  20. Investigation of Natural and Man-Made Radiation Effects on Crews on Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Bolch, Wesley E.; Parlos, Alexander

    1996-01-01

    Over the past several years, NASA has studied a variety of mission scenarios designed to establish a permanent human presence on the surface of Mars. Nuclear electric propulsion (NEP) is one of the possible elements in this program. During the initial stages of vehicle design work, careful consideration must be given to not only the shielding requirements of natural space radiation, but to the shielding and configuration requirements of the on-board reactors. In this work, the radiation transport code MCNP has been used to make initial estimates of crew exposures to reactor radiation fields for a specific manned NEP vehicle design. In this design, three 25 MW(sub th), scaled SP-100-class reactors are shielded by three identical shields. Each shield has layers of beryllium, tungsten, and lithium hydride between the reactor and the crew compartment. Separate calculations are made of both the exiting neutron and gamma fluxes from the reactors during beginning-of-life, full-power operation. This data is then used as the source terms for particle transport in MCNP. The total gamma and neutron fluxes exiting the reactor shields are recorded and separate transport calculations are then performed for a 10 g/sq cm crew compartment aluminum thickness. Estimates of crew exposures have been assessed for various thicknesses of the shield tungsten and lithium hydride layers. A minimal tungsten thickness of 20 cm is required to shield the reactor photons below the 0.05 Sv/y man-made radiation limit. In addition to a 20-cm thick tungsten layer, a 40-cm thick lithium hydride layer is required to shield the reactor neutrons below the annual limit. If the tungsten layer is 30-cm thick, the lithium hydride layer should be at least 30-cm thick. These estimates do not take into account the photons generated by neutron interactions inside the shield because the MCNP neutron cross sections did not allow reliable estimates of photon production in these materials. These results, along with natural space radiation shielding estimates calculated by NASA Langley Research Center, have been used to provide preliminary input data into a new Macintosh-based software tool. A skeletal version of this tool being developed will allow rapid radiation exposure and risk analyses to be performed on a variety of Lunar and Mars missions utilizing nuclear-powered vehicles.

  1. TEM and STEM Studies on the Cross-sectional Morphologies of Dual-/Tri-layer Broadband SiO2 Antireflective Films

    NASA Astrophysics Data System (ADS)

    Wang, Shuangyue; Yan, Hongwei; Li, Dengji; Qiao, Liang; Han, Shaobo; Yuan, Xiaodong; Liu, Wei; Xiang, Xia; Zu, Xiaotao

    2018-02-01

    Dual-layer and tri-layer broadband antireflective (AR) films with excellent transmittance were successfully fabricated using base-/acid-catalyzed mixed sols and propylene oxide (PO) modified silica sols. The sols and films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), transmission electron microscope (TEM), and scanning transmission electron microscope (STEM). FTIR and TEM results suggest that the PO molecules were covalently bonded to the silica particles and the bridge structure existing in PO modified silica sol is responsible for the low density of the top layer. The density ratio between different layers was measured by cross-sectional STEM, and the results are 1.69:1 and 2.1:1.7:1 from bottom-layer to top-layer for dual-layer and tri-layer films, respectively. The dual-layer film demonstrates good stability with 99.8% at the central wavelength of 351 nm and nearly 99.5% at the central wavelength of 1053 nm in laser system, and for the tri-layer AR film, the maximum transmittance reached nearly 100% at both the central wavelengths of 527 and 1053 nm.

  2. Triple crossings of a string of magnetic islands at duskside magnetopause encountered by AMPTE/IRM satellite on 8 August 1985

    NASA Astrophysics Data System (ADS)

    Teh, W.-L.; Hau, L.-N.

    2007-08-01

    There have been a number of reports on the existence of pearl-like magnetic island structures at the magnetopause current layer based on the analyses of single spacecraft data and two-dimensional reconstruction method of solving the Grad-Shafranov equation as a spatial initial value problem. This paper presents an unusual event of multiple magnetopause crossings encountered by AMPTE/IRM satellite at the duskside equatorial plane on 8 August, 1985. In a total of 11 magnetopause crossings spanning for nearly 2 hours, crossing 3, 4, and 9 display similar features of a string of magnetic islands imbedded within the overall tangential discontinuity-like current layers. In these crossings, the deHoffmann-Teller velocities form approximately 90° from the magnetopause normal that the in-and-out magnetopause motion becomes subsiding for the satellite to pick up the pearl-like plasmoids with island width of about 6-12 ion inertial length. In particular, crossing 3 and 9 are 1 hour apart but have almost the same magnetopause normal and deHoffmann-Teller velocity as well as similar invariant axis. A region of cold plasma adjacent to the magnetopause within the magnetosphere, the low-latitude boundary layer, is seen in all three crossings.

  3. An experimental study of transmission, reflection and scattering of sound in a free jet flight simulation facility and comparison with theory

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tanna, H. K.; Tester, B. J.

    1981-01-01

    When a free jet (or open jet) is used as a wind tunnel to simulate the effects of flight on model noise sources, it is necessary to calibrate out the effects of the free jet shear layer on the transmitted sound, since the shear layer is absent in the real flight case. In this paper, a theoretical calibration procedure for this purpose is first summarized; following this, the results of an experimental program, designed to test the validity of the various components of the calibration procedure, are described. The experiments are conducted by using a point sound source located at various axial positions within the free jet potential core. By using broadband excitation and cross-correlation methods, the angle changes associated with ray paths across the shear layer are first established. Measurements are then made simultaneously inside and outside the free jet along the proper ray paths to determine the amplitude changes across the shear layer. It is shown that both the angle and amplitude changes can be predicted accurately by theory. It is also found that internal reflection at the shear layer is significant only for large ray angles in the forward quadrant where total internal reflection occurs. Finally, the effects of sound absorption and scattering by the shear layer turbulence are also examined experimentally.

  4. Investigation of the Cross-Section Stratifications of Icons Using Micro-Raman and Micro-Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Lazidou, Dimitra; Lampakis, Dimitrios; Karapanagiotis, Ioannis; Panayiotou, Costas

    2018-01-01

    The cross-section stratifications of samples, which were removed from six icons, are studied using optical microscopy, micro-Raman spectroscopy, and micro-Fourier transform infrared (FT-IR) spectroscopy. The icons, dated from the 14th to 19th centuries, are prominent examples of Byzantine painting art and are attributed to different artistic workshops of ​​northern Greece. The following materials are identified in the cross-sections of the icon samples using micro-Raman spectroscopy: anhydrite; calcite; carbon black; chrome yellow; cinnabar; gypsum; lead white; minium; orpiment; Prussian blue; red ochre; yellow ochre; and a paint of organic origin which can be either indigo ( Indigofera tinctoria L. and others) or woad ( Isatis tinctoria L.). The same samples are investigated using micro-FT-IR which leads to the following identifications: calcite; calcium oxalates; chrome yellow; gypsum; kaolinite; lead carboxylates; lead sulfate (or quartz); lead white; oil; protein; Prussian blue; saponified oil; shellac; silica; and tree resin. The study of the cross-sections of the icon samples reveals the combinations of the aforementioned inorganic and organic materials. Although the icons span over a long period of six centuries, the same stratification comprising gypsum ground layer, paint layers prepared by modified "egg tempera" techniques (proteinaceous materials mixed with oil and resins), and varnish layer is revealed in the investigated samples. Moreover, the presence of three layers of varnishes, one at the top and other two as intermediate layers, in the cross-section analysis of a sample from Virgin and Child provide evidence of later interventions.

  5. Cross-flow vortex structure and transition measurements using multi-element hot films

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.

    1991-01-01

    An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.

  6. The liquid fuel jet in subsonic crossflow

    NASA Technical Reports Server (NTRS)

    Nguyen, T. T.; Karagozian, A. R.

    1990-01-01

    An analytical/numerical model is described which predicts the behavior of nonreacting and reacting liquid jets injected transversely into subsonic cross flow. The compressible flowfield about the elliptical jet cross section is solved at various locations along the jet trajectory by analytical means for free-stream local Mach number perpendicular to jet cross section smaller than 0.3 and by numerical means for free-stream local Mach number perpendicular to jet cross section in the range 0.3-1.0. External and internal boundary layers along the jet cross section are solved by integral and numerical methods, and the mass losses due to boundary layer shedding, evaporation, and combustion are calculated and incorporated into the trajectory calculation. Comparison of predicted trajectories is made with limited experimental observations.

  7. Building a Practical Natural Laminar Flow Design Capability

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Lynde, Michelle N.

    2017-01-01

    A preliminary natural laminar flow (NLF) design method that has been developed and applied to supersonic and transonic wings with moderate-to-high leading-edge sweeps at flight Reynolds numbers is further extended and evaluated in this paper. The modular design approach uses a knowledge-based design module linked with different flow solvers and boundary layer stability analysis methods to provide a multifidelity capability for NLF analysis and design. An assessment of the effects of different options for stability analysis is included using pressures and geometry from an NLF wing designed for the Common Research Model (CRM). Several extensions to the design module are described, including multiple new approaches to design for controlling attachment line contamination and transition. Finally, a modification to the NLF design algorithm that allows independent control of Tollmien-Schlichting (TS) and cross flow (CF) modes is proposed. A preliminary evaluation of the TS-only option applied to the design of an NLF nacelle for the CRM is performed that includes the use of a low-fidelity stability analysis directly in the design module.

  8. CLEAR: Cross-Layer Exploration for Architecting Resilience

    DTIC Science & Technology

    2017-03-01

    benchmark analysis, also provides cost-effective solutions (~1% additional energy cost for the same 50× improvement). This paper addresses the...core (OoO-core) [Wang 04], across 18 benchmarks . Such extensive exploration enables us to conclusively answer the above cross-layer resilience...analysis of the effects of soft errors on application benchmarks , provides a highly effective soft error resilience approach. 3. The above

  9. Cross Layered Multi-Meshed Tree Scheme for Cognitive Networks

    DTIC Science & Technology

    2011-06-01

    Meshed Tree Routing protocol wireless ad hoc networks ,” Second IEEE International Workshop on Enabling Technologies and Standards for Wireless Mesh ...and Sensor Networks , 2004 43. Chen G.; Stojmenovic I., “Clustering and routing in mobile wireless networks ,” Technical Report TR-99-05, SITE, June...Cross-layer optimization, intra-cluster routing , packet forwarding, inter-cluster routing , mesh network communications,

  10. EBF3 Design and Sustainability Considerations

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.

    2015-01-01

    Electron beam freeform fabrication (EBF3) is a cross-cutting technology for producing structural metal parts using an electron beam and wire feed in a layer-additive fashion. This process was developed by researchers at NASA Langley to specifically address needs for aerospace applications. Additive manufacturing technologies like EBF3 enable efficient design of materials and structures by tailoring microstructures and chemistries at the local level to improve performance at the global level. Additive manufacturing also facilitates design freedom by integrating assemblies into complex single-piece components, eliminating flanges, fasteners and joints, resulting in reduced size and mass. These same efficiencies that permit new design paradigms also lend themselves to supportability and sustainability. Long duration space missions will require a high degree of self-sustainability. EBF3 is a candidate technology being developed to allow astronauts to conduct repairs and fabricate new components and tools on demand, with efficient use of feedstock materials and energy.

  11. Preparation of Carbon Nanosheets at Room Temperature

    PubMed Central

    Schrettl, Stephen; Schulte, Bjoern; Stefaniu, Cristina; Oliveira, Joana; Brezesinski, Gerald; Frauenrath, Holger

    2016-01-01

    Amphiphilic molecules equipped with a reactive, carbon-rich "oligoyne" segment consisting of conjugated carbon-carbon triple bonds self-assemble into defined aggregates in aqueous media and at the air-water interface. In the aggregated state, the oligoynes can then be carbonized under mild conditions while preserving the morphology and the embedded chemical functionalization. This novel approach provides direct access to functionalized carbon nanomaterials. In this article, we present a synthetic approach that allows us to prepare hexayne carboxylate amphiphiles as carbon-rich siblings of typical fatty acid esters through a series of repeated bromination and Negishi-type cross-coupling reactions. The obtained compounds are designed to self-assemble into monolayers at the air-water interface, and we show how this can be achieved in a Langmuir trough. Thus, compression of the molecules at the air-water interface triggers the film formation and leads to a densely packed layer of the molecules. The complete carbonization of the films at the air-water interface is then accomplished by cross-linking of the hexayne layer at room temperature, using UV irradiation as a mild external stimulus. The changes in the layer during this process can be monitored with the help of infrared reflection-absorption spectroscopy and Brewster angle microscopy. Moreover, a transfer of the carbonized films onto solid substrates by the Langmuir-Blodgett technique has enabled us to prove that they were carbon nanosheets with lateral dimensions on the order of centimeters. PMID:27022781

  12. Method of constructing a superconducting magnet

    DOEpatents

    Satti, John A.

    1981-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  13. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  14. Fabrication of Out-of-Plane Electrodes for ACEO Pumps

    NASA Astrophysics Data System (ADS)

    Senousy, Yehya; Harnett, Cindy

    2012-02-01

    This abstract reports the fabrication process of a novel AC Electrosmosis (ACEO) pump with out of plane asymmetric interdigitated electrodes. A self-folding technique is used to fabricate the electrodes, that depends on the strain mismatch between the tensile stressed film (metal layer) and the compressive stress film (oxidized silicon layer). The electrodes roll up with a well-defined radius of curvature in the range of 100-200 microns. Two different electrical signals are connected to alternating electrodes using an insulating silicon nitride barrier that allows circuits to cross over each other without shorting. Electroosmotic micropumps are essential for low-cost, power-efficient microfluidic lab-on-chip devices used in diverse application such as analytical probes, drug delivery systems and surgical tools. ACEO pumps have been developed to address the drawbacks of the DCEO pumps such as the faradic reaction and gas bubbles. The original ACEO microfluidic pump was created with planar arrays of asymmetric interdigitated electrodes at the bottom of the channel. This rolled-up tube design improves on the planar design by including the channel walls and ceiling in the active pumping surface area of the device.

  15. Effectively Transparent Front Contacts for Optoelectronic Devices

    DOE PAGES

    Saive, Rebecca; Borsuk, Aleca M.; Emmer, Hal S.; ...

    2016-06-10

    Effectively transparent front contacts for optoelectronic devices achieve a measured transparency of up to 99.9% and a measured sheet resistance of 4.8 Ω sq-1. These 3D microscale triangular cross-section grid fingers redirect incoming photons efficiently to the active semiconductor area and can replace standard grid fingers as well as transparent conductive oxide layers in optoelectronic devices. Optoelectronic devices such as light emitting diodes, photodiodes, and solar cells play an important and expanding role in modern technology. Photovoltaics is one of the largest optoelectronic industry sectors and an ever-increasing component of the world's rapidly growing renewable carbon-free electricity generation infrastructure. Inmore » recent years, the photovoltaics field has dramatically expanded owing to the large-scale manufacture of inexpensive crystalline Si and thin film cells and modules. The current record efficiency (η = 25.6%) Si solar cell utilizes a heterostructure intrinsic thin layer (HIT) design[1] to enable increased open circuit voltage, while more mass-manufacturable solar cell architectures feature front contacts.[2, 3] Thus improved solar cell front contact designs are important for future large-scale photovoltaics with even higher efficiency.« less

  16. Galerkin projection for geometrically-exact multilayer beams allowing for ply drop-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu-Quoc, L.; Deng, H.

    1995-12-31

    Focusing on the static case in the present work, we develop a Galerkin projection of the resulting nonlinear governing equations of equilibrium for geometrically exact sandwich beams and 1-D plates developed. In the proposed theory, each layer in the beam can have different thickness and length. As such one can use the present formulation to model an important class of multilayer structures having ply drop-off. No restriction is imposed on the magnitude of the displacement field, whose continuity across the layer interfaces is exactly enforced. The layer cross section in the deformed beam is assumed to remain straight, but notmore » orthogonal to the layer centroidal line, thus shear deformation in each layer is accounted for. Also no restriction is imposed on the rotation of a layer cross section. It follows that the overall cross section in the deformed beam is continuous piecewise linear, and can be best thought of as a chain of rigid links, connected by hinges. The overall deformation of a multilayer beam can be described by the deformation of a reference layer. The unknown kinematic quantities are therefore the two displacement components of the deformed centroidal line of a reference layer, and the finite rotations of the layers. The present theory can be used to analyze large deformation in sandwich beams. Numerical examples, such as roll-up maneuver and sandwich beam with ply drop-off, which underline the salient features of the formulation are presented. Saint-Venant principle is demonstrated for very short sandwich beams. The readers are referred to the paper for detail.« less

  17. Visualization of Current and Mapping of Elements in Quantum Dot Solar Cells

    DOE PAGES

    Niezgoda, J. Scott; Ng, Amy; Poplawsky, Jonathan D.; ...

    2015-12-17

    The delicate influence of properties such as high surface state density and organic-inorganic boundaries on the individual quantum dot electronic structure complicates pursuits toward forming quantitative models of quantum dot thin films ab initio. Our report describes the application of electron beam-induced current (EBIC) microscopy to depleted-heterojunction colloidal quantum dot photovoltaics (DH-CQD PVs), a technique which affords one a map of current production within the active layer of a PV device. The effects of QD sample size polydispersity as well as layer thickness in CQD active layers as they pertain to current production within these PVs are imaged and explained.more » The results from these experiments compare well with previous estimations, and confirm the ability of EBIC to function as a valuable empirical tool for the design and betterment of DH-CQD PVs. Lastly, extensive and unexpected PbS QD penetration into the mesoporous TiO 2 layer is observed through imaging of device cross sections by energy-dispersive X-ray spectroscopy combined with scanning transmission electron microscopy. Finally, the effects of this finding are discussed and corroborated with the EBIC studies on similar devices.« less

  18. 35 GHz mode-locking of 1.3 μm quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Kuntz, M.; Fiol, G.; Lämmlin, M.; Bimberg, D.; Thompson, M. G.; Tan, K. T.; Marinelli, C.; Penty, R. V.; White, I. H.; Ustinov, V. M.; Zhukov, A. E.; Shernyakov, Yu. M.; Kovsh, A. R.

    2004-08-01

    35GHz passive mode-locking of 1.3μm (InGa)As/GaAs quantum dot lasers is reported. Hybrid mode-locking was achieved at frequencies up to 20GHz. The minimum pulse width of the Fourier-limited pulses was 7ps with a peak power of 6mW. Low uncorrelated timing jitter below 1ps was found in cross correlation experiments. High-frequency operation of the lasers was eased by a ridge waveguide design that includes etching through the active layer.

  19. Polarization Compensation of Fresnel Aberrations in Telescopes

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckenridge, James B.

    2011-01-01

    Large aperture space telescopes are built with low F# s to accommodate the mechanical constraints of launch vehicles and to reduce resonance frequencies of the on-orbit system. Inherent with these low F# s is Fresnel polarization which affects image quality. We present the design and modeling of a nano-structure consisting of birefringent layers to control polarization and increase contrast. Analysis shows a device that functions across a 400nm bandwidth tunable from 300nm to 1200nm. This Fresnel compensator device has a cross leakage of less than 0.001 retardance.

  20. Photodiode arrays having minimized cross-talk between diodes

    DOEpatents

    Guckel, Henry; McNamara, Shamus P.

    2000-10-17

    Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.

  1. The electroluminescence mechanism of Er³⁺ in different silicon oxide and silicon nitride environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebohle, L., E-mail: l.rebohle@hzdr.de; Wutzler, R.; Braun, M.

    Rare earth doped metal-oxide-semiconductor (MOS) structures are of great interest for Si-based light emission. However, several physical limitations make it difficult to achieve the performance of light emitters based on compound semiconductors. To address this point, in this work the electroluminescence (EL) excitation and quenching mechanism of Er-implanted MOS structures with different designs of the dielectric stack are investigated. The devices usually consist of an injection layer made of SiO₂ and an Er-implanted layer made of SiO₂, Si-rich SiO₂, silicon nitride, or Si-rich silicon nitride. All structures implanted with Er show intense EL around 1540 nm with EL power efficienciesmore » in the order of 2 × 10⁻³ (for SiO₂:Er) or 2 × 10⁻⁴(all other matrices) for lower current densities. The EL is excited by the impact of hot electrons with an excitation cross section in the range of 0.5–1.5 × 10⁻¹⁵cm⁻². Whereas the fraction of potentially excitable Er ions in SiO₂ can reach values up to 50%, five times lower values were observed for other matrices. The decrease of the EL decay time for devices with Si-rich SiO₂ or Si nitride compared to SiO₂ as host matrix implies an increase of the number of defects adding additional non-radiative de-excitation paths for Er³⁺. For all investigated devices, EL quenching cross sections in the 10⁻²⁰ cm² range and charge-to-breakdown values in the range of 1–10 C cm⁻² were measured. For the present design with a SiO₂ acceleration layer, thickness reduction and the use of different host matrices did not improve the EL power efficiency or the operation lifetime, but strongly lowered the operation voltage needed to achieve intense EL.« less

  2. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.

  3. Determination of Optimum Cross-section for Oran Highway Revetment

    NASA Astrophysics Data System (ADS)

    Velioglu, Deniz; Sogut, Erdinc; Guler, Isikhan

    2017-04-01

    Revetments are shore parallel, sloping coastal structures which are built to provide protection from the negative effects of the sea. The revetment mentioned in this study is located in the City of Oran, Algeria and is currently under construction. This study investigates the determination of the optimum revetment cross section for Oran highway, considering both the hydraulic stability of the revetment and economy. The existence of cliffs in the region and the settlement of the City of Oran created a necessity to re-align Oran highway; therefore, it was shifted towards the Gulf of Oran. Approximately 1 km of the highway is to be constructed on the Mediterranean Sea due to the new alignment. In order to protect the sea side of the road from the adverse effects of the sea, a revetment was designed. The proposed cross section had an armour layer composed of 23 tons of antifer units and regular placement of armour units was recommended. In order to check the hydraulic stability of the proposed section, physical model tests were performed in the laboratory of LEM (Laboratoire d'Etudes Maritimes) in Algeria, using the pre-determined design wave conditions. The physical model tests revealed that the trunk of the revetment was totaly damaged. Accordingly, the proposed section was found insufficient and certain modifications were required. The first modification was made in the arrangement of armour units, changing them from regular to irregular. After testing the new cross section, it was observed that the revetment was vulnerable to breaking wave attack due to the toe geometry and thus the toe of the revetment had to be re-shaped. Therefore, the second option was to reduce the toe elevation. It was observed that even though the revetment trunk was safe, the damage in the toe was not in acceptable limits. The new cross section was found insufficient and as the final option, the weight of the antifer units used in the armour layer was increased, the toe length of the structure was increased and the size of the armour units in the toe was decreased. After the modifications, the new section was tested physically and it was selected as the most optimum option. Acknowledgements: Yuksel Proje Uluslararasi A.S. is acknowledged for its contributon to this study.

  4. Entrance-length dendritic plate heat exchangers

    DOE PAGES

    Bejan, A.; Alalaimi, M.; Sabau, A. S.; ...

    2017-07-17

    We explore the idea that the highest heat transfer rate between two fluids in a given volume is achieved when plate channel lengths are given by the thermal entrance length, i.e., when the thermal boundary layers meet at the exit of each channel. The overall design can be thought of an elemental construct of a dendritic heat exchanger, which consists of two tree-shaped streams arranged in cross flow. Every channel is as long as the thermal entrance length of the developing flow that resides in that channel. The results indicate that the overall design will change with the total volumemore » and total number of channels. We found that the lengths of the surfaces swept in cross flow would have to decrease sizably as number of channels increases, while exhibiting mild decreases as total volume increases. The aspect ratio of each surface swept by fluid in cross flow should be approximately square, independent of total number of channels and volume. We also found that the minimum pumping power decreases sensibly as the total number of channels and the volume increase. FurtherThe maximized heat transfer rate per unit volume increases sharply as the total volume decreases, in agreement with the natural evolution toward miniaturization in technology.« less

  5. Entrance-length dendritic plate heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejan, A.; Alalaimi, M.; Sabau, A. S.

    We explore the idea that the highest heat transfer rate between two fluids in a given volume is achieved when plate channel lengths are given by the thermal entrance length, i.e., when the thermal boundary layers meet at the exit of each channel. The overall design can be thought of an elemental construct of a dendritic heat exchanger, which consists of two tree-shaped streams arranged in cross flow. Every channel is as long as the thermal entrance length of the developing flow that resides in that channel. The results indicate that the overall design will change with the total volumemore » and total number of channels. We found that the lengths of the surfaces swept in cross flow would have to decrease sizably as number of channels increases, while exhibiting mild decreases as total volume increases. The aspect ratio of each surface swept by fluid in cross flow should be approximately square, independent of total number of channels and volume. We also found that the minimum pumping power decreases sensibly as the total number of channels and the volume increase. FurtherThe maximized heat transfer rate per unit volume increases sharply as the total volume decreases, in agreement with the natural evolution toward miniaturization in technology.« less

  6. Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery.

    PubMed

    Wang, Lei; Wang, Dong; Dong, Zhihui; Zhang, Fengxing; Jin, Jian

    2013-04-10

    From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO2 composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO2-based electrode materials. RGO/SnO2 composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO2 composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs.

  7. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms.

    PubMed

    Park, Sohyeon; Choi, Daheui; Jeong, Hyejoong; Heo, Jiwoong; Hong, Jinkee

    2017-10-02

    The ability to control drug loading and release is the most important feature in the development of medical devices. In this research, we prepared a functional nanocoating technology to incorporate a drug-release layer onto a desired substrate. The multilayer films were prepared using chitosan (CHI) and carboxymethyl cellulose (CMC) polysaccharides by the layer-by-layer (LbL) method. By using chemical cross-linking to change the inner structure of the assembled multilayer, we could control the extent of drug loading and release. The cross-linked multilayer film had a porous structure and enhanced water wettability. Interestingly, more of the small-molecule drug was loaded into and released from the non-cross-linked multilayer film, whereas more of the macromolecular drug was loaded into and released from the cross-linked multilayer film. These results indicate that drug loading and release can be easily controlled according to the molecular weight of the desired drug by changing the structure of the film.

  8. Behaviour of Mechanically Laminated CLT Members

    NASA Astrophysics Data System (ADS)

    Kuklík, P.; Velebil, L.

    2015-11-01

    Cross laminated timber (CLT) is one of the structural building systems based on the lamination of multiple layers, where each layer is oriented perpendicularly to each other. Recent requirements are placed to develop an alternative process based on the mechanical lamination of the layers, which is of particular interest to our research group at the University Centre for Energy Efficient Buildings. The goal is to develop and verify the behaviour of mechanically laminated CLT wall panels exposed to shear stresses in the plane. The shear resistance of mechanically jointed CLT is ensured by connecting the layers by screws. The paper deals with the experimental analysis focused on the determination of the torsional stiffness and the slip modulus of crossing areas for different numbers of orthogonally connected layers. The results of the experiments were compared with the current analytical model.

  9. Cation-induced folding of alginate-bearing bilayer gels: an unusual example of spontaneous folding along the long axis.

    PubMed

    Athas, Jasmin C; Nguyen, Catherine P; Kummar, Shailaa; Raghavan, Srinivasa R

    2018-04-04

    The spontaneous folding of flat gel films into tubes is an interesting example of self-assembly. Typically, a rectangular film folds along its short axis when forming a tube; folding along the long axis has been seen only in rare instances when the film is constrained. Here, we report a case where the same free-swelling gel film folds along either its long or short axis depending on the concentration of a solute. Our gels are sandwiches (bilayers) of two layers: a passive layer of cross-linked N,N'-dimethylyacrylamide (DMAA) and an active layer of cross-linked DMAA that also contains chains of the biopolymer alginate. Multivalent cations like Ca2+ and Cu2+ induce these bilayer gels to fold into tubes. The folding occurs instantly when a flat film of the gel is introduced into a solution of these cations. The likely cause for folding is that the active layer stiffens and shrinks (because the alginate chains in it get cross-linked by the cations) whereas the passive layer is unaffected. The resulting mismatch in swelling degree between the two layers creates internal stresses that drive folding. Cations that are incapable of cross-linking alginate, such as Na+ and Mg2+, do not induce gel folding. Moreover, the striking aspect is the direction of folding. When the Ca2+ concentration is high (100 mM or higher), the gels fold along their long axis, whereas when the Ca2+ concentration is low (40 to 80 mM), the gels fold along their short axis. We hypothesize that the folding axis is dictated by the inhomogeneous nature of alginate-cation cross-linking, i.e., that the edges get cross-linked before the faces of the gel. At high Ca2+ concentration, the stiffer edges constrain the folding; in turn, the gel folds such that the longer edges are deformed less, which explains the folding along the long axis. At low Ca2+ concentration, the edges and the faces of the gel are more similar in their degree of cross-linking; therefore, the gel folds along its short axis. An analogy can be made to natural structures (such as leaves and seed pods) where stiff elements provide the directionality for folding.

  10. Tuning the overlap and the cross-layer correlations in two-layer networks: Application to a susceptible-infectious-recovered model with awareness dissemination

    NASA Astrophysics Data System (ADS)

    Juher, David; Saldaña, Joan

    2018-03-01

    We study the properties of the potential overlap between two networks A ,B sharing the same set of N nodes (a two-layer network) whose respective degree distributions pA(k ) ,pB(k ) are given. Defining the overlap coefficient α as the Jaccard index, we prove that α is very close to 0 when A and B are random and independently generated. We derive an upper bound αM for the maximum overlap coefficient permitted in terms of pA(k ) , pB(k ) , and N . Then we present an algorithm based on cross rewiring of links to obtain a two-layer network with any prescribed α inside the range (0 ,αM) . A refined version of the algorithm allows us to minimize the cross-layer correlations that unavoidably appear for values of α beyond a critical overlap αc<αM . Finally, we present a very simple example of a susceptible-infectious-recovered epidemic model with information dissemination and use the algorithms to determine the impact of the overlap on the final outbreak size predicted by the model.

  11. Embedded pitch adapters: A high-yield interconnection solution for strip sensors

    NASA Astrophysics Data System (ADS)

    Ullán, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Fleta, C.; Fernandez-Tejero, J.; Quirion, D.; Bloch, I.; Díez, S.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A proposal to fabricate large area strip sensors with integrated, or embedded, pitch adapters is presented for the End-cap part of the Inner Tracker in the ATLAS experiment. To implement the embedded pitch adapters, a second metal layer is used in the sensor fabrication, for signal routing to the ASICs. Sensors with different embedded pitch adapters have been fabricated in order to optimize the design and technology. Inter-strip capacitance, noise, pick-up, cross-talk, signal efficiency, and fabrication yield have been taken into account in their design and fabrication. Inter-strip capacitance tests taking into account all channel neighbors reveal the important differences between the various designs considered. These tests have been correlated with noise figures obtained in full assembled modules, showing that the tests performed on the bare sensors are a valid tool to estimate the final noise in the full module. The full modules have been subjected to test beam experiments in order to evaluate the incidence of cross-talk, pick-up, and signal loss. The detailed analysis shows no indication of cross-talk or pick-up as no additional hits can be observed in any channel not being hit by the beam above 170 mV threshold, and the signal in those channels is always below 1% of the signal recorded in the channel being hit, above 100 mV threshold. First results on irradiated mini-sensors with embedded pitch adapters do not show any change in the interstrip capacitance measurements with only the first neighbors connected.

  12. A drive unit for the instrument pointing system

    NASA Technical Reports Server (NTRS)

    Birner, R.; Roth, M.

    1981-01-01

    The requirements, capabilities, and unique design features of the instrument pointing system drive units (DU) are presented. The DU's are identical for all three gimbal axes (elevation, cross elevation, and azimuth) and provide alternating rotation of shaft versus the housing of + or - 180 deg. The design features include: two ball bearing cartridges using cemented carbide balls coated with TiC a layer; redundant brushless torque motors and resolvers; a load by-pass mechanism driven by a dc torque motor to off-load the bearings during ascent/descent, ground transportation, and to provide an emergency breaking capability; and cabling over each gimbal axis by means of cable follow-up consisting of 13 signal and 15 power flat band cable loops. Test results of disturbance torque characteristics are presented.

  13. Field and numerical descriptions of fracture geometries and terminations in chalk containing chert layers and inclusions; implications for groundwater flow in Danish chalk aquifers

    NASA Astrophysics Data System (ADS)

    Seyum, S.

    2017-12-01

    This study is a description of the fracture distribution in laterally discontinuous chalk and chert layers, with an investigation on how fracture lengths and apertures vary as a function of applied stresses, material properties, and interface properties. Natural fractures intersect laterally extensive, discontinuous, chalk-chert material interfaces in 62 million-year old to 72 million-year old Chalk Group formations exposed at Stevns Klint, Denmark. Approximately one-third of Denmark's fresh water use is from chalk and limestone regional aquifers of the Chalk Group formations, where rock permeability is dominantly a function of open fracture connectivities. Fractured, centimeter- to decimeter-thick chert layers and inclusions (101 GPa elastic stiffness) are interlayered with fractured, meter-thick chalk layers (100 GPa elastic stiffness). Fractures are observed to terminate against and cross chalk-chert interfaces, affecting the vertical flow of water and pollutants between aquifers. The discontinuous and variably thin nature of chert layers at Stevns Klint effectively merges adjacent fracture-confining layers of chalk along discrete position intervals, resulting in lateral variability of fracture spacing. Finite element numerical models are designed to describe fracture interactions with stiff, chert inclusions of various shapes, thicknesses, widths, orientations, and interface friction and fracture toughness values. The models are two-dimensional with isotropic, continuous material in plane strain and uniformly applied remote principal stresses. These characteristics are chosen based on interpretations of the petrophysics of chalk and chert, the burial history of the rock, and the scale of investigation near fracture tips relative to grain sizes. The result are value ranges for relative stiffness contrasts, applied stresses, and material interface conditions that would cause fractures to cross, terminate at, or form along chalk-chert interfaces, with emphasis on conditions that reproduce measured fracture geometries. The results of this study provide predictive, field-supported fracture geometries for flow models and, with appropriate changes to the parameters, the methodology is applicable to describing fracture geometries in chalk hydrocarbon systems.

  14. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Balliou, A.; Douvas, A. M.; Normand, P.; Tsikritzis, D.; Kennou, S.; Argitis, P.; Glezos, N.

    2014-10-01

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW12O403-, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  15. Cross-Sectional Imaging of Boundary Lubrication Layer Formed by Fatty Acid by Means of Frequency-Modulation Atomic Force Microscopy.

    PubMed

    Hirayama, Tomoko; Kawamura, Ryota; Fujino, Keita; Matsuoka, Takashi; Komiya, Hiroshi; Onishi, Hiroshi

    2017-10-10

    To observe in situ the adsorption of fatty acid onto metal surfaces, cross-sectional images of the adsorption layer were acquired by frequency-modulation atomic force microscopy (FM-AFM). Hexadecane and palmitic acid were used as the base oil and typical fatty acid, respectively. A Cu-coated silicon wafer was prepared as the target substrate. The solvation structure formed by hexadecane molecules at the interface between the Cu substrate and the hexadecane was observed, and the layer pitch was found to be about 0.6 nm, which corresponds to the height of hexadecane molecules. This demonstrates that hexadecane molecules physically adsorbed onto the surface due to van der Waals forces with lying orientation because hexadecane is a nonpolar hydrocarbon. When hexadecane with palmitic acid was put on the Cu substrate instead of pure hexadecane, an adsorption layer of palmitic acid was observed at the interface. The layer pitch was about 2.5-2.8 nm, which matches the chain length of palmitic acid molecules well. This indicates that the original adsorption layer was monolayer or single bilayer in the local area. In addition, a cross-sectional image captured 1 h after observation started to reveal that the adsorbed additive layer gradually grew up to be thicker than about 20 nm due to an external stimulus, such as cantilever oscillation. This is the first report of in situ observation of an adsorbed layer by FM-AFM in the tribology field and demonstrates that FM-AFM is useful for clarifying the actual boundary lubrication mechanism.

  16. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.

    PubMed

    Yoo, Seung Joon; Evanko, Brian; Wang, Xingfeng; Romelczyk, Monica; Taylor, Aidan; Ji, Xiulei; Boettcher, Shannon W; Stucky, Galen D

    2017-07-26

    Research in electric double-layer capacitors (EDLCs) and rechargeable batteries is converging to target systems that have battery-level energy density and capacitor-level cycling stability and power density. This research direction has been facilitated by the use of redox-active electrolytes that add faradaic charge storage to increase energy density of the EDLCs. Aqueous redox-enhanced electrochemical capacitors (redox ECs) have, however, performed poorly due to cross-diffusion of soluble redox couples, reduced cycle life, and low operating voltages. In this manuscript, we propose that these challenges can be simultaneously met by mechanistically designing a liquid-to-solid phase transition of oxidized catholyte (or reduced anolyte) with confinement in the pores of electrodes. Here we demonstrate the realization of this approach with the use of bromide catholyte and tetrabutylammonium cation that induces reversible solid-state complexation of Br 2 /Br 3 - . This mechanism solves the inherent cross-diffusion issue of redox ECs and has the added benefit of greatly stabilizing the reactive bromine generated during charging. Based on this new mechanistic insight on the utilization of solid-state bromine storage in redox ECs, we developed a dual-redox EC consisting of a bromide catholyte and an ethyl viologen anolyte with the addition of tetrabutylammonium bromide. In comparison to aqueous and organic electric double-layer capacitors, this system enhances energy by factors of ca. 11 and 3.5, respectively, with a specific energy of ∼64 W·h/kg at 1 A/g, a maximum power density >3 kW/kg, and cycling stability over 7000 cycles.

  17. Practical layer designs for polarizing beam-splitter cubes.

    PubMed

    von Blanckenhagen, Bernhard

    2006-03-01

    Liquid-crystal-on-silicon- (LCoS-) based digital projection systems require high-performance polarizing beam splitters. The classical beam-splitter cube with an immersed interference coating can fulfill these requirements. Practical layer designs can be generated by computer optimization using the classic MacNeille polarizer layer design as the starting layer design. Multilayer structures with 100 nm bandwidth covering the blue, green, or red spectral region and one design covering the whole visible spectral region are designed. In a second step these designs are realized by using plasma-ion-assisted deposition. The performance of the practical beam-splitter cubes is compared with the theoretical performance of the layer designs.

  18. The construction phase’s influence to the moving ability of cross-sections of woven structure

    NASA Astrophysics Data System (ADS)

    Inogamdjanov, D.; Daminov, A.; Kasimov, O.

    2017-10-01

    The purpose of this study is to work out bases to predict properties for single layer flat woven fabrics depending on changes of construction phases. A structural model of cross-section of single layered fabric is described based on the Pierce’s model. Form transformation of the yarn like straight, semi-arch and arch yarn is considered according to the alteration of yarn tension under the theory of Novikov. The value contributions to movement index of warp and weft yarn and their total moving ability in cross-sections at all structure phases of fabric are summarized.

  19. Preliminary study of the interactions caused by crossing shock waves and a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Ketchum, A. C.; Bogdonoff, S. M.; Fernando, E. M.; Batcho, P. F.

    1989-01-01

    The subject research, the first phase of an extended study of the interaction of crossing shock waves with a turbulent boundary layer, has revealed the complexity of the resulting flow. Detailed surface visualization and mean wall static pressure distributions show little resemblance to the inviscid flow approximation, and the exploratory high frequency measurements show that the flow downstream of the theoretical inviscid shock crossing position has a significant unsteady characteristic. Further developments of the (unsteady) high frequency measurements are required to fully characterize the unsteadiness and the requirements to include this component in flowfield modeling.

  20. Installation restoration research program: Assessment of geophysical methods for subsurface geologic mapping, cluster 13, Edgewood Area, Aberdeen Proving Ground, Maryland. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.

    1996-10-01

    Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less

  1. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  2. Variations in the magnetopause current layer

    NASA Astrophysics Data System (ADS)

    Laakso, H. E.; Middleton, H. R.

    2017-12-01

    We use multi-point observations from the Cluster spacecraft to investigate the variations in the magnetopause current layer. With help of the curlometer technique one can determine the magnetopause current and its variability. Most of the time the magnetopause location is moving back and forth, so during any given pass the current layer is crossed several times. We use such crossings to investigate the characteristics of the current layer as the solar wind pressure varies (and the magnetopause moves accordingly). In addition we take an advantage of the ambient electron measurements from the EDI experiment which have been calibrated against the PEACE electron spectrometer data. These data can be used to detect fast variations of 1 keV electrons at resolution of 1-100 ms. Overall, Cluster observations are highly complimentary to the MMS observations due to the polar orbit of the Cluster spacecraft which provide fast vertical profiles of the magnetopause current layer.

  3. A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al-TiN multilayered composites

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, D.; Mara, N. A.; Dickerson, P.; Hoagland, R. G.; Misra, A.

    2010-05-01

    Nanoscale multilayered Al-TiN composites were deposited using the dc magnetron sputtering technique in two different layer thickness ratios, Al : TiN = 1 : 1 and Al : TiN = 9 : 1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional transmission electron microscopy (TEM) was carried out on samples extracted with focused ion beam from below the nanoindents. The results of the hardness tests on the Al-TiN multilayers with two different thickness ratios are presented, together with observations from the cross-sectional TEM studies of the regions underneath the indents. These studies revealed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers.

  4. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    NASA Astrophysics Data System (ADS)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  5. Implementation of a Cross-Layer Sensing Medium-Access Control Scheme.

    PubMed

    Su, Yishan; Fu, Xiaomei; Han, Guangyao; Xu, Naishen; Jin, Zhigang

    2017-04-10

    In this paper, compressed sensing (CS) theory is utilized in a medium-access control (MAC) scheme for wireless sensor networks (WSNs). We propose a new, cross-layer compressed sensing medium-access control (CL CS-MAC) scheme, combining the physical layer and data link layer, where the wireless transmission in physical layer is considered as a compress process of requested packets in a data link layer according to compressed sensing (CS) theory. We first introduced using compressive complex requests to identify the exact active sensor nodes, which makes the scheme more efficient. Moreover, because the reconstruction process is executed in a complex field of a physical layer, where no bit and frame synchronizations are needed, the asynchronous and random requests scheme can be implemented without synchronization payload. We set up a testbed based on software-defined radio (SDR) to implement the proposed CL CS-MAC scheme practically and to demonstrate the validation. For large-scale WSNs, the simulation results show that the proposed CL CS-MAC scheme provides higher throughput and robustness than the carrier sense multiple access (CSMA) and compressed sensing medium-access control (CS-MAC) schemes.

  6. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients.

    PubMed

    Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2013-08-01

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  7. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    NASA Astrophysics Data System (ADS)

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha

    2013-08-01

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  8. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Wu, C. H.; Chen, C. C.

    2016-05-01

    Radar absorbing materials (RAMs) also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI) reduction and human health protection. In this study, the synthesis of functionally graded material (FGM) (CI/Polyurethane composites), which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA) to optimize the microwave absorption efficiency and bandwidth of FGM. For impedance matching and broad-band design, the original 8-layered FGM was obtained by the GA method to calculate the thickness of each layer for a sequential stacking of FGM from 20, 30, 40, 50, 60, 65, 70 and 75 wt% of CI fillers. The reflection loss of the original 8-layered FGM below -10 dB can be obtained in the frequency range of 5.12˜18 GHz with a total thickness of 9.66 mm. Further optimization reduces the number of the layers and the stacking sequence of the optimized 4-layered FGM is 20, 30, 65, 75 wt% with thickness of 0.8, 1.6, 0.6 and 1.0 mm, respectively. The synthesis and measurement of the optimized 4-layered FGM with a thickness of 4 mm reveal a minimum reflection loss of -25.2 dB at 6.64 GHz and its bandwidth below - 10 dB is larger than 12.8 GHz.

  9. Steering and filtering white light with resonant waveguide gratings

    NASA Astrophysics Data System (ADS)

    Quaranta, Giorgio; Basset, Guillaume; Martin, Olivier J. F.; Gallinet, Benjamin

    2017-08-01

    A novel thin-film single-layer structure based on resonant waveguide gratings (RWGs) allows to engineer selective color filtering and steering of white light. The unit cell of the structure consists of two adjacent finite-length and cross-talking RWGs, where the former acts as in-coupler and the latter acts as out-coupler. The structure is made by only one nano-imprint lithography replication and one thin film layer deposition, making it fully compatible with up-scalable fabrication processes. We characterize a fabricated optical security element designed to work with the flash and the camera of a smartphone in off-axis light steering configuration, where the pattern is revealed only by placing the smartphone in the proper position. Widespread applications are foreseen in a variety of fields, such as multifocal or monochromatic lenses, solar cells, biosensors, security devices and seethrough optical combiners for near-eye displays.

  10. Interfacial thin films rupture and self-similarity

    NASA Astrophysics Data System (ADS)

    Ward, Margaret H.

    2011-06-01

    Two superposed thin layers of fluids are prone to interfacial instabilities due to London-van der Waals forces. Evolution equations for the film thicknesses are derived using lubrication theory. Using the intrinsic scales, for a single layer, results in a system with parametric dependence of four ratios of the two layers: surface tension, Hamaker constant, viscosity, and film thickness. In contrast to the single layer case, the bilayer system has two unstable eigenmodes: squeezing and bending. For some particular parameter regimes, the system exhibits the avoided crossing behavior, where the two eigenmodes are interchanged. Based on numerical analysis, the system evolves into four different rupture states: basal layer rupture, upper layer rupture, double layer rupture, and mixed layer rupture. The ratio of Hamaker constants and the relative film thickness of the two layers control the system dynamics. Remarkably, the line of avoided crossing demarks the transition region of mode mixing and energy transfer, affecting the scaling of the dynamical regime map consequentially. Asymptotic and numerical analyses are used to examine the self-similar ruptures and to extract the power law scalings for both the basal layer rupture and the upper layer rupture. The scaling laws for the basal layer rupture are the same as those of the single layer on top of a substrate. The scaling laws for the upper layer rupture are different: the lateral length scale decreases according to (tr-t)1/3 and the film thickness decreases according to (tr-t)1/6.

  11. Development of a 3D Graphene Electrode Dielectrophoretic Device

    PubMed Central

    Xie, Hongyu; Tewari, Radheshyam; Fukushima, Hiroyuki; Narendra, Jeffri; Heldt, Caryn; King, Julia; Minerick, Adrienne R.

    2014-01-01

    The design and fabrication of a novel 3D electrode microdevice using 50 µm thick graphene paper and 100 µm double sided tape is described. The protocol details the procedures to construct a versatile, reusable, multiple layer, laminated dielectrophoresis chamber. Specifically, six layers of 50 µm x 0.7 cm x 2 cm graphene paper and five layers of double sided tape were alternately stacked together, then clamped to a glass slide. Then a 700 μm diameter micro-well was drilled through the laminated structure using a computer-controlled micro drilling machine. Insulating properties of the tape layer between adjacent graphene layers were assured by resistance tests. Silver conductive epoxy connected alternate layers of graphene paper and formed stable connections between the graphene paper and external copper wire electrodes. The finished device was then clamped and sealed to a glass slide. The electric field gradient was modeled within the multi-layer device. Dielectrophoretic behaviors of 6 μm polystyrene beads were demonstrated in the 1 mm deep micro-well, with medium conductivities ranging from 0.0001 S/m to 1.3 S/m, and applied signal frequencies from 100 Hz to 10 MHz. Negative dielectrophoretic responses were observed in three dimensions over most of the conductivity-frequency space and cross-over frequency values are consistent with previously reported literature values. The device did not prevent AC electroosmosis and electrothermal flows, which occurred in the low and high frequency regions, respectively. The graphene paper utilized in this device is versatile and could subsequently function as a biosensor after dielectrophoretic characterizations are complete. PMID:24998694

  12. Development of a 3D graphene electrode dielectrophoretic device.

    PubMed

    Xie, Hongyu; Tewari, Radheshyam; Fukushima, Hiroyuki; Narendra, Jeffri; Heldt, Caryn; King, Julia; Minerick, Adrienne R

    2014-06-22

    The design and fabrication of a novel 3D electrode microdevice using 50 µm thick graphene paper and 100 µm double sided tape is described. The protocol details the procedures to construct a versatile, reusable, multiple layer, laminated dielectrophoresis chamber. Specifically, six layers of 50 µm x 0.7 cm x 2 cm graphene paper and five layers of double sided tape were alternately stacked together, then clamped to a glass slide. Then a 700 μm diameter micro-well was drilled through the laminated structure using a computer-controlled micro drilling machine. Insulating properties of the tape layer between adjacent graphene layers were assured by resistance tests. Silver conductive epoxy connected alternate layers of graphene paper and formed stable connections between the graphene paper and external copper wire electrodes. The finished device was then clamped and sealed to a glass slide. The electric field gradient was modeled within the multi-layer device. Dielectrophoretic behaviors of 6 μm polystyrene beads were demonstrated in the 1 mm deep micro-well, with medium conductivities ranging from 0.0001 S/m to 1.3 S/m, and applied signal frequencies from 100 Hz to 10 MHz. Negative dielectrophoretic responses were observed in three dimensions over most of the conductivity-frequency space and cross-over frequency values are consistent with previously reported literature values. The device did not prevent AC electroosmosis and electrothermal flows, which occurred in the low and high frequency regions, respectively. The graphene paper utilized in this device is versatile and could subsequently function as a biosensor after dielectrophoretic characterizations are complete.

  13. Transcriptional analysis of liver from chickens with fast (meat bird), moderate (F1 layer x meat bird cross) and low (layer bird) growth potential.

    PubMed

    Willson, Nicky-Lee; Forder, Rebecca E A; Tearle, Rick; Williams, John L; Hughes, Robert J; Nattrass, Greg S; Hynd, Philip I

    2018-05-02

    Divergent selection for meat and egg production in poultry has resulted in strains of birds differing widely in traits related to these products. Modern strains of meat birds can reach live weights of 2 kg in 35 d, while layer strains are now capable of producing more than 300 eggs per annum but grow slowly. In this study, RNA-Seq was used to investigate hepatic gene expression between three groups of birds with large differences in growth potential; meat bird, layer strain as well as an F1 layer x meat bird. The objective was to identify differentially expressed (DE) genes between all three strains to elucidate biological factors underpinning variations in growth performance. RNA-Seq analysis was carried out on total RNA extracted from the liver of meat bird (n = 6), F1 layer x meat bird cross (n = 6) and layer strain (n = 6), males. Differential expression of genes were considered significant at P < 0.05, and a false discovery rate of < 0.05, with any fold change considered. In total, 6278 genes were found to be DE with 5832 DE between meat birds and layers (19%), 2935 DE between meat birds and the cross (9.6%) and 493 DE between the cross and layers (1.6%). Comparisons between the three groups identified 155 significant DE genes. Gene ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis of the 155 DE genes showed the FoxO signalling pathway was most enriched (P = 0.001), including genes related to cell cycle regulation and insulin signalling. Significant GO terms included 'positive regulation of glucose import' and 'cellular response to oxidative stress', which is also consistent with FoxOs regulation of glucose metabolism. There were high correlations between FoxO pathway genes and bodyweight, as well as genes related to glycolysis and bodyweight. This study revealed large transcriptome differences between meat and layer birds. There was significant evidence implicating the FoxO signalling pathway (via cell cycle regulation and altered metabolism) as an active driver of growth variations in chicken. Functional analysis of the FoxO genes is required to understand how they regulate growth and egg production.

  14. Water softening process

    DOEpatents

    Sheppard, John D.; Thomas, David G.

    1976-01-01

    This invention involves an improved process for softening hard water which comprises selectively precipitaing CaCO.sub.3 to form a thin layer thereof, increasing the pH of said water to precipitate magnesium as magnesium hydroxide and then filtering the resultant slurry through said layer. The CaCO.sub.3 layer serves as a thin permeable layer which has particularly useful application in cross-flow filtration applications.

  15. Towards Optimal Connectivity on Multi-layered Networks.

    PubMed

    Chen, Chen; He, Jingrui; Bliss, Nadya; Tong, Hanghang

    2017-10-01

    Networks are prevalent in many high impact domains. Moreover, cross-domain interactions are frequently observed in many applications, which naturally form the dependencies between different networks. Such kind of highly coupled network systems are referred to as multi-layered networks , and have been used to characterize various complex systems, including critical infrastructure networks, cyber-physical systems, collaboration platforms, biological systems and many more. Different from single-layered networks where the functionality of their nodes is mainly affected by within-layer connections, multi-layered networks are more vulnerable to disturbance as the impact can be amplified through cross-layer dependencies, leading to the cascade failure to the entire system. To manipulate the connectivity in multi-layered networks, some recent methods have been proposed based on two-layered networks with specific types of connectivity measures. In this paper, we address the above challenges in multiple dimensions. First, we propose a family of connectivity measures (SUBLINE) that unifies a wide range of classic network connectivity measures. Third, we reveal that the connectivity measures in SUBLINE family enjoy diminishing returns property , which guarantees a near-optimal solution with linear complexity for the connectivity optimization problem. Finally, we evaluate our proposed algorithm on real data sets to demonstrate its effectiveness and efficiency.

  16. Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates.

    PubMed

    Charvet, Christine J; Hof, Patrick R; Raghanti, Mary Ann; Van Der Kouwe, Andre J; Sherwood, Chet C; Takahashi, Emi

    2017-04-01

    The isocortex of primates is disproportionately expanded relative to many other mammals, yet little is known about what the expansion of the isocortex entails for differences in cellular composition and connectivity patterns in primates. Across the depth of the isocortex, neurons exhibit stereotypical patterns of projections. Upper-layer neurons (i.e., layers II-IV) project within and across cortical areas, whereas many lower-layer pyramidal neurons (i.e., layers V-VI) favor connections to subcortical regions. To identify evolutionary changes in connectivity patterns, we quantified upper (i.e., layers II-IV)- and lower (i.e., layers V-VI)-layer neuron numbers in primates and other mammals such as rodents and carnivores. We also used MR tractography based on high-angular resolution diffusion imaging and diffusion spectrum imaging to compare anterior-to-posterior corticocortical tracts between primates and other mammals. We found that primates possess disproportionately more upper-layer neurons as well as an expansion of anterior-to-posterior corticocortical tracts compared with other mammals. Taken together, these findings demonstrate that primates deviate from other mammals in exhibiting increased cross-cortical connectivity. J. Comp. Neurol. 525:1075-1093, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Double-Layer Structured CO2 Adsorbent Functionalized with Modified Polyethyleneimine for High Physical and Chemical Stability.

    PubMed

    Jeon, Sunbin; Jung, Hyunchul; Kim, Sung Hyun; Lee, Ki Bong

    2018-06-18

    CO 2 capture using polyethyleneimine (PEI)-impregnated silica adsorbents has been receiving a lot of attention. However, the absence of physical stability (evaporation and leaching of amine) and chemical stability (urea formation) of the PEI-impregnated silica adsorbent has been generally established. Therefore, in this study, a double-layer impregnated structure, developed using modified PEI, is newly proposed to enhance the physical and chemical stabilities of the adsorbent. Epoxy-modified PEI and diepoxide-cross-linked PEI were impregnated via a dry impregnation method in the first and second layers, respectively. The physical stability of the double-layer structured adsorbent was noticeably enhanced when compared to the conventional adsorbents with a single layer. In addition to the enhanced physical stability, the result of simulated temperature swing adsorption cycles revealed that the double-layer structured adsorbent presented a high potential working capacity (3.5 mmol/g) and less urea formation under CO 2 -rich regeneration conditions. The enhanced physical and chemical stabilities as well as the high CO 2 working capacity of the double-layer structured adsorbent were mainly attributed to the second layer consisting of diepoxide-cross-linked PEI.

  18. A study of the compressible flow through a diffusing S-duct

    NASA Technical Reports Server (NTRS)

    Wellborn, Steven R.; Okiishi, Theodore H.; Reichert, Bruce A.

    1993-01-01

    Benchmark aerodynamic data are presented for compressible flow through a representative S-duct configuration. A numerical prediction of the S-duct flow field, obtained from a subsonic parabolized Navier-Stokes algorithm, is also shown. The experimental and numerical results are compared. Measurements of the three-dimensional velocity field, total pressures, and static pressures were obtained at five cross-sectional planes. Aerodynamic data were gathered with calibrated pneumatic probes. Surface static pressure and surface flow visualization data were also acquired. All reported tests were conducted with an inlet centerline Mach number of 0.6. The Reynolds number, based on the inlet centerline velocity and duct inlet diameter, was 2.6 x 10(exp 6). Thin inlet turbulent boundary layers existed. The collected data should be beneficial to aircraft inlet designers and the measurements are suitable for the validation of computational codes. The results show that a region of streamwise flow separation occurred within the duct. Details about the separated flow region, including mechanisms which drive this complicated flow phenomenon, are discussed. Results also indicate that the duct curvature induces strong pressure driven secondary flows. The cross flows evolve into counter-rotating vortices. These vortices convect low momentum fluid of the boundary layer toward the center of the duct, degrading both the uniformity and magnitude of the total pressure profile.

  19. Reactive polymer fused deposition manufacturing

    DOEpatents

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  20. Computer Program Re-layers Engineering Drawings

    NASA Technical Reports Server (NTRS)

    Crosby, Dewey C., III

    1990-01-01

    RULCHK computer program aids in structuring layers of information pertaining to part or assembly designed with software described in article "Software for Drawing Design Details Concurrently" (MFS-28444). Checks and optionally updates structure of layers for part. Enables designer to construct model and annotate its documentation without burden of manually layering part to conform to standards at design time.

  1. Study on the Weak Stress in Flexural MEMS Cantilever

    NASA Astrophysics Data System (ADS)

    Ge, Yuetao; Ren, Yan

    2018-03-01

    In order to design a better piezoresistive MEMS cantilever beam, especially for cantilever beams that will detect weak forces or will be subjected to weak forces, this paper uses study on the weak stress in flexural MEMS cantilever. The sensor design structure, divided into protective layer, piezoresistive layer, support layer. The protective layer is responsible for protecting the piezoresistive layer so that the varistor is insulated from the outside; the piezoresistive layer is used to make the varistor; the support layer forms the main part of the cantilever beam, the majority of the cantilever beam. This paper has some value for cantilever multilayer structure design and cantilever beam size design.

  2. Mg2Sn heterostructures on Si(111) substrate

    NASA Astrophysics Data System (ADS)

    Dózsa, L.; Galkin, N. G.; Pécz, B.; Osváth, Z.; Zolnai, Zs.; Németh, A.; Galkin, K. N.; Chernev, I. M.; Dotsenko, S. A.

    2017-05-01

    Thin un-doped and Al doped polycrystalline Mg-stannide films consisting mainly of Mg2Sn semiconductor phase have been grown by deposition of Sn-Mg multilayers on Si(111) p-type wafers at room temperature and annealing at 150 °C. Rutherford backscattering measurement spectroscopy (RBS) were used to determine the amount of Mg and Sn in the structures. Raman spectroscopy has shown the layers contain Mg2Sn phase. Cross sectional transmission electron microscopy (XTEM) measurements have identified Mg2Sn nanocrystallites in hexagonal and cubic phases without epitaxial orientation with respect to the Si(111) substrate. Significant oxygen concentration was found in the layer both by RBS and TEM. The electrical measurements have shown laterally homogeneous conductivity in the grown layer. The undoped Mg2Sn layers show increasing resistivity with increasing temperature indicating the scattering process dominates the resistance of the layers, i.e. large concentration of point defects was generated in the layer during the growth process. The Al doped layer shows increase of the resistance at low temperature caused by freeze out of free carriers in the Al doped Mg2Sn layer. The measurements indicate the necessity of protective layer grown over the Mg2Sn layers, and a short time delay between sample preparation and cross sectionalTEM analysis, since the unprotected layer is degraded by the interaction with the ambient.

  3. Preparation of a collagen/polymer hybrid gel designed for tissue membranes. Part I: controlling the polymer-collagen cross-linking process using an ethanol/water co-solvent.

    PubMed

    Nam, Kwangwoo; Kimura, Tsuyoshi; Funamoto, Seiichi; Kishida, Akio

    2010-02-01

    The drawback with collagen/2-methacryloyloxyethyl phosphorylcholine (MPC) polymer hybrid gels (collagen/phospholipid polymer hybrid gels) prepared in alkaline morpholinoethane sulfonic acid (MES) aqueous solution is that the cross-linking rate between the polymer and the collagen is low. To solve this problem, ethanol has been adopted as the reaction solvent, to prevent 1-ethyl-3-(3-dimethylaminopropyl)-1-carbodiimide hydrochloride (EDC) hydrolysis. Alterations in the ethanol mole concentration changed the cross-linking rate between the MPC polymer and the collagen gel. Prevention of EDC hydrolysis is clearly observed; protonation of carboxyl groups implies that the ratio of ethanol to water should be controlled. The polymer shows signs of penetration into the collagen gel layer, thus forming a totally homogeneous phase gel. This affects the mechanical strength of the collagen gel, making the gel much stiffer and brittle with an increase in the swelling ratio, as compared with that prepared in MES buffer. However, it is possible to obtain a collagen/phospholipid polymer hybrid gel with a high polymer portion and the cross-linking rate can be successfully controlled.

  4. Fibrous selective emitter structures from sol-gel process

    NASA Astrophysics Data System (ADS)

    Chen, K. C.

    1999-03-01

    Selective emitters have the potential benefit of high efficiency due to the matching of emission spectra to the response of photovoltaic (PV) cells. Continuous uniform rare-earth oxide selective emitter fibers were successfully fabricated using a viscous solution made from metal organic precursors. Cylindrical- and planar configuration emitter structures were made by direct cross-winding or stacking of precursor fiber layers. The combustion and optical performance of the planar emitter structures were tested. The results indicates that both the designing of the fiber packing density and the thickness is critical for high photon and power output.

  5. A green and bio-inspired process to afford durable anti-biofilm properties to stainless steel.

    PubMed

    Faure, E; Vreuls, C; Falentin-Daudré, C; Zocchi, G; Van de Weerdt, C; Martial, J; Jérôme, C; Duwez, A-S; Detrembleur, C

    2012-01-01

    A bio-inspired durable anti-biofilm coating was developed for industrial stainless steel (SS) surfaces. Two polymers inspired from the adhesive and cross-linking properties of mussels were designed and assembled from aqueous solutions onto SS surfaces to afford durable coatings. Trypsin, a commercially available broad spectrum serine protease, was grafted as the final active layer of the coating. Its proteolytic activity after long immersion periods was demonstrated against several substrata, viz. a synthetic molecule, N-α-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA), a protein, FTC-casein, and Gram-positive biofilm forming bacterium Staphylococcus epidermidis.

  6. Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres.

    PubMed

    Zhang, Lin; Shi, Yan; Liang, Chang-Hong

    2016-10-03

    In this paper, full-wave electromagnetic scattering theory is employed to investigate illusion and invisibility of inhomogeneous anisotropic cylinders and spheres. With the use of a shell designed according to Mie series theory for multiple piecewise anisotropic layers, radar cross section (RCS) of the coated inhomogeneous anisotropic object can be dramatically reduced or disguised as another object in the long-wavelength limit. With the suitable adjustment of the anisotropy parameters of the shell, optimal illusion and invisibility characteristics of the coated inhomogeneous anisotropic object can be achieved. Details of theoretical analysis and numerical examples are presented to validate the proposed methodology.

  7. Shape Optimization of Cylindrical Shell for Interior Noise

    NASA Technical Reports Server (NTRS)

    Robinson, Jay H.

    1999-01-01

    In this paper an analytic method is used to solve for the cross spectral density of the interior acoustic response of a cylinder with nonuniform thickness subjected to turbulent boundary layer excitation. The cylinder is of honeycomb core construction with the thickness of the core material expressed as a cosine series in the circumferential direction. The coefficients of this series are used as the design variable in the optimization study. The objective function is the space and frequency averaged acoustic response. Results confirm the presence of multiple local minima as previously reported and demonstrate the potential for modest noise reduction.

  8. Final report for CCS cross-layer reliability visioning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather M; Dehon, Andre; Carter, Nicj

    The geometric rate of improvement of transistor size and integrated circuit performance known as Moore's Law has been an engine of growth for our economy, enabling new products and services, creating new value and wealth, increasing safety, and removing menial tasks from our daily lives. Affordable, highly integrated components have enabled both life-saving technologies and rich entertainment applications. Anti-lock brakes, insulin monitors, and GPS-enabled emergency response systems save lives. Cell phones, internet appliances, virtual worlds, realistic video games, and mp3 players enrich our lives and connect us together. Over the past 40 years of silicon scaling, the increasing capabilities ofmore » inexpensive computation have transformed our society through automation and ubiquitous communications. Looking forward, increasing unpredictability threatens our ability to continue scaling integrated circuits at Moore's Law rates. As the transistors and wires that make up integrated circuits become smaller, they display both greater differences in behavior among devices designed to be identical and greater vulnerability to transient and permanent faults. Conventional design techniques expend energy to tolerate this unpredictability by adding safety margins to a circuit's operating voltage, clock frequency or charge stored per bit. However, the rising energy costs needed to compensate for increasing unpredictability are rapidly becoming unacceptable in today's environment where power consumption is often the limiting factor on integrated circuit performance and energy efficiency is a national concern. Reliability and energy consumption are both reaching key inflection points that, together, threaten to reduce or end the benefits of feature size reduction. To continue beneficial scaling, we must use a cross-layer, Jull-system-design approach to reliability. Unlike current systems, which charge every device a substantial energy tax in order to guarantee correct operation in spite of rare events, such as one high-threshold transistor in a billion or one erroneous gate evaluation in an hour of computation, cross-layer reliability schemes make reliability management a cooperative effort across the system stack, sharing information across layers so that they only expend energy on reliability when an error actually occurs. Figure 1 illustrates an example of such a system that uses a combination of information from the application and cheap architecture-level techniques to detect errors. When an error occurs, mechanisms at higher levels in the stack correct the error, efficiently delivering correct operation to the user in spite of errors at the device or circuit levels. In the realms of memory and communication, engineers have a long history of success in tolerating unpredictable effects such as fabrication variability, transient upsets, and lifetime wear using information sharing, limited redundancy, and cross-layer approaches that anticipate, accommodate, and suppress errors. Networks use a combination of hardware and software to guarantee end-toend correctness. Error-detection and correction codes use additional information to correct the most common errors, single-bit transmission errors. When errors occur that cannot be corrected by these codes, the network protocol requests re-transmission of one or more packets until the correct data is received. Similarly, computer memory systems exploit a cross-layer division of labor to achieve high performance with modest hardware. Rather than demanding that hardware alone provide the virtual memory abstraction, software page-fault and TLB-miss handlers allow a modest piece of hardware, the TLB, to handle the common-case operations on a cyc1e-by-cycle basis while infrequent misses are handled in system software. Unfortunately, mitigating logic errors is not as simple or as well researched as memory or communication systems. This lack of understanding has led to very expensive solutions. For example, triple-modular redundancy masks errors by triplicating computations in either time or area. This mitigation methods imposes a 200% increase in energy consumption for every operation, not just the uncommon failure cases. At a time when computation is rapidly becoming part of our critical civilian and military infrastructure and decreasing costsfor computation are fueling our economy and our well being, we cannot afford increasingly unreliable electronics or a stagnation in capabilities per dollar, watt, or cubic meter. If researchers are able to develop techniques that tolerate the growing unpredictability of silicon devices, Moore's Law scaling should continue until at least 2022. During this 12-year time period, transistors, which are the building blocks of electronic devices, will scale their dimensions (feature sizes) from 45nm to 4.5nm.« less

  9. Occupational therapy practitioners' perspectives regarding international cross-cultural work.

    PubMed

    Humbert, Tamera Keiter; Burket, Allison; Deveney, Rebecca; Kennedy, Katelyn

    2011-08-01

    The purpose of this study was to investigate the perspectives of occupational therapy practitioners who have engaged in cross-cultural work experiences. The research question was how do occupational therapy practitioners make meaning of their lived cross-cultural experiences.   This study utilised a qualitative, phenomenological design. Eleven open-ended, semi-structured interviews were conducted with occupational therapy practitioners educated in the United States and who engaged in international practice. The interviews were then coded and analysed using a constant comparative analysis approach. Three central themes emerged from the completed interviews and data analysis, including connectedness, cultural awareness and complexity. Connectedness is the process of forming relationships with others while engaging in cross-cultural experiences. Cultural awareness is the recognition and understanding of a different culture, comparing these insights with one's own culture and then responding to those differences. Complexity is the idea that cross-cultural experiences are dynamic, multi-faceted and intricate. This study helps provide an understanding of cross-cultural work experiences from the practitioners' perspective. The demands of such work require practitioners to go beyond developing basic skills related to cultural sensitivity and cultural awareness. Instead, practitioners need to embrace and integrate the ability to incorporate layers of cultural awareness, complexity and connectedness into practice. Further research is needed to understand how this is actually developed and utilised within practice. © 2011 The Authors. Australian Occupational Therapy Journal © 2011 Occupational Therapy Australia.

  10. Stochastic Modelling of the Hydraulic Anisotropy of Ash Impoundment Sediment

    NASA Astrophysics Data System (ADS)

    Slávik, Ivan

    2017-12-01

    In the case reported here the impoundments of a 400 MW coal heated power plant with an annual production of about 1.5 million tons of fuel ash are of the cross-valley type, operated by the simple and cheap „upstream method”. The aim of the research was to determine overall and local values of the permeability in horizontal as well as in vertical direction and the anisotropy of the thin-layered sedimented ash. The coal ashes are hydraulically transported through pipelines in form of a slurry and periodically floated on the beach of the impoundment. The ashes are deposited in the form of a thin-layered sediment, with random alternation of layers with a coarser or finer granularity. The ash impoundment sediment is anthropogenic sediment with horizontally laminated texture. Therefore, the sediment is anisotropic from the viewpoint of water seepage. The knowledge of the permeability and the seepage anisotropy of the sediment is a basic requirement for the design of an appropriate dewatering system. The seepage anisotropy of the ash sediment has been checked by means of stochastic modelling, based on the correlation between the effective grain diameter and the coefficient of permeability of the ash: the effective grain diameter and the thickness of individual layers have been proposed to be random events.

  11. Determination of band offsets at GaN/single-layer MoS{sub 2} heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangi, Malleswararao; Mishra, Pawan; Ng, Tien Khee

    2016-07-18

    We report the band alignment parameters of the GaN/single-layer (SL) MoS{sub 2} heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS{sub 2}/c-sapphire. We confirm that the MoS{sub 2} is an SL by measuring the separation and position of room temperature micro-Raman E{sup 1}{sub 2g} and A{sup 1}{sub g} modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS{sub 2} heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS{sub 2} and GaN. Themore » valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.« less

  12. Being a pedestrian with dementia: A qualitative study using photo documentation and focus group interviews.

    PubMed

    Brorsson, Anna; Öhman, Annika; Lundberg, Stefan; Nygård, Louise

    2016-09-01

    The aim of the study was to identify problematic situations in using zebra crossings. They were identified from photo documentations comprising film sequences and the perspectives of people with dementia. The aim was also to identify how they would understand, interpret and act in these problematic situations based on their previous experiences and linked to the film sequences.A qualitative grounded theory approach was used. Film sequences from five zebra crossings were analysed. The same film sequences were used as triggers in two focus group interviews with persons with dementia. Individual interviews with three informants were also performed.The core category, the hazard of meeting unfolding problematic traffic situations when only one layer at a time can be kept in focus, showed how a problematic situation as a whole consisted of different layers of problematic situations. The first category, adding layers of problematic traffic situations to each other, was characterized by the informants' creation of a problematic situation as a whole. The different layers were described in the subcategories of layout of streets and zebra crossings, weather conditions, vehicles and crowding of pedestrians. The second category, actions used to meet different layers of problematic traffic situations, was characterized by avoiding problematic situations, using traffic lights as reminders and security precautions, following the flow at the zebra crossing and being cautious pedestrians.In conclusion, as community-dwelling people with dementia commonly are pedestrians, it is important that health care professionals and caregivers take their experiences and management of problematic traffic situations into account when providing support. © The Author(s) 2014.

  13. Wall paintings studied using Raman spectroscopy: a comparative study between various assays of cross sections and external layers.

    PubMed

    Perez-Rodriguez, Jose Luis; Robador, Maria Dolores; Centeno, Miguel Angel; Siguenza, Belinda; Duran, Adrian

    2014-01-01

    This work describes a comparative study between in situ applications of portable Raman spectroscopy and direct laboratory measurements using micro-Raman spectroscopy on the surface of small samples and of cross sections. The study was performed using wall paintings from different sites of the Alcazar of Seville. Little information was obtained using a portable Raman spectrometer due to the presence of an acrylic polymer, calcium oxalate, calcite and gypsum that was formed or deposited on the surface. The pigments responsible for different colours, except cinnabar, were not detected by the micro-Raman spectroscopy study of the surface of small samples taken from the wall paintings due to the presence of surface contaminants. The pigments and plaster were characterised using cross sections. The black colour consisted of carbon black. The red layers were formed by cinnabar and white lead or by iron oxides. The green and white colours were composed of green emerald or atacamite and calcite, respectively. Pb3O4 has also been characterised. The white layers (plaster) located under the colour layers consisted of calcite, quartz and feldspars. The fresco technique was used to create the wall paintings. A wall painting located on a gypsum layer was also studied. The Naples yellow in this wall painting was not characterised due to the presence of glue and oils. This study showed the advantage of studying cross sections to completely characterise the pigments and plaster in the studied wall paintings. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Absolute second order nonlinear susceptibility of Pt nanowire arrays on MgO faceted substrates with various cross-sectional shapes

    NASA Astrophysics Data System (ADS)

    Ogata, Yoichi; Mizutani, Goro

    2013-08-01

    We have measured optical second harmonic generation (SHG) intensity from three types of Pt nanowires with 7 nm widths of elliptical and boomerang cross-sectional shapes and with 2 nm width elliptical cross-sectional shapes on the MgO faceted templates. From the SHG intensities, we calculated the absolute value of the nonlinear susceptibility χ(2) integrated in the direction of the wire-layer thickness. The tentatively obtained bulk χ(2)B of the wire layer was very large, approaching the value of the well-known nonlinear optical material BaTiO3.

  15. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers

    NASA Astrophysics Data System (ADS)

    Herrmann, Christoph; Engel, Klaus-Jürgen; Wiegert, Jens

    2010-12-01

    The most obvious problem in obtaining spectral information with energy-resolving photon counting detectors in clinical computed tomography (CT) is the huge x-ray flux present in conventional CT systems. At high tube voltages (e.g. 140 kVp), despite the beam shaper, this flux can be close to 109 Mcps mm-2 in the direct beam or in regions behind the object, which are close to the direct beam. Without accepting the drawbacks of truncated reconstruction, i.e. estimating missing direct-beam projection data, a photon-counting energy-resolving detector has to be able to deal with such high count rates. Sub-structuring pixels into sub-pixels is not enough to reduce the count rate per pixel to values that today's direct converting Cd[Zn]Te material can cope with (<=10 Mcps in an optimistic view). Below 300 µm pixel pitch, x-ray cross-talk (Compton scatter and K-escape) and the effect of charge diffusion between pixels are problematic. By organising the detector in several different layers, the count rate can be further reduced. However this alone does not limit the count rates to the required level, since the high stopping power of the material becomes a disadvantage in the layered approach: a simple absorption calculation for 300 µm pixel pitch shows that the required layer thickness of below 10 Mcps/pixel for the top layers in the direct beam is significantly below 100 µm. In a horizontal multi-layer detector, such thin layers are very difficult to manufacture due to the brittleness of Cd[Zn]Te. In a vertical configuration (also called edge-on illumination (Ludqvist et al 2001 IEEE Trans. Nucl. Sci. 48 1530-6, Roessl et al 2008 IEEE NSS-MIC-RTSD 2008, Conf. Rec. Talk NM2-3)), bonding of the readout electronics (with pixel pitches below 100 µm) is not straightforward although it has already been done successfully (Pellegrini et al 2004 IEEE NSS MIC 2004 pp 2104-9). Obviously, for the top detector layers, materials with lower stopping power would be advantageous. The possible choices are, however, quite limited, since only 'mature' materials, which operate at room temperature and can be manufactured reliably should reasonably be considered. Since GaAs is still known to cause reliability problems, the simplest choice is Si, however with the drawback of strong Compton scatter which can cause considerable inter-pixel cross-talk. To investigate the potential and the problems of Si in a multi-layer detector, in this paper the combination of top detector layers made of Si with lower layers made of Cd[Zn]Te is studied by using Monte Carlo simulated detector responses. It is found that the inter-pixel cross-talk due to Compton scatter is indeed very high; however, with an appropriate cross-talk correction scheme, which is also described, the negative effects of cross-talk are shown to be removed to a very large extent.

  16. Enhanced wall-plug efficiency in AlGaN-based deep-ultraviolet light-emitting diodes with uniform current spreading p-electrode structures

    NASA Astrophysics Data System (ADS)

    Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro

    2016-06-01

    The current crowding is an especially severe issue in AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) because of the low conductivity of the n-AlGaN cladding layer that has a high Al fraction. We theoretically investigated the improvement in internal quantum efficiency and total resistances in DUV-LEDs with an emission wavelength of 265 nm by a well-designed p-electrode geometry to produce uniform current spreading. As a result, the wall-plug efficiency was enhanced by a factor of 60% at an injection current of 350 mA in the designed uniform-current-spreading p-electrode LED when compared with an LED with a conventional cross-bar p-electrode pattern.

  17. Design and fabrication of a reflection far ultraviolet polarizer and retarder

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Torr, Douglas G.

    1993-01-01

    New methods have been developed for the design of a far ultraviolet multilayer reflection polarizer and retarder. A MgF2/Al/MgF2 three-layer structure deposited on a thick opaque Al film (substrate) is used for the design of polarizers and retarders. The induced transmission and absorption method is used for the design of a polarizer and layer-by-layer electric field calculation method is used for the design of a quarterwave retarder. In order to fabricate these designs in a conventional high vacuum chamber, we have to minimize the oxidation of the Al layers and somehow characterize the oxidized layer. X-ray photoelectron spectroscopy is used to investigate the amount and profile of oxidation. Depth profiling results and a seven layer oxidation model are presented.

  18. Sunset

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This cross section of the Earth's atmosphere at sunset and earth limb (24.5S, 43.5E) displays an unusual layering believed to be caused by temperature inversions which effectively concentrate smoke, dust and aerosols into narrow layers. the top of the stratosphere can be seen as the top of the white layer thought to contain volcanic debris. The purple layer is the troposphere containing smoke from landclearing biomass burning.

  19. Sunset

    NASA Image and Video Library

    1992-11-01

    This cross section of the Earth's atmosphere at sunset and earth limb (24.5S, 43.5E) displays an unusual layering believed to be caused by temperature inversions which effectively concentrate smoke, dust and aerosols into narrow layers. the top of the stratosphere can be seen as the top of the white layer thought to contain volcanic debris. The purple layer is the troposphere containing smoke from landclearing biomass burning.

  20. Three-dimensional hydrodynamic simulations of OMEGA implosions

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; Campbell, E. M.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Marshall, F. J.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schmitt, A. J.; Obenschain, S.

    2017-05-01

    The effects of large-scale (with Legendre modes ≲ 10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets ( ˜10 to 20 μm), beam-power imbalance ( σrms˜10 %), and variations ( ˜5 %) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ˜1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh-Taylor growth.

  1. Three-dimensional hydrodynamic simulations of OMEGA implosions

    DOE PAGES

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; ...

    2017-03-30

    Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σ rms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosionmore » targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.« less

  2. Three-dimensional hydrodynamic simulations of OMEGA implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.

    Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σ rms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosionmore » targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.« less

  3. The Performance of a Subsonic Diffuser Designed for High Speed Turbojet-Propelled Flight

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J. (Technical Monitor); Wendt, Bruce J.

    2004-01-01

    An initial-phase subsonic diffuser has been designed for the turbojet flowpath of the hypersonic x43B flight demonstrator vehicle. The diffuser fit into a proposed mixed-compression supersonic inlet system and featured a cross-sectional shape transitioning flowpath (high aspect ratio rectangular throat-to-circular engine face) and a centerline offset. This subsonic diffuser has been fabricated and tested at the W1B internal flow facility at NASA Glenn Research Center. At an operating throat Mach number of 0.79, baseline Pitot pressure recovery was found to be just under 0.9, and DH distortion intensity was about 0.4 percent. The diffuser internal flow stagnated, but did not separate on the offset surface of this initial-phase subsonic diffuser. Small improvements in recovery (+0.4 percent) and DH distortion (-32 percent) were obtained from using vane vortex generator flow control applied just downstream of the diffuser throat. The optimum vortex generator array patterns produced inflow boundary layer divergence (local downwash) on the offset surface centerline of the diffuser, and an inflow boundary layer convergence (local upwash) on the centerline of the opposite surface.

  4. Effects of fuselage forebody geometry on low-speed lateral-directional characteristics of twin-tail fighter model at high angles of attack

    NASA Technical Reports Server (NTRS)

    Carr, P. C.; Gilbert, W. P.

    1979-01-01

    Low-speed, static wind-tunnel tests were conducted to explore the effects of fighter fuselage forebody geometry on lateral-directional characteristics at high angles of attack and to provide data for general design procedures. Effects of eight different forebody configurations and several add-on devices (e.g., nose strakes, boundary-layer trip wires, and nose booms) were investigated. Tests showed that forebody design features such as fineness ratio, cross-sectional shape, and add-on devices can have a significant influence on both lateral-directional and longitudinal aerodynamic stability. Several of the forebodies produced both lateral-directional symmetry and strong favorable changes in lateral-directional stability. However, the same results also indicated that such forebody designs can produce significant reductions in longitudinal stability near maximum lift and can significantly change the influence of other configuration variables. The addition of devices to highly tailored forebody designs also can significantly degrade the stability improvements provided by the clean forebody.

  5. Formation of a freely suspended membrane via a combination of interfacial reaction and wetting.

    PubMed

    McNamee, Cathy E; Jaumann, Manfred; Möller, Martin; Ding, Ailin; Hemeltjen, Steffen; Ebert, Susanne; Baumann, Wolfgang; Goedel, Werner A

    2005-11-08

    Applying poly(ethoxysiloxane) (a liquid non-water-soluble polymer that can be hydrolyzed and cross-linked by diluted acids) to an air/pH 1 water interface gave rise to thin homogeneous solid layers. These layers were strong enough to be transferable to electron microscopy grids with holes of dimensions up to 150 microm and covered the holes as freely suspended membranes. No homogeneous layers were formed at an air/pH 5 water interface. Brewster angle microscopy images show that the poly(ethoxysiloxane) is not spontaneously forming a wetting layer on water. It initially forms lenses, which slowly spread out within several hours. We conclude that the spreading occurs simultaneously with the hydrolysis and cross-linking of the poly(ethoxysiloxane) and that the reaction products finally assist the complete wetting of the water surface.

  6. Solar Array at Very High Temperatures: Ground Tests

    NASA Technical Reports Server (NTRS)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 V) or to operate at higher voltages with encapsulated of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between coverglass and conductive spacecraft body in a kilovolt range. In such a case, weakly conductive layer over coverglass (ITO) is one of possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of -150 C +110 C. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to Sun. Conductive layer over coverglass causes sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating material (RTV), radiative heating of coupon in vacuum chamber becomes practically impossible above 150 C, conductivities of glass and adhesive go up with temperature that decrease array efficiency, and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 200 C. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over ITO layer.

  7. Ergonomic assessment of enhanced protection under body armour combat shirt neck collars.

    PubMed

    Breeze, John; Granger, C J; Pearkes, T D; Clasper, J C

    2014-03-01

    Combat neck injury due to explosively propelled fragments is a significant cause of mortality and long-term morbidity in UK soldiers deployed on current operations. Reinforcing the collar of the existing under body armour combat shirt (UBACS) has been suggested as a potential method for reducing the incidence of combat neck injury. 20 soldiers serving in Afghanistan objectively compared three designs of enhanced protection UBACS (EP-UBACS) using 10 representative military tasks against a baseline of a standard UBACS. Each EP-UBACS design was trialled using three constituent materials: two layers of para-aramid felt, one layer of ultra high molecule weight polyethylene (UHMWPE) felt or two layers of a silk fabric. Subjective assessment of these nine configurations in terms of comfort, heat dissipation and overall acceptability were compared with the standard UBACS using a χ² test. All military tasks could be performed with all nine configurations of EP-UBACS. Although silk was the most comfortable material, it was not functionally practical in any of the three designs. Crossover collars incorporating UHMWPE or para-aramid were the only two of the nine configurations to demonstrate similar user acceptability to a standard UBACS. The EP-UBACS has the potential to provide neck protection without reducing performance incorporating materials analogous to either of the felts assessed in this study. The collar should provide stand-off from the skin to improve heat dissipation and comfort, which can be maximised by changing the current UBACS collar shape to one that crosses over at the front. Should a zip be desired, it should be moved to one side of the midline to reduce rubbing on the chin and be covered with ballistic protective material. Additional semi-circles of silk beneath the collar at the front and back would improve protection without affecting comfort.

  8. Cross-layer Joint Relay Selection and Power Allocation Scheme for Cooperative Relaying System

    NASA Astrophysics Data System (ADS)

    Zhi, Hui; He, Mengmeng; Wang, Feiyue; Huang, Ziju

    2018-03-01

    A novel cross-layer joint relay selection and power allocation (CL-JRSPA) scheme over physical layer and data-link layer is proposed for cooperative relaying system in this paper. Our goal is finding the optimal relay selection and power allocation scheme to maximize system achievable rate when satisfying total transmit power constraint in physical layer and statistical delay quality-of-service (QoS) demand in data-link layer. Using the concept of effective capacity (EC), our goal can be formulated into an optimal joint relay selection and power allocation (JRSPA) problem to maximize the EC when satisfying total transmit power limitation. We first solving optimal power allocation (PA) problem with Lagrange multiplier approach, and then solving optimal relay selection (RS) problem. Simulation results demonstrate that CL-JRSPA scheme gets larger EC than other schemes when satisfying delay QoS demand. In addition, the proposed CL-JRSPA scheme achieves the maximal EC when relay located approximately halfway between source and destination, and EC becomes smaller when the QoS exponent becomes larger.

  9. Materials based on carbon-filled porous layers of PVC cyclam derivatives cross-linked with the surfaces of asbestos fabric fibers

    NASA Astrophysics Data System (ADS)

    Tzivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardishev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.

    2016-08-01

    The synthesis of bilayer materials with porous upper layers composed of PVC hydroxyethylcyclam derivatives filled with carbon and a layer consisting of hydroxyethylcyclam, cross-linked via Si-O-C groups with the silica chains of a developed surface of asbestos fabric, is described. The aza-crown groups in these materials are bound with aqua complexes of H2SO4 or NaOH. The structure of the materials is examined, their adsorption characteristics are determined, and the rate of motion of H+ or OH- ions in electrochemical bridges is measured, while the formation of H2 and O2 in their cathodic and anodic polarization is determined as a function of voltage. It is shown that the upper layer of these materials is adsorption-active and electronand H+- or OH-- conductive, while the bottom layer is only H+- or OH-- conductive; through it, the upper layer is supplied with the H+ or OH- ions needed for the regeneration of the aqua complexes broken down to H2 and O2 on carbon particles.

  10. The Role of Phase Changes in TiO2/Pt/TiO2 Filaments

    NASA Astrophysics Data System (ADS)

    Bíró, Ferenc; Hajnal, Zoltán; Dücső, Csaba; Bársony, István

    2018-04-01

    This work analyses the role of phase changes in TiO2/Pt/TiO2 layer stacks for micro-heater application regarding their stability and reliable operation. The polycrystalline Pt layer wrapped in a TiO2 adhesion layer underwent a continuous recrystallisation in a self-heating operation causing a drift in the resistance ( R) versus temperature ( T) performance. Simultaneously, the TiO2 adhesion layer also deteriorates at high temperature by phase changes from amorphous to anatase and rutile crystallite formation, which not only influences the Pt diffusion in different migration phenomena, but also reduces the cross section of the Pt heater wire. Thorough scanning electron microscopy, energy dispersive spectroscopy, cross-sectional transmission electron microscopy (XTEM) and electron beam diffraction analysis of the structures operated at increasing temperature revealed the elemental structural processes leading to the instabilities and the accelerated degradation, resulting in rapid breakdown of the heater wire. Owing to stability and reliability criteria, the conditions for safe operation of these layer structures could be determined.

  11. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity

    PubMed Central

    Sun, Pengzhan; Ma, Renzhi; Bai, Xueyin; Wang, Kunlin; Zhu, Hongwei; Sasaki, Takayoshi

    2017-01-01

    When the dimensionality of layered materials is reduced to the physical limit, an ultimate two-dimensional (2D) anisotropy and/or confinement effect may bring about extraordinary physical and chemical properties. Layered double hydroxides (LDHs), bearing abundant hydroxyl groups covalently bonded within 2D host layers, have been proposed as inorganic anion conductors. However, typical hydroxyl ion conductivities for bulk or lamellar LDHs, generally up to 10−3 S cm−1, are considered not high enough for practical applications. We show that single-layer LDH nanosheets exhibited exceptionally high in-plane conductivities approaching 10−1 S cm−1, which were the highest among anion conductors and comparable to proton conductivities in commercial proton exchange membranes (for example, Nafion). The in-plane conductivities were four to five orders of magnitude higher than the cross-plane or cross-membrane values of restacked LDH nanosheets. This 2D superionic transport characteristic might have great promises in a variety of applications including alkaline fuel cells and water electrolysis. PMID:28439551

  12. Effects on RCS of a perfect electromagnetic conductor sphere in the presence of anisotropic plasma layer

    NASA Astrophysics Data System (ADS)

    Ghaffar, A.; Hussan, M. M.; Illahi, A.; Alkanhal, Majeed A. S.; Ur Rehman, Sajjad; Naz, M. Y.

    2018-01-01

    Effects on RCS of perfect electromagnetic conductor (PEMC) sphere by coating with anisotropic plasma layer are studied in this paper. The incident, scattered and transmitted electromagnetic fields are expanded in term of spherical vector wave functions using extended classical theory of scattering. Co and cross-polarized scattered field coefficients are obtained at the interface of free space-anisotropic plasma and at anisotropic plasma-PEMC sphere core by scattering matrices method. The presented analytical expressions are general for any perfect conducting sphere (PMC, PEC, or PEMC) with general anisotropic/isotropic material coatings that include plasma and metamaterials. The behavior of the forward and backscattered radar cross section of PEMC sphere with the variation of the magnetic field strength, incident frequency, plasma density, and effective collision frequency for the co-polarized and the cross polarized fields are investigated. It is also observed from the obtained results that anisotropic layer on PEMC sphere shows reciprocal behavior as compared to isotopic plasma layer on PEMC sphere. The comparisons of the numerical results of the presented analytical expressions with available results of some special cases show the correctness of the analysis.

  13. Using Vertical electrical sounding survey and refraction seismic survey for determining the geological layers depths, the structural features and assessment groundwater in Aqaba area in South Jordan.

    NASA Astrophysics Data System (ADS)

    Akawwi, Emad; Alzoubi, Abdallah; Ben Abraham, Zvi; Rahamn Abo Alades, Abdel; Alrzouq, Rami; Tiber, Gidon; Neimi, Tina

    2010-05-01

    The study area is the Aqaba region (Southern wadi Araba basin). Aqaba region area located at 87900 and 89000 North and 147000 and 158000 East (Palestine grid). Tectonically Aqaba area lies within the tectonic plate boundary along the Arabian and African plate slide. This plate boundary comprises numerous and shot fault segments. The main aims of this study are to assessing the groundwater potential and its quality, to explain the subsurface geological conditions and support the ongoing geological, environmental and hydrogeological studies. Therefore, it was anticipated that the results of the geophysical surveying will give many different important parameters as The subsurface geological features, thicknesses of the different lithological units, depth to the bed rocks and depth to the water table. The groundwater can apply an important role in ensuring sustainable water supply in the area. This study was carried out in order to assess groundwater condition, geological layers thicknesses and structural features in Aqaba area by using vertical electrical sounding (VES) surveys and refraction seismic techniques. There are three geoelectrical cross section were carried out at different sites by using the Schlumberger array. The first cross section indicated three layers of different resistivity. The second cross section indicated four layers of different resistivity. The third geoelectrical cross sections indicated three layers. The refraction seismic method also has been conducted in the same area as VES. About 12 refraction seismic profiles have been carried out in the study area. The length of the first profile was 745 m at the direction N-S. This profile indicated two different layers with a different velocities. The length of the second profile was 1320 m with E-W direction. This profile indicated two different layers. The length of the third profile was about 515 m with a direction SE-NW. It recognized two different layers with a different velocities. The fourth profile was N-S direction and the length of this profile was 950 m. Two different layers were recognized along this profile. The fifth profile was located N-S with length about 340 m. Two layers were recognized from this profile. The sixth profile was located N-S direction and the length about 575 m. Three layers were recognized from this profile. The direction of the seventh profile was N-S with a length of about 235 m. two different layers were recognized the top layer was unconsolidated alluvium. The profile number 8 was located N-S with length about 232 m. two layers were conducted from this profile. The direction of ninth profile was NW-SE with length about 565 m. two layers were conducted along this profile. The length of the tenth profile was 235 m and the direction was N-S. Two layers with a different velocities were detected along this profile. Profile number eleven was located SW-NE with length about 475 m. two layers were recognized from this profile. The length of the last profile was 375 m with direction SE-NW. Two layers were conducted from this profile. It was found that the shallow aquifers exist at a depths ranging from 4 to 19 m and the relatively deep aquifers from 24 to 60 m below the ground surface. Keywords: Vertical electrical sounding, Aqaba, Resistivity, Groundwater, Layer depth, Geoelectrical.

  14. Quantitative Nanomechanical Properties of Multilayer Films Made of Polysaccharides through Spray Assisted Layer-by-Layer Assembly.

    PubMed

    Criado, Miryam; Rebollar, Esther; Nogales, Aurora; Ezquerra, Tiberio A; Boulmedais, Fouzia; Mijangos, Carmen; Hernández, Rebeca

    2017-01-09

    Nanomechanical properties of alginate/chitosan (Alg/Chi) multilayer films, obtained through spray assisted layer-by-layer assembly, were studied by means of PeakForce quantitative nanomechanical mapping atomic force microscopy (PF-QNM AFM). Prepared at two different alginate concentrations (1.0 and 2.5 mg/mL) and a fixed chitosan concentration (1.0 mg/mL), Alg/Chi films have an exponential growth in thickness with a transition to a linear growth toward a plateau by increasing the number of deposited bilayers. Height, elastic modulus, deformation, and adhesion maps were simultaneously recorded depending on the number of deposited bilayers. The elastic modulus of Alg/Chi films was found to be related to the mechanism of growth in contrast to the adhesion and deformation. A comparison of the nanomechanical properties obtained for non-cross-linked and thermally cross-linked Alg/Chi films revealed an increase of the elastic modulus after cross-linking regardless alginate concentration. The incorporation of iron oxide nanoparticles (NPs), during the spray preparation of the films, gave rise to nanocomposite Alg/Chi films with increased elastic moduli with the number of incorporated NPs layers. Deformation maps of the films strongly suggested the presence of empty spaces associated with the method of preparation. Finally, adhesion measurements point out to a significant role of NPs on the increase of the adhesion values found for nanocomposite films.

  15. Three-Dimensional Navier-Stokes Simulations with Two-Equation Turbulence Models of Intersecting Shock-Waves/Turbulent Boundary Layer at Mach 8.3

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Coakley, T. J.

    1994-01-01

    An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3x10(exp 6) with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex interaction between the main vortices and the uplifted jet stream of the boundary layer. The overall agreement between computational and experimental data is generally good. The turbulence modeling corrections show improvements in the predictions of surface heat transfer distribution and an increase in the strength of the cross-flow vortices. Accurate predictions of the outflow flowfield is found to require accurate modeling of the laminar/turbulent boundary layers on the fin walls.

  16. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.

    PubMed

    Morrill, Ryan J; Hasenstaub, Andrea R

    2018-03-14

    The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.

  17. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-30

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presentedmore » as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.« less

  18. Vertical Transport by Coastal Mesoscale Convective Systems

    NASA Astrophysics Data System (ADS)

    Lombardo, K.; Kading, T.

    2016-12-01

    This work is part of an ongoing investigation of coastal mesoscale convective systems (MCSs), including changes in vertical transport of boundary layer air by storms moving from inland to offshore. The density of a storm's cold pool versus that of the offshore marine atmospheric boundary layer (MABL), in part, determines the ability of the storm to successfully cross the coast, the mechanism driving storm propagation, and the ability of the storm to lift air from the boundary layer aloft. The ability of an MCS to overturn boundary layer air can be especially important over the eastern US seaboard, where warm season coastal MCSs are relatively common and where large coastal population centers generate concentrated regions of pollution. Recent work numerically simulating idealized MCSs in a coastal environment has provided some insight into the physical mechanisms governing MCS coastal crossing success and the impact on vertical transport of boundary layer air. Storms are simulated using a cloud resolving model initialized with atmospheric conditions representative of a Mid-Atlantic environment. Simulations are run in 2-D at 250 m horizontal resolution with a vertical resolution stretched from 100 m in the boundary layer to 250 m aloft. The left half of the 800 km domain is configured to represent land, while the right half is assigned as water. Sensitivity experiments are conducted to quantify the influence of varying MABL structure on MCS coastal crossing success and air transport, with MABL values representative of those observed over the western Mid-Atlantic during warm season. Preliminary results indicate that when the density of the cold pool is much greater than the MABL, the storm successfully crosses the coastline, with lifting of surface parcels, which ascend through the troposphere. When the density of the cold pool is similar to that of the MABL, parcels within the MABL remain at low levels, though parcels above the MABL ascend through the troposphere.

  19. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI(3-x)Cl(x) perovskite solar cells.

    PubMed

    Edri, Eran; Kirmayer, Saar; Mukhopadhyay, Sabyasachi; Gartsman, Konstantin; Hodes, Gary; Cahen, David

    2014-03-11

    Developments in organic-inorganic lead halide-based perovskite solar cells have been meteoric over the last 2 years, with small-area efficiencies surpassing 15%. We address the fundamental issue of how these cells work by applying a scanning electron microscopy-based technique to cell cross-sections. By mapping the variation in efficiency of charge separation and collection in the cross-sections, we show the presence of two prime high efficiency locations, one at/near the absorber/hole-blocking-layer, and the second at/near the absorber/electron-blocking-layer interfaces, with the former more pronounced. This 'twin-peaks' profile is characteristic of a p-i-n solar cell, with a layer of low-doped, high electronic quality semiconductor, between a p- and an n-layer. If the electron blocker is replaced by a gold contact, only a heterojunction at the absorber/hole-blocking interface remains.

  20. Reynolds number invariance of the structure inclination angle in wall turbulence.

    PubMed

    Marusic, Ivan; Heuer, Weston D C

    2007-09-14

    Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.

  1. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines

    PubMed Central

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-01

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500

  2. Experimental research on crossing shock wave boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  3. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines.

    PubMed

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-28

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes' placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper.

  4. Analytical Modeling for the Bending Resonant Frequency of Multilayered Microresonators with Variable Cross-Section

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; Plascencia-Mora, Hector; Rodríguez-Morales, Ángel L.; Lu, Jian

    2011-01-01

    Multilayered microresonators commonly use sensitive coating or piezoelectric layers for detection of mass and gas. Most of these microresonators have a variable cross-section that complicates the prediction of their fundamental resonant frequency (generally of the bending mode) through conventional analytical models. In this paper, we present an analytical model to estimate the first resonant frequency and deflection curve of single-clamped multilayered microresonators with variable cross-section. The analytical model is obtained using the Rayleigh and Macaulay methods, as well as the Euler-Bernoulli beam theory. Our model is applied to two multilayered microresonators with piezoelectric excitation reported in the literature. Both microresonators are composed by layers of seven different materials. The results of our analytical model agree very well with those obtained from finite element models (FEMs) and experimental data. Our analytical model can be used to determine the suitable dimensions of the microresonator’s layers in order to obtain a microresonator that operates at a resonant frequency necessary for a particular application. PMID:22164071

  5. Source-Adaptation-Based Wireless Video Transport: A Cross-Layer Approach

    NASA Astrophysics Data System (ADS)

    Qu, Qi; Pei, Yong; Modestino, James W.; Tian, Xusheng

    2006-12-01

    Real-time packet video transmission over wireless networks is expected to experience bursty packet losses that can cause substantial degradation to the transmitted video quality. In wireless networks, channel state information is hard to obtain in a reliable and timely manner due to the rapid change of wireless environments. However, the source motion information is always available and can be obtained easily and accurately from video sequences. Therefore, in this paper, we propose a novel cross-layer framework that exploits only the motion information inherent in video sequences and efficiently combines a packetization scheme, a cross-layer forward error correction (FEC)-based unequal error protection (UEP) scheme, an intracoding rate selection scheme as well as a novel intraframe interleaving scheme. Our objective and subjective results demonstrate that the proposed approach is very effective in dealing with the bursty packet losses occurring on wireless networks without incurring any additional implementation complexity or delay. Thus, the simplicity of our proposed system has important implications for the implementation of a practical real-time video transmission system.

  6. User Guide for HUFPrint, A Tabulation and Visualization Utility for the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW

    USGS Publications Warehouse

    Banta, Edward R.; Provost, Alden M.

    2008-01-01

    This report documents HUFPrint, a computer program that extracts and displays information about model structure and hydraulic properties from the input data for a model built using the Hydrogeologic-Unit Flow (HUF) Package of the U.S. Geological Survey's MODFLOW program for modeling ground-water flow. HUFPrint reads the HUF Package and other MODFLOW input files, processes the data by hydrogeologic unit and by model layer, and generates text and graphics files useful for visualizing the data or for further processing. For hydrogeologic units, HUFPrint outputs such hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, vertical hydraulic conductivity or anisotropy, specific storage, specific yield, and hydraulic-conductivity depth-dependence coefficient. For model layers, HUFPrint outputs such effective hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, specific storage, primary direction of anisotropy, and vertical conductance. Text files tabulating hydraulic properties by hydrogeologic unit, by model layer, or in a specified vertical section may be generated. Graphics showing two-dimensional cross sections and one-dimensional vertical sections at specified locations also may be generated. HUFPrint reads input files designed for MODFLOW-2000 or MODFLOW-2005.

  7. Enhancement of the giant magnetoresistance in spin valves via oxides formed from magnetic layers

    NASA Astrophysics Data System (ADS)

    Gillies, M. F.; Kuiper, A. E. T.

    2000-11-01

    An enhancement of the giant magnetoresistance effect is investigated in spin valves where oxide layers, which are formed from magnetic layers, are incorporated in the structure. Information about Co-Fe based nanooxide layer (NOL) is obtained via x-ray photoelectron spectroscopy and Rutherford backscattering spectrometry. Cross-section transmission electron microscopy is also used to explore the effect of an NOL on the polycrystalline structure of the spin valve.

  8. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers.

    PubMed

    Herrmann, Christoph; Engel, Klaus-Jürgen; Wiegert, Jens

    2010-12-21

    The most obvious problem in obtaining spectral information with energy-resolving photon counting detectors in clinical computed tomography (CT) is the huge x-ray flux present in conventional CT systems. At high tube voltages (e.g. 140 kVp), despite the beam shaper, this flux can be close to 10⁹ Mcps mm⁻² in the direct beam or in regions behind the object, which are close to the direct beam. Without accepting the drawbacks of truncated reconstruction, i.e. estimating missing direct-beam projection data, a photon-counting energy-resolving detector has to be able to deal with such high count rates. Sub-structuring pixels into sub-pixels is not enough to reduce the count rate per pixel to values that today's direct converting Cd[Zn]Te material can cope with (≤ 10 Mcps in an optimistic view). Below 300 µm pixel pitch, x-ray cross-talk (Compton scatter and K-escape) and the effect of charge diffusion between pixels are problematic. By organising the detector in several different layers, the count rate can be further reduced. However this alone does not limit the count rates to the required level, since the high stopping power of the material becomes a disadvantage in the layered approach: a simple absorption calculation for 300 µm pixel pitch shows that the required layer thickness of below 10 Mcps/pixel for the top layers in the direct beam is significantly below 100 µm. In a horizontal multi-layer detector, such thin layers are very difficult to manufacture due to the brittleness of Cd[Zn]Te. In a vertical configuration (also called edge-on illumination (Ludqvist et al 2001 IEEE Trans. Nucl. Sci. 48 1530-6, Roessl et al 2008 IEEE NSS-MIC-RTSD 2008, Conf. Rec. Talk NM2-3)), bonding of the readout electronics (with pixel pitches below 100 µm) is not straightforward although it has already been done successfully (Pellegrini et al 2004 IEEE NSS MIC 2004 pp 2104-9). Obviously, for the top detector layers, materials with lower stopping power would be advantageous. The possible choices are, however, quite limited, since only 'mature' materials, which operate at room temperature and can be manufactured reliably should reasonably be considered. Since GaAs is still known to cause reliability problems, the simplest choice is Si, however with the drawback of strong Compton scatter which can cause considerable inter-pixel cross-talk. To investigate the potential and the problems of Si in a multi-layer detector, in this paper the combination of top detector layers made of Si with lower layers made of Cd[Zn]Te is studied by using Monte Carlo simulated detector responses. It is found that the inter-pixel cross-talk due to Compton scatter is indeed very high; however, with an appropriate cross-talk correction scheme, which is also described, the negative effects of cross-talk are shown to be removed to a very large extent.

  9. Calculations of Laminar Heat Transfer Around Cylinders of Arbitrary Cross Section and Transpiration-Cooled Walls with Application to Turbine Blade Cooling

    NASA Technical Reports Server (NTRS)

    Eckert, E.R.G.; Livingood, John N.B.

    1951-01-01

    An approximate method for development of flow and thermal boundary layers in laminar regime on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout boundary layer is assumed. Shape parameters for approximated velocity and temperature profiles and functions necessary for solution of boundary-layer equations are presented as charts, reducing calculations to a minimum. The method is applied to determine local heat-transfer coefficients and surface temperature-cooled turbine blades for a given flow rate. Coolant flow distributions necessary for maintaining uniform blade temperatures are also determined.

  10. Broadband Pillbox Antennas.

    DTIC Science & Technology

    1984-09-21

    Identify by block number) - FIELD GROUP SUB-GROUP Double layer pillbox antennas Triple layer pillbox antenna The possibility of designing very broadband... Design .................... 1 Broadband Feed De gn ........................................... 2 Ex mental Simulation of Double Layer Pillbox...5 REFERENCES ................................................... 6 APPENDIX - COAXIAL TO WAVEGUIDE JUNCTION DESIGN

  11. Dynamic Resource Allocation for IEEE802.16e

    NASA Astrophysics Data System (ADS)

    Nascimento, Alberto; Rodriguez, Jonathan

    Mobile communications has witnessed an exponential increase in the amount of users, services and applications. New high bandwidth consuming applications are targeted for B3G networks raising more stringent requirements for Dynamic Resource Allocation (DRA) architectures and packet schedulers that must be spectrum efficient and deliver QoS for heterogeneous applications and services. In this paper we propose a new cross layer-based architecture framework embedded in a newly designed DRA architecture for the Mobile WiMAX standard. System level simulation results show that the proposed architecture can be considered a viable candidate solution for supporting mixed services in a cost-effective manner in contrast to existing approaches.

  12. A Polymer Chemistry Point of View on Mucoadhesion and Mucopenetration.

    PubMed

    Schattling, Philipp; Taipaleenmäki, Essi; Zhang, Yan; Städler, Brigitte

    2017-09-01

    Although oral is the preferred route of administration of pharmaceutical formulations, the long-standing challenge for medically active compounds to efficiently cross the mucus layer barrier limits its wider applicability. Efforts in nanomedicine to overcome this hurdle consider mucoadhesive and mucopenetrating drug carriers by selectively designing (macromolecular) building blocks. This review highlights and critically discusses recent strategies developed in this context including poly(ethylene glycol)-based modifications, cationic and thiolated polymers, as well as particles with high charge density, zeta-potential shifting ability, or mucolytic properties. The latest advances in ex vivo test platforms are also reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A multicore optical fiber for distributed sensing

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Burgess, David T.; Hines, Mike; Zhu, Beyuan

    2014-06-01

    With advancements in optical fiber technology, the incorporation of multiple sensing functionalities within a single fiber structure opens the possibility to deploy dielectric, fully distributed, long-length optical sensors in an extremely small cross section. To illustrate the concept, we designed and manufactured a multicore optical fiber with three graded-index (GI) multimode (MM) cores and one single mode (SM) core. The fiber was coated with both a silicone primary layer and an ETFE buffer for high temperature applications. The fiber properties such as geometry, crosstalk and attenuation are described. A method for coupling the signal from the individual cores into separate optical fibers is also presented.

  14. Effect of UV-ozone treatment on poly(dimethylsiloxane) membranes: surface characterization and gas separation performance.

    PubMed

    Fu, Ywu-Jang; Qui, Hsuan-zhi; Liao, Kuo-Sung; Lue, Shingjiang Jessie; Hu, Chien-Chieh; Lee, Kueir-Rarn; Lai, Juin-Yih

    2010-03-16

    A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.

  15. Vesicle Size Distribution as a Novel Nuclear Forensics Tool

    DOE PAGES

    Donohue, Patrick H.; Simonetti, Antonio

    2016-09-22

    The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40'38.28"N, 106°28'31.44"W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. In this study, we report the first quantitative textural analysis of vesicles in Trinitite to constrain theirmore » physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Finally, defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment.« less

  16. Land and atmospheric controls on initiation and intensity of moist convection: CAPE dynamics and LCL crossings

    USDA-ARS?s Scientific Manuscript database

    The local role that land-atmosphere interactions play in the rainfall process has been explored by investigating the initiation of moist convection as the top of the atmospheric boundary layer (ABL) crosses the lifting condensation level (LCL). However, this LCL crossing alone is not a sufficient in...

  17. Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.

    2017-11-01

    The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.

  18. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between the two IceBridge lines located 47 km apart. The ROSETTA-ICE program will begin a systematic mapping of the Ross Ice Shelf and sub-ice topography using the IcePod system beginning in 2015. Together the new gravity-derived bathymetry and the mapping of the ice shelf structure will provide key insights into the stability of the ice shelf.

  19. Dynamics of internal waves on the Southeast Florida shelf: Implications for cross-shelf exchange and turbulent mixing on a barrier reef system

    NASA Astrophysics Data System (ADS)

    Davis, Kristen Alexis

    The dynamics of internal waves shoaling on the Southeast Florida shelf and the resulting stratified turbulence in the shelf bottom boundary layer are investigated using observational studies completed during the summers of 2003-2005. This work is driven by a desire to understand the effects of internal wave-driven flow and the shoreward transport of cool, nutrient-rich water masses on cross-shelf exchange, vertical mixing, and mass transfer to benthic reef organisms. Shelf sea internal wave fields are typically highly variable and dominated by wind and tidal forces. However, this is not necessarily true for outer shelf regions or very narrow shelves where remote physical processes originating over the slope or deep ocean may exert a strong influence on the internal wave climate. During the summers of 2003 and 2004 observational studies were conducted to examine the effects of a western boundary current (the Florida Current), tides, and wind on the mean currents and internal wave field on the outer Southeast Florida shelf. We present evidence that suggests that the Florida Current plays as large a role in the determination of the high frequency internal wave field as tidal forces. These observations and analyses show that it is necessary to include the forcing from the Florida Current meanders and instabilities in order to predict accurately the episodic nature of the internal wave field on the Southeast Florida shelf. Deep ocean and continental shelf processes intersect at the shelf edge and influence the exchange of water masses and their associated characteristics including heat, nutrients, sediment, and larvae across the shelf. Thus, the dynamics of cross-shelf circulation have important consequences for organisms living on the shelf. In the second phase of this work, we investigate physical mechanisms controlling the exchange of water masses during the summer season across the Southeast Florida shelf. A time series of cross-shelf transport from May to August 2003 suggests that, during the summer months, instabilities in the Florida Current and nonlinear internal waves are the primary mechanisms driving cross-shelf transport on the outer shelf Surface tide, wind, and wave-driven transport were found to be small in comparison. Additionally, this data set highlights the importance of baroclinic processes to cross-shelf transport in this region. In the last phase of my research, I sought to investigate how boundary layer dynamics over a rough coral bed were modified by shoaling internal waves and to understand the implications for mixing and mass transfer to the bed. Results are presented from an observational study of the turbulent bottom boundary layer on the outer Southeast Florida shelf in July and August 2005. Turbulence in the reef bottom boundary layer is highly variable in time and is modified by near bed flow, shear, and stratification driven by shoaling internal waves. We examined turbulence in the bottom boundary layer during a typical internal wave event and found that in addition to the episodic onshore transport of cool, subthermocline water masses, with elevated nutrient concentrations, bottom-intensified currents from shoaling internal waves can increase turbulent dissipation and mixing in the reef bottom boundary layer. Additionally, we show that estimates of flux Richardson number, calculated directly from measurements of dissipation and buoyancy flux, support the dependence of R f on turbulent intensity, epsilon/nuN 2, a relationship that has only been previously shown in laboratory and numerical work. While the importance of surface gravity waves in generating turbulent mixing and controlling mass transfer on coral reefs has been well documented in the literature, this work represents the first time the appropriate field data have been collected for a detailed dynamic analysis of the physical effects and biological implications of internal waves on reef ecosystems. Results from these studies suggest that for reef communities exposed to continental shelf and slope processes, internal waves may play an important role in cross-shelf transport and mass transfer to benthic organisms and may be essential to modeling key biological processes, the connectivity of coral populations, or designing and managing marine reserves and fisheries.

  20. Double layer drainage performance of porous asphalt pavement

    NASA Astrophysics Data System (ADS)

    Ji, Yangyang; Xie, Jianguang; Liu, Mingxi

    2018-06-01

    In order to improve the design reliability of the double layer porous asphalt pavement, the 3D seepage finite element method was used to study the drainage capacity of double layer PAC pavements with different geometric parameters. It revealed that the effect of pavement drainage length, slope, permeability coefficient and structure design on the drainage capacity. The research of this paper can provide reference for the design of double layer porous asphalt pavement in different rainfall intensity areas, and provide guides for the related engineering design.

  1. Cross-linking of sodium caseinate-structured emulsion with transglutaminase alters postprandial metabolic and appetite responses in healthy young individuals.

    PubMed

    Juvonen, Kristiina R; Macierzanka, Adam; Lille, Martina E; Laaksonen, David E; Mykkänen, Hannu M; Niskanen, Leo K; Pihlajamäki, Jussi; Mäkelä, Kari A; Mills, Clare E N; Mackie, Alan R; Malcolm, Paul; Herzig, Karl-Heinz; Poutanen, Kaisa S; Karhunen, Leila J

    2015-08-14

    The physico-chemical and interfacial properties of fat emulsions influence lipid digestion and may affect postprandial responses. The aim of the present study was to determine the effects of the modification of the interfacial layer of a fat emulsion by cross-linking on postprandial metabolic and appetite responses. A total of fifteen healthy individuals (26.5 (sem 6.9) years and BMI 21.9 (sem 2.0) kg/m2) participated in a cross-over design experiment in which they consumed two isoenergetic (1924 kJ (460 kcal)) and isovolumic (250 g) emulsions stabilised with either sodium caseinate (Cas) or transglutaminase-cross-linked sodium caseinate (Cas-TG) in a randomised order. Blood samples were collected from the individuals at baseline and for 6 h postprandially for the determination of serum TAG and plasma NEFA, cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), glucose and insulin responses. Appetite was assessed using visual analogue scales. Postprandial TAG and NEFA responses and gastric emptying (GE) rates were comparable between the emulsions. CCK increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0.05), while GLP-1 responses did not differ between the two test emulsions. Glucose and insulin profiles were lower after consuming Cas-TG than after consuming Cas (P< 0.05). The overall insulin, glucose and CCK responses, expressed as areas above/under the curve, did not differ significantly between the Cas and Cas-TG meal conditions. Satiety ratings were reduced and hunger, desire to eat and thirst ratings increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0.05). The present results suggest that even a subtle structural modification of the interfacial layer of a fat emulsion can alter the early postprandial profiles of glucose, insulin, CCK, appetite and satiety through decreased protein digestion without affecting significantly on GE or overall lipid digestion.

  2. Molecular communication among biological nanomachines: a layered architecture and research issues.

    PubMed

    Nakano, Tadashi; Suda, Tatsuya; Okaie, Yutaka; Moore, Michael J; Vasilakos, Athanasios V

    2014-09-01

    Molecular communication is an emerging communication paradigm for biological nanomachines. It allows biological nanomachines to communicate through exchanging molecules in an aqueous environment and to perform collaborative tasks through integrating functionalities of individual biological nanomachines. This paper develops the layered architecture of molecular communication and describes research issues that molecular communication faces at each layer of the architecture. Specifically, this paper applies a layered architecture approach, traditionally used in communication networks, to molecular communication, decomposes complex molecular communication functionality into a set of manageable layers, identifies basic functionalities of each layer, and develops a descriptive model consisting of key components of the layer for each layer. This paper also discusses open research issues that need to be addressed at each layer. In addition, this paper provides an example design of targeted drug delivery, a nanomedical application, to illustrate how the layered architecture helps design an application of molecular communication. The primary contribution of this paper is to provide an in-depth architectural view of molecular communication. Establishing a layered architecture of molecular communication helps organize various research issues and design concerns into layers that are relatively independent of each other, and thus accelerates research in each layer and facilitates the design and development of applications of molecular communication.

  3. Establishing Dual Electrogenerated Chemiluminescence and Multi-Color Electrochromism in Functional Ionic Transition Metal Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puodziukynaite, Egle; Oberst, Justin L.; Dyer, Aubrey L.

    A combination of electrochromism and electroluminescence in functional materials could lead to single-layer dual electrochromic/electroluminescent (EC/EL) display devices, capable of simultaneous operation in emissive and reflective modes. Whereas such next generation displays could provide optimal visibility in any ambient lighting situation, materials available that exhibit such characteristics in the active layer are limited due to the required intrinsic multifunctionality (i.e., redox activity, electroluminescence, electrochromism, and ion conductivity) and to date can only be achieved via the rational design of ionic transition-metal complexes. Reported herein is the synthesis and characterization of a new family of acrylate-containing ruthenium (tris)bipyridine-based coordination complexes withmore » multifunctional characteristics. Potential use of the presented compounds in EC/EL devices is established, as they are applied as cross-linked electrochromic films and electrochemiluminescent layers in light-emitting electrochemical cell devices. Electrochromic switching of the polymeric networks between yellow, orange, green, brown and transmissive states is demonstrated, and electrochemiluminescent devices based on the complexes synthesized show red-orange to deep red emission with λ{sub max} ranging from 680 to 722 nm and luminance up to 135 cd/m{sup 2}. Additionally, a dual EC/EL device prototype is presented where light emission and multicolor electrochromism occur from the same pixel comprised of a single active layer, demonstrating a true combination of these properties in ionic transition-metal complexes.« less

  4. Establishing Dual Electrogenerated Chemiluminescence and Multicolor Electrochromism in Functional Ionic Transition-Metal Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puodziukynaite, Egle; Oberst, Justin L.; Dyer, Aubrey L.

    A combination of electrochromism and electroluminescence in functional materials could lead to single-layer dual electrochromic/electroluminescent (EC/EL) display devices, capable of simultaneous operation in emissive and reflective modes. Whereas such next generation displays could provide optimal visibility in any ambient lighting situation, materials available that exhibit such characteristics in the active layer are limited due to the required intrinsic multifunctionality (i.e., redox activity, electroluminescence, electrochromism, and ion conductivity) and to date can only be achieved via the rational design of ionic transition-metal complexes. Reported herein is the synthesis and characterization of a new family of acrylate-containing ruthenium (tris)bipyridine-based coordination complexes withmore » multifunctional characteristics. Potential use of the presented compounds in EC/EL devices is established, as they are applied as cross-linked electrochromic films and electrochemiluminescent layers in light-emitting electrochemical cell devices. Electrochromic switching of the polymeric networks between yellow, orange, green, brown and transmissive states is demonstrated, and electrochemiluminescent devices based on the complexes synthesized show red-orange to deep red emission with λmax ranging from 680 to 722 nm and luminance up to 135 cd/m². Additionally, a dual EC/EL device prototype is presented where light emission and multicolor electrochromism occur from the same pixel comprised of a single active layer, demonstrating a true combination of these properties in ionic transition-metal complexes.« less

  5. Designing a Moodle Course with the CADMOS Learning Design Tool

    ERIC Educational Resources Information Center

    Katsamani, Maria; Retalis, Symeon; Boloudakis, Michail

    2012-01-01

    CADMOS is a graphical learning design (LD) authoring tool that helps a teacher design a unit of learning in two layers: (i) the conceptual layer, which seems like a concept map and contains the learning activities with their associated learning resources and (ii) the flow layer, which contains the orchestration of these activities. One of CADMOS'…

  6. Dynamic characteristics of specialty composite structures with embedded damping layers

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1993-01-01

    Damping mechanics for simulating the damped dynamic characteristics in specialty composite structures with compliant interlaminar damping layers are presented. Finite-element based mechanics incorporating a discrete layer (or layer-wise) laminate damping theory are utilized to represent general laminate configurations in terms of lay-up and fiber orientation angles, cross-sectional thickness, shape, and boundary conditions. Evaluations of the method with exact solutions and experimental data illustrate the accuracy of the method. Additional applications investigate the potential for significant damping enhancement in angle-ply composite laminates with cocured interlaminar damping layers.

  7. A visual investigation of turbulence in stagnation flow about a circular cylinder

    NASA Technical Reports Server (NTRS)

    Sadeh, W. Z.; Brauer, H. J.

    1978-01-01

    A visual investigation of turbulence in stagnation flow around a circular cylinder was carried out in order to gain a physical insight into the model advocated by the corticity-amplification theory. Motion pictures were taken from three different viewpoints, and a frame by frame examination of selected movie strips was conducted. Qualitative and quantitative analyses of the flow events focused on tracing the temporal and spatial evolution of a cross-vortex tube outlined by the entrained smoke filaments. The visualization supplied evidence verifying: (1) the selective stretching of cross-vortex tubes which is responsible for the amplification of cross vorticity and, hence, of streamwise turbulence; (2) the streamwise tilting of stretched cross-vortex tubes; (3) the existence of a coherent array of vortices near the stagnation zone; (4) the interaction of the amplified vorticity with the body laminar boundary layer; and, (5) the growth of a turbulent boundary layer.

  8. Ex situ and in situ characterization of patterned photoreactive thin organic surface layers using friction force microscopy

    PubMed Central

    Shen, Quan; Edler, Matthias; Griesser, Thomas; Knall, Astrid-Caroline; Trimmel, Gregor; Kern, Wolfgang; Teichert, Christian

    2014-01-01

    Photolithographic methods allow an easy lateral top-down patterning and tuning of surface properties with photoreactive molecules and polymers. Employing friction force microscopy (FFM), we present here different FFM-based methods that enable the characterization of several photoreactive thin organic surface layers. First, three ex situ methods have been evaluated for the identification of irradiated and non-irradiated zones on the same organosilane sample by irradiation through different types of masks. These approaches are further extended to a time dependent ex situ FFM measurement, which allows to study the irradiation time dependent evolution of the resulting friction forces by sequential irradiation through differently sized masks in crossed geometry. Finally, a newly designed in situ FFM measurement, which uses a commercial bar-shaped cantilever itself as a noncontact shadow mask, enables the determination of time dependent effects on the surface modification during the photoreaction. SCANNING 36:590–598, 2014. PMID:25183629

  9. Resonant tunnelling and negative differential conductance in graphene transistors

    PubMed Central

    Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L.

    2013-01-01

    The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene’s unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices. PMID:23653206

  10. Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy.

    PubMed

    Müller, Knut; Rosenauer, Andreas; Schowalter, Marco; Zweck, Josef; Fritz, Rafael; Volz, Kerstin

    2012-10-01

    This article deals with the measurement of strain in semiconductor heterostructures from convergent beam electron diffraction patterns. In particular, three different algorithms in the field of (circular) pattern recognition are presented that are able to detect diffracted disc positions accurately, from which the strain in growth direction is calculated. Although the three approaches are very different as one is based on edge detection, one on rotational averages, and one on cross correlation with masks, it is found that identical strain profiles result for an In x Ga1-x N y As1-y /GaAs heterostructure consisting of five compressively and tensile strained layers. We achieve a precision of strain measurements of 7-9·10-4 and a spatial resolution of 0.5-0.7 nm over the whole width of the layer stack which was 350 nm. Being already very applicable to strain measurements in contemporary nanostructures, we additionally suggest future hardware and software designs optimized for fast and direct acquisition of strain distributions, motivated by the present studies.

  11. Anomalous Coulomb oscillation in crossed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Baek, Seung Jae; Lee, Dongsu; Park, Seung Joo; Park, Yung Woo; Svensson, Johannes; Jonson, Mats; Campbell, Eleanor E. B.

    2008-03-01

    Single-walled carbon nanotube (SWCNT) crossed junctions separated by an insulating layer were fabricated to investigate the double quantum dot modulated by a single gate (DQD-sG). Anomalous Coulomb oscillations were observed on the lower CNT at low temperature, where the behavior was interpreted by the concept of a double quantum dot (DQD) system http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id =APPLAB000089000023233107000001&idtype=cvips&gifs=yes [1]. To understand it more clearly, we have intentionally fabricated crossed CNTs without oxide layer in between. The observed anomalous Coulomb oscillations indicate that the contact resistance between the two tubes becomes a potential barrier splitting the initial single QD into the DQD, and the back-gate modulates the energy levels of the DQD.

  12. Nanotunneling Junction-based Hyperspectal Polarimetric Photodetector and Detection Method

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah (Inventor); Moon, Jeongsun J. (Inventor); Chattopadhyay, Goutam (Inventor); Liao, Anna (Inventor); Ting, David (Inventor)

    2009-01-01

    A photodetector, detector array, and method of operation thereof in which nanojunctions are formed by crossing layers of nanowires. The crossing nanowires are separated by a few nm thick electrical barrier layer which allows tunneling. Each nanojunction is coupled to a slot antenna for efficient and frequency-selective coupling to photo signals. The nanojunctions formed at the intersection of the crossing wires defines a vertical tunneling diode that rectifies the AC signal from a coupled antenna and generates a DC signal suitable for reforming a video image. The nanojunction sensor allows multi/hyper spectral imaging of radiation within a spectral band ranging from terahertz to visible light, and including infrared (IR) radiation. This new detection approach also offers unprecedented speed, sensitivity and fidelity at room temperature.

  13. Corneal Cross-Linking for the Treatment of Keratoconus in a Patient with Ipsilateral Myelinated Retinal Nerve Fiber Layer

    PubMed Central

    Leozappa, M.; Ciani, S.; Ferrari, T. Micelli

    2011-01-01

    Keratoconus associated with myelinated retinal nerve fibers is not frequent and the relationship between the two pathologies is difficult to explain, therefore studies and further investigation are required. The etiology of each condition may suggest the role of genetic factors. Follow-up is important to evaluate the progression of keratoconus and myelination. Here we describe the unusual coexistence of keratoconus and ipsilateral myelinated retinal nerve fiber layer and, for the first time, the corneal cross-linking treatment in this condition. PMID:21475609

  14. Evaluation of Reaction Cross Section Data Used for Thin Layer Activation Technique

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Tárkányi, F.

    2005-05-01

    Thin layer activation (TLA) is a widely used nuclear method to investigate and control the loss of material during wear, corrosion and erosion processes. The process requires knowledge of depth profiles of the investigated radioisotopes produced by charged particle bombardment. The depth distribution of the activity can be determined with direct, very time-consuming step by step measurement or by calculation from reliable cross section, stopping power and sample composition data. These data were checked experimentally at several points performing only a couple of measurements.

  15. Evaluation of Reaction Cross Section Data Used for Thin Layer Activation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditroi, F.; Takacs, S.; Tarkanyi, F.

    2005-05-24

    Thin layer activation (TLA) is a widely used nuclear method to investigate and control the loss of material during wear, corrosion and erosion processes. The process requires knowledge of depth profiles of the investigated radioisotopes produced by charged particle bombardment. The depth distribution of the activity can be determined with direct, very time-consuming step by step measurement or by calculation from reliable cross section, stopping power and sample composition data. These data were checked experimentally at several points performing only a couple of measurements.

  16. An ideal clamping analysis for a cross-ply laminate

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Murthy, P. L. N.; Rehfield, L. W.

    1988-01-01

    Different elementary clamping models are discussed for a three layer crossply laminate to study the sensitivity of clamping to the definition of cross-sectional rotation. All of these models leave a considerable residual warping at the edges. Using a complimentary energy principle and principle of superposition, an analysis is conducted to reduce this residual warping. This led to the identification of exact interior solution corresponding to the ideal clamping. This study also suggests a presence of stress singularities at the corners and between different layers near the fixed edge.

  17. Design of matching layers for high-frequency ultrasonic transducers

    PubMed Central

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its −6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers. PMID:26445518

  18. Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring.

    PubMed

    Vasylieva, Natalia; Marinesco, Stéphane; Barbier, Daniel; Sabac, Andrei

    2015-10-15

    Simultaneous monitoring of glucose and lactate is an important challenge for understanding brain energetics in physiological or pathological states. We demonstrate here a versatile method based on a minimally invasive single implantation in the rat brain. A silicon/SU8-polymer multi-sensing needle-shaped biosensor, was fabricated and tested. The multi-electrode array design comprises three platinum planar microelectrodes with a surface area of 40 × 200 µm(2) and a spacing of 200 µm, which were micromachined on a single 3mm long micro-needle having a 100 × 50 µm(2) cross-section for reduced tissue damage during implantation. Platinum micro-electrodes were aligned at the bottom of micro-wells obtained by photolithography on a SU8 photoresist layer. After clean room processing, each micro-electrode was functionalized inside the micro-wells by means of a micro-dispensing device, either with glucose oxidase or with lactate oxidase, which were cross-linked on the platinum electrodes. The third electrode covered with Bovine Serum Albumin (BSA) was used for the control of non-specific currents. The thick SU8 photoresist layer has revealed excellent electrical insulation of the micro-electrodes and between interconnection lines, and ensured a precise localization and packaging of the sensing enzymes on platinum micro-electrodes. During in vitro calibration with concentrations of analytes in the mM range, the micro-wells patterned in the SU8 photoresist proved to be highly effective in eliminating cross-talk signals, caused by H2O2 diffusion from closely spaced micro-electrodes. Moreover, our biosensor was successfully assayed in the rat cortex for simultaneous monitoring of both glucose and lactate during insulin and glucose administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers

    NASA Astrophysics Data System (ADS)

    Song, Kwang Hoon; Lee, Jaehyun; Park, Hyoungjun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang

    2016-03-01

    Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.

  20. Asymptotic structure and similarity solutions for three-dimensional turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Walker, J. D. A.

    1989-01-01

    The asymptotic structure of the three-dimensional turbulent boundary layer is investigated in the limit of large Reynolds numbers. A self-consistent, but relatively complex, two-layer structure exists and the simplest situation, corresponding to a plane of symmetry, is considered in this paper as a first step. The adjustment of the streamwise velocity to relative rest, through an outer defect layer and then an inner wall layer, is similar to that in two-dimensional flow. The adjustment of the cross-streamwise velocity is more complicated and it is shown that two terms in the expansion are required to obtain useful results, and in particular to obtain the velocity skew angle at the wall near the symmetry plane. The conditions under which self-similarity is achieved near a plane of symmetry are investigated. A set of ordinary differential equations is developed which describe the streamwise and cross-streamwise velocities near a plane of symmetry in a self-similar flow through two orders of magnitude. Calculated numerical solutions of these equations yield trends which are consistent with experimental observations.

  1. Study of the Wall Paintings of the Cenador Del Leon in the Real Alcazar of Seville

    NASA Astrophysics Data System (ADS)

    Robador, Maria Dolores; Mancera, Inmaculada; Perez-Maqueda, Rafael; Albardonedo, Antonio

    2017-10-01

    The paintings on the walls of the Cenador del Leon located in the gardens of the Real Alcazar in Seville next to the Pabellon de Carlos V in the Jardin Ingles area have been studied. The components of the wall paintings cross-sections, which were prepared using small samples taken from the walls of Cenador del Leon, were characterized using infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. The cross-sections of the collected samples indicated that the paint layer is well adhered to the preparation layer without any discontinuity, and only one carbonation layer exists at the top of the sequence of layers. These data suggest that the paint was applied on a fresco surface, and therefore, the adopted technique was fresco. Based on the different elements detected by EDX analysis of the cross-sections, the detected pigments included iron oxides accompanied by clay minerals (or earths) in the red pink, golden yellow and yellow colours, blue smelt for the blue colour and basic copper chloride (atacamite) for the green colour. In one sample, the particles were composed of Ba and S from barium sulphate and Ti and O from rutile titanium oxide due to a modern pigment.

  2. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating.

    PubMed

    Wang, Xuefen; Chen, Xuming; Yoon, Kyunghwan; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin

    2005-10-01

    A novel high flux filtration medium, consisting of a three-tier composite structure, i.e., a nonporous hydrophilic nanocomposite coating top layer, an electrospun nanofibrous substrate midlayer, and a conventional nonwoven microfibrous support, was demonstrated for oil/water emulsion separations for the first time. The nanofibrous substrate was prepared by electrospinning of poly(vinyl alcohol) (PVA) followed by chemical cross-linking with glutaraldehyde (GA) in acetone. The resulting cross-linked PVA substrates showed excellent water resistance and good mechanical properties. The top coating was based on a nanocomposite layer containing hydrophilic polyether-b-polyamide copolymer or a cross-linked PVA hydrogel incorporated with surface-oxidized multiwalled carbon nanotubes (MWNTs). Scanning electron microscopy (SEM) examinations indicated that the nanocomposite layer was nonporous within the instrumental resolution and MWNTs were well dispersed in the polymer matrix. Oil/ water emulsion tests showed that this unique type of filtration media exhibited a high flux rate (up to 330 L/m2-h at the feed pressure of 100 psi) and an excellent total organic solute rejection rate (99.8%) without appreciable fouling. The increase in the concentration of surface-oxidized MWNT in the coating layer generally improves the flux rate, which can be attributed to the generation of more effective hydrophilic nanochannels for water passage in the composite membranes.

  3. Coupled geophysical characterization of shallow fluvio-clastic sediments in Agwagune, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Akpan, Anthony E.; Ekwok, Stephen E.; Ebong, Ebong D.; George, Anthony M.; Okwueze, Emeka E.

    2018-07-01

    Geophysical investigation performed using electrical resistivity tomography (ERT), vertical electrical sounding (VES), seismic refraction (SRF) and ground penetrating radar (GPR) techniques were used to constrain and characterize shallow lithologic units in the Cross River bank (CRB) in southeastern Nigeria. Results show that the upper layer sediments comprise a 3-5-layered lithostratigraphic sequence with high clayey content. Around the Cross River bank (CRB), the top sediments consist of loose, silty and clayey sands with low resistivities (<150 Ωm) and low P-wave velocities (300-1000 m/s). These attenuating sediments have no reasonable continuity beyond the vicinity of the CRB. The low attenuating indurated silts/sands characterized by low resistivities (<25 Ωm) and high P-wave velocities (1000-2400 m/s) underlie the first layer around in the CRB. Localized microstructures (e.g., fractures) trending east-west, and saturated sand-filled channels truncate their lateral continuities. The lacustrine clays characterized by low resistivities (<15 Ωm) and high P-wave velocities (>2400 m/s) make up the third layer. The clayey sediments impede vertical percolation of groundwater forcing it to accumulate at the bottom of the second layer resulting in high static water levels of <3 m within the CRB and >5 m elsewhere. Hydraulic gradient in the Cross River bed (CRBD) and in the coastal groundwater drives groundwater flow into the CRBD through macropores. The sediments become unstable when these macropores become enlarged as more materials are continuously transmitted through them.

  4. Heat and salt budgets over the Gulf Stream North Wall during LatMix survey in winter 2012.

    NASA Astrophysics Data System (ADS)

    Sanchez-Rios, A.; Shearman, R. K.; D'Asaro, E. A.; Lee, C.; Gula, J.; Klymak, J. M.

    2016-02-01

    As part of the ONR-sponsored LatMix Experiment, ship-based and glider-based observations following a Lagrangian float are used to examine the evolution of temperature, salinity and density along the Gulf Stream north wall in wintertime. Satellite observations during the survey and the in-situ measurements showed the presence of submesoscale (<10 km) features along the front. Models have successfully reproduced similar features, but observations are lacking, particularly at the small scales needed to understand their role in the transport of heat and salt across the front and out of the mixed layer. Calculating the trend in time at each depth and cross-front location we found an increase of heat and salinity in regions where the strongest cross-front gradients of velocity were observed at the mixed layer and around 150m depth, these changes are density compensated and suggest isopycnal mixing and a connection between the mixed layer and subsurface layers. The large Rossby number (Ro>1) calculated for this regions corroborates the possibility of submesoscale dynamics. Using a heat and salinity budget, we show that surface forcing, entrainment from below and advection by the mean flow velocities are not sufficient to explain the observed rate of change of heat and salinity in the mixed layer. Although confidence estimates prevent an accurate flux divergence calculation, Reynold flux estimates are consistent with a cross-frontal exchange that can reproduce the observed temporal trends.

  5. How to Build a Functional Connectomic Biomarker for Mild Cognitive Impairment From Source Reconstructed MEG Resting-State Activity: The Combination of ROI Representation and Connectivity Estimator Matters.

    PubMed

    Dimitriadis, Stavros I; López, María E; Bruña, Ricardo; Cuesta, Pablo; Marcos, Alberto; Maestú, Fernando; Pereda, Ernesto

    2018-01-01

    Our work aimed to demonstrate the combination of machine learning and graph theory for the designing of a connectomic biomarker for mild cognitive impairment (MCI) subjects using eyes-closed neuromagnetic recordings. The whole analysis based on source-reconstructed neuromagnetic activity. As ROI representation, we employed the principal component analysis (PCA) and centroid approaches. As representative bi-variate connectivity estimators for the estimation of intra and cross-frequency interactions, we adopted the phase locking value (PLV), the imaginary part (iPLV) and the correlation of the envelope (CorrEnv). Both intra and cross-frequency interactions (CFC) have been estimated with the three connectivity estimators within the seven frequency bands (intra-frequency) and in pairs (CFC), correspondingly. We demonstrated how different versions of functional connectivity graphs single-layer (SL-FCG) and multi-layer (ML-FCG) can give us a different view of the functional interactions across the brain areas. Finally, we applied machine learning techniques with main scope to build a reliable connectomic biomarker by analyzing both SL-FCG and ML-FCG in two different options: as a whole unit using a tensorial extraction algorithm and as single pair-wise coupling estimations. We concluded that edge-weighed feature selection strategy outperformed the tensorial treatment of SL-FCG and ML-FCG. The highest classification performance was obtained with the centroid ROI representation and edge-weighted analysis of the SL-FCG reaching the 98% for the CorrEnv in α 1 :α 2 and 94% for the iPLV in α 2 . Classification performance based on the multi-layer participation coefficient, a multiplexity index reached 52% for iPLV and 52% for CorrEnv. Selected functional connections that build the multivariate connectomic biomarker in the edge-weighted scenario are located in default-mode, fronto-parietal, and cingulo-opercular network. Our analysis supports the notion of analyzing FCG simultaneously in intra and cross-frequency whole brain interactions with various connectivity estimators in beamformed recordings.

  6. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    NASA Astrophysics Data System (ADS)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media).

  7. Design and analysis of coherent OCDM en/decoder based on photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun

    2008-08-01

    The design and performance analysis of a new coherent optical en/decoder based on photonic crystal (PhC) for optical code -division -multiple (OCDM) are presented in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by photonic crystal phase shifter and time delayer by using the appropriate design of fabrication. According to the PhC transmission matrix theorem, combination calculation of the impurity and normal period layers is applied, and performances of the PhC-based optical en/decoder are also analyzed. The reflection, transmission, time delay characteristic and optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by numerical calculation. Theoretical analysis and numerical results indicate that the optical pulse is achieved to properly phase modulation and time delay, and an auto-correlation of about 8 dB ration and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.

  8. Design of barrier coatings on kink-resistant peripheral nerve conduits

    PubMed Central

    Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim

    2016-01-01

    Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288

  9. Design versions of HTS three-phase cables with the minimized value of AC losses

    NASA Astrophysics Data System (ADS)

    Altov, V. A.; Balashov, N. N.; Degtyarenko, P. N.; Ivanov, S. S.; Kopylov, S. I.; Lipa, DA; Samoilenkov, S. V.; Sytnikov, V. E.; Zheltov, V. V.

    2018-03-01

    Design versions of HTS three-phase cables consisting of 2G HTS tapes have been investigated by the numerical simulation method with the aim of AC losses minimization. Two design versions of cables with the coaxial and extended rectangular cross-section shape are considered – the non-sectioned and sectioned one. In the latter each cable phase consists of sections connected in parallel. The optimal dimensions of sections and order of their alteration are chosen by appropriate calculations. The model used takes into account the current distribution between the sections and its non-uniformity within each single HTS tape as well. The following characteristics are varied: design version, dimension, positioning of extra copper layer in a cable, design of HTS tapes themselves and their mutual position. The dependence of AC losses on the latter two characteristics is considered in details, and the examples of cable designs optimized by the total set of characteristics for the medium class of voltages (10 – 60 kV) are given. At the critical current JC=5.1 кA per phase and current amplitudes lower than 0.85JC, the level of total AC losses does not exceed the natural cryostat heat losses.

  10. Farewell to Murray Buttes Image 3

    NASA Image and Video Library

    2016-09-09

    This view from the Mast Camera (Mastcam) in NASA's Curiosity Mars rover shows finely layered rocks within the "Murray Buttes" region on lower Mount Sharp. The buttes and mesas rising above the surface in this area are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- called the "Stimson formation" -- during the first half of 2016, while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The layering within the sandstone is called "cross-bedding" and indicates that the sandstone was deposited by wind as migrating sand dunes. The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity's work on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21043

  11. Farewell to Murray Buttes Image 2

    NASA Image and Video Library

    2016-09-09

    This view from the Mast Camera (Mastcam) in NASA's Curiosity Mars rover shows sloping buttes and layered outcrops within the "Murray Buttes" region on lower Mount Sharp. The buttes and mesas rising above the surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- called the "Stimson formation" -- during the first half of 2016, while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The layering within the sandstone is called "cross-bedding" and indicates that the sandstone was deposited by wind as migrating sand dunes. The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity's work on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21042

  12. Farewell to Murray Buttes Image 4

    NASA Image and Video Library

    2016-09-09

    This view from the Mast Camera (Mastcam) in NASA's Curiosity Mars rover shows an outcrop with finely layered rocks within the "Murray Buttes" region on lower Mount Sharp. The buttes and mesas rising above the surface in this area are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- called the "Stimson formation" -- during the first half of 2016, while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The layering within the sandstone is called "cross-bedding" and indicates that the sandstone was deposited by wind as migrating sand dunes. The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity's work on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21044

  13. Farewell to Murray Buttes Image 5

    NASA Image and Video Library

    2016-09-09

    This view from the Mast Camera (Mastcam) in NASA's Curiosity Mars rover shows a hillside outcrop with layered rocks within the "Murray Buttes" region on lower Mount Sharp. The buttes and mesas rising above the surface in this area are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- called the "Stimson formation" -- during the first half of 2016, while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The layering within the sandstone is called "cross-bedding" and indicates that the sandstone was deposited by wind as migrating sand dunes. The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity's work on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21045

  14. Magnetic field line draping in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Lepping, R. P.; Lazarus, A. J.

    1990-01-01

    Simultaneous IMP 8 solar wind and ISEE 1/2 observations for a northern dawn ISEE 1/2 magnetopause crossing on November 6, 1977. During this crossing, ISEE 1/2 observed quasi-periodic pulses of magnetosheathlike plasma on northward magnetic field lines. The ISEE 1/2 observations were originally interpreted as evidence for strong diffusion of magnetosheath plasma across the magnetopause and the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. An alternate explanation, in terms of magnetic field merging and flux transfer events, has also been advocated. In this paper, a third interpretation is proposed in terms of quasi-periodic magnetopause motion which causes the satellites to repeatedly exit the magnetosphere and observe draped northward magnetosheath magnetic field lines in the plasma depletion layer.

  15. Paint Analysis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Lewis Research Center (LEW) has assisted The Cleveland Museum of Art (CMA) in analyzing the museum's paintings. Because of the many layers of paint that are often involved, this is a complex process. The cross-section of a paint chip must be scanned with a microscope to determine whether a paint layer is original or a restoration. The paint samples, however, are rarely flat enough for high magnification viewing and are frequently scratched. LEW devised an automated method that produces intact, flat, polished paint cross-sections. A sophisticated microprocessor-controlled grinding and polishing machine was manually employed in preparation of exotic samples for aerospace research was a readily adaptable technique. It produced perfectly flat samples with clearly defined layers. The process has been used successfully on a number of paintings, and LEW and CMA are considering additional applications.

  16. Actinide targets for fundamental research in nuclear physics

    NASA Astrophysics Data System (ADS)

    Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.

    2018-05-01

    Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.

  17. Spin-coated epoxy resin embedding technique enables facile SEM/FIB thickness determination of porous metal oxide ultra-thin films.

    PubMed

    Peña, B; Owen, G Rh; Dettelbach, K E; Berlinguette, C P

    2018-01-25

    A facile nonsubjective method was designed to measure porous nonconductive iron oxide film thickness using a combination of a focused ion beam (FIB) and scanning electron microscopy. Iron oxide films are inherently nonconductive and porous, therefore the objective of this investigation was to optimize a methodology that would increase the conductivity of the film to facilitate high resolution imaging with a scanning electron microscopy and to preserve the porous nature of the film that could potentially be damaged by the energy of the FIB. Sputter coating the sample with a thin layer of iridium before creating the cross section with the FIB decreased sample charging and drifting, but differentiating the iron layer from the iridium coating with backscattered electron imaging was not definitive, making accurate assumptions of the delineation between the two metals difficult. Moreover, the porous nature of the film was lost due to beam damage following the FIB process. A thin layer plastication technique was therefore used to embed the porous film in epoxy resin that would provide support for the film during the FIB process. However, the thickness of the resin created using conventional thin layer plastication processing varied across the sample, making the measuring process only possible in areas where the resin layer was at its thinnest. Such variation required navigating the area for ideal milling areas, which increased the subjectivity of the process. We present a method to create uniform thin resin layers, of controlled thickness, that are ideal for quantifying the thickness of porous nonconductive films with FIB/scanning electron microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  18. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  19. Analytical design model for a piezo-composite unimorph actuator and its verification using lightweight piezo-composite curved actuators

    NASA Astrophysics Data System (ADS)

    Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.

    2004-06-01

    This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.

  20. Apparatus and method of manufacture for an imager equipped with a cross-talk barrier

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2012-01-01

    An imager apparatus and associated starting material are provided. In one embodiment, an imager is provided including a silicon layer of a first conductivity type acting as a junction anode. Such silicon layer is adapted to convert light to photoelectrons. Also included is a semiconductor well of a second conductivity type formed in the silicon layer for acting as a junction cathode. Still yet, a barrier is formed adjacent to the semiconductor well. In another embodiment, a starting material is provided including a first silicon layer and an oxide layer disposed adjacent to the first silicon layer. Also included is a second silicon layer disposed adjacent to the oxide layer opposite the first silicon layer. Such second silicon layer is further equipped with an associated passivation layer and/or barrier.

  1. Reduction Characteristics of FM-Band Cross-Talks between Two Parallel Signal Traces on Printed Circuit Boards for Vehicles

    NASA Astrophysics Data System (ADS)

    Maeno, Tsuyoshi; Ueyama, Hiroya; Iida, Michihira; Fujiwara, Osamu

    It is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns with slits. To suppress the noise current outflows from the PCBs of this kind, we previously measured noise current outflows from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits, which revealed that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with the FDTD simulation, we investigated reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces for eighteen PCBs, which have different ground patterns with/without slits parallel to the traces and dielectric layers with different thickness. As a result, we found that the cross-talk reduction effect due to slits is obtained by 3.6-5.3dB, while the cross-talks between signal traces are reduced in inverse proportion to the square of the dielectric-layer thickness and in proportion to the square of the trace interval and, which can quantitatively be explained from an inductive coupling theory.

  2. The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow

    NASA Astrophysics Data System (ADS)

    Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.

    2018-02-01

    In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.

  3. Observed bottom boundary layer transport and uplift on the continental shelf adjacent to a western boundary current

    NASA Astrophysics Data System (ADS)

    Schaeffer, A.; Roughan, M.; Wood, J. E.

    2014-08-01

    Western boundary currents strongly influence the dynamics on the adjacent continental shelf and in particular the cross-shelf transport and uplift through the bottom boundary layer. Four years of moored in situ observations on the narrow southeastern Australian shelf (in water depths of between 65 and 140 m) were used to investigate bottom cross-shelf transport, both upstream (30°S) and downstream (34°S) of the separation zone of the East Australian Current (EAC). Bottom transport was estimated and assessed against Ekman theory, showing consistent results for a number of different formulations of the boundary layer thickness. Net bottom cross-shelf transport was onshore at all locations. Ekman theory indicates that up to 64% of the transport variability is driven by the along-shelf bottom stress. Onshore transport in the bottom boundary layer was more intense and frequent upstream than downstream, occurring 64% of the time at 30°S. Wind-driven surface Ekman transport estimates did not balance the bottom cross-shelf flow. At both locations, strong variability was found in bottom water transport at periods of approximately 90-100 days. This corresponds with periodicity in EAC fluctuations and eddy shedding as evidenced from altimeter observations, highlighting the EAC as a driver of variability in the continental shelf waters. Ocean glider and HF radar observations were used to identify the bio-physical response to an EAC encroachment event, resulting in a strong onshore bottom flow, the uplift of cold slope water, and elevated coastal chlorophyll concentrations.

  4. Influence of design variables on radiation hardness of silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.; Solaun, S.; Rao, B. B.; Banerjee, S.

    1985-01-01

    Metal-insulator-N/P silicon (MINP) solar cells were fabricated using different substrate resistivity values, different N-layer designs, and different I-layer designs. A shallow junction into an 0.3 ohm-cm substrate gave best efficiency whereas a deeper junction into a 1 to 4 ohm-cm substrate gave improved radiation hardness. I-layer design variation did little to influence radiation hardness.

  5. Double-layered microstrip metamaterial beam scanning leaky wave antenna with consistent gain and low cross-polarization

    NASA Astrophysics Data System (ADS)

    An, Yong-li; Tan, Yi-li; Zhang, Hong-bo; Wu, Guo-cheng

    2017-12-01

    In this paper, a novel double-layered microstrip metamaterial beam scanning leaky wave antenna (LWA) is proposed and investigated to achieve consistent gain and low cross-polarization. Thanks to the continuous phase constant changing from negative to positive values over the passband of the double-layered microstrip metamaterial, the proposed LWA, which consists of 20 identical microstrip metamaterial unit cells, can obtain a continuous beam scanning property from backward to forward directions. The proposed LWA is fabricated and measured. The measured results show that the fabricated antenna obtains a continuous beam scanning angle of 140° over the operating frequency band of 3.80-5.25 GHz (32%), the measured 3 dB gain bandwidth is 30.17% with maximum gain of 11.7 dB. Besides, the measured cross-polarization of the fabricated antenna keeps at a level of at least 30 dB below the co-polarization across the entire radiation region. Moreover, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.

  6. Explicit Content Caching at Mobile Edge Networks with Cross-Layer Sensing

    PubMed Central

    Chen, Lingyu; Su, Youxing; Luo, Wenbin; Hong, Xuemin; Shi, Jianghong

    2018-01-01

    The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination. PMID:29565313

  7. Explicit Content Caching at Mobile Edge Networks with Cross-Layer Sensing.

    PubMed

    Chen, Lingyu; Su, Youxing; Luo, Wenbin; Hong, Xuemin; Shi, Jianghong

    2018-03-22

    The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination.

  8. Automated detection of retinal layers from OCT spectral-domain images of healthy eyes

    NASA Astrophysics Data System (ADS)

    Giovinco, Gaspare; Savastano, Maria Cristina; Ventre, Salvatore; Tamburrino, Antonello

    2015-12-01

    Optical coherence tomography (OCT) has become one of the most relevant diagnostic tools for retinal diseases. Besides being a non-invasive technique, one distinguished feature is its unique capability of providing (in vivo) cross-sectional view of the retina. Specifically, OCT images show the retinal layers. From the clinical point of view, the identification of the retinal layers opens new perspectives to study the correlation between morphological and functional aspects of the retinal tissue. The main contribution of this paper is a new method/algorithm for the automated segmentation of cross-sectional images of the retina of healthy eyes, obtained by means of spectral-domain optical coherence tomography (SD-OCT). Specifically, the proposed segmentation algorithm provides the automated detection of different retinal layers. Tests on experimental SD-OCT scans performed by three different instruments/manufacturers have been successfully carried out and compared to a manual segmentation made by an independent ophthalmologist, showing the generality and the effectiveness of the proposed method.

  9. A review on transport layer protocol performance for delivering video on an adhoc network

    NASA Astrophysics Data System (ADS)

    Suherman; Suwendri; Al-Akaidi, Marwan

    2017-09-01

    The transport layer protocol is responsible for the end to end data transmission. Transmission control protocol (TCP) provides a reliable connection and user datagram protocol (UDP) offers fast but unguaranteed data transfer. Meanwhile, the 802.11 (wireless fidelity/WiFi) networks have been widely used as internet hotspots. This paper evaluates TCP, TCP variants and UDP performances for video transmission on an adhoc network. The transport protocol - medium access cross-layer is proposed by prioritizing TCP acknowledgement to reduce delay. The NS-2 evaluations show that the average delays increase linearly for all the evaluated protocols and the average packet losses grow logarithmically. UDP produces the lowest transmission delay; 5.4% and 5.8% lower than TCP and TCP variant, but experiences the highest packet loss. Both TCP and TCP Vegas maintain packet loss as low as possible. The proposed cross-layer successfully decreases TCP and TCP Vegas delay about 0.12 % and 0.15%, although losses remain similar.

  10. Flow visualization study of a vortex-wing interaction

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.; Lim, T. T.

    1984-01-01

    A flow visualization study in water was completed on the interaction of a streamwise vortex with a laminar boundary layer on a two-dimensional wing. The vortex was generated at the tip of a finite wing at incidence, mounted perpendicular to the main wing, and having the same chord as the main wing. The Reynolds number based on wing chord was about 5000. Two different visualization techniques were used. One involved the injection of two different colored dyes into the vortex and the boundary layer. The other technique utilized hydrogen bubbles as an indicator. The position of the vortex was varied in a directional normal to the wing. The angle of attack of the main wing was varied from -5 to +12.5 deg. The vortex induced noticeable cross flows in the wing boundary layer from a distance equivalent to 0.75 chords. When very close to the wing, the vortex entrained boundary layer fluid and caused a cross flow separation which resulted in a secondary vortex.

  11. Cross-Layer Algorithms for QoS Enhancement in Wireless Multimedia Sensor Networks

    NASA Astrophysics Data System (ADS)

    Saxena, Navrati; Roy, Abhishek; Shin, Jitae

    A lot of emerging applications like advanced telemedicine and surveillance systems, demand sensors to deliver multimedia content with precise level of QoS enhancement. Minimizing energy in sensor networks has been a much explored research area but guaranteeing QoS over sensor networks still remains an open issue. In this letter we propose a cross-layer approach combining Network and MAC layers, for QoS enhancement in wireless multimedia sensor networks. In the network layer a statistical estimate of sensory QoS parameters is performed and a nearoptimal genetic algorithmic solution is proposed to solve the NP-complete QoS-routing problem. On the other hand the objective of the proposed MAC algorithm is to perform the QoS-based packet classification and automatic adaptation of the contention window. Simulation results demonstrate that the proposed protocol is capable of providing lower delay and better throughput, at the cost of reasonable energy consumption, in comparison with other existing sensory QoS protocols.

  12. Driving behavior recognition using EEG data from a simulated car-following experiment.

    PubMed

    Yang, Liu; Ma, Rui; Zhang, H Michael; Guan, Wei; Jiang, Shixiong

    2018-07-01

    Driving behavior recognition is the foundation of driver assistance systems, with potential applications in automated driving systems. Most prevailing studies have used subjective questionnaire data and objective driving data to classify driving behaviors, while few studies have used physiological signals such as electroencephalography (EEG) to gather data. To bridge this gap, this paper proposes a two-layer learning method for driving behavior recognition using EEG data. A simulated car-following driving experiment was designed and conducted to simultaneously collect data on the driving behaviors and EEG data of drivers. The proposed learning method consists of two layers. In Layer I, two-dimensional driving behavior features representing driving style and stability were selected and extracted from raw driving behavior data using K-means and support vector machine recursive feature elimination. Five groups of driving behaviors were classified based on these two-dimensional driving behavior features. In Layer II, the classification results from Layer I were utilized as inputs to generate a k-Nearest-Neighbor classifier identifying driving behavior groups using EEG data. Using independent component analysis, a fast Fourier transformation, and linear discriminant analysis sequentially, the raw EEG signals were processed to extract two core EEG features. Classifier performance was enhanced using the adaptive synthetic sampling approach. A leave-one-subject-out cross validation was conducted. The results showed that the average classification accuracy for all tested traffic states was 69.5% and the highest accuracy reached 83.5%, suggesting a significant correlation between EEG patterns and car-following behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Programmable and Bidirectional Bending of Soft Actuators Based on Janus Structure with Sticky Tough PAA-Clay Hydrogel.

    PubMed

    Zhao, Lei; Huang, Jiahe; Zhang, Yuancheng; Wang, Tao; Sun, Weixiang; Tong, Zhen

    2017-04-05

    Facile preparation, rapid actuating, and versatile actions are great challenges in exploring new kinds of hydrogel actuators. In this paper, we presented a facile sticking method to prepare Janus bilayer and multilayer hydrogel actuators that benefited from a special tough and adhesive PAA-clay hydrogel. Combining physical and chemical cross-linking reagents, we endowed the PAA gel with both toughness and adhesion. This PAA gel was reinforced by further cross-linking with Fe 3+ . These two hydrogels with different cross-linking densities exhibited different swelling capabilities and moduli in the media manipulated by pH and ionic strength, thus acting as promising candidates for soft actuators. On the basis of these gels, we designed hydrogel actuators of rapid response in several minutes and precisely controlled actuating direction by sticking two hydrogel layers together. Elaborate soft actuators such as bidirectional bending flytrap, gel hand with grasp, open, and gesturing actions as well as word-writing actuator were prepared. This method could be generalized by using other stimuli-responsive hydrogels combined with the adhesive PAA gel, which would open a new way to programmable and versatile soft actuators.

  14. The Effect of Backward-Facing Step Height on Instability Growth and Breakdown in Swept Wing Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2015-01-01

    A low-speed experiment was performed on a swept at plate model with an imposed pressure gradient to determine the effect of a backward-facing step on transition in a stationary-cross flow dominated flow. Detailed hot-wire boundary-layer measurements were performed for three backward-facing step heights of approximately 36, 45, and 49% of the boundary-layer thickness at the step. These step heights correspond to a subcritical, nearly-critical, and critical case. Three leading-edge roughness configurations were tested to determine the effect of stationary-cross flow amplitude on transition. The step caused a local increase in amplitude of the stationary cross flow for the two larger step height cases, but farther downstream the amplitude decreased and remained below the baseline amplitude. The smallest step caused a slight local decrease in amplitude of the primary stationary cross flow mode, but the amplitude collapsed back to the baseline case far downstream of the step. The effect of the step on the amplitude of the primary cross flow mode increased with step height, however, the stationary cross flow amplitudes remained low and thus, stationary cross flow was not solely responsible for transition. Unsteady disturbances were present downstream of the step for all three step heights, and the amplitudes increased with increasing step height. The only exception is that the lower frequency (traveling crossflow-like) disturbance was not present in the lowest step height case. Positive and negative spikes in instantaneous velocity began to occur for the two larger step height cases and then grew in number and amplitude downstream of reattachment, eventually leading to transition. The number and amplitude of spikes varied depending on the step height and cross flow amplitude. Despite the low amplitude of the disturbances in the intermediate step height case, breakdown began to occur intermittently and the flow underwent a long transition region.

  15. Layering, interface and edge effects in multi-layered composite medium

    NASA Technical Reports Server (NTRS)

    Datta, S. K.; Shah, A. H.; Karunesena, W.

    1990-01-01

    Guided waves in a cross-ply laminated plate are studied. Because of the complexity of the exact dispersion equation that governs the wave propagation in a multi-layered fiber-reinforced plate, a stiffness method that can be applied to any number of layers is presented. It is shown that, for a sufficiently large number of layers, the plate can be modeled as a homogeneous anisotropic plate. Also studied is the reflection of guided waves from the edge of a multilayered plate. These results are quite different than in the case of a single homogeneous plate.

  16. Free-standing few-layered graphene oxide films: selective, steady and lasting permeation of organic molecules with adjustable speeds

    NASA Astrophysics Data System (ADS)

    Huang, Tao; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-01-01

    A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications.A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications. Electronic supplementary information (ESI) available: AFM images of GO and GO films, UV-vis spectra of delayed release, and permeation fidelities. See DOI: 10.1039/c5nr08129g

  17. Modeling and optimization of shape memory-superelastic antagonistic beam assembly

    NASA Astrophysics Data System (ADS)

    Tabesh, Majid; Elahinia, Mohammad H.

    2010-04-01

    Superelasticity (SE), shape memory effect (SM), high damping capacity, corrosion resistance, and biocompatibility are the properties of NiTi that makes the alloy ideal for biomedical devices. In this work, the 1D model developed by Brinson was modified to capture the shape memory effect, superelasticity and hysteresis behavior, as well as partial transformation in both positive and negative directions. This model was combined with the Euler beam equation which, by approximation, considers 1D compression and tension stress-strain relationships in different layers of a 3D beam assembly cross-section. A shape memory-superelastic NiTi antagonistic beam assembly was simulated with this model. This wire-tube assembly is designed to enhance the performance of the pedicle screws in osteoporotic bones. For the purpose of this study, an objective design is pursued aiming at optimizing the dimensions and initial configurations of the SMA wire-tube assembly.

  18. Crosslinked Polybenzimidazole Membrane For Gas Separation

    DOEpatents

    Jorgensen, Betty S.; Young, Jennifer S.; Espinoza, Brent F.

    2005-09-20

    A cross-linked, supported polybenzimidazole membrane for gas separation is prepared by layering a solution of polybenzimidazole (PBI) and a,a'dibromo-p-xylene onto a porous support and evaporating solvent. A supported membrane of cross-linked poly-2,2'-(m-phenylene)-5,5'-bibenzimidazole unexpectedly exhibits an enhanced gas permeability compared to the non-cross linked analog at temperatures over 265° C.

  19. TEM study of {beta} Prime precipitate interaction mechanisms with dislocations and {beta} Prime interfaces with the aluminium matrix in Al-Mg-Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.

    The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less

  20. Cross-correlated and oscillatory visual responses of superficial-layer and tecto-reticular neurones in cat superior colliculus.

    PubMed

    Chabli, A; Guitton, D; Fortin, S; Molotchnikoff, S

    2000-03-01

    The present study examined, in the superior colliculus (SC) of anaesthetised cats, the functional connectivity between superficial-layer neurones (SLNs) and tectoreticular neurones (TRNs: collicular output cells). TRNs were antidromically identified by electrical stimulation of the predorsal bundle. The auto- and cross-correlation histograms of visual responses of both types of neurones were recorded and analysed. A delayed, sharp peak in cross-correlograms allowed us to verify whether SLN and TRN cells were coupled; in addition, oscillatory activities were compared to verify if rhythmic responses of SLN sites were transmitted to TRN sites. We found that oscillatory activity was rarely observed in spontaneous activity of superficial (1/74) and TRN sites (1/48). Moving light bars induced oscillation in 31% (23/74) of the superficial-layer and in 23% (11/48) of the TRN sites. The strength of the rhythmic responses was determined by specific ranges of stimulus velocity in 83% (19/23) and 64% (7/11) of oscillating SLN and TRN sites, respectively. Frequencies of oscillations ranged between 5 and 125 Hz and were confined, for 53% of the cells, to the 5-20 Hz band. Thus, the band-width of frequencies of the stimulus-related oscillations in the superior colliculus was broader than the gamma range. Analysis of cross-correlation histograms revealed a significant predominant peak with a mean delay of 2.7+/-0.9 ms in 46% (17/37) of SLN-TRN pairs. Most correlated SLN-TRN pairs (88%: 15/17) had superimposed receptive fields, suggesting they were functionally interconnected. However, individual oscillatory frequencies of correlated and oscillatory SLN and TRN cells were never the same (0/8). Together, these results suggest that the neurones in collicular superficial layer contact TRNs and, consequently, support the idea that the superficial layers contribute to collicular outputs producing eye- and head-orienting movements.

  1. Symmetry Breaking in Few Layer Graphene Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostwick, A.; Ohta, T.; McChesney, J.L.

    2007-05-25

    Recently, it was demonstrated that the quasiparticledynamics, the layer-dependent charge and potential, and the c-axisscreening coefficient could be extracted from measurements of thespectral function of few layer graphene films grown epitaxially on SiCusing angle-resolved photoemission spectroscopy (ARPES). In this articlewe review these findings, and present detailed methodology for extractingsuch parameters from ARPES. We also present detailed arguments againstthe possibility of an energy gap at the Dirac crossing ED.

  2. Cross-Service Investigation of Geographical Information Systems

    DTIC Science & Technology

    2004-03-01

    Figure 8 illustrates the combined layers. Information for the layers is stored in a database format. The two types of storage are vector and...raster models. In a vector model, the image and information are stored as geometric objects such as points, lines, or polygons. In a raster model...DNCs are a vector -based digital database with selected maritime significant physical features from hydrographic charts. Layers within the DNC are data

  3. Ripples in Rocks Point to Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows the rock nicknamed 'Last Chance,' which lies within the outcrop near the rover's landing site at Meridiani Planum, Mars. The image provides evidence for a geologic feature known as ripple cross-stratification. At the base of the rock, layers can be seen dipping downward to the right. The bedding that contains these dipping layers is only one to two centimeters (0.4 to 0.8 inches) thick. In the upper right corner of the rock, layers also dip to the right, but exhibit a weak 'concave-up' geometry. These two features -- the thin, cross-stratified bedding combined with the possible concave geometry -- suggest small ripples with sinuous crest lines. Although wind can produce ripples, they rarely have sinuous crest lines and never form steep, dipping layers at this small scale. The most probable explanation for these ripples is that they were formed in the presence of moving water.

    Crossbedding Evidence for Underwater Origin Interpretations of cross-lamination patterns presented as clues to this martian rock's origin under flowing water are marked on images taken by the panoramic camera and microscopic imager on NASA's Opportunity.

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    The red arrows (Figure 1) point to features suggesting cross-lamination within the rock called 'Last Chance' taken at a distance of 4.5 meters (15 feet) during Opportunity's 17th sol (February 10, 2004). The inferred sets of fine layers at angles to each other (cross-laminae) are up to 1.4 centimeters (half an inch) thick. For scale, the distance between two vertical cracks in the rock is about 7 centimeters (2.8 inches). The feature indicated by the middle red arrow suggests a pattern called trough cross-lamination, likely produced when flowing water shaped sinuous ripples in underwater sediment and pushed the ripples to migrate in one direction. The direction of the ancient flow would have been either toward or away from the line of sight from this perspective. The lower and upper red arrows point to cross-lamina sets that are consistent with underwater ripples in the sediment having moved in water that was flowing left to right from this perspective.

    The yellow arrows (Figure 2) indicate places in the panoramic camera view that correlate with places in the microscope's view of the same rock.

    [figure removed for brevity, see original site] Figure 3

    The microscopic view (Figure 3) is a mosaic of some of the 152 microscopic imager frames of 'Last Chance' that Opportunity took on sols 39 and 40 (March 3 and 4, 2004).

    [figure removed for brevity, see original site] Figure 4

    Figure 4 shows cross-lamination expressed by lines that trend downward from left to right, traced with black lines in the interpretive overlay. These cross-lamination lines are consistent with dipping planes that would have formed surfaces on the down-current side of migrating ripples. Interpretive blue lines indicate boundaries between possible sets of cross-laminae.

  4. Insight into the Near-Conduction Band States at the Crystallized Interface between GaN and SiN x Grown by Low-Pressure Chemical Vapor Deposition.

    PubMed

    Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen

    2018-06-12

    Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.

  5. A Hierarchical Security Architecture for Cyber-Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quanyan Zhu; Tamer Basar

    2011-08-01

    Security of control systems is becoming a pivotal concern in critical national infrastructures such as the power grid and nuclear plants. In this paper, we adopt a hierarchical viewpoint to these security issues, addressing security concerns at each level and emphasizing a holistic cross-layer philosophy for developing security solutions. We propose a bottom-up framework that establishes a model from the physical and control levels to the supervisory level, incorporating concerns from network and communication levels. We show that the game-theoretical approach can yield cross-layer security strategy solutions to the cyber-physical systems.

  6. Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations.

    PubMed

    Uludag, K; Kohl, M; Steinbrink, J; Obrig, H; Villringer, A

    2002-01-01

    Using the modified Lambert-Beer law to analyze attenuation changes measured noninvasively during functional activation of the brain might result in an insufficient separation of chromophore changes ("cross talk") due to the wavelength dependence of the partial path length of photons in the activated volume of the head. The partial path length was estimated by performing Monte Carlo simulations on layered head models. When assuming cortical activation (e.g., in the depth of 8-12 mm), we determine negligible cross talk when considering changes in oxygenated and deoxygenated hemoglobin. But additionally taking changes in the redox state of cytochrome-c-oxidase into account, this analysis results in significant artifacts. An analysis developed for changes in mean time of flight--instead of changes in attenuation--reduces the cross talk for the layers of cortical activation. These results were validated for different oxygen saturations, wavelength combinations and scattering coefficients. For the analysis of changes in oxygenated and deoxygenated hemoglobin only, low cross talk was also found when the activated volume was assumed to be a 4-mm-diam sphere.

  7. IMPROVEMENTS RELATING TO NUCLEAR REACTOR CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1963-03-01

    A nuclear reactor core composed of a number of stacked horizontal layers is described. Each layer is made up of elements of moderator material of equal height and of generally hexagonal cross-section. Each element has holes containing nuclear fuel and separate ones for coolant. (C.E.S.)

  8. Designing optimal nanofocusing with a gradient hyperlens

    NASA Astrophysics Data System (ADS)

    Shen, Lian; Prokopeva, Ludmila J.; Chen, Hongsheng; Kildishev, Alexander V.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  9. NUCLEAR REACTOR CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1963-02-01

    A nuclear reactor core composed of a number of identical elements of solid moderator material fitted together was designed. Each moderator element is apertured to provide channels for fuel and coolant. The elements have an external shape which permits them to be stacked in layers with similar elements, with the surfaces of adjacent elements fitting and in contact with each other. The cross section of the element is of a general hexagonal shape with identations and protrusions, so that the elements can be fitted together. The described core should not be liable to fracture under transverse loading. Specific arrangements ofmore » moderator elements and fuel and coolant apertures are described. (M.P.G.)« less

  10. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates. It is found that, for light carrier gases, thermal diffusion must be included in the model. Buoyancy-driven three-dimensional flow effects can greatly influence the growth rate distribution through the reactor. The importance of the proper design of the lateral thermal boundary conditions for obtaining layers of uniform thickness is emphasized.

  11. [Design and implementation of field questionnaire survey system of taeniasis/cysticercosis].

    PubMed

    Huan-Zhang, Li; Jing-Bo, Xue; Men-Bao, Qian; Xin-Zhong, Zang; Shang, Xia; Qiang, Wang; Ying-Dan, Chen; Shi-Zhu, Li

    2018-04-17

    A taeniasis/cysticercosis information management system was designed to achieve the dynamic monitoring of the epidemic situation of taeniasis/cysticercosis and improve the intelligence level of disease information management. The system includes three layer structures (application layer, technical core layer, and data storage layer) and designs a datum transmission and remote communication system of traffic information tube in Browser/Server architecture. The system is believed to promote disease datum collection. Additionally, the system may provide the standardized data for convenience of datum analysis.

  12. Experimentally demonstrate the surface state and optical topological phase transition of one dimensional hyperbolic metamaterials in Otto and KR configuration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wei, Chih Chung; Un, Leng-Wai; Yen, Ta-Jen

    2017-05-01

    One-dimension hyperbolic metamaterials (1DHMMs) possess marvelous and considerable applications: hyperlens, spontaneous emission engineering and nonlinear optics. Conventionally, effective medium theory, which is only valid for long wavelength limit, was used to predict and analyze the optical properties and applications. In our previous works, we considered a binary 1DHMM which consists of alternative metallic and dielectric layers, and rigorously demonstrated the existence of surface states and bulk-interface correspondence with the plasmonic band theory from the coupled surface plasmon point of view. In the plasmonic band structure, we can classify 1DHMMs into two classes: metallic-like and dielectric-like, depending on the formation of the surface states with dielectric and metallic material, respectively. Band crossing exists only when the dielectric layers are thicker than the metallic ones, which is independent from the dielectric constants. Furthermore, the 1DHMMs are all metallic-like without band crossing. On the other hand, the 1DHMMs with band crossing are metal-like before the band crossing point, while they are dielectric-like after the band crossing point. In this work, we measure the surface states formed by dielectric material and 1DHMMs with band crossing in Otto configuration. With white light source and fixed incident angle, we measure the reflectance to investigate the existence of the surface states of 1DHMMs with various thickness ratio of metallic to dielectric layers. Conclusively, our results show that the surface states of 1DHMMs exist only when the thickness ratio is larger than 0.15. The disappearance of the surface states indicates the topological phase transition of 1DHMMs. Our experimental results will benefit new applications for manipulating light on the surface of hyperbolic metamaterials.

  13. Valve microstructure and phylomineralogy of New Zealand chitons.

    PubMed

    Peebles, B A; Smith, A M; Spencer, H G

    2017-03-01

    The microstructure and mineralogy of chiton valves has been largely ignored in the literature and only described in 29 species to date. Eight species: Acanthochitona zelandica, Notoplax violacea (Family Acanthochitonidae, Suborder Acanthochitonina, Order Chitonida), Chiton glaucus, Onithochiton neglectus, Sypharochiton spelliserpentis, Sypharochiton sinclairi (Family Chitonidae, Suborder, Chitonina, Order Chitonida), Ischnochiton maorianus (Family Ischnochitonidae, Suborder Chitonina, Order Chitonida), and Leptochiton inquinatus (Family Leptochitonidae, Suborder Lepidopleurina, Order Lepidopleurida) were collected from the Otago Peninsula, South Island, New Zealand. The valves of these chitons were analysed with X-ray diffractometry, Raman spectrometry, and Scanning Electron Micrography (SEM) to determine their mineralogy and microstructure. Both the XRD and Raman data show that the valves consisted solely of aragonite. The observed microstructures of the valves were complex, typically composed of four to seven sublayers, and varied among species. The dorsal layer, the tegmentum, of each species was granular and the ventral layer, the articulamentum, was predominately composed of a spherulitic sublayer, a crossed lamellar sublayer, and an acicular sublayer. The chitonids Sypharochiton pelliserpentis and S. sinclairi had the most complex microstructure layering with three crossed lamellar, two spherulitic sublayers, and a ventral acicular sublayer while the acanthochitonids Acanthochitona zelandica and Notoplax violacea as well as the ischnochitonid Ischnochiton maorianus had the simplest structure with one spherulitic, one crossed lamellar sublayer, and a ventral acicular sublayer. Terminal valves were less complex than intermediate valves and tended to be dominated by the crossed lamellar structure. The leptochitonid Leptochiton inquinatus generated a unique crossed lamellar sublayer different from the other analysed chitonids. Acanthochitona zelandica is the only analysed chitonid that utilizes two different crossed lamellar structures. Clearly, many of these properties do not reflect the currently recognized polyplacophoran phylogeny. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Mechanical restoration of large-scale folded multilayers using the finite element method: Application to the Zagros Simply Folded Belt, N-Iraq

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Reif, Daniel; Grasemann, Bernhard

    2010-05-01

    There are a large number of numerical finite element studies concerned with modeling the evolution of folded geological layers through time. This body of research includes many aspects of folding and many different approaches, such as two- and three-dimensional studies, single-layer folding, detachment folding, development of chevron folds, Newtonian, power-law viscous and more complex rheologies, influence of anisotropy, pure-shear, simple-shear and other boundary conditions and so forth. In recent years, studies of multilayer folding emerged, thanks to more advanced mesh generator software and increased computational power. Common to all of these studies is the fact that they consider a forward directed time evolution, as in nature. Very few studies use the finite element method for reverse-time simulations. In such studies, folded geological layers are taken as initial conditions for the numerical simulation. The folding process is reversed by changing the signs of the boundary conditions that supposedly drove the folding process. In such studies, the geometry of the geological layers before the folding process is searched and the amount of shortening necessary for the final folded geometry can be calculated. In contrast to a kinematic or geometric fold restoration procedure, the described approach takes the mechanical behavior of the geological layers into account, such as rheology and the relative strength of the individual layers. This approach is therefore called mechanical restoration of folds. In this study, the concept of mechanical restoration is applied to a two-dimensional 50km long NE-SW-cross-section through the Zagros Simply Folded Belt in Iraqi Kurdistan, NE from the city of Erbil. The Simply Folded Belt is dominated by gentle to open folding and faults are either absent or record only minor offset. Therefore, this region is ideal for testing the concept of mechanical restoration. The profile used is constructed from structural field measurements and digital elevation models using the dip-domain method for balancing the cross-section. The lithology consists of Cretaceous to Cenozoic sediments. Massive carbonate rock units act as the competent layers compared to the incompetent behavior of siltstone, claystone and marl layers. We show the first results of the mechanical restoration of the Zagros cross-section and we discuss advantages and disadvantages, as well as some technical aspects of the applied method. First results indicate that a shortening of at least 50% was necessary to create the present-day folded cross-section. This value is higher than estimates of the amount of shortening solely based on kinematic or geometric restoration. One particular problem that is discussed is the presence of (unnaturally) sharp edges in a balanced cross-section produced using the dip-domain method, which need to be eliminated for mechanical restoration calculations to get reasonable results.

  15. Resource Sharing via Planed Relay for [InlineEquation not available: see fulltext.

    NASA Astrophysics Data System (ADS)

    Shen, Chong; Rea, Susan; Pesch, Dirk

    2008-12-01

    We present an improved version of adaptive distributed cross-layer routing algorithm (ADCR) for hybrid wireless network with dedicated relay stations ([InlineEquation not available: see fulltext.]) in this paper. A mobile terminal (MT) may borrow radio resources that are available thousands mile away via secure multihop RNs, where RNs are placed at pre-engineered locations in the network. In rural places such as mountain areas, an MT may also communicate with the core network, when intermediate MTs act as relay node with mobility. To address cross-layer network layers routing issues, the cascaded ADCR establishes routing paths across MTs, RNs, and cellular base stations (BSs) and provides appropriate quality of service (QoS). We verify the routing performance benefits of [InlineEquation not available: see fulltext.] over other networks by intensive simulation.

  16. Anisotropic thermal transport in van der Waals layered alloys WSe2(1-x)Te2x

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Jiang, Puqing; Yu, Peng; Gu, Xiaokun; Liu, Zheng; Yang, Ronggui

    2018-06-01

    Transition metal dichalcogenide (TMD) alloys have attracted great interest in recent years due to their tunable electronic properties and the semiconductor-metal phase transition along with their potential applications in solid-state memories and thermoelectrics among others. However, the thermal conductivity of layered TMD alloys remains largely unexplored despite that it plays a critical role in the reliability and functionality of TMD-enabled devices. In this work, we study the composition- and temperature-dependent anisotropic thermal conductivity of the van der Waals layered TMD alloys WSe2(1-x)Te2x in both the in-plane direction (parallel to the basal planes) and the cross-plane direction (along the c-axis) using time-domain thermoreflectance measurements. In the WSe2(1-x)Te2x alloys, the cross-plane thermal conductivity is observed to be dependent on the heating frequency (modulation frequency of the pump laser) due to the non-equilibrium transport between different phonon modes. Using a two-channel heat conduction model, we extracted the anisotropic thermal conductivity at the equilibrium limit. A clear discontinuity in both the cross-plane and the in-plane thermal conductivity is observed as x increases from 0.4 to 0.6 due to the phase transition from the 2H to the Td phase in the layered alloys. The temperature dependence of thermal conductivity for the TMD alloys was found to become weaker compared with the pristine 2H WSe2 and Td WTe2 due to the atomic disorder. This work serves as an important starting point for exploring phonon transport in layered alloys.

  17. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); Kang, Jin Ho (Inventor); Thibeault, Sheila A. (Inventor); Sauti, Godfrey (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  18. Three-Dimensionally Printed Microfluidic Cross-flow System for Ultrafiltration/Nanofiltration Membrane Performance Testing.

    PubMed

    Wardrip, Nathaniel C; Arnusch, Christopher J

    2016-02-13

    Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes.

  19. Three-Dimensionally Printed Microfluidic Cross-flow System for Ultrafiltration/Nanofiltration Membrane Performance Testing

    PubMed Central

    Wardrip, Nathaniel C.; Arnusch, Christopher J.

    2016-01-01

    Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes.  PMID:26968008

  20. Direct Loading and Tunable Release of Antibiotics from Polyelectrolyte Multilayers To Reduce Bacterial Adhesion and Biofilm Formation.

    PubMed

    Wang, Bailiang; Jin, Tingwei; Xu, Qingwen; Liu, Huihua; Ye, Zi; Chen, Hao

    2016-05-18

    Bacteria adhesion on the surface of biomaterials and following biofilm formation are important problems in biomedical applications. The charged antibiotics with small molar mass can hardly deposit alternately with polymers into multilayered films to load the drug. Herein, the (poly(acrylic acid)-gentamicin/poly(ethylenimine))n ((PAA-GS/PEI)n) multilayer film was designed and constructed via a layer-by-layer self-assembly method. Low molar mass GS cations were first combined with polyanion PAA and self-assembled with PEI to form multilayer films showing exponential growth behavior. The GS dosage could be adjusted by changing the layer number of films. Furthermore, the thermal cross-linking method was used to control the release rate of GS in PBS buffer. Owing to the diffusion of GS, a zone of inhibition of about 7.0 mm showed the efficient disinfection activity of the multilayer film. It could also be seen from the biofilm inhibition assay that the multilayer film effectively inhibited bacterial adhesion and biofilm formation. As the drug loading dosage was 160 μg/cm(2), the multilayer films showed very low cytotoxicity against human lens epithelial cells. The present work provides an easy way to load GS into multilayer films which can be applied to surface modification of implants and biomedical devices.

  1. Highly efficient TiO2-based microreactor for photocatalytic applications.

    PubMed

    Krivec, Matic; Žagar, Kristina; Suhadolnik, Luka; Čeh, Miran; Dražić, Goran

    2013-09-25

    A photocatalytic, TiO2-based microreactor is designed and fabricated on a metal-titanium foil. The microchannel is mechanically engraved in the substrate foil, and a double-layered TiO2 anatase film is immobilized on its inner walls with a two-step synthesis, which included anodization and a hydrothermal treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm the presence of an approximately 10-μm-thick layer of titania nanotubes and anatase nanoparticles. The SEM and transmission electron microscopy (TEM) of the cross sections show a dense interface between the titanium substrate and the TiO2 nanotubes. An additional layer of TiO2-anatase nanoparticles on the top of the film provides a large, photocatalytic surface area. The metal-titanium substrate with a functionalized serpentine channel is sealed with UV-transparent Plexiglas, and four 0.8-mW UV LEDs combined with a power controller on a small printed-circuit board are fixed over the substrate. The photocatalytic activity and the kinetic properties for the degradation of caffeine are provided, and the longer-term stability of the TiO2 film is evaluated. The results show that after 6 months of use and 3600 working cycles the microreactor still exhibits 60% of its initial efficiency.

  2. Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon

    NASA Astrophysics Data System (ADS)

    Viswanath, Changhyun Ko, B.; Yang, Zheng; Ramanathan, Shriram

    2011-03-01

    VO2 undergoes a sharp metal-insulator transition at ˜67 °C with several orders of change in conductivity and optical transmittance. Understanding and control of the properties of vanadium oxide layers grown on technologically relevant substrates such as Si (100) single crystals is therefore of great interest. In this work, we show tunability of metal-insulator transition temperature as well as recoverable stress in VO2 thin films grown on Si substrate by introducing nanoscale atomic layer deposited HfO2 interfacial layers with no degradation in the resistance ratio. For a confined VO2 film, the metal-insulator transition temperature is suppressed by ˜16 °C and the recoverable stress is 150 MPa, compared to 400 MPa for a bare film. These observations are further correlated with in situ variable temperature measurement of stress changes occurring during the phase transition. Structural and microstructural studies on the various samples have been carried out by x ray diffraction and cross-sectional transmission electron microscopy. The strategy of tuning the metal-insulator transition characteristics by nanoscale interfacial dielectrics is of broader relevance in design of programmable materials and integration into solid state devices for electronics.

  3. Quasi-static elastography comparison of hyaline cartilage structures

    NASA Astrophysics Data System (ADS)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  4. Sample preparation for total reflection X-ray fluorescence analysis using resist pattern technique

    NASA Astrophysics Data System (ADS)

    Tsuji, K.; Yomogita, N.; Konyuba, Y.

    2018-06-01

    A circular resist pattern layer with a diameter of 9 mm was prepared on a glass substrate (26 mm × 76 mm; 1.5 mm thick) for total reflection X-ray fluorescence (TXRF) analysis. The parallel cross pattern was designed with a wall thickness of 10 μm, an interval of 20 μm, and a height of 1.4 or 0.8 μm. This additional resist layer did not significantly increase background intensity on the XRF peaks in TXRF spectra. Dotted residue was obtained from a standard solution (10 μL) containing Ti, Cr, Ni, Pb, and Ga, each at a final concentration of 10 ppm, on a normal glass substrate with a silicone coating layer. The height of the residue was more than 100 μm, where self-absorption in the large residue affected TXRF quantification (intensity relative standard deviation (RSD): 12-20%). In contrast, from a droplet composed of a small volume of solution dropped and cast on the resist pattern structure, the obtained residue was not completely film but a film-like residue with a thickness less than 1 μm, where self-absorption was not a serious problem. In the end, this sample preparation was demonstrated to improve TXRF quantification (intensity RSD: 2-4%).

  5. Ion acceleration and non-Maxwellian electron distributions in a low collisionality, high power helicon plasma source

    NASA Astrophysics Data System (ADS)

    Li, Yan; Sung, Yung-Ta; Scharer, John

    2015-11-01

    Ion acceleration through plasma double layer and non-Maxwellian two temperature electron distributions have been observed in Madison Helicon Experiment (MadHeX) operated in high RF power (>1000 W) and low Ar pressure (0.17 mtorr) inductive mode. By applying Optical Emission Spectroscopy (OES) cross-checked with an RF-compensated Langmuir probe (at 13.56 MHz and its second and third harmonics), the fast (>80 eV), untrapped electrons downstream of the double layer have a higher temperature of 13 eV than the trapped bulk electrons upstream with a temperature of 4 eV. The reduction of plasma potential and density observed in the double layer region require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The hot tail electrons of the non-Maxwellian electron distribution affect the formation and the potential drop of the double layer region. The mechanism behind this has been explored via several non-invasive plasma diagnostics tools. The OES measured electron temperatures and densities are also cross-checked with Atomic Data and Analysis Structure (ADAS) and a millimeter wave interferometer respectively. The IEDF is measured by a four-grid RPA and also cross-checked with argon 668 nm Laser Induced Fluorescence (LIF). An emissive probe has been used to measure the plasma potential.

  6. Innovative design of composite structures: Use of curvilinear fiber format to improve structural efficiency

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Charette, R. F.

    1987-01-01

    To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized.

  7. Photon and carrier management design for nonplanar thin-film copper indium gallium diselenide photovoltaics

    DOEpatents

    Atwater, Harry A.; Callahan, Dennis; Bukowsky, Colton

    2017-11-21

    Photovoltaic structures are disclosed. The structures can comprise randomly or periodically structured layers, a dielectric layer to reduce back diffusion of charge carriers, and a metallic layer to reflect photons back towards the absorbing semiconductor layers. This design can increase efficiency of photovoltaic structures. The structures can be fabricated by nanoimprint.

  8. DOI Determination by Rise Time Discrimination in Single-Ended Readout for TOF PET Imaging

    PubMed Central

    Wiener, R.I.; Surti, S.; Karp, J.S.

    2013-01-01

    Clinical TOF PET systems achieve detection efficiency using thick crystals, typically of thickness 2–3cm. The resulting dispersion in interaction depths degrades spatial resolution for increasing radial positions due to parallax error. Furthermore, interaction depth dispersion results in time pickoff dispersion and thus in degraded timing resolution, and is therefore of added concern in TOF scanners. Using fast signal digitization, we characterize the timing performance, pulse shape and light output of LaBr3:Ce, CeBr3 and LYSO. Coincidence timing resolution is shown to degrade by ~50ps/cm for scintillator pixels of constant cross section and increasing length. By controlling irradiation depth in a scintillator pixel, we show that DOI-dependence of time pickoff is a significant factor in the loss of timing performance in thick detectors. Using the correlated DOI-dependence of time pickoff and charge collection, we apply a charge-based correction to the time pickoff, obtaining improved coincidence timing resolution of <200ps for a uniform 4×4×30mm3 LaBr3 pixel. In order to obtain both DOI identification and improved timing resolution, we design a two layer LaBr3[5%Ce]/LaBr3[30%Ce] detector of total size 4×4×30mm3, exploiting the dependence of scintillator rise time on [Ce] in LaBr3:Ce. Using signal rise time to determine interaction layer, excellent interaction layer discrimination is achieved, while maintaining coincidence timing resolution of <250ps and energy resolution <7% using a R4998 PMT. Excellent layer separation and timing performance is measured with several other commercially-available TOF photodetectors, demonstrating the practicality of this design. These results indicate the feasibility of rise time discrimination as a technique for measuring event DOI while maintaining sensitivity, timing and energy performance, in a well-known detector architecture. PMID:24403611

  9. DOI Determination by Rise Time Discrimination in Single-Ended Readout for TOF PET Imaging.

    PubMed

    Wiener, R I; Surti, S; Karp, J S

    2013-06-01

    Clinical TOF PET systems achieve detection efficiency using thick crystals, typically of thickness 2-3cm. The resulting dispersion in interaction depths degrades spatial resolution for increasing radial positions due to parallax error. Furthermore, interaction depth dispersion results in time pickoff dispersion and thus in degraded timing resolution, and is therefore of added concern in TOF scanners. Using fast signal digitization, we characterize the timing performance, pulse shape and light output of LaBr 3 :Ce, CeBr 3 and LYSO. Coincidence timing resolution is shown to degrade by ~50ps/cm for scintillator pixels of constant cross section and increasing length. By controlling irradiation depth in a scintillator pixel, we show that DOI-dependence of time pickoff is a significant factor in the loss of timing performance in thick detectors. Using the correlated DOI-dependence of time pickoff and charge collection, we apply a charge-based correction to the time pickoff, obtaining improved coincidence timing resolution of <200ps for a uniform 4×4×30mm 3 LaBr 3 pixel. In order to obtain both DOI identification and improved timing resolution, we design a two layer LaBr 3 [5%Ce]/LaBr 3 [30%Ce] detector of total size 4×4×30mm 3 , exploiting the dependence of scintillator rise time on [Ce] in LaBr 3 :Ce. Using signal rise time to determine interaction layer, excellent interaction layer discrimination is achieved, while maintaining coincidence timing resolution of <250ps and energy resolution <7% using a R4998 PMT. Excellent layer separation and timing performance is measured with several other commercially-available TOF photodetectors, demonstrating the practicality of this design. These results indicate the feasibility of rise time discrimination as a technique for measuring event DOI while maintaining sensitivity, timing and energy performance, in a well-known detector architecture.

  10. Real Gas Scale Effects on Hypersonic Laminar Boundary-Layer Parameters Including Effects of Entropy-Layer Swallowing

    DTIC Science & Technology

    1975-12-01

    crossed the essentially normal portion of the bow shock is swallowed by the boundary layer. The flow along the edge of the boundary layer on the aft...portions hf the body will then have passed through an oblique part of the bow shock and will be in a different state than had it passed through a normal...determination of the local edge flow conditions may be improvedby taking into con- sideration the inclination of the bow shock where the local flow stream- line

  11. Automated Rapid Prototyping of 3D Ceramic Parts

    NASA Technical Reports Server (NTRS)

    McMillin, Scott G.; Griffin, Eugene A.; Griffin, Curtis W.; Coles, Peter W. H.; Engle, James D.

    2005-01-01

    An automated system of manufacturing equipment produces three-dimensional (3D) ceramic parts specified by computational models of the parts. The system implements an advanced, automated version of a generic rapid-prototyping process in which the fabrication of an object having a possibly complex 3D shape includes stacking of thin sheets, the outlines of which closely approximate the horizontal cross sections of the object at their respective heights. In this process, the thin sheets are made of a ceramic precursor material, and the stack is subsequently heated to transform it into a unitary ceramic object. In addition to the computer used to generate the computational model of the part to be fabricated, the equipment used in this process includes: 1) A commercially available laminated-object-manufacturing machine that was originally designed for building woodlike 3D objects from paper and was modified to accept sheets of ceramic precursor material, and 2) A machine designed specifically to feed single sheets of ceramic precursor material to the laminated-object-manufacturing machine. Like other rapid-prototyping processes that utilize stacking of thin sheets, this process begins with generation of the computational model of the part to be fabricated, followed by computational sectioning of the part into layers of predetermined thickness that collectively define the shape of the part. Information about each layer is transmitted to rapid-prototyping equipment, where the part is built layer by layer. What distinguishes this process from other rapid-prototyping processes that utilize stacking of thin sheets are the details of the machines and the actions that they perform. In this process, flexible sheets of ceramic precursor material (called "green" ceramic sheets) suitable for lamination are produced by tape casting. The binder used in the tape casting is specially formulated to enable lamination of layers with little or no applied heat or pressure. The tape is cut into individual sheets, which are stacked in the sheet-feeding machine until used. The sheet-feeding machine can hold enough sheets for about 8 hours of continuous operation.

  12. Designing a Novel Polymer Electrolyte for Improving the Electrode/Electrolyte Interface in Flexible All-Solid-State Electrical Double-Layer Capacitors.

    PubMed

    Wang, Jeng-An; Lu, Yi-Ting; Lin, Sheng-Chi; Wang, Yu-Sheng; Ma, Chen-Chi M; Hu, Chi-Chang

    2018-05-30

    A novel copolymer, polyurethane-poly(acrylic acid) (PAA), is successfully synthesized from poly(acrylic acid) (PAA) backbone cross-linked with waterborne polyurethane (WPU). This sticky polymer, which is neutralized with 1 M KOH and then soaked in 1 M KOH (denoted as WPU-PAAK-K), provides an ionic conductivity greater than 10 -2 S cm -1 and acts as a gel electrolyte perfectly improving the electrode/electrolyte interfaces in a flexible all-solid-state electrical double-layer capacitor (EDLC). The PAA backbone chains in the copolymer increase the amount of carboxyl groups and promote the segmental motion. The carboxyl groups enhance the water-uptake capacity, which facilitates the ion transport and promotes the ionic conductivity. The cross-linked agent, WPU chains, effectively maintains the rich water content and provides mechanical stickiness to bind two electrodes together. An acid-treated carbon paper (denoted as ACP) combining with such a gel polymer electrolyte demonstrates excellent capacitive behavior with a high areal capacitance of 211.6 mF cm -2 at 10 mV s -1 . A full cell consisting of ACP/WPU-PAAK-K/ACP displays a low equivalent series resistance of 0.44 Ω from the electrochemical impedance spectroscopic results. An all-solid-state ACP/WPU-PAAK-K/ACP EDLC provides an areal specific capacitance of 94.6 mF cm -2 at 1 mA cm -2 . This device under 180° bending shows a capacitance retention over 90%, revealing its remarkable flexibility.

  13. Solar Array at Very High Temperatures: Ground Tests

    NASA Technical Reports Server (NTRS)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees Centigrade. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over the indium tin oxide (ITO) layer.

  14. The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells

    DOE PAGES

    Xu, Feng; Zhu, Kai; Zhao, Yixin

    2016-10-10

    Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less

  15. The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Feng; Zhu, Kai; Zhao, Yixin

    Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less

  16. Layer-by-layer design method for soft-X-ray multilayers

    NASA Technical Reports Server (NTRS)

    Yamamoto, Masaki; Namioka, Takeshi

    1992-01-01

    A new design method effective for a nontransparent system has been developed for soft-X-ray multilayers with the aid of graphic representation of the complex amplitude reflectance in a Gaussian plane. The method provides an effective means of attaining the absolute maximum reflectance on a layer-by-layer basis and also gives clear insight into the evolution of the amplitude reflectance on a multilayer as it builds up. An optical criterion is derived for the selection of a proper pair of materials needed for designing a high-reflectance multilayer. Some examples are given to illustrate the usefulness of this design method.

  17. Growth of high-quality InGaN/GaN LED structures on (1 1 1) Si substrates with internal quantum efficiency exceeding 50%

    NASA Astrophysics Data System (ADS)

    Lee, JaeWon; Tak, Youngjo; Kim, Jun-Youn; Hong, Hyun-Gi; Chae, Suhee; Min, Bokki; Jeong, Hyungsu; Yoo, Jinwoo; Kim, Jong-Ryeol; Park, Youngsoo

    2011-01-01

    GaN-based light-emitting-diodes (LEDs) on (1 1 1) Si substrates with internal quantum efficiency (IQE) exceeding 50% have been successfully grown by metal organic vapor phase epitaxy (MOVPE). 3.5 μm thick crack-free GaN epitaxial layers were grown on the Si substrates by the re-growth method on patterned templates. Series of step-graded Al xGa 1- xN epitaxial layers were used as the buffer layers to compensate thermal tensile stresses produced during the post-growth cooling process as well as to reduce the density of threading dislocations (TDs) generated due to the lattice mismatches between III-nitride layers and the silicon substrates. The light-emitting region consisted of 1.8 μm thick n-GaN, 3 periods of InGaN/GaN superlattice, InGaN/GaN multiple quantum wells (MQWs) designed for a peak wavelength of about 455 nm, an electron blocking layer (EBL), and p-GaN. The full-widths at half-maximum (FWHM) of (0 0 0 2) and (1 0 -1 2) ω-rocking curves of the GaN epitaxial layers were 410 and 560 arcsec, respectively. Cross-sectional transmission electron microscopy (TEM) investigation revealed that the propagation of the threading dislocations was mostly limited to the interface between the last Al xGa 1- xN buffer and n-GaN layers. The density of the threading dislocations induced pits of n-GaN, as estimated by atomic force microscopy (AFM), was about 5.5×10 8 cm -2. Temperature dependent photoluminescence (PL) measurements with a relative intensity integration method were carried out to estimate the internal quantum efficiency (IQE) of the light-emitting structures grown on Si, which reached up to 55%.

  18. The Effect of Forward-Facing Steps on Stationary Crossflow Instability Growth and Breakdown

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.

    2018-01-01

    The e?ect of a forward-facing step on stationary cross?ow transition was studied using standard stereo particle image velocimetry (PIV) and time-resolved PIV. Step heights ranging from 53 to 71% of the boundary-layer thickness were studied in detail. The steps above a critical step height of approximately 60% of the boundary-layer thickness had a signi?cant impact on the stationary cross?ow growth downstream of the step. For the critical cases, the stationary cross?ow amplitude grew suddenly downstream of the step, decayed for a short region, then grew again. The adverse pressure gradient upstream of the step resulted in a region of cross?ow reversal. A secondary set of vortices, rotating in the opposite direction to the primary vortices, developed underneath the uplifted primary vortices. The wall-normal velocity disturbance (V' ) created by these secondary vortices impacted the step, and is believed to feed into the strong vortex that developed downstream of the step. A large but very short negative cross?ow region formed for a short region downstream of the step due to a sharp inboard curvature of the streamlines near the wall. For the larger step height cases, a cross?ow-reversal region formed just downstream of the strong negative cross?ow region. This cross?ow reversal region is believed to play an important role in the growth of the stationary cross?ow vortices downstream of the step, and may be a good indication of the critical forward-facing step height.

  19. Synthesis of controlled polymeric cross-linked coatings via iniferter polymerisation in the presence of tetraethyl thiuram disulphide chain terminator.

    PubMed

    Bossi, A; Whitcombe, M J; Uludag, Y; Fowler, S; Chianella, I; Subrahmanyam, S; Sanchez, I; Piletsky, S A

    2010-05-15

    A "grafting from" approach has been used for controlled deposition of cross-linked polymers by living radical polymerisation. Borosilicate glass was modified with N,N-diethylaminodithiocarbamoylpropyl(trimethoxy)silane, in order to confine the iniferter reactive groups solely at its surface, then placed in solution with monomers and cross-linker. The polymerisation was initiated by UV irradiation. Formation of the cross-linked polymers was studied in terms of time course of the reaction, type of monomers incorporated and influence of oxygen. Grafted surfaces were characterised by AFM, FT-IR, ellipsometry and contact angle measurements. The ability to control the grafted layer improved dramatically when the chain terminator agent, N,N-N',N'-tetraethyl thiuram disulphide (TED) was added. Upon irradiation TED increases the concentration of passive capping radicals and decreases the possibility of recombination of active macro-radicals, thus prolonging their lifetime. In the absence of TED the thickness of produced coatings was below 10 nm. TED added at different concentrations assisted in the formation of grafted layers of 10-130 nm thickness. Iniferter chemistry in the presence of TED can be used for growing nanometre-scale polymer layers on solid supports. It constitutes a robust general platform for controlled grafting and offer a general solution to address the needs of surface derivatisation in sensors technology. 2010 Elsevier B.V. All rights reserved.

  20. Link and Network Layers Design for Ultra-High-Speed Terahertz-Band Communications Networks

    DTIC Science & Technology

    2017-01-01

    throughput, and identify the optimal parameter values for their design (Sec. 6.2.3). Moreover, we validate and test the scheme with experimental data obtained...LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH- SPEED TERAHERTZ-BAND COMMUNICATIONS NETWORKS STATE UNIVERSITY OF NEW YORK (SUNY) AT BUFFALO JANUARY...TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) FEB 2015 – SEP 2016 4. TITLE AND SUBTITLE LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH

  1. Boundary-layer stability and airfoil design

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.

    1986-01-01

    Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.

  2. Two-layer critical dimensions and overlay process window characterization and improvement in full-chip computational lithography

    NASA Astrophysics Data System (ADS)

    Sturtevant, John L.; Liubich, Vlad; Gupta, Rachit

    2016-04-01

    Edge placement error (EPE) was a term initially introduced to describe the difference between predicted pattern contour edge and the design target for a single design layer. Strictly speaking, this quantity is not directly measurable in the fab. What is of vital importance is the relative edge placement errors between different design layers, and in the era of multipatterning, the different constituent mask sublayers for a single design layer. The critical dimensions (CD) and overlay between two layers can be measured in the fab, and there has always been a strong emphasis on control of overlay between design layers. The progress in this realm has been remarkable, accelerated in part at least by the proliferation of multipatterning, which reduces the available overlay budget by introducing a coupling of overlay and CD errors for the target layer. Computational lithography makes possible the full-chip assessment of two-layer edge to edge distances and two-layer contact overlap area. We will investigate examples of via-metal model-based analysis of CD and overlay errors. We will investigate both single patterning and double patterning. For single patterning, we show the advantage of contour-to-contour simulation over contour to target simulation, and how the addition of aberrations in the optical models can provide a more realistic CD-overlay process window (PW) for edge placement errors. For double patterning, the interaction of 4-layer CD and overlay errors is very complex, but we illustrate that not only can full-chip verification identify potential two-layer hotspots, the optical proximity correction engine can act to mitigate such hotspots and enlarge the joint CD-overlay PW.

  3. Development of lightweight THUNDER with fiber composite layers

    NASA Astrophysics Data System (ADS)

    Yoon, Kwang J.; Shin, Sukjoon; Kim, Jusik; Park, Hoon C.; Kwak, Moon K.

    2000-06-01

    This paper is concerned with design, manufacturing and performance test of lightweight THUNDER using a top fiber composite layer with near-zero CTE, a PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by the lightweight fiber reinforced plastic layers without losing capabilities to generate high force and displacement. It is possible to save weight up to about 30 percent if we replace the metallic backing materials by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature by following autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detaching form a flat mold. From experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDER.

  4. System and method of designing a load bearing layer of an inflatable vessel

    NASA Technical Reports Server (NTRS)

    Spexarth, Gary R. (Inventor)

    2007-01-01

    A computer-implemented method is provided for designing a restraint layer of an inflatable vessel. The restraint layer is inflatable from an initial uninflated configuration to an inflated configuration and is constructed from a plurality of interfacing longitudinal straps and hoop straps. The method involves providing computer processing means (e.g., to receive user inputs, perform calculations, and output results) and utilizing this computer processing means to implement a plurality of subsequent design steps. The computer processing means is utilized to input the load requirements of the inflated restraint layer and to specify an inflated configuration of the restraint layer. This includes specifying a desired design gap between pairs of adjacent longitudinal or hoop straps, whereby the adjacent straps interface with a plurality of transversely extending hoop or longitudinal straps at a plurality of intersections. Furthermore, an initial uninflated configuration of the restraint layer that is inflatable to achieve the specified inflated configuration is determined. This includes calculating a manufacturing gap between pairs of adjacent longitudinal or hoop straps that correspond to the specified desired gap in the inflated configuration of the restraint layer.

  5. Study of cross-spectra of velocity components and temperature series in a nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Maqueda, Gregorio; Sastre, Mariano; Viñas, Carmen; Viana, Samuel; Yagüe, Carlos

    2010-05-01

    The main characteristic of the Planetary Boundary Layer is the turbulent flow that can be understood as the motions of many superimposed eddies with different scales, which are very irregular and produce mixing among the atmospheric properties. Spectral analysis is a widely used statistical tool to know the size of eddies into the flow. The Turbulent Kinetic Energy is split in fractions for each scale of eddy by mean the power spectrum of the wind velocity components. Also, the fluctuation of the other variables as temperature, humidity, gases concentrations or material particles presents in the atmosphere can be divided according to the importance of different scales in a similar way than the wind. A Cross-spectrum between two time series is used in meteorology to know their correlation in frequency space. Specially, coespectrum, or real part of cross-spectrum, amplitud and coherence give us many information about the low or high correlation between two variables in a particular frecuency or scale (Stull, 1988). In this work we have investigated cross-spectra of velocity components and temperature measured along the summer 2009 at the CIBA, Research Centre for the Lower Atmosphere, located in Valladolid province (Spain), which is on a quite flat terrain (Cuxart et al., 2000; Viana et al., 2009). In these experimental dataset, among other instrumentation, two sonic anemometers (20 Hz, sampling rate) at 1.5 m and 10 m height are available. Cross-spectra between variables of the two levels, specially, wind vertical component and sonic temperature, under stable stratification are studied in order to improve the knowledge of the proprieties of the momentum and heat fluxes near the ground in the PBL. Nevertheless, power spectral of horizontal components of the wind, at both levels, have been also analysed. The spectra and cross-spectra were performed by mean the Blackman-Tukey method, widely utilised in the time series studies (Blackman & Tukey, 1958) and, where it is needed the correlation function of the time series analysed. Results will be regarding for different Richardson number and turbulent intensities, but always in nocturnal conditions, in order to evaluate the influence of the different turbulent and stratification degrees. References. - Blackman, R.B., and Tukey, J.,W., 1958: The measurement of power spectra from the point of view of communication engineering. Dover Publications, 190 pp. - Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vilá J, Redondo JM, Cantalapiedra IR and Conangla L (2000) Stable atmospheric boundary-layer experiment in Spain (SABLES98): a report. Boundary- Layer Meteorol 96:337-370. - Stull R. B. (1988), An Introduction to Boundary Layer Meteorology. Kluwer Academic Publisher. 666 pp. - Viana, S Yagüe, C and Maqueda, G (2009) Propagation and effects of a mesoscale gravity wave over a weaklysStratified nocturnal boundary layer during the SABLES2006 field campaign. Boundary-Layer Meteorol 133:165-188

  6. Designing safer composite helmets to reduce rotational accelerations during oblique impacts.

    PubMed

    Mosleh, Yasmine; Cajka, Martin; Depreitere, Bart; Vander Sloten, Jos; Ivens, Jan

    2018-05-01

    Oblique impact is the most common accident situation that occupants in traffic accidents or athletes in professional sports experience. During oblique impact, the human head is subjected to a combination of linear and rotational accelerations. Rotational movement is known to be responsible for traumatic brain injuries. In this article, composite foam with a column/matrix composite configuration is proposed for head protection applications to replace single-layer uniform foam, to better attenuate rotational movement of the head during oblique impacts. The ability of composite foam in the mitigation of rotational head movement is studied by performing finite element (FE) simulations of oblique impact on flat and helmet shape specimens. The performance of composite foam with respect to parameters such as compliance of the matrix foam and the number, size and cross-sectional shape of the foam columns is explored in detail, and subsequently an optimized structure is proposed. The simulation results show that using composite foam instead of single-layer foam, the rotational acceleration and velocity of the headform can be significantly reduced. The parametric study indicates that using a more compliant matrix foam and by increasing the number of columns in the composite foam configuration, the rotation can be further mitigated. This was confirmed by experimental results. The simulation results were also analyzed based on global head injury criteria such as head injury criterion, rotational injury criterion, brain injury criterion and generalized acceleration model for brain injury threshold which further confirmed the superior performance of composite foam versus single-layer homogeneous expanded polystyrene foam. The findings of simulations give invaluable information for design of protective helmets or, for instance, headliners for the automotive industry.

  7. Modeling methodology for a CMOS-MEMS electrostatic comb

    NASA Astrophysics Data System (ADS)

    Iyer, Sitaraman V.; Lakdawala, Hasnain; Mukherjee, Tamal; Fedder, Gary K.

    2002-04-01

    A methodology for combined modeling of capacitance and force 9in a multi-layer electrostatic comb is demonstrated in this paper. Conformal mapping-based analytical methods are limited to 2D symmetric cross-sections and cannot account for charge concentration effects at corners. Vertex capacitance can be more than 30% of the total capacitance in a single-layer 2 micrometers thick comb with 10 micrometers overlap. Furthermore, analytical equations are strictly valid only for perfectly symmetrical finger positions. Fringing and corner effects are likely to be more significant in a multi- layered CMOS-MEMS comb because of the presence of more edges and vertices. Vertical curling of CMOS-MEMS comb fingers may also lead to reduced capacitance and vertical forces. Gyroscopes are particularly sensitive to such undesirable forces, which therefore, need to be well-quantified. In order to address the above issues, a hybrid approach of superposing linear regression models over a set of core analytical models is implemented. Design of experiments is used to obtain data for capacitance and force using a commercial 3D boundary-element solver. Since accurate force values require significantly higher mesh refinement than accurate capacitance, we use numerical derivatives of capacitance values to compute the forces. The model is formulated such that the capacitance and force models use the same regression coefficients. The comb model thus obtained, fits the numerical capacitance data to within +/- 3% and force to within +/- 10%. The model is experimentally verified by measuring capacitance change in a specially designed test structure. The capacitance model matches measurements to within 10%. The comb model is implemented in an Analog Hardware Description Language (ADHL) for use in behavioral simulation of manufacturing variations in a CMOS-MEMS gyroscope.

  8. Unconstrained paving and plastering method for generating finite element meshes

    DOEpatents

    Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert

    2010-03-02

    Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.

  9. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.

    1980-01-01

    The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.

  10. Protective sheath for a continuous measurement thermocouple

    DOEpatents

    Phillippi, R.M.

    1991-12-03

    Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device. 4 figures.

  11. Protective sheath for a continuous measurement thermocouple

    DOEpatents

    Phillippi, R. Michael

    1991-01-01

    Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device.

  12. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect.

    PubMed

    Zhang, Yaqian; Zhang, Min; Jiang, Haoyang; Shi, Jinli; Li, Feibo; Xia, Yanhong; Zhang, Gongzheng; Li, Huanjun

    2017-12-01

    The layered nanocomposite hydrogel films containing chitosan (CS) and graphene oxide (GO) have been prepared by water evaporation induced self-assembly and subsequent physical cross-linking in alkaline solution. The layered CS/GO hydrogel films obtained have a nacre-like brick-and-mortar microstructure, which contributes to their excellent mechanical properties. The tensile strength and elongation at break of the hydrogel films with 5wt% GO are 5.35MPa and 193.5%, respectively, which are comparable to natural costal cartilage. Furthermore, the CS/GO hydrogel films exhibited pH-driven shape memory effect, and this unique phenomenon is mainly attributed to the reversible transition of partial physically cross-linking corresponding to hydrogen bondings and hydrophobic interactions between CS polymer chains due to pH changing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Well-Constructed Single-Layer Molybdenum Disulfide Nanorose Cross-Linked by Three Dimensional-Reduced Graphene Oxide Network for Superior Water Splitting and Lithium Storage Property

    PubMed Central

    Zhao, Yanyan; Kuai, Long; Liu, Yanguo; Wang, Pengpeng; Arandiyan, Hamidreza; Cao, Sufeng; Zhang, Jie; Li, Fengyun; Wang, Qing; Geng, Baoyou; Sun, Hongyu

    2015-01-01

    A facile one-step solution reaction route for growth of novel MoS2 nanorose cross-linked by 3D rGO network, in which the MoS2 nanorose is constructed by single-layered or few-layered MoS2 nanosheets, is presented. Due to the 3D assembled hierarchical architecture of the ultrathin MoS2 nanosheets and the interconnection of 3D rGO network, as well as the synergetic effects of MoS2 and rGO, the as-prepared MoS2-NR/rGO nanohybrids delivered high specific capacity, excellent cycling and good rate performance when evaluated as an anode material for lithium-ion batteries. Moreover, the nanohybrids also show excellent hydrogen-evolution catalytic activity and durability in an acidic medium, which is superior to MoS2 nanorose and their nanoparticles counterparts. PMID:25735416

  14. An empirical model for polarized and cross-polarized scattering from a vegetation layer

    NASA Technical Reports Server (NTRS)

    Liu, H. L.; Fung, A. K.

    1988-01-01

    An empirical model for scattering from a vegetation layer above an irregular ground surface is developed in terms of the first-order solution for like-polarized scattering and the second-order solution for cross-polarized scattering. The effects of multiple scattering within the layer and at the surface-volume boundary are compensated by using a correction factor based on the matrix doubling method. The major feature of this model is that all parameters in the model are physical parameters of the vegetation medium. There are no regression parameters. Comparisons of this empirical model with theoretical matrix-doubling method and radar measurements indicate good agreements in polarization, angular trends, and k sub a up to 4, where k is the wave number and a is the disk radius. The computational time is shortened by a factor of 8, relative to the theoretical model calculation.

  15. Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers.

    PubMed

    Lapchuk, Anatoly S; Shin, Dongho; Jeong, Ho-Seop; Kyong, Chun Su; Shin, Dong-Ik

    2005-12-10

    The mode spectrum in an optical nanowaveguide consisting of a dielectric-core layer surrounded by two identical metal layers is investigated. A simple model based on mode matching to predict the properties of mode propagation in such optical nanowaveguides is proposed. It is shown that quasi-TM00 and quasi-TM10 modes supported by an optical microstrip line do not have a cutoff frequency, regardless of the size of the metal strips, the thickness of the dielectric slab, and the cross-sectional shape. The transverse size of the TM00 mode supported by a nanosized microstrip line was found to be approximately equal to the transverse dimension of the microstrip line. In closed rectangular and elliptical nanowaveguides, i.e., in which all dielectric surfaces are covered with metal films, the cross-sectional shape of the waveguide should be stretched along one side to produce propagation conditions for the fundamental mode.

  16. Acoustical scattering by multilayer spherical elastic scatterer containing electrorheological layer.

    PubMed

    Cai, Liang-Wu; Dacol, Dacio K; Orris, Gregory J; Calvo, David C; Nicholas, Michael

    2011-01-01

    A computational procedure for analyzing acoustical scattering by multilayer concentric spherical scatterers having an arbitrary mixture of acoustic and elastic materials is proposed. The procedure is then used to analyze the scattering by a spherical scatterer consisting of a solid shell and a solid core encasing an electrorheological (ER) fluid layer, and the tunability in the scattering characteristics afforded by the ER layer is explored numerically. Tunable scatterers with two different ER fluids are analyzed. One, corn starch in peanut oil, shows that a significant increase in scattering cross-section is possible in moderate frequencies. Another, fine poly-methyl methacrylate (PMMA) beads in dodecane, shows only slight change in scattering cross-sections overall. But, when the shell is thin, a noticeable local resonance peak can appear near ka=1, and this resonance can be turned on or off by the external electric field.

  17. Structure and properties of the subsolar magnetopause for northward interplanetary magnetic field - Multiple-instrument particle observations

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Fitzenreiter, R. J.; Gosling, J. T.; Thomsen, M. F.; Mitchell, D. G.; Fuselier, S. A.; Parks, G. K.; Anderson, R. R.; Hubert, D.

    1993-01-01

    The paper examines the structure and properties of the subsolar magnetopause for northward IMF on the basis of measurements from 10 different instrument for three ISEE crossings. It is shown that the overall structure and properties are similar for the three crossings, indicating that the magnetopause is relatively well determined in the subsolar region for strongly northward IMF. The combined data set suggests that the magnetopause region is best organized by defining a sheath transition layer and steplike boundary layers. The electron flux enhancements in the lowest energies in the boundary layers and magnetosphere are found to be ionospheric electrons and not photoelectrons from the spacecraft. For northward IMF, they are photoelectrons, but for southward IMF they may be secondary electrons. The density measurements from differential and integral techniques are similar, leaving no room for a significant 'invisible' population.

  18. A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.

    2018-03-01

    Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.

  19. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  20. Effects of melting layer on Ku-band signal depolarization

    NASA Astrophysics Data System (ADS)

    Sarkar, Thumree; Das, Saurabh; Maitra, Animesh

    2014-09-01

    Propagation effects on Ku-band over an earth-space path is carried out at Kolkata, India, a tropical location, by receiving a Ku-band signal with horizontal plane polarization transmitted from the geostationary satellite NSS-6 (at 95°E). The amplitude of co-polar attenuation has been monitored along with the measurements of rain rate, rain drop size distribution and height profile of rain rate. The cross-polar enhancement of the signal is also monitored by receiving the same signal in orthogonal direction with another identical receiver. The experimental observations are used to study the effect of melting layer on both co-polar attenuation and cross-polar enhancement for the rain events observed during 2012-2013. Melting layer is indicated by the bright band signature in vertical profile of rain rate. The ground based drop size measurements indicate that the stratiform rain has more number of small drops whereas convective rain composed of large rain drops. The results indicate that the depolarization due to melting layer is more dominant compared to that due to the drop deformation mechanism at low rain rates.

  1. Effects of shallow-layer reverberation on measurement of teleseismic P-wave travel times for ocean bottom seismograph data

    NASA Astrophysics Data System (ADS)

    Obayashi, Masayuki; Ishihara, Yasushi; Suetsugu, Daisuke

    2017-03-01

    We conducted synthetic experiments to evaluate the effects of shallow-layer reverberation in oceanic regions on P-wave travel times measured by waveform cross-correlation. Time shift due to waveform distortion by the reverberation was estimated as a function of period. Reverberations in the crystalline crust advance the P-waves by a frequency-independent time shift of about 0.3 s in oceans. Sediment does not affect the time shifts in the mid-ocean regions, but effects as large as -0.8 s or more occur where sediment thickness is greater than 600 m for periods longer than 15 s. The water layer causes time delays (+0.3 s) in the relatively shallow (<3500 m) water region for periods longer than 20 s. The time shift may influence mantle images obtained if the reverberation effects are not accounted for in seismic tomography. We propose a simple method to correct relative P-wave travel times at two sites for shallow-layer reverberation by the cross-convolution of the crustal responses at the two sites. [Figure not available: see fulltext. Caption: .

  2. Fabrication of arrayed Si nanowire-based nano-floating gate memory devices on flexible plastics.

    PubMed

    Yoon, Changjoon; Jeon, Youngin; Yun, Junggwon; Kim, Sangsig

    2012-01-01

    Arrayed Si nanowire (NW)-based nano-floating gate memory (NFGM) devices with Pt nanoparticles (NPs) embedded in Al2O3 gate layers are successfully constructed on flexible plastics by top-down approaches. Ten arrayed Si NW-based NFGM devices are positioned on the first level. Cross-linked poly-4-vinylphenol (PVP) layers are spin-coated on them as isolation layers between the first and second level, and another ten devices are stacked on the cross-linked PVP isolation layers. The electrical characteristics of the representative Si NW-based NFGM devices on the first and second levels exhibit threshold voltage shifts, indicating the trapping and detrapping of electrons in their NPs nodes. They have an average threshold voltage shift of 2.5 V with good retention times of more than 5 x 10(4) s. Moreover, most of the devices successfully retain their electrical characteristics after about one thousand bending cycles. These well-arrayed and stacked Si NW-based NFGM devices demonstrate the potential of nanowire-based devices for large-scale integration.

  3. Strain relaxation of thin Si{sub 0.6}Ge{sub 0.4} grown with low-temperature buffers by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, M.; Hansson, G. V.; Ni, W.-X.

    A double-low-temperature-buffer variable-temperature growth scheme was studied for fabrication of strain-relaxed thin Si{sub 0.6}Ge{sub 0.4} layer on Si(001) by using molecular beam epitaxy (MBE), with particular focuses on the influence of growth temperature of individual low-temperature-buffer layers on the relaxation process and final structural qualities. The low-temperature buffers consisted of a 40 nm Si layer grown at an optimized temperature of {approx}400 deg. C, followed by a 20 nm Si{sub 0.6}Ge{sub 0.4} layer grown at temperatures ranging from 50 to 550 deg. C. A significant relaxation increase together with a surface roughness decrease both by a factor of {approx}2, accompaniedmore » with the cross-hatch/cross-hatch-free surface morphology transition, took place for the sample containing a low-temperature Si{sub 0.6}Ge{sub 0.4} layer that was grown at {approx}200 deg. C. This dramatic change was explained by the association with a certain onset stage of the ordered/disordered growth transition during the low-temperature MBE, where the high density of misfit dislocation segments generated near surface cusps largely facilitated the strain relaxation of the top Si{sub 0.6}Ge{sub 0.4} layer.« less

  4. Combined SERS and Raman analysis for the identification of red pigments in cross-sections from historic oil paintings.

    PubMed

    Frano, Kristen A; Mayhew, Hannah E; Svoboda, Shelley A; Wustholz, Kristin L

    2014-12-21

    The analysis of paint cross-sections can reveal a remarkable amount of information about the layers and materials in a painting without visibly altering the artwork. Although a variety of analytical approaches are used to detect inorganic pigments as well as organic binders, proteins, and lipids in cross-sections, they do not provide for the unambiguous identification of natural, organic colorants. Here, we develop a novel combined surface-enhanced Raman scattering (SERS), light microscopy, and normal Raman scattering (NRS) approach for the identification of red organic and inorganic pigments in paint cross-sections obtained from historic 18th and 19th century oil paintings. In particular, Ag nanoparticles are directly applied to localized areas of paint cross-sections mounted in polyester resin for SERS analysis of the organic pigments. This combined extractionless non-hydrolysis SERS and NRS approach provides for the definitive identification of carmine lake, madder lake, and vermilion in multiple paint layers. To our knowledge, this study represents the first in situ identification of natural, organic pigments within paint cross-sections from oil paintings. Furthermore, the combination of SERS and normal Raman, with light microscopy provides conservators with a more comprehensive understanding of a painting from a single sample and without the need for sample pretreatment.

  5. Anisotropic Dye Adsorption and Anhydrous Proton Conductivity in Smectic Liquid Crystal Networks: The Role of Cross-Link Density, Order, and Orientation.

    PubMed

    Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J

    2017-10-11

    In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.

  6. Electrochemical behavior of tube-fin assembly for an aluminum automotive condenser with improved corrosion resistance

    NASA Astrophysics Data System (ADS)

    Pech-Canul, M. A.; Guía-Tello, J. C.; Pech-Canul, M. I.; Aguilar, J. C.; Gorocica-Díaz, J. A.; Arana-Guillén, R.; Puch-Bleis, J.

    An aluminum automotive condenser was designed to exhibit high corrosion resistance in the seawater acetic acid test (SWAAT) combining zinc coated microchannel tubes and fins made with AA4343/AA3003(Zn)/AA4343 brazing sheet. Electrochemical measurements in SWAAT solution were carried out under laboratory conditions using tube-fin assembly and individual fin and tube samples withdrawn from the condenser core. The aim was to gain information on the protective role of the zinc sacrificial layer and about changes in corrosion behavior as a function of immersion time. External corrosion of the tube-fin system was simulated by immersion of mini-core samples under open circuit conditions. The corrosion rate increased rapidly during the first 6 h and slowly afterwards. The short time behavior was related to the dissolution of the oxide film and fast dissolution of the outermost part of the zinc diffusion layer. With the aid of cross-sectional depth corrosion potential profiles, it was shown that as the sacrificial layer gets dissolved, the surface concentration of zinc decreases and the potential shifts to less negative values. The results of galvanic coupling of tube and fins in a mini-cell showed that the tube became the anode while the fins exhibited cathodic behavior. An evolution in the galvanic interaction was observed, due to the progressive dissolution of the sacrificial zinc layer. The difference of uncoupled potentials between tube and fins decreased from 71 mV to 32 mV after 84 h of galvanic coupling. At the end of such period there was still a part of the zinc sacrificial layer remaining which would serve for protection of the tube material for even longer periods and there were indications of slight corrosion in the fins.

  7. Implementation of new integrated evaporation equipment for the preparation of 238U targets and improvement of the deposition process

    NASA Astrophysics Data System (ADS)

    Vanleeuw, D.; Lewis, D.; Moens, A.; Sibbens, G.; Wiss, T.

    2018-05-01

    Measurement of neutron cross section data is a core activity of the JRC-Directorate G for Nuclear Safety and Security in Geel. After a period of reduced activity and in line with a renewed interest for nuclear data required for GenIV reactors and waste minimization, the demand for high quality actinide targets increased. Physical vapour deposition by thermal evaporation is a key technique to prepare homogeneous thin actinide layers, but due to ageing effects the earlier in-house developed equipment can no longer provide the required quality. Because of a current lack of experience and human resources cooperation with private companies is required for the development of new deposition equipment directly integrated in a glove box. In this paper we describe the design, implementation and validation of the first commercial actinide evaporator in a glove box as well as the optimization of the deposition process. Highly enriched 238U3O8 was converted to 238UF4 powder and several deposition runs were performed on different substrates. The deposition parameters were varied and defined in order to guarantee physical and chemical stable homogeneous UF4 layers, even on polished substrates which was not longer feasible with the older equipment. The stability problem is discussed in view of the thin layer growth by physical vapour deposition and the influence of the deposition parameters on the layer quality. The deposits were characterized for the total mass by means of substitution weighing and for the areal density of 238U by means of alpha particle counting and thermal ionization mass spectrometry (TIMS). The quality of the layer was visually evaluated and by means of stereo microscopy and auto radiography.

  8. Design technology co-optimization for 14/10nm metal1 double patterning layer

    NASA Astrophysics Data System (ADS)

    Duan, Yingli; Su, Xiaojing; Chen, Ying; Su, Yajuan; Shao, Feng; Zhang, Recco; Lei, Junjiang; Wei, Yayi

    2016-03-01

    Design and technology co-optimization (DTCO) can satisfy the needs of the design, generate robust design rule, and avoid unfriendly patterns at the early stage of design to ensure a high level of manufacturability of the product by the technical capability of the present process. The DTCO methodology in this paper includes design rule translation, layout analysis, model validation, hotspots classification and design rule optimization mainly. The correlation of the DTCO and double patterning (DPT) can optimize the related design rule and generate friendlier layout which meets the requirement of the 14/10nm technology node. The experiment demonstrates the methodology of DPT-compliant DTCO which is applied to a metal1 layer from the 14/10nm node. The DTCO workflow proposed in our job is an efficient solution for optimizing the design rules for 14/10 nm tech node Metal1 layer. And the paper also discussed and did the verification about how to tune the design rule of the U-shape and L-shape structures in a DPT-aware metal layer.

  9. Composite passive damping struts for large precision structures

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P. (Inventor)

    1993-01-01

    In the field of viscoelastic dampers, a new strut design comprises a viscoelastic material sandwiched between multiple layers, some of which layers bear and dampen load force. In one embodiment, the layers are composite plies of opposing orientation. In another embodiment, the strut utilizes a viscoelastic layer sandwiched between V-shaped composite plies. In a third embodiment, a viscoelastic layer is sandwiched between sine-shaped plies. Strut strength is equal to or greater than conventional aluminum struts due to the unique high interlaminar shear ply design.

  10. Coexistence of Magnetic Order and Ferroelectricity at 2D Nanosheet Interfaces.

    PubMed

    Li, Bao-Wen; Osada, Minoru; Ebina, Yasuo; Ueda, Shigenori; Sasaki, Takayoshi

    2016-06-22

    Multiferroic materials, in which the electronic polarization can be switched by a magnetic field and vice versa, are of fundamental importance for new electronic technologies. However, there exist very few single-phase materials that exhibit such cross-coupling properties at room temperature, and heterostructures with a strong magnetoelectric coupling have only been made with complex techniques. Here, we present a rational design for multiferroic materials by use of a layer-by-layer engineering of 2D nanosheets. Our approach to new multiferroic materials is the artificial construction of high-quality superlattices by interleaving ferromagnetic Ti0.8Co0.2O2 nanosheets with dielectric perovskite-structured Ca2Nb3O10 nanosheets. Such an artificial structuring allows us to engineer the interlayer coupling, and the (Ti0.8Co0.2O2/Ca2Nb3O10/Ti0.8Co0.2O2) superlattices induce room-temperature ferroelectricity in the presence of the ferromagnetic order. Our technique provides a new route for tailoring artificial multiferroic materials in a highly controllable manner.

  11. Substrate stiffness affects skeletal myoblast differentiation in vitro

    NASA Astrophysics Data System (ADS)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  12. Position sensitivity by light splitting in scintillator arrays

    NASA Astrophysics Data System (ADS)

    Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Dorner, G.; Drüke, V.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Groβ, A.; Groβ-Hardt, R.; Hinterberger, F.; Jahn, R.; Kühl, L.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; Przewoski, B. v.; Rohdjeβ, H.; Rosendaal, D.; Rossen, P. v.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Sprute, L.; Stein, H.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration

    1993-05-01

    A novel detector design of overlapping plastic scintillator elements in cylindrical geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles: each particle traversing the detector from the axis outwards will produce light in several elements. The relative amounts of energy deposited in those elements allow one to interpolate on the particle trajectory beyond the resolution given by the granularity. The detector covers the angular range 10° ≤ Θlab ≤ 72° and 0° ≤ ϕ ≤ 360° with an inner layer of scintillator bars of triangular cross section and an outer layer of rings. The material is BC408. Tests with minimum ionizing electron beams show that spatial resolutions of ΔΘlab ≈ 1.5° and Δϕ12 ≈ 1.5° (FWHM) can be obtained for electrons or proton pairs with energies in the GeV range. In the EDDA experiment the ultimate spatial resolution is then determined by the size of the interaction area rather than by the intrinsic pulse height resolution of the detector.

  13. Fundamental Design based on Current Distribution in Coaxial Multi-Layer Cable-in-Conduit Conductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Tsuda, Makoto; Yagai, Tsuyoshi; Takahata, Kazuya; Imagawa, Shinsaku

    An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors which are composed of multi-staged, triplet type sub-cables, and hence deteriorates the performance of the coils. Therefore, since it is very important to obtain a homogeneous current distribution in the superconducting strands, we propose a coaxial multi-layer type CIC conductor. We use a circuit model for all layers in the coaxial multi-layer CIC conductor, and derive a generalized formula governing the current distribution as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction, radius of each layer, and number of superconducting (SC) strands and copper (Cu) strands. We apply the formula to design the coaxial multi-layer CIC which has the same number of SC strands and Cu strands of the CIC for Central Solenoid of ITER. We can design three kinds of the coaxial multi-layer CIC depending on distribution of SC and Cu strands on all layers. It is shown that the SC strand volume should be optimized as a function of SC and Cu strand distribution on the layers.

  14. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2015-01-01

    There is a new potential to address needs for medical diagnostics in Point-of-Care (PoC) applications using mHealth (Mobile computing, medical sensors, and communications technologies for health care), a mHealth based lab test will require a LOC to perform clinical analysis. In this work, we describe the design of a simple Lab-on-a-chip (LOC) platform for mHealth medical diagnostics. The LOC utilizes a passive capillary valve with no moving parts for fluid control using channels with very low aspect ratios cross sections (i.e., channel width ≫ height) achieved through transitions in the channel geometry via that arrest capillary flow. Using a CO2 laser in raster engraving mode, we have designed and fabricated an eight-channel LOC for fluorescence signal detection fabricated by engraving and combining just two polymer layers. Each of the LOC channels is capable of mixing two reagents (e.g., enzyme and substrate) for various assays. For mHealth detection, we used a mobile CCD detector equipped with LED multispectral illumination in the red, green, blue, and white range. This technology enables the development of low-cost LOC platforms for mHealth whose fabrication is compatible with standard industrial plastic fabrication processes to enable mass production of mHealth diagnostic devices, which may broaden the use of LOCs in PoC applications, especially in global health settings.

  15. MeV Si ion modifications on the thermoelectric generators from Si/Si + Ge superlattice nano-layered films

    NASA Astrophysics Data System (ADS)

    Budak, S.; Heidary, K.; Johnson, R. B.; Colon, T.; Muntele, C.; Ila, D.

    2014-08-01

    The performance of thermoelectric materials and devices is characterized by a dimensionless figure of merit, ZT = S2σT/K, where, S and σ denote, respectively, the Seebeck coefficient and electrical conductivity, T is the absolute temperature in Kelvin and K represents the thermal conductivity. The figure of merit may be improved by means of raising either S or σ or by lowering K. In our laboratory, we have fabricated and characterized the performance of a large variety of thermoelectric generators (TEG). Two TEG groups comprised of 50 and 100 alternating layers of Si/Si + Ge multi-nanolayered superlattice films have been fabricated and thoroughly characterized. Ion beam assisted deposition (IBAD) was utilized to assemble the alternating sandwiched layers, resulting in total thickness of 300 nm and 317 nm for 50 and 100 layer devices, respectively. Rutherford Backscattering Spectroscopy (RBS) was employed in order to monitor the precise quantity of Si and Ge utilized in the construction of specific multilayer thin films. The material layers were subsequently impregnated with quantum dots and/or quantum clusters, in order to concurrently reduce the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and raise the cross plane electrical conductivity. The quantum dots/clusters were implanted via the 5 MeV Si ion bombardment which was performed using a Pelletron high energy ion beam accelerator. We have achieved remarkable results for the thermoelectric and optical properties of the Si/Si + Ge multilayer thin film TEG systems. We have demonstrated that with optimal setting of the 5 MeV Si ion beam bombardment fluences, one can fabricate TEG systems with figures of merits substantially higher than the values previously reported.

  16. The vertical structure of the circulation and dynamics in Hudson Shelf Valley

    USGS Publications Warehouse

    Lentz, Steven J.; Butman, Bradford; Harris, Courtney K.

    2014-01-01

    Hudson Shelf Valley is a 20–30 m deep, 5–10 km wide v-shaped submarine valley that extends across the Middle Atlantic Bight continental shelf. The valley provides a conduit for cross-shelf exchange via along-valley currents of 0.5 m s−1 or more. Current profile, pressure, and density observations collected during the winter of 1999–2000 are used to examine the vertical structure and dynamics of the flow. Near-bottom along-valley currents having times scales of a few days are driven by cross-shelf pressure gradients setup by wind stresses, with eastward (westward) winds driving onshore (offshore) flow within the valley. The along-valley momentum balance in the bottom boundary layer is predominantly between the pressure gradient and bottom stress because the valley bathymetry limits current veering. Above the bottom boundary layer, the flow veers toward an along-shelf (cross-valley) orientation and a geostrophic balance with some contribution from the wind stress (surface Ekman layer). The vertical structure and strength of the along-valley current depends on the magnitude and direction of the wind stress. During offshore flows driven by westward winds, the near-bottom stratification within the valley increases resulting in a thinner bottom boundary layer and weaker offshore currents. Conversely, during onshore flows driven by eastward winds the near-bottom stratification decreases resulting in a thicker bottom boundary layer and stronger onshore currents. Consequently, for wind stress magnitudes exceeding 0.1 N m−2, onshore along-valley transport associated with eastward wind stress exceeds the offshore transport associated with westward wind stress of the same magnitude.

  17. Interaction of two glancing, crossing shock waves with a turbulent boundary-layer at various Mach numbers

    NASA Technical Reports Server (NTRS)

    Hingst, Warren R.; Williams, Kevin E.

    1991-01-01

    A preliminary experimental investigation was conducted to study two crossing, glancing shock waves of equal strengths, interacting with the boundary-layer developed on a supersonic wind tunnel wall. This study was performed at several Mach numbers between 2.5 and 4.0. The shock waves were created by fins (shock generators), spanning the tunnel test section, that were set at angles varying from 4 to 12 degrees. The data acquired are wall static pressure measurements, and qualitative information in the form of oil flow and schlieren visualizations. The principle aim is two-fold. First, a fundamental understanding of the physics underlying this flow phenomena is desired. Also, a comprehensive data set is needed for computational fluid dynamic code validation. Results indicate that for small shock generator angles, the boundary-layer remains attached throughout the flow field. However, with increasing shock strengths (increasing generator angles), boundary layer separation does occur and becomes progressively more severe as the generator angles are increased further. The location of the separation, which starts well downstream of the shock crossing point, moves upstream as shock strengths are increased. At the highest generator angles, the separation appears to begin coincident with the generator leading edges and engulfs most of the area between the generators. This phenomena occurs very near the 'unstart' limit for the generators. The wall pressures at the lower generator angles are nominally consistent with the flow geometries (i.e. shock patterns) although significantly affected by the boundary-layer upstream influence. As separation occurs, the wall pressures exhibit a gradient that is mainly axial in direction in the vicinity of the separation. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  18. Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer

    NASA Astrophysics Data System (ADS)

    Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.

    2017-07-01

    The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of  -5.13  ×  104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.

  19. The Effect of Acoustic Forcing on Instabilities and Breakdown in Swept-Wing Flow over a Backward-Facing Step

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Shishkov, Olga; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2016-01-01

    Instability interaction and breakdown were experimentally investigated in the flow over a swept backward-facing step. Acoustic forcing was used to excite the Tollmien-Schlichting (TS) instability and to acquire phase-locked results. The phase-averaged results illustrate the complex nature of the interaction between the TS and stationary cross flow instabilities. The weak stationary cross flow disturbance causes a distortion of the TS wavefront. The breakdown process is characterized by large positive and negative spikes in velocity. The positive spikes occur near the same time and location as the positive part of the TS wave. Higher-order spectral analysis was used to further investigate the nonlinear interactions between the TS instability and the traveling cross flow disturbances. The results reveal that a likely cause for the generation of the spikes corresponds to nonlinear interactions between the TS, traveling cross flow, and stationary cross flow disturbances. The spikes begin at low amplitudes of the unsteady and steady disturbances (2-4% U (sub e) (i.e. boundary layer edge velocity)) but can achieve very large amplitudes (20-30 percent U (sub e) (i.e. boundary layer edge velocity)) that initiate an early, though highly intermittent, breakdown to turbulence.

  20. Modular Integrated Stackable Layers (MISL) MI_MSP430A Board Design Document (BDD)

    NASA Technical Reports Server (NTRS)

    Yim, Hester

    2013-01-01

    This is a board-level design document for Modular Integrated Stackable Layers (MISL) MI_MSP430A board (PIN MSP430F5438A). The Board Design Document (BDD) contains the description, features of microcontroller, electrical and mechanical design, and drawings.

Top